WO2020098141A1 - 基于造影图像计算造影血流储备分数和静息态压力比值的方法 - Google Patents

基于造影图像计算造影血流储备分数和静息态压力比值的方法 Download PDF

Info

Publication number
WO2020098141A1
WO2020098141A1 PCT/CN2019/071207 CN2019071207W WO2020098141A1 WO 2020098141 A1 WO2020098141 A1 WO 2020098141A1 CN 2019071207 W CN2019071207 W CN 2019071207W WO 2020098141 A1 WO2020098141 A1 WO 2020098141A1
Authority
WO
WIPO (PCT)
Prior art keywords
blood
contrast
dimensional
pressure
coronary
Prior art date
Application number
PCT/CN2019/071207
Other languages
English (en)
French (fr)
Inventor
霍云飞
刘广志
吴星云
Original Assignee
苏州润迈德医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州润迈德医疗科技有限公司 filed Critical 苏州润迈德医疗科技有限公司
Publication of WO2020098141A1 publication Critical patent/WO2020098141A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/02007Evaluating blood vessel condition, e.g. elasticity, compliance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • G06T17/20Finite element generation, e.g. wire-frame surface description, tesselation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation

Definitions

  • the invention relates to the field of coronary artery imaging evaluation, and in particular to a method for calculating contrast blood flow reserve fraction (cFFR) and resting state pressure ratio (resting Pd / Pa) based on contrast image.
  • cFFR contrast blood flow reserve fraction
  • resting Pd / Pa resting state pressure ratio
  • the blood flow reserve fraction can indicate the influence of coronary stenosis on the distal blood flow, and the diagnosis of myocardial ischemia has become a recognized index for the functional evaluation of coronary stenosis.
  • the FFR When determining FFR, it is necessary to calculate the FFR based on the average blood pressure of the myocardial hyperemia and the average pressure of the coronary aorta at the distal coronary artery through different means.
  • the maximum congestion of the myocardium requires intracoronary or intravenous injection of adenosine or ATP. Injection of adenosine or ATP will cause aortic pressure drop and have certain side effects such as atrioventricular block, sinus remission, sinus arrest, etc., contraindications Including 2 degree or 3 degree atrioventricular block, sinus disease, tracheal or bronchial asthma, and adenosine allergy.
  • Contrast blood flow reserve fraction is the ratio of the mean pressure in the coronary artery at the distal end of the stenosis to the mean pressure in the coronary aorta at rest; the resting pressure ratio (resting Pd / Pa) is in the normal physiological state The ratio of the average pressure in the distal coronary artery of the lower stenosis to the average pressure of the coronary aorta.
  • the contrast flow reserve fraction is considered to be closer to the flow reserve fraction (FFR).
  • the existing methods for calculating the contrast blood flow reserve fraction (cFFR) and resting pressure ratio (resting Pd / Pa) are mainly as follows: the pressure guide wire measures the pressure at the distal end of coronary stenosis in the contrast state and resting state Pd to determine FFR. It needs to rely on the pressure guide wire for measurement. The pressure guide wire needs to be inserted into the end of the blood vessel, which increases the difficulty and risk of surgery. At the same time, the expensive price of the pressure guide wire also limits its large-scale application.
  • the object of the present invention is to provide a method for calculating the contrast blood flow reserve fraction and resting state pressure ratio based on contrast images to detect myocardial ischemia by conventional coronary angiography surgery for patients with coronary heart disease, That is, there is no need to use vasodilators (that is, no maximum myocardial hyperemia and no adenosine or ATP). From the conventional contrast image, aortic pressure and blood flow, the contrast blood flow reserve fraction (cFFR) and resting pressure ratio (resting P d / P a ) were calculated.
  • cFFR contrast blood flow reserve fraction
  • resting pressure ratio resting P d / P a
  • a method for calculating contrast blood flow reserve score based on contrast image includes the following steps:
  • S02 Obtain the two-dimensional tube diameter and length of the blood vessel through the contrast image, and generate the three-dimensional blood vessel grid model from the two contrast images at an angle of more than 30 ° and obtain the three-dimensional tube diameter and length of the blood vessel;
  • the step S01 includes connecting the pressure tube of the blood pressure sensor to the multi-way tee, and then connecting the coronary ostium of the heart through a contrast catheter, filling the pressure tube of the blood pressure sensor with saline, and maintaining the blood pressure sensor position at the same level with the heart, the blood pressure sensor measures a pressure value is the pressure of the coronary port P a.
  • the method for generating a three-dimensional blood vessel grid model in step S02 includes the following steps:
  • S21 Perform 3D reconstruction on the 2D structure data of two segmented blood vessels with a mapping relationship on two X-ray coronary angiography images at an angle of more than 30 ° to obtain 3D structure data of the segmented blood vessel;
  • step S22 Repeat step S21 until the three-dimensional reconstruction of all segmented blood vessels is completed, and then merge the reconstructed segmented blood vessels to obtain a complete three-dimensional blood vessel grid model.
  • the specific method for calculating the blood flow velocity V 1 in step S03 includes the following steps:
  • S31 Obtain the specified patient's heart rate H times / minute, and obtain the image frequency from the contrast image information as S frames / second.
  • S32 According to the number of frames traveled by an image in a cardiac cycle, obtain the start point and end point of a cardiac cycle on the images corresponding to the two-dimensional start frame and the end frame, and then pass the start point and the end point in the three-dimensional blood vessel In the grid model, the blood vessel length of one cardiac cycle is intercepted;
  • V 1 L ⁇ P
  • L the blood vessel length
  • P the time taken for one cardiac cycle
  • P X ⁇ S.
  • the specific method for calculating the pressure drop ⁇ P 1 from the entrance of the coronary artery to the distal end of the coronary stenosis in the step S04 is as follows:
  • P, ⁇ , ⁇ are flow velocity, pressure, blood flow density, blood flow viscosity
  • the inlet boundary condition is the blood flow velocity
  • the outlet boundary condition is the out-flow boundary condition
  • the invention also discloses a method for calculating the resting pressure ratio based on the contrast image, including the following steps:
  • S12 Obtain the two-dimensional diameter and length of the blood vessel from the contrast image, and generate the three-dimensional vessel mesh model from the two contrast images with an angle of more than 30 ° and obtain the three-dimensional diameter and length of the blood vessel;
  • V 2 0.43 * V 1 +35;
  • V 1 200mm / s
  • V 2 0.35 * V 1 +55
  • the step S11 includes connecting the pressure tube of the blood pressure sensor to the multi-way tee, and then connecting it to the coronary ostium of the heart through a contrast catheter, filling the pressure tube of the blood pressure sensor with saline, and maintaining the blood pressure sensor position at the same level with the heart, the blood pressure sensor measures a pressure value is the pressure of the coronary port P a.
  • the method for generating a three-dimensional blood vessel grid model in step S12 includes the following steps:
  • S21 Perform 3D reconstruction on the 2D structure data of two segmented blood vessels with a mapping relationship on two X-ray coronary angiography images at an angle of more than 30 ° to obtain 3D structure data of the segmented blood vessel;
  • step S22 Repeat step S21 until the three-dimensional reconstruction of all segmented blood vessels is completed, and then merge the reconstructed segmented blood vessels to obtain a complete three-dimensional blood vessel grid model.
  • the specific method for calculating the blood flow velocity V 1 in step S13 includes the following steps:
  • S31 Obtain the specified patient's heart rate H times / minute, and obtain the image frequency from the contrast image information as S frames / second.
  • S32 According to the number of frames traveled by an image in a cardiac cycle, obtain the start point and end point of a cardiac cycle on the images corresponding to the two-dimensional start frame and the end frame, and then pass the start point and the end point in the three-dimensional blood vessel In the grid model, the blood vessel length of one cardiac cycle is intercepted;
  • V 1 L ⁇ P
  • L the blood vessel length
  • P the time taken for one cardiac cycle
  • P X ⁇ S.
  • the specific method for calculating the pressure drop ⁇ P 2 from the entrance of the coronary artery to the distal end of the coronary stenosis in step S15 is as follows:
  • P, ⁇ , ⁇ are flow velocity, pressure, blood flow density, blood flow viscosity
  • the inlet boundary condition is the blood flow velocity
  • the outlet boundary condition is the out-flow boundary condition
  • FIG. 1 is a flowchart of the method of the present invention
  • Figure 2 is the reference image
  • Fig. 31 is an image of the position-contrast agent flowing to the catheter port
  • Fig. 32 is an image of a position-contrast agent flowing to the distal end of a blood vessel
  • Figure 33 is an image of the second position of the contrast agent flowing to the catheter port
  • Figure 34 is an image of the second position of the contrast agent flowing to the distal end of the blood vessel
  • Figure 4 is a screenshot of the cross section of the grid
  • Figure 5 is a screenshot of the grid's longitudinal section.
  • the method for calculating contrast blood flow reserve fraction and resting state pressure ratio based on contrast images of the present invention includes the following steps.
  • Step S1 The pressure P a of the coronary ostium of the heart is measured by the blood pressure sensor.
  • the specific method is as follows:
  • the pressure tube using the blood pressure sensor is connected to the multi-way tee, and then connected to the coronary ostium of the heart through the contrast catheter.
  • the pressure tube of the blood pressure sensor is filled with saline and keeping the blood pressure sensor and the heart at the same horizontal position.
  • coronary heart pressure value is the pressure port P a.
  • Step S2 Obtain the two-dimensional diameter and length of the blood vessel from the contrast image, and generate the three-dimensional blood vessel mesh model from the two contrast images at an angle of 30 ° or more and obtain the three-dimensional diameter and length of the blood vessel, as shown in FIG. ;
  • the specific method of the three-dimensional blood vessel grid model is as follows:
  • Step S3 As shown in FIGS. 31-34, measure the time taken by the blood (including contrast agent) from the start point (31, 33) to the end point (32, 34) of a specified blood vessel (including a possible criminal blood vessel), and The blood flow velocity V 1 is calculated according to the time and the three-dimensional length of the blood vessel, and the specific method is as follows:
  • the images corresponding to the two-dimensional start frame and the end frame are obtained as shown in Figure 31 and Figure 32 or Figure 33 and Figure 34, respectively.
  • Point and then intercept the blood vessel length of a cardiac cycle in the three-dimensional synthetic data through the starting point and the ending point;
  • V 1 L ⁇ P.
  • Step S4 Calculate the blood flow velocity V 2 in the resting state
  • V 1 100 millimeters per second (mm / s)
  • V 2 0.53 * V 1 +20;
  • V 2 0.43 * V 1 +35;
  • V 1 200mm / s
  • V 2 0.35 * V 1 +55
  • P, ⁇ , ⁇ are flow velocity, pressure, blood flow density, blood flow viscosity
  • the inlet boundary condition is the blood flow velocity
  • the outlet boundary condition is the out-flow boundary condition

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Cardiology (AREA)
  • Molecular Biology (AREA)
  • Public Health (AREA)
  • Pathology (AREA)
  • Physiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Veterinary Medicine (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Vascular Medicine (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Hematology (AREA)
  • Computer Graphics (AREA)
  • Geometry (AREA)
  • Software Systems (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

一种基于造影图像计算造影血流储备分数的方法,包括:通过血压传感器测量心脏冠脉口的压力P a;通过造影图像获取血管的二维管径及长度,并通过两个呈30°以上夹角的造影图像生成三维血管网格模型并获得血管的三维管径及长度;测量包含造影剂的血液从一段指定血管的起始点到结束点所用的时间,并根据该时间和血管三维长度计算血流速度V 1;将血流速度V 1作为冠脉入口流速,计算冠脉入口到冠脉狭窄远端的压力降ΔP 1,狭窄远端冠状动脉内平均压P d1=P a-ΔP 1,通过公式cFFR=P d1/P a计算得到造影血流储备分数。无需使用血管扩张剂,通过常规造影图像即可得到cFFR和resting P d/P a

Description

基于造影图像计算造影血流储备分数和静息态压力比值的方法 技术领域
本发明涉及冠状动脉影像学评价领域,具体地涉及一种基于造影图像计算造影血流储备分数(cFFR)和静息态压力比值(resting Pd/Pa)的方法。
背景技术
血流储备分数(FFR)可表明冠脉狭窄病变对远端血流产生的影响,诊断心肌是否缺血,已经成为冠脉狭窄功能性评价的公认指标。FFR定义为狭窄冠状动脉提供给支配区域心肌的最大血流量与同一支冠状动脉正常时提供给心肌的最大血流量的比值。可以简化为心肌最大充血状态下的狭窄远端冠状动脉内平均压(Pd)与冠状动脉口部主动脉平均压(Pa)的比值,即FFR=Pd/Pa。
确定FFR时候,需要基于心肌最大充血状态下的血流速度和冠状动脉口部主动脉平均压,通过不同的手段获取狭窄远端冠状动脉内平均压来计算FFR。但心肌最大充血需要通过冠脉内或静脉内注射腺苷或ATP,注射腺苷或ATP会造成主动脉压力下降并有一定的副作用比如房室传导阻滞、窦缓、窦停等,禁忌症包括2度或3度房室传到阻滞、窦房结疾病、气管或支气管哮喘、对腺苷过敏。
造影血流储备分数(cFFR)和静息态压力比值(resting Pd/Pa)两个参数被提出来替代或者补充FFR。造影血流储备分数(cFFR)是在造影状态下的狭窄远端冠状动脉内平均压与冠状动脉口部主动脉平均压的比值;静息态压力比值(resting Pd/Pa)是在正常生理态下的狭窄远端冠状动脉内平均压与冠状动脉口部主动脉平均压的比值。相对于静息态,造影可以导致一定程度的心肌充血,因此造影血流储备分数(cFFR)被认为更接近血流储备分数(FFR)。
目前,现有的计算造影血流储备分数(cFFR)和静息态压力比值(resting Pd/Pa)的方法主要为:压力导丝在造影状态和静息态下测量冠脉狭窄远端的压力Pd来确定FFR。需要依靠压力导丝进行测量,压力导丝测量时需要介入血管末端,增加手术难度和风险,同时压力导丝昂贵的价格也限制其大 规模应用。
发明内容
为了解决上述的技术问题,本发明目的是:提供了一种基于造影图像计算造影血流储备分数和静息态压力比值的方法,针对冠心病患者通过常规冠状动脉造影手术检测心肌缺血情况,即无需使用血管扩张剂(即无需心肌最大充血状态且不使用腺苷或ATP)。通过常规造影图像、主动脉压和血流,来计算造影血流储备分数(cFFR)和静息态压力比值(resting P d/P a)。
本发明的技术方案是:
一种基于造影图像计算造影血流储备分数的方法,包括以下步骤:
S01:通过血压传感器测量心脏冠脉口的压力P a
S02:通过造影图像获取血管的二维管径及长度,并通过两个呈30°以上夹角的造影图像生成三维血管网格模型并获得血管的三维管径及长度;
S03:测量包含造影剂的血液从一段指定血管的起始点到结束点所用的时间,并根据该时间和血管三维长度计算血流速度V 1
S04:将步骤S03计算得到的造影状态下的血流速度V 1作为冠脉入口流速,计算冠脉入口到冠脉狭窄远端的压力降ΔP 1,狭窄远端冠状动脉内平均压P d1=P a-ΔP 1,通过造影血流储备分数计算公式cFFR=P d1/P a计算得到造影血流储备分数。
优选的技术方案中,所述步骤S01包括,使用血压传感器的压力管连接到多联三通,然后通过造影导管与心脏冠脉口部相连,在血压传感器的压力管内充满盐水,并保持血压传感器与心脏在同一水平位置,该血压传感器测量的压力值即为心脏冠脉口的压力P a
优选的技术方案中,所述步骤S02中生成三维血管网格模型的方法包括以下步骤:
S21:将两个呈30°以上夹角的X射线冠脉造影图像上,具有映射关系的两分段血管的2D结构数据进行三维重建,得到该分段血管的3D结构数据;
S22:重复步骤S21,直到所有分段血管三维重建完成,再将重建后的分段血管合并,得到完整的三维血管网格模型。
优选的技术方案中,步骤S03中计算血流速度V 1的具体方法包括以下步骤:
S31:获取指定的病人心率为H次/分钟,从造影图像信息中获取图像频率为S帧/秒,其帧数X的计算公式如下:X=(1÷(H÷60))×S;
S32:通过一个心动周期内图像所走过的帧数,在二维起始帧和结束帧对应的图像上分别取得一个心动周期的起始点和结束点,然后通过起始点和结束点在三维血管网格模型中截取一个心动周期的血管长度;
S33:通过公式V 1=L÷P,计算得到血液流动速度V 1,L为血管长度,P为一个心动周期所用的时间,P=X÷S。
优选的技术方案中,所述步骤S04中计算冠脉入口到冠脉狭窄远端的压力降ΔP 1的具体方法如下:
S41:基于血流速度与三维血管网格模型,求解不可压缩流的基本公式,对三维血管网格模型进行求解,用数值法求解连续性和Navier-Stokes方程:
Figure PCTCN2019071207-appb-000001
Figure PCTCN2019071207-appb-000002
其中
Figure PCTCN2019071207-appb-000003
P,ρ,μ分别为流速、压力、血流密度、血流粘性;
入口边界条件为血流速度,出口边界条件为out-flow边界条件;
S42:计算沿着血管中心线从入口到下游各点的压力降ΔP 1
本发明还公开了一种基于造影图像计算静息态压力比值的方法,包括以下步骤:
S11:通过血压传感器测量心脏冠脉口的压力P a
S12:通过造影图像获取血管的二维管径及长度,并通过两个呈30°以上夹角的造影图像生成三维血管网格模型并获得血管的三维管径及长度;
S13:测量包含造影剂的血液从一段指定血管的起始点到结束点所用的时间,并根据该时间和血管三维长度计算血流速度V 1
S14:根据以下计算公式,计算得到静息态下的血流速度V 2,计算公式为:
当V 1≤100mm/s时,V 2=0.53*V 1+20;
当100mm/s<V 1≤200mm/s时,V 2=0.43*V 1+35;
当V 1>200mm/s时,V 2=0.35*V 1+55;
S15:将步骤S14计算得到的静息态下的血流速度V 2作为冠脉入口流速,计算冠脉入口到冠脉狭窄远端的压力降ΔP 2,狭窄远端冠状动脉内平均压P d2=P a-ΔP 2,通过公式resting P d/P a=P d2/P a计算得到静息态压力比值。
优选的技术方案中,所述步骤S11包括,使用血压传感器的压力管连接到多联三通,然后通过造影导管与心脏冠脉口部相连,在血压传感器的压力管内充满盐水,并保持血压传感器与心脏在同一水平位置,该血压传感器测量的压力值即为心脏冠脉口的压力P a
优选的技术方案中,所述步骤S12中生成三维血管网格模型的方法包括以下步骤:
S21:将两个呈30°以上夹角的X射线冠脉造影图像上,具有映射关系的两分段血管的2D结构数据进行三维重建,得到该分段血管的3D结构数据;
S22:重复步骤S21,直到所有分段血管三维重建完成,再将重建后的分段血管合并,得到完整的三维血管网格模型。
优选的技术方案中,步骤S13中计算血流速度V 1的具体方法包括以下步骤:
S31:获取指定的病人心率为H次/分钟,从造影图像信息中获取图像频率为S帧/秒,其帧数X的计算公式如下:X=(1÷(H÷60))×S;
S32:通过一个心动周期内图像所走过的帧数,在二维起始帧和结束帧对应的图像上分别取得一个心动周期的起始点和结束点,然后通过起始点和结束点在三维血管网格模型中截取一个心动周期的血管长度;
S33:通过公式V 1=L÷P,计算得到血液流动速度V 1,L为血管长度,P为一个心动周期所用的时间,P=X÷S。
优选的技术方案中,所述步骤S15中计算冠脉入口到冠脉狭窄远端的压力降ΔP 2的具体方法如下:
S41:基于血流速度与三维血管网格模型,求解不可压缩流的基本公式,对三维血管网格模型进行求解,用数值法求解连续性和Navier-Stokes方程:
Figure PCTCN2019071207-appb-000004
Figure PCTCN2019071207-appb-000005
其中
Figure PCTCN2019071207-appb-000006
P,ρ,μ分别为流速、压力、血流密度、血流粘性;
入口边界条件为血流速度,出口边界条件为out-flow边界条件;
S42:计算沿着血管中心线从入口到下游各点的压力降ΔP 2
与现有技术相比,本发明的优点是:
针对冠心病患者通过常规冠状动脉造影手术检测心肌缺血情况,即无需使用血管扩张剂(即无需心肌最大充血状态且不使用腺苷或ATP)。通过常规造影图像、主动脉压和血流,来计算造影血流储备分数(cFFR)和静息态压力比值(resting P d/P a)。不需要额外插入压力导丝进行测量,操作简便,大大降低手术难度和风险,可在临床上大规模推广应用。
附图说明
下面结合附图及实施例对本发明作进一步描述:
图1为本发明的方法流程图;
图2为参考图像;
图31为体位一造影剂流到导管口的图像;
图32为体位一造影剂流到血管远端的图像;
图33为体位二造影剂流到导管口的图像;
图34为体位二造影剂流到血管远端的图像;
图4为网格横切面截图;
图5为网格纵切面截图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明了,下面结合具体实施方式并参照附图,对本发明进一步详细说明。应该理解,这些描述只是示例性的,而并非要限制本发明的范围。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要地混淆本发明的概念。
如图1所示,本发明的基于造影图像计算造影血流储备分数和静息态压 力比值的方法,包括以下步骤。
步骤S1:通过血压传感器测量心脏冠脉口的压力P a,其具体方法如下:
使用血压传感器的压力管连接到多联三通,然后通过造影导管与心脏冠脉口部相连,在血压传感器的压力管内充满盐水,并保持血压传感器与心脏在同一水平位置,该血压传感器测量的压力值即为心脏冠脉口的压力P a
步骤S2:通过造影图像获取血管的二维管径及长度,并通过两个呈30°以上夹角的造影图像生成三维血管网格模型并获得血管的三维管径及长度,如图2所示;
其中三维血管网格模型的具体方法如下:
将两个不同角度的X射线冠脉造影图像上、且呈映射关系的两分段血管的2D结构数据进行三维重建,并得到该分段血管的3D结构数据;
重复上述步骤直到所有分段血管三维重建完成,再将重建后的分段血管合并,即得到完整的三维血管,如图4、5所示。
步骤S3:如图31-34所示,测量血液(包含造影剂)从一段指定血管(包括可能的犯罪血管)的起始点(31、33)到结束点(32、34)所用的时间,并根据该时间和血管三维长度计算血流速度V 1,其具体方法如下:
获取指定的病人心率为H次/分钟,从造影图像信息中获取图像频率为S帧/秒,其帧数X的计算公式如下:X=(1÷(H÷60))×S;
通过一个心动周期内图像所走过的帧数,在二维起始帧和结束帧对应的图像,如图31和图32或者图33和图34,上分别取得一个心动周期的起始点和结束点,然后通过起始点和结束点在三维合成数据中截取一个心动周期的血管长度;
假设截取的血管长度为L,一个周期所用时间为P,通过公式1:P=X÷S;公式2:V 1=L÷P,得到血液流动速度V 1
步骤S4:计算静息态下的血流速度V 2
其静息态下的血流速度V 2的计算公式如下:
当V 1≤100毫米每秒(mm/s)时,V 2=0.53*V 1+20;
当100mm/s<V 1≤200mm/s时,V 2=0.43*V 1+35;
当V 1>200mm/s时,V 2=0.35*V 1+55;
步骤S5:将步骤S3计算得到的造影状态下的血流速度V 1作为冠脉入口流速,计算冠脉入口到冠脉狭窄远端的压力降ΔP 1,狭窄远端冠状动脉内平均压P d1=P a-ΔP 1,再通过公式cFFR=P d1/P a计算得到造影血流储备分数(cFFR)。
步骤S6:将步骤S4计算得到的静息态下的血流速度V 2作为冠脉入口流速,计算冠脉入口到冠脉狭窄远端的压力降ΔP 2,狭窄远端冠状动脉内平均压P d2=P a-ΔP 2,再通过公式resting P d/P a=P d2/P a计算得到静息态压力比值(resting P d/P a)。
步骤S5和S6中计算冠脉入口到冠脉狭窄远端的压力降ΔP的具体方法如下:
基于血流速度与三维血管网格模型,求解不可压缩流的基本公式,对三维血管网格模型进行求解,用数值法求解连续性和Navier-Stokes方程:
Figure PCTCN2019071207-appb-000007
Figure PCTCN2019071207-appb-000008
其中
Figure PCTCN2019071207-appb-000009
P,ρ,μ分别为流速、压力、血流密度、血流粘性;
入口边界条件为血流速度,出口边界条件为out-flow边界条件;
计算沿着血管中心线从入口到下游各点的压力降ΔP。
应当理解的是,本发明的上述具体实施方式仅仅用于示例性说明或解释本发明的原理,而不构成对本发明的限制。因此,在不偏离本发明的精神和范围的情况下所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。此外,本发明所附权利要求旨在涵盖落入所附权利要求范围和边界、或者这种范围和边界的等同形式内的全部变化和修改例。

Claims (10)

  1. 一种基于造影图像计算造影血流储备分数的方法,其特征在于,包括以下步骤:
    S01:通过血压传感器测量心脏冠脉口的压力P a
    S02:通过造影图像获取血管的二维管径及长度,并通过两个呈30°以上夹角的造影图像生成三维血管网格模型并获得血管的三维管径及长度;
    S03:测量包含造影剂的血液从一段指定血管的起始点到结束点所用的时间,并根据该时间和血管三维长度计算血流速度V 1
    S04:将步骤S03计算得到的造影状态下的血流速度V 1作为冠脉入口流速,计算冠脉入口到冠脉狭窄远端的压力降ΔP 1,狭窄远端冠状动脉内平均压P d1=P a-ΔP 1,通过造影血流储备分数计算公式cFFR=P d1/P a计算得到造影血流储备分数。
  2. 根据权利要求1所述的基于造影图像计算造影血流储备分数的方法,其特征在于,所述步骤S01包括,使用血压传感器的压力管连接到多联三通,然后通过造影导管与心脏冠脉口部相连,在血压传感器的压力管内充满盐水,并保持血压传感器与心脏在同一水平位置,该血压传感器测量的压力值即为心脏冠脉口的压力P a
  3. 根据权利要求1所述的基于造影图像计算造影血流储备分数的方法,其特征在于,所述步骤S02中生成三维血管网格模型的方法包括以下步骤:
    S21:将两个呈30°以上夹角的X射线冠脉造影图像上,具有映射关系的两分段血管的2D结构数据进行三维重建,得到该分段血管的3D结构数据;
    S22:重复步骤S21,直到所有分段血管三维重建完成,再将重建后的分段血管合并,得到完整的三维血管网格模型。
  4. 根据权利要求1所述的基于造影图像计算造影血流储备分数的方法,其特征在于,步骤S03中计算血流速度V 1的具体方法包括以下步骤:
    S31:获取指定的病人心率为H次/分钟,从造影图像信息中获取图像频率为S帧/秒,其帧数X的计算公式如下:X=(1÷(H÷60))×S;
    S32:通过一个心动周期内图像所走过的帧数,在二维起始帧和结束帧对应的图像上分别取得一个心动周期的起始点和结束点,然后通过起始点和结束点在三维血管网格模型中截取一个心动周期的血管长度;
    S33:通过公式V 1=L÷P,计算得到血液流动速度V 1,L为血管长度,P为一个心动周期所用的时间,P=X÷S。
  5. 根据权利要求1所述的基于造影图像计算造影血流储备分数的方法,其特征在于,所述步骤S04中计算冠脉入口到冠脉狭窄远端的压力降ΔP 1的具体方法如下:
    S41:基于血流速度与三维血管网格模型,求解不可压缩流的基本公式,对三维血管网格模型进行求解,用数值法求解连续性和Navier-Stokes方程:
    Figure PCTCN2019071207-appb-100001
    Figure PCTCN2019071207-appb-100002
    其中
    Figure PCTCN2019071207-appb-100003
    P,ρ,μ分别为流速、压力、血流密度、血流粘性;
    入口边界条件为血流速度,出口边界条件为out-flow边界条件;
    S42:计算沿着血管中心线从入口到下游各点的压力降ΔP 1
  6. 一种基于造影图像计算静息态压力比值的方法,其特征在于,包括以下步骤:
    S11:通过血压传感器测量心脏冠脉口的压力P a
    S12:通过造影图像获取血管的二维管径及长度,并通过两个呈30°以上夹角的造影图像生成三维血管网格模型并获得血管的三维管径及长度;
    S13:测量包含造影剂的血液从一段指定血管的起始点到结束点所用的时间,并根据该时间和血管三维长度计算血流速度V 1
    S14:根据以下计算公式,计算得到静息态下的血流速度V 2,计算公式为:
    当V 1≤100mm/s时,V 2=0.53*V 1+20;
    当100mm/s<V 1≤200mm/s时,V 2=0.43*V 1+35;
    当V 1>200mm/s时,V 2=0.35*V 1+55;
    S15:将步骤S14计算得到的静息态下的血流速度V 2作为冠脉入口流速,计算冠脉入口到冠脉狭窄远端的压力降ΔP 2,狭窄远端冠状动脉内平均压P d2=P a-ΔP 2,通过公式resting P d/P a=P d2/P a计算得到静息态压力比值。
  7. 根据权利要求6所述的基于造影图像计算静息态压力比值的方法,其特征在于,所述步骤S11包括,使用血压传感器的压力管连接到多联三通, 然后通过造影导管与心脏冠脉口部相连,在血压传感器的压力管内充满盐水,并保持血压传感器与心脏在同一水平位置,该血压传感器测量的压力值即为心脏冠脉口的压力P a
  8. 根据权利要求6所述的基于造影图像计算静息态压力比值的方法,其特征在于,所述步骤S12中生成三维血管网格模型的方法包括以下步骤:
    S21:将两个呈30°以上夹角的X射线冠脉造影图像上,具有映射关系的两分段血管的2D结构数据进行三维重建,得到该分段血管的3D结构数据;
    S22:重复步骤S21,直到所有分段血管三维重建完成,再将重建后的分段血管合并,得到完整的三维血管网格模型。
  9. 根据权利要求6所述的基于造影图像计算静息态压力比值的方法,其特征在于,步骤S13中计算血流速度V 1的具体方法包括以下步骤:
    S31:获取指定的病人心率为H次/分钟,从造影图像信息中获取图像频率为S帧/秒,其帧数X的计算公式如下:X=(1÷(H÷60))×S;
    S32:通过一个心动周期内图像所走过的帧数,在二维起始帧和结束帧对应的图像上分别取得一个心动周期的起始点和结束点,然后通过起始点和结束点在三维血管网格模型中截取一个心动周期的血管长度;
    S33:通过公式V 1=L÷P,计算得到血液流动速度V 1,L为血管长度,P为一个心动周期所用的时间,P=X÷S。
  10. 根据权利要求6所述的基于造影图像计算静息态压力比值的方法,其特征在于,所述步骤S15中计算冠脉入口到冠脉狭窄远端的压力降ΔP 2的具体方法如下:
    S41:基于血流速度与三维血管网格模型,求解不可压缩流的基本公式,对三维血管网格模型进行求解,用数值法求解连续性和Navier-Stokes方程:
    Figure PCTCN2019071207-appb-100004
    Figure PCTCN2019071207-appb-100005
    其中
    Figure PCTCN2019071207-appb-100006
    P,ρ,μ分别为流速、压力、血流密度、血流粘性;
    入口边界条件为血流速度,出口边界条件为out-flow边界条件;
    S42:计算沿着血管中心线从入口到下游各点的压力降ΔP 2
PCT/CN2019/071207 2018-11-13 2019-01-10 基于造影图像计算造影血流储备分数和静息态压力比值的方法 WO2020098141A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811344281.7 2018-11-13
CN201811344281.7A CN111166317B (zh) 2018-11-13 2018-11-13 基于造影图像计算造影血流储备分数和静息态压力比值的方法

Publications (1)

Publication Number Publication Date
WO2020098141A1 true WO2020098141A1 (zh) 2020-05-22

Family

ID=70646156

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/071207 WO2020098141A1 (zh) 2018-11-13 2019-01-10 基于造影图像计算造影血流储备分数和静息态压力比值的方法

Country Status (2)

Country Link
CN (1) CN111166317B (zh)
WO (1) WO2020098141A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116188336A (zh) * 2023-04-17 2023-05-30 柏意慧心(杭州)网络科技有限公司 基于血管造影的心肌病形态学计算方法、装置及存储介质
CN117058136A (zh) * 2022-11-23 2023-11-14 杭州脉流科技有限公司 基于术前冠脉造影影像评估术后冠脉血流储备分数的系统和计算机设备

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11963743B2 (en) 2020-06-22 2024-04-23 Coroventis Research Ab System and method for determining the microvascular resistance reserve
CN112690814B (zh) * 2020-11-06 2022-10-14 杭州阿特瑞科技有限公司 一种低误差的冠状动脉血流储备分数测量方法
CN112704505B (zh) * 2020-11-20 2022-05-24 杭州阿特瑞科技有限公司 一种利用cta和dsa测量冠状动脉血流储备分数的方法
CN112971818B (zh) * 2021-01-28 2022-10-04 杭州脉流科技有限公司 微循环阻力指数的获取方法、装置、计算机设备和存储介质
CN112932434B (zh) * 2021-01-29 2023-12-05 苏州润迈德医疗科技有限公司 获取流量损失模型、损失比、供血能力的方法和系统
CN114170134B (zh) * 2021-11-03 2023-03-10 杭州脉流科技有限公司 基于颅内dsa影像的狭窄评估方法及装置
CN116205917B (zh) * 2023-04-28 2023-08-11 杭州脉流科技有限公司 获取冠脉血流储备的方法、装置、计算机设备和存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201612608U (zh) * 2010-03-05 2010-10-27 侯绪伟 一种冠状动脉造影测压用新型三通连接板
US20140121513A1 (en) * 2007-03-08 2014-05-01 Sync-Rx, Ltd. Determining a characteristic of a lumen by measuring velocity of a contrast agent
CN106327487A (zh) * 2016-08-18 2017-01-11 苏州润心医疗科技有限公司 基于x射线冠脉造影图像的冠状动脉血流储备分数计算方法
CN106537392A (zh) * 2014-04-22 2017-03-22 西门子保健有限责任公司 用于冠状动脉中的血液动力学计算的方法和系统
CN108245178A (zh) * 2018-01-11 2018-07-06 苏州润迈德医疗科技有限公司 一种基于x射线冠脉造影图像的血液流动速度计算方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105096388B (zh) * 2014-04-23 2019-02-05 北京冠生云医疗技术有限公司 基于计算流体力学的冠状动脉血流仿真系统和方法
CN106023202B (zh) * 2016-05-20 2017-06-09 苏州润心医疗科技有限公司 基于心脏ct图像的冠状动脉血流储备分数计算方法
CN108550189A (zh) * 2018-05-03 2018-09-18 苏州润迈德医疗科技有限公司 基于造影图像和流体力学模型的微循环阻力指数计算方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140121513A1 (en) * 2007-03-08 2014-05-01 Sync-Rx, Ltd. Determining a characteristic of a lumen by measuring velocity of a contrast agent
CN201612608U (zh) * 2010-03-05 2010-10-27 侯绪伟 一种冠状动脉造影测压用新型三通连接板
CN106537392A (zh) * 2014-04-22 2017-03-22 西门子保健有限责任公司 用于冠状动脉中的血液动力学计算的方法和系统
CN106327487A (zh) * 2016-08-18 2017-01-11 苏州润心医疗科技有限公司 基于x射线冠脉造影图像的冠状动脉血流储备分数计算方法
CN108245178A (zh) * 2018-01-11 2018-07-06 苏州润迈德医疗科技有限公司 一种基于x射线冠脉造影图像的血液流动速度计算方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117058136A (zh) * 2022-11-23 2023-11-14 杭州脉流科技有限公司 基于术前冠脉造影影像评估术后冠脉血流储备分数的系统和计算机设备
CN117058136B (zh) * 2022-11-23 2024-01-09 杭州脉流科技有限公司 基于术前冠脉造影影像评估术后冠脉血流储备分数的计算机设备
CN116188336A (zh) * 2023-04-17 2023-05-30 柏意慧心(杭州)网络科技有限公司 基于血管造影的心肌病形态学计算方法、装置及存储介质
CN116188336B (zh) * 2023-04-17 2023-12-22 柏意慧心(杭州)网络科技有限公司 基于血管造影的心肌病形态学计算方法、装置及存储介质

Also Published As

Publication number Publication date
CN111166317B (zh) 2023-09-05
CN111166317A (zh) 2020-05-19

Similar Documents

Publication Publication Date Title
WO2020098141A1 (zh) 基于造影图像计算造影血流储备分数和静息态压力比值的方法
WO2019169779A1 (zh) 一种无需血管扩张剂测量血流储备分数的方法
CN108186038B (zh) 基于动脉造影影像计算冠脉血流储备分数的系统
WO2020107667A1 (zh) 基于心肌血流量和ct图像的冠状动脉血流储备分数计算方法
WO2019210553A1 (zh) 基于造影图像和流体力学模型的微循环阻力指数计算方法
WO2017097074A1 (zh) 血管单位时间血流量与血流速度的计算方法
WO2020186611A1 (zh) 基于压力传感器和造影图像计算瞬时无波形比率的方法
WO2020186612A1 (zh) 基于压力传感器和造影图像计算血流储备分数的方法
CN112543618B (zh) 用于进行定量血液动力学流量分析的方法和装置
WO2020057324A1 (zh) 测量微循环阻力指数的系统以及冠脉分析系统
WO2020098705A1 (zh) 基于造影图像获取静息态下血管评定参数的方法及装置
CN108742587B (zh) 基于病史信息获取血流特征值的方法及装置
WO2020057323A2 (zh) 测量微循环阻力指数的方法
WO2019242159A1 (zh) 获取血管压力差的方法及装置
JP2024020363A (ja) ハイブリッドな画像-侵襲性-圧力血行動態機能評価
WO2020098139A1 (zh) 基于造影图像计算瞬时无波型比率和静息态舒张期压力比率的方法
WO2020098140A1 (zh) 基于造影图像计算造影瞬时无波型比率和造影舒张期压力比率的方法
CN108742570A (zh) 基于冠脉优势类型获取血管压力差的方法及装置
WO2020215442A2 (zh) 一种通过常规造影图像测量出血流储备分数的方法
WO2021046990A1 (zh) 基于影像和压力传感器计算微循环指标的方法装置及系统
Nolte et al. Validation of 4D-flow-based pressure difference estimators
US20210161495A1 (en) Blood flow measurement based on vessel-map slope
Nolte et al. Validation of 4D flow based relative pressure maps in the aorta
WO2021042479A1 (zh) 便捷测量冠状动脉血管评定参数的方法、装置及系统
WO2021017327A1 (zh) 基于造影图像间隔时间修正血流速度的方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19883527

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19883527

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19883527

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03.12.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19883527

Country of ref document: EP

Kind code of ref document: A1