WO2020097811A1 - 一种全陶瓷高温太阳能选择性吸收涂层及其制备方法 - Google Patents

一种全陶瓷高温太阳能选择性吸收涂层及其制备方法 Download PDF

Info

Publication number
WO2020097811A1
WO2020097811A1 PCT/CN2018/115350 CN2018115350W WO2020097811A1 WO 2020097811 A1 WO2020097811 A1 WO 2020097811A1 CN 2018115350 W CN2018115350 W CN 2018115350W WO 2020097811 A1 WO2020097811 A1 WO 2020097811A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceramic
coating
layer
substrate
temperature
Prior art date
Application number
PCT/CN2018/115350
Other languages
English (en)
French (fr)
Inventor
黄宝陵
李洋
Original Assignee
香港科技大学深圳研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 香港科技大学深圳研究院 filed Critical 香港科技大学深圳研究院
Priority to PCT/CN2018/115350 priority Critical patent/WO2020097811A1/zh
Publication of WO2020097811A1 publication Critical patent/WO2020097811A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering

Definitions

  • the invention relates to solar heat utilization technology, in particular to an all-ceramic high-temperature solar selective absorption coating and a preparation method thereof.
  • Solar energy is a kind of clean, inexhaustible, global renewable energy.
  • the total reserves of solar energy are far greater than the sum of other renewable and non-renewable energy reserves on earth.
  • Common solar energy utilization technologies include photovoltaic power generation and solar thermal utilization technology. Compared with photovoltaic power generation, solar thermal utilization technology can realize the full bandwidth absorption of solar broadband radiation energy, so it has higher direct solar energy utilization efficiency.
  • the absorbed solar energy can be directly converted into heat energy for utilization, or it can be further converted into electric energy by thermoelectric power generation, thermoelectric effect, and thermovoltaic technology.
  • the core technology of solar thermal utilization is a solar selective absorption coating.
  • the ideal coating can achieve full absorption of ultraviolet-visible light-partial near-infrared light, but zero absorption of infrared light greater than the cut-off wavelength to reduce its own thermal radiation.
  • the efficiency of converting heat energy into electrical energy in a heat engine is proportional to the operating temperature, so a higher operating temperature means higher heat-electricity conversion efficiency, but also greatly improves the solar selective heat absorption coating High temperature stability requirements.
  • a type of selective absorption coating with a multi-layer thin film structure has the advantages of high heat absorption rate, strong infrared reflection and simple preparation process, and has great commercial application value on a large scale.
  • Such selective absorption coatings usually include bottom-up infrared reflective metal layers (Au, Ag, Al, Cu, etc.), absorption layer 1 (high absorption metals Ti, W, Ni, Cr, etc. or high absorption Metal nitrides, metal carbides, etc.), diffusion barrier layers, absorber layers 2 and multiple anti-reflection layers (Al 2 O 3 , Si 3 N 4 and SiO 2 etc.).
  • refractory metals such as W, Ta, Mo, Cr, and Ni are used as the bottom infrared reflective layer in selective absorption coatings used at high temperatures ( ⁇ 400 °C). Although these refractory metals have more than Au and Ag, etc. High thermal stability, but infrared reflectivity is far inferior to metals such as Au and Ag. Compared with alloys or compounds, the infrared reflective layer made of refractory metal is difficult to adjust the optical performance. In addition, under ultra-high temperature ( ⁇ 600 °C), the coating of this type of multilayer film structure shows obvious structural instability and the subsequent significant degradation of performance. A large drop in absorption selectivity is significantly reduced.
  • the main reason for the high temperature instability of this type of absorption coating is the delamination and structural deformation caused by the high temperature diffusion of metal elements and the different thermal expansion coefficients between the multilayer films.
  • Most multi-layer thin-film structure selective absorption coatings use double absorption layers, which on the one hand makes the preparation process more complicated, on the other hand, the increase in the number of film layers is not conducive to stability at high temperatures.
  • traditional absorption layer preparation uses Ar, N2 and O2 gases, and transition metal targets are used to prepare nitrogen oxides. The control process is relatively complicated.
  • the object of the present invention is to provide an all-ceramic high-temperature solar selective absorption coating and a preparation method thereof, to solve the technical problem of thermal stability of the existing metal-based multilayer film structure solar selective absorption coating; and to solve the existing The problem of low selectivity of refractory metal-based multilayer thin film structure solar selective absorption coatings.
  • An all-ceramic high-temperature solar selective absorption coating characterized in that it includes a ceramic infrared reflection layer, a ceramic absorption layer, a ceramic first anti-reflection layer and a ceramic second anti-reflection layer which are sequentially arranged on the substrate from inside to outside Floor.
  • the ceramic infrared reflective layer is any one of a transition metal nitride ZrN coating, a TiN coating, an HfN coating, and a TaN coating, and the thickness of the ceramic infrared reflective layer is greater than 30 nm.
  • the ceramic absorption layer is any one of ZrO x N y coating, TiO x N y coating, HfO x N y coating and TaO x N y coating, and the thickness of the ceramic absorption layer is greater than 30 nm, 0.5 ⁇ x ⁇ 1.5, 0.5 ⁇ y ⁇ 1.5.
  • the ceramic first anti-reflection layer is any one of a high refractive index TiO 2 coating, ZrO 2 coating and HfO 2 coating, and the thickness of the ceramic first anti-reflection layer is greater than 30 nm.
  • the ceramic second anti-reflection layer is any one of low-refractive-index Al 2 O 3 coating and SiO 2 coating, and the thickness of the ceramic second anti-reflection layer is greater than 30 nm.
  • a method for preparing an all-ceramic high-temperature solar selective absorption coating characterized in that it includes the following steps:
  • the ceramic infrared reflective layer is prepared by reactive magnetron sputtering on the substrate, and the reflection performance and thickness of the ceramic infrared reflective layer are achieved by adjusting the power of the magnetron sputtering machine, the substrate temperature, the reactive gas and the sputtering time Control, substrate selection stainless steel, nickel-based superalloy, silicon substrate and ceramic substrate;
  • the ceramic absorption layer is prepared on the ceramic infrared reflective layer by reactive magnetron sputtering, and the reflective performance of the ceramic infrared reflective layer is achieved by adjusting the power of the magnetron sputtering machine, the substrate temperature, the reactive gas and the sputtering time. Thickness control;
  • the ceramic first anti-reflection layer is prepared on the ceramic absorption layer by any one of magnetron sputtering, atomic layer deposition and chemical vapor deposition;
  • a ceramic second anti-reflection layer is prepared on the first anti-reflection layer by any one of magnetron sputtering, atomic layer deposition, and chemical vapor deposition.
  • the target material used for preparing the ceramic infrared reflective layer in step S1 is any metal target material selected from Zr, Ti, Hf and Ta.
  • the temperature of the substrate during the preparation process is 200-800 °C and the vacuum degree is higher than 1 ⁇ 10 -6 Torr; the reaction gas is Ar gas with purity ⁇ 99.99% and N 2 gas with purity ⁇ 99.99%.
  • the target material used for preparing the ceramic absorption layer in step S2 is any one of Zr, Ti, Hf, and Ta.
  • the temperature of the substrate during the preparation process is room temperature, and the degree of vacuum is 5 ⁇ 10 -5 -5 ⁇ 10 -6 Torr; the reaction gases are Ar gas with purity ⁇ 99.99% and N 2 gas with purity ⁇ 99.99%.
  • the target material selected in the process of preparing the ceramic first anti-reflection layer and the ceramic second anti-reflection layer in steps S3 and S4 is any one of Ti, Zr, Hf, Al, and Si.
  • the vacuum degree is higher than 1 ⁇ 10 -6 Torr, and the reaction gases are Ar gas with purity ⁇ 99.99% and O 2 gas with purity ⁇ 99.99%.
  • the thermal expansion coefficients of the ceramic infrared reflective layer prepared in step S1, the ceramic absorption layer prepared in step S2, and the ceramic first anti-reflection layer prepared in step S3 are similar.
  • the bottom infrared reflecting layer of the invention adopts high temperature resistant ceramics, its melting point is up to about 3000 °C, its high temperature stability is better than all refractory metals, and it has infrared reflecting ability comparable to high reflecting metals such as Au and Ag.
  • the atomic absorption between the layers of the absorptive absorption coating is small, and the coefficient of thermal expansion is close, which greatly improves the thermal stability of the solar selective absorption coating of the traditional multilayer thin film structure, and specifically includes the following advantages:
  • the coating has a high absorption rate (90-95%) for the broadband spectrum of sunlight (0.3-4 ⁇ m), and a low infrared radiation rate (15-25%) at an ultra-high temperature of 727 °C.
  • the ceramic infrared reflective layer has stronger reflection ability, and the atomic ratio of the metal element and the nitrogen element can be adjusted to control the reflection ability of different wave bands, and the ceramic has higher temperature stability. It is not easy to oxidize and the atom diffusion is weak.
  • the single-layer ceramic absorber layer is adopted, which simplifies the preparation process of the traditional multi-layer absorber layer and avoids the low thermal stability of the multi-layer absorber layer.
  • the ceramic absorber layer is prepared by room temperature DC magnetron sputtering under moderate vacuum, There is no need to pass O 2 and no high temperature, which further simplifies the preparation process.
  • FIG. 1 is a schematic structural diagram of an all-ceramic high-temperature solar selective absorption coating of the present invention.
  • An all-ceramic high-temperature solar selective absorption coating includes a ceramic infrared reflection layer 2, a ceramic absorption layer 3, and a ceramic first anti-reflection layer 4 which are sequentially arranged on the substrate 1 from inside to outside And ceramic second anti-reflection layer 5, ceramic infrared reflective layer 2 is any one of ZrN coating, TiN coating, HfN coating and TaN coating, ceramic infrared reflective layer 2 thickness is greater than 30 nm, ceramic absorption layer 3 It is any one of ZrO x N y coating, TiO x N y coating, HfO x N y coating and TaO x N y coating, the thickness of the ceramic absorption layer 3 is greater than 30 nm, 0.5 ⁇ x ⁇ 1.5, 0.5 ⁇ y ⁇ 1.5.
  • the ceramic first anti-reflection layer 4 is any one of high refractive index TiO 2 coating, ZrO 2 coating and HfO 2 coating, the ceramic first anti-reflection layer 4 has a thickness greater than 30 nm, and the ceramic second anti-reflection layer 5 is any one of Al 2 O 3 coating and SiO 2 coating with low refractive index, and the thickness of the ceramic second anti-reflection layer 5 is greater than 30 nm.
  • a method for preparing an all-ceramic high-temperature solar selective absorption coating characterized in that it includes the following steps:
  • the ceramic infrared reflective layer 2 is prepared on the substrate 1 by reactive magnetron sputtering, and the ceramic infrared reflective layer 2 is reflected by adjusting the power of the magnetron sputtering machine, the temperature of the substrate 1, the reactive gas and the sputtering time Control of performance and thickness;
  • the target material used for preparing the ceramic infrared reflective layer 2 in step S1 is any metal target selected from Zr, Ti, Hf and Ta, and the temperature of the substrate 1 during the preparation process is 200-800 °C,
  • the vacuum degree is higher than 1 ⁇ 10 -6 Torr
  • the reaction gas is Ar gas with purity ⁇ 99.99% and N 2 gas with purity ⁇ 99.99%
  • the substrate 1 is selected from stainless steel, nickel-based superalloy, silicon substrate and ceramic substrate;
  • a ceramic absorption layer 3 is prepared on the ceramic infrared reflective layer 2 by reactive magnetron sputtering.
  • the ceramic infrared reflective layer 2 is realized by adjusting the power of the magnetron sputtering machine, the temperature of the substrate 1, the reactive gas and the sputtering time
  • the reflection performance and thickness of the control; the target material used for preparing the ceramic absorption layer 3 in step S2 is any metal target of Zr, Ti, Hf and Ta.
  • the temperature of the substrate 1 is room temperature and the degree of vacuum is 5 ⁇ 10 -5 -5 ⁇ 10 -6 Torr; the reaction gas is Ar gas with purity ⁇ 99.99% and N 2 gas with purity ⁇ 99.99%, the ceramic infrared reflective layer 2 prepared in step S1 and the ceramic absorption prepared in step S2
  • the thermal expansion coefficients of layer 3 are similar.
  • the ceramic first anti-reflection layer 4 is prepared on the ceramic absorption layer 3 by any one of magnetron sputtering, atomic layer deposition and chemical vapor deposition;
  • a ceramic second anti-reflection layer 5 is prepared on the first anti-reflection layer 4 using any one of magnetron sputtering, atomic layer deposition, and chemical vapor deposition.
  • the target material selected in the process of preparing the ceramic first anti-reflection layer 4 and the ceramic second anti-reflection layer 5 in steps S3 and S4 is any one of Ti, Zr, Hf, Al, and Si.
  • the vacuum degree is higher than 1 ⁇ 10 -6 Torr, and the reaction gases are Ar gas with purity ⁇ 99.99% and O 2 gas with purity ⁇ 99.99%.
  • the substrate 1 is one of stainless steel, nickel-based superalloy, Si substrate, and ceramic substrate.
  • the ceramic infrared reflective layer 2 selects one of high temperature resistant transition metal nitrides ZrN, TiN, HfN and TaN.
  • ceramic infrared reflective layer 2 Using high temperature reactive magnetron sputtering method to prepare ceramic infrared reflective layer 2: Put the cleaned and dried substrate 1 into the rotatable substrate tray of the magnetron sputtering machine, select Zr, Ti, Hf and Ta A kind of metal target, the vacuum degree is higher than 1 ⁇ 10 -6 Torr, the reaction gas is high purity ( ⁇ 99.99%) Ar and high purity ( ⁇ 99.99%) N 2 , the substrate is heated to 200-800 °C, for high temperature reactive sputtering, the thickness of the ceramic infrared reflective layer 2 should be greater than 30 nm. The reflection performance and thickness of the ceramic infrared reflective layer 2 can be controlled by adjusting the power, substrate temperature, Ar / N 2 and sputtering time.
  • the ceramic absorption layer 3 is selected from one of high temperature resistant transition metal oxynitride ZrO x N y , TiO x N y , HfO x N y and TaO x N y .
  • Adopt room temperature magnetron sputtering method to prepare ceramic absorption layer 3 Select one metal among Zr, Ti, Hf and Ta as the target, pump the vacuum degree to 5 ⁇ 10 -5 -5 ⁇ 10 -6 Torr, reaction gas It is high-purity ( ⁇ 99.99%) Ar and high-purity ( ⁇ 99.99%) N 2. Under this vacuum condition, no additional O 2 is needed, the substrate temperature is room temperature, sputtering is performed, and the thickness of the ceramic absorber layer 3 is greater than 30 nm By adjusting the power, Ar / N 2 and sputtering time, the reflection performance and thickness of the ceramic absorption layer 3 can be controlled.
  • the ceramic first anti-reflection layer 4 is one of the high refractive index transition metal oxides TiO 2 , ZrO 2 , and HfO 2 , and the thermal expansion coefficient is close to that of the ceramic absorption layer 3 used; the ceramic second The anti-reflection layer 5 is one of oxides of low refractive index Al 2 O 3 and SiO 2 .
  • the reflective layer 5; the ceramic first anti-reflection layer 4 and the ceramic second anti-reflection layer 5 can also be prepared by atomic layer deposition or chemical vapor deposition.
  • the prepared all-ceramic high-temperature solar selective absorption coating has an absorption rate of 92% and an emissivity of 23% at an ultra-high temperature of 727 °C.

Abstract

一种全陶瓷高温太阳能选择性吸收层,包括在基底(1)上由内而外顺次设置的陶瓷红外反射层(2)、陶瓷吸收层(3)、陶瓷第一减反射层(4)和陶瓷第二减反射层(5)。还公开了一种全陶瓷高温太阳能选择性吸收层的制备方法。

Description

一种全陶瓷高温太阳能选择性吸收涂层及其制备方法 技术领域
本发明涉及太阳能热利用技术,具体涉及一种全陶瓷高温太阳能选择性吸收涂层及其制备方法。
背景技术
21世纪以来,传统化石燃料所带来的全球能源危机和生态环境恶化已经引起了各国政府和科研工作者的极大重视。寻找可再生能源来代替化石燃料被认为是一种一箭双雕的办法。太阳能是一种清洁的,取之不尽用之不竭的,全球覆盖的可再生能源。太阳能的总储量远远大于地球上其它可再生能源和不可再生能源储量之和。常见的太阳能利用技术有光伏发电和太阳能热利用技术。和光伏发电相比,太阳能热利用技术能实现对太阳宽带辐射能的全带宽吸收,因此具有更高的太阳能直接利用效率。被吸收的太阳能可以直接转换为热能被利用,也可以进一步通过热机发电,热电效应,和热伏技术被转换为电能而被利用。
太阳能热利用的核心技术是太阳能选择性吸收涂层,理想涂层可以实现对紫外-可见光-部分近红外光的全吸收,但是对大于截止波长的红外光零吸收从而降低自身热辐射。根据卡诺效率,热机中热能转换为电能的效率与工作温度成正比,因此更高的工作温度意味着更高的热-电转换效率,但也大大地提高了对太阳能选择性热吸收涂层高温稳定性的要求。截至目前,有至少六类选择性吸收涂层被用于太阳能热利用技术。其中,一类多层薄膜结构的选择性吸收涂层具有较高的热吸收率、较强的红外反射和简单的制备工艺等优点,具备极大的商业化大规模应用价值。这类选择性吸收涂层通常自下而上包括:底层的红外反射金属层(Au,Ag,Al和Cu等)、吸收层1(高吸收的金属Ti,W,Ni和Cr等或者高吸收的金属氮化物,金属碳化物等)、扩散阻隔层、吸收层2和多层减反射层(Al 2O 3,Si 3N 4和SiO 2等)。
其中应用于高温(≥400 ℃)的选择性吸收涂层多采用难熔金属如W,Ta,Mo,Cr和Ni等作为底层红外反射层,这类难熔金属虽然比Au和Ag等具有更高的热稳定性,但红外反射率远不如Au和Ag等金属。和合金或者化合物相比,难熔金属制成的红外反射层,光学性能难以调节。另外在超高温下(≥600 ℃),这类多层薄膜结构的涂层显现出明显的结构不稳定和随之而来的性能大幅退化,目前大多数涂层在600 ℃左右就吸收性能极大的下降,吸收选择性显著的降低。导致这类吸收涂层高温不稳定的主要原因是金属元素的高温扩散和多层薄膜之间热膨胀系数不同带来的分层和结构变形。多数多层薄膜结构的选择性吸收涂层采用双吸收层,一方面使制备工艺更加复杂,另一方面膜层数量的增加不利于高温下的稳定。最后,传统的吸收层制备采用Ar,N2和O2三种气体,用过渡金属靶材制备氮氧化物,控制工艺较为复杂。
技术问题
本发明的目的是提供一种全陶瓷高温太阳能选择性吸收涂层及其制备方法,要解决现有金属基多层薄膜结构的太阳能选择性吸收涂层的热稳定性技术问题;并解决现有难熔金属基多层薄膜结构的太阳能选择性吸收涂层的低选择性的问题。
技术解决方案
一种全陶瓷高温太阳能选择性吸收涂层,其特征在于,包括在基底上由内而外顺次的设置的陶瓷红外反射层、陶瓷吸收层、陶瓷第一减反射层和陶瓷第二减反射层。
进一步优选地,所述陶瓷红外反射层为过渡金属氮化物ZrN涂层、TiN涂层、HfN涂层和TaN涂层中的任意一种,所述陶瓷红外反射层厚度大于30 nm。
进一步地,所述陶瓷吸收层为ZrO xN y涂层、TiO xN y涂层、HfO xN y涂层和TaO xN y涂层中的任意一种,所述陶瓷吸收层的厚度大于30 nm,0.5<x<1.5,0.5<y<1.5。
进一步地,所述陶瓷第一减反射层为高折射率的TiO 2涂层、ZrO 2涂层和HfO 2涂层中的任意一种,所述陶瓷第一减反射层厚度大于30 nm。
进一步地,所述陶瓷第二减反射层为低折射率的Al 2O 3涂层和SiO 2涂层中的任意一种,所述陶瓷第二减反射层的厚度大于30 nm。
一种全陶瓷高温太阳能选择性吸收涂层的制备方法,其特征在于,包括以下步骤:
S1、在基底上采用反应磁控溅射的方式制备陶瓷红外反射层,通过调节磁控溅射机功率、基底温度、反应气体和溅射时间来实现对陶瓷红外反射层的反射性能和厚度的控制,基底选取不锈钢,镍基高温合金,硅基底和陶瓷基底;
S2、在陶瓷红外反射层上采用反应磁控溅射的方式制备陶瓷吸收层,通过调节磁控溅射机功率、基底温度、反应气体和溅射时间来实现对陶瓷红外反射层的反射性能和厚度的控制;
S3、在陶瓷吸收层上采用磁控溅射、原子层沉积和化学气相沉积中的任意一种方法制备陶瓷第一减反射层;
S4、在第一减反射层上采用磁控溅射、原子层沉积和化学气相沉积中的任意一种方法制备陶瓷第二减反射层。
进一步优选地,步骤   S1中制备陶瓷红外反射层选用的靶材为取Zr、Ti、Hf和Ta中的任意一种金属靶材,制备过程中基底的温度为200-800 ℃,真空度高于1×10 -6 Torr;反应气体为纯度≥99.99%的Ar气和纯度≥99.99%的N 2气。
进一步地,步骤     S2中制备陶瓷吸收层选用的靶材为Zr、Ti、Hf和Ta中的任意一种金属靶材,制备过程中基底的温度为室温,真空度为5×10 -5-5×10 -6 Torr;反应气体为纯度≥99.99%的Ar气和纯度≥99.99%的N 2气。
此外,制备步骤S3和S4中的陶瓷第一减反射层和陶瓷第二减反射层的过程中选用的靶材为Ti、Zr、Hf、Al和Si中的任意一种靶材,制备过程中真空度高于1×10 -6 Torr,反应气体为纯度≥99.99%的Ar气和纯度≥99.99%的O 2气。
更加优选地,步骤S1中制备的陶瓷红外反射层、步骤S2制备的陶瓷吸收层和步骤S3中制备的陶瓷第一减反射层三者的热膨胀系数相近。
有益效果
本发明底层红外反射层采用耐高温陶瓷,其熔点高达约3000 ℃,高温稳定性优于所有难熔金属,且具有和Au和Ag等高反射金属相当的红外反射能力,另外,全陶瓷的选择性吸收涂层各膜层之间原子扩散少,热膨胀系数接近,极大地改善了传统多层薄膜结构的太阳能选择性吸收涂层的热稳定性,具体地包括以下优点:
(1) 采用了全陶瓷的薄膜结构,各层过渡金属陶瓷涂层之间的热膨胀系数接近,因此有效解决了高温下的膜分层、变形和应力等问题,在727 ℃的高温下表现出较高的稳定性。
(2) 涂层对太阳光宽带谱(0.3-4 μm)具有高的吸收率(90-95%),在727 ℃的超高温下,具有低的红外辐射率(15-25%)。
(3) 相比于难熔金属,陶瓷红外反射层的反射能力更强,且调节金属元素与氮元素的原子比,可实现对不同波段的反射能力的操控,陶瓷的高温稳定性更强,不易氧化,原子扩散较弱。
(4) 采用了单层陶瓷吸收层,简化了传统多层吸收层的制备工艺并避免了多层吸收层的低热稳定性,采用中等真空度下的室温直流磁控溅射制备陶瓷吸收层,无需通O 2,无需高温,进一步简化了制备工艺。
附图说明
图1为本发明一种全陶瓷高温太阳能选择性吸收涂层的结构示意图。
附图标记:1.基底,2.陶瓷红外反射层,3.陶瓷吸收层,4.陶瓷第一减反射层,5.陶瓷第二减反射层。
本发明的实施方式
为了对本发明的技术特征、目的和效果有更加清楚的理解,现对照附图详细说明本发明的具体实施方式。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
一种全陶瓷高温太阳能选择性吸收涂层,如图1所示,包括在基底1上由内而外顺次的设置的陶瓷红外反射层2、陶瓷吸收层3、陶瓷第一减反射层4和陶瓷第二减反射层5,陶瓷红外反射层2为ZrN涂层、TiN涂层、HfN涂层和TaN涂层中的任意一种,陶瓷红外反射层2厚度大于30 nm,陶瓷吸收层3为ZrO xN y涂层、TiO xN y涂层、HfO xN y涂层和TaO xN y涂层中的任意一种,陶瓷吸收层3的厚度大于30 nm,0.5<x<1.5,0.5<y<1.5。陶瓷第一减反射层4为高折射率的TiO 2涂层、ZrO 2涂层和HfO 2涂层中的任意一种,陶瓷第一减反射层4厚度大于30 nm,陶瓷第二减反射层5为低折射率的Al 2O 3涂层和SiO 2涂层中的任意一种,陶瓷第二减反射层5的厚度大于30 nm。
一种全陶瓷高温太阳能选择性吸收涂层的制备方法,其特征在于,包括以下步骤:
S1、在基底1上采用反应磁控溅射的方式制备陶瓷红外反射层2,通过调节磁控溅射机功率、基底1温度、反应气体和溅射时间来实现对陶瓷红外反射层2的反射性能和厚度的控制;步骤   S1中制备陶瓷红外反射层2选用的靶材为取Zr、Ti、Hf和Ta中的任意一种金属靶材,制备过程中基底1的温度为200-800 ℃,真空度高于1×10 -6 Torr,反应气体为纯度≥99.99%的Ar气和纯度≥99.99%的N 2气,基底1选取不锈钢,镍基高温合金,硅基底和陶瓷基底;
S2、在陶瓷红外反射层2上采用反应磁控溅射的方式制备陶瓷吸收层3,通过调节磁控溅射机功率、基底1温度、反应气体和溅射时间来实现对陶瓷红外反射层2的反射性能和厚度的控制;步骤   S2中制备陶瓷吸收层3选用的靶材为Zr、Ti、Hf和Ta中的任意一种金属靶材,制备过程中基底1的温度为室温,真空度为5×10 -5-5×10 -6 Torr;反应气体为纯度≥99.99%的Ar气和纯度≥99.99%的N 2气,步骤S1中制备的陶瓷红外反射层2和步骤S2制备的陶瓷吸收层3的热膨胀系数相近。
S3、在陶瓷吸收层3上采用磁控溅射、原子层沉积和化学气相沉积中的任意一种方法制备陶瓷第一减反射层4;
S4、在第一减反射层4上采用磁控溅射、原子层沉积和化学气相沉积中的任意一种方法制备陶瓷第二减反射层5。制备步骤S3和S4中的陶瓷第一减反射层4和陶瓷第二减反射层5的过程中选用的靶材为Ti、Zr、Hf、Al和Si中的任意一种靶材,制备过程中真空度高于1×10 -6Torr,反应气体为纯度≥99.99%的Ar气和纯度≥99.99%的O 2气。
具体地,本发明方法还包括以下内容,基底1为不锈钢,镍基高温合金,Si基底和陶瓷基底中的一种。
1、陶瓷红外反射层2选取耐高温过渡金属氮化物ZrN、TiN、HfN和TaN中的一种。
2、采用高温反应磁控溅射方法制备陶瓷红外反射层2:将清洗干净并烘干的基底1,放入磁控溅射机的可旋转基底托盘上,选取Zr,Ti,Hf和Ta中的一种金属靶材,将真空度抽至高于1×10 -6 Torr,反应气体为高纯(≥99.99%)Ar和高纯(≥99.99%)N 2,基底加热到200-800 ℃,进行高温反应溅射,陶瓷红外反射层2的厚度应大于30 nm,可通过调节功率、基底温度、Ar/N 2和溅射时间来实现对陶瓷红外反射层2的反射性能和厚度的控制。
3、陶瓷吸收层3选取耐高温过渡金属氮氧化物ZrO xN y,TiO xN y,HfO xN y和TaO xN y中的一种。
采用室温磁控溅射方法制备陶瓷吸收层3:选取Zr,Ti,Hf和Ta中的一种金属作为靶材,将真空度抽至5×10 -5-5×10 -6 Torr,反应气体为高纯(≥99.99%)Ar和高纯(≥99.99%)N 2,此真空条件下,无需额外通入O 2,基底温度为室温,进行溅射,陶瓷吸收层3的厚度大于30 nm,可通过调节功率、Ar/N 2和溅射时间来实现对陶瓷吸收层3的反射性能和厚度的控制。
4、陶瓷第一减反射层4是高折射率的过渡金属氧化物TiO 2,ZrO 2,和HfO 2中的一种,且热膨胀系数接近所采用的陶瓷吸收层3的热膨胀系数;陶瓷第二减反射层5是低折射率的氧化物Al 2O 3和SiO 2中的一种。
5、采用反应磁控溅射方法制备陶瓷第一减反射层4和陶瓷第二减反射层5,选取Ti,Zr,Hf,Al和Si中的一种靶材,真空度抽至高于1×10 -6 Torr,反应气体为高纯(≥99.99%)Ar和高纯(≥99.99%)O 2,依次溅射大于30 nm的陶瓷第一减反射层4和大于30 nm的陶瓷第二减反射层5;陶瓷第一减反射层4和陶瓷第二减反射层5也可采用原子层沉积或化学气相沉积方法制备。
实施例1
以自下而上依次为TiN/TiO 0.8N 0.9/ZrO 2/SiO 2的选择性吸收涂层为例。将清洗干净并烘干的Si基底1,放入磁控溅射机的可旋转基底托盘上,选取Ti金属作为靶材,将真空度抽至高于1×10 -6 Torr,通入150 sccm高纯(≥99.99%)Ar和100 sccm高纯(≥99.99%)N 2,保持工作气压2.2×10 -3 Torr,基底加热到220 ℃,溅射功率10 kW,进行高温直流反应溅射,得到100 nm厚的陶瓷红外反射层2;将样品转移到另外一台溅射机内,选取Ti金属作为靶材,将真空度抽至1×10 -5 Torr,通入20 sccm高纯(≥99.99%)Ar和5 sccm高纯(≥99.99%)N 2,此真空条件下,无需额外通入O 2,溅射功率130 W,进行室温直流溅射,得到40 nm厚的TiO 0.8N 0.9陶瓷吸收涂层3;采用原子层沉积方法制备35 nm ZrO 2作为陶瓷第一减反射层4,沉积温度为200 ℃;采用化学气相沉积方法制备100 nm厚的SiO 2作为陶瓷第二减反射层5,沉积温度为300 ℃。制备得到的全陶瓷高温太阳能选择性吸收涂层的吸收率为91%,在超高温727 ℃下的发射率仅为16%。
实施例2
以自下而上依次为TiN/TiO 1N 0.8/ZrO 2/SiO 2的选择性吸收涂层为例。将清洗干净并烘干的Si基底1,放入磁控溅射机的可旋转基底托盘上,选取Ti金属作为靶材,将真空度抽至高于1×10 -6 Torr,通入150 sccm高纯(≥99.99%)Ar和100 sccm高纯(≥99.99%)N 2,保持工作气压2.2×10 -3 Torr,基底加热到220 ℃,溅射功率10 kW,进行高温直流反应溅射,得到100 nm厚的陶瓷红外反射层2;将样品转移到另外一台溅射机内,选取Ti金属作为靶材,将真空度抽至1×10 -5 Torr,通入10 sccm高纯(≥99.99%)Ar和15 sccm高纯(≥99.99%)N 2,此真空条件下,无需额外通入O 2,溅射功率75 W,进行室温直流溅射,得到50 nm厚的TiO 1N 0.8陶瓷吸收涂层3;采用原子层沉积方法制备35 nm ZrO 2作为陶瓷第一减反射层4,沉积温度为200 ℃;采用化学气相沉积方法制备100 nm厚的SiO 2作为陶瓷第二减反射层5,沉积温度为300 ℃。制备得到的全陶瓷高温太阳能选择性吸收涂层的吸收率为90%,在超高温727 ℃下的发射率为19%。
实施例3
以自下而上依次为TiN/TiO 1N 0.8/ZrO 2/SiO 2的选择性吸收涂层为例。将清洗干净并烘干的石英基底1,放入磁控溅射机的可旋转基底托盘上,选取Ti金属作为靶材,将真空度抽至高于1×10 -6 Torr,通入150 sccm高纯(≥99.99%)Ar和100 sccm高纯(≥99.99%)N 2,保持工作气压2.2×10 -3 Torr,基底加热到500 ℃,溅射功率10 kW,进行高温直流反应溅射,得到100 nm厚的陶瓷红外反射层2;将样品转移到另外一台溅射机内,选取Ti金属作为靶材,将真空度抽至1×10 -5 Torr,通入10 sccm高纯(≥99.99%)Ar和15 sccm高纯(≥99.99%)N 2,此真空条件下,无需额外通入O 2,溅射功率75 W,进行室温直流溅射,得到40 nm厚的TiO 1N 0.8陶瓷吸收涂层3;采用原子层沉积方法制备45 nm ZrO 2作为陶瓷第一减反射层4,沉积温度为200 ℃;采用磁控溅射方法制备100 nm厚的SiO 2作为陶瓷第二减反射层5,选取Si作为靶材,真空度抽至高于1×10 -6 Torr,反应气体为高纯(≥99.99%)Ar和高纯(≥99.99%)O 2。制备得到的全陶瓷高温太阳能选择性吸收涂层的吸收率为92%,在超高温727 ℃下的发射率为23%。
上面结合附图对本发明的实施例进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可做出很多形式,这些均属于本发明的保护之内。

Claims (9)

  1. 一种全陶瓷高温太阳能选择性吸收涂层,其特征在于,包括在基底(1)上由内而外顺次的设置的陶瓷红外反射层(2)、陶瓷吸收层(3)、陶瓷第一减反射层(4)和陶瓷第二减反射层(5)。
  2. 如权利要求1所述的一种全陶瓷高温太阳能选择性吸收涂层,其特征在于,所述陶瓷红外反射层(2)为ZrN涂层、TiN涂层、HfN涂层和TaN涂层中的任意一种,所述陶瓷红外反射层(2)厚度大于30 nm。
  3. 如权利要求1所述的一种全陶瓷高温太阳能选择性吸收涂层,其特征在于,所述陶瓷吸收层(3)为ZrO xN y涂层、TiO xN y涂层、HfO xN y涂层和TaO xN y涂层中的任意一种,所述陶瓷吸收层(3)的厚度大于30 nm,0.5<x<1.5, 0.5<y<1.5。
  4. 如权利要求1所述的一种全陶瓷高温太阳能选择性吸收涂层,其特征在于,所述陶瓷第一减反射层(4)为高折射率的TiO 2涂层、ZrO 2涂层, ZrO 2涂层和HfO 2涂层中的任意一种,所述陶瓷第一减反射层(4)厚度大于30 nm。
  5. 如权利要求1所述的一种全陶瓷高温太阳能选择性吸收涂层,其特征在于,所述陶瓷第二减反射层(5)为低折射率的Al 2O 3涂层和SiO 2涂层中的任意一种,所述陶瓷第二减反射层(5)的厚度大于30 nm。
  6. 如权利要求1所述的一种全陶瓷高温太阳能选择性吸收涂层的制备方法,其特征在于,包括以下步骤:
    S1、在基底(1)上采用反应磁控溅射的方式制备陶瓷红外反射层(2),通过调节磁控溅射机功率、基底(1)温度、反应气体和溅射时间来实现对陶瓷红外反射层(2)的反射性能和厚度的控制,基底(1)选取金属,硅基底和石英陶瓷基底中的任意一种;
    S2、在陶瓷红外反射层(2)上采用反应磁控溅射的方式制备陶瓷吸收层(3),通过调节磁控溅射机功率、基底(1)温度、反应气体和溅射时间来实现对陶瓷红外反射层(3)的反射性能和厚度的控制;
    S3、在陶瓷吸收层(3)上采用磁控溅射、原子层沉积和化学气相沉积中的任意一种方法制备陶瓷第一减反射层(4);
    S4、在第一减反射层(4)上采用磁控溅射、原子层沉积和化学气相沉积中的任意一种方法制备陶瓷第二减反射层(5)。
  7. 如权利要求6所述的一种全陶瓷高温太阳能选择性吸收涂层的制备方法,其特征在于:步骤 S1中制备陶瓷红外反射层(2)选用的靶材为取Zr、Ti、Hf和Ta中的任意一种金属靶材,制备过程中基底(1)的温度为200-800 ℃,真空度高于1×10 -6 Torr;反应气体为纯度≥99.99%的Ar气和纯度≥99.99%的N 2气。
  8. 如权利要求6所述的一种全陶瓷高温太阳能选择性吸收涂层的制备方法,其特征在于:步骤 S2中制备陶瓷吸收层(3)选用的靶材为Zr、Ti、Hf和Ta中的任意一种金属靶材,制备过程中基底(1)的温度为室温,真空度为5×10 -5-5×10 -6 Torr;反应气体为纯度≥99.99%的Ar气和纯度≥99.99%的N 2气。
  9. 如权利要求6所述的一种全陶瓷高温太阳能选择性吸收涂层的制备方法,其特征在于:步骤S1中制备的陶瓷红外反射层(2)、步骤S2制备的陶瓷吸收层(3)和步骤S3中制备的陶瓷第一减反射层(4)三者的热膨胀系数相近。
     
PCT/CN2018/115350 2018-11-14 2018-11-14 一种全陶瓷高温太阳能选择性吸收涂层及其制备方法 WO2020097811A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/115350 WO2020097811A1 (zh) 2018-11-14 2018-11-14 一种全陶瓷高温太阳能选择性吸收涂层及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/115350 WO2020097811A1 (zh) 2018-11-14 2018-11-14 一种全陶瓷高温太阳能选择性吸收涂层及其制备方法

Publications (1)

Publication Number Publication Date
WO2020097811A1 true WO2020097811A1 (zh) 2020-05-22

Family

ID=70731045

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/115350 WO2020097811A1 (zh) 2018-11-14 2018-11-14 一种全陶瓷高温太阳能选择性吸收涂层及其制备方法

Country Status (1)

Country Link
WO (1) WO2020097811A1 (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008030364A2 (en) * 2006-09-07 2008-03-13 Guardian Industries Corp. Solar cell with antireflective coating comprising metal fluoride and/or silica and method of making same
CN101169485A (zh) * 2006-10-24 2008-04-30 北京航空航天大学 一种新型太阳选择性吸收涂层
CN101598468A (zh) * 2009-06-25 2009-12-09 兰州大成自动化工程有限公司 高性能多层复合太阳选择性吸收涂层及其制备方法
CN201373612Y (zh) * 2009-02-17 2009-12-30 东莞市康达机电工程有限公司 太阳能高温选择性吸收膜
CN101793437A (zh) * 2009-12-31 2010-08-04 沈阳百乐真空技术有限公司 多用途太阳光谱选择性吸收涂层及其制备方法
CN101818328A (zh) * 2010-04-22 2010-09-01 常州博士新能源科技有限公司 多层复合太阳能选择性吸收镀层的制备方法
CN102121757A (zh) * 2010-01-28 2011-07-13 北京有色金属研究总院 一种非真空太阳光谱选择性吸收涂层及其制备方法
CN102449779A (zh) * 2009-03-31 2012-05-09 Lg伊诺特有限公司 太阳能电池设备及其制造方法
CN104006560A (zh) * 2014-05-28 2014-08-27 北京天瑞星光热技术有限公司 一种WOx/ZrOx高温太阳能选择性吸收涂层及其制备方法
CN104633972A (zh) * 2013-12-09 2015-05-20 康雪慧 一种采用渐变减反射层的选择性涂层及其制备方法
CN107270564A (zh) * 2016-04-07 2017-10-20 北京有色金属研究总院 一种太阳光热吸收涂层

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008030364A2 (en) * 2006-09-07 2008-03-13 Guardian Industries Corp. Solar cell with antireflective coating comprising metal fluoride and/or silica and method of making same
CN101169485A (zh) * 2006-10-24 2008-04-30 北京航空航天大学 一种新型太阳选择性吸收涂层
CN201373612Y (zh) * 2009-02-17 2009-12-30 东莞市康达机电工程有限公司 太阳能高温选择性吸收膜
CN102449779A (zh) * 2009-03-31 2012-05-09 Lg伊诺特有限公司 太阳能电池设备及其制造方法
CN101598468A (zh) * 2009-06-25 2009-12-09 兰州大成自动化工程有限公司 高性能多层复合太阳选择性吸收涂层及其制备方法
CN101793437A (zh) * 2009-12-31 2010-08-04 沈阳百乐真空技术有限公司 多用途太阳光谱选择性吸收涂层及其制备方法
CN102121757A (zh) * 2010-01-28 2011-07-13 北京有色金属研究总院 一种非真空太阳光谱选择性吸收涂层及其制备方法
CN101818328A (zh) * 2010-04-22 2010-09-01 常州博士新能源科技有限公司 多层复合太阳能选择性吸收镀层的制备方法
CN104633972A (zh) * 2013-12-09 2015-05-20 康雪慧 一种采用渐变减反射层的选择性涂层及其制备方法
CN104006560A (zh) * 2014-05-28 2014-08-27 北京天瑞星光热技术有限公司 一种WOx/ZrOx高温太阳能选择性吸收涂层及其制备方法
CN107270564A (zh) * 2016-04-07 2017-10-20 北京有色金属研究总院 一种太阳光热吸收涂层

Similar Documents

Publication Publication Date Title
JP5229075B2 (ja) 広帯域反射鏡
JP4565105B2 (ja) 太陽電池用の光学薄膜およびその製造方法
US8318329B2 (en) Radiation-selective absorber coating, absorber tube and process for production thereof
CN201218622Y (zh) 一种太阳能选择性吸收涂层
CN102278833A (zh) 一种耐高温的选择性吸收涂层及制造方法
US20150316289A1 (en) Solar spectrum selective absorption coating and its manufacturing method
CN106884145B (zh) 一种太阳光谱选择性吸收涂层及其制备方法
WO2014007218A1 (ja) 光選択吸収膜、集熱管および太陽熱発電装置
CN104976802A (zh) 一种太阳光谱选择性吸收涂层及其制备方法
WO2013141180A1 (ja) 光選択吸収膜、集熱管、および太陽熱発電装置
EP2995882B1 (en) Solar-thermal conversion member, solar-thermal conversion stack, solar-thermal conversion device, and solar-thermal power generating device
CN103884122A (zh) 一种太阳能光热转换集热器透明热镜及其制备方法
CN1512119A (zh) 一种太阳能选择性吸收涂层及其制备方法
CN110643942A (zh) 一种光谱选择性高温太阳能吸收涂层及其制备方法
CN109338295B (zh) 一种二硼化铪-二氧化铪基高温太阳能吸收涂层及其制备方法
CN109457219B (zh) 一种中低温太阳光谱选择性吸收涂层及其制备方法
WO2020097811A1 (zh) 一种全陶瓷高温太阳能选择性吸收涂层及其制备方法
CN102734961A (zh) 一种太阳能中高温选择性吸收涂层
CN116123741A (zh) 一种用于槽式热发电高温真空集热管的太阳光谱选择性吸收涂层及其制备方法
CN104034072B (zh) 太阳光谱选择性吸收涂层及其制备方法以及应用
CN103029365A (zh) 一种中高温太阳能选择性吸收涂层
CN106322799A (zh) 一种中低真空环境使用的太阳光谱选择性吸热涂层
US20230349595A1 (en) Spectrally selective solar absorber coating
Kondaiah et al. Fabrication of spectrally selective tandem stack of HfZrC/HfZrCN/HfZrON/HfZrO by reactive magnetron sputtering for CSP applications
CN109883073B (zh) 准光学微腔结构太阳光谱选择性吸收涂层及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18940406

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18940406

Country of ref document: EP

Kind code of ref document: A1