WO2020098140A1 - 基于造影图像计算造影瞬时无波型比率和造影舒张期压力比率的方法 - Google Patents

基于造影图像计算造影瞬时无波型比率和造影舒张期压力比率的方法 Download PDF

Info

Publication number
WO2020098140A1
WO2020098140A1 PCT/CN2019/071206 CN2019071206W WO2020098140A1 WO 2020098140 A1 WO2020098140 A1 WO 2020098140A1 CN 2019071206 W CN2019071206 W CN 2019071206W WO 2020098140 A1 WO2020098140 A1 WO 2020098140A1
Authority
WO
WIPO (PCT)
Prior art keywords
contrast
pressure
blood
coronary
blood vessel
Prior art date
Application number
PCT/CN2019/071206
Other languages
English (en)
French (fr)
Inventor
霍云飞
刘广志
吴星云
Original Assignee
苏州润迈德医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州润迈德医疗科技有限公司 filed Critical 苏州润迈德医疗科技有限公司
Publication of WO2020098140A1 publication Critical patent/WO2020098140A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/02007Evaluating blood vessel condition, e.g. elasticity, compliance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • G06T17/20Finite element generation, e.g. wire-frame surface description, tesselation

Definitions

  • the present invention relates to the field of coronary artery imaging evaluation, and in particular, to a method for determining the contrast instantaneous wave-free ratio (caiFR) and contrast diastolic pressure ratio (cadFR and caDFR) only by contrast image and aortic pressure.
  • caiFR contrast instantaneous wave-free ratio
  • cadFR and caDFR contrast diastolic pressure ratio
  • the blood flow reserve fraction can indicate the influence of coronary stenosis on the distal blood flow, and the diagnosis of myocardial ischemia has become a recognized index for the functional evaluation of coronary stenosis.
  • the FFR When determining FFR, it is necessary to calculate the FFR based on the average blood pressure of the myocardial hyperemia and the average pressure of the coronary aorta at the distal coronary artery through different means.
  • the maximum congestion of the myocardium requires intracoronary or intravenous injection of adenosine or ATP. Injection of adenosine or ATP will cause aortic pressure drop and have certain side effects such as atrioventricular block, sinus remission, sinus arrest, etc., contraindications Including 2 degree or 3 degree atrioventricular block, sinus disease, tracheal or bronchial asthma, and adenosine allergy.
  • the instantaneous waveform-free ratio can provide a method for measuring coronary pressure similar to the fractional flow reserve (FFR).
  • FFR fractional flow reserve
  • iFR does not require vasodilators, is simple to operate, and will be more used in coronary interventional therapy.
  • the ADVISE study found that during a certain period of diastole (called the non-wave period), the intravascular coronary microvascular resistance is relatively stable and the lowest, and during the coronary congestion made with vasodilator drugs such as adenosine The average resistance reached is similar.
  • iFR P dWave-free period / P aWave-free period
  • P dWave-free period mean coronary pressure at the distal end of the stenotic lesion during the no-wave period.
  • P aWave-free period mean aortic pressure during the no-wave period.
  • the current measurement methods of instantaneous wave-free ratio (iFR) and resting diastolic pressure ratio (dFR and DFR) are mainly as follows: the corresponding diastolic interval is measured under the resting state of the pressure guide wire to determine iFR and dFR , DFR. It needs to rely on the pressure guide wire for measurement. The pressure guide wire needs to intervene in the end of the blood vessel, which increases the difficulty and risk of surgery. At the same time, the expensive price of the pressure guide wire also limits its large-scale application. Compared with the resting state, it can cause a certain degree of myocardial congestion under the contrast state. Therefore, the instantaneous contrast-free ratio (caiFR) and contrast diastolic pressure ratio (cadFR and caDFR) should be more representative of myocardial ischemia.
  • the object of the present invention is to provide a method for calculating the contrastless instantaneous waveless ratio and contrast diastolic pressure ratio based on contrast images, and to detect myocardial ischemia by conventional coronary angiography surgery for patients with coronary heart disease , That is, there is no need to use vasodilators (that is, there is no need for myocardial hyperemia and no adenosine or ATP). From the conventional contrast image, aortic pressure and blood flow, the instantaneous wave-free ratio (caiFR) and diastolic pressure ratio (cadFR and caDFR) in the contrast state are calculated.
  • a method for calculating the contrastless instantaneous wave-free ratio and contrast diastolic pressure ratio based on contrast images includes the following steps:
  • S02 Obtain the two-dimensional diameter and length of the blood vessel through the contrast image, and generate the three-dimensional vessel mesh model from the two contrast images at an angle of 30 ° or more, and obtain the three-dimensional diameter and length of the blood vessel;
  • the step S01 includes connecting the pressure tube of the blood pressure sensor to the multi-way tee, and then connecting the coronary ostium of the heart through a contrast catheter, filling the pressure tube of the blood pressure sensor with saline, and maintaining the blood pressure sensor At the same horizontal position as the heart, the pressure wave measured by the blood pressure sensor is the pressure wave of the coronary ostium of the heart, and the average value of the instantaneous pressure during the diastolic period is Pa .
  • the method for generating a three-dimensional blood vessel grid model in step S02 includes the following steps:
  • S21 Perform 3D reconstruction on the 2D structure data of two segmented blood vessels with a mapping relationship on two X-ray coronary angiography images at an angle of more than 30 ° to obtain 3D structure data of the segmented blood vessel;
  • step S22 Repeat step S21 until the three-dimensional reconstruction of all segmented blood vessels is completed, and then merge the reconstructed segmented blood vessels to obtain a complete three-dimensional blood vessel grid model.
  • the specific method for calculating the blood flow velocity V 1 in step S03 includes the following steps:
  • S31 Obtain the specified patient's heart rate H times / minute, and obtain the image frequency from the contrast image information as S frames / second.
  • the specific method for calculating the pressure drop ⁇ P from the entrance of the coronary artery to the distal end of the coronary stenosis in the step S04 is as follows:
  • P, ⁇ , ⁇ are flow velocity, pressure, blood flow density, blood flow viscosity
  • the inlet boundary condition is the blood flow velocity
  • the outlet boundary condition is the out-flow boundary condition
  • Figure 1 is a schematic diagram of the instantaneous waveless ratio (caiFR) of contrast
  • FIG. 2 is a schematic diagram of the contrast diastolic pressure ratio (cadFR);
  • FIG. 3 is a schematic diagram of contrast diastolic pressure ratio (caDFR);
  • Figure 5 is a two-dimensional blood vessel image
  • Fig. 61 is an image of the position-contrast agent flowing to the catheter port
  • Fig. 62 is an image of the position-contrast agent flowing to the distal end of the blood vessel
  • Figure 63 is an image of the second position of the contrast agent flowing to the catheter port
  • Figure 64 is an image of the second position of the contrast agent flowing to the distal end of the blood vessel
  • Figure 7 is a screenshot of the cross section of the grid
  • Figure 8 is a screenshot of the longitudinal section of the grid.
  • caiFR Pd / Pa in WFP interval in contrast state
  • cadFR Pd / Pa in Diastole interval in contrast state
  • caDFR contrast state in contrast diastolic pressure
  • the Pd / Pa, instantaneous waveless ratio (caiFR) and contrast diastolic pressure ratio (cadFR and caDFR) in the lower frame interval are basically completely equivalent, and caiFR ⁇ caDFR ⁇ cadFR.
  • the method for determining the instantaneous contrastless wave rate ratio (caiFR) and contrast diastolic pressure ratio (cadFR and caDFR) of the present invention only through the contrast image and the aortic pressure includes the following steps.
  • Step S1 coronary artery diastolic pressure port P a, which is specifically as follows by measuring the blood pressure sensor:
  • the pressure tube using the blood pressure sensor is connected to the multi-way tee, and then connected to the coronary ostium of the heart through the contrast catheter.
  • the pressure tube of the blood pressure sensor is filled with saline and keeping the blood pressure sensor and the heart at the same horizontal position.
  • the pressure wave is the pressure wave of the coronary ostium of the heart, and the average value of the instantaneous pressure during the diastolic period is Pa .
  • Step S2 Obtain the two-dimensional diameter and length of the blood vessel from the contrast image, as shown in FIG. 5, and generate the three-dimensional vessel mesh model from the two contrast images at an angle of more than 30 ° and obtain the three-dimensional diameter and length of the blood vessel ;
  • the specific method of the three-dimensional blood vessel grid model is as follows:
  • Step S3 As shown in FIGS. 61-64, during the diastolic phase, the blood (including contrast agent) is measured from the start point (61, 63) to the end point (62, 64) of a specified blood vessel (including possible criminal vessels) The time used and the blood flow velocity V 1 is calculated according to the time and the three-dimensional length of the blood vessel.
  • the specific method is as follows:
  • the corresponding images of the two-dimensional start frame and end frame as shown in Figure 61 and Figure 62 or Figure 63 and Figure 64, respectively, obtain a heartbeat period during the diastolic period Start point and end point, and then use the start point and end point to intercept the length of a diastolic blood vessel in the three-dimensional synthetic data;
  • step S4 The specific method for calculating the pressure drop ⁇ P from the entrance of the coronary artery to the distal end of the coronary stenosis in step S4 is as follows:
  • P, ⁇ , ⁇ are flow velocity, pressure, blood flow density, blood flow viscosity
  • the inlet boundary condition is the blood flow velocity
  • the outlet boundary condition is the out-flow boundary condition

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Cardiology (AREA)
  • Molecular Biology (AREA)
  • Public Health (AREA)
  • Pathology (AREA)
  • Physiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Veterinary Medicine (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Vascular Medicine (AREA)
  • Hematology (AREA)
  • Computer Graphics (AREA)
  • Geometry (AREA)
  • Software Systems (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

一种基于造影图像计算造影瞬时无波型比率和造影舒张期压力比率的方法,包括:测量在舒张期心脏冠脉口的压力P a(S01);通过造影图像获取血管的二维管径及长度,并通过两个造影图像生成三维血管网格模型并获得血管的三维管径及长度(S02);在心脏舒张期,测量包含造影剂的血液从一段指定血管的起始点到结束点所用的时间,并根据时间和血管三维长度计算血流速度V 1(S03);将V 1作为冠脉入口流速,计算冠脉入口到冠脉狭窄远端的压力降ΔP,狭窄远端冠状动脉内平均压P d=P a-ΔP,计算得到造影瞬时无波型比率和造影舒张期压力比率(S04)。无需使用血管扩张剂,通过常规造影图像即可得到造影瞬时无波型比率和造影舒张期压力比率。

Description

基于造影图像计算造影瞬时无波型比率和造影舒张期压力比率的方法 技术领域
本发明涉及冠状动脉影像学评价领域,具体地涉及一种仅仅通过造影图像和主动脉压力确定造影瞬时无波型比率(caiFR)、造影舒张期压力比率(cadFR和caDFR)的方法。
背景技术
血流储备分数(FFR)可表明冠脉狭窄病变对远端血流产生的影响,诊断心肌是否缺血,已经成为冠脉狭窄功能性评价的公认指标。FFR定义为狭窄冠状动脉提供给支配区域心肌的最大血流量与同一支冠状动脉正常时提供给心肌的最大血流量的比值。可以简化为心肌最大充血状态下的狭窄远端冠状动脉内平均压(P d)与冠状动脉口部主动脉平均压(P a)的比值,即FFR=P d/P a
确定FFR时候,需要基于心肌最大充血状态下的血流速度和冠状动脉口部主动脉平均压,通过不同的手段获取狭窄远端冠状动脉内平均压来计算FFR。但心肌最大充血需要通过冠脉内或静脉内注射腺苷或ATP,注射腺苷或ATP会造成主动脉压力下降并有一定的副作用比如房室传导阻滞、窦缓、窦停等,禁忌症包括2度或3度房室传到阻滞、窦房结疾病、气管或支气管哮喘、对腺苷过敏。
瞬时无波形比率(iFR)能提供和血流储备分数(FFR)类似的冠状动脉内压力测量方法。iFR不需要血管扩张剂、操作简单,将会更多的应用在冠状动脉介入治疗。ADVISE研究发现,当心脏舒张期的某段时间(称之为无波形期),冠脉内微血管阻力相对是最稳定且是最低的,和腺苷等血管扩张药物所做成的冠脉充血期间达到的平均阻力相类似。即iFR=P dWave-free  period/P aWave-free period(P dWave-free period:在无波形期间狭窄病变远端冠脉平均压。P aWave-free period:在无波形期间主动脉平均压。瞬时无波形时期的运算时间:舒张期内无波形时期开始后25%的时间,到收缩期开始前5ms的时间停止计算)。顶级医学期刊NEJM上发表了一篇研究文章,在稳定型心绞痛或急性冠脉综合征患者中,IFR指导血运重建策略不劣于FFR指导的重 建策略,在12个月内主要不良心脏事件发生率方面相似。
静息态舒张期压力比率(dFR和DFR)可以表示为:dFR=P dDiastolic  period/P aDiastolic period(P dDiastolic period:在舒张态期间狭窄病变远端冠脉平均压。P aDiastolic period:在舒张态期间主动脉平均压);DFR=P dDiastolic hyperemia free  period/P aDiastolic hyperemia free period(P dDiastolic hyperemia free period:在主动脉压力小于主动脉平均压到主动脉压力最小的区间里,狭窄病变远端冠脉平均压。P aDiastolic hyperemia free period:在主动脉压力小于主动脉平均压到主动脉压力最小的区间里,主动脉平均压)。进一步的研究表明静息态舒张期压力比率(dFR和DFR)跟瞬时无波形比率(iFR)基本上完全等价。因此,我们可以得到iFR≌DFR≌dFR=P dDiastolic period/P aDiastolic period
目前,现有的瞬时无波型比率(iFR)和静息态舒张期压力比率(dFR和DFR)的测量方法主要为:压力导丝静息态下测量相应的舒张态区间来确定iFR、dFR、DFR。需要依靠压力导丝进行测量,压力导丝测量时需要介入血管末端,增加手术难度和风险,同时压力导丝昂贵的价格也限制其大规模应用。相对于静息态,在造影状态下可以导致一定程度的心肌充血,因此造影瞬时无波型比率(caiFR)、造影舒张期压力比率(cadFR和caDFR)应该更能展现心肌缺血状态。
发明内容
为了解决上述的技术问题,本发明目的是:提供了一种基于造影图像计算造影瞬时无波型比率和造影舒张期压力比率的方法,针对冠心病患者通过常规冠状动脉造影手术检测心肌缺血情况,即无需使用血管扩张剂(即无需心肌最大充血状态且不使用腺苷或ATP)。通过常规造影图像、主动脉压和血流,来计算在造影状态下的瞬时无波型比率(caiFR)、舒张期压力比率(cadFR和caDFR)。
本发明的技术方案是:
一种基于造影图像计算造影瞬时无波型比率和造影舒张期压力比率的方法,包括以下步骤:
S01:通过血压传感器测量在舒张期心脏冠脉口的压力Pa;
S02:通过造影图像获取血管的二维管径及长度,并通过两个呈30°以 上夹角的造影图像生成三维血管网格模型并获得血管的三维管径及长度;
S03:在心脏舒张期,测量包含造影剂的血液从一段指定血管的起始点到结束点所用的时间,并根据该时间和血管三维长度计算血流速度V1;
S04:将计算得到的造影状态下的血流速度V1作为冠脉入口流速,计算冠脉入口到冠脉狭窄远端的压力降ΔP,在舒张期狭窄远端冠状动脉内平均压Pd=Pa-ΔP,通过公式caiFR≌caDFR≌cadFR=Pd/Pa计算得到造影瞬时无波型比率(caiFR)和造影静息态舒张期压力比率(cadFR和caDFR)。
优选的技术方案中,所述步骤S01包括,使用血压传感器的压力管连接到多联三通,然后通过造影导管与心脏冠脉口部相连,在血压传感器的压力管内充满盐水,并保持血压传感器与心脏在同一水平位置,该血压传感器测量的压力波即为心脏冠脉口的压力波,在舒张期,瞬时压力的平均值即为P a
优选的技术方案中,所述步骤S02中生成三维血管网格模型的方法包括以下步骤:
S21:将两个呈30°以上夹角的X射线冠脉造影图像上,具有映射关系的两分段血管的2D结构数据进行三维重建,得到该分段血管的3D结构数据;
S22:重复步骤S21,直到所有分段血管三维重建完成,再将重建后的分段血管合并,得到完整的三维血管网格模型。
优选的技术方案中,步骤S03中计算血流速度V 1的具体方法包括以下步骤:
S31:获取指定的病人心率为H次/分钟,从造影图像信息中获取图像频率为S帧/秒,其帧数X的计算公式如下:X=(1÷(H÷60))×S;
S32:通过一个心跳周期舒张期内图像所走过的帧数,在二维起始帧和结束帧对应的图像上分别取得一个心跳周期舒张期的起始点和结束点,然后通过起始点和结束点在三维血管网格模型中截取一个心跳周期舒张期的血管长度;
S33:通过公式V 1=L÷P,计算得到血液流动速度V 1,L为血管长度,P为一个心跳周期舒张期所用的时间,P=X÷S。
优选的技术方案中,所述步骤S04中计算冠脉入口到冠脉狭窄远端的压力降ΔP的具体方法如下:
S41:基于血流速度与三维血管网格模型,求解不可压缩流的基本公式,对三维血管网格模型进行求解,用数值法求解连续性和Navier-Stokes方程:
Figure PCTCN2019071206-appb-000001
Figure PCTCN2019071206-appb-000002
其中
Figure PCTCN2019071206-appb-000003
P,ρ,μ分别为流速、压力、血流密度、血流粘性;
入口边界条件为血流速度,出口边界条件为out-flow边界条件;
S42:计算沿着血管中心线从入口到下游各点的压力降ΔP。
与现有技术相比,本发明的优点是:
针对冠心病患者通过常规冠状动脉造影手术检测心肌缺血情况,即无需使用血管扩张剂(即无需心肌最大充血状态且不使用腺苷或ATP)。通过常规造影图像、主动脉压和血流,来计算影瞬时无波型比率(caiFR)、造影舒张期压力比率(cadFR和caDFR)。不需要额外插入压力导丝进行测量,操作简便,大大降低手术难度和风险,可在临床上大规模推广应用。
附图说明
下面结合附图及实施例对本发明作进一步描述:
图1为造影瞬时无波型比率(caiFR)的示意图;
图2为造影舒张期压力比率(cadFR)的示意图;
图3为造影舒张期压力比率(caDFR)的示意图;
图4为本发明的方法流程图;
图5为二维血管图像;
图61为体位一造影剂流到导管口的图像;
图62为体位一造影剂流到血管远端的图像;
图63为体位二造影剂流到导管口的图像;
图64为体位二造影剂流到血管远端的图像;
图7为网格横切面截图;
图8为网格纵切面截图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明了,下面结合具体实施方式并参照附图,对本发明进一步详细说明。应该理解,这些描述只是示例性的,而并非要限制本发明的范围。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要地混淆本发明的概念。
本发明仅仅通过造影图像和主动脉压力,来确定造影瞬时无波型比率(caiFR)、造影舒张期压力比率(cadFR和caDFR),如图1所示,造影瞬时无波型比率(caiFR),caiFR=造影态下WFP区间里面Pd/Pa,如图2所示,造影舒张期压力比率cadFR=造影态下Diastole区间里面Pd/Pa,如图3所示,造影舒张期压力比率caDFR=造影态下框区间里面Pd/Pa,瞬时无波型比率(caiFR)和造影舒张期压力比率(cadFR和caDFR)基本上完全等价,及caiFR≌caDFR≌cadFR。
如图4所示,本发明的仅仅通过造影图像和主动脉压力确定造影瞬时无波型比率(caiFR)、造影舒张期压力比率(cadFR和caDFR)的方法,包括以下步骤。
步骤S1:通过血压传感器测量在舒张期心脏冠脉口的压力P a,其具体方法如下:
使用血压传感器的压力管连接到多联三通,然后通过造影导管与心脏冠脉口部相连,在血压传感器的压力管内充满盐水,并保持血压传感器与心脏在同一水平位置,该血压传感器测量的压力波即为心脏冠脉口的压力波,在舒张期,瞬时压力的平均值即为P a
步骤S2:通过造影图像获取血管的二维管径及长度,如图5所示,并通过两个呈30°以上夹角的造影图像生成三维血管网格模型并获得血管的三维管径及长度;
其中三维血管网格模型的具体方法如下:
将两个不同角度的X射线冠脉造影图像上、且呈映射关系的两分段血管的2D结构数据进行三维重建,并得到该分段血管的3D结构数据;
重复上述步骤直到所有分段血管三维重建完成,再将重建后的分段血管 合并,即得到完整的三维血管,如图7、8所示。
步骤S3:如图61-64所示,在心脏舒张期,测量血液(包含造影剂)从一段指定血管(包括可能的犯罪血管)的起始点(61、63)到结束点(62、64)所用的时间,并根据该时间和血管三维长度计算血流速度V 1,其具体方法如下:
获取指定的病人心率为H次/分钟,从造影图像信息中获取图像频率为S帧/秒,其帧数X的计算公式如下:X=(1÷(H÷60))×S;
通过一个心跳周期舒张期内图像所走过的帧数,在二维起始帧和结束帧对应的图像,如图61和图62或者图63和图64,上分别取得一个心跳周期舒张期的起始点和结束点,然后通过起始点和结束点在三维合成数据中截取一个心跳周期舒张期的血管长度;
假设截取的血管长度为L,一个心跳周期舒张期所用时间为P,通过公式1:P=X÷S;公式2:V 1=L÷P,得到血液流动速度V 1
步骤S4:将步骤S3计算得到的造影状态下的血流速度V 1作为冠脉入口流速,计算冠脉入口到冠脉狭窄远端的压力降ΔP,在舒张期狭窄远端冠状动脉内平均压P d=P a-ΔP,再通过公式caiFR≌caDFR≌cadFR=P d/P a计算得到造影瞬时无波型比率(caiFR)和造影静息态舒张期压力比率(cadFR和caDFR)。
步骤S4中计算冠脉入口到冠脉狭窄远端的压力降ΔP的具体方法如下:
基于血流速度与三维血管网格模型,求解不可压缩流的基本公式,对三维血管网格模型进行求解,用数值法求解连续性和Navier-Stokes方程:
Figure PCTCN2019071206-appb-000004
Figure PCTCN2019071206-appb-000005
其中
Figure PCTCN2019071206-appb-000006
P,ρ,μ分别为流速、压力、血流密度、血流粘性;
入口边界条件为血流速度,出口边界条件为out-flow边界条件;
计算沿着血管中心线从入口到下游各点的压力降ΔP。
应当理解的是,本发明的上述具体实施方式仅仅用于示例性说明或解释本发明的原理,而不构成对本发明的限制。因此,在不偏离本发明的精神和范围的情况下所做的任何修改、等同替换、改进等,均应包含在本发明的保 护范围之内。此外,本发明所附权利要求旨在涵盖落入所附权利要求范围和边界、或者这种范围和边界的等同形式内的全部变化和修改例。

Claims (5)

  1. 一种基于造影图像计算造影瞬时无波型比率和造影舒张期压力比率的方法,其特征在于,包括以下步骤:
    S01:通过血压传感器测量在舒张期心脏冠脉口的压力Pa;
    S02:通过造影图像获取血管的二维管径及长度,并通过两个呈30°以上夹角的造影图像生成三维血管网格模型并获得血管的三维管径及长度;
    S03:在心脏舒张期,测量包含造影剂的血液从一段指定血管的起始点到结束点所用的时间,并根据该时间和血管三维长度计算血流速度V1;
    S04:将计算得到的造影状态下的血流速度V1作为冠脉入口流速,计算冠脉入口到冠脉狭窄远端的压力降ΔP,在舒张期狭窄远端冠状动脉内平均压Pd=Pa-ΔP,通过公式caiFR≌caDFR≌cadFR=Pd/Pa计算得到造影瞬时无波型比率(caiFR)和造影静息态舒张期压力比率(cadFR和caDFR)。
  2. 根据权利要求1所述的基于造影图像计算造影瞬时无波型比率和造影舒张期压力比率的方法,其特征在于,所述步骤S01包括,使用血压传感器的压力管连接到多联三通,然后通过造影导管与心脏冠脉口部相连,在血压传感器的压力管内充满盐水,并保持血压传感器与心脏在同一水平位置,该血压传感器测量的压力波即为心脏冠脉口的压力波,在舒张期,瞬时压力的平均值即为P a
  3. 根据权利要求1所述的基于造影图像计算造影瞬时无波型比率和造影舒张期压力比率的方法,其特征在于,所述步骤S02中生成三维血管网格模型的方法包括以下步骤:
    S21:将两个呈30°以上夹角的X射线冠脉造影图像上,具有映射关系的两分段血管的2D结构数据进行三维重建,得到该分段血管的3D结构数据;
    S22:重复步骤S21,直到所有分段血管三维重建完成,再将重建后的分段血管合并,得到完整的三维血管网格模型。
  4. 根据权利要求1所述的基于造影图像计算造影瞬时无波型比率和造影舒张期压力比率的方法,其特征在于,步骤S03中计算血流速度V 1的具体方法包括以下步骤:
    S31:获取指定的病人心率为H次/分钟,从造影图像信息中获取图像频率为S帧/秒,其帧数X的计算公式如下:X=(1÷(H÷60))×S;
    S32:通过一个心跳周期舒张期内图像所走过的帧数,在二维起始帧和结束帧对应的图像上分别取得一个心跳周期舒张期的起始点和结束点,然后通过起始点和结束点在三维血管网格模型中截取一个心跳周期舒张期的血管长度;
    S33:通过公式V 1=L÷P,计算得到血液流动速度V 1,L为血管长度,P为一个心跳周期舒张期所用的时间,P=X÷S。
  5. 根据权利要求1所述的基于造影图像计算造影瞬时无波型比率和造影舒张期压力比率的方法,其特征在于,所述步骤S04中计算冠脉入口到冠脉狭窄远端的压力降ΔP的具体方法如下:
    S41:基于血流速度与三维血管网格模型,求解不可压缩流的基本公式,对三维血管网格模型进行求解,用数值法求解连续性和Navier-Stokes方程:
    Figure PCTCN2019071206-appb-100001
    Figure PCTCN2019071206-appb-100002
    其中
    Figure PCTCN2019071206-appb-100003
    P,ρ,μ分别为流速、压力、血流密度、血流粘性;
    入口边界条件为血流速度,出口边界条件为out-flow边界条件;
    S42:计算沿着血管中心线从入口到下游各点的压力降ΔP。
PCT/CN2019/071206 2018-11-13 2019-01-10 基于造影图像计算造影瞬时无波型比率和造影舒张期压力比率的方法 WO2020098140A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811344074.1A CN111166316B (zh) 2018-11-13 2018-11-13 基于造影图像计算造影瞬时无波型比率和造影舒张期压力比率的方法
CN201811344074.1 2018-11-13

Publications (1)

Publication Number Publication Date
WO2020098140A1 true WO2020098140A1 (zh) 2020-05-22

Family

ID=70646071

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/071206 WO2020098140A1 (zh) 2018-11-13 2019-01-10 基于造影图像计算造影瞬时无波型比率和造影舒张期压力比率的方法

Country Status (2)

Country Link
CN (1) CN111166316B (zh)
WO (1) WO2020098140A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112690814B (zh) * 2020-11-06 2022-10-14 杭州阿特瑞科技有限公司 一种低误差的冠状动脉血流储备分数测量方法
CN113018553B (zh) * 2021-02-05 2023-01-13 深圳圣诺医疗设备股份有限公司 一种基于蠕动泵的冲洗压力检测方法、装置及冲洗吸引系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150105673A1 (en) * 2013-10-14 2015-04-16 Boston Scientific Scimed, Inc. Pressure sensing guidewire and methods for calculating fractional flow reserve
CN106327487A (zh) * 2016-08-18 2017-01-11 苏州润心医疗科技有限公司 基于x射线冠脉造影图像的冠状动脉血流储备分数计算方法
CN107580470A (zh) * 2015-01-15 2018-01-12 皇家飞利浦有限公司 瞬时流量储备‑计算机断层摄影
CN108242075A (zh) * 2018-01-05 2018-07-03 苏州润迈德医疗科技有限公司 一种基于x射线冠脉造影图像的多角度血管重建方法
CN108245178A (zh) * 2018-01-11 2018-07-06 苏州润迈德医疗科技有限公司 一种基于x射线冠脉造影图像的血液流动速度计算方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8548778B1 (en) * 2012-05-14 2013-10-01 Heartflow, Inc. Method and system for providing information from a patient-specific model of blood flow
US9424395B2 (en) * 2013-03-04 2016-08-23 Heartflow, Inc. Method and system for sensitivity analysis in modeling blood flow characteristics
WO2015164086A1 (en) * 2014-04-22 2015-10-29 Siemens Aktiengesellschaft Method and system for hemodynamic computation in coronary arteries
US9595089B2 (en) * 2014-05-09 2017-03-14 Siemens Healthcare Gmbh Method and system for non-invasive computation of hemodynamic indices for coronary artery stenosis
CN108550189A (zh) * 2018-05-03 2018-09-18 苏州润迈德医疗科技有限公司 基于造影图像和流体力学模型的微循环阻力指数计算方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150105673A1 (en) * 2013-10-14 2015-04-16 Boston Scientific Scimed, Inc. Pressure sensing guidewire and methods for calculating fractional flow reserve
CN107580470A (zh) * 2015-01-15 2018-01-12 皇家飞利浦有限公司 瞬时流量储备‑计算机断层摄影
CN106327487A (zh) * 2016-08-18 2017-01-11 苏州润心医疗科技有限公司 基于x射线冠脉造影图像的冠状动脉血流储备分数计算方法
CN108242075A (zh) * 2018-01-05 2018-07-03 苏州润迈德医疗科技有限公司 一种基于x射线冠脉造影图像的多角度血管重建方法
CN108245178A (zh) * 2018-01-11 2018-07-06 苏州润迈德医疗科技有限公司 一种基于x射线冠脉造影图像的血液流动速度计算方法

Also Published As

Publication number Publication date
CN111166316B (zh) 2023-03-21
CN111166316A (zh) 2020-05-19

Similar Documents

Publication Publication Date Title
WO2020098141A1 (zh) 基于造影图像计算造影血流储备分数和静息态压力比值的方法
WO2019169779A1 (zh) 一种无需血管扩张剂测量血流储备分数的方法
CN108186038B (zh) 基于动脉造影影像计算冠脉血流储备分数的系统
US20210361176A1 (en) Method for calculating instantaneous wave-free ratio based on pressure sensor and angiogram images
WO2020107667A1 (zh) 基于心肌血流量和ct图像的冠状动脉血流储备分数计算方法
JP7136493B2 (ja) 圧力センサと造影画像に基づき冠血流予備量比を計算する方法
US20210338088A1 (en) Method and Apparatus for Quantitative Hemodynamic Flow Analysis
Boettler et al. New aspects of the ventricular septum and its function: an echocardiographic study
WO2020057324A1 (zh) 测量微循环阻力指数的系统以及冠脉分析系统
WO2020057323A2 (zh) 测量微循环阻力指数的方法
WO2020098705A1 (zh) 基于造影图像获取静息态下血管评定参数的方法及装置
CN109065170A (zh) 获取血管压力差的方法及装置
CN108742587A (zh) 基于病史信息获取血流特征值的方法及装置
WO2020098140A1 (zh) 基于造影图像计算造影瞬时无波型比率和造影舒张期压力比率的方法
CN109009061A (zh) 基于血压修正获取血流特征值的计算方法及装置
WO2020098139A1 (zh) 基于造影图像计算瞬时无波型比率和静息态舒张期压力比率的方法
CN110393516A (zh) 基于影像和压力传感器计算微循环指标的方法装置及系统
CN113487535A (zh) 一种冠状动脉微循环检测及冠脉分析系统
CN108717874A (zh) 基于特定的生理参数获取血管压力值的方法及装置
Nolte et al. Validation of 4D-flow-based pressure difference estimators
CN109044324A (zh) 基于斑块位置修正血流特征值的方法及装置
WO2021046990A1 (zh) 基于影像和压力传感器计算微循环指标的方法装置及系统
CN116807514B (zh) 血管成像系统、方法、设备、电子设备及存储介质
EP4163925A1 (en) Determining lumen flow parameters
US20220101520A1 (en) Virtual Stress Test Based on Electronic Patient Data

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19883430

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19883430

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19883430

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03.12.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19883430

Country of ref document: EP

Kind code of ref document: A1