WO2020098482A1 - 散热结构、带散热结构的体声波谐振器、滤波器和电子设备 - Google Patents

散热结构、带散热结构的体声波谐振器、滤波器和电子设备 Download PDF

Info

Publication number
WO2020098482A1
WO2020098482A1 PCT/CN2019/114002 CN2019114002W WO2020098482A1 WO 2020098482 A1 WO2020098482 A1 WO 2020098482A1 CN 2019114002 W CN2019114002 W CN 2019114002W WO 2020098482 A1 WO2020098482 A1 WO 2020098482A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat dissipation
heat
acoustic wave
bulk acoustic
wave resonator
Prior art date
Application number
PCT/CN2019/114002
Other languages
English (en)
French (fr)
Inventor
孙晨
庞慰
张孟伦
杨清瑞
Original Assignee
天津大学
诺思(天津)微系统有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津大学, 诺思(天津)微系统有限责任公司 filed Critical 天津大学
Publication of WO2020098482A1 publication Critical patent/WO2020098482A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02086Means for compensation or elimination of undesirable effects
    • H03H9/02102Means for compensation or elimination of undesirable effects of temperature influence
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02047Treatment of substrates
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/171Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator implemented with thin-film techniques, i.e. of the film bulk acoustic resonator [FBAR] type
    • H03H9/172Means for mounting on a substrate, i.e. means constituting the material interface confining the waves to a volume
    • H03H9/174Membranes

Definitions

  • Embodiments of the present invention relate to the field of semiconductors, and particularly to a heat dissipation structure for semiconductor devices, a bulk acoustic wave resonator, a filter with the resonator, and an electronic device with the filter.
  • Thin-film bulk wave resonators made by longitudinal resonance of piezoelectric films in the thickness direction have become a viable alternative to surface acoustic wave devices and quartz crystal resonators in terms of machine communication and high-speed serial data applications.
  • the RF front-end bulk wave filter / duplexer provides superior filtering characteristics, such as low insertion loss, steep transition band, large power capacity, and strong anti-static discharge (ESD) capability.
  • ESD anti-static discharge
  • a high-frequency thin film bulk wave oscillator with ultra-low frequency temperature drift has low phase noise, low power consumption and a wide bandwidth modulation range.
  • these miniature thin-film resonators use CMOS-compatible processing technology on the silicon substrate, which can reduce unit costs and facilitate final integration with CMOS circuits.
  • the bulk wave resonator includes an acoustic mirror and two electrodes, and a layer of piezoelectric material called piezoelectric excitation between the two electrodes.
  • the bottom electrode and the top electrode are also called excitation electrodes, and their function is to cause mechanical oscillation of each layer of the resonator.
  • the acoustic mirror forms an acoustic isolation between the bulk wave resonator and the substrate to prevent sound waves from being conducted outside the resonator, causing energy loss.
  • the bulk acoustic wave resonator only has the mutual conversion of mechanical energy and electrical energy in the working state, but in practical situations, the electrical energy and acoustic wave in the bulk acoustic wave resonator are always inevitable to be partially converted into thermal energy, and the resonator's The higher the frequency, the more pronounced the heating effect becomes.
  • the accumulation of heat in it will bring significant negative effects, such as causing the resonator temperature to rise and causing the resonator frequency to drift, Or it may cause stress accumulation and deformation of the piezoelectric stack, thereby affecting the reliability and life of the resonator, and at the same time limiting the further improvement of the resonator power capacity.
  • Constructing a heat dissipation structure and transferring heat to the outside of the resonance structure through the heat dissipation structure in time is an effective method to reduce the influence of heat on the resonator. Constructing the heat dissipation structure can make the resonator have higher reliability and higher power capacity .
  • the present invention is proposed.
  • a bulk acoustic wave resonator including: a substrate having a first surface and a second surface and a through hole penetrating through the substrate; an acoustic mirror; a bottom electrode disposed above the substrate; a top The electrode is opposed to the bottom electrode; the piezoelectric layer is provided above the bottom electrode and between the bottom electrode and the top electrode; and the heat dissipation structure, in which: the thickness of the acoustic mirror, bottom electrode, piezoelectric layer, and top electrode in the substrate The area where the directions overlap is the effective area of the resonator, and the bottom electrode, the piezoelectric layer and the top electrode are provided on the first surface of the substrate; the heat dissipation structure includes a heat dissipation portion, a heat extraction portion, and thermally connects the heat dissipation portion and the heat extraction portion Thermal connection portion, the heat extraction portion is located outside the effective area, the heat extraction portion is in thermal contact
  • the heat dissipation portion further includes a first heat dissipation portion, and the first heat dissipation portion is disposed on the side where the first surface is located and is directly thermally connected to the heat extraction portion.
  • the bulk acoustic wave resonator further includes a first thermally conductive insulating medium layer; the heat extraction portion is disposed on one side of the first surface of the substrate, and the first thermally conductive insulating layer is disposed on the bottom Between the electrode and the heat extraction part, and the bottom electrode is located above the first thermally conductive insulating medium layer, keeping contact with the first thermally conductive insulating medium layer and being spaced apart from the thermal extraction part.
  • the first thermally conductive insulating medium layer is made of aluminum nitride, beryllium oxide or silicone grease.
  • the heat extraction portion is an insulating portion; the heat extraction portion is provided on one side of the first surface of the substrate, and the bottom electrode is located above the heat extraction portion and maintains contact with the heat extraction portion.
  • the heat extraction portion extends to the upper surface of the piezoelectric layer and maintains contact with the piezoelectric layer to be spaced apart from the top electrode.
  • the bulk acoustic wave resonator further includes a second thermally conductive insulating medium layer; the heat extraction portion extends along the upper surface of the piezoelectric layer below the second thermally conductive insulating medium layer
  • the two thermally conductive insulating medium layers maintain contact; the top electrode is located above the second thermally conductive insulating medium layer, maintains contact with the second thermally conductive insulating medium layer, and is spaced apart from the heat extraction portion.
  • the second thermally conductive insulating medium layer is made of aluminum nitride, beryllium oxide or silicone grease.
  • the heat extraction portion is an insulating portion; the heat extraction portion extends along the upper surface of the piezoelectric layer below the top electrode, and the top electrode is located above the heat extraction portion and maintains contact with the heat extraction portion.
  • the first heat dissipation portion is at least partially disposed around the effective area.
  • the first heat dissipation portion and / or the second heat dissipation portion include a portion in contact with air to exchange heat with the air and / or a portion provided in the substrate in contact with the substrate to exchange heat with the substrate.
  • the through hole may be a circular through hole with a diameter ranging from 1 to 30 ⁇ m, and a further optional range from 5 to 20 ⁇ m; or the through hole may be a rectangular through hole in its cross section,
  • the rectangular length range is 20-80 ⁇ m, the further range can be 40-60 ⁇ m; the width can be the range 2-20 ⁇ m, and the further optional range is 5-10 ⁇ m.
  • the first heat dissipation portion and / or the second heat dissipation portion include a plurality of band-shaped protrusions.
  • the band-shaped protrusions are distributed at equal intervals, and the width of each band-shaped protrusion is the same, and the width range is 0.5-4 ⁇ m; the distance between two adjacent band-shaped protrusions is 0.5-6 ⁇ m; the band-shaped protrusions The height range is 0.5-20 ⁇ m.
  • the first heat dissipation portion and / or the second heat dissipation portion include a plurality of columnar protrusions.
  • the columnar protrusions are regular hexagonal prism protrusions; the columnar protrusions are equally spaced, each regular hexagonal prism structure has the same side length, and the side length range is 0.5-4 ⁇ m; the regular hexagonal prism structures are equally spaced and adjacent The distance between the two regular hexagonal prisms is 0.5-6 ⁇ m; the height of the regular hexagonal prism protrusions is 0.5-20 ⁇ m.
  • the plurality of columnar protrusions form a heat dissipation dissipation structure.
  • the columnar protrusions are cylindrical protrusions, and the plurality of columnar protrusions are distributed concentrically; the radius of the columnar protrusions gradually decreases in the radial outward direction, and the columnar protrusions
  • the number of columnar protrusions in each circle formed gradually becomes larger; the radius of the columnar protrusions of two adjacent circles meets the proportional law and the ratio of the radius of the columnar protrusions of the inner circle to the radius of the columnar protrusions of the outer circle ⁇ 1; the number of columnar protrusions of two adjacent circles meets the law of equal ratio, and the ratio of the number of columnar protrusions of the outer circle to the number of columnar protrusions of the inner circle is ⁇ 2, and ⁇ 2 / ⁇ 1 is greater than 1, where: The maximum range of the radius is 4-30 ⁇ m, and the minimum range of the number
  • the first heat dissipation portion and / or the second heat dissipation portion include a plurality of annular protrusions having a concentric circle structure.
  • the plurality of ring-shaped protrusions form a heat transfer dissipation structure.
  • the width of the ring-shaped protrusion and the distance between adjacent ring-shaped protrusions satisfy: (1) gradually narrow outwards along the radius of the ring-shaped protrusion; (2) the distance between two adjacent ring-shaped protrusions meets the requirements Ratio, and the ratio of the width of the outer ring-shaped protrusions to the inner ring-shaped protrusions is greater than 0 and less than 1;
  • the difference in width is b, and the range of b is 0.1-0.5 ⁇ m.
  • the maximum value of the width of the ring-shaped protrusions is 2-20 ⁇ m
  • the maximum value of the pitch of the ring-shaped protrusions is 4-40 ⁇ m.
  • the distance in the lateral direction between the heat extraction portion and the effective area is not less than 10 acoustic wave wavelengths.
  • the second heat dissipation portion covers the second surface of the substrate; all thermal connection portions are connected to the second heat dissipation portion.
  • An embodiment of the present invention also relates to a heat dissipation structure of a semiconductor device having a substrate having a first surface and a second surface, the substrate having a through hole penetrating therethrough in a thickness direction, and the first surface of the substrate is provided There is a functional component, wherein: the heat dissipation structure includes a heat dissipation portion, a heat extraction portion, and a heat connection portion, the heat extraction portion is disposed on a side where the first surface is located, and the heat dissipation portion includes a second surface disposed on the base A second heat dissipation portion on one side, the thermal connection portion passes through the base through the through hole; and the heat extraction portion is adapted to conduct the heat dissipation from the functional component to the second heat dissipation portion through the thermal connection portion Heat.
  • the heat dissipation portion further includes a first heat dissipation portion, and the first heat dissipation portion is disposed on the side where the first surface is located and is directly thermally connected to the heat extraction portion.
  • the semiconductor device is a bulk acoustic wave resonator, and the heat extraction portion is adapted to conduct heat from an effective acoustic region of the resonator.
  • the heat dissipation part forms a dissipation structure for heat transfer.
  • Embodiments of the present invention also relate to a filter, including the aforementioned bulk acoustic wave resonator or dissipative structure.
  • the filter includes a plurality of bulk acoustic wave resonators as described above; at least part of the gap between adjacent resonators is provided with the thermal connection part, or at least part of adjacent resonators share a thermal connection part.
  • Embodiments of the present invention also relate to an electronic device, including the aforementioned filter.
  • FIG. 1A and 1B are respectively a schematic top view and a cross-sectional view taken along line A-A of a resonator having a heat dissipation structure according to an exemplary embodiment of the present invention, and the MT region is shown in FIG. 1B;
  • FIG. 2 is a schematic cross-sectional view of a resonator having a heat dissipation structure according to an exemplary embodiment of the present invention, and the MT region is shown in the figure;
  • FIG. 3 is a schematic cross-sectional view of a resonator having a heat dissipation structure according to another exemplary embodiment of the present invention, and the MT region is shown in the figure;
  • FIG. 4 is a schematic cross-sectional view of a resonator having a heat dissipation structure according to still another exemplary embodiment of the present invention, which shows the MT region;
  • 5A and 5B are respectively a schematic plan view and a partially enlarged view of the MA region of a resonator having a heat dissipation structure according to an exemplary embodiment of the present invention
  • 6A and 6B are respectively a schematic plan view and a partially enlarged view of the MA region of a resonator having a heat dissipation structure according to an exemplary embodiment of the present invention
  • FIG. 7A and 7B are respectively a schematic plan view and a partially enlarged view of the MA region of a resonator having a heat dissipation structure according to an exemplary embodiment of the present invention
  • FIGS. 8A and 8B are respectively a schematic plan view and a partially enlarged view of the MA region of a resonator having a heat dissipation structure according to an exemplary embodiment of the present invention
  • FIG. 9A is a schematic diagram of a filter composed of multiple resonators according to an exemplary embodiment of the present invention.
  • FIG. 9B is a schematic cross-sectional view taken along AOA 'in FIG. 9A according to an exemplary embodiment of the present invention.
  • FIG. 9C is a schematic cross-sectional view taken along AOA 'in FIG. 9A according to another exemplary embodiment of the present invention.
  • FIG. 9D is a schematic cross-sectional view taken along AOA 'in FIG. 9A according to still another exemplary embodiment of the present invention.
  • FIG. 10A is a schematic cross-sectional view of a resonator having a heat dissipation structure according to an exemplary embodiment of the present invention, which shows the MS region;
  • FIG. 10B is a schematic cross-sectional view of a resonator having a heat dissipation structure according to another exemplary embodiment of the present invention, and the MS region is shown in the figure.
  • the invention can increase the heat dissipation area by constructing the contact interface between the heat dissipation structure and the acoustic part (ie, effective area) AR of the resonator, and constructing the interface between the heat dissipation portion (such as the metal layer) of the heat dissipation structure and the air and the heat dissipation portion and the substrate Microstructure (further, dissipative structure), at the same time, through the through hole provided in the substrate and the thermal connection through the through hole, so that the back surface (second surface) of the substrate can be provided with a heat dissipation surface, which can be greatly improved
  • the heat transfer efficiency of the heat dissipation structure is improved.
  • the technical solution of the present invention can form a larger heat dissipation area in the case of a single resonator, and at the same time when the front surface of the substrate is not suitable for placing a heat dissipation surface (such as multiple resonators forming a filter) Structure), the metal-air interface (heat dissipation surface) and the metal-substrate interface (heat dissipation surface) can still form a considerable heat dissipation area on the back side of the substrate.
  • a heat dissipation surface such as multiple resonators forming a filter
  • a bulk acoustic wave resonator according to an embodiment of the present invention will be described below with reference to FIGS. 1-10.
  • FIGS. 1A and 1B are respectively a schematic top view and a cross-sectional view of the AA direction of a resonator having a heat dissipation structure according to an exemplary embodiment of the present invention, and the MT region is shown in FIG. 1B.
  • the resonator generally includes a resonator portion and a heat dissipation structure portion.
  • the components of the resonator include: a substrate 100, an acoustic mirror 101, a bottom electrode 102, a piezoelectric film 103 (corresponding to a piezoelectric layer), and a top electrode 104.
  • the materials available for the substrate 100 include but are not limited to: single crystal silicon (Si), gallium arsenide (GaAs); sapphire, etc.
  • the materials available for the electrodes 102 and 104 include but are not limited to: molybdenum (Mo), ruthenium ( Ru), aluminum (Al), etc .
  • the acoustic mirror can adopt an air cavity structure or a Bragg reflection layer structure or other various equivalent structures that can achieve an acoustic insulation effect, in which the Bragg reflection layer structure is composed of a low acoustic resistance and a high acoustic resistance material period
  • Low-resistance materials include but not limited to: silicon dioxide (SiO 2 ), molybdenum (Mo), etc., high
  • the components of the heat dissipation structure include: the thermally conductive medium layer 105 and the thermally conductive metal layers 106, 107, and the thermal connection portion (or the through hole structure, which is provided in the through hole 108 in the substrate, in the embodiment, may be through the through hole Thermally conductive metal).
  • the diameter DH1 of the through hole 108 ranges from 50 ⁇ m to 200 ⁇ m, and at least one edge of the acoustic structure polygon of the bulk acoustic wave resonator has a through hole outside the edge.
  • the metal layers 106 and 107 are connected by the metal filled in the via 108.
  • the material of the dielectric layer 105 can be selected but not limited to: aluminum nitride (AlN), beryllium oxide (BeO), silicone grease, and the like.
  • the material for the dielectric layer should have good thermal conductivity and insulation;
  • the material of the metal layer 106 includes but is not limited to: copper (Cu), aluminum (Al), molybdenum (Mo), gold (Au), and the like.
  • the inner edge of the metal layer 106 is located outside the effective acoustic area AR, and keeps a distance from the boundary of the acoustic area, the distance is not less than 10 acoustic wavelengths.
  • thermally conductive metal layer of the heat dissipation structure can also be replaced with a non-metallic thermally conductive material, and in the case that the heat dissipation structure is made of a non-conductive thermally conductive material, the thermally conductive medium layer may not be provided.
  • the heat dissipation structure has a heat extraction portion in contact with the peripheral portion of the effective area AR and a heat radiation portion in contact with the heat extraction portion.
  • the heat extraction portion can be regarded as a part of the heat dissipation structure in the area indicated by the MT.
  • a bulk acoustic wave resonator with a heat dissipation structure has five key contact areas, that is, a contact area MT where the heat dissipation structure contacts the peripheral portion or edge area of the acoustic portion (active area) of the resonator, and the heat dissipation structure contacts the substrate
  • a contact area MT where the heat dissipation structure contacts the peripheral portion or edge area of the acoustic portion (active area) of the resonator, and the heat dissipation structure contacts the substrate
  • an embodiment of the present invention proposes a bulk acoustic wave resonator, including: a substrate having a first surface and a second surface and a through hole penetrating through the substrate; an acoustic mirror; a bottom electrode disposed above the substrate; a top electrode, Opposite to the bottom electrode; the piezoelectric layer is provided above the bottom electrode and between the bottom electrode and the top electrode; and the heat dissipation structure in which: the acoustic mirror, the bottom electrode, the piezoelectric layer, and the top electrode overlap in the thickness direction of the substrate Is the effective area of the resonator, and the bottom electrode, the piezoelectric layer and the top electrode are provided on the first surface of the substrate; the heat dissipation structure includes a heat dissipation portion, a heat extraction portion, and heat that thermally connects the heat dissipation portion and the heat extraction portion A connection portion, the heat extraction portion is located outside the effective area, the heat extraction portion is in
  • the second heat dissipation portion is established through the through hole structure.
  • the heat dissipation area can be appreciably expanded; on the other hand, when the structural conditions do not allow the first heat dissipation portion to be placed, a considerable heat dissipation area can be provided with the second heat dissipation portion on the back of the substrate.
  • the size range of through-holes can be set as follows:
  • the diameter range can be 1-30 ⁇ m, further optional range is 5-20 ⁇ m;
  • the rectangular length range can be 20-80 ⁇ m, and the further optional range is 40-60 ⁇ m; the width range can be 2-20 ⁇ m, and the further optional range is 5-10 ⁇ m.
  • FIG. 2 is a schematic cross-sectional view of a resonator having a heat dissipation structure according to an exemplary embodiment of the present invention, and the MT region is shown in the figure.
  • an upper surface of a substrate 200 has an acoustic mirror 201 (a specific example is a cavity structure) and a metal layer structure 206.
  • the cavity or acoustic mirror 201 penetrates the metal layer 206 and is partially embedded in the substrate 200.
  • Above the cavity is an insulating dielectric layer 205 that extends across the entire cavity and extends to the upper surface of the metal layer 206 to maintain contact with it.
  • the bottom electrode 202 is located above the insulating dielectric layer 205 and maintains contact with the insulating dielectric layer 205.
  • the bottom electrode 202 spans the entire cavity or acoustic mirror 201, but the bottom electrode 202 as a whole falls within the range of the insulating dielectric layer 205.
  • the piezoelectric film 203 is located above the bottom electrode and is in contact with the upper surface of the bottom electrode. In addition, the piezoelectric film 203 extends beyond the range of the bottom electrode 202 in the lateral direction, and maintains contact with a portion of the upper surface of the insulating dielectric layer 205 and the metal layer 206, and the piezoelectric film 203 completely covers the insulating dielectric layer 205 and the bottom electrode 202 .
  • the top electrode 204 is located above the piezoelectric film 203 and is in contact with the upper surface of 203. At the same time, the top electrode 204 falls laterally into the cavity 201.
  • the overlapping area of the top electrode 204, the piezoelectric film 203, the bottom electrode 202, and the cavity or acoustic mirror 201 in the lateral direction defines the effective piezoelectric effect area (effective area) AR of the resonator.
  • the lower surface of the metal layer 206 is in contact with the substrate and extends laterally beyond the range of the piezoelectric film 203, and the metal layer 206 falls completely outside the area AR. As shown in FIG. 2, the metal layer 206 extends through the through hole to the back side (second surface) of the substrate 200.
  • the heat dissipation portion further includes a first heat dissipation portion, the first heat dissipation portion is disposed on the side where the first surface is located and is directly thermally connected to the heat extraction portion.
  • the bulk acoustic wave resonator may further include a thermally conductive first thermally conductive insulating medium layer; the heat extraction portion is provided on one side of the first surface of the substrate, the first thermally conductive insulating medium The layer is disposed between the bottom electrode and the heat extraction portion, and the bottom electrode is located above the first heat-conducting insulating medium layer, maintains contact with the first heat-conducting insulating medium layer, and is spaced apart from the heat extraction portion.
  • the first thermally conductive insulating medium layer may be made of aluminum nitride or silicone grease, for example.
  • the heat extraction portion is an insulation portion; and the heat extraction portion is provided on the substrate, and the bottom electrode is located above the heat extraction portion and maintains contact with the heat extraction portion.
  • FIG. 3 is a schematic cross-sectional view of a resonator having a heat dissipation structure according to another exemplary embodiment of the present invention, and the MT region is shown in the figure.
  • the overall structure of an example of a resonator having a heat dissipation structure is: an upper surface of a substrate 300 has an acoustic mirror 301 (an example is a cavity structure), and a cavity or acoustic mirror 301 is embedded in the substrate 300. Above the cavity is a bottom electrode 302 that spans the entire cavity or acoustic mirror 301 and partially contacts the substrate 300.
  • the piezoelectric film 303 is located above the bottom electrode and is in contact with the upper surface of the bottom electrode. In addition, the piezoelectric film 303 extends laterally beyond the range of the bottom electrode 302 and partially contacts the substrate 300.
  • the top electrode 304 is located above the piezoelectric film 303 and is in contact with the upper surface of the piezoelectric film 303. At the same time, the top electrode 204 falls laterally into the cavity or the acoustic mirror 301.
  • the overlapping area of the top electrode 304, the piezoelectric film 303, the bottom electrode 302, and the cavity or acoustic mirror 301 in the lateral direction defines the effective piezoelectric effect area (effective area) AR of the resonator.
  • a portion of the lower surface of the metal layer 306 is in contact with the substrate and extends laterally beyond the range of the piezoelectric film 303, while another portion of the lower surface of the metal layer 306 climbs up along the outer oblique surface of the piezoelectric film 303 and covers The entire outer inclined surface of the piezoelectric film 303 and a part of it on the horizontal plane, the metal layer 306 completely falls outside the area AR.
  • the metal layer 306 extends to the back side (second surface) of the substrate 300 through the through hole.
  • the heat extraction portion extends to the upper surface of the piezoelectric layer and maintains contact with the piezoelectric layer to be spaced apart from the top electrode.
  • FIG. 4 is a schematic cross-sectional view of a resonator having a heat dissipation structure according to still another exemplary embodiment of the present invention, and the MT region is shown in the figure.
  • the overall structure of an example of a resonator having a heat dissipation structure is: an upper surface of a substrate 400 has an acoustic mirror 401 (an example is a cavity structure), and the acoustic mirror or cavity 401 is embedded in the substrate 400.
  • a bottom electrode 402 is provided above the cavity, and the bottom electrode 402 spans the entire acoustic mirror or cavity 401 and partially contacts the substrate 400.
  • the piezoelectric film 403 is located above the bottom electrode and is in contact with the upper surface of the bottom electrode. In addition, the piezoelectric film 403 extends beyond the range of the bottom electrode 402 in the lateral direction, and partially contacts the substrate 400.
  • the overlapping area of the top electrode 404, the piezoelectric film 403, the bottom electrode 402, and the acoustic mirror or cavity 401 in the lateral direction defines the effective piezoelectric effect area (effective area) AR of the resonator.
  • a portion of the lower surface of the metal layer 406 is in contact with the substrate and extends laterally beyond the range of the piezoelectric film 403, while another portion of the lower surface of the metal layer 406 climbs up along the outer oblique surface of the piezoelectric film 403 and covers The entire outer inclined surface of the piezoelectric film 403 and a part of it on the horizontal plane, the metal layer 406 completely falls outside the area AR.
  • the metal layer 406 extends to the back side (second surface) of the substrate 400 through the through hole.
  • the upper surface of the metal layer 406 at the upper plane of the piezoelectric film 403 is covered with an insulating dielectric layer 405, and the insulating dielectric layer 405 falls outside the area AR.
  • the top electrode 404 is located above the piezoelectric film 403 and is partially in contact with the upper surface of the piezoelectric film 403. At the same time, the part where the top electrode 404 contacts the piezoelectric film 403 falls laterally into the range of the acoustic mirror or cavity 401. Another part of the lower surface of the top electrode is in contact with the insulating dielectric layer 405.
  • the bulk acoustic wave resonator may further include a second thermally conductive insulating medium layer; the heat extraction portion extends along the upper surface of the piezoelectric layer below the second thermally conductive insulating medium layer Maintaining contact with the second thermally conductive insulating medium layer; the top electrode is located above the second thermally conductive insulating medium layer, maintaining contact with the second thermally conductive insulating medium layer and spaced apart from the heat extraction portion.
  • the second thermally conductive insulating medium layer is made of aluminum nitride or silicone grease.
  • the heat extraction portion is an insulation portion; and the heat extraction portion extends along the upper surface of the piezoelectric layer below the top electrode, the top electrode is located above the heat extraction portion and The heat extraction part is kept in contact.
  • the contact area MA of the heat dissipation structure and air is exemplarily described below with reference to FIGS. 5A-8B.
  • 5A and 5B are respectively a schematic plan view and a partially enlarged view of the MA region of a resonator having a heat dissipation structure according to an exemplary embodiment of the present invention.
  • the region of the metal layer 506 is a circle with a radius of R500, and the range of R500 is 40-200 ⁇ m.
  • the area of the metal layer 506 may also be other geometries that can surround the acoustic portion (active area) of the resonator.
  • the surface of the metal layer 506 in contact with the air in the MA area contains a plurality of band-shaped raised structures, and the surface on both sides of each raised structure is an effectively increased surface area.
  • the lower surface of the substrate in this embodiment also covers the metal layer, and the metal layer on the lower surface of the substrate is not shown in FIG. 5A.
  • FIG. 5B The enlarged view of the partial region Z501 in FIG. 5A is shown in FIG. 5B: the strip-shaped convex structures are equally spaced, and each strip-shaped convex structure has the same width as D501, and the range of D501 is 0.5-4 ⁇ m.
  • the band-shaped protrusion structures are distributed at equal intervals, the distance between two adjacent protrusions is D502, and the range of D502 is 0.5-6 ⁇ m.
  • the height of the band-shaped protrusion is H501, and the range of H501 is 0.5-20 ⁇ m.
  • the metal-air interface features described above belong to the MA1 region, and these feature descriptions are also applicable to the MA2 region.
  • 6A and 6B are respectively a schematic top view and a partially enlarged view of the MA region of a resonator having a heat dissipation structure according to another exemplary embodiment of the present invention.
  • the area of the metal layer 606 is a circle with a radius of R600, and the range of R600 is 40-200 ⁇ m.
  • the area of the metal layer 606 may be other geometries that can surround the acoustic portion (active area) of the resonator.
  • the surface of the metal layer 606 in contact with the air in the MA area contains a plurality of columnar convex structures, and the side surface of each convex structure is an effectively increased surface area.
  • the columnar structure is a regular hexagonal prism, but it is also feasible to select other shapes such as a cylinder, a diamond-shaped column, a rectangular column, a triangular prism, or other polygonal prisms.
  • the lower surface of the substrate in this embodiment also covers the metal layer, and the metal layer on the lower surface of the substrate is not shown in FIG. 6A.
  • each regular hexagonal prism structure has the same side length, D601, and the range of D601 is 0.5-4 ⁇ m.
  • the regular hexagonal prism structure is equally spaced.
  • the distance between two adjacent regular hexagonal prisms is D602, and the range of D602 is 0.5-6 ⁇ m.
  • the height of the regular hexagonal prism protrusion is H601, and the range of H601 is 0.5-20 ⁇ m.
  • the metal-air interface features described above belong to the MA1 region, and these feature descriptions are also applicable to the MA2 region.
  • FIG. 7A and 7B are respectively a schematic plan view and a partially enlarged view of the MA region of a resonator having a heat dissipation structure according to still another exemplary embodiment of the present invention.
  • the area of the metal layer 706 is a circle with a radius of R700, and the range of R700 is 40-200 ⁇ m.
  • the area of the metal layer 706 can also be other geometries that can surround the acoustic portion (active area) of the resonator.
  • the surface of the metal layer 706 in the MA area in contact with the air contains concentric annular convex structures, and the side surface of each annular convex structure is an effectively increased surface area.
  • the lower surface of the substrate in this embodiment also covers the metal layer, and the metal layer on the lower surface of the substrate is not shown in FIG. 7A.
  • FIG. 7B The enlarged view of the local area Z701 in FIG. 7A is shown in FIG. 7B: the width of the ring is D701, and the interval width or spacing of two adjacent rings is D702.
  • the height of the ring protrusion is H701, and the range of H701 is 0.5-20 ⁇ m.
  • the distribution of the width D701 of the ring and the distance D702 of the ring satisfies:
  • the maximum range of the width D701 of the ring is 2-20 ⁇ m, and the maximum range of the distance D702 of the ring is 4-40 ⁇ m.
  • the ring-shaped convex structure distributed according to the above rules can form a dissipative structure, that is, the farther away from the center of the circle, the larger the contact area of the metal layer 706 and the air, the faster the rate of heat loss, which can effectively increase
  • the gradient of the temperature field in the radial direction allows the heat in the resonator to be transferred to the outside faster.
  • the metal-air interface features described above belong to the MA1 region, and these feature descriptions are also applicable to the MA2 region.
  • FIGS. 8A and 8B are respectively a schematic plan view and a partially enlarged view of the MA region of a resonator having a heat dissipation structure according to yet another exemplary embodiment of the present invention.
  • the region of the metal layer 806 is a circle with a radius of R800, and the range of R800 is 40-200 ⁇ m.
  • the area of the metal layer 806 may also be other geometric shapes that can surround the acoustic portion (active area) of the resonator.
  • the surface of the metal layer 806 in contact with air in the MA region may include a dissipative cylindrical array structure, and the side surface of each cylindrical convex structure is an effectively increased surface area.
  • the lower surface of the substrate in this embodiment also covers the metal layer, and the metal layer on the lower surface of the substrate is not shown in FIG. 8A.
  • FIG. 8B The enlarged view of the local area Z801 in FIG. 8A is shown in FIG. 8B: the height of the cylindrical protrusion is H801, and the range of H801 is 0.5-20 ⁇ m. The center distance of two adjacent cylindrical protrusions is D801, and the range of D801 is 10-20 ⁇ m.
  • the radius of the cylinder is R801 and the number N of cylinders per circle satisfies:
  • R801 gradually decreases outward along the direction of the metal layer radius R800, while N gradually increases along this direction;
  • the metal-air interface features described above belong to the MA1 region, and these feature descriptions are also applicable to the MA2 region.
  • FIG. 9A is a schematic diagram of a filter composed of a plurality of resonators according to an exemplary embodiment of the present invention
  • FIG. 9B is a schematic diagram taken along AOA 'in FIG. 9A according to an exemplary embodiment of the present invention
  • 9C is a schematic cross-sectional view taken along AOA 'in FIG. 9A according to another exemplary embodiment of the present invention
  • FIG. 9D is AOA along FIG. 9A according to still another exemplary embodiment of the present invention 'A schematic cross-sectional view taken.
  • An embodiment of the MA interface when a plurality of resonators constitute a filter is described below with reference to FIGS. 9A-9D.
  • Fig. 9A An embodiment of the MA region when multiple resonators form a filter
  • the metal air-air interface 116 when multiple resonators 110 form a filter in a two-dimensional topology, the metal air-air interface 116 often cannot obtain sufficient space for distribution on the front of the substrate, especially the gap between the resonators Especially in small situations. At this time, the metal structure can be extended to the back surface of the substrate through the through hole 118 to form the metal-air interface 117.
  • the filter can be cut through the broken line AOA 'in FIG. 9 to obtain the following cross-sectional views: FIGS. 9B, 9C, and 9D.
  • the metal-air interface on the front surface of the substrate basically exists only between adjacent two resonant units and occupies only a small area, and most of the metal-air interface 127 passes through the through hole 128 is formed on the back side of the substrate. All metal-air interface features of the embodiments in FIGS. 5A-8B apply to the interface 127.
  • this embodiment has three adjacent resonator units 130, and the contact manner of the metal layer 136 and the acoustic resonance unit 130 is the same as the embodiment shown in FIG.
  • the metal-air interface on the front surface of the substrate basically exists only between two adjacent resonant units, and only occupies a small area. Most of the metal-air interface 137 passes through the through hole 138 The back side of the substrate is formed. All metal-air interface features of the embodiments in FIGS. 5A-8B apply to interface 137.
  • this embodiment has three adjacent resonator units 140, and the contacting way of the metal layer 146 and the acoustic resonance unit 140 is the same as the embodiment shown in FIG.
  • the metal-air interface on the front surface of the substrate basically exists only between two adjacent resonant units, and only occupies a small area. Most of the metal-air interface 147 passes through the through hole 148 The back side of the substrate is formed. All metal-air interface features of the embodiments in FIGS. 5A-8B apply to interface 147.
  • the contact area MS of the heat dissipation structure and the substrate is exemplarily described below with reference to FIGS. 10A and 10B.
  • FIG. 10A is a schematic cross-sectional view of a resonator with a heat dissipation structure according to an exemplary embodiment of the present invention, showing the MS region;
  • FIG. 10B is a resonance with a heat dissipation structure according to another exemplary embodiment of the present invention A schematic cross-sectional view of the device, showing the MS area.
  • the interface area between the metal layer and the substrate is MS1 and MS2, and this area has structural details, the purpose is to increase the contact area between the metal layer and the substrate, thereby increasing the heat from the metal layer to the substrate Lost speed.
  • FIG. 10B Shown in FIG. 10B is an embodiment of the MS region in the case of the filter structure, in which only the MS2 region exists.
  • the specific embodiment of the interface region MS between the metal and the substrate in FIGS. 10A and 10B is the same as the metal-air interface region MA described in the corresponding embodiment of FIGS. 5A-8B, except that it is established in the embodiment of FIGS. 5A-8B
  • the structure and specific parameters on the upper surface of the metal layer are applied to the contact interface between the metal layer and the substrate.
  • the upper surface structure of the heat dissipation portion or the metal layer in the examples of FIGS. 5A-8B can also be applied to the MS region, that is, the contact interface between the heat dissipation portion or the metal layer and the substrate.
  • the electrode composition material may be gold (Au), tungsten (W), molybdenum (Mo), platinum (Pt), ruthenium (Ru), iridium (Ir), titanium tungsten (TiW), aluminum (Al) , Titanium (Ti) and similar metals.
  • the piezoelectric layer material may be aluminum nitride (AlN), zinc oxide (ZnO), lead zirconate titanate (PZT), lithium niobate (LiNbO 3 ), quartz (Quartz), potassium niobate (KNbO 3 ) or lithium tantalate (LiTaO 3 ) and other materials.
  • the mentioned numerical range may also be the median or other values between the end point values, which are all within the protection scope of the present invention.
  • the embodiments of the present invention also relate to a heat dissipation structure of a semiconductor device having a substrate having a first surface and a second surface, the substrate having a through hole penetrating therethrough in a thickness direction, the first A surface is provided with functional components, wherein: the heat dissipation structure includes a heat dissipation portion, a heat extraction portion and a heat connection portion, the heat extraction portion is disposed on a side where the first surface is located, and the heat dissipation portion includes A second heat dissipation portion on the side where the two surfaces are located, the thermal connection portion passes through the base via the through hole; and the heat extraction portion is adapted to conduct the Heat of functional parts.
  • the heat dissipation portion may further include a first heat dissipation portion, the first heat dissipation portion is disposed on the side where the first surface is located and directly thermally connected to the heat extraction portion.
  • the semiconductor device may be a bulk acoustic wave resonator, and the heat extraction portion is adapted to conduct heat from an effective acoustic region of the resonator.
  • the heat dissipation portion may form a dissipation structure for heat transfer.
  • Embodiments of the present invention also relate to a filter including the above-mentioned bulk acoustic wave resonator or the above-mentioned heat dissipation structure.
  • the filter includes a plurality of bulk acoustic wave resonators as described above; at least part of the gap between adjacent resonators is provided with the thermal connection part, or at least part of adjacent resonators share a thermal connection part.
  • Embodiments of the present invention also relate to an electronic device, including the aforementioned filter.
  • the electronic devices here include but are not limited to intermediate products such as radio frequency front-ends, filter amplification modules, and terminal products such as mobile phones, WIFI, and drones.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

一种体声波谐振器,包括基底(200),具有第一与第二表面与通孔;声学镜(201);底电极(202),设置在基底(200)上方;顶电极(204),与底电极(202)对置;压电层(203),设置在底电极(202)上方以及底电极(202)与顶电极(204)之间;和散热结构。声学镜(201)、底电极(202)、压电层(203)、顶电极(204)在基底(200)的厚度方向重叠的区域为谐振器的有效区域(AR),底电极(202)、压电层(203)和顶电极(204)设置在基底(200)的第一表面;散热结构包括散热部、热引出部(MT)以及将散热部与热引出部(MT)热连接的热连接部,热引出部(MT)位于有效区域之外且与有效区域的边缘区域热接触;散热部包括设置在基底的第二表面所在的一侧的第二散热部;热连接部在基底的厚度方向上穿过基底的通孔以将来自热引出部(MT)的热量传导到第二散热部。还包括一种滤波器与一种电子设备。

Description

散热结构、带散热结构的体声波谐振器、滤波器和电子设备 技术领域
本发明的实施例涉及半导体领域,尤其涉及一种半导体器件用散热结构、一种体声波谐振器,一种具有该谐振器的滤波器,以及一种具有该滤波器的电子设备。
背景技术
利用压电薄膜在厚度方向的纵向谐振所制成的薄膜体波谐振器,在于机通讯和高速串行数据应用等方面已经成为声表面波器件和石英晶体谐振器的一个可行的替代。射频前端体波滤波器/双工器提供优越的滤波特性,例如低插入损耗,陡峭的过渡带,较大的功率容量,较强的抗静电放电(ESD)能力。具有超低频率温度漂移的高频薄膜体波振荡器,其相位噪声低,功耗低且带宽调制范围大。除此之外,这些微型薄膜谐振器在硅衬底上使用CMOS兼容的加工工艺,这样可以降低单位成本,并有利于最终与CMOS电路集成。
体波谐振器包括一个声学镜和两个电极,以及位于这两电极之间的被称作压电激励的压电材料层。也称底电极和顶电极为激励电极,其作用是引起谐振器各层的机械振荡。声学镜在体波谐振器和基底之间形成声学隔离,以防止声波传导至谐振器之外,造成能量损失。
理论上,体声波谐振器在工作状态下只存在机械能和电能的相互转化,但在实际情况中,体声波谐振器中的电能和声波总是不可避免的要部分转化成热能,并且谐振器的频率越高发热效应也会变得越显著。由于体声波谐振器的关键组成部分即压电薄膜和电极的厚度仅为微米或纳米级别,热量在其中的积累会带来显著的负面效应,如导致谐振器温度上升引起谐振器频率发生漂移,或引起应力堆积并引起压电堆叠变形,从而影响谐振器的可靠性和寿命,同时限制了谐振器功率容量的进一步提升。
发明内容
构建散热结构、及时将热量通过散热结构传输转移至谐振结构之外是一种有效的降低发热对谐振器影响的方法,构建散热结构可以使谐振器具有更高的可靠性和更高的功率容量。
为缓解或解决现有技术中谐振器的散热问题的至少一个方面,提出本发明。
根据本发明的实施例的一个方面,提出了一种体声波谐振器,包括:基底,具有第一表面与第二表面以及贯穿基底的通孔;声学镜;底电极,设置在基底上方;顶电极,与所述底电极对置;压电层,设置在底电极上方以及底电极与顶电极之间;和散热结构,其中:声学镜、底电极、压电层、顶电极在基底的厚度方向重叠的区域为谐振器的有效区域,底电极、压电层和顶电极设置在基底的第一表面上;所述散热结构包括散热部、热引出部以及将散热部与热引出部热连接的热连接部,所述热引出部位于所述有效区域之外,所述热引出部与所述有效区域的边缘区域热接触;所述散热部包括设置在基底的第二表面所在的一侧的第二散热部;所述热连接部在基底的厚度方向上穿过所述基底的通孔以将来自所述热引出部的热量传导到所述第二散热部。
可选的,所述散热部还包括第一散热部,所述第一散热部设置在第一表面所在的一侧且与所述热引出部直接热连接。
可选的,所述体声波谐振器还包括导热的第一导热绝缘介质层;所述热引出部设置在所述基底的第一表面的一侧,所述第一导热绝缘介质层设置在底电极与所述热引出部之间,且所述底电极位于所述第一导热绝缘介质层上方、与第一导热绝缘介质层保持接触而与热引出部间隔开。进一步的,所述第一导热绝缘介质层由氮化铝、氧化铍或者硅脂制成。
可选的,所述热引出部为绝缘部;所述热引出部设置在所述基底的第一表面的一侧,所述底电极位于热引出部上方且与热引出部保持接触。
可选的,所述热引出部延伸到压电层上表面且与所述压电层保持接触而与顶电极间隔开。
可选的,所述体声波谐振器还包括导热的第二导热绝缘介质层;所述热引出部沿所述压电层上表面延伸到所述第二导热绝缘介质层下方而与所述第二导热绝缘介质层保持接触;所述顶电极位于所述第二导热绝缘介质层上方、与第二导热绝缘介质层保持接触而与热引出部间隔开。进一步的,所述第二导热绝缘介质层由氮化铝、氧化铍或者硅脂制成。
可选的,所述热引出部为绝缘部;所述热引出部沿所述压电层上表面延伸到顶电极的下方,所述顶电极位于热引出部上方且与热引出部保持接触。
可选的,所述第一散热部至少部分围绕所述有效区域设置。进一步的,所述第一散热部和/或所述第二散热部包括与空气接触以与空气交换热量的部分和/或设置在 基底中与基底接触而与基底交换热量的部分。
在可选的实施例中,通孔可以为圆形通孔,其直径范围可为1-30μm,进一步可选范围为5-20μm;或者通孔可以为矩形通孔,在其横截面中,矩形长度范围为20-80μm,进一步范围可为40-60μm;宽度可为范围2-20μm,进一步可选范围为5-10μm。
可选的,所述第一散热部和/或所述第二散热部包括多个带状凸起。进一步的,所述带状凸起等间距分布,每个带状凸起的宽度相同,宽度范围为0.5-4μm;相邻两个带状凸起的间距范围为0.5-6μm;带状凸起的高度范围为0.5-20μm。
可选的,所述第一散热部和/或所述第二散热部包括多个柱状凸起。进一步的,所述柱状凸起为正六棱柱凸起;所述柱状凸起等间距分布,每个正六棱柱结构的边长相同,边长范围为0.5-4μm;正六棱柱结构等间距分布,相邻两个正六棱柱的间距为0.5-6μm;正六棱柱凸起的高度范围为0.5-20μm。
可选的,所述多个柱状凸起形成热传递的耗散结构。进一步的,所述柱状凸起为圆柱状凸起,所述多个柱状凸起呈同心圆状分布;所述柱状凸起的半径在径向向外的方向上逐渐变小,且柱状凸起构成的每一个圆圈中柱状凸起的数量逐渐变大;相邻两圆圈的柱状凸起的半径满足等比规律且内圆圈的柱状凸起的半径比外圆圈的柱状凸起的半径的比值为α1;相邻两圆圈的柱状凸起数量满足等比规律,且外圆圈柱状凸起的数量比内圆圈的柱状凸起的数量的比值为α2,且α2/α1大于1,其中:柱状凸起的半径的最大值范围为4-30μm,一个圆圈中柱状凸起的数量的最小值范围为8-16个。
可选的,所述第一散热部和/或所述第二散热部包括同心圆结构的多个环状凸起。
可选的,所述多个环状凸起形成热传递的耗散结构。进一步的,环状凸起的宽度和相邻环状凸起的间距满足:(1)沿环状凸起的半径向外逐渐变窄;(2)相邻两环状凸起的间距满足等比规律,且外部环状凸起比内部环状凸起的宽度比值大于0小于1;或者,相邻两环状凸起的间距满足等差规律,且外部环状凸起和内部环状凸起的宽度差异为b,b的范围为0.1-0.5μm,其中:环状凸起的宽度的最大值范围为2-20μm,环状凸起的间距的最大值范围为4-40μm。
可选的,上述体声波谐振器中,所述热引出部与有效区域之间在横向上的距离不小于10个声波波长。
可选的,所述第二散热部覆盖所述基底的第二表面;所有热连接部均连接到所述第二散热部。
本发明的实施例还涉及一种半导体器件的散热结构,所述半导体器件具有基底,基底具有第一表面与第二表面,基底具有在厚度方向上贯穿其的通孔,基底的第一表面设置有功能部件,其中:所述散热结构包括散热部、热引出部和热连接部,所述热引出部设置在第一表面所在的一侧,所述散热部包括设置在基底的第二表面所在一侧的第二散热部,所述热连接部经由所述通孔穿过所述基底;且所述热引出部适于经由所述热连接部向所述第二散热部传导来自功能部件的热量。可选的,所述散热部还包括第一散热部,所述第一散热部设置在第一表面所在的一侧且与所述热引出部直接热连接。可选的,所述半导体器件为体声波谐振器,所述热引出部适于传导来自所述谐振器的有效声学区域的热量。可选的,所述散热部形成热传递的耗散结构。
本发明的实施例还涉及一种滤波器,包括上述的体声波谐振器或者耗散结构。可选的,所述滤波器包括多个上述体声波谐振器;至少部分相邻谐振器之间的空隙处设置有所述热连接部,或者至少部分相邻谐振器共用热连接部。
本发明的实施例还涉及一种电子设备,包括上述的滤波器。
附图说明
以下描述与附图可以更好地帮助理解本发明所公布的各种实施例中的这些和其他特点、优点,图中相同的附图标记始终表示相同的部件,其中:
图1A和图1B分别为根据本发明的一个示例性实施例的具有散热结构的谐振器示意性俯视图和A-A向的截面图,图1B中示出了MT区域;
图2为根据本发明的一个示例性实施例的具有散热结构的谐振器的截面示意图,图中示出了MT区域;
图3为根据本发明的另一个示例性实施例的具有散热结构的谐振器的截面示意图,图中示出了MT区域;
图4为根据本发明的再一个示例性实施例的具有散热结构的谐振器的截面示意图,图中示出了MT区域;
图5A和图5B分别为根据本发明的一个示例性实施例的具有散热结构的谐振器的示意性俯视图和MA区域的局部放大图;
图6A和图6B分别为根据本发明的一个示例性实施例的具有散热结构的谐振器的示意性俯视图和MA区域的局部放大图;
图7A和图7B分别为根据本发明的一个示例性实施例的具有散热结构的谐振器的示意性俯视图和MA区域的局部放大图;
图8A和图8B分别为根据本发明的一个示例性实施例的具有散热结构的谐振器的示意性俯视图和MA区域的局部放大图;
图9A为根据本发明的一个示例性实施例的由多个谐振器构成的滤波器的示意图;
图9B为根据本发明的一个示例性实施例的沿图9A中的AOA’截得的示意性剖视图;
图9C为根据本发明的另一个示例性实施例的沿图9A中的AOA’截得的示意性剖视图;
图9D为根据本发明的再一个示例性实施例的沿图9A中的AOA’截得的示意性剖视图;
图10A为根据本发明的一个示例性实施例的具有散热结构的谐振器的截面示意图,图中示出了MS区域;
图10B为根据本发明的另一个示例性实施例的具有散热结构的谐振器的截面示意图,图中示出了MS区域。
具体实施方式
下面通过实施例,并结合附图,对本发明的技术方案作进一步具体的说明。在说明书中,相同或相似的附图标号指示相同或相似的部件。下述参照附图对本发明实施方式的说明旨在对本发明的总体发明构思进行解释,而不应当理解为对本发明的一种限制。
本发明通过构建散热结构与谐振器声学部分(即有效区域)AR的接触界面,并在散热结构的散热部(例如金属层)与空气的界面以及散热部与基底界面上构建可增大散热面积的微结构(进一步的,耗散结构),同时,通过设置在基底上的通孔以及穿过通孔的热连接部,使得基底的背面(第二表面)可以设置散热面,这可以大幅提高了散热结构的热传输效率。
相较于仅在单侧设置散热结构,本发明的技术方案在单个谐振器的情况下可形成更大的散热面积,同时当基底正面不适合放置散热面时(如多个谐振器构成滤波器结构时),金属-空气界面(散热面)以及金属-基底界面(散热面)仍然可以在基底的背 侧形成可观的散热面积。
下面参照附图1-10描述根据本发明的实施例的体声波谐振器。
下面参照图1A与图1B示例性说明体声波谐振器的总体结构。图1A和图1B分别为根据本发明的一个示例性实施例的具有散热结构的谐振器示意性俯视图和A-A向的截面图,图1B中示出了MT区域。如图1A与1B所示,该谐振器总体上包括谐振器部分和散热结构部分。谐振器的组成部分包括:基底100,声学镜101,底电极102,压电薄膜103(对应于压电层)以及顶电极104。其中:基底100可选用的材料包含但不限于:单晶硅(Si),砷化镓(GaAs);蓝宝石等,电极102和104可选用的材料包含但不限于:钼(Mo),钌(Ru),铝(Al)等;声学镜可采用空气腔结构或布拉格反射层结构或其它各种可实现声学隔绝效果的等效结构,其中布拉格反射层结构由低声阻和高声阻材料周期性交替构成,低声阻材料包括但不限于:二氧化硅(SiO 2),钼(Mo)等,高声阻材料包含但不限于钨(Wu),氮化铝(AlN)等;压电薄膜103的材料可选择氮化铝(AlN),钛锆酸铅(PZT)以及具有一定原子比的参杂氮化铝(AlRN),其中参杂元素R包含但不限于:钪(Sc),镁(Mg),钛(Ti)等。谐振器的有效声学区域AR由声学镜101,下电极底电极102,压电层103和上电极顶电极相互接触的在横向上的重合部分定义。
散热结构的组成部分包括:导热介质层105和导热金属层106、107,以及基底中设置在通孔108内的热连接部(或者通孔结构,在实施例中,可以为穿过通孔的导热金属构成)。通孔108的孔径DH1范围为50μm-200μm,且体声波谐振器的声学结构多边形上至少有一条边缘外侧具有通孔。金属层106和107通过填充于通孔108中的金属相连接。
介质层105的材料可选但不限于:氮化铝(AlN)、氧化铍(BeO)、硅脂等。用于介质层的材料应当觉有良好的导热性并且绝缘;金属层106的材料包含但不限于:铜(Cu),铝(Al),钼(Mo)、金(Au)等。
在可选的实施例中,金属层106的内边缘位于有效声学区域AR之外,并与该声学区域的边界保持距离,该距离不小于10个声波波长。
需要指出的是,散热结构的导热金属层也可以采用非金属导热材料替换,而且,在散热结构由不导电的导热材料制成的情况下,也可以不设置导热介质层。
如图所示,散热结构具有与有效区域AR的周边部分接触的热引出部以及与热引 出部相接的散热部。对于热引出部,可以认为是由指示MT的区域内的散热结构的部分。
如图1B所示,具有散热结构的体声波谐振器具有5处关键接触区域,即散热结构与谐振器声学部分(有效区域)的周边部分或者边缘区域接触的接触区域MT,散热结构与基底接触区域MS1和MS2以及散热结构与空气接触区域MA1和MA2。
基于以上,本发明的实施例提出了一种体声波谐振器,包括:基底,具有第一表面与第二表面以及贯穿基底的通孔;声学镜;底电极,设置在基底上方;顶电极,与所述底电极对置;压电层,设置在底电极上方以及底电极与顶电极之间;和散热结构,其中:声学镜、底电极、压电层、顶电极在基底的厚度方向重叠的区域为谐振器的有效区域,底电极、压电层和顶电极设置在基底的第一表面上;所述散热结构包括散热部、热引出部以及将散热部与热引出部热连接的热连接部,所述热引出部位于所述有效区域之外,所述热引出部与所述有效区域的边缘区域热接触;所述散热部包括设置在基底的第二表面所在的一侧的第二散热部;所述热连接部在基底的厚度方向上穿过所述基底的通孔以将来自所述热引出部的热量传导到所述第二散热部。
在上述方案中,通过通孔结构建立第二散热部。如此,一方面可对散热面积进行可观的拓展;另一方面,可在结构条件不允许放置第一散热部的情况下,在基底背部以第二散热部提供可观的散热面积。
通孔过于狭窄将导致导热效率低下,而过大的通孔将妨碍其他谐振器的结构设置,因此本发明对通孔尺寸范围进行可设定如下:
对于圆形通孔,直径范围可为1-30μm,进一步可选范围为5-20μm;
对于矩形通孔,横截面中,矩形长度范围可为20-80μm,进一步可选范围为40-60μm;宽度范围可为2-20μm,进一步可选范围为5-10μm。
图2为根据本发明的一个示例性实施例的具有散热结构的谐振器的截面示意图,图中示出了MT区域。
如图2所示,具有散热结构的谐振器示例的整体结构为:基底200上表面具有声学镜201(具体示例为空腔结构)和金属层结构206。空腔或者声学镜201贯穿金属层206,且部分嵌入基底200。在空腔之上具有绝缘介质层205,该介质层横向跨过整个空腔并延伸至金属层206上表面与其保持接触。底电极202位于绝缘介质层205上方,并与绝缘介质层205保持接触。在横向上,底电极202跨过整个空腔或声学镜 201,但底电极202整体上落入绝缘介质层205的范围内。压电薄膜203位于底电极上方,并与底电极上表面保持接触。此外,压电薄膜203在横向上向底电极202范围之外延伸,并与绝缘介质层205和金属层206的部分上表面保持接触,且压电薄膜203完全覆盖绝缘介质层205和底电极202。顶电极204位于压电薄膜203上方,并与203的上表面保持接触。同时顶电极204横向上落入空腔201范围内。
顶电极204、压电薄膜203、底电极202以及空腔或声学镜201在横向上的重叠区域定义了谐振器的有效压电效应区域(有效区域)AR。金属层206的下表面与基底保持接触,并在横向上延伸至压电薄膜203的范围之外,且金属层206完全落在区域AR之外。如图2所示,金属层206通过通孔延伸到基底200的背侧(第二表面)。
基于以上以及图2,所述散热部还包括第一散热部,所述第一散热部设置在第一表面所在的一侧且与所述热引出部直接热连接。
基于以上,根据本发明实施例的体声波谐振器还可包括导热的第一导热绝缘介质层;所述热引出部设置在所述基底的第一表面的一侧,所述第一导热绝缘介质层设置在底电极与所述热引出部之间,且所述底电极位于所述第一导热绝缘介质层上方、与第一导热绝缘介质层保持接触而与热引出部间隔开。所述第一导热绝缘介质层例如可以由氮化铝或者硅脂制成。
在不设置绝缘介质层的情况下,所述热引出部为绝缘部;且所述热引出部设置在所述基底上,所述底电极位于热引出部上方且与热引出部保持接触。
图3为根据本发明的另一个示例性实施例的具有散热结构的谐振器的截面示意图,图中示出了MT区域。
如图3所示,具有散热结构的谐振器示例的整体结构为:基底300上表面具有声学镜301(示例为空腔结构),空腔或者声学镜301嵌入基底300。在空腔之上具有底电极302,底电极302跨过整个空腔或者声学镜301,并部分与基底300接触。压电薄膜303位于底电极上方,并与底电极上表面保持接触。此外,压电薄膜303在横向上向底电极302范围之外延伸,并部分与基底300接触。顶电极304位于压电薄膜303上方,并与压电薄膜303的上表面保持接触。同时,顶电极204横向上落入空腔或者声学镜301范围内。
顶电极304、压电薄膜303、底电极302以及空腔或者声学镜301在横向上的重叠区域定义了谐振器的有效压电效应区域(有效区域)AR。
金属层306部分下表面与基底保持接触,并在横向上延伸至压电薄膜303的范围之外,而金属层306的另一部分下表面沿着压电薄膜303的外部倾斜面向上爬升,并覆盖压电薄膜303的整个外部倾斜面和其部分上水平面,金属层306完全落在区域AR之外。
同时,如图3所示,金属层306通过通孔延伸到基底300的背侧(第二表面)。
基于以上,根据本发明实施例的体声波谐振器中,所述热引出部延伸到压电层上表面且与所述压电层保持接触而与顶电极间隔开。
图4为根据本发明的再一个示例性实施例的具有散热结构的谐振器的截面示意图,图中示出了MT区域。
如图4所示,具有散热结构的谐振器示例的整体结构为:基底400上表面具有声学镜401(示例为空腔结构),声学镜或者空腔401嵌入基底400。在空腔之上具有底电极402,底电极402跨过整个声学镜或者空腔401,并部分与基底400接触。压电薄膜403位于底电极上方,并与底电极上表面保持接触。此外,压电薄膜403在横向上向底电极402范围之外延伸,并部分与基底400接触。
顶电极404、压电薄膜403、底电极402以及声学镜或者空腔401在横向上的重叠区域定义了谐振器的有效压电效应区域(有效区域)AR。
金属层406部分下表面与基底保持接触,并在横向上延伸至压电薄膜403的范围之外,而金属层406的另一部分下表面沿着压电薄膜403的外部倾斜面向上爬升,并覆盖压电薄膜403的整个外部倾斜面和其部分上水平面,金属层406完全落在区域AR之外。
如图4所示,金属层406通过通孔延伸到基底400的背侧(第二表面)。
位于压电薄膜403上平面处的金属层406的上表面覆盖有绝缘介质层405,且绝缘介质层405落在区域AR之外。
顶电极404位于压电薄膜403上方,并部分与压电薄膜403的上表面保持接触。同时顶电极404与压电薄膜403接触的部分横向上落入声学镜或者空腔401范围内。顶电极下表面的另一部分与绝缘介质层405接触。
基于以上,根据本发明实施例的体声波谐振器还可包括导热的第二导热绝缘介质层;所述热引出部沿所述压电层上表面延伸到所述第二导热绝缘介质层下方而与所述第二导热绝缘介质层保持接触;所述顶电极位于所述第二导热绝缘介质层上方、与第 二导热绝缘介质层保持接触而与热引出部间隔开。可选的,所述第二导热绝缘介质层由氮化铝或者硅脂制成。
在不设置绝缘介质层的情况下,所述热引出部为绝缘部;且所述热引出部沿所述压电层上表面延伸到顶电极的下方,所述顶电极位于热引出部上方且与热引出部保持接触。
下面参照附图5A-8B示例性描述散热结构与空气的接触区域MA。
图5A和图5B分别为根据本发明的一个示例性实施例的具有散热结构的谐振器的示意性俯视图和MA区域的局部放大图。
如图5A所示,金属层506的区域为半径为R500的圆形,R500的范围为40-200μm。此外,金属层506的区域也可以为其它可将谐振器声学部分(有效区域)包围在其中的几何形状。MA区域中金属层506与空气接触的表面包含多条带状凸起结构,每条凸起结构的两侧表面为有效增加的表面积。
此外,本实施例中的基底下表面同样覆盖金属层,位于基底下表面的金属层在图5A中未示出。
图5A中的局部区域Z501的放大视图如图5B所示:带状凸起结构等间距分布,每个带状凸起结构的宽度相同,为D501,且D501的范围为0.5-4μm。带状凸起结构等间距分布,相邻两个凸起的间距为D502,且D502的范围为0.5-6μm。带状凸起的高度为H501,且H501的范围为0.5-20μm。
以上描述的金属-空气界面特征属于MA1区域,这些特征描述同样适用于MA2区域。
图6A和图6B分别为根据本发明的另一个示例性实施例的具有散热结构的谐振器的示意性俯视图和MA区域的局部放大图。
如图6A所示,金属层606的区域为半径为R600的圆形,R600的范围为40-200μm。此外,金属层606的区域也可以为其它可将谐振器声学部分(有效区域)包围在其中的几何形状。MA区域中金属层606与空气接触的表面包含多个柱状凸起结构,每个凸起结构的侧表面为有效增加的表面积。在本实施例中柱状结构为正六棱柱,但选用其它形状如圆柱,菱形柱,矩形柱,三角棱柱或其它多边形棱柱同样可行。
此外,本实施例中的基底下表面同样覆盖金属层,位于基底下表面的金属层在图6A中未示出。
图6A中的局部区域Z601的放大视图如图6B所示:每个正六棱柱结构的边长相同,为D601,且D601的范围为0.5-4μm。正六棱柱结构等间距分布,相邻两个正六棱柱的间距为D602,且D602的范围为0.5-6μm。正六棱柱凸起的高度为H601,且H601的范围为0.5-20μm。
以上描述的金属-空气界面特征属于MA1区域,这些特征描述同样适用于MA2区域。
图7A和图7B分别为根据本发明的再一个示例性实施例的具有散热结构的谐振器的示意性俯视图和MA区域的局部放大图。
如图7A所示,金属层706的区域为半径为R700的圆形,R700的范围为40-200μm。此外,金属层706的区域也可以为其它可将谐振器声学部分(有效区域)包围在其中的几何形状。MA区域中金属层706与空气接触的表面包含同心环状凸起结构,每个环形凸起结构的侧表面为有效增加的表面积。
此外,本实施例中的基底下表面同样覆盖金属层,位于基底下表面的金属层在图7A中未示出。
图7A中的局部区域Z701的放大视图如图7B所示:圆环的宽度为D701,相邻两个圆环的间隔宽度或间距为D702。圆环凸起高度为H701,H701范围为0.5-20μm。
在进一步的实施例中,圆环的宽度D701和圆环的间距D702的分布满足:
(1)沿圆环半径向外逐渐变窄;
(2)相邻两圆环间距满足等比规律,且外环比内环的宽度比值为a(0<a<1),或者相邻两圆环间距满足等差规律,且外环和内环的宽度差异为b,b的范围为0.1-0.5μm;
其中,圆环的宽度D701的最大值范围为2-20μm,圆环的间距D702的最大值范围为4-40μm。
按照如上规律分布的圆环凸起结构可形成一种耗散结构,即距离圆心越远的位置,金属层706与空气的接触面积越大,热量散失速度也越快,这样可有效地增大温度场沿半径方向的梯度,从而使谐振器内的热量更快的被传输至外部。
以上描述的金属-空气界面特征属于MA1区域,这些特征描述同样适用于MA2区域。
图8A和图8B分别为根据本发明的又一个示例性实施例的具有散热结构的谐振器的示意性俯视图和MA区域的局部放大图。
如图8A所示,实施例A800中,金属层806的区域为半径为R800的圆形,R800的范围为40-200μm。此外,金属层806的区域也可以为其它可将谐振器声学部分(有效区域)包围在其中的几何形状。MA区域中金属层806与空气接触的表面可包含耗散型圆柱阵列结构,每个圆柱凸起结构的侧表面为有效增加的表面积。
此外,本实施例中的基底下表面同样覆盖金属层,位于基底下表面的金属层在图8A中未示出。
图8A中的局部区域Z801的放大视图如图8B所示:圆柱凸起高度为H801,H801范围为0.5-20μm。相邻两圈圆柱凸起的圆心距为D801,D801的范围为10-20μm。
进一步的,圆柱的半径为R801和每一圈圆柱的数量N满足:
(1)R801沿金属层半径R800方向向外逐渐变小,而N沿该方向逐渐变大;
(2)相邻两圈的圆柱半径满足等比规律,且内圈圆柱半径比外圈圆柱半径的比值为α1;
(3)相邻两圈的圆柱数量满足等比规律,且外圈圆柱数量比内圈圆柱数量的比值为α2,且确保α2/α1大于1;
(4)R801的最大值范围为4-30μm,N的最小值范围为8-16个。
由于α2/α1大于1,那么最终的效果是,距离金属层806的圆心位置越远,与空气的接触面积越大,那么与图7A与7B中的示例类似,图8A与图8B的实施例中同样形成了可提高散热效率的耗散结构,并且圆柱凸起结构相比圆环结构能提供更强的耗散效应,因此理论上图8A与图8B的实施例的散热效率要优于图7A与7B中的示例。
以上描述的金属-空气界面特征属于MA1区域,这些特征描述同样适用于MA2区域。
图9A为根据本发明的一个示例性实施例的由多个谐振器构成的滤波器的示意图;图9B为根据本发明的一个示例性实施例的沿图9A中的AOA’截得的示意性剖视图;图9C为根据本发明的另一个示例性实施例的沿图9A中的AOA’截得的示意性剖视图;图9D为根据本发明的再一个示例性实施例的沿图9A中的AOA’截得的示意性剖视图。下面参照附图9A-9D描述当多个谐振器构成滤波器时的MA界面的实施例。
图9A当多个谐振器构成滤波器时MA区域的一个实施例
图9A的实施例中,当多个谐振器110以某种二维拓扑结构构成滤波器时,金属空-气界面116往往不能在基底正面获得足够的分布空间,特别是谐振器之间的空隙尤为狭小的情况下。这时,可以通过通孔118将金属结构延伸至基底背面形成金属-空气界面117。
基于不同的实施例,通过图9中的折线AOA’将滤波器剖开可获得如下剖面图:图9B、图9C和图9D。
如图9B所示,该实施例中具有三个相邻的谐振器单元120,金属层126与声学谐振单元120的接触方式与图2示出的实施例相同。在图9B的实施例中,基底正面的金属-空气界面基本上只存在于相邻两个谐振单元之间,并且只占据很小的面积,绝大部分的金属-空气界面127则通过通孔128在基底背侧形成。图5A-图8B中的实施例的所有金属-空气界面特征适用于界面127。
如图9C所示,该实施例具有三个相邻的谐振器单元130,金属层136与声学谐振单元130的接触方式与图3所示实施例相同。在本实施例中,基底正面的金属-空气界面基本上只存在于相邻两个谐振单元之间,并且只占据很小的面积,绝大部分的金属-空气界面137则通过通孔138在基底背侧形成。图5A-图8B中的实施例的所有金属-空气界面特征适用于界面137。
如图9D所示,本实施例具有三个相邻的谐振器单元140,金属层146与声学谐振单元140的接触方式与图4所示的实施例相同。在本实施例中,基底正面的金属-空气界面基本上只存在于相邻两个谐振单元之间,并且只占据很小的面积,绝大部分的金属-空气界面147则通过通孔148在基底背侧形成。图5A-图8B中的实施例的所有金属-空气界面特征适用于界面147。
下面参照附图10A和图10B示例性描述散热结构与基底的接触区域MS。
图10A为根据本发明的一个示例性实施例的具有散热结构的谐振器的截面示意图,图中示出了MS区域;图10B为根据本发明的另一个示例性实施例的具有散热结构的谐振器的截面示意图,图中示出了MS区域。
在图10A所示的实施例中,金属层与基底接触的界面区域为MS1和MS2,该区域具有结构细节,目的在于增大金属层和基底的接触面积,从而提高从金属层到基底的热量流失速度。
图10B中展示的是在滤波器结构的情况下MS区域的一个实施例,在该实施例中只存在MS2区域。
图10A与图10B中关于金属与基底的界面区域MS的具体实施例与图5A-图8B对应实施例中描述的金属与空气界面区域MA相同,只是把与图5A-图8B实施例中建立在金属层上表面的结构和具体参数应用到金属层和基底的接触界面上。
如本领域技术人员所能理解的,图5A-图8B的示例中的散热部或者金属层的上表面结构同样可以应用到MS区域,即应用到散热部或者金属层与基底的接触界面上。
在本发明中,电极组成材料可以是金(Au)、钨(W)、钼(Mo)、铂(Pt),钌(Ru)、铱(Ir)、钛钨(TiW)、铝(Al)、钛(Ti)等类似金属。在本发明中,压电层材料可以为氮化铝(AlN)、氧化锌(ZnO)、锆钛酸铅(PZT)、铌酸锂(LiNbO 3)、石英(Quartz)、铌酸钾(KNbO 3)或钽酸锂(LiTaO 3)等材料。
在本发明中,提到的数值范围除了可以为端点值之外,还可以为端点值之间的中值或者其他值,均在本发明的保护范围之内。
基于以上,本发明的实施例还涉及一种半导体器件的散热结构,所述半导体器件具有基底,基底具有第一表面与第二表面,基底具有在厚度方向上贯穿其的通孔,基底的第一表面设置有功能部件,其中:所述散热结构包括散热部、热引出部和热连接部,所述热引出部设置在第一表面所在的一侧,所述散热部包括设置在基底的第二表面所在一侧的第二散热部,所述热连接部经由所述通孔穿过所述基底;且所述热引出部适于经由所述热连接部向所述第二散热部传导来自功能部件的热量。
所述散热部还可包括第一散热部,所述第一散热部设置在第一表面所在的一侧且与所述热引出部直接热连接。
所述半导体器件可为体声波谐振器,所述热引出部适于传导来自所述谐振器的有效声学区域的热量。
所述散热部可形成热传递的耗散结构。
本发明的实施例还涉及一种滤波器,包括上述的体声波谐振器或者上述的散热结构。可选的,所述滤波器包括多个上述体声波谐振器;至少部分相邻谐振器之间的空隙处设置有所述热连接部,或者至少部分相邻谐振器共用热连接部。
本发明的实施例也涉及一种电子设备,包括上述的滤波器。需要指出的是,这里的电子设备,包括但不限于射频前端、滤波放大模块等中间产品,以及手机、WIFI、 无人机等终端产品。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行变化,本发明的范围由所附权利要求及其等同物限定。

Claims (37)

  1. 一种体声波谐振器,包括:
    基底,具有第一表面与第二表面以及贯穿基底的通孔;
    声学镜;
    底电极,设置在基底上方;
    顶电极,与所述底电极对置;
    压电层,设置在底电极上方以及底电极与顶电极之间;和
    散热结构,
    其中:
    声学镜、底电极、压电层、顶电极在基底的厚度方向重叠的区域为谐振器的有效区域,底电极、压电层和顶电极设置在基底的第一表面上;
    所述散热结构包括散热部、热引出部以及将散热部与热引出部热连接的热连接部,所述热引出部位于所述有效区域之外,所述热引出部与所述有效区域的边缘区域热接触;
    所述散热部包括设置在基底的第二表面所在的一侧的第二散热部;
    所述热连接部在基底的厚度方向上穿过所述基底的通孔以将来自所述热引出部的热量传导到所述第二散热部。
  2. 根据权利要求1所述的体声波谐振器,其中:
    所述散热部还包括第一散热部,所述第一散热部设置在第一表面所在的一侧且与所述热引出部直接热连接。
  3. 根据权利要求1或2所述的体声波谐振器,其中:
    所述体声波谐振器还包括导热的第一导热绝缘介质层;
    所述热引出部设置在所述基底的第一表面的一侧,所述第一导热绝缘介质层设置在底电极与所述热引出部之间,且所述底电极位于所述第一导热绝缘介质层上方、与第一导热绝缘介质层保持接触而与热引出部间隔开。
  4. 根据权利要求3所述的体声波谐振器,其中:
    所述第一导热绝缘介质层由氮化铝、氧化铍或者硅脂制成。
  5. 根据权利要求1或2所述的体声波谐振器,其中:
    所述热引出部为绝缘部;
    所述热引出部设置在所述基底的第一表面的一侧,所述底电极位于热引出部上方且与热引出部保持接触。
  6. 根据权利要求1或2所述的体声波谐振器,其中:
    所述热引出部延伸到压电层上表面且与所述压电层保持接触而与顶电极间隔开。
  7. 根据权利要求1或2所述的体声波谐振器,其中:
    所述体声波谐振器还包括导热的第二导热绝缘介质层;
    所述热引出部沿所述压电层上表面延伸到所述第二导热绝缘介质层下方而与所述第二导热绝缘介质层保持接触;
    所述顶电极位于所述第二导热绝缘介质层上方、与第二导热绝缘介质层保持接触而与热引出部间隔开。
  8. 根据权利要求7所述的体声波谐振器,其中:
    所述第二导热绝缘介质层由氮化铝、氧化铍或者硅脂制成。
  9. 根据权利要求1或2所述的体声波谐振器,其中:
    所述热引出部为绝缘部;
    所述热引出部沿所述压电层上表面延伸到顶电极的下方,所述顶电极位于热引出部上方且与热引出部保持接触。
  10. 根据权利要求1-9中任一项所述的体声波谐振器,其中:
    所述第一散热部至少部分围绕所述有效区域设置。
  11. 根据权利要求10所述的体声波谐振器,其中:
    所述第一散热部和/或所述第二散热部包括与空气接触以与空气交换热量的部分和/或设置在基底中与基底接触而与基底交换热量的部分。
  12. 根据权利要求1或2所述的体声波谐振器,其中:
    通孔圆形通孔,直径范围1-30μm。
  13. 根据权利要求12所述的体声波谐振器,其中:
    所述通孔的直径为5-20μm。
  14. 根据权利要求1或2所述的体声波谐振器,其中:
    通孔为矩形通孔,矩形通孔的横截面中,矩形的长度范围为20-80μm,宽度范围为2-20μm。
  15. 根据权利要求14所述的体声波谐振器,其中:
    矩形通孔的横截面中,矩形的长度范围为40-60μm,宽度范围为5-10μm。
  16. 根据权利要求1-15中任一项所述的体声波谐振器,其中:
    所述第一散热部和/或所述第二散热部包括多个带状凸起。
  17. 根据权利要求16所述的体声波谐振器,其中:
    所述带状凸起等间距分布,每个带状凸起的宽度相同,宽度范围为0.5-4μm;相邻两个带状凸起的间距范围为0.5-6μm;带状凸起的高度范围为0.5-20μm。
  18. 根据权利要求1-15中任一项所述的体声波谐振器,其中:
    所述第一散热部和/或所述第二散热部包括多个柱状凸起。
  19. 根据权利要求18所述的体声波谐振器,其中:
    所述柱状凸起为正六棱柱凸起;
    所述柱状凸起等间距分布,每个正六棱柱结构的边长相同,边长范围为0.5-4μm;正六棱柱结构等间距分布,相邻两个正六棱柱的间距为0.5-6μm;正六棱柱凸起的高度范围为0.5-20μm。
  20. 根据权利要求18所述的体声波谐振器,其中:
    所述多个柱状凸起形成热传递的耗散结构。
  21. 根据权利要求20所述的体声波谐振器,其中:
    所述柱状凸起为圆柱状凸起,所述多个柱状凸起呈同心圆状分布;
    所述柱状凸起的半径在径向向外的方向上逐渐变小,且柱状凸起构成的每一个圆圈中柱状凸起的数量逐渐变大;相邻两圆圈的柱状凸起的半径满足等比规律且内圆圈的柱状凸起的半径比外圆圈的柱状凸起的半径的比值为α1;相邻两圆圈的柱状凸起数量满足等比规律,且外圆圈柱状凸起的数量比内圆圈的柱状凸起的数量的比值为α2,且α2/α1大于1,
    其中:柱状凸起的半径的最大值范围为4-30μm,一个圆圈中柱状凸起的数量的最小值范围为8-16个。
  22. 根据权利要求1-15中任一项所述的体声波谐振器,其中:
    所述第一散热部和/或所述第二散热部包括同心圆结构的多个环状凸起。
  23. 根据权利要求22所述的体声波谐振器,其中:
    所述多个环状凸起形成热传递的耗散结构。
  24. 根据权利要求23所述的体声波谐振器,其中:
    环状凸起的宽度和相邻环状凸起的间距满足:
    (1)沿环状凸起的半径向外逐渐变窄;
    (2)相邻两环状凸起的间距满足等比规律,且外部环状凸起比内部环状凸起的宽度比值大于0小于1;或者,相邻两环状凸起的间距满足等差规律,且外部环状凸起和内部环状凸起的宽度差异为b,b的范围为0.1-0.5μm,
    其中:环状凸起的宽度的最大值范围为2-20μm,环状凸起的间距的最大值范围为4-40μm。
  25. 根据权利要求1-24中任一项所述的体声波谐振器,其中:
    所述热引出部与有效区域之间在横向上的距离不小于10个声波波长。
  26. 根据权利要求1-25中任一项所述的体声波谐振器,其中:
    所述第二散热部覆盖所述基底的第二表面;
    所有热连接部均连接到所述第二散热部。
  27. 一种半导体器件的散热结构,所述半导体器件具有基底,基底具有第一表面与第二表面,基底具有在厚度方向上贯穿其的通孔,基底的第一表面设置有功能部件,其中:
    所述散热结构包括散热部、热引出部和热连接部,所述热引出部设置在第一表面所在的一侧,所述散热部包括设置在基底的第二表面所在一侧的第二散热部,所述热连接部经由所述通孔穿过所述基底;且
    所述热引出部适于经由所述热连接部向所述第二散热部传导来自功能部件的热量。
  28. 根据权利要求27所述的散热结构,其中:
    所述散热部还包括第一散热部,所述第一散热部设置在第一表面所在的一侧且与所述热引出部直接热连接。
  29. 根据权利要求27或28所述的散热结构,其中:
    通孔圆形通孔,直径范围1-30μm。
  30. 根据权利要求29所述的散热结构,其中:
    所述通孔的直径为5-20μm。
  31. 根据权利要求27或28所述的散热结构,其中:
    通孔为矩形通孔,矩形通孔的横截面中,矩形的长度范围为20-80μm,宽度范围为2-20μm。
  32. 根据权利要求31所述的散热结构,其中:
    矩形通孔的横截面中,矩形的长度范围为40-60μm,宽度范围为5-10μm。
  33. 根据权利要求27-32中任一项所述的散热结构,其中:
    所述半导体器件为体声波谐振器,所述热引出部适于传导来自所述谐振器的有效声学区域的热量。
  34. 根据权利要求27-33中任一项所述的散热结构,其中:
    所述散热部形成热传递的耗散结构。
  35. 一种滤波器,包括根据权利要求1-26中任一项所述的体声波谐振器或者根据权利要求27-34中任一项所述的散热结构。
  36. 根据权利要求35所述的滤波器,其中:
    所述滤波器包括多个根据权利要求1-26中任一项所述的体声波谐振器;
    至少部分相邻谐振器之间的空隙处设置有所述热连接部,或者至少部分相邻谐振器共用热连接部。
  37. 一种电子设备,包括根据权利要求35或36所述的滤波器。
PCT/CN2019/114002 2018-11-14 2019-10-29 散热结构、带散热结构的体声波谐振器、滤波器和电子设备 WO2020098482A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811355040.2 2018-11-14
CN201811355040.2A CN111193486A (zh) 2018-11-14 2018-11-14 散热结构、带散热结构的体声波谐振器、滤波器和电子设备

Publications (1)

Publication Number Publication Date
WO2020098482A1 true WO2020098482A1 (zh) 2020-05-22

Family

ID=70709085

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/114002 WO2020098482A1 (zh) 2018-11-14 2019-10-29 散热结构、带散热结构的体声波谐振器、滤波器和电子设备

Country Status (2)

Country Link
CN (1) CN111193486A (zh)
WO (1) WO2020098482A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112039487B (zh) * 2020-08-06 2021-08-10 诺思(天津)微系统有限责任公司 带导热结构的体声波谐振器及其制造方法、滤波器及电子设备
CN117040479B (zh) * 2022-12-14 2024-03-01 北京芯溪半导体科技有限公司 一种声波滤波器、通信设备和电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101421920A (zh) * 2004-01-30 2009-04-29 诺基亚公司 用于改进密封电子部件中的散热的方法
CN101606247A (zh) * 2006-10-31 2009-12-16 克里公司 用于led和相关组件的集成散热器
CN101645478A (zh) * 2008-08-08 2010-02-10 鸿富锦精密工业(深圳)有限公司 发光二极管散热结构
CN104753493A (zh) * 2013-12-25 2015-07-01 贵州中科汉天下电子有限公司 薄膜体声波谐振器
US20160065171A1 (en) * 2014-08-28 2016-03-03 Avago Technologies General Ip (Singapore) Pte. Ltd. Film bulk acoustic resonators comprising backside vias

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101421920A (zh) * 2004-01-30 2009-04-29 诺基亚公司 用于改进密封电子部件中的散热的方法
CN101606247A (zh) * 2006-10-31 2009-12-16 克里公司 用于led和相关组件的集成散热器
CN101645478A (zh) * 2008-08-08 2010-02-10 鸿富锦精密工业(深圳)有限公司 发光二极管散热结构
CN104753493A (zh) * 2013-12-25 2015-07-01 贵州中科汉天下电子有限公司 薄膜体声波谐振器
US20160065171A1 (en) * 2014-08-28 2016-03-03 Avago Technologies General Ip (Singapore) Pte. Ltd. Film bulk acoustic resonators comprising backside vias

Also Published As

Publication number Publication date
CN111193486A (zh) 2020-05-22

Similar Documents

Publication Publication Date Title
WO2020098488A1 (zh) 散热结构、带散热结构的体声波谐振器、滤波器和电子设备
US11114998B2 (en) Transversely-excited film bulk acoustic resonators for high power applications
WO2020098482A1 (zh) 散热结构、带散热结构的体声波谐振器、滤波器和电子设备
JP5817673B2 (ja) 圧電薄膜共振子及び圧電薄膜の製造方法
JP3879643B2 (ja) 圧電共振子、圧電フィルタ、通信装置
US20160352308A1 (en) Bulk acoustic wave resonator comprising multiple acoustic reflectors
WO2021169187A1 (zh) 一种具有散热结构的体声波谐振器及制造工艺
CN107005220B (zh) 自身发热降低的baw谐振器、具有baw谐振器的高频滤波器、具有高频滤波器的双工器以及制造方法
CN113381724B (zh) 体声波谐振器及其制备方法
CN110113022B (zh) 一种薄膜体声波谐振器及其制作方法
CN111010129A (zh) 体声波谐振器器件、滤波器和电子设备
WO2020098479A1 (zh) 散热结构、带散热结构的体声波谐振器、滤波器和电子设备
US11362638B2 (en) Bulk acoustic wave resonator with a heatsink region and electrical insulator region
US10886888B2 (en) Bulk acoustic wave resonator having openings in an active area and a pillar beneath the opening
WO2020125354A1 (zh) 带离散结构的体声波谐振器、滤波器和电子设备
US20230231528A1 (en) Resonator and preparation method of a resonator, and filter
US20230216478A1 (en) Bulk acoustic wave resonator with integrated capacitor
CN111600569A (zh) 体声波谐振器及其制造方法、滤波器及电子设备
JP2007295307A (ja) バルク弾性波共振器、フィルタ回路、及びバルク弾性波共振器の製造方法
CN116111966A (zh) 一种滤波器、体声波谐振器结构及其制作方法
CN115378395A (zh) 具有良好散热的薄膜体声波谐振器、制备方法及滤波器
US11909381B2 (en) Transversely-excited film bulk acoustic resonators with two-layer electrodes having a narrower top layer
US12009798B2 (en) Transversely-excited film bulk acoustic resonators with electrodes having irregular hexagon cross-sectional shapes
JP4218672B2 (ja) 圧電共振子、圧電フィルタ、通信装置
KR20210045588A (ko) 체적 음향 공진기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19885920

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19885920

Country of ref document: EP

Kind code of ref document: A1