WO2021169187A1 - 一种具有散热结构的体声波谐振器及制造工艺 - Google Patents

一种具有散热结构的体声波谐振器及制造工艺 Download PDF

Info

Publication number
WO2021169187A1
WO2021169187A1 PCT/CN2020/108710 CN2020108710W WO2021169187A1 WO 2021169187 A1 WO2021169187 A1 WO 2021169187A1 CN 2020108710 W CN2020108710 W CN 2020108710W WO 2021169187 A1 WO2021169187 A1 WO 2021169187A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
heat dissipation
metal
cavity
bulk acoustic
Prior art date
Application number
PCT/CN2020/108710
Other languages
English (en)
French (fr)
Inventor
李林萍
盛荆浩
江舟
Original Assignee
杭州见闻录科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州见闻录科技有限公司 filed Critical 杭州见闻录科技有限公司
Priority to EP20922162.1A priority Critical patent/EP4113836A4/en
Priority to US17/798,345 priority patent/US11742824B2/en
Priority to KR1020227031650A priority patent/KR102584997B1/ko
Priority to JP2022549270A priority patent/JP7333480B2/ja
Publication of WO2021169187A1 publication Critical patent/WO2021169187A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02086Means for compensation or elimination of undesirable effects
    • H03H9/02102Means for compensation or elimination of undesirable effects of temperature influence
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H3/04Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks for obtaining desired frequency or temperature coefficient
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02086Means for compensation or elimination of undesirable effects
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02086Means for compensation or elimination of undesirable effects
    • H03H9/02125Means for compensation or elimination of undesirable effects of parasitic elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/13Driving means, e.g. electrodes, coils for networks consisting of piezoelectric or electrostrictive materials
    • H03H9/131Driving means, e.g. electrodes, coils for networks consisting of piezoelectric or electrostrictive materials consisting of a multilayered structure
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/13Driving means, e.g. electrodes, coils for networks consisting of piezoelectric or electrostrictive materials
    • H03H9/133Driving means, e.g. electrodes, coils for networks consisting of piezoelectric or electrostrictive materials for electromechanical delay lines or filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/171Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator implemented with thin-film techniques, i.e. of the film bulk acoustic resonator [FBAR] type
    • H03H9/172Means for mounting on a substrate, i.e. means constituting the material interface confining the waves to a volume
    • H03H9/173Air-gaps
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/171Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator implemented with thin-film techniques, i.e. of the film bulk acoustic resonator [FBAR] type
    • H03H9/172Means for mounting on a substrate, i.e. means constituting the material interface confining the waves to a volume
    • H03H9/174Membranes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H2003/021Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks the resonators or networks being of the air-gap type
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H2003/023Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks the resonators or networks being of the membrane type
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H3/04Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks for obtaining desired frequency or temperature coefficient
    • H03H2003/0407Temperature coefficient
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/54Filters comprising resonators of piezoelectric or electrostrictive material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • This application relates to the field of communication devices, and mainly relates to a bulk acoustic wave resonator with a heat dissipation structure and a manufacturing process.
  • the filter is one of the RF front-end modules, mainly composed of multiple resonators connected through a topological network structure, which can improve the transmitted signal and the received signal.
  • Fbar Thin film bulk acoustic resonator
  • the filter composed of Fbar has the advantages of small size, strong integration capability, high quality factor Q during high-frequency operation, and strong power tolerance. It is used as a radio frequency front-end The core device.
  • the basic structure of Fbar is the upper and lower electrodes and the piezoelectric layer sandwiched between the upper and lower electrodes.
  • the piezoelectric layer can realize the conversion of electrical energy and mechanical energy.
  • the piezoelectric layer When an electric field is applied to the upper and lower electrodes of Fbar, the piezoelectric layer generates mechanical energy, which is in the form of sound waves.
  • the basic structure, substrate and material selection characteristics of Fbar result in Fbar not having good heat dissipation.
  • the increasing crowding of electromagnetic waves and the mutual electromagnetic interference of internal devices of radio frequency terminal products will affect the use of devices.
  • the cavity of the bulk acoustic wave resonator is generally formed by etching on the substrate or supporting layer.
  • the material of the substrate or supporting layer is usually Si or Si 3 N 4 , so it has no heat dissipation effect and reliability. Therefore, the present invention aims to design a bulk acoustic wave resonator that has good heat dissipation and can shield electromagnetic interference.
  • This application proposes a bulk acoustic wave resonator with a heat dissipation structure and a manufacturing process to solve the above-mentioned problems.
  • the present application proposes a bulk acoustic wave resonator with a heat dissipation structure, including a substrate, a metal heat dissipation layer formed on the substrate and provided with an insulating layer on the surface, and a resonance function layer formed on the insulating layer,
  • the metal heat dissipation layer and the insulating layer surround the substrate to form a cavity, and the bottom electrode layer in the resonance function layer covers the cavity.
  • the existence of the metal heat dissipation layer can make the device have a heat dissipation effect.
  • the edge of the bottom electrode layer is erected above the insulating layer formed on the side of the cavity. Therefore, the bottom electrode layer will not be arranged above the metal heat dissipation layer, and will not form a capacitor to affect device performance and reduce parasitic effects.
  • the resonance function layer further includes a piezoelectric layer and a top electrode layer that are sequentially stacked on the bottom electrode layer.
  • the bottom electrode layer, the piezoelectric layer and the top electrode layer form an effective resonance area above the cavity, and the resonance function layer converts electrical energy into mechanical energy to generate a resonance effect in the form of sound waves.
  • the top electrode layer includes a connection part of the resonator extending from the effective resonance area of the resonant function layer to the peripheral resonator, and the metal heat dissipation layer is not completely distributed under the connection part. Try to avoid the existence of a metal heat dissipation layer under the top electrode layer, which will not easily form a capacitor and will not affect the performance of the device.
  • the gap between the connecting portion and the piezoelectric layer is provided with a sacrificial material layer, the upper surface of the sacrificial material layer is flush with the upper surface of the insulating layer, and the piezoelectric layer is provided on the sacrificial material layer, the insulating layer and the bottom electrode.
  • the upper surface of the layer Therefore, it can ensure that the piezoelectric layer has a relatively flat surface, reduce the influence of stress, and improve the resonance performance of the device.
  • the sacrificial material layer plays a role of filling the medium.
  • metal pillars are provided on the piezoelectric layer outside the effective resonance area and the connecting portion, and the metal pillars pass through the piezoelectric layer and the insulating layer, and extend to the metal heat dissipation layer.
  • the metal pillars are used to draw heat to the outside and improve the heat dissipation effect.
  • the metal pillars arranged outside the effective resonance area will not affect the performance of the device.
  • it further includes providing an adhesion layer on the substrate.
  • the adhesion layer can play a role in increasing the adhesion of the metal shielding layer, and can also play an electromagnetic shielding effect.
  • a metal shielding layer is provided on the adhesion layer.
  • the metal shielding layer is connected to the metal heat dissipation layer and the metal pillars, so an electromagnetic shielding structure can be formed to shield external interference and internal interference to the outside.
  • the material of the metal heat dissipation layer includes a composite multilayer metal layer material composed of one or more of Ag, Cu, Au, Al, Mo, W, Zn, Ni, Fe, and Sn.
  • the material selected for the metal heat dissipation layer has a high thermal conductivity and can play a role in supporting the upper film layer.
  • the material of the insulating layer includes a composite of one or more of AlN, Si, and SiN.
  • the thermal conductivity of the insulating layer material is also relatively high, and can isolate the bottom electrode layer and the metal heat dissipation layer, and can play a role in protecting the metal heat dissipation layer, improving the service life and reliability of the device.
  • the material of the metal pillar includes Ag, Cu, Au, Al, Mo, W, Zn, Ni, Fe, or Sn.
  • the material of the metal column also needs to have good thermal conductivity.
  • this application also proposes a manufacturing process of a bulk acoustic wave resonator with a heat dissipation structure, which includes the following steps:
  • an insulating layer is formed on the substrate and the metal heat dissipation layer, and the insulating layer forms a second cavity on the first cavity;
  • the metal heat dissipation layer can transfer the heat of the device, so that the device has a good heat dissipation effect.
  • S1 specifically includes: forming a metal heat dissipation layer with the first cavity on the substrate through sputtering, photolithography and etching processes, evaporation and stripping processes, or electroplating processes.
  • the above preparation process is simple and the technology maturity is high.
  • the resonant function layer includes a bottom electrode layer, a piezoelectric layer, and a top electrode layer stacked in sequence.
  • the top electrode layer includes the connection part of the resonator extending from the effective resonance area to the periphery, and the metal heat dissipation layer is not completely connected. Distribution below the department. Try to avoid the existence of a metal heat dissipation layer under the top electrode layer, which will not easily form a capacitor and will not affect the performance of the device.
  • S3 further includes the step of filling the gap between the connecting portion and the insulating layer with a sacrificial material and performing chemical mechanical polishing to keep the upper surface of the sacrificial material and the insulating layer flat. Therefore, it can ensure that the piezoelectric layer has a relatively flat surface, reduce the influence of stress, and improve the resonance performance of the device.
  • the sacrificial material here plays a role of dielectric filling.
  • the edge of the bottom electrode layer is erected above the insulating layer formed on the side of the first cavity. Therefore, the bottom electrode layer will not be arranged above the metal heat dissipation layer, and will not form a capacitor to affect device performance and reduce parasitic effects.
  • the metal column is fabricated on the area outside the effective resonance area and the connection part, which will not affect the performance of the device, and can dissipate the heat in the metal heat dissipation layer.
  • step S6 the following step is further included: removing the sacrificial material in the second cavity. After the sacrificial material in the second cavity is removed, the second cavity can be released to form a device with resonance function.
  • the following step is further included before S1: forming an adhesion layer on the substrate.
  • the adhesion layer can play a role in increasing the adhesion of the metal shielding layer, and can also play an electromagnetic shielding effect.
  • the following step is further included before S1: forming a metal shielding layer on the adhesion layer.
  • the metal shielding layer is connected to the metal heat dissipation layer and the metal pillars, so an electromagnetic shielding structure can be formed to shield external interference and internal interference to the outside.
  • the material of the metal heat dissipation layer includes a composite multilayer metal layer material composed of one or more of Ag, Cu, Au, Al, Mo, W, Zn, Ni, Fe, and Sn.
  • the material selected for the metal heat dissipation layer has a high thermal conductivity and can play a role in supporting the upper film layer.
  • the material of the insulating layer includes a composite of one or more of AlN, Si, and SiN.
  • the thermal conductivity of the insulating layer material is also relatively high, and can isolate the bottom electrode layer and the metal heat dissipation layer, and can play a role in protecting the metal heat dissipation layer, improving the service life and reliability of the device.
  • the material of the metal pillar includes Ag, Cu, Au, Al, Mo, W, Zn, Ni, Fe, or Sn.
  • the material of the metal column also needs to have good thermal conductivity.
  • the bulk acoustic wave resonator includes a substrate, a metal heat dissipation layer formed on the substrate and an insulating layer provided on the surface, and a resonator formed on the insulating layer.
  • the functional layer, the metal heat dissipation layer and the insulating layer surround the substrate to form a cavity, and the bottom electrode layer in the resonant functional layer covers the cavity.
  • a metal heat dissipation layer is arranged around the cavity, so that the device can conduct heat in time during use, thereby improving the service life of the device.
  • the bulk acoustic wave resonator of the present application avoids the formation of capacitors by the metal heat dissipation layer, the bottom electrode layer and the top electrode layer as much as possible in structure, reduces the parasitic capacitance of the resonator, and effectively improves the performance of the resonator.
  • the device can also have an electromagnetic shielding structure. Based on the premise of reducing the parasitic capacitance of the resonator, the device has good heat dissipation and anti-electromagnetic shielding effect during use, so that the device has good performance while working normally and stably. reliability.
  • Fig. 1 shows a cross-sectional view of a bulk acoustic wave resonator with a heat dissipation structure according to an embodiment of the present invention
  • Fig. 2 shows a top view of a bulk acoustic wave resonator with a heat dissipation structure according to an embodiment of the present invention
  • Fig. 3 shows a cross-sectional view of a bulk acoustic wave resonator with a heat dissipation structure according to another embodiment of the present invention
  • FIG. 4 shows a flowchart of a manufacturing process of a bulk acoustic wave resonator with a heat dissipation structure according to an embodiment of the present invention
  • 5a-5j show a schematic diagram of the structure of a bulk acoustic wave resonator manufactured by a manufacturing process of a bulk acoustic wave resonator with a heat dissipation structure according to an embodiment of the present invention
  • FIG. 6 shows a flowchart of manufacturing process steps S5-S6 of a bulk acoustic wave resonator with a heat dissipation structure according to an embodiment of the present invention
  • Figures 7a-7b show a schematic diagram of the structure of a bulk acoustic wave resonator manufactured by a manufacturing process of a bulk acoustic wave resonator with a heat dissipation structure according to another embodiment of the present invention.
  • the present invention provides a bulk acoustic wave resonator with a heat dissipation structure.
  • the bulk acoustic wave resonator includes a substrate 101, a metal heat dissipation layer 301 formed on the substrate 101 and provided with an insulating layer 201 on the surface, and The resonance function layer 401 formed on the insulating layer 201.
  • the insulating layer 201 covers the surface of the metal heat dissipation layer 301, which can isolate the resonance function layer 401 and the metal heat dissipation layer 301, and can also protect the metal heat dissipation layer 301 to prevent the metal heat dissipation layer 301 from being corroded, thereby improving the service life and reliability of the device.
  • the insulating layer 201 may cover the surface of the substrate 101 and the metal heat dissipation layer 301, or may only cover the surface of the metal heat dissipation layer 301.
  • the metal heat dissipation layer 301 and the insulating layer 201 surround a cavity 501 on the substrate 101, and the metal heat dissipation layer 301 exists around the cavity 501, so it is easy to conduct heat from the device.
  • the material of the metal heat dissipation layer 301 includes a composite multilayer metal layer material composed of one or more of Ag, Cu, Au, Al, Mo, W, Zn, Ni, Fe and Sn. .
  • the material of the metal heat dissipation layer 301 has high thermal conductivity and hardness, and can support the upper film layer.
  • the material of the insulating layer 201 includes one or more of AlN, Si, and SiN. AlN is preferably used as the material of the insulating layer 201, and the thermal conductivity of AlN is relatively high.
  • the material of the substrate 101 includes Si/Glass/Sapphire/spinel and the like.
  • the edge of the bottom electrode layer 402 is erected above the insulating layer 201 formed on the side of the cavity 501.
  • the metal heat dissipation layer 301 and the insulating layer 201 surround a cavity 501 on the substrate 101, and the metal heat dissipation layer 301 is covered by the insulating layer 201, so the cavity 501 is also formed on the insulating layer 201.
  • the bottom electrode layer 402 is erected on the insulating layer 201 and covers the cavity 501.
  • the edge of the bottom electrode layer 402 is erected above the insulating layer 201 formed on the side of the cavity 501, and the projection area of the bottom electrode layer 402 on the substrate 101 does not exceed the area of the insulating layer 201 on the side of the cavity 501. Therefore, no capacitance is formed between the bottom electrode layer 402 and the metal heat dissipation layer 301, which can effectively reduce parasitic effects without affecting the performance of the device.
  • the resonance function layer 401 further includes a piezoelectric layer 403 and a top electrode layer 404 stacked on the bottom electrode layer 402 in sequence.
  • the resonance function layer 401 converts electrical energy into mechanical energy, and the mechanical energy propagates in the form of sound waves and generates a resonance effect.
  • the bottom electrode layer 402, the piezoelectric layer 403, and the top electrode layer 404 all cover the cavity 501 and form an effective resonance area.
  • the top electrode layer 404 includes the connection portion 4041 of the resonator extending from the effective resonance area of the resonant function layer 401 to the peripheral resonator, and the metal heat dissipation layer 301 is not completely distributed under the connection portion 4041.
  • Figure 1 is a cross-sectional view of the position AA in Figure 2, where 110 and 120 are two connected resonators, 4041 is the interconnection or wiring area between the resonators, and 100 is the area outside the resonator .
  • a part of the supporting metal heat dissipation layer 301 exists below the connection portion 4041 of the top electrode layer 404 and the effective resonance region.
  • the part of the metal heat dissipation layer 301 supports the bottom electrode layer 402 and forms a cavity 501 with the insulating layer 201.
  • the metal heat dissipation layer 301 is minimized under the top electrode layer 404, so it is not easy to form a capacitor and will not affect the performance of the device.
  • a sacrificial material layer 601 is provided in the gap under the connecting portion 4041 and the piezoelectric layer 403.
  • the sacrificial material layer 601 may be formed above the insulating layer 201, so that the upper surface of the sacrificial material layer 601 is flush with the upper surface of the insulating layer 201, so the piezoelectric layer 403 is disposed on the sacrificial material layer 601 and the insulating layer 201.
  • a relatively flat piezoelectric layer 403 can be obtained on the layer 201 and the bottom electrode layer 402.
  • the sacrificial material layer 601 may also be formed under the insulating layer 201, in which case the piezoelectric layer 403 is formed on the insulating layer 201 and the bottom electrode layer 402 with flat surfaces. Therefore, it can be ensured that the piezoelectric layer 403 has a relatively flat surface, the influence of the stress change of the film layer on the resonance performance of the device can be reduced, and the resonance performance of the resonator can be effectively improved. In these two cases, the sacrificial material layer 601 plays a role of dielectric filling to ensure that the piezoelectric layer 403 has a relatively flat surface.
  • a metal pillar 701 is provided on the piezoelectric layer 403 outside the effective resonance area and the connecting portion 4041, and the metal pillar 701 passes through the piezoelectric layer 403 and the insulating layer 201, and extends to the metal heat dissipation layer 301. .
  • the metal pillar 701 is arranged on the area outside the effective resonance area and the connecting portion 4041 and will not affect the performance of the device.
  • the metal pillar 701 is mainly used to connect with the metal heat dissipation layer 301 to draw the heat collected by the metal heat dissipation layer 301 to the outside, improving heat radiation.
  • the material of the metal pillar 701 includes Ag, Cu, Au, Al, Mo, W, Zn, Ni, Fe, or Sn.
  • the material of the metal pillar 701 also needs to have a good thermal conductivity effect in order to conduct heat away.
  • the bulk acoustic wave resonator further includes an adhesion layer 801 provided on the substrate 101.
  • a metal shielding layer 901 is provided on the adhesion layer 801. Therefore, a metal heat dissipation layer 301 is made on the metal shielding layer 901.
  • the metal shielding layer 901 is connected to the metal heat dissipation layer 301 and the metal pillar 701. If the metal pillar 701 is grounded, the metal shielding layer 901 is connected to the metal heat dissipation layer 301 and the metal pillar 701.
  • An electromagnetic shielding structure can be formed between, shielding external electromagnetic interference sources and internal electromagnetic interference to the outside, so that the bulk acoustic wave resonator has an electromagnetic shielding effect.
  • the adhesion layer 801 provided on the substrate 101 can play a role in increasing the adhesion of the metal shielding layer 901 and can also play an electromagnetic shielding effect.
  • the material of the adhesion layer 801 can be Ti or TiW
  • the material of the metal shielding layer 901 can be metals such as Cu.
  • This application also proposes a manufacturing process of a bulk acoustic wave resonator with a heat dissipation structure, as shown in FIG. 4, including the following steps:
  • an insulating layer is formed on the substrate and the metal heat dissipation layer, and the insulating layer forms a second cavity on the first cavity;
  • FIGS. 5a-5j show schematic structural diagrams of the manufacturing process of a bulk acoustic wave resonator with a heat dissipation structure.
  • S1 specifically includes: forming a metal heat dissipation layer 311 with a first cavity 511 on the substrate 111 through sputtering, photolithography and etching processes, evaporation and stripping processes, or electroplating processes.
  • the metal heat dissipation layer 311 surrounds the first cavity 511 on the substrate 111, and the metal heat dissipation layer 311 exists around the first cavity 511, so it is easy to conduct heat from the device.
  • the material of the substrate 111 includes Si/Glass/Sapphire/spinel and the like.
  • the material of the metal heat dissipation layer 311 includes a composite multilayer metal layer material composed of one or more of Ag, Cu, Au, Al, Mo, W, Zn, Ni, Fe, and Sn.
  • the material of the metal heat dissipation layer 311 has high thermal conductivity and hardness, and can support the upper film layer.
  • an insulating layer 211 is deposited on the substrate 111 and the metal heat dissipation layer 311 through a PECVD or sputtering process.
  • the insulating layer 211 covers the surface of the metal heat dissipation layer 311, can isolate the resonant function layer 411 and the metal heat dissipation layer 311, and can also protect the metal heat dissipation layer 311, avoid corrosion of the metal heat dissipation layer 311, and improve the service life and reliability of the device.
  • the material of the insulating layer 211 includes a composite of one or more of AlN, Si, and SiN. AlN is preferably used as the material of the insulating layer 211, and the thermal conductivity of AlN is relatively high.
  • the resonance function layer 411 includes a bottom electrode layer 412, a piezoelectric layer 413, and a top electrode layer 414 stacked in sequence.
  • the top electrode layer 414 includes a resonator connection portion 4141 extending from the effective resonance region to the periphery.
  • a sacrificial material 611 is deposited on the insulating layer 211 through a PECVD process, and S3 further includes: filling the gap between the connecting portion 4141 and the piezoelectric layer 413 with the sacrificial material 611. As shown in FIG.
  • the sacrificial material 611 is polished so that the upper surface of the sacrificial material 611 is flush with the upper surface of the insulating layer 211.
  • the sacrificial material 611 and the insulating layer 211 are treated by a CMP (Chemical Mechanical Polishing) process.
  • the upper surface is ground.
  • the sacrificial material 611 functions as a sacrificial material in the second cavity 512 and functions as a medium filling outside the second cavity 512.
  • the bottom electrode layer 412 covering the second cavity 512 is fabricated on the sacrificial material 611 and the insulating layer 211 through sputtering, photolithography, and etching processes, and the edges of the bottom electrode layer 412 are It is erected above the insulating layer 211 formed on the side of the second cavity 512.
  • the metal heat dissipation layer 311 surrounds the first cavity 511 on the substrate 111, and the metal heat dissipation layer 311 is covered by the insulating layer 211. Therefore, the insulating layer 211 is also formed on the first cavity 511, so that the first cavity 211 is formed above the insulating layer 211. Two cavities 512.
  • the bottom electrode layer 412 is erected on the insulating layer 211 and covers the second cavity 512.
  • the edge of the bottom electrode layer 412 is erected on the insulating layer 211 formed on the side of the first cavity 511, and the projection area of the bottom electrode layer 412 on the substrate 111 does not exceed the range of the first cavity 511. Therefore, no capacitance is formed between the bottom electrode layer 412 and the metal heat dissipation layer 311, which can effectively reduce the parasitic effect, and does not affect the performance of the device.
  • a piezoelectric layer 413 is formed on the bottom electrode layer 412 through sputtering, photolithography, and etching processes. And as shown in FIG.
  • a top electrode layer 414 is formed on the piezoelectric layer 413 through sputtering, photolithography and etching processes.
  • the material of the bottom electrode layer 412 and the top electrode layer 414 includes Mo, and the material of the piezoelectric layer 413 includes AlN.
  • the top electrode layer 414 includes the connection portion 4141 of the resonator extending from the effective resonance area to the periphery.
  • the metal heat dissipation layer 311 is not completely distributed under the connecting portion 4141.
  • the part of the metal heat dissipation layer 311 supports the bottom electrode layer 412 and forms a second cavity 512 with the insulating layer 211. .
  • the metal pillars 711 are made by photolithography, etching, and sputtering (or electroplating) processes. First, a hole 712 passing through the piezoelectric layer 413 and the insulating layer 211 and reaching the metal heat dissipation layer 311 is etched. Then, a metal pillar 711 is fabricated in the hole 712. The metal pillar 711 is fabricated on the area outside the connection portion 4141 between the effective resonance area and the top electrode layer 414, which will not affect the performance of the device, and can conduct heat in the metal heat dissipation layer 311.
  • step S6 the following step is further included: removing the sacrificial material 611 in the second cavity 512.
  • the sacrificial material 611 in the second cavity 512 is removed to form a complete second cavity 512 structure.
  • the following step is further included before S1: forming an adhesion layer 811 on the substrate 111.
  • the adhesion layer 811 can play a role in increasing the adhesion of the metal shielding layer 911, and can also play an electromagnetic shielding effect.
  • the bulk acoustic wave resonator further includes a metal shielding layer 911 provided on the adhesion layer 811.
  • the bulk acoustic wave resonator shown in Fig. 7b is finally obtained. Therefore, a metal heat dissipation layer 311 is formed on the metal shielding layer 911.
  • the metal shielding layer 911 is connected to the metal heat dissipation layer 311 and the metal pillar 711.
  • the metal shielding layer 911 is connected to the metal heat dissipation layer 311 and the metal pillar 711.
  • An electromagnetic shielding structure can be formed between, shielding external electromagnetic interference sources and internal electromagnetic interference to the outside, so that the bulk acoustic wave resonator has an electromagnetic shielding effect.
  • the adhesion layer 811 disposed on the substrate 111 can play a role in increasing the adhesiveness of the metal shielding layer 911, and can also play an electromagnetic shielding effect.
  • the material of the adhesion layer 811 can be Ti or TiW
  • the material of the metal shielding layer 911 can be metals such as Cu. Therefore, the finally manufactured bulk acoustic wave resonator not only has good heat dissipation effect, but also has excellent electromagnetic shielding effect.
  • the embodiment of the application discloses a bulk acoustic wave resonator with a heat dissipation structure and a manufacturing process.
  • the bulk acoustic wave resonator includes a substrate, a metal heat dissipation layer formed on the substrate and provided with an insulating layer on the surface, and a metal heat dissipation layer formed on the insulating layer.
  • the resonant functional layer on the layer, the metal heat dissipation layer and the insulating layer surround the substrate to form a cavity, and the bottom electrode layer in the resonant functional layer covers the cavity.
  • a metal heat dissipation layer is arranged around the cavity, so that the device can conduct heat in time during use, thereby improving the service life of the device.
  • the bulk acoustic wave resonator of the embodiment of the present application avoids the formation of capacitors by the metal heat dissipation layer, the bottom electrode layer and the top electrode layer as much as possible in structure, thereby reducing the parasitic capacitance of the resonator and effectively improving the performance of the resonator.
  • the device can also have an electromagnetic shielding structure. Based on the premise of reducing the parasitic capacitance of the resonator, the device has good heat dissipation and anti-electromagnetic shielding effect during use, so that the device has good performance while working normally and stably. reliability.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
  • Piezo-Electric Transducers For Audible Bands (AREA)

Abstract

一种具有散热结构的体声波谐振器及制造工艺,包括衬底(101)、形成在衬底(101)上并且表面设置有绝缘层(201)的金属散热层(301)以及形成在绝缘层(201)上的谐振功能层(401),金属散热层(301)和绝缘层(201)在衬底(101)上包围形成空腔(501),谐振功能层(401)中的底电极层(402)覆盖空腔(501)。空腔(501)的周围设置有金属散热层(301)以及金属柱(701),因此器件在使用过程中能够及时将热量导出,提高器件的使用寿命。该体声波谐振器在结构上尽量避免金属散热层(301)和底电极层(402)以及顶电极层(404)形成电容,减少谐振器寄生电容,有效提高谐振器的性能。而且该器件还可以具有电磁屏蔽结构,基于减少谐振器寄生电容的前提下,使器件在使用过程中具有良好的散热性及抗电磁屏蔽效果,使器件在正常、稳定工作的同时又具有良好的可靠性。

Description

一种具有散热结构的体声波谐振器及制造工艺 技术领域
本申请涉及通信器件领域,主要涉及一种具有散热结构的体声波谐振器及制造工艺。
背景技术
随着电磁频谱的日益拥挤、无线通讯设备的频段与功能增多,无线通讯使用的电磁频谱从500MHz到5GHz以上高速增长,也对性能高、成本低、功耗低、体积小的射频前端模块需求日益增长。滤波器是射频前端模块之一,主要由多个谐振器通过拓扑网络结构连接而成,可改善发射信号和接收信号。Fbar(Thin film bulk acoustic resonator)是一种体声波谐振器,由Fbar组成的滤波器具有体积小、集成能力强、高频工作时保证高品质因素Q、功率承受能力强等优势而作为射频前端的核心器件。
Fbar的基本结构是上下电极和夹在上下电极间的压电层。压电层可实现电能与机械能的转化。当Fbar的上下电极施加电场时,压电层产生机械能,机械能是以声波的形式存在。Fbar的基本结构、衬底及选材特性,导致Fbar不具有良好的散热性。此外,电磁波的日益拥挤与射频终端产品内部器件相互电磁干扰会影响器件使用效果。
在现有技术中,体声波谐振器的空腔一般在衬底或支撑层上蚀刻形成,衬底或支撑层的材料通常使用Si或Si 3N 4,因此不具有散热效果,可靠性也会受到影响,因此,本发明旨在设计一种散热性好、可屏蔽电磁干扰的体声波谐振器。
发明内容
针对上述提到的体声波谐振器不具备散热效果和电磁屏蔽效果等问题。本申请提出了一种具有散热结构的体声波谐振器及制造工艺来解决上述存在的问题。
在第一方面,本申请提出了一种具有散热结构的体声波谐振器,包括衬底、形成在衬底上并且表面设置有绝缘层的金属散热层以及形成在绝缘层上的谐振功能层,金属散热层和绝缘层在衬底上包围形成空腔,谐振功能层中的底电极层覆盖空腔。金属散热层的存在可以使器件具有散热效果。
在一些实施例中,底电极层的边缘架设在形成于空腔侧边的绝缘层上方。因此底电极层不会设置在金属散热层上方,不会形成电容影响器件性能,减小寄生效应。
在一些实施例中,谐振功能层还包括在底电极层上依次层叠的压电层和顶电极层。底电极层、压电层和顶电极层在空腔上方形成有效谐振区域,谐振功能层将电能转化为机械能,以声波的形式进行产生谐振效果。
在一些实施例中,顶电极层包括从谐振功能层的有效谐振区域延伸到周边的谐振器的连接部,金属散热层未完全在连接部下方分布。顶电极层下方尽量避免金属散热层存在,就不容易形成电容,不会影响器件性能。
在一些实施例中,连接部与压电层下方的空隙设置有牺牲材料层,牺牲材料层的上表面与绝缘层的上表面平齐,压电层设置在牺牲材料层、绝缘层以及底电极层的上表面。因此可以保证压电层具有较为平整的表面,减少应力影响,提高器件谐振性能,牺牲材料层起介质填充作用。
在一些实施例中,在有效谐振区域和连接部以外区域的压电层上设置有金属柱,金属柱穿过压电层和绝缘层,并延伸到金属散热层。金属柱用于将热量引出到外界,提高散热效果,金属柱设置在有效谐振区域之外不会影响器件的性能。
在一些实施例中,还包括在衬底上设置有粘附层。粘附层可以起到增加金属屏蔽层的粘附性的作用,还可以起到电磁屏蔽效果。
在一些实施例中,在粘附层上设置有金属屏蔽层。金属屏蔽层与 金属散热层和金属柱导通,因此可以形成电磁屏蔽结构,屏蔽外部的干扰以及内部对外部的干扰。
在一些实施例中,金属散热层的材料包括Ag、Cu、Au、Al、Mo、W、Zn、Ni、Fe和Sn中的一种或多种材料组成的复合的多层金属层材料。金属散热层选择的材料具有较高的导热系数,并且能够起到支撑起上部膜层的作用。
在一些实施例中,绝缘层的材料包括AlN、Si和SiN中的一种或多种材料复合而成。绝缘层材料的导热系数也比较高,并且可以隔绝底电极层和金属散热层,并且能够起到保护金属散热层的作用,提高器件的使用寿命和可靠性。
在一些实施例中,金属柱的材料包括Ag、Cu、Au、Al、Mo、W、Zn、Ni、Fe或Sn。金属柱的材料同样需要具备良好的导热效果。
在第二方面,本申请还提出了一种具有散热结构的体声波谐振器的制作工艺,包括以下步骤:
S1,在衬底上制作金属散热层,并对金属散热层进行蚀刻以形成第一空腔;
S2,在衬底和金属散热层上制作绝缘层,绝缘层在第一空腔上形成第二空腔;
S3,用牺牲材料填充第二空腔;以及
S4,在牺牲材料和绝缘层上依次制作谐振功能层,谐振功能层的底电极层覆盖第二空腔。
金属散热层可以将器件的热量传递出去,使器件具有良好的散热效果。
在一些实施例中,S1具体包括:通过溅镀、光刻与蚀刻工艺或蒸镀与剥离工艺或电镀工艺在衬底上制作出具有第一空腔的金属散热层。上述制备工艺简单,技术成熟度高。
在一些实施例中,谐振功能层包括依次层叠的底电极层、压电层和顶电极层,顶电极层包括从有效谐振区域延伸到周边的谐振器的连 接部,金属散热层未完全在连接部下方分布。顶电极层下方尽量避免金属散热层存在,就不容易形成电容,不会影响器件性能。
在一些实施例中,S3还包括:用牺牲材料填充连接部与绝缘层之间的空隙并且进行化学机械抛光以使得牺牲材料和绝缘层的上表面保持平整的步骤。因此可以保证压电层具有较为平整的表面,减少应力影响,提高器件谐振性能,此处的牺牲材料起介质填充作用。
在一些实施例中,底电极层的边缘架设在形成于第一空腔侧边的绝缘层上方。因此底电极层不会设置在金属散热层上方,不会形成电容影响器件性能,减小寄生效应。
在一些实施例中,还包括以下步骤:
S5:在谐振功能层的有效谐振区域和连接部之外区域的压电层上制作穿过压电层和绝缘层并到达金属散热层的孔;以及
S6:在孔中制作金属柱。
金属柱制作在有效谐振区域和连接部之外的区域上,不会影响器件的性能,并且能够将金属散热层中的热量导出去。
在一些实施例中,在步骤S6后还包括以下步骤:去除第二空腔内的牺牲材料。第二空腔内的牺牲材料去除后可以释放出第二空腔形成具有谐振功能的器件。
在一些实施例中,S1之前还包括以下步骤:在衬底上制作粘附层。粘附层可以起到增加金属屏蔽层的粘附性的作用,还可以起到电磁屏蔽效果。
在一些实施例中,S1之前还包括以下步骤:在粘附层上制作金属屏蔽层。金属屏蔽层与金属散热层和金属柱导通,因此可以形成电磁屏蔽结构,屏蔽外部的干扰以及内部对外部的干扰。
在一些实施例中,金属散热层的材料包括Ag、Cu、Au、Al、Mo、W、Zn、Ni、Fe和Sn中的一种或多种材料组成的复合的多层金属层材料。金属散热层选择的材料具有较高的导热系数,并且能够起到支撑起上部膜层的作用。
在一些实施例中,绝缘层的材料包括AlN、Si和SiN中的一种或多种材料复合而成。绝缘层材料的导热系数也比较高,并且可以隔绝底电极层和金属散热层,并且能够起到保护金属散热层的作用,提高器件的使用寿命和可靠性。
在一些实施例中,金属柱的材料包括Ag、Cu、Au、Al、Mo、W、Zn、Ni、Fe或Sn。金属柱的材料同样需要具备良好的导热效果。
本申请提出了一种具有散热结构的体声波谐振器及制造工艺,该体声波谐振器包括衬底、形成在衬底上并且表面设置有绝缘层的金属散热层以及形成在绝缘层上的谐振功能层,金属散热层和绝缘层在衬底上包围形成空腔,谐振功能层中的底电极层覆盖空腔。空腔的周围设置有金属散热层,因此器件在使用过程中能够及时将热量导出,提高器件的使用寿命。本申请的体声波谐振器在结构上尽量避免金属散热层和底电极层以及顶电极层形成电容,减少谐振器寄生电容,有效提高谐振器的性能。而且该器件还可以具有电磁屏蔽结构,基于减少谐振器寄生电容的前提下,使器件在使用过程中具有良好的散热性及抗电磁屏蔽效果,使器件在正常、稳定工作的同时又具有良好的可靠性。
附图说明
包括附图以提供对实施例的进一步理解并且附图被并入本说明书中并且构成本说明书的一部分。附图图示了实施例并且与描述一起用于解释本发明的原理。将容易认识到其它实施例和实施例的很多预期优点,因为通过引用以下详细描述,它们变得被更好地理解。附图的元件不一定是相互按照比例的。同样的附图标记指代对应的类似部件。
图1示出了根据本发明的实施例的具有散热结构的体声波谐振器的截面图;
图2示出了根据本发明的实施例的具有散热结构的体声波谐振器的俯视图;
图3示出了根据本发明的另一个实施例的具有散热结构的体声波 谐振器的截面图;
图4示出了根据本发明的实施例的具有散热结构的体声波谐振器的制造工艺的流程图;
图5a-5j示出了根据本发明的实施例的具有散热结构的体声波谐振器的制造工艺制作体声波谐振器的结构示意图;
图6示出了根据本发明的实施例的具有散热结构的体声波谐振器的制作工艺步骤S5-S6的流程图;
图7a-7b示出了本发明的另一个实施例的具有散热结构的体声波谐振器的制造工艺制作体声波谐振器的结构示意图。
具体实施方式
下面结合附图和实施例对本申请作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释相关发明,而非对该发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与有关发明相关的部分。应当注意到,附图中的部件的尺寸以及大小并不是按照比例的,可能会为了明显示出的原因突出显示了某些部件的大小。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
本发明提出了一种具有散热结构的体声波谐振器,如图1所示,该体声波谐振器包括衬底101、形成在衬底101上并且表面设置有绝缘层201的金属散热层301以及形成在绝缘层201上的谐振功能层401。绝缘层201覆盖在金属散热层301表面,可以隔绝谐振功能层401和金属散热层301,还可以保护金属散热层301,避免金属散热层301被腐蚀,提高器件的使用寿命和可靠性。在具体的实施例中,绝缘层201可以覆盖在衬底101及金属散热层301的表面,也可以仅包覆在金属散热层301表面。金属散热层301和绝缘层201在衬底101上包围形成空腔501,空腔501的周围存在金属散热层301,因此很容易将器件的热量传导出去。在优选的实施例中,金属散热层301的材 料包括Ag、Cu、Au、Al、Mo、W、Zn、Ni、Fe和Sn中的一种或多种材料组成的复合的多层金属层材料。金属散热层301的材料具有较高的导热系数和硬度,能够支撑起上部膜层。绝缘层201的材料包括AlN、Si和SiN中的一种或多种材料复合而成,优选AlN作为绝缘层201材料,AlN的导热系数比较高。衬底101的材料包括Si/Glass/蓝宝石(Sapphire)/尖晶石等。
在具体的实施例中,底电极层402的边缘架设在形成于空腔501侧边的绝缘层201上方。金属散热层301和绝缘层201在衬底101上包围形成空腔501,而且金属散热层301被绝缘层201所覆盖,因此空腔501也形成在绝缘层201上。底电极层402架设在绝缘层201上方并覆盖空腔501。底电极层402的边缘架设在形成于空腔501侧边的绝缘层201上方,底电极层402在衬底101上的投影区域不会超出空腔501侧边的绝缘层201的区域。因此不会导致底电极层402与金属散热层301之间形成电容,可以有效减小寄生效应,不会影响器件性能。
在具体的实施例中,谐振功能层401还包括在底电极层402上依次层叠的压电层403和顶电极层404。谐振功能层401将电能转化为机械能,机械能以声波的形式进行传播并产生谐振效果。底电极层402、压电层403和顶电极层404都覆盖在空腔501上方,并形成有效谐振区域。在具体的实施例中,顶电极层404包括从谐振功能层401的有效谐振区域延伸到周边的谐振器的连接部4041,金属散热层301未完全在连接部4041下方分布。如图2所示,图1为图2中A-A位置的截面图,其中110和120为两个相连的谐振器,其中4041为谐振器之间互联或配线区域,100为谐振器外部的区域。在顶电极层404的连接部4041与有效谐振区域相连接的下方存在部分起支撑作用的金属散热层301,该部分金属散热层301支撑底电极层402并与绝缘层201形成空腔501。顶电极层404下方尽量减少金属散热层301的存在,因此不容易形成电容,不会影响器件性能。在顶电极层404的 连接部4041的下方缺少金属散热层301,因此也会导致顶电极层404的连接部4041的下方的压电层403出现应力变化,容易影响器件的谐振性能。在优选的实施例中,连接部4041和压电层403下方的空隙设置有牺牲材料层601。在一种情况下,牺牲材料层601可以形成在绝缘层201的上方,使得牺牲材料层601的上表面与绝缘层201的上表面平齐,因此压电层403设置在牺牲材料层601、绝缘层201以及底电极层402上可以获得较为平整的压电层403。在另外一种情况下,牺牲材料层601也可以形成在绝缘层201下方,此时压电层403形成在具有平整表面的绝缘层201和底电极层402上。因此可以保证压电层403具有较为平整的表面,减小膜层的应力变化对器件的谐振性能的影响,可以有效提高谐振器的谐振性能。在这两种情况下,牺牲材料层601起到介质填充的作用,以保证压电层403具有较为平整的表面。
在具体的实施例中,在有效谐振区域和连接部4041以外区域的压电层403上设置有金属柱701,金属柱701穿过压电层403和绝缘层201,并延伸到金属散热层301。金属柱701设置在有效谐振区域和连接部4041之外的区域上不会影响器件的性能,金属柱701主要用于与金属散热层301连接,将金属散热层301收集的热量引出到外界,提高散热效果。在优选的实施例中,金属柱701的材料包括Ag、Cu、Au、Al、Mo、W、Zn、Ni、Fe或Sn。金属柱701的材料同样需要具备良好的导热效果,才能将热量传导出去。
在具体的实施例中,如图3所示,体声波谐振器还包括在衬底101上设置有粘附层801。在粘附层801上设置有金属屏蔽层901。因此在金属屏蔽层901上面制作金属散热层301,金属屏蔽层901与金属散热层301和金属柱701导通,若将金属柱701接地,金属屏蔽层901与金属散热层301和金属柱701之间可以形成电磁屏蔽结构,屏蔽外部电磁干扰源以及内部对外部的电磁干扰,使体声波谐振器具有电磁屏蔽效果。粘附层801设置在衬底101上可以起到增加金属屏蔽层901 的粘附性的作用,还可以起到电磁屏蔽效果。优选的,粘附层801的材料可以选择Ti或TiW,金属屏蔽层901的材料可以选择Cu等金属。
本申请还提出了一种具有散热结构的体声波谐振器的制作工艺,如图4所示,包括以下步骤:
S1,在衬底上制作金属散热层,并对金属散热层进行蚀刻以形成第一空腔;
S2,在衬底和金属散热层上制作绝缘层,绝缘层在第一空腔上形成第二空腔;
S3,用牺牲材料填充第二空腔;以及
S4,在牺牲材料和绝缘层上依次制作谐振功能层,谐振功能层的底电极层覆盖第二空腔。
在具体的实施例中,图5a-5j表示具有散热结构的体声波谐振器的制造工艺的结构示意图。如图5a所示,S1具体包括:通过溅镀、光刻与蚀刻工艺或蒸镀与剥离工艺或电镀工艺在衬底111上制作出具有第一空腔511的金属散热层311。金属散热层311在衬底111上包围形成第一空腔511,第一空腔511的周围存在金属散热层311,因此很容易将器件的热量传导出去。在优选的实施例中,衬底111的材料包括Si/Glass/蓝宝石(Sapphire)/尖晶石等。金属散热层311的材料包括Ag、Cu、Au、Al、Mo、W、Zn、Ni、Fe和Sn中的一种或多种材料组成的复合的多层金属层材料。金属散热层311的材料具有较高的导热系数和硬度,能够支撑起上部膜层。
在此基础上,如图5b所示,通过PECVD或溅镀工艺在衬底111和金属散热层311上沉积绝缘层211。绝缘层211覆盖在金属散热层311表面,可以隔绝谐振功能层411和金属散热层311,还可以保护金属散热层311,避免金属散热层311被腐蚀,提高器件的使用寿命和可靠性。绝缘层211的材料包括AlN、Si和SiN中的一种或多种材料复合而成,优选AlN作为绝缘层211材料,AlN的导热系数比较高。
在具体的实施例中,谐振功能层411包括依次层叠的底电极层 412、压电层413和顶电极层414,顶电极层414包括从有效谐振区域延伸到周边的谐振器的连接部4141。如图5c所示,通过PECVD工艺在绝缘层211上沉积牺牲材料611,S3还包括:用牺牲材料611填充连接部4141与压电层413下方的空隙。如图5d所示,将牺牲材料611进行抛光以使得牺牲材料611的上表面与绝缘层211的上表面平齐,优选的,通过CMP(化学机械抛光)工艺对牺牲材料611和绝缘层211的上表面进行研磨。最后保证牺牲材料611和绝缘层211的上表面保持平整。因此可以保证压电层413具有较为平整的表面,减少应力影响,提高器件谐振性能。牺牲材料611在第二空腔512内起牺牲材料的作用,在第二空腔512外起介质填充作用。
在具体的实施例中,如图5e所示,在牺牲材料611和绝缘层211上通过溅镀、光刻与蚀刻工艺制作覆盖第二空腔512的底电极层412,底电极层412的边缘架设在形成于第二空腔512侧边的绝缘层211上方。金属散热层311在衬底111上包围形成第一空腔511,而且金属散热层311被绝缘层211所覆盖,因此第一空腔511上也形成有绝缘层211,使得绝缘层211上方形成第二空腔512。底电极层412架设在绝缘层211上方并覆盖第二空腔512。底电极层412的边缘架设在形成于第一空腔511侧边的绝缘层211上方,底电极层412在衬底111上的投影区域不会超出第一空腔511的范围。因此不会导致底电极层412与金属散热层311之间形成电容,可以有效减小寄生效应,不会影响器件性能。如图5f所示,通过溅镀、光刻与蚀刻工艺在底电极层412上方制作压电层413。并且如图5g所示,通过溅镀、光刻与蚀刻工艺在压电层413上方制作顶电极层414。其中,底电极层412和顶电极层414的材料包括Mo,压电层413的材料包括AlN。
在优选的实施例中,顶电极层414包括从有效谐振区域延伸到周边的谐振器的连接部4141。金属散热层311未完全在连接部4141下方分布。在顶电极层414的连接部4141与有效谐振区域相连接的下方存在部分起支撑作用的金属散热层311,该部分金属散热层311支撑 底电极层412并与绝缘层211形成第二空腔512。顶电极层414下方尽量减少金属散热层311的存在,因为顶电极层414和金属散热层311之间容易形成电容,会影响器件性能。
在具体的实施例中,如图6所示,还包括以下步骤:
S5:在谐振功能层的有效谐振区域和连接部之外区域的压电层上制作穿过压电层和绝缘层并到达金属散热层的孔;以及
S6:在孔中制作金属柱。
在优选的实施例中,如图5h和5i所示,通过光刻、蚀刻、溅镀(或电镀)工艺制作金属柱711。先蚀刻出穿过压电层413和绝缘层211并到达金属散热层311的孔712。然后在孔712中制作金属柱711。金属柱711制作在有效谐振区域和顶电极层414的连接部4141之外的区域上,不会影响器件的性能,并且能够将金属散热层311中的热量传导出去。
在具体的实施例中,如图5j所示,在步骤S6后还包括以下步骤:去除第二空腔512内的牺牲材料611。第二空腔512内的牺牲材料611去除后形成完整的第二空腔512的结构。
在具体的实施例中,如图7a所示,S1之前还包括以下步骤:在衬底111上制作粘附层811。粘附层811可以起到增加金属屏蔽层911的粘附性的作用,还可以起到电磁屏蔽效果。体声波谐振器还包括在粘附层811上设置的金属屏蔽层911。在其他步骤都一样的情况下,最后得到如图7b所示的体声波谐振器。因此在金属屏蔽层911上面制作金属散热层311,金属屏蔽层911与金属散热层311和金属柱711导通,若将金属柱711接地,金属屏蔽层911与金属散热层311和金属柱711之间可以形成电磁屏蔽结构,屏蔽外部电磁干扰源以及内部对外部的电磁干扰,使体声波谐振器具有电磁屏蔽效果。粘附层811设置在衬底111上可以起到增加金属屏蔽层911的粘附性的作用,还可以起到电磁屏蔽效果。优选的,粘附层811的材料可以选择Ti或TiW,金属屏蔽层911的材料可以选择Cu等金属。因此最后制造得到 的体声波谐振器既具有良好的散热效果,又具有优良的电磁屏蔽效果。
本申请的实施例中公开了一种具有散热结构的体声波谐振器及制造工艺,该体声波谐振器包括衬底、形成在衬底上并且表面设置有绝缘层的金属散热层以及形成在绝缘层上的谐振功能层,金属散热层和绝缘层在衬底上包围形成空腔,谐振功能层中的底电极层覆盖空腔。空腔的周围设置有金属散热层,因此器件在使用过程中能够及时将热量导出,提高器件的使用寿命。本申请的实施例的体声波谐振器在结构上尽量避免金属散热层和底电极层以及顶电极层形成电容,减少谐振器寄生电容,有效提高谐振器的性能。而且该器件还可以具有电磁屏蔽结构,基于减少谐振器寄生电容的前提下,使器件在使用过程中具有良好的散热性及抗电磁屏蔽效果,使器件在正常、稳定工作的同时又具有良好的可靠性。
以上描述了本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。
在本申请的描述中,需要理解的是,术语“上”、“下”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。措词‘包括’并不排除在权利要求未列出的元件或步骤的存在。元件前面的措词‘一’或‘一个’并不排除多个这样的元件的存在。在相互不同从属权利要求中记载某些措施的简单事实不表明这些措施的组合不能被用于改进。在权利要求中的任何参考符号不应当被解释为限制范围。

Claims (23)

  1. 一种具有散热结构的体声波谐振器,其特征在于,包括衬底、形成在所述衬底上并且表面设置有绝缘层的金属散热层以及形成在所述绝缘层上的谐振功能层,所述金属散热层和所述绝缘层在所述衬底上包围形成空腔,所述谐振功能层中的底电极层覆盖所述空腔。
  2. 根据权利要求1所述的具有散热结构的体声波谐振器,其特征在于,所述底电极层的边缘架设在形成于所述空腔侧边的所述绝缘层上方。
  3. 根据权利要求1所述的具有散热结构的体声波谐振器,其特征在于,所述谐振功能层还包括在所述底电极层上依次层叠的压电层和顶电极层。
  4. 根据权利要求3所述的具有散热结构的体声波谐振器,其特征在于,所述顶电极层包括从所述谐振功能层的有效谐振区域延伸到周边的谐振器的连接部,所述金属散热层未完全在所述连接部下方分布。
  5. 根据权利要求4所述的具有散热结构的体声波谐振器,其特征在于,所述连接部与所述压电层下方的空隙设置有牺牲材料层,所述牺牲材料层的上表面与所述绝缘层的上表面平齐,所述压电层设置在所述牺牲材料层、所述绝缘层以及所述底电极层的上表面。
  6. 根据权利要求4所述的具有散热结构的体声波谐振器,其特征在于,在所述有效谐振区域和所述连接部以外区域的所述压电层上设置有金属柱,所述金属柱穿过所述压电层和所述绝缘层,并延伸到所述金属散热层。
  7. 根据权利要求1-6中任一项所述的具有散热结构的体声波谐振器,其特征在于,还包括在所述衬底上设置有粘附层。
  8. 根据权利要求7所述的具有散热结构的体声波谐振器,其特征在于,在所述粘附层上设置有金属屏蔽层。
  9. 根据权利要求1-6中任一项所述的具有散热结构的体声波谐振器,其特征在于,所述金属散热层的材料包括Ag、Cu、Au、Al、Mo、 W、Zn、Ni、Fe和Sn中的一种或多种材料组成的复合的多层金属层材料。
  10. 根据权利要求1-6中任一项所述的具有散热结构的体声波谐振器,其特征在于,所述绝缘层的材料包括AlN、Si和SiN中的一种或多种材料复合而成。
  11. 根据权利要求6所述的具有散热结构的体声波谐振器,其特征在于,所述金属柱的材料包括Ag、Cu、Au、Al、Mo、W、Zn、Ni、Fe或Sn。
  12. 一种具有散热结构的体声波谐振器的制作工艺,其特征在于,包括以下步骤:
    S1,在衬底上制作金属散热层,并对所述金属散热层进行蚀刻以形成第一空腔;
    S2,在所述衬底和所述金属散热层上制作绝缘层,绝缘层在所述第一空腔上形成第二空腔;
    S3,用牺牲材料填充所述第二空腔;以及
    S4,在所述牺牲材料和所述绝缘层上依次制作谐振功能层,所述谐振功能层的底电极层覆盖所述第二空腔。
  13. 根据权利要求12所述的制造工艺,其特征在于,所述S1具体包括:通过溅镀、光刻与蚀刻工艺或蒸镀与剥离工艺或电镀工艺在所述衬底上制作出具有所述第一空腔的所述金属散热层。
  14. 根据权利要求12所述的具有散热结构的体声波谐振器,其特征在于,所述谐振功能层包括依次层叠的所述底电极层、压电层和顶电极层,所述顶电极层包括从所述有效谐振区域延伸到周边的谐振器的连接部,所述金属散热层未完全在所述连接部下方分布。
  15. 根据权利要求14所述的制造工艺,其特征在于,所述S3还包括:用牺牲材料填充所述连接部与所述压电层下方的空隙并且进行化学机械抛光以使得所述牺牲材料、所述绝缘层的上表面保持平整的步骤。
  16. 根据权利要求12所述的制造工艺,其特征在于,所述底电极层的边缘架设在形成于所述第二空腔侧边的所述绝缘层上方。
  17. 根据权利要求14所述的制造工艺,其特征在于,还包括以下步骤:
    S5:在所述谐振功能层的有效谐振区域和所述连接部之外区域的所述压电层上制作穿过所述压电层和所述绝缘层并到达所述金属散热层的孔;以及
    S6:在所述孔中制作金属柱。
  18. 根据权利要求17所述的制造工艺,其特征在于,在步骤S6后还包括以下步骤:去除所述第二空腔内的牺牲材料。
  19. 根据权利要求12-18中任一项所述的制造工艺,其特征在于,所述S1之前还包括以下步骤:在所述衬底上制作粘附层。
  20. 根据权利要求19所述的制造工艺,其特征在于,所述S1之前还包括以下步骤:在所述粘附层上制作金属屏蔽层。
  21. 根据权利要求12-18中任一项所述的制造工艺,其特征在于,所述金属散热层的材料包括Ag、Cu、Au、Al、Mo、W、Zn、Ni、Fe和Sn中的一种或多种材料组成的复合的多层金属层材料。
  22. 根据权利要求12-18中任一项所述的制造工艺,其特征在于,所述绝缘层的材料包括AlN、Si和SiN中的一种或多种材料复合而成。
  23. 根据权利要求17所述的制造工艺,其特征在于,所述金属柱的材料包括Ag、Cu、Au、Al、Mo、W、Zn、Ni、Fe或Sn。
PCT/CN2020/108710 2020-02-27 2020-08-12 一种具有散热结构的体声波谐振器及制造工艺 WO2021169187A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20922162.1A EP4113836A4 (en) 2020-02-27 2020-08-12 VOLUME ACOUSTIC RESONATOR WITH HEAT DISSIPATION STRUCTURE AND MANUFACTURING PROCESS
US17/798,345 US11742824B2 (en) 2020-02-27 2020-08-12 Bulk acoustic resonator with heat dissipation structure and fabrication process
KR1020227031650A KR102584997B1 (ko) 2020-02-27 2020-08-12 방열 구조를 갖는 벌크 음향 공진기 및 제조 프로세스
JP2022549270A JP7333480B2 (ja) 2020-02-27 2020-08-12 放熱構造を有するバルク音響共振器及び製造プロセス

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010125577.0 2020-02-27
CN202010125577.0A CN111262542B (zh) 2020-02-27 2020-02-27 一种具有散热结构的体声波谐振器及制造工艺

Publications (1)

Publication Number Publication Date
WO2021169187A1 true WO2021169187A1 (zh) 2021-09-02

Family

ID=70953053

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/108710 WO2021169187A1 (zh) 2020-02-27 2020-08-12 一种具有散热结构的体声波谐振器及制造工艺

Country Status (6)

Country Link
US (1) US11742824B2 (zh)
EP (1) EP4113836A4 (zh)
JP (1) JP7333480B2 (zh)
KR (1) KR102584997B1 (zh)
CN (1) CN111262542B (zh)
WO (1) WO2021169187A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113810009A (zh) * 2021-09-22 2021-12-17 武汉敏声新技术有限公司 薄膜体声波谐振器及其制备方法、薄膜体声波滤波器

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111342792B (zh) * 2020-02-19 2021-05-25 见闻录(浙江)半导体有限公司 一种具有电磁屏蔽结构的固态装配谐振器及制作工艺
CN111262542B (zh) 2020-02-27 2022-03-25 见闻录(浙江)半导体有限公司 一种具有散热结构的体声波谐振器及制造工艺
CN112039487B (zh) * 2020-08-06 2021-08-10 诺思(天津)微系统有限责任公司 带导热结构的体声波谐振器及其制造方法、滤波器及电子设备
CN115244852A (zh) * 2021-02-22 2022-10-25 京东方科技集团股份有限公司 压电元件、压电振动器及其制作和驱动方法、电子设备
CN117040479B (zh) * 2022-12-14 2024-03-01 北京芯溪半导体科技有限公司 一种声波滤波器、通信设备和电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060017352A1 (en) * 2004-07-20 2006-01-26 Aram Tanielian Thin device and method of fabrication
CN103444080A (zh) * 2011-04-01 2013-12-11 瑞萨电子株式会社 半导体器件及其制造方法以及便携式电话机
CN108429543A (zh) * 2017-02-14 2018-08-21 三星电机株式会社 体声波谐振器
CN109474252A (zh) * 2018-10-29 2019-03-15 武汉大学 可提高q值的空腔薄膜体声波谐振器及其制备方法
CN209709146U (zh) * 2019-04-11 2019-11-29 嘉兴宏蓝电子技术有限公司 一种具有热桥结构的baw双工器
CN111193490A (zh) * 2018-11-14 2020-05-22 天津大学 散热结构、带散热结构的体声波谐振器、滤波器和电子设备
CN111262542A (zh) * 2020-02-27 2020-06-09 杭州见闻录科技有限公司 一种具有散热结构的体声波谐振器及制造工艺

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100485703B1 (ko) * 2003-04-21 2005-04-28 삼성전자주식회사 기판으로부터 부양된 에어갭을 갖는 박막 벌크 음향공진기 및 그 제조방법
JP2006050021A (ja) 2004-07-30 2006-02-16 Toshiba Corp 薄膜圧電共振器及びその製造方法
JP4707533B2 (ja) * 2005-10-27 2011-06-22 太陽誘電株式会社 圧電薄膜共振器およびフィルタ
US7561009B2 (en) * 2005-11-30 2009-07-14 Avago Technologies General Ip (Singapore) Pte. Ltd. Film bulk acoustic resonator (FBAR) devices with temperature compensation
JP4707574B2 (ja) * 2006-02-02 2011-06-22 太陽誘電株式会社 圧電薄膜共振器、フィルタおよびその製造方法
JP2007221588A (ja) * 2006-02-17 2007-08-30 Toshiba Corp 薄膜圧電共振器及び薄膜圧電共振器の製造方法
JP4428354B2 (ja) * 2006-03-29 2010-03-10 セイコーエプソン株式会社 圧電薄膜共振子
JP4835238B2 (ja) 2006-04-06 2011-12-14 ソニー株式会社 共振器、共振器の製造方法および通信装置
JP2008035119A (ja) * 2006-07-27 2008-02-14 Toshiba Corp 薄膜圧電共振子及びその製造方法
JP5202287B2 (ja) 2008-12-25 2013-06-05 京セラ株式会社 圧電共振器
US10009007B2 (en) * 2015-06-16 2018-06-26 Samsung Electro-Mechanics Co., Ltd. Bulk acoustic wave resonator with a molybdenum tantalum alloy electrode and filter including the same
US10608608B2 (en) * 2017-01-03 2020-03-31 Win Semiconductors Corp. Method for fabricating bulk acoustic wave resonator with mass adjustment structure
CN107528561A (zh) * 2017-09-12 2017-12-29 电子科技大学 一种空腔型薄膜体声波谐振器及其制备方法
US10361676B2 (en) 2017-09-29 2019-07-23 Qorvo Us, Inc. Baw filter structure with internal electrostatic shielding
JP7447372B2 (ja) * 2018-05-17 2024-03-12 サムソン エレクトロ-メカニックス カンパニーリミテッド. バルク音響共振器及びその製造方法
CN207939485U (zh) * 2018-05-25 2018-10-02 河海大学常州校区 一种频率可调的薄膜体声波谐振器
US11764750B2 (en) * 2018-07-20 2023-09-19 Global Communication Semiconductors, Llc Support structure for bulk acoustic wave resonator
CN209710062U (zh) * 2019-04-10 2019-11-29 嘉兴宏蓝电子技术有限公司 一种体声波谐振器及其通信器件

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060017352A1 (en) * 2004-07-20 2006-01-26 Aram Tanielian Thin device and method of fabrication
CN103444080A (zh) * 2011-04-01 2013-12-11 瑞萨电子株式会社 半导体器件及其制造方法以及便携式电话机
CN108429543A (zh) * 2017-02-14 2018-08-21 三星电机株式会社 体声波谐振器
CN109474252A (zh) * 2018-10-29 2019-03-15 武汉大学 可提高q值的空腔薄膜体声波谐振器及其制备方法
CN111193490A (zh) * 2018-11-14 2020-05-22 天津大学 散热结构、带散热结构的体声波谐振器、滤波器和电子设备
CN209709146U (zh) * 2019-04-11 2019-11-29 嘉兴宏蓝电子技术有限公司 一种具有热桥结构的baw双工器
CN111262542A (zh) * 2020-02-27 2020-06-09 杭州见闻录科技有限公司 一种具有散热结构的体声波谐振器及制造工艺

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113810009A (zh) * 2021-09-22 2021-12-17 武汉敏声新技术有限公司 薄膜体声波谐振器及其制备方法、薄膜体声波滤波器

Also Published As

Publication number Publication date
JP7333480B2 (ja) 2023-08-24
KR102584997B1 (ko) 2023-10-06
CN111262542B (zh) 2022-03-25
CN111262542A (zh) 2020-06-09
EP4113836A4 (en) 2023-08-30
JP2023508237A (ja) 2023-03-01
US20230076029A1 (en) 2023-03-09
KR20220132015A (ko) 2022-09-29
US11742824B2 (en) 2023-08-29
EP4113836A1 (en) 2023-01-04

Similar Documents

Publication Publication Date Title
WO2021169187A1 (zh) 一种具有散热结构的体声波谐振器及制造工艺
CN106533384B (zh) 声波装置及其制造方法
JP6311724B2 (ja) 電子部品モジュール
US7663450B2 (en) Monolithic duplexer
JP5792554B2 (ja) 弾性波デバイス
JP2005333644A (ja) インダクタが内蔵されたフィルタ、デュプレクサおよびその製造方法
CN111092604B (zh) 一种体声波谐振器的空腔结构及制造方法
JP2005184851A (ja) 一体化したfbarおよびアイソレーション部を用いて製造されたデュプレクサおよびその製造方法
CN106533385B (zh) 声波谐振器及包括该声波谐振器的滤波器
JP7246775B2 (ja) Baw共振器のパッケージングモジュールおよびパッケージング方法
KR20170108383A (ko) 소자 패키지 및 그 제조방법
US20060244552A1 (en) Monolithic RF filter
US20180123555A1 (en) Filter including bulk acoustic wave resonator
KR20220136440A (ko) 전자기 차폐 구조를 갖는 견고하게 장착된 공진기 및 제조 프로세스
US10594293B2 (en) Filter including bulk acoustic wave resonator
CN108023565B (zh) 包括体声波谐振器的滤波器
WO2021232530A1 (zh) 一种固态装配谐振器的联接结构及制作工艺
TWI823258B (zh) 聲波共振器濾波器
US10693438B2 (en) Acoustic wave resonator and method for manufacturing the same
JP4997961B2 (ja) 集積化分波器
JP4663401B2 (ja) 薄膜バルク音響波共振子およびフィルタならびに通信装置
US20230188114A1 (en) Bulk acoustic resonator filter and bulk acoustic resonator filter module
KR20200046535A (ko) 탄성파 필터 장치
TW202222033A (zh) 聲波共振器濾波器
JP5111307B2 (ja) 共振器、フィルタおよびデュプレクサ、ならびに共振器の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20922162

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022549270

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227031650

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020922162

Country of ref document: EP

Effective date: 20220927