WO2020096281A1 - 알긴산 기반의 주입형 수화젤 시스템 - Google Patents

알긴산 기반의 주입형 수화젤 시스템 Download PDF

Info

Publication number
WO2020096281A1
WO2020096281A1 PCT/KR2019/014682 KR2019014682W WO2020096281A1 WO 2020096281 A1 WO2020096281 A1 WO 2020096281A1 KR 2019014682 W KR2019014682 W KR 2019014682W WO 2020096281 A1 WO2020096281 A1 WO 2020096281A1
Authority
WO
WIPO (PCT)
Prior art keywords
agent
calcium
solution
alginate
injection
Prior art date
Application number
PCT/KR2019/014682
Other languages
English (en)
French (fr)
Inventor
최용두
이선숙
김현진
손대경
김석기
김영우
류근원
윤홍만
Original Assignee
국립암센터
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 국립암센터 filed Critical 국립암센터
Priority to US17/290,906 priority Critical patent/US20210369875A1/en
Priority to CN201980072192.8A priority patent/CN112969479A/zh
Priority to JP2021523782A priority patent/JP7312822B2/ja
Priority to EP19882937.6A priority patent/EP3878476A4/en
Publication of WO2020096281A1 publication Critical patent/WO2020096281A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/4151,2-Diazoles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0013Luminescence
    • A61K49/0017Fluorescence in vivo
    • A61K49/005Fluorescence in vivo characterised by the carrier molecule carrying the fluorescent agent
    • A61K49/0054Macromolecular compounds, i.e. oligomers, polymers, dendrimers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/39Markers, e.g. radio-opaque or breast lesions markers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/63Compounds containing para-N-benzenesulfonyl-N-groups, e.g. sulfanilamide, p-nitrobenzenesulfonyl hydrazide
    • A61K31/635Compounds containing para-N-benzenesulfonyl-N-groups, e.g. sulfanilamide, p-nitrobenzenesulfonyl hydrazide having a heterocyclic ring, e.g. sulfadiazine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7028Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
    • A61K31/7034Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
    • A61K31/704Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin attached to a condensed carbocyclic ring system, e.g. sennosides, thiocolchicosides, escin, daunorubicin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0013Luminescence
    • A61K49/0017Fluorescence in vivo
    • A61K49/0019Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules
    • A61K49/0021Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules the fluorescent group being a small organic molecule
    • A61K49/0032Methine dyes, e.g. cyanine dyes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0013Luminescence
    • A61K49/0017Fluorescence in vivo
    • A61K49/0019Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules
    • A61K49/0021Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules the fluorescent group being a small organic molecule
    • A61K49/0032Methine dyes, e.g. cyanine dyes
    • A61K49/0034Indocyanine green, i.e. ICG, cardiogreen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0013Luminescence
    • A61K49/0017Fluorescence in vivo
    • A61K49/005Fluorescence in vivo characterised by the carrier molecule carrying the fluorescent agent
    • A61K49/0056Peptides, proteins, polyamino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0063Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres
    • A61K49/0069Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres the agent being in a particular physical galenical form
    • A61K49/0073Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres the agent being in a particular physical galenical form semi-solid, gel, hydrogel, ointment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/04X-ray contrast preparations
    • A61K49/0433X-ray contrast preparations containing an organic halogenated X-ray contrast-enhancing agent
    • A61K49/0438Organic X-ray contrast-enhancing agent comprising an iodinated group or an iodine atom, e.g. iopamidol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/04X-ray contrast preparations
    • A61K49/0433X-ray contrast preparations containing an organic halogenated X-ray contrast-enhancing agent
    • A61K49/0447Physical forms of mixtures of two different X-ray contrast-enhancing agents, containing at least one X-ray contrast-enhancing agent which is a halogenated organic compound
    • A61K49/0457Semi-solid forms, ointments, gels, hydrogels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/18Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
    • A61K49/1803Semi-solid preparations, e.g. ointments, gels, hydrogels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/18Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
    • A61K49/1806Suspensions, emulsions, colloids, dispersions
    • A61K49/1809Micelles, e.g. phospholipidic or polymeric micelles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/18Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
    • A61K49/1806Suspensions, emulsions, colloids, dispersions
    • A61K49/1812Suspensions, emulsions, colloids, dispersions liposomes, polymersomes, e.g. immunoliposomes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/18Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
    • A61K49/1818Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • A61K9/0024Solid, semi-solid or solidifying implants, which are implanted or injected in body tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/06Ointments; Bases therefor; Other semi-solid forms, e.g. creams, sticks, gels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/39Markers, e.g. radio-opaque or breast lesions markers
    • A61B2090/3937Visible markers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/481Diagnostic techniques involving the use of contrast agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin

Definitions

  • the present invention relates to an alginate-based injectable hydrogel system, specifically, the contrast agent contained in the alginic acid does not diffuse to the periphery and helps to stay at the injection site for a certain period of time, thereby accurately determining the position of the target site with an image Or, it is related to an alginate-based injectable hydrogel system that can help to treat or alleviate symptoms at the target site by slowly releasing the drug contained in the alginic acid at the target site.
  • Laparoscopic surgery is one of the 'minimally invasive surgery' methods that reduce the injuries or effects on the patient's body. Instead of incising the abdomen or chest, a small hole of 0.5 to 1.5 cm is drilled and an endoscope equipped with a special camera. It is a method of inserting (laparoscopic) into the abdominal cavity and performing surgery with surgical tools (forceps, electric scalpel, hemostatic suture, etc.).
  • Laparoscopic surgery has been developed over the past several decades due to its advantages such as faster recovery speed and shorter hospital stay due to less pain after surgery and less incision compared to laparotomy. Recently, with the introduction of robotic surgery, which employs laparoscopic surgery, laparoscopic surgery has been accepted as the basis of surgical procedures.
  • a surgical site such as a cancer-generating site
  • the reagent angle and range obtained through the endoscope and the viewing angle and range obtained through the laparoscope are completely different in the conventional surgical method, and accordingly, the accuracy of the incision and The incision range has to be different, and the incision range has to be increased. Therefore, in order to mark the area to be surgically removed, the lesion identified by injecting a drug such as Indian ink through the endoscope injection needle to the lesion identified through the endoscope, and then displaying the area marked with Indian ink in laparoscopic surgery. The method of performing the surgery while confirming with the naked eye through is used.
  • such a labeling method has a disadvantage in that complications may be caused by ink that is incorrectly injected into the muscle layer, and the area that is surgically removed may spread as the ink or dye spreads around the injected site. Therefore, in order to minimize the area where normal tissue is removed during laparoscopic surgery, there is a need for a "marking" or “marker” contrast agent to indicate the appropriate disease lesion location.
  • Imaging contrast agents or imaging methods capable of labeling lesions there may be various imaging contrast agents or imaging methods capable of labeling lesions, and in recent years, the technique for labeling lesions using near-infrared fluorescent dyes is rapidly developing. Fluorescence imaging technology using near-infrared fluorescent dyes has the advantage of being able to detect the fluorescent signal sensitively even when a small amount of fluorescent dye is used, as well as detecting the labeled region located deep in the tissue from the fluorescent image.
  • indocyanin green a near-infrared fluorescent dye obtained by the FDA, has been used for image diagnosis and vascular imaging during surgery, but there are various limitations in clinical application.
  • Indocyanine green reduces fluorescence brightness due to concentration-dependent agglutination, has chemical instability in an aqueous solution in vivo, and diffuses and spreads rapidly to surrounding tissues, resulting in poor image discrimination accuracy and rapid image signal intensity.
  • the present invention has been devised to solve the problems of the prior art as described above, and the present inventors have developed an alginate-based injection hydrogel system based on alginic acid, which uses multivalent ions as an ion crosslinking agent.
  • the invention was completed. Accordingly, the present invention is a first agent comprising an alginate and an ion crosslinking agent; And a second agent comprising alginate and a crosslinking rate modifier.
  • the present invention is a first agent comprising an alginate and an ion crosslinking agent; And a second agent comprising alginate and a crosslinking rate modulator, comprising the step of injecting the composition into the subject and a composition for labeling the lesion.
  • Alginic acid-based injectable hydrogel system according to the present invention, because the contrast agent contained in the alginic acid does not diffuse to the surroundings and helps to stay at the injection site for a period of time, it is possible to accurately determine the position of the target site with an image.
  • an alginate hydrogel according to the present invention can be injected into a target site by incorporating a drug into alginic acid as well as a contrast agent.
  • an alginate hydrogel according to the present invention includes a drug such as an anti-cancer agent in the target site When injected into the drug, it prevents the drug from spreading to the surroundings, so that it can be released slowly over a long period of time in alginic acid, so that the drug can last for a long time.
  • the present invention relates to an injectable hydrogel system based on alginic acid
  • the present invention comprises a first agent comprising alginate and an ion crosslinking agent; And a second agent comprising alginate and a crosslinking rate modifier, to provide an alginate-based injectable hydrogel system in the form of a composition for preparing an injectable hydrogel.
  • the present invention is a first agent comprising an alginate and an ion crosslinking agent; And a second agent comprising alginic acid and a crosslinking rate modifier, comprising the step of injecting the composition into the subject and a composition for labeling the lesion.
  • the first agent or the second agent may be to incorporate an imaging contrast agent or a drug.
  • the composition for preparing an injection-type hydration gel according to the present invention includes an imaging contrast agent or a drug in an alginate or alginate / hyaluronic acid mixture and includes an ion crosslinking agent and a crosslinking rate controlling agent. By mixing and injecting, it was made into an injectable hydration gel.
  • the present invention relates to an injectable injection hydrogel composition in which the first agent and the second agent are mixed together.
  • the injection solution becomes a gel at the target site, thereby preventing the spreading of the contrast agent or drug and increasing the duration.
  • the "ionic crosslinking agent" is contained in the first agent, while serving as an ion source that provides multivalent ions for crosslinking of alginic acid.
  • ionic crosslinking agents include calcium carbonate, strontium carbonate, calcium EDTA (calcium disodium edetate), calcium citrate, calcium sulfate, calcium alginate, gluconate Calcium gluconate, Calcium phosphate dibasic (CaHPO 4 ), Barium carbonate, Zinc carbonate, Calcium chloride, Calcium lactate, Aspartic acid May be selected from the group consisting of Calcium aspartate, Calcium saccharate, Calcium oxovalerate, Calcium lactobionate, Calcium lactogluoconate and mixtures thereof And are not limited to these.
  • the "crosslinking rate modifier” is contained in the second agent, and serves to control the rate of crosslinking of alginate.
  • a crosslinking rate modifier may include any one or more selected from the group consisting of organic acids such as gluconic acid, acetic acid, malic acid, lactic acid, ascorbic acid or salts thereof, or mixtures thereof, and photoacid generators (PAGs). More specifically, the crosslinking rate modifier may be D-gluconic acid, but is not particularly limited thereto.
  • the ionic crosslinking agent and the crosslinking rate modifier are not limited in the ratio, but based on the mole number (X) of carboxylic acid groups present in alginic acid, the ion crosslinking agent has a molar ratio of 0.1 to 0.4X. It is desirable to have. In the case of a crosslinking rate regulator, the amount of the solution to be neutral is used.
  • the alginic acid may be mixed with hyaluronic acid. Since the hydration gel is well formed in a variety of mixing conditions of alginic acid and hyaluronic acid from 100: 0 to 1:99, the mixing ratio of the alginic acid and hyaluronic acid is not particularly limited. Since hyaluronic acid is decomposed by hyaluronidase, an enzyme present in the human body, the higher the mixing ratio of hyaluronic acid, the faster the decomposition rate of the hydrogel and the faster the release rate of the drug. Adjust the mixing ratio of alginic acid and hyaluronic acid according to the desired release rate of contrast agent or drug.
  • the "image contrast medium” may be a magnetic resonance imaging contrast medium, computed tomography (CT) contrast medium, or a fluorescent dye.
  • CT computed tomography
  • the magnetic resonance imaging contrast medium When injected into the human body, the magnetic resonance imaging contrast medium (MRI contrast medium) spreads the difference in the degree of relaxation between tissues by changing the relaxation rate of tissues, and causes a change in the MRI signal to make the contrast between tissues clearer.
  • MRI contrast agents include ionized gadolinium (Gd) (III) complexes and neutral gadolinium (Gd) (III) complexes.
  • the MRI contrast agent may be a gadolinium complex compound, a manganese complex compound, a copper (II) complex compound, iron oxide nanoparticles, and manganese oxide nanoparticles, and in one embodiment of the present invention, iron oxide nanoparticle contrast agent, Perdex TM (Feridex) and manganese chloride were used as MRI contrast agents, but are not limited thereto.
  • the CT contrast agent is a material used to clarify shading when X-ray imaging, and may be exemplified by a metal or a compound containing iodine or nanoparticles. Rose Bengal is used in one embodiment, but is not limited thereto.
  • the "fluorescent dye” is fluorescein (Fluorescein), CR110: Carboxyrodamine 110: Rhodamine Green (trade name), TAMRA: Carboxytetramethylrodamine: TMR, Carboxyrodamine 6G: CR6G, BODIPY FL (trade name): 4,4-difluoro-5,7-dimethyl-4-bora-3a, 4a-diaza-s-indacene-3-propionic acid, BODIPY 493/503 (trade name): 4,4 -Difluoro-1,3,5,7-tetramethyl-4-bora-3a, 4a-diaza-s-indacene-8-propionic acid, BODIPY R6G (trade name): 4,4-difluoro- 5- (4-phenyl-1,3-butadienyl) -4-bora-3a, 4a-diaza-s-indacene-3-propionic acid,
  • the fluorescent dye may be a complex of a fluorescent dye and human serum albumin.
  • the bond may be an ionic bond, a hydrophobic bond or a covalent bond, more specifically a covalent bond, but is not particularly limited thereto.
  • BODIPY dyes can form hydrophobic bonds with human serum albumin, and cyanine-based dyes and Alexa-based dyes introduced with sulfonyl groups to improve hydrophilicity can form ionic bonds.
  • the "drug” is not particularly limited in its kind, and a drug suitable for the target disease can be selected, for example, anticancer, anti-inflammatory, anesthetic, antiviral, antibacterial, therapeutic antibodies, antibiotics Or an immunotherapeutic agent.
  • anti-cancer agents include doxorubicin, gosipol, nitrogen mustard, imatinib, oxaliplatin, rituximab, erlotinib, neratinib, lapatinib, gefitinib, vandetanib, nirotinib, semasanib, conservative Tinib, axitinib, cediranib, lestaturinib, trastuzumab, gefitinib, bortezomib, sunitinib, carboplatin, bevacizumab, cisplatin, cetuximab, biscumalbum, asparaginase, Tretinoin, hydroxycarbamide, dasatinib, estramustine, gemtuzumab ozogamycin, britumomab tucetan, heptaplatin, methylaminolevulinic acid, amsacrine, alemtuzum
  • anti-inflammatory agents include salicylates, ibuprofen, naproxen, phenoprofen, indomethacin, phenyltazone, meso Metrexate, cyclophosphamide, mechlorethamine, dexamethasone, prednisolone, celecoxib, valdecoxib, nimesulide ), Cortisone, or corticosteroid.
  • an alginate-based hydration gel when an alginate-based hydration gel is injected into the lower layer of the mucous membrane for image labeling, the patient's immune system may recognize that foreign substances have entered the body and cause an inflammatory reaction to remove it.
  • proteins, complement systems, antibodies, and immune cells including various enzymes are introduced into the injection site, and an action for removing alginic acid and fluorescent dye present at the injected site occurs. Therefore, there is a possibility that the rate of removal of the fluorescent dye contained in the hydration gel is increased due to an inflammatory reaction occurring at the injection site.
  • an anti-inflammatory agent is administered orally separately when injecting a hydration gel, or mixed with a hydration gel and injected into a target site.
  • a hydrophobic anti-inflammatory agent it does not dissolve well in water, so it is well dispersed in an aqueous solution by loading on microspheres, nanoparticles, liposomes, or micelles. , Inject with hydration gel.
  • composition for preparing an injection-type hydration gel if necessary, a suspending agent, a solubilizing agent, a stabilizing agent, an isotonic agent, a preservative, an adsorption preventing agent, a surfactant, a diluent, an excipient, a pH adjusting agent, a painless agent, a buffering agent, and sulfur ( ⁇ ) Iv) Reducing agents, antioxidants, etc. may be included as appropriate.
  • Examples include sterile water, physiological saline, conventional buffers (phosphoric acid, citric acid, other organic acids, etc.), stabilizers, salts, antioxidants (ascorbic acid, etc.), surfactants, suspending agents, isotonic agents, or preservatives. can do.
  • aqueous solution for injection examples include isotonic solutions containing physiological saline, glucose, or other adjuvants, such as D-sorbitol, D-mannose, D-mannitol, sodium chloride, and buffers, for example
  • physiological saline such as glucose, or other adjuvants, such as D-sorbitol, D-mannose, D-mannitol, sodium chloride, and buffers, for example
  • it may be combined with a phosphate buffer solution, a sodium acetate buffer solution, an analgesic agent such as procaine hydrochloride, a stabilizer such as benzyl alcohol, phenol and an antioxidant.
  • analgesic agent such as procaine hydrochloride
  • a stabilizer such as benzyl alcohol, phenol and an antioxidant.
  • Pharmaceutically acceptable carriers and formulations suitable for the present invention are described in detail in Remington's Pharmaceutical Sciences, 19th ed., 1995.
  • the "individual” may be a mammal including humans, dogs, cats, cows, horses, pigs, rats, and the like, and is not particularly limited thereto.
  • an imaging contrast agent is injected into the lesion topically.
  • the accuracy of image discrimination is reduced and the image signal strength is rapidly weakened by spreading to surrounding tissues.
  • Alginic acid-based injectable hydration gel composition containing an imaging contrast agent according to the present invention by allowing the contrast agent contained in the gel does not diffuse to the periphery to stay in the injected lesion site for a period of time, the position of the target site The image is relatively accurately identified, and can be removed surgically if necessary.
  • the drug when the drug is injected intravenously, in most cases, it affects unwanted cells or organs, often causing serious side effects. Even in the case of topically injecting the drug to the target site, the drug is rapidly absorbed and spread at the injected site, so that side effects on surrounding normal cells cannot be completely avoided and the duration of drug efficacy at the injection site is also shortened.
  • Alginic acid-based injectable hydration gel-based composition containing the drug according to the present invention can be sustained for a long time by releasing the drug contained inside the gel in the injected lesion site slowly, for a certain period of time without spreading around. Therefore, while reducing the side effects of the drug to surrounding tissues and injecting a small amount of the drug, the desired effect can be achieved at the target site.
  • FIG. 1 is a schematic diagram of an alginate-based injection gel system.
  • 2A is a fluorescence graph according to indocyanine green concentration.
  • 2B is a graph showing the maximum fluorescence intensity according to the concentration of indocyanine green.
  • 2C is a graph of absorbance according to the concentration of indocyanine green.
  • 3A is a fluorescence graph according to indocyanin green-human serum albumin concentration bound 1: 1.
  • Figure 3b is a graph showing the maximum fluorescence intensity according to the indocyanin green-human serum albumin concentration bound to 1: 1.
  • 3C is a graph of absorbance according to the concentration of indocyanine green-human serum albumin bound 1: 1.
  • 4A is a fluorescence graph according to the ratio of human serum albumin when the concentration of indocyanine green is fixed at 30 ⁇ M.
  • Figure 4b is a graph showing the maximum fluorescence intensity according to the ratio of human serum albumin when the concentration of indocyanine green is fixed at 30 ⁇ M.
  • Figure 4c is a graph of absorbance according to the ratio of human serum albumin when the concentration of indocyanine green is fixed at 6 ⁇ M.
  • 5 is a photograph and graph showing the gelation time according to the concentration of calcium ions and D-gluconic acid entering the alginate hydrogel.
  • FIG. 6A shows 3 days after injecting 3 conditions of 30 ⁇ M of indocyanine green solution, indocyanine green-human serum albumin solution, and 30 ⁇ M of indocyanine green-human serum albumin into a well of alginate hydrogel. It is a graph observing changes in fluorescence intensity.
  • Figure 6b is a fluorescence taken immediately after injecting three conditions of 30 ⁇ M of indocyanine green solution, indocyanine green-human serum albumin solution, indocyanine green-human serum albumin 30 ⁇ M of alginate hydrogel was injected into 96 wells It is a video.
  • Figure 7 is a schematic diagram of injecting a sub-syringe in the subcutaneous state of a nude mouse with a solution of alginate mixed with a first agent, indocyanin green-human serum albumin and calcium carbonate, and a solution of a second agent, D-gluconic acid, on the other side. to be.
  • FIG. 8 is a fluorescence image obtained over time for three conditions of infusion of an alginate hydrogel containing indocyanine green solution, indocyanine green-human serum albumin solution, and indocyanine green-human serum albumin injected under a nude mouse. .
  • Figure 9 shows the injection site over time for three conditions of infusion of alginate hydrogel containing indocyanine green solution, indocyanine green-human serum albumin solution, and indocyanine green-human serum albumin injected under the nude mouse. It is a picture of observing.
  • FIG. 10A shows the time-dependent ROI (Region of ROI) for three conditions of infusion of an alginate hydrogel containing indocyanine green solution, indocyanine green-human serum albumin solution, and indocyanine green-human serum albumin injected under the nude mouse. interest) is a graph showing the value.
  • Figure 10b shows the indices and surroundings over time for three conditions of infusion of alginate hydrogel containing indocyanine green solution, indocyanine green-human serum albumin solution, indocyanine green-human serum albumin injected under the nude mouse.
  • Figure 10c is fluorescent in the label site over time for the three conditions of the alginate hydrogel containing the indocyanine green solution, indocyanine green-human serum albumin solution, indocyanine green-human serum albumin injected under the nude mouse This is a graph showing the spread area.
  • Figure 11a is the structure of the ZW800-1C NHS ester.
  • 11B is a graph of absorbance and fluorescence of covalently bound human serum albumin-ZW 800-1C conjugate.
  • Figure 11c is a fluorescent image obtained over time with respect to alginate hydrogel containing a fluorescent dye in the form of a covalent bond of human serum albumin-ZW 800-1C injected under the nude mouse.
  • Figure 12 is a state in which the drug was injected into the ep-tube by incorporating the drug doxorubicin in the hydrogel of alginate.
  • FIG. 14 shows a state in which manganese chloride and peridex, which are MRI contrast agents, were injected into an alginate hydrogel and injected into an ep-tube.
  • 16 is an MRI T2 emphasis image obtained for alginate hydrogel containing distilled water, alginate hydrogel, and peridex (25, 50, 100 ⁇ M).
  • Figure 17 is a state in which the CT contrast agent rose bengal was injected into the alginate hydrogel and injected into the ep-tube.
  • FIG. 18 is a CT image of an alginate hydrogel containing distilled water, alginate hydrogel, and rose bengal.
  • FIG. 19 is a CT image obtained with alginate hydrogel containing distilled water, alginate hydrogel, and rose bengal.
  • Figure 20 is a state in which a hydrogel made of a mixture of alginic acid and hyaluronic acid is injected into an ep-tube.
  • FIG. 21 is a test group 1 (pig # 1) injecting an alginate hydrogel containing indocyanine green-human serum albumin into the submucosal layer in the stomach, and confirming the location where the hydrogel was injected through fluorescence laparoscopic after 3 days. Fluorescence detection image. The fluorescence signal shown in the dotted circle is the fluorescence signal generated at the location where the hydration gel is injected.
  • FIG. 22 is a test group 2 (pig # 2) injecting an alginate hydrogel containing indocyanine green-human serum albumin into the submucosal layer of the stomach, and confirming the position where the hydrogel was injected through fluorescence laparoscopic after 30 minutes. Fluorescence detection image.
  • the fluorescence signal shown in the dotted circle is the fluorescence signal generated at the location where the hydration gel is injected.
  • FIG. 23 is a fluorescence image obtained by using a fluorescence laparoscopic technique after incision of the stomach of the pig (top: pig # 1, bottom: pig # 2).
  • 25A is an absorbance spectrum obtained by dissolving celecoxib in various concentrations in acetonitrile solution.
  • 25B is a standard curve obtained by measuring absorbance by concentration of celecoxib (acetonitrile) solution at a wavelength of 251 nm.
  • 25C is an absorbance spectrum measured by dissolving a PLGA microsphere solution equipped with celecoxib in an acetonitrile solution at a concentration of 0.04 mg / mL.
  • Figure 26a is a fluorescent image obtained after 24 hours, 48 hours and 72 hours after injection of alginate hydrous gel containing PLGA microspheres loaded with celecoxib under the mouse.
  • FIG. 26b shows a region of interest (ROI) in which alginate hydrogel (Alg Gel) not containing celecoxib and alginate hydrogel (microsphere / Alg Gel) containing PLGA microspheres loaded with celecoxib were injected. This is the result of quantitative analysis of the generated fluorescence signal over time.
  • ROI region of interest
  • Example 1 Surgical marker incorporation experiment of alginate hydrogel
  • Indocyanine green (ICG, purchased from Sigma-Aldrich) was added 3 mL of distilled water and dissolved by stirring to prepare a high concentration of indocyanine green solution. Distilled water was added to the high concentration of indocyanine green solution and mixed through stirring to make a 2-100 ⁇ M solution.
  • indocyanine green solution After taking 1 mL of the high concentration of indocyanine green solution and adding it to 42.89 mg of human serum albumin (purchased from Human serum albumin, HSA, Sigma-Aldrich), pipetting and mixing thoroughly to mix high concentration of indocyanine green-human serum albumin The complex was made.
  • human serum albumin purchased from Human serum albumin, HSA, Sigma-Aldrich
  • the high concentration of indocyanine green-human serum albumin solution was added to distilled water and mixed through stirring to make a 2-100 ⁇ M solution.
  • indocyanine green solution was prepared. After adding 1 mL of distilled water to 42.89 mg of human serum albumin, the mixture was thoroughly mixed by pipetting to prepare a high concentration human serum albumin solution. The high concentration of indocyanine green solution was taken to 0.125 mL and fixed so that the final concentration was 30 ⁇ M. After adding the appropriate amounts of indocyanine green and molar ratio of 0 to 2 only to human serum albumin solution, , It was made into a total of 1 mL solution with distilled water and stirred to thoroughly mix.
  • the calcium ion forms a hydration gel through crosslinking with alginic acid.
  • Calcium carbonate (purchased from Sigma-Aldrich) has low solubility, so the dissolution rate of calcium carbonate is mixed by mixing D-gluconic acid solution (D-gluconic acid solution, purchased from Sigma-Aldrich) with a dual syringe. It was made to be able to rapidly crosslink with alginic acid by adjusting. Through this process, alginic acid can be gelled evenly throughout. The number of moles of D-gluconic acid was doubled with respect to calcium carbonate to adjust the pH of the entire solution to neutral.
  • Sodium alginate (Sodium alginate, purchased from Kimika) was dissolved in 3 mL of distilled water to make a 1.2 wt% solution of alginate.
  • a 1.2 wt% solution of alginate To the 1.25 mL of the 1.2 wt% solution of alginic acid, 0.25 mL of distilled water was added to make a 1.0 wt% solution of alginic acid.
  • 1 mL of alginate 1.0 wt% solution was added to 1.14 mg of calcium carbonate and mixed by pipetting or vortexing to prepare a first agent solution.
  • a second agent solution was prepared by thoroughly mixing with vortexing and stirring. Calcium carbonate and D-gluconic acid were used 0.1 and 0.2 times, respectively, based on the number of moles of carboxyl groups contained in 1.0 w / v% of alginic acid.
  • a solution was prepared using the same method as in Preparation Example 4, except that the first agent's calcium carbonate was 2.29 mg and the second agent's D-gluconic acid solution was 0.015 mL. Calcium carbonate and D-gluconic acid were used 0.2 and 0.4 times, respectively, based on the number of moles of carboxyl groups contained in 1.0 w / v% of alginic acid.
  • a solution was prepared using the same method as in Preparation Example 4, except that the first agent's calcium carbonate was 3.43 mg and the second agent's D-gluconic acid solution was 0.022 mL. Calcium carbonate and D-gluconic acid were used 0.3 and 0.6 times, respectively, based on the number of moles of the carboxyl group contained in 1.0 w / v% of alginic acid.
  • the indocyanine green-human serum albumin complex is impregnated with alginic acid, and then crosslinked with calcium ions through a dual syringe to form an injectable hydrogel.
  • a high concentration of indocyanine green solution was prepared in the same manner as in Preparation Example 1. After the distilled water was added to 0.139 mL of the high concentration of indocyanine green solution to make a total of 1.5 mL, a first agent solution mixed by stirring was prepared. Distilled water was used as the second agent solution. The final solution of the first agent and the second agent was prepared so that the concentration of indocyanine green was 30 ⁇ M.
  • a high concentration of indocyanine green-human serum albumin solution was prepared in the same manner as in Preparation Example 2. After the distilled water was added to 0.139 mL of the high concentration of indocyanine green-human serum albumin solution to make a total of 1.5 mL, a first agent solution mixed by stirring was prepared. Distilled water was used as the second agent solution. The concentration of the indocyanine green-human serum albumin complex in the final solution of the first agent and the second agent was prepared to be 30 ⁇ M.
  • a high concentration of indocyanine green-human serum albumin solution was prepared in the same manner as in Preparation Example 2. After adding 0.139 mL of the high concentration of indocyanine green-human serum albumin solution to 1.25 mL of alginate 1.2 wt% solution, the same procedure as in Preparation Example 6 was used, except that a total volume of 1.5 mL was used with distilled water. As a method, first and second agent solutions were prepared.
  • FIG. 7 is a schematic diagram of injecting an alginate hydrogel containing indocyanine green-human serum albumin into the skin of a nude mouse using a dual syringe.
  • ⁇ ex 780 nm
  • the degree of fluorescence spread was less than the other two conditions because the gel prevented the spread of fluorescent dye.
  • FIG. 10A how long the fluorescence of each condition persists in the nude mouse was compared with the ROI value of the label site.
  • the ROI values were confirmed, the indocyanine green and indocyanine green-human serum albumin solutions showed almost similar patterns.
  • the injected solution spread, and the fluorescence was the greatest at 6 hours, and it was confirmed that 16% and 12% of fluorescence remained, respectively, compared to immediately after the injection.
  • the solution was slightly spread after injection, and the fluorescence was the greatest at 6 hours, but it was confirmed that even after 2 days, about 61% of the fluorescence signal appeared even after the injection.
  • a target-to-background ratio (TBR) was observed by dividing the fluorescence ROI value of the target region by the fluorescence ROI value of the surrounding tissue.
  • TBR target-to-background ratio
  • FIG. 10C the area where fluorescence appears in the nude mouse was confirmed.
  • the area with the greatest fluorescence in the solution of indocyanine green and indocyanine green-human serum albumin and the area with the greatest fluorescence in the alginate hydrogel about 2 times higher than the other conditions in the alginate hydrogel. It was found that the fluorescence was less diffuse and appeared. In addition, the two conditions with different fluorescence signals were almost disappeared at 48 hours, whereas the conditions for the alginate hydrogel showed fluorescence signals up to 5 days.
  • the alginate hydration gel wrapped the fluorescent dye and prevented it from diffusing at the target site, effectively increasing the fluorescence duration.
  • Fluorescence persistence was confirmed under in vivo conditions by incorporating human serum albumin-ZW800-1C fluorescent dye, a covalent complex, into the alginate hydration gel.
  • human serum albumin (10 mg / mL) in phosphate buffer
  • ZW800-1C NHS ester (FIG. 11A) at 1: 2 molar ratio in 1 mL of phosphate buffer for 1 hour at room temperature.
  • unbound fluorescent dye and reaction by-products were removed using a PD-10 column (GE Healthcare).
  • the human serum albumin-ZW-800-1C conjugate obtained after purification was concentrated using an Amicon Ultra-0.5 mL (cut off: 30 kDa) centrifugal filter and stored in a 4 ° C refrigerator.
  • human serum albumin-ZW800-1C conjugate was dissolved in denatured phosphate buffer (including 1% SDS / 1 mM NaOH) and absorbance was measured.
  • concentration of human serum albumin protein was calculated using the molar extinction coefficient of human serum albumin at 280 nm (34,445 M -1 cm -1 ), and the fluorescent dye had a known molar extinction coefficient value (125,000 M -1 cm -1 at 779 nm in DMSO) was used.
  • 0.26 ZW800-1C per human serum albumin was added.
  • the absorbance and fluorescence levels of the human serum albumin-fluorescent dye conjugate were measured by diluting it in phosphate buffer at a concentration of 5 ⁇ M (based on the fluorescent dye concentration) (FIG. 11B).
  • Indocyanin green-human serum albumin in the first agent The first agent and the second agent reagents were prepared in the same manner as in Preparation Example 9, except that the fluorescent dye in the form of 30 ⁇ M human serum albumin-ZW800-1C covalent bond was used instead of the complex.
  • Preparation Example 11 The solution of Preparation Example 11 was injected into the nude mouse subcutaneously to a total volume of 100 ⁇ L using a dual syringe. In the in vivo condition, it was confirmed that the duration of fluorescence was effectively increased by preventing diffusion of the alginate hydrogel from the target site even in the case of human serum albumin-ZW800-1C, which is a fluorescent dye of the covalent bond (FIG. 11C).
  • Doxorubicin available from Sigma-Aldrich
  • Preparation Example 12 The solution of Preparation Example 12 was injected into the ep-tube so that the total volume was 0.5 mL using a dual syringe. Then, as shown in Figure 12, it was confirmed that the alginate hydrogel formed by turning the ep-tube upside down effectively incorporated doxorubicin.
  • manganese chloride manganese chloride, purchased from Sigma-Aldrich, 1M
  • peridex IV Feidex, purchased from Taejun Pharmaceutical, 11.2 mg Fe / mL
  • 950 ⁇ L of distilled water was added to 50 ⁇ L of the Peridex solution, and the Peridex solution was diluted to 1/20 to prepare. After adding 5, 10, and 20 ⁇ L of the diluted peridex solution to 1.25 mL of alginate 1.2 wt% solution, the solutions of three concentrations (final concentrations of 25, 50, and 100 ⁇ M) with distilled water total volume of 1.5 mL are added.
  • a first agent and a second agent solution were prepared in the same manner as in Production Example 6, except that they were used.
  • the manganese chloride solutions of the three concentrations of Preparation Example 13 were injected into a micro-tube with a total volume of 0.25 mL using a dual syringe. Thereafter, distilled water, alginate hydrogel, and manganese chloride (0.05, 0.1, 0.2 mM) as shown in FIG. 15 were checked for MRI T1 emphasis. It was confirmed that the MRI signal appeared brighter as the amount of manganese chloride added to the alginate hydrogel increased.
  • Preparation Example 15 The solution of Preparation Example 15 was injected into the ep-tube so that the total volume was 0.5 mL using a dual syringe. Thereafter, as shown in FIG. 17, it was confirmed that the alginate hydrogel formed by inverting the ep-tube effectively incorporated rose bengal.
  • Example 5 Experimental hydration gel according to the mixing ratio of alginic acid and hyaluronic acid
  • Sodium hyaluronate (Sodium hyaluronate, purchased from LifeCore Biomedical) was dissolved in 2 mL of distilled water to prepare a 3 wt% hyaluronic acid solution.
  • the first solution was prepared by vortexing 1 mL of the mixed solution of alginic acid and hyaluronic acid into 3.43 mg of calcium carbonate. After adding 0.334 mL of hyaluronic acid 3 wt% solution and 0.022 mL of D-gluconic acid to 0.417 mL of alginate 1.2 wt% solution, make a total volume of 1 mL with distilled water, and mix it with vortexing and stirring to prepare a second agent solution. Did.
  • the first solution was prepared by vortexing 1 mL of the mixed solution of alginic acid and hyaluronic acid into 3.43 mg of calcium carbonate.
  • Example 6 Performance evaluation of alginate hydrogel containing indocyanine green-human serum albumin in a pig model
  • Pig mini-pig
  • a fluorescent surgical marker in pigs On the day and 3 days after the injection of the hydration gel, it was evaluated whether the labeled position can be identified by detecting the fluorescence signal generated from the fluorescent dye injected inside the stomach through an fluorescence laparoscopic image.
  • a high concentration of indocyanine green-human serum albumin solution was prepared in the same manner as in Preparation Example 2. After adding 0.558 mL of the high concentration of indocyanine green-human serum albumin solution to 8.4 mL of alginate 1 wt% solution, a fluorescence surgery marker solution was prepared by adding distilled water to make the total volume to 12 mL. In this test, an experiment was conducted without adding an ion crosslinking agent.
  • Two pigs (pig # 1, pig # 2) were fasted for 48 hours prior to the injection of the prepared alginate hydration gel, and then subjected to an experiment after general anesthesia.
  • test group 1 pig # 1
  • alginic acid hydration in which indocyanin green-human serum albumin of Preparation Example 18 was incorporated.
  • the gel was injected 1 mL each to 3 lower layers of mucosa in the stomach of the pig.
  • a clip for hemostasis was clipped right next to the injection location of the hydration gel.
  • a fluorescent laparoscopic system is mounted on the abdominal cavity of the pig, and the fluorescence signal generated from the fluorescence surgery marker located inside the stomach is detected through the fluorescence laparoscopic tube located outside the stomach, thereby real-time detecting the location of the marker. It was evaluated whether it can be confirmed.
  • test group 2 (pig # 2) was injected into the three submucosal layers in the gastrointestinal tract in the same manner as the test group 1 was performed. A clip for hemostasis was clipped next to the injection site to confirm the injection site.
  • the fluorescent laparoscopic system is mounted in the abdominal cavity of the pig, and the fluorescence signal generated from the fluorescence surgery marker located inside the stomach is detected through the fluorescence laparoscopic tube located outside the stomach to check the location of the surgical marker in real time. was evaluated.
  • test group 1 (FIG. 21) injected with fluorescent markers 3 days before and the same day was injected.
  • the observed test group 2 FIG. 22
  • the locations where the hydration gels were injected were confirmed from the fluorescence image.
  • the pig was euthanized and the pig's stomach was incised to confirm that the location identified from the fluorescence image was actually the location where the hydration gel was injected. It was confirmed that the fluorescence signal was generated next to the place where the hemostatic clip clipped immediately next to the place where the hydration gel was injected, and from this result, the fluorescence confirmed from the fluorescence laparoscopic image of the pig experiment was generated from the actual hydration gel. It was found that it was a fluorescent signal (FIG. 23).
  • Example 7 Test for improving image signal in alginate hydrogel containing anti-inflammatory agent
  • an alginate-based hydration gel When an alginate-based hydration gel is injected into the lower layer of the mucous membrane for image labeling, the patient's immune system may recognize that foreign substances have entered the body and cause an inflammatory reaction to remove it. At this time, proteins, complement systems, antibodies, and immune cells including various enzymes are introduced into the injection site, and an action for removing alginic acid and fluorescent dye present at the injected site occurs. Therefore, there is a possibility that the rate of removal of the fluorescent dye contained in the hydration gel is increased due to an inflammatory reaction occurring at the injection site.
  • biodegradable microspheres equipped with an anti-inflammatory agent are prepared, and the inflammatory reaction at the injection site is suppressed by injection into the body together with a hydration gel, and thus, the fluorescence image signal at the injected site is suppressed.
  • the strength was also evaluated to be able to remain higher.
  • Celecoxib (Celecoxib) was used as an anti-inflammatory agent, and a drug-containing microsphere was prepared using a biodegradable polymer, Poly (lactic-co-glycolic acid) (PLGA).
  • Homogenizer PT 3100 Polytron, Kinematica AG while dropping the dichloromethane solution containing celecoxib and PLGA in drops while the beaker containing the aqueous solution of the surfactant polyvinyl alcohol was immersed in ice. Littau-Lucerne, Switzerland) was used for 5 minutes with vigorous stirring at 5,000 rpm to prepare an oil-in-water emulsion solution.
  • the emulsion solution prepared to remove the organic solvent dichloromethane was mixed with 100 mL distilled water, and stirred at 300 rpm for 8 hours under a temperature condition of 25 ° C.
  • the zeta potential value is -Measured to 20.7 mV.
  • Indocyanine green-human serum albumin solution was prepared in the same manner as in Preparation Example 2. After adding 0.093 mL of indocyanine green-human serum albumin solution to 1.167 mL of an alginate 1.2 wt% solution, distilled water was further added to make the total volume 2 mL and stirred.
  • an alginate hydrogel containing an anti-inflammatory agent 0.136 mL of distilled water solution in which PLGA microparticles with celecoxib was dispersed at a concentration of 9 mg / mL was prepared. 2 mL of an alginate aqueous solution containing indocyanine green-human serum albumin was prepared as described above, 0.136 mL of a microsphere aqueous solution and 2 mL of an alginate solution were mixed and stirred. The final concentration of celecoxib drug contained in the alginate hydrogel is 600 ⁇ g / mL.
  • ROI region of interest

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Dermatology (AREA)
  • Surgery (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Dispersion Chemistry (AREA)
  • Molecular Biology (AREA)
  • Inorganic Chemistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Pathology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Immunology (AREA)
  • Nanotechnology (AREA)
  • Neurosurgery (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Medicinal Preparation (AREA)

Abstract

본 발명은 질병 병변의 정확한 위치표지 및 표적 부위에서의 효과적 약물 전달을 위한 알긴산 기반의 주입형 수화젤 시스템을 제공한다. 본 발명의 제제는 표적 부위에서 영상 조영제 및 약물의 국소적 주입을 용이하게 하는 동시에, 주입된 부위에서 수화젤이 형성되면서 영상 조영제 또는 약물의 방출 속도를 조절할 수 있다. 이를 통하여, 표지된 위치를 영상으로부터 정확히 식별하여 수술의 정확도를 향상시키고 최소 절개가 가능하게 할 수 있다. 또한, 알긴산 기반의 주입형 수화젤 시스템을 이용하면, 효과적으로 표적 부위에 국소적으로 약물을 전달하면서 약물 지속 효과를 증가시킬 수 있다.

Description

알긴산 기반의 주입형 수화젤 시스템
본 발명은 알긴산 기반의 주입형 수화젤 시스템에 관한 것으로, 구체적으로, 알긴산 내에 포함되어 있는 조영제가 주변으로 확산되지 않고 일정 시간 동안 주입 부위에 머무를 수 있도록 도와주어 표적 부위의 위치를 영상으로 정확하게 판별하거나, 알긴산 내에 포함되어 있는 약물이 표적 부위에서 서서히 방출됨으로써 표적 부위에서의 증상을 치료 또는 완화 시키는데 도움을 줄 수 있는 알긴산 기반의 주입형 수화젤 시스템에 관한 것이다.
복강경 수술(Laparoscopic surgery)은 환자의 생체에 미치는 상해나 영향을 줄인 '최소 침습 수술'방법의 하나로서, 복부나 흉부를 절개하는 대신 0.5~1.5cm 크기의 작은 구멍을 뚫고 특수 카메라가 장착된 내시경(복강경)을 집어넣어 복강 내를 보면서 수술 도구(겸자, 전기메스, 지혈 봉합기구 등)로 수술하는 방식이다.
복강경 수술은 개복술에 비하여 수술 후 통증이 적고, 절개 부위가 적기 때문에 보이는 빠른 회복 속도, 입원기간 단축 등의 장점으로 인해서 지난 수십 년간 발전되어 왔다. 최근에는 이러한 복강경 수술을 응용한 로봇수술 등이 도입됨에 따라 복강경 수술은 외과 술기의 기본으로 받아들여지고 있다. 대장암, 위암 등의 수술적 치료를 위해서는, 복강경 수술을 통하여 체내 암 발생 부위를 절개하여 제거하기 이전에 위장 또는 대장의 내부로 내시경을 투입하여 시술 부위, 예컨대 암 발생 부위를 육안으로 확인하는 과정이 필요하다. 그러나, 종래의 시술법에서 내시경을 통해 얻는 시약 각도 및 범위와, 복강경을 통하여 얻는 시야 각도 및 범위가 완전히 다르기 때문에 절개하여야 하는 목표 위치를 정확히 찾아내기가 어렵고, 따라서 시술자의 숙련도에 따라서 절개의 정확도 및 절개 범위가 차이가 날 수 밖에 없고, 절개하는 범위도 커질 수밖에 없다. 따라서, 수술로 제거할 부위를 표지하기 위하여, 내시경을 통하여 확인된 병변에 내시경 주입바늘을 통하여 인디안 잉크와 같은 약제를 주입하여 병변 부위를 표시한 후, 인디안 잉크로 표지된 부위를 수술 시에 복강경을 통하여 육안으로 확인하면서 수술을 진행하는 방법이 사용되고 있다. 그러나, 이러한 표지법은 근육 층에 잘못 주입된 잉크에 의해서 합병증이 생기기도 하고, 주입한 부위에서 잉크 또는 염료가 주변으로 번지면서 수술로 제거되는 부위가 넓어지는 단점이 있다. 따라서 복강경 수술 시에 정상 조직이 제거되는 부위를 최소화하기 위해서는 적절한 질병 병변 위치를 표시할 "마킹용"또는 "마커용"조영제가 필요하다.
암 또는 염증성 질환 부위에 대하여 수술적 치료가 어려운 경우에는 국소적으로 약물을 주입함으로써 치료 및 증상 완화를 도모할 수 있는데, 소수성 약물의 경우에는 물에 잘 녹지 않아서 약물의 국소 주입이 용이하지 않으며, 친수성 약물의 경우에는 주입 부위에서 빠르게 번지면서 약효 지속시간이 매우 짧다. 그러므로, 표적으로 하는 병변에 약물이 고르게 주입될 수 있으면서도, 원하는 속도로 서서히 약물이 방출되게 함으로써 표적 부위에서의 치료 효과 또는 증상의 완화 효과를 극대화 할 수 있는 "국소 주입형"약물 제형이 필요하다.
병변을 표지할 수 있는 여러 가지 영상 조영제 또는 영상법들이 있을 수 있는데, 최근 들어서는 근적외선 형광염료를 이용한 병변 표지 기술이 빠른 속도로 발전하고 있다. 근적외선 형광염료를 사용하는 형광영상 기술은 조직 깊은 곳에 위치한 표지 부위도 형광영상으로부터 검출해 낼 수 있을 뿐 아니라, 적은 양의 형광염료를 사용하여도 민감하게 형광신호를 감지할 수 있다는 장점이 있다. 기존에 쓰이는 형광영상 조영제로는 FDA에서 임상허가를 받은 근적외선 형광염료인 인도시아닌 그린이 영상 진단, 수술 중 혈관 영상 등에 사용되어 왔으나, 임상에 적용하는데 있어서는 여러 가지 제한점이 존재한다. 인도시아닌 그린은 농도 의존적인 응집현상으로 인해 형광 밝기가 감소하고, 생체 내에서 수용액 상에서의 화학적 불안정성을 가지며 빠른 속도로 주변 조직으로 확산되어 퍼짐으로써 영상 판별의 정확도가 떨어지고 영상 신호 강도도 빠르게 약해지는 단점이 있어 조영제로 활용하는 데 어려움이 있다. 이러한 이유로 병변에 대한 표지 효율을 높이고 조영제의 생체 내 반감기를 늘릴 수 있는 방법에 대한 개발이 요구되고 있다.
다음으로, 약물을 생체 내에 주입 시 약물이 주입된 부위에서 빠르게 흡수되어 퍼짐으로써 주변 정상 조직에 대해서 부작용이 일어날 수 있으며, 생체 내에서 약물이 효소 작용에 의해 분해되어 약물 지속 효과가 떨어지는 한계가 있다. 이로 인해서, 원하는 약효를 얻기 위해서는 다량의 약물을 투여하거나 약물을 반복적으로 투여해야 하는 어려움이 있다. 이러한 이유로 생체 내에서 약물의 확산을 막음으로써 표적 부위에 대한 약효의 지속 시간을 개선시킬 수 있는 방법에 대한 개발이 요구되고 있다.
본 발명은 상기한 바와 같은 종래기술의 문제점을 해결하기 위해 안출된 것으로, 본 발명자들은 알긴산을 기반으로 하여 다원자가의 이온을 이온 가교제로 사용하는 알긴산 기반의 주입형 수화젤 시스템을 개발하고, 본 발명을 완성하였다. 따라서, 본 발명은 알긴산 및 이온 가교제를 포함하는 제1제; 및 알긴산 및 가교 속도 조절제를 포함하는 제2제를 포함하는, 주입형 수화젤 제조를 위한 조성물을 제공하고자 한다. 또한, 본 발명은 알긴산 및 이온 가교제를 포함하는 제1제; 및 알긴산 및 가교 속도 조절제를 포함하는 제2제를 포함하는, 병변의 표지를 위한 조성물 및 상기 조성물을 개체에 주입하는 단계를 포함하는, 병변의 표지 방법을 제공하고자 한다.
본 발명에 따른 알긴산 기반의 주입형 수화젤 시스템은, 알긴산 내에 포함되어 있는 조영제가 주변으로 확산되지 않고 일정 시간 동안 주입 부위에 머무를 수 있도록 도와주기 때문에 표적 부위의 위치를 영상으로 정확하게 판별하도록 해준다.
또한, 본 발명에 따른 알긴산 기반의 주입형 수화젤 시스템은 조영제 뿐만 아니라 약물을 알긴산 내에 함입하여 표적 부위에 주입할 수 있는데, 특히 본 발명에 따른 알긴산 수화젤에 항암제와 같은 약물을 포함시켜 표적 부위에 주입할 경우, 약물이 주변으로 확산되는 것을 막아주면서 알긴산 내에서 오랜 기간 동안 천천히 방출되도록 하여 약효가 오래 지속되도록 할 수 있다.
다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 갖는다. 일반적으로, 본 명세서에서 사용된 명명법은 본 기술분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.
상기한 바와 같은 기술적 과제를 달성하기 위해서 본 발명은, 알긴산 기반의 주입형 수화젤 시스템에 관한 것으로, 구체적으로, 본 발명은 알긴산 및 이온 가교제를 포함하는 제1제; 및 알긴산 및 가교 속도 조절제를 포함하는 제2제를 포함하는, 주입형 수화젤 제조를 위한 조성물의 형태인 알긴산 기반의 주입형 수화젤 시스템을 제공한다. 또한, 본 발명은 알긴산 및 이온 가교제를 포함하는 제1제; 및 알긴산 및 가교 속도 조절제를 포함하는 제2제를 포함하는, 병변의 표지를 위한 조성물 및 상기 조성물을 개체에 주입하는 단계를 포함하는, 병변의 표지 방법을 제공한다.
본 발명에 있어서, 상기 제1제 또는 제2제는 영상 조영제 또는 약물을 함입하는 것일 수 있다.
즉, 본 발명에 따른 주입형 수화젤 제조용 조성물은, 영상 조영제 또는 약물을 알긴산 또는 알긴산/히알루론산 혼합물에 함입하고 여기에 이온 가교제 및 가교 속도 조절제를 포함시킨, 이들 제1제 및 제2제를 함께 섞어 주입함으로써, 주사 가능한 수화젤 형태로 만들었다.
따라서, 본 발명은 상기 제1제 및 제2제가 함께 혼합된 주사 가능한 주입형 수화젤 조성물에 관한 것이다.
이러한 알긴산 기반의 주입형 수화젤 시스템을 이용하여 영상 조영제 또는 약물을 표적 병변 부위에 국소로 주입하면, 표지 부위에서 주입 용액이 젤이 되면서 조영제 또는 약물의 번짐 현상을 방지하여 지속 시간을 높이게 된다. 이를 통해서, 표적 부위의 위치를 영상으로 비교적 정확히 판별할 수 있도록 할뿐만 아니라, 약물의 경우에는 약효가 오랫동안 지속될 수 있으므로 약물의 확산으로 인한 부작용을 줄일 수 있으면서 표적부위에서 원하는 약효를 달성할 수 있다.
본 발명에 있어서, 상기 "이온 가교제"는 제1제에 포함되어 있으면서 알긴산의 가교 결합을 위해 다원자가의 이온을 제공하는 이온 제공원의 역할을 하는 것으로, 알긴산과 결합하여 이온 가교된 수화젤을 형성한다. 이러한 이온 가교제로는 탄산 칼슘(Calcium carbonate), 탄산 스트론튬(Strontium carbonate), calcium EDTA(Calcium disodium edetate), 구연산 칼슘(Calcium citrate), 황산 칼슘(Calcium sulfate), 알긴산 칼슘(Calcium alginate), 글루콘산 칼슘(Calcium gluconate), 제2인산 칼슘(Calcium phosphate dibasic(CaHPO4)), 탄산 바륨(Barium carbonate), 탄산 아연(Zinc carbonate), 염화 칼슘(Calcium chloride), 젖산 칼슘(Calcium lactate), 아스파르트산 칼슘(Calcium aspartate), 사카린산 칼슘(Calcium saccharate), 옥소발레린산 칼슘(Calcium oxovalerate), 락토바이오산 칼슘(Calcium lactobionate), 락토글루콘산 칼슘(Calcium lactogluoconate) 및 이의 혼합물로 이루어진 군에서 선택된 것일 수 있으며, 이들로 제한되는 것은 아니다.
본 발명에 있어서, 상기 "가교 속도 조절제"는 제2제에 포함되어 있으면서, 알긴산 가교 형성의 속도를 조절하는 역할을 한다. 이러한 가교 속도 조절제로는 글루콘산, 아세트산, 말산, 젖산, 아스코르브산과 같은 유기산 또는 이의 염 또는 이의 혼합물, 및 PAG(photoacid generator)로 이루어진 군에서 선택된 어느 하나 이상을 포함할 수 있다. 보다 구체적으로, 상기 가교 속도 조절제는 D-글루콘산일 수 있으나, 특별히 이에 제한되지 않는다.
본 발명에 있어서, 상기 이온 가교제와 가교 속도 조절제는 그 비율에 제한이 없으나, 알긴산에 존재하는 카복시기(carboxylic acid group)의 몰수(X)를 기준으로 하였을 때 이온 가교제는 0.1 내지 0.4X의 몰비를 가지는 것이 바람직하다. 가교 속도 조절제의 경우, 용액의 pH를 중성으로 만드는 양만큼 사용한다.
본 발명에 있어서, 상기 알긴산은 히알루론산과 혼합되어 있는 것일 수 있다. 알긴산과 히알루론산의 혼합비율이 100:0부터 1:99까지 다양한 혼합 조건에서도 수화젤이 잘 형성되므로, 상기 알긴산과 히알루론산의 혼합 비율은 크게 제한됨이 없다. 히알루론산은 인체 내 존재하는 효소인 히아루로니다제(hyaluronidase)에 의해서 분해가 되므로, 히알루론산의 혼합 비율을 높일수록 수화젤의 분해속도가 빨라지고 약물의 방출 속도도 빠르게 되므로, 수화젤에 함입된 조영제 또는 약물의 바람직한 방출 속도에 따라서 알긴산과 히알루론산의 혼합비율을 조절하도록 한다.
본 발명에 있어서, 상기 "영상 조영제"는 자기공명영상 조영제, computed tomography (CT) 조영제, 또는 형광염료일 수 있다.
상기 자기공명영상 조영제(MRI 조영제)는 인체 내에 주입되면, 조직의 이완율을 변화시켜줌으로써 조직간 이완도의 차이를 벌리고, MRI 시그널의 변화를 유발하여 조직간의 대조를 보다 선명하게 하는 역할을 한다. MRI 조영제로는 이온화 가돌리늄(Gd)(Ⅲ) 착물과 중성 가돌리늄(Gd)(Ⅲ) 착물이 있다. 보다 구체적으로, 상기 MRI 조영제는 가돌리늄 착화합물, 망간 착화합물, 구리(Copper)(II) 착화합물, 산화철 나노입자 및 산화망간 나노입자일 수 있으며, 본 발명의 일 실시예에서는 산화철 나노입자 조영제인 페리덱스TM (Feridex) 및 염화망간을 MRI 조영제로 사용하였으나, 이에 한정되지 않는다.
본 발명에 있어서, 상기 CT 조영제는 X선 촬영 시, 음영을 명확하게 하기 위해 사용하는 물질로, 금속 또는 아이오딘(iodine)이 포함된 화합물 또는 나노 입자로 이루어진 것이 예시일 수 있고, 본 발명의 일 실시예에서 로즈 벵갈을 사용하고 있으나, 이에 한정되지는 않는다.
본 발명에 있어서, 상기 "형광염료"는 플루오레세인 (Fluorescein), CR110 : 카복시로다민 110 : 로다민 그린(상표명), TAMRA : 카복시테트라메틸로다민 : TMR, 카복시로다민 6G : CR6G, BODIPY FL(상표명) : 4,4-디플루오로-5,7-디메틸-4-보라-3a,4a-디아자-s-인다센-3-프로피온산, BODIPY 493/503(상표명) : 4,4-디플루오로-1,3,5,7-테트라메틸-4-보라-3a,4a-디아자-s-인다센-8-프로피온산, BODIPY R6G(상표명) : 4,4-디플루오로-5-(4-페닐-1,3-부타디에닐)-4-보라-3a,4a-디아자-s-인다센-3-프로피온산, BODIPY 558/568(상표명) : 4,4-디플루오로-5-(2-티에닐)-4-보라-3a,4a-디아자-s-인다센-3-프로피온산, BODIPY 564/570(상표명) : 4,4-디플루오로-5-스티릴-4-보라-3a,4a-디아자-s-인다센-3-프로피온산, BODIPY 576/589(상표명) : 4,4-디플루오로-5-(2-피롤릴)-4-보라-3a,4a-디아자-s-인다센-3-프로피온산, BODIPY 581/591(상표명) : 4,4-디플루오로-5-(4-페닐-1,3-부타디에닐)-4-보라-3a,4a-디아자-s-인다센-3-프로피온산, EvoBlue10(상표명), EvoBlue30(상표명), MR121, ATTO 655(상표명), ATTO 680(상표명), ATTO 700(상표명), ATTO MB2(상표명), Alexa Fluor 350(상표명), Alexa Fluor 405(상표명), Alexa Fluor 430(상표명), Alexa Fluor 488(상표명), Alexa Fluor 532(상표명), Alexa Fluor 546(상표명), Alexa Fluor 555(상표명), Alexa Fluor 568(상표명), Alexa Fluor 594(상표명), Alexa Fluor 633(상표명), Alexa Fluor 680(상표명), Alexa Fluor 700(상표명), Alexa Fluor 750(상표명), Alexa Fluor 790(상표명), Flamma 496(상표명), Flamma 507(상표명), Flamma 530(상표명), Flamma 552(상표명), Flamma 560(상표명), Flamma 575(상표명), Flamma 581(상표명), Flamma 648(상표명), Flamma 675(상표명), Flamma 749(상표명), Flamma 774(상표명), Flamma 775(상표명), Rhodamine Red-X(상표명), Texas Red-X(상표명), 5(6)-TAMRA-X(상표명), 5TAMRA(상표명), 시아닌(Cyanine) 계열 염료 (Cy5, Cy5.5, Cy7, IR820), 인도시아닌 그린(Indocyanine green, ICG) 또는 ZW800 등 일 수 있으며, 이에 제한되지 않는다. 구체적으로, 상기 형광염료는 형광염료와 사람 혈청 알부민이 결합된 복합체인 것일 수 있다. 상기 결합은 이온결합, 소수성 결합 또는 공유결합일 수 있으며, 보다 구체적으로 공유결합일 수 있으나 특별히 이에 제한되지 않는다. 대표적으로 BODIPY 염료가 사람 혈청 알부민과 소수성 결합을 형성할 수 있으며, 친수성 향상을 위해 sulfonyl group을 도입한 시아닌 계열 염료, Alexa 계열 염료 등은 이온결합을 형성할 수 있다.
본 발명에 있어서, 상기 "약물"은 그 종류에 특별히 제한이 없으며, 대상 질환에 적절한 약물을 선택할 수 있고, 예를 들어, 항암제, 항염증제, 마취제, 항바이러스제, 항박테리아제, 치료용 항체, 항생제 또는 면역치료제 등일 수 있다.
본 발명에 있어서, 항암제로는 독소루비신, 고시폴, 나이트로젠 머스타드, 이마티닙, 옥살리플라틴, 리툭시맙, 엘로티닙, 네라티닙, 라파티닙, 제피티닙, 반데타닙, 니로티닙, 세마사닙, 보수티닙, 악시티닙, 세디라닙, 레스타우르티닙, 트라스투주맙, 게피티니브, 보르테조밉, 수니티닙, 카보플라틴, 베바시주맙, 시스플라틴, 세툭시맙, 비스쿰알붐, 아스파라기나제, 트레티노인, 하이드록시카바마이드, 다사티닙, 에스트라머스틴, 겜투주맵오조가마이신, 이브리투모맙튜세탄, 헵타플라틴, 메칠아미노레불린산, 암사크린, 알렘투주맙, 프로카르바진, 알프로스타딜, 질산홀뮴 키토산, 젬시타빈, 독시플루리딘, 페메트렉세드, 테가푸르, 카페시타빈, 기메라신, 오테라실, 아자시티딘, 메토트렉세이트, 우라실, 시타라빈, 플루오로우라실, 플루다가빈, 에노시타빈, 플루타미드, 데시타빈, 머캅토푸린, 티오구아닌, 클라드리빈, 카르모퍼, 랄티트렉세드, 도세탁셀, 파클리탁셀, 이리노테칸, 벨로테칸, 토포테칸, 비노렐빈, 에토포시드, 빈크리스틴, 빈블라스틴, 테니포시드, 독소루비신, 이다루비신, 에피루비신, 미톡산트론, 미토마이신, 블레로마이신, 다우노루비신, 닥티노마이신, 피라루비신, 아클라루비신, 페프로마이신, 템시롤리무스, 테모졸로마이드, 부설판, 이포스파미드, 사이클로포스파미드, 멜파란, 알트레트민, 다카바진, 치오테파, 니무스틴, 클로람부실, 미토락톨, 레우코보린, 트레토닌, 엑스메스탄, 아미노글루테시미드, 아나그렐리드, 나벨빈, 파드라졸, 타목시펜, 토레미펜, 테스토락톤, 아나스트로졸, 레트로졸, 보로졸, 비칼루타미드, 로무스틴 및 카르무스틴으로 이루어진 군에서 선택된 1종 이상을 사용할 수 있으나, 이에 제한되는 것은 아니다.
본 발명에 있어서, 항염증제로는 살리실레이트(salicylates), 이부프로펜 (ibuprofen), 나프로센(naproxen), 페노프로펜(fenoprofen), 인도메타신(indometha cin), 페닐타존(phenyltazone), 메소트렉세이트(methotrexate), 시클로포스파미드 (cyclophosphamide), 메클로에타민(mechlorethamine), 덱사메타손 (dexamethasone), 프레드니솔론(prednisolone), 세레콕시브(celecoxib), 발데콕시브(valdecoxib), 니메슐리드(nimesulide), 코르티손(cortisone) 또는 코르티코스테로이드(corticoste roid) 등 일 수 있다.
한편, 영상 표지를 위하여 알긴산 기반 수화젤을 점막 하층에 주입하였을 때, 환자의 면역체계는 생체 내로 이물질이 침입한 것으로 인식하고 이를 제거하기 위해 염증 반응을 일으킬 수 있다. 이때, 주입 부위로 각종 효소를 포함한 단백질, 보체(complement system), 항체 및 면역 세포들이 유입되어 주입된 부위에 존재하는 알긴산 및 형광염료를 제거하기 위한 작용이 일어난다. 따라서, 주입 부위에서 발생하는 염증 반응으로 인하여 수화젤 내에 포함되어 있는 형광염료가 제거되는 속도가 빨라질 가능성이 있다. 이러한 염증 반응 및 부작용의 감소를 위한 방법은 수화젤의 주입 시 항염증제를 별도로 경구 투여하거나, 또는 수화젤과 같이 혼합하여 목적 부위에 주입하는 방법이 있다. 소수성(hydrophobic)을 띠는 항염증제의 경우에는 물에 잘 녹지 않으므로, 미립구(microspheres), 나노입자(nanoparticles), 리포좀(liposome)이나 마이셀(micelle)등에 탑재(loading)함으로써 수용액에 분산이 잘 되도록 하고, 수화젤과 같이 주입하도록 한다.
본 발명에 따른 주입형 수화젤 제조용 조성물은 필요한 경우, 현탁제, 용해보조제, 안정화제, 등장화제, 보존제, 흡착방지제, 계면활성화제, 희석제, 부형제, pH 조정제, 무통화제, 완충제, 함황(含硫)환원제, 산화방지제 등을 적절히 포함할 수 있다. 예를 들어, 멸균수, 생리식염수, 관용의 완충제(인산, 구연산, 그 밖의 유기산 등), 안정제, 염, 산화방지제(아스코르브산 등), 계면활성제, 현탁제, 등장화제, 또는 보존제 등을 포함할 수 있다. 주사용의 수용액으로서는, 예를 들면 생리 식염수, 포도당이나 그 외의 보조약을 포함한 등장용액, 예를 들면 D-소르비톨, D-만노스, D-만니톨, 염화 나트륨을 들 수 있으며 또한, 완충제, 예를 들면 인산염 완충액, 초산나트륨 완충액, 무통화제, 예를 들면, 염산 프로카인, 안정제, 예를 들면 벤질 알코올, 페놀, 산화 방지제와 배합할 수 있다. 본 발명에 적합한 약학적으로 허용되는 담체 및 제제는 문헌[Remington's Pharmaceutical Sciences, 19th ed., 1995]에 상세히 기재되어 있다.
본 발명에 있어서, 상기 "개체"는 인간, 개, 고양이, 소, 말, 돼지, 쥐 등을 포함하는 포유동물일 수 있으며, 이에 특별히 제한되지 않는다.
수술로 제거할 부위를 미리 표지해 놓거나, 질병 병변의 위치를 일정 시간 동안 표지할 필요가 있는 경우, 영상 조영제를 병변에 국소 주입하게 되는데, 보통의 경우 국소 부위에 주입된 영상 조영제는 빠른 속도로 주변 조직으로 확산되어 퍼짐으로써 영상 판별의 정확도를 떨어뜨리고, 영상 신호 강도도 빠르게 약해지는 단점이 있다.
본 발명에 따른 영상 조영제가 포함된 알긴산 기반의 주입형 수화젤 제조용 조성물은, 젤 내부에 함입된 조영제가 주변으로 확산되지 않고 일정 시간 동안 주입된 병변 부위에 머무를 수 있도록 해줌으로써, 표적 부위의 위치를 영상으로 비교적 정확히 판별하고 필요시 수술로 제거할 수 있도록 해준다.
또한, 약물을 정맥주입하게 되면, 대부분의 경우 원하지 않는 세포 또는 장기에 영향을 줌으로써, 심각한 부작용을 초래하는 경우가 많다. 표적 부위에 약물을 국소 주입하는 경우에도, 약물이 주입된 부위에서 빠르게 흡수되어 퍼짐으로써 주변 정상 세포에 대한 부작용을 완전히 피할 수 없고 주입부위에서의 약효 지속시간도 짧게 된다.
본 발명에 따른 약물이 포함된 알긴산 기반의 주입형 수화젤 제조용 조성물은 주입된 병변 부위에서 젤 내부에 함입된 약물이 주변으로 확산되지 않고 일정 시간 동안 천천히 방출됨으로써 약효가 오랫동안 지속될 수 있다. 따라서, 주변 조직에 대한 약물의 부작용은 줄이면서 적은 양의 약물을 주입해도 표적부위에서 원하는 약효를 달성할 수 있다.
도 1은 알긴산 기반의 주입형 수화젤 시스템의 구성도이다.
도 2a는 인도시아닌 그린 농도에 따른 형광 그래프이다.
도 2b은 인도시아닌 그린 농도에 따른 최대 형광 세기를 나타낸 그래프이다.
도 2c는 인도시아닌 그린 농도에 따른 흡광도 그래프이다.
도 3a는 1:1로 결합된 인도시아닌 그린-사람 혈청 알부민 농도에 따른 형광 그래프이다.
도 3b는 1:1로 결합된 인도시아닌 그린-사람 혈청 알부민 농도에 따른 최대 형광 세기를 나타낸 그래프이다.
도 3c는 1:1로 결합된 인도시아닌 그린-사람 혈청 알부민 농도에 따른 흡광도 그래프이다.
도 4a는 인도시아닌 그린의 농도를 30 μM로 고정했을 때 사람 혈청 알부민의 비율에 따른 형광 그래프이다.
도 4b는 인도시아닌 그린의 농도를 30 μM로 고정했을 때 사람 혈청 알부민의 비율에 따른 최대 형광 세기를 나타낸 그래프이다.
도 4c는 인도시아닌 그린의 농도를 6 μM로 고정했을 때 사람 혈청 알부민의 비율에 따른 흡광도 그래프이다.
도 5는 알긴산 수화젤에 들어가는 칼슘 이온과 D-글루콘산의 농도에 따른 젤화 시간을 나타낸 사진과 그래프이다.
도 6a는 30 μM의 인도시아닌 그린 용액, 인도시아닌 그린-사람 혈청 알부민 용액, 인도시아닌 그린-사람 혈청 알부민 30 μM을 넣은 알긴산 수화젤의 3가지 조건을 96 well에 주입한 후 3일까지 형광 세기의 변화를 관찰한 그래프이다.
도 6b는 30 μM의 인도시아닌 그린 용액, 인도시아닌 그린-사람 혈청 알부민 용액, 인도시아닌 그린-사람 혈청 알부민 30 μM을 넣은 알긴산 수화젤의 3가지 조건을 96 well에 주입한 직후 찍은 형광 영상이다.
도 7은 듀얼 시린지의 한쪽에는 제1제인 인도시아닌 그린-사람 혈청 알부민과 탄산 칼슘이 섞인 알긴산 용액 넣고 반대쪽에는 제2제인 D-글루콘산이 섞인 알긴산 용액을 넣어 누드마우스의 피하에 주입하는 모식도이다.
도 8은 누드마우스 피하에 주입한 인도시아닌 그린 용액, 인도시아닌 그린-사람 혈청 알부민 용액, 인도시아닌 그린-사람 혈청 알부민이 함입된 알긴산 수화젤 세 조건에 대해서 시간에 따라 얻은 형광 영상이다.
도 9는 누드마우스 피하에 주입한 인도시아닌 그린 용액, 인도시아닌 그린-사람 혈청 알부민 용액, 인도시아닌 그린-사람 혈청 알부민이 함입된 알긴산 수화젤 세 조건에 대해서 시간에 따른 주입 부위의 모습을 관찰한 사진이다.
도 10a는 누드마우스 피하에 주입한 인도시아닌 그린 용액, 인도시아닌 그린-사람 혈청 알부민 용액, 인도시아닌 그린-사람 혈청 알부민이 함입된 알긴산 수화젤 세 조건에 대해서 시간에 따른 ROI(Region of interest) 값을 나타낸 그래프이다.
도 10b는 누드마우스 피하에 주입한 인도시아닌 그린 용액, 인도시아닌 그린-사람 혈청 알부민 용액, 인도시아닌 그린-사람 혈청 알부민이 함입된 알긴산 수화젤 세 조건에 대해서 시간에 따라 표지부위와 주변 조직의 TBR(Target-to-background ratio = 표지부위에서의 형광 ROI 값÷주변 조직의 형광 ROI 값)을 나타낸 그래프이다.
도 10c는 누드마우스 피하에 주입한 인도시아닌 그린 용액, 인도시아닌 그린-사람 혈청 알부민 용액, 인도시아닌 그린-사람 혈청 알부민이 함입된 알긴산 수화젤 세 조건에 대해서 시간에 따라 표지부위에서 형광이 퍼진 면적을 나타낸 그래프이다.
도 11a는 ZW800-1C NHS ester의 구조이다.
도 11b는 공유결합된 사람 혈청 알부민-ZW 800-1C 결합체의 흡광도 및 형광 그래프이다.
도 11c는 누드마우스 피하에 주입한 사람 혈청 알부민-ZW 800-1C의 공유결합 형태의 형광염료가 함입된 알긴산 수화젤에 대하여 시간에 따라 얻은 형광 영상이다.
도 12는 알긴산 수화젤에 약물인 독소루비신을 함입하여 ep-tube에 주입한 모습이다.
도 13은 증류수, 알긴산 수화젤, 독소루비신이 함입된 알긴산 수화젤에 대하여 얻은 형광 영상이다.
도 14는 알긴산 수화젤에 MRI 조영제인 염화망간과 페리덱스를 함입하여 ep-tube에 주입한 모습이다.
도 15는 증류수, 알긴산 수화젤, 염화망간(0.05, 0.1, 0.2 mM)이 함입된 알긴산 수화젤에 대하여 얻은 MRI T1 강조영상이다.
도 16은 증류수, 알긴산 수화젤, 페리덱스(25, 50, 100 μM)이 함입된 알긴산 수화젤에 대하여 얻은 MRI T2 강조영상이다.
도 17은 알긴산 수화젤에 CT 조영제인 로즈 벵갈을 함입하여 ep-tube에 주입한 모습이다.
도 18은 증류수, 알긴산 수화젤, 로즈 벵갈이 함입된 알긴산 수화젤에 대하여 얻은 CT 영상이다.
도 19는 증류수, 알긴산 수화젤, 로즈 벵갈이 함입된 알긴산 수화젤에 대하여 얻은 CT 영상이다.
도 20은 알긴산과 히알루론산을 혼합하여 만든 수화젤을 ep-tube에 주입한 모습이다.
도 21은 시험군 1(돼지 #1)의 위장 내 점막하층에 인도시아닌 그린-사람 혈청 알부민이 함입된 알긴산 수화젤을 주입하고, 3일 후에 형광 복강경을 통하여 수화젤이 주입된 위치를 확인한 형광 검출 영상이다. 점선 원안에 보이는 형광신호는 수화젤이 주입된 위치에서 발생되는 형광신호이다.
도 22는 시험군 2(돼지 #2)의 위장 내 점막하층에 인도시아닌 그린-사람 혈청 알부민이 함입된 알긴산 수화젤을 주입하고, 30분 후에 형광 복강경을 통하여 수화젤이 주입된 위치를 확인한 형광 검출 영상이다. 점선 원안에 보이는 형광신호는 수화젤이 주입된 위치에서 발생되는 형광신호이다.
도 23은 돼지의 위를 절개 한 후 형광복강경을 사용하여 얻은 형광 영상이다(위: 돼지 #1, 아래: 돼지 #2).
도 24는 세레콕시브가 탑재된 PLGA 미립구에 대한 현미경 관찰 사진이다.
도 25a는 세레콕시브를 아세토나이트릴 용액에 다양한 농도로 녹이고 얻은 흡광 스펙트럼이다.
도 25b는 251 nm 파장에서 세레콕시브 (아세토나이트릴) 용액의 농도별 흡광도를 측정하여 얻은 표준 곡선(Standard curve)이다.
도 25c는 세레콕시브가 탑재된 PLGA 미립구 용액을 아세토나이트릴 용액에 0.04 mg/mL의 농도로 녹이고 측정한 흡광 스펙트럼이다.
도 26a는 세레콕시브가 탑재된 PLGA 미립구를 포함하는 알긴산 수화젤을 마우스의 피하에 주입하고 24시간, 48시간 및 72시간 후 얻은 형광 영상이다.
도 26b는 세레콕시브가 포함되지 않은 알긴산 수화젤(Alg Gel)과 세레콕시브가 탑재된 PLGA 미립구가 포함된 알긴산 수화젤(microsphere/Alg Gel)이 주입된 부위(region of interest, ROI)에서 발생하는 형광신호를 시간에 따라 정량 분석한 결과이다.
이하, 본 발명을 보다 구체적으로 설명하기 위하여 본 발명에 따른 바람직한 실시예를 첨부된 도면을 참조하여 보다 상세하게 설명한다. 그러나, 본 발명은 여기서 설명하는 실시예에 한정되지 않고 다른 형태로 구체화될 수도 있다. 다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 갖는다. 일반적으로, 본 명세서에서 사용된 명명법은 본 기술분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.
실시예 1: 알긴산 수화젤의 수술 표지자 함입 실험
1-1: 인도시아닌 그린과 인도시아닌 그린-사람 혈청 알부민 복합체의 형광 및 흡광도 측정
인도시아닌 그린과 사람 혈청 알부민 결합체를 이용한 수술 표지자를 개발하기에 앞서, 인도시아닌 그린과 사람 혈청 알부민 결합체의 적절한 농도를 알아보기 위해서 두 물질을 농도별로 섞어 형광(λex=720 nm)과 흡광도의 변화를 관찰하였다.
<제조예 1>
인도시아닌 그린(Indocyanine green, ICG, 시그마-알드리치사에서 구입) 1.5 mg에 증류수 3 mL를 첨가하고 stirring으로 녹여서 고농도의 인도시아닌 그린 용액을 준비하였다. 상기 고농도의 인도시아닌 그린 용액에 증류수를 첨가하여 stirring을 통해 섞어 2-100 μM 용액을 만들었다.
<제조예 2>
상기 고농도의 인도시아닌 그린 용액 1 mL를 취해서 사람 혈청 알부민(Human serum albumin, HSA, 시그마-알드리치사에서 구입) 42.89 mg에 첨가한 후, pipetting하여 완전히 섞어 고농도의 인도시아닌 그린-사람 혈청 알부민 복합체를 만들었다. 상기 고농도의 인도시아닌 그린-사람 혈청 알부민 용액을 증류수에 첨가하여 stirring을 통해 섞어 2-100 μM 용액을 만들었다.
<평가 1 - 형광 특성 평가>
인도시아닌 그린만 2-100 μM 있는 경우에는 최대 형광세기가 약 20 μM까지 증가하다가 형광염료의 응집이 일어나 그 이상의 농도부터는 형광이 감소하였다(도 2a 및 2b). 반면에 1대 1로 결합된 인도시아닌 그린-사람 혈청 알부민 복합체는 2-100 μM의 농도 범위에서 인도시아닌 그린만 사용했을 경우보다 형광이 더 크면서, 두 물질의 농도가 약 30 μM가 될 때까지 최대 형광세기가 계속 증가하다가 그 이상부터는 거의 변화가 없이 유지되는 것을 확인하였다(도 3a 및 3b).
<평가 2 - 흡광도 특성 평가>
인도시아닌 그린과 1대 1로 결합된 인도시아닌 그린-사람 혈청 알부민 복합체의 흡광도를 2-10 μM의 농도 범위에서 관찰한 결과, 두 가지 모두 농도가 증가하면서 흡광도가 증가하는 경향성을 보였지만, 인도시아닌 그린-사람 혈청 알부민 복합체의 경우가 흡광도가 더 세게 나타나는 것을 확인하였다(도 2c 및 도 3c).
1-2: 인도시아닌 그린-사람 혈청 알부민 복합체의 혼합 비율에 따른 형광 및 흡광도 측정
인도시아닌 그린-사람 혈청 알부민 결합체를 이용한 수술 표지자를 개발하기에 앞서 인도시아닌 그린-사람 혈청 알부민 결합체의 적절한 혼합 비율을 알아보기 위해서 두 물질을 농도별로 섞어 형광(λex=720 nm)과 흡광도의 변화를 관찰하였다.
<제조예 3>
제조예 1과 같은 방법으로, 고농도의 인도시아닌 그린 용액을 만들었다. 사람 혈청 알부민 42.89 mg에 증류수를 1 mL 첨가한 후, pipetting하여 완전히 섞어 고농도의 사람 혈청 알부민 용액을 준비하였다. 상기 고농도의 인도시아닌 그린 용액은 0.125 mL를 취하여 최종 농도가 30 μM이 되도록 고정하였고, 여기에 사람 혈청 알부민 용액만 인도시아닌 그린과 몰비가 0 내지 2가 되도록 해당되는 양을 각각 첨가한 후, 증류수로 총 1 mL의 용액으로 만들고 stirring하여 완전히 섞이도록 하였다.
<평가 3 - 형광 및 흡광도 특성 평가>
상기 제조예 3의 용액을 사용하여 형광과 흡광도의 변화를 관찰하였다(도 4a 내지 4c). 인도시아닌 그린-사람 혈청 알부민 결합체에서 사람 혈청 알부민의 양이 증가하면서 형광이 증가하는 경향성이 나타났다. 특히 형광은 두 물질이 1대 1 비율로 결합할 때까지 증가하다가 그 이상으로 사람 혈청 알부민의 비율이 증가할 때부터는 거의 변화가 없었다. 인도시아닌 그린-사람 혈청 알부민 결합체의 몰비에 따른 흡광도를 보았을 때도 사람 혈청 알부민의 몰수가 증가하면서 흡광도가 증가하는 경향성을 보였다.
1-3: 칼슘 첨가 후 시간에 따른 알긴산 용액의 젤화 관찰
수술 표지자로 사용 가능한 적당한 젤화 시간을 가지는 알긴산 수화젤을 만들기 위해서 표 1과 같이 서로 다른 농도의 칼슘 이온을 듀얼 시린지를 통해서 알긴산 용액에 첨가한 후, 시간에 따른 알긴산 용액의 변화를 관찰하였다(도 5).
칼슘 이온은 알긴산과 가교 결합을 통해서 수화젤을 형성하게 된다. 탄산 칼슘(Calcium carbonate, 시그마-알드리치에서 구입)의 경우 용해도가 낮기 때문에 산성 조건인 D-글루콘산(D-gluconic acid solution, 시그마-알드리치에서 구입)을 듀얼 시린지로 혼합함으로써 탄산 칼슘의 용해 속도를 조절하여 알긴산과 빠르게 가교 결합할 수 있도록 만들었다. 이러한 과정을 통해서 알긴산이 전체적으로 고르게 젤화될 수 있다. 탄산 칼슘에 대하여 D-글루콘산의 몰수를 2배로 넣어주어 전체 용액의 pH를 중성으로 맞춰주었다.
혼합 조건 1 2 3
제1제 알긴산 1.0 w/v%탄산 칼슘 0.1X 알긴산 1.0 w/v%탄산 칼슘 0.2X 알긴산 1.0 w/v%탄산 칼슘 0.3X
제2제 알긴산 1.0 w/v%D-글루콘산 0.2X 알긴산 1.0 w/v%D-글루콘산 0.4X 알긴산 1.0 w/v%D-글루콘산 0.6X
(듀얼 시린지를 통한 알긴산 수화젤의 혼합 조건, X는 알긴산 1.0 w/v%에 포함된 카복시기 몰수를 의미함.)
<제조예 4>
알긴산 나트륨(Sodium alginate, 키미카사에서 구입) 0.036 g을 증류수 3 mL에 녹여서 알긴산 1.2 wt% 용액을 만들었다. 상기 알긴산 1.2 wt% 용액 1.25 mL에 증류수 0.25 mL를 첨가하여 알긴산 1.0 wt% 용액을 만들었다. 알긴산 1.0 wt% 용액 1 mL를 탄산 칼슘 1.14 mg에 넣어 pipetting 또는 vortexing으로 섞어 제1제 용액을 준비하였다. 상기 알긴산 1.2 wt% 용액 0.833 mL에 D-글루콘산 용액 0.007 mL를 첨가하고 증류수로 총 1 mL로 만든 후, vortexing과 stirring으로 완전히 섞어 제2제 용액을 준비하였다. 탄산 칼슘과 D-글루콘산은 알긴산 1.0 w/v%에 포함된 카복시기 몰수를 기준으로 각각 0.1, 0.2배 사용하였다.
<제조예 5>
제1제의 탄산 칼슘이 2.29 mg, 제2제의 D-글루콘산 용액이 0.015 mL인 조건을 제외하고는 제조예 4와 동일한 방법을 사용하여, 용액을 제조하였다. 탄산 칼슘과 D-글루콘산은 알긴산 1.0 w/v%에 포함된 카복시기 몰수를 기준으로 각각 0.2, 0.4배 사용하였다.
<제조예 6>
제1제의 탄산 칼슘이 3.43 mg, 제2제의 D-글루콘산 용액이 0.022 mL인 조건을 제외하고는 제조예 4와 동일한 방법을 사용하여, 용액을 제조하였다. 탄산 칼슘과 D-글루콘산은 알긴산 1.0 w/v%에 포함된 카복시기 몰수를 기준으로 각각 0.3, 0.6배 사용하였다.
<평가 4 - 칼슘 이온 양에 따른 알긴산 수용액의 젤화 평가>
제조예 4 내지 6의 제1제와 제2제 용액을 듀얼 시린지를 통해서 유리병에 총 부피가 0.5 mL가 되도록 주입한 후, 시간에 따른 젤의 형성 여부를 유리병을 뒤집어봄으로써 관찰하였다. 상기 표 1 및 도 5에서 보듯이, 0.1X-0.3X의 칼슘 조건에 대하여 알긴산 용액을 듀얼 시린지로 유리병에 주입하여 시간에 따른 용액의 변화 모습을 관찰하였다.
0.1X의 칼슘 조건에서는 용액이 주입 직후 흐르는 액체 상태(졸)이었다가 약 46분 후 고체 상태(젤)로 변했다. 0.2X의 칼슘 조건에서는 주입 직후 용액이 약간 흐르는 액체 상태(졸)이었다가 약 2분 후 고체 상태(젤)로 변했다. 마지막으로 0.3X의 칼슘 조건에서는 용액이 주입 직후부터 거의 흐르지 않는 상태이다가 약 1분 후 고체 상태(젤)로 변했다. 이러한 젤화 시간을 도 5에서 사용한 칼슘 이온의 농도에 따라서 그래프로 나타내었다.
0.1-0.3X 칼슘 조건을 통해서 알긴산에 넣어주는 칼슘 이온의 농도가 증가할수록 알긴산의 젤화 시간이 짧아지는 것을 관찰하였다. 특히 그 중에서도 0.3X의 칼슘 조건의 경우, 주입 직후부터 거의 흐르지 않는 고체 상태(젤)로 존재한다. 본 실험에서는 인도시아닌 그린-사람 혈청 알부민 복합체의 확산을 효과적으로 막기 위해서 주입 직후 젤이 되는 0.3X의 칼슘 조건을 선택하여 추후 실험을 진행하였다.
1-4: 인도시아닌 그린-사람 혈청 알부민 복합체를 함입한 알긴산 수화젤의 형광 측정
인도시아닌 그린이 생체 내에서 쉽게 확산되는 것을 막기 위해서 인도시아닌 그린-사람 혈청 알부민 복합체를 알긴산에 함입한 후, 이를 듀얼 시린지를 통해 칼슘 이온과 가교 결합시켜 주입 가능한 수화젤 형태로 만든 후, in vitro 조건에서 형광(λex=720 nm)과 형광 영상(λex=780 nm, λem=845 nm)을 확인하였다.
<제조예 7>
고농도의 인도시아닌 그린 용액을 제조예 1과 동일한 방법으로 제조하였다. 상기 고농도의 인도시아닌 그린 용액 0.139 mL에 증류수를 넣어 총 1.5 mL로 만든 후, stirring하여 섞은 제1제 용액을 준비하였다. 제2제 용액으로는 증류수를 사용하였다. 제1제와 제2제를 섞은 최종 용액의 인도시아닌 그린 농도가 30 μM이 되도록 준비하였다.
<제조예 8>
고농도의 인도시아닌 그린-사람 혈청 알부민 용액을 제조예 2와 동일한 방법으로 제조하였다. 상기 고농도의 인도시아닌 그린-사람 혈청 알부민 용액 0.139 mL에 증류수를 넣어 총 1.5 mL가 되도록 만든 후, stirring하여 섞은 제1제 용액을 준비하였다. 제2제 용액으로는 증류수를 사용하였다. 제1제와 제2제를 섞은 최종 용액의 인도시아닌 그린-사람 혈청 알부민 복합체의 농도가 30 μM이 되도록 준비하였다.
<제조예 9>
고농도의 인도시아닌 그린-사람 혈청 알부민 용액을 제조예 2와 동일한 방법으로 제조하였다. 알긴산 1.2 wt% 용액 1.25 mL에 상기 고농도의 인도시아닌 그린-사람 혈청 알부민 용액 0.139 mL를 첨가한 후, 증류수로 전체 부피를 1.5 mL로 만든 용액을 사용하는 것을 제외하고는, 제조예 6과 동일한 방법으로, 제1제와 제2제 용액을 준비하였다.
<평가 5 - 형광 평가>
제조예 7 내지 9의 용액을 듀얼 시린지를 이용하여 총 부피가 200 μL가 되도록 96 well에 각각 주입하였다. 주입한 젤의 시간에 따른 형광 그래프와 형광 영상을 확인하였다.
도 6a에서 보듯이, 각 용액을 주입한 직후에는 인도시아닌 그린-사람 혈청 알부민 용액 조건이 제일 형광이 높았고 인도시아닌 그린 용액, 인도시아닌 그린-사람 혈청 알부민이 함입된 알긴산 수화젤 조건 순으로 형광이 줄어들었다. 주입 후 3시간이 지났을 때는, 인도시아닌 그린-사람 혈청 알부민이 함입된 알긴산 수화젤의 형광이 상대적으로 높아지면서 인도시아닌 그린-사람 혈청 알부민 용액, 인도시아닌 그린-사람 혈청 알부민이 함입된 알긴산 수화젤, 인도시아닌 그린 순으로 형광이 낮아졌다. 이러한 조건을 3일까지 관찰했을 때도 동일한 결과가 나타났다.
도 6b의 형광 영상을 통해 듀얼 시린지로 알긴산 수화젤을 주입할 때 용액이 잘 섞여서 들어갔다는 것을 확인하였다.
1-5: 동물모델에서 인도시아닌 그린-사람 혈청 알부민을 함입한 알긴산 수화젤의 형광 측정
누드마우스에서 인도시아닌 그린-사람 혈청 알부민이 함입된 알긴산 수화젤의 형광 지속성을 보기 위하여 듀얼 시린지를 통해 누드마우스 피하에 젤 형태로 주입한 후, 시간에 따른 표지 성능을 형광영상 장비(IVIS Lumina XR, Xenogen Corporation-Caliper, CA, USA)를 이용하여 촬영하였다. 제조예 7 내지 9와 동일한 방법으로 동물모델에 주입할 세 가지 용액을 각각 준비하였다. 도 7은 듀얼 시린지를 이용하여 누드마우스의 피하에 인도시아닌 그린-사람 혈청 알부민이 함입된 알긴산 수화젤을 주입하는 모식도이다.
<평가 6 - 동물 모델에서 젤의 형광 지속성 평가>
제조예 7 내지 9의 용액을 듀얼 시린지를 이용하여 총 부피가 100 μL가 되도록 누드마우스의 피하에 각각 주입하였다.
도 8은 누드마우스 피하에 주입한 인도시아닌 그린 용액, 인도시아닌 그린-사람 혈청 알부민 용액, 인도시아닌 그린-사람 혈청 알부민이 함입된 알긴산 수화젤 세 조건에 대하여 시간에 따라 얻은 형광 영상(λex=780 nm, λem=845 nm)이다. 이때, 인도시아닌 그린과 인도시아닌 그린-사람 혈청 알부민 용액에서의 형광은 약 하루 정도만 유지되는 반면, 알긴산 수화젤의 경우에는 약 5일 정도까지 형광이 지속적으로 나오는 것을 확인하였다. 또한, 알긴산 수화젤의 경우 젤이 형광염료가 퍼지는 것을 막아주기 때문에 다른 두 조건에 비해서 형광이 퍼지는 정도가 더 적다는 것을 확인하였다.
도 9는 누드마우스 피하에 주입한 인도시아닌 그린 용액, 인도시아닌 그린-사람 혈청 알부민 용액, 인도시아닌 그린-사람 혈청 알부민이 함입된 알긴산 수화젤 주입 부위를 시간에 따라 관찰한 결과이다. 구체적으로, 인도시아닌 그린, 인도시아닌 그린-사람 혈청 알부민 용액 조건에서는 주입 직후, 주입 부위가 약간 볼록하게 보이다가 약 24시간 이후부터는 용액이 퍼지면서 보이지 않게 되는 것을 확인하였다. 반면에 알긴산 수화젤의 경우, 주입 직후부터 볼록하게 튀어나온 부위가 눈으로 분명하게 관찰되었고 젤의 경우에는 분해가 일부 되기는 하나 약 한 달 정도까지도 유지된다는 것을 확인하였다.
도 10a에서는 표지부위의 ROI 값으로 누드마우스에서 각 조건의 형광이 얼마나 지속되는지를 비교하였다. ROI 값을 확인해 보았을 때, 인도시아닌 그린과 인도시아닌 그린-사람 혈청 알부민 용액의 경우에는 거의 유사한 양상을 보였다. 시간이 흐르면서 주입된 용액이 퍼져 6시간째 형광이 가장 크게 나왔고, 하루가 지났을 때는 주입 직후와 비교하여 각각 16%, 12%의 형광이 남아있다는 것을 확인하였다. 반면, 알긴산 수화젤의 경우에는 마찬가지로 주입 후 용액이 약간 퍼지면서 6시간째 형광이 가장 크게 나오기는 했으나, 2일 후에도 주입 직후와 비교하여 아직 약 61%의 형광 신호가 나타난다는 것을 확인하였다.
도 10b에서는 표지 부위(Target)의 형광 ROI 값을 주변 조직 (Background)의 형광 ROI 값으로 나누어 TBR(Target-to-background ratio)를 관찰하였다. 그 결과 인도시아닌 그린, 인도시아닌 그린-사람 혈청 알부민 용액 조건에서는 TBR이 5배가 되는데 약 4-5일이 걸리는 반면, 알긴산 수화젤은 TBR이 5배가 되는 데 약 8일 정도가 걸리는 것을 확인하였다.
도 10c에서는 누드마우스에서 형광이 나타나는 면적을 확인해 보았다. 인도시아닌 그린, 인도시아닌 그린-사람 혈청 알부민 용액 조건에서 형광이 최대로 퍼진 면적과 알긴산 수화젤에서 형광이 최대로 퍼진 면적을 비교해 보았을 때, 알긴산 수화젤에서 다른 조건에 비해 약 2배 정도 형광이 덜 퍼져서 나타난다는 것을 알 수 있었다. 또한 형광 신호가 다른 두 조건은 48시간에 거의 없어지는 반면, 알긴산 수화젤 조건은 형광 신호가 5일까지 나타났다.
이러한 결과를 종합해 볼 때, in vivo 조건에서 알긴산 수화젤이 형광염료를 감싸서 표적 부위에서 확산되는 것을 막아줌으로써 효과적으로 형광 지속 시간을 증가시킨다는 것을 확인하였다.
1-6: 알긴산 수화젤의 사람 혈청 알부민-ZW800-1C 함입 실험
알긴산 수화젤에 공유결합 복합체인 사람 혈청 알부민-ZW800-1C 형광염료를 함입하여 in vivo 조건에서 형광 지속성을 확인하였다.
<제조예 10>
사람 혈청 알부민(10 mg/mL)을 인산 완충액에 녹인 후 ZW800-1C NHS ester(도 11a)와 1:2 몰비율로 1 mL의 인산 완충액에서 1 시간 동안 실온 반응시켰다. 반응 완료 후, 결합하지 않은 형광염료와 반응부산물은 PD-10 컬럼(GE Healthcare)를 사용하여 제거하였다. 정제 후 얻어진 사람 혈청 알부민-ZW-800-1C 결합체는 Amicon Ultra-0.5 mL (cut off: 30 kDa) 원심분리 필터를 이용하여 농축시키고 4℃ 냉장고에 보관하였다.
사람 혈청 알부민에 결합된 형광염료의 비율을 분석하기 위하여, 사람 혈청 알부민-ZW800-1C 결합체를 변성된 인산 완충액(1% SDS/1 mM NaOH 포함)에 녹이고 흡광도를 측정하였다. 사람 혈청 알부민 단백질의 농도는 280 nm에서의 사람 혈청 알부민의 몰흡광계수(34,445 M-1cm-1)를 사용하여 계산하였고, 형광염료는 알려진 몰흡광계수 값(125,000 M-1cm-1 at 779 nm in DMSO)를 사용하였다. 분석 결과, 사람 혈청 알부민 1개 당 ZW800-1C가 0.26개 붙은 것으로 계산되었다.
사람 혈청 알부민-형광염료 결합체의 흡광 및 형광 정도는 5 μM 농도(형광염료 농도 기준)로 인산 완충액에 희석하여 측정하였다(도 11b).
<제조예 11>
제1제에서 인도시아닌 그린-사람 혈청 알부민 복합체 대신에 30 μM의 사람 혈청 알부민-ZW800-1C 공유결합 형태의 형광염료를 사용한 것을 제외하고는 제조예 9와 동일한 방법으로 제1제와 제2제 시약을 준비하였다.
<평가 7 - 동물 모델에서 젤의 형광 지속성 평가>
제조예 11의 용액을 듀얼 시린지를 이용하여 총 부피가 100 μL가 되도록 누드마우스의 피하에 주입하였다. in vivo 조건에서 알긴산 수화젤이 공유결합 형태의 형광염료인 사람 혈청 알부민-ZW800-1C의 경우에도 표적 부위에서 확산되는 것을 막아줌으로써 효과적으로 형광 지속 시간이 증가한다는 것을 확인하였다(도 11c).
실시예 2: 알긴산 수화젤의 약물 함입 실험
알긴산 수화젤에 함입할 약물로 항암제인 독소루비신(Doxorubicin, 시그마-알드리치에서 구입)을 준비하였다.
<제조예 12>
독소루비신 1.5 mg을 증류수 0.5 mL에 녹여 고농도의 독소루비신 용액을 준비한다. 알긴산 1.2 wt% 용액 1.25 mL에 상기 고농도의 독소루비신 0.125 mL를 첨가한 후, 증류수로 전체 부피를 1.5 mL로 만든 용액을 사용하는 것을 제외하고는, 제조예 6과 동일한 방법으로, 제1제와 제2제 용액을 준비하였다.
<평가 8 - 알긴산 수화젤에서 독소루비신 함입 및 형광 영상 확인>
제조예 12의 용액을 듀얼 시린지를 이용하여 ep-tube에 총 부피가 0.5 mL가 되도록 주입하였다. 이후, 도 12와 같이 ep-tube를 뒤집어서 형성된 알긴산 수화젤이 독소루비신을 효과적으로 함입하고 있다는 것을 확인하였다.
도 13과 같이 형광 영상장비(IVIS)를 이용하여 독소루비신이 함입된 수화젤의 형광 영상(λex=420 nm, λem=570 nm)을 살펴본 결과, 젤 내에 전체적으로 독소루비신이 잘 퍼져 있다는 것을 확인하였다.
실시예 3: 알긴산 수화젤의 자기공명영상(MRI) 조영제 함입 실험
자기공명영상 조영제인 염화망간 용액(Manganese chloride, 시그마-알드리치사에서 구입, 1M)과 페리덱스 I.V.(Feridex, 태준제약에서 구입, 11.2 mg Fe/mL)은 상업용 제품 자체가 수용액 상에 분산되어 있으므로 이것을 그대로 사용하였다.
<제조예 13>
염화망간 용액 10 μL에 증류수 990 μL를 첨가해 염화망간 용액을 1/100로 묽혀서 준비하였다. 알긴산 1.2 wt% 용액 1.25 mL에 상기 묽힌 염화망간 용액을 각각 10, 20, 40 μL 첨가한 후, 증류수로 전체 부피를 1.5 mL로 만든 3가지 농도(최종 농도 0.05, 0.1, 0.2 mM)의 용액을 사용하는 것을 제외하고는, 제조예 6과 동일한 방법으로, 제1제와 제2제 용액을 준비하였다.
<제조예 14>
페리덱스 용액 50 μL에 증류수 950 μL를 첨가해 페리덱스 용액을 1/20로 묽혀서 준비하였다. 알긴산 1.2 wt% 용액 1.25 mL에 상기 묽힌 페리덱스 용액을 각각 5, 10, 20 μL 첨가한 후, 증류수로 전체 부피를 1.5 mL로 만든 3가지 농도(최종 농도 25, 50, 100 μM)의 용액을 사용하는 것을 제외하고는, 제조예 6과 동일한 방법으로, 제1제와 제2제 용액을 준비하였다.
<평가 9 - 알긴산 수화젤에서 자기공명영상 조영제 함입 및 자기공명영상 확인>
제조예 13, 14의 용액 중 0.2 mM 염화망간과 100 μM 페리덱스 용액을 듀얼 시린지를 이용하여 각각 ep-tube에 총 부피가 0.5 mL가 되도록 주입하였다. 이 후, 도 14와 같이 ep-tube를 뒤집어서 형성된 알긴산 수화젤이 자기공명영상 조영제인 염화망간과 페리덱스를 효과적으로 함입하고 있다는 것을 확인하였다.
제조예 13의 3가지 농도의 염화망간 용액을 듀얼 시린지를 이용하여 각각 micro-tube에 총 부피가 0.25 mL가 되도록 주입하였다. 이 후, 도 15와 같이 증류수, 알긴산 수화젤, 염화망간(0.05, 0.1, 0.2 mM)을 MRI T1 강조영상을 확인하였다. 알긴산 수화젤에 첨가된 염화망간 양이 증가할수록 MRI 신호가 더 밝게 나타난다는 것을 확인하였다.
제조예 14의 3가지 농도의 페리덱스 용액을 듀얼 시린지를 이용하여 각각 micro-tube에 총 부피가 0.25 mL가 되도록 주입하였다. 이 후, 도 16과 같이 증류수, 알긴산 수화젤, 페리덱스(25, 50, 100 μM)을 MRI T2 강조영상을 확인하였다. 알긴산 수화젤에 첨가된 페리덱스 양이 증가할수록 MRI 신호가 더 어둡게 나타난다는 것을 확인하였다.
실시예 4: 알긴산 수화젤의 컴퓨터 단층촬영(CT) 조영제 함입 실험
CT 조영제인 로즈 벵갈(Rose bengal, 시그마-알드리치사에서 구입)을 이용하여 알긴산 수화젤에 CT 조영제를 함입하여 이용할 수 있는지를 확인하였다.
<제조예 15>
로즈 벵갈 100 mg을 증류수 1 mL에 녹여 고농도의 로즈 벵갈 용액을 준비하였다. 알긴산 나트륨 0.015 g에 상기 고농도의 로즈 벵갈 0.729 mL과 증류수 0.771 mL를 첨가하여 srirring으로 녹인 용액을 사용하는 것을 제외하고는, 상기 제조예 6과 동일한 방법으로, 제1제와 제2제 용액을 준비하였다.
<평가 10 - 알긴산 수화젤에서 로즈 벵갈 함입 및 CT 영상 확인>
제조예 15의 용액을 듀얼 시린지를 이용하여 ep-tube에 총 부피가 0.5 mL가 되도록 주입하였다. 이 후, 도 17과 같이 ep-tube를 뒤집어서 형성된 알긴산 수화젤이 로즈 벵갈을 효과적으로 함입하고 있다는 것을 확인하였다.
도 18, 19와 같이 증류수, 알긴산 수화젤, 로즈 벵갈을 함입한 수화젤의 CT 영상을 확인하였다. 이를 통해서 알긴산 수화젤 내에 전체적으로 로즈 벵갈이 잘 퍼져 있다는 것을 확인하였다.
실시예 5: 알긴산과 히알루론산 혼합 비율에 따른 수화젤 실험
알긴산과 히알루론산이 50:50, 1:99로 혼합된 조건에 대하여 수화젤이 형성되는지 확인해보았다.
<제조예 16>
히알루론산 나트륨(Sodium hyaluronate, 라이프코어 바이오메디칼사에서 구입) 0.06 g을 증류수 2 mL에 녹여서 3 wt%의 히알루론산 용액을 준비하였다.
알긴산 나트륨 0.036 g을 증류수 3 mL에 녹여서 알긴산 1.2 wt% 용액을 만들었다. 제조예 1의 방법으로 고농도의 인도시아닌 그린 용액을 준비하였다.
알긴산 1.2 wt% 용액 0.417 mL에 히알루론산 3 wt% 용액 0.334 mL, 고농도의 인도시아닌 그린 용액 0.093 mL를 첨가한 후, 증류수로 전체 부피를 1 mL로 만들었다.
상기 알긴산과 히알루론산이 혼합된 용액 1 mL를 탄산 칼슘 3.43 mg에 넣어 vortexing하여 제1제 용액을 준비하였다. 알긴산 1.2 wt% 용액 0.417 mL에 히알루론산 3 wt% 용액 0.334 mL, D-글루콘산 0.022 mL를 첨가한 후, 증류수로 전체 부피를 1 mL로 만든 후, vortexing과 stirring으로 섞어 제2제 용액을 준비하였다.
<제조예 17>
제조예 16과 동일한 방법으로 히알루론산 3 wt% 용액과 알긴산 1.2 wt% 용액, 고농도의 인도시아닌 그린 용액을 준비하였다.
알긴산 1.2 wt% 용액 0.005 mL에 히알루론산 3 wt% 용액 0.66 mL, 고농도의 인도시아닌 그린 용액 0.093 mL를 첨가한 후, 증류수로 전체 부피를 1 mL로 만들었다. 상기 알긴산과 히알루론산이 혼합된 용액 1 mL를 탄산 칼슘 3.43 mg에 넣어 vortexing하여 제1제 용액을 준비하였다.
알긴산 1.2 wt% 용액 0.005 mL에 히알루론산 3 wt% 용액 0.66 mL, D-글루콘산 0.022 mL를 첨가한 후, 증류수로 전체 부피를 1 mL로 만든 후, vortexing과 stirring으로 섞어 제2제 용액을 준비하였다.
제조예 16 제조예 17
알긴산과 히알루론산 비율 50:50 1:99
<평가 11 - 알긴산과 히알루론산 혼합 수화젤 평가>
상기 제조예 16, 17의 용액을 듀얼 시린지를 이용하여 각각 ep-tube에 총 부피가 0.5 mL가 되도록 주입하였다. 이후, 도 20과 같이 ep-tube를 뒤집어서 형성된 알긴산과 히알루론산이 혼합된 조건에서도 수화젤이 형성되는 것을 확인하였다.
실시예 6: 돼지 모델에서 인도시아닌 그린-사람 혈청 알부민을 함입한 알긴산 수화젤의 성능 평가
돼지(미니피그)는 대사과정과 장기의 구조, 크기가 인체와 비슷하여 내시경을 이용한 실험적 처치와 추적 관찰이 용이하다. 돼지에서 형광수술 표지자인 인도시아닌 그린-사람 혈청 알부민이 함입된 알긴산 수화젤의 형광 표지 성능을 확인하기 위하여 돼지 2마리의 위의 안쪽 점막하층에 인도시아닌 그린-사람 혈청 알부민이 함입된 알긴산 수화젤을 주입하고 주입한 당일 및 3일 후에 시점에, 위 안쪽에 주입된 형광염료로부터 발생되는 형광신호를 형광복강경을 통하여서 영상으로 검출함으로써 표지된 위치를 식별 할 수 있는지 평가하였다.
<제조예 18>
고농도의 인도시아닌 그린-사람 혈청 알부민 용액을 제조예 2와 동일한 방법으로 제조하였다. 알긴산 1 wt% 용액 8.4 mL에 상기 고농도의 인도시아닌 그린-사람 혈청 알부민 용액 0.558 mL를 첨가한 후, 증류수를 추가로 첨가하여 전체 부피를 12 mL로 만듦으로써 형광수술 표지자 용액을 준비하였다. 본 시험에서는 이온가교제를 첨가하지 않고 실험을 실시하였다.
<평가 12 - 돼지 위에서 형광 복강경을 이용하여 형광 표지 성능 확인>
돼지 2마리(돼지 #1, 돼지 #2)에 제조된 알긴산 수화젤을 주입하기 전 48시간 동안 절식시켰으며, 전신 마취를 시킨 후 실험을 진행하였다.
시험 1일차에 시험군 1 (돼지 #1)의 입을 통하여 내시경과 카테터(Clear-Jet injector, 23G, 파인메딕스)를 삽입하고, 제조예 18의 인도시아닌 그린-사람혈청 알부민이 함입된 알긴산 수화젤을 돼지의 위장 내 점막 하층 3곳에 각각 1 mL씩 주입하였다. 주입한 위치의 확인을 위하여, 수화젤 주입 위치의 바로 옆에 지혈용 클립을 클리핑 시켜 놓았다. 주입 후 3일이 지난 뒤에 돼지의 복강에 형광 복강경 시스템을 장착하고, 위장 안쪽에 위치하는 형광수술 표지자로부터 발생되는 형광 신호를 위장 밖에 위치한 형광복강경을 통하여 검출함으로써 수술 표지자가 표지된 위치를 실시간으로 확인할 수 있는지를 평가하였다.
시험군 1의 형광복강경 평가를 실시한 당일 날, 시험군 2(돼지 #2)에 대하여 시험군 1에 실시한 것과 동일한 방법으로 위장 내 점막하층 3곳에 형광수술 표지자를 주입하였다. 주입한 위치의 확인을 위하여 주입 위치의 바로 옆에 지혈용 클립을 클리핑 시켜 놓았다. 수화젤 주입 후, 돼지의 복강 내에 형광 복강경 시스템을 장착하고, 위장 안쪽에 위치하는 형광수술 표지자로부터 발생되는 형광 신호를 위장 밖에 위치한 형광복강경을 통하여 검출함으로써 수술 표지자가 표지된 위치를 실시간으로 확인할 수 있는지를 평가하였다.
형광 복강경 시스템을 사용하여 인도시아닌 그린-사람혈청 알부민이 함입된 알긴산 수화젤이 주입된 위치를 영상으로부터 관찰한 결과, 형광 표지자를 3일전에 주입한 시험군 1(도 21)과 당일 주입하고 관찰한 시험군 2(도 22)에서 모두 수화젤이 주입된 위치를 형광 영상으로부터 확인할 수 있었다.
이후 형광 영상으로부터 확인한 위치가 실제로 수화젤을 주입하였던 위치가 맞는지 확인하기 위하여서 돼지를 안락사 시키고 돼지의 위장을 절개하였다. 수화젤이 주입된 곳의 바로 옆에 클리핑 시켜놓은 지혈용 클립이 있는 곳 옆에서 형광신호가 발생하는 것을 확인하였으며, 이 결과로부터 돼지 실험의 형광복강경 영상으로부터 확인된 형광이 실제 수화젤로부터 발생된 형광신호이었음을 알 수 있었다(도 23).
이러한 결과를 종합하여 볼 때, 인도시아닌 그린-사람혈청 알부민이 함입된 알긴산 젤이 수술로 제거할 부위의 영상 표지자로서 우수한 성능이 있음을 알 수 있었다.
실시예 7: 항염증제가 포함된 알긴산 수화젤에서의 영상신호 향상 시험
영상 표지를 위하여 알긴산 기반 수화젤을 점막 하층에 주입하였을 때, 환자의 면역체계는 생체 내로 이물질이 침입한 것으로 인식하고 이를 제거하기 위해 염증 반응을 일으킬 수 있다. 이때, 주입 부위로 각종 효소를 포함한 단백질, 보체(complement system), 항체 및 면역 세포들이 유입되어 주입된 부위에 존재하는 알긴산 및 형광염료를 제거하기 위한 작용이 일어난다. 따라서, 주입 부위에서 발생하는 염증 반응으로 인하여 수화젤 내에 포함되어 있는 형광염료가 제거되는 속도가 빨라질 가능성이 있다.
따라서, 본 실시예에서는 항염증제가 탑재된 생분해성 미립구(biodegradable microspheres)를 제조하고, 수화젤과 함께 생체 내에 주입함으로써 주입 부위에서의 염증 반응을 억제하고, 이에 따라 주입된 부위에서의 형광영상 신호의 강도 또한 더 높게 유지 될 수 있는지 평가하였다. 항염증제로서 세레콕시브(Celecoxib)를 사용하였고, 생분해성 고분자인 Poly(lactic-co-glycolic acid) (PLGA)를 사용하여 약물 탑재 미립구를 제조하였다.
7-1. 항염증제 탑재 생분해성 미립구의 제조 및 분석
<제조예 19>
135 mg의 PLGA(50:50, Mw 38,000-54,000, 시그마-알드리치사에서 구입)와 13.5 mg의 세레콕시브(Celecoxib, 시그마-알드리치사에서 구입)를 4.5 mL의 디클로로메탄(Dichloromethane)에 녹였다. 0.5 g 폴리비닐알코올(Polyvinyl alcohol; PVA, Mw 13,000-23,000, 시그마-알드리치사에서 구입)를 50 mL 증류수에 첨가하고 65℃로 가열하여 완전히 녹인 후, 25℃ 온도에서 용액을 식혀준다. 계면활성제인 폴리비닐알코올이 녹아있는 수용액이 든 비커를 얼음에 담가둔 상태로, 세레콕시브와 PLGA가 녹아있는 디클로로메탄 용액을 한 방울씩 떨어뜨리면서, 균질기(Homogenizer PT 3100 Polytron, Kinematica AG, Littau-Lucerne, Switzerland)를 사용하여 5분간 5,000 rpm으로 강하게 교반하여 줌으로써 oil-in-water 에멀젼(emulsion) 용액을 만들어 주었다. 유기 용매인 디클로로메탄을 제거하기 위하여 제조된 에멀젼 용액을 100 mL 증류수와 섞고, 25℃온도 조건하에서 8시간 동안 300 rpm으로 교반하였다. 제조된 미립구의 표면에 존재하는 계면활성제인 PVA를 제거하기 위해서 3,000 rpm으로 5분동안 원심분리와 세척을 3번 반복하였다. 이후, 수용액을 동결 건조시키고, 얻어진 미립구는 4℃에 보관하였다.
<평가 13 - 제조된 항염증제 탑재 미립구의 분석>
세레콕시브가 탑재된 PLGA 미립구를 0.5 mg/mL 농도로 증류수에 분산시킨 후, 슬라이드글라스(Slide glass) 위에 몇 방울 떨어뜨리고 광학 현미경(Axio Imager M2 microscope, Zeiss, Germany)을 사용하여 형태와 크기를 관찰하였다(도 24). 제조된 미립구는 둥그런 형태임을 확인할 수 있었고, 100개의 미립구의 크기를 측정하였을 때, 9.4 ± 2.7 μm 크기를 갖는 미립구가 제조되었음을 확인하였다. 세레콕시브가 탑재된 미립구를 0.5 mg/mL 농도로 증류수에 분산시키고, 제타사이저(Zetasizer NanoZS, Malvern Instruments, Worces-tershire, UK) 장비를 이용하여 제타전위를 측정한 결과, 제타전위 값은 - 20.7 mV 로 측정되었다.
<평가 14 - 미립구에 탑재된 약물의 양 분석>
1 mg 세레콕시브를 아세토나이트릴(Acetonitrile) 10 mL에 녹인 후, 아세토나이트릴로 희석하면서 0.625, 1.25, 2.5, 5, 10, 12.5, 25 μg/mL 농도의 표준 용액을 준비하였다. 각각의 용액을 251 nm 파장에서 흡광도를 측정하여 세레콕시브에 대한 표준 검정곡선(Standard curve)을 얻었다(도 25a, 도 25b).
세레콕시브가 탑재된 PLGA 미립구 5 mg을 아세토나이트릴 2.5 mL에 완전히 녹이고, 아세토나이트릴 용액으로 50배 희석시킨 후에 251 nm 파장에서 흡광도를 측정하였고 표준곡선과 비교하여 미립구내 포함된 약물의 양을 분석하였다(도 25c). 그 결과, 미립구 2 mg에 들어있는 세레콕시브의 양은 196.4 μg인 것을 확인하였다. 즉, 약물은 미립구내에 9.8 wt/wt % 탑재된 것이다.
7-2. 동물 시험 평가
인도시아닌 그린-사람혈청 알부민이 함입된 알긴산 수화젤에 세레콕시브 탑재 미립구를 같이 섞어서 주입함으로써 염증 반응을 억제하는 경우, 주입된 부위에서 형광염료가 더 오랫동안 유지가 되고 형광강도도 더 높게 발생하는지를 동물실험을 통하여 평가하였다.
<제조예 20>
인도시아닌 그린-사람 혈청 알부민 용액을 제조예 2와 동일한 방법으로 제조하였다. 알긴산 1.2 wt% 용액 1.167 mL에 인도시아닌 그린-사람 혈청 알부민 용액 0.093 mL을 첨가한 후, 증류수를 추가로 첨가하여 전체 부피를 2 mL이 되게 하고, 교반하였다.
<제조예 21>
항염증제가 포함되어 있는 알긴산 수화젤을 제조하기 위하여서, 세레콕시브가 탑재된 PLGA 미립구가 9 mg/mL 농도로 분산된 증류수 용액 0.136 mL을 준비하였다. 인도시아닌 그린-사람 혈청 알부민이 함입된 알긴산 수용액 2 mL 을 상기의 방법과 같이 준비하고, 미립구 수용액 0.136 mL과 알긴산 용액 2 mL을 섞은 후 교반하였다. 알긴산 수화젤 내에 포함된 세레콕시브 약물의 최종 농도는 600 μg/mL 이다.
<평가 15 - 동물 모델에서 젤의 형광 지속성 평가>
주사기를 이용하여 제조예 20과 21의 용액을 100 μL씩 흰 쥐의 피하에 각각 주입하였다. 도 26a는 알긴산 수화젤을 마우스 피하 위치(subcutaneous location)에 주입하고 각각 24시간, 48시간, 72시간 째에 얻은 형광 영상(λex = 780 nm, λem = 845 nm)이다. 수화젤을 주입한 위치(region of interest, ROI)에서 발생하는 형광세기를 각 시간별로 정량 분석하였을 때에, 세레콕시브 탑재 미립구가 포함된 수화젤의 경우가 미립구가 포함되지 않은 수화젤에 비하여 24시간째에는 1.2배, 48시간째에는 1.4배, 72시간째에는 1.6배 더 높은 형광세기가 검출이 되었다 (도 26b). 이는 미립구내에 탑재된 항염증 약물인 세레콕시브의 작용으로 인하여 수화젤이 주입된 부위에서의 염증 반응이 억제됨으로써, 수화젤 내에 포함되어 있는 형광염료가 주입된 부위에서 더 높은 농도로 유지되었음을 나타내는 것이다.
이상으로 본 발명의 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.

Claims (13)

  1. 알긴산 및 이온 가교제를 포함하는 제1제; 및 알긴산 및 가교 속도 조절제를 포함하는 제2제를 포함하는, 주입형 수화젤 제조를 위한 조성물.
  2. 제1항에 있어서,
    상기 이온 가교제는 탄산 칼슘(Calcium carbonate), 탄산 스트론튬(Strontium carbonate), calcium EDTA(Calcium disodium edetate), 구연산 칼슘(Calcium citrate), 황산 칼슘(Calcium sulfate), 알긴산 칼슘(Calcium alginate), 글루콘산 칼슘(Calcium gluconate), 제2인산 칼슘(Calcium phosphate dibasic(CaHPO4)), 탄산 바륨(Barium carbonate), 탄산 아연(Zinc carbonate), 염화 칼슘(Calcium chloride), 젖산 칼슘(Calcium lactate), 아스파르트산 칼슘(Calcium aspartate), 사카린산 칼슘(Calcium saccharate), 옥소발레린산 칼슘(Calcium oxovalerate), 락토바이오산 칼슘(Calcium lactobionate), 락토글루콘산 칼슘(Calcium lactogluoconate) 및 이의 혼합물로 이루어진 군에서 선택된 것인, 주입형 수화젤 제조를 위한 조성물.
  3. 제1항에 있어서,
    상기 가교 속도 조절제는 유기산 또는 이의 염 또는 이의 혼합물, 및 PAG(photoacid generator)로 이루어진 군에서 선택된 어느 하나 이상을 포함하는 것인, 주입형 수화젤 제조를 위한 조성물.
  4. 제3항에 있어서,
    상기 유기산은 D-글루콘산인 것인, 주입형 수화젤 제조를 위한 조성물.
  5. 제1항에 있어서,
    상기 제1제 또는 제2제는 영상 조영제 또는 약물을 포함하는 것인, 주입형 수화젤 제조를 위한 조성물.
  6. 제1항에 있어서,
    상기 알긴산은 히알루론산과 혼합되어 있는 것인, 주입형 수화젤 제조를 위한 조성물.
  7. 제5항에 있어서,
    상기 영상 조영제는 자기공명영상 조영제, CT 조영제, 또는 형광염료인 것을 특징으로 하는, 주입형 수화젤 제조를 위한 조성물.
  8. 제7항에 있어서,
    상기 형광염료는 사람 혈청 알부민과 형광염료가 이온결합, 소수성 결합 또는 공유결합을 통해 연결된 복합체인 것을 특징으로 하는, 주입형 수화젤 제조를 위한 조성물.
  9. 제5항에 있어서,
    상기 약물은 항암제, 항염증제, 마취제 또는 면역치료제인 것을 특징으로 하는, 주입형 수화젤 제조를 위한 조성물.
  10. 제9항에 있어서,
    상기 항염증제는 생분해성 미립구(biodegradable microspheres), 나노입자(nanoparticles), 리포좀(liposome) 또는 마이셀(micelle)에 탑재된 형태인 것인, 주입형 수화젤 제조를 위한 조성물.
  11. 제10항에 있어서,
    상기 항염증제는 주입 부위에서의 염증 반응을 억제하여 상기 형광염료의 제거 속도를 감소시키는 것을 특징으로 하는, 주입형 수화젤 제조를 위한 조성물.
  12. 알긴산 및 이온 가교제를 포함하는 제1제; 및 알긴산 및 가교 속도 조절제를 포함하는 제2제를 포함하는, 병변의 표지를 위한 조성물.
  13. 제12항의 조성물을 개체에 주입하는 단계를 포함하는, 병변의 표지 방법.
PCT/KR2019/014682 2018-11-06 2019-11-01 알긴산 기반의 주입형 수화젤 시스템 WO2020096281A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/290,906 US20210369875A1 (en) 2018-11-06 2019-11-01 Alginic acid-based injectable hydrogel system
CN201980072192.8A CN112969479A (zh) 2018-11-06 2019-11-01 海藻酸基注射型凝胶体系
JP2021523782A JP7312822B2 (ja) 2018-11-06 2019-11-01 注入型ヒドロゲルシステムおよび病変の標識方法
EP19882937.6A EP3878476A4 (en) 2018-11-06 2019-11-01 ALGINIC ACID INJECTABLE HYDROGEL SYSTEM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0135161 2018-11-06
KR20180135161 2018-11-06

Publications (1)

Publication Number Publication Date
WO2020096281A1 true WO2020096281A1 (ko) 2020-05-14

Family

ID=70611616

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/014682 WO2020096281A1 (ko) 2018-11-06 2019-11-01 알긴산 기반의 주입형 수화젤 시스템

Country Status (6)

Country Link
US (1) US20210369875A1 (ko)
EP (1) EP3878476A4 (ko)
JP (1) JP7312822B2 (ko)
KR (1) KR102315855B1 (ko)
CN (1) CN112969479A (ko)
WO (1) WO2020096281A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114652863A (zh) * 2020-12-23 2022-06-24 成都纽瑞特医疗科技股份有限公司 一种放射性炭微球注射剂及制备方法和用途

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102413336B1 (ko) * 2020-07-10 2022-06-27 부경대학교 산학협력단 다공성 알지네이트 기반 하이드로겔, 이의 제조방법 및 이를 이용한 약물 전달체
WO2022040044A1 (en) * 2020-08-20 2022-02-24 Algiknit Inc. Alginate-based polymers and products, and their manufacture
WO2023136639A1 (ko) * 2022-01-13 2023-07-20 국립암센터 생체 친화적 목적 병변 표지용 조성물 및 이의 제조 방법
KR102552104B1 (ko) * 2022-02-04 2023-07-07 국립암센터 병변 표지를 위한 근적외선 형광염료 탑재 고분자 미립구 및 이의 제형
CN114699364B (zh) * 2022-03-29 2023-06-27 山东大学 一种海藻酸盐可注射水凝胶及其制备方法与应用
CN115554235B (zh) * 2022-06-20 2023-08-25 四川大学 一种长效缓释丹酚酸b的可注射心衰治疗水凝胶及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060021967A (ko) * 2004-09-06 2006-03-09 주식회사 엘지생활건강 용시 겔화를 이용한 치아 미백 성분 전달 시스템
WO2006044342A2 (en) * 2004-10-12 2006-04-27 Fmc Biopolymer As Self-gelling alginate systems and uses thereof
WO2012012772A2 (en) * 2010-07-22 2012-01-26 The Johns Hopkins University Drug eluting hydrogels for catheter delivery

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0944403A2 (en) * 1996-12-10 1999-09-29 Reprogenesis, Inc Improved hydrogel for tissue engineering
SK286437B6 (sk) * 1997-05-16 2008-10-07 Amgen, Inc. Gélotvorná farmaceutická kompozícia s predĺženým uvoľňovaním a oneskorenou tvorbou gélu a jej použitie
WO1999015211A1 (en) * 1997-09-19 1999-04-01 Reprogenesis, Inc. Improved hydrogel for tissue engineering
KR101552138B1 (ko) * 2012-12-26 2015-09-10 국립암센터 신규한 암 병변 표지용 조성물
CN106068131B (zh) * 2013-12-24 2020-01-17 阿雷斯贸易股份有限公司 藻酸盐/胶原水凝胶中的fgf-18制剂
KR101610465B1 (ko) * 2014-04-11 2016-04-07 국립암센터 다목적용 의료 영상 표지자 및 이의 제조방법
KR102179241B1 (ko) * 2016-04-22 2020-11-16 국립암센터 병변 표지용 주사제 조성물
CN107441492A (zh) * 2016-05-30 2017-12-08 复旦大学 环氧化酶-2抑制剂和纳米药物递送系统的药物组合物及其用途

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060021967A (ko) * 2004-09-06 2006-03-09 주식회사 엘지생활건강 용시 겔화를 이용한 치아 미백 성분 전달 시스템
WO2006044342A2 (en) * 2004-10-12 2006-04-27 Fmc Biopolymer As Self-gelling alginate systems and uses thereof
WO2012012772A2 (en) * 2010-07-22 2012-01-26 The Johns Hopkins University Drug eluting hydrogels for catheter delivery

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HIGHAM, A. K.: "Photo-activated ionic gelation of alginate hydrogel: real-time rheological monitoring of the two-step crosslinking mechanism.", SOFT MATTER, 2014, XP055704964 *
LARSEN, B. E.: "Rheological characterization of an injectable alginate gel system", BMC BIOTECHNOLOGY, 2015, XP021221192 *
REMINGTON'S PHARMACEUTICAL SCIENCES, 1995
See also references of EP3878476A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114652863A (zh) * 2020-12-23 2022-06-24 成都纽瑞特医疗科技股份有限公司 一种放射性炭微球注射剂及制备方法和用途

Also Published As

Publication number Publication date
KR20200052223A (ko) 2020-05-14
EP3878476A1 (en) 2021-09-15
JP2022506417A (ja) 2022-01-17
KR102315855B1 (ko) 2021-10-22
JP7312822B2 (ja) 2023-07-21
US20210369875A1 (en) 2021-12-02
CN112969479A (zh) 2021-06-15
EP3878476A4 (en) 2022-07-27

Similar Documents

Publication Publication Date Title
WO2020096281A1 (ko) 알긴산 기반의 주입형 수화젤 시스템
US20240082408A1 (en) Bilirubin nanoparticle, use thereof, and preparation method therefor
KR101428153B1 (ko) 점막에 적용하는 작용제 및 그것의 제조 방법
JP5737705B2 (ja) 高分子化環状ニトロキシドラジカル化合物およびその使用
WO2018186725A1 (ko) 암 치료용 약학 조성물
WO2016108534A1 (ko) 고분자 나노입자 동결건조물 및 그 제조방법
WO2010074380A1 (en) Preparation method of polymeric micellar nanoparticles composition containing a poorly water-soluble drug
Kumano et al. Endoscopic submucosal dissection for pig esophagus by using photocrosslinkable chitosan hydrogel as submucosal fluid cushion
WO2022265367A1 (ko) 유착방지용 조성물
WO2019151827A1 (ko) 빌리루빈 유도체 기반의 진단 및 치료용 초음파 조영제
Zhou et al. Collagenase-I decorated co-delivery micelles potentiate extracellular matrix degradation and hepatic stellate cell targeting for liver fibrosis therapy
WO2013109963A1 (en) Fluorescent compositions with enhanced fluorescence and methods based thereon
WO2020130489A1 (ko) 양쪽이온성 알긴산 유도체 및 이를 포함하는 조영제 조성물
US20190358290A1 (en) Self Assembling Peptide Matrix for the Prevention of Esophageal Stricture After Endoscopic Dissection
Sui et al. Esterase‐Activatable and Glutathione‐Responsive Triptolide Nano‐Prodrug for the Eradication of Pancreatic Cancer
WO2013115559A1 (ko) 수난용성 약물을 내부에 포함하는 알부민 나노입자 제조방법
CN113603877B (zh) 一种官能化双嵌段共聚物及其制备方法和用途
WO2018021827A1 (en) Compositions for treating liver cancer comprising a vascular disrupting agent
WO2023136639A1 (ko) 생체 친화적 목적 병변 표지용 조성물 및 이의 제조 방법
WO2017183946A1 (ko) 병변 표지용 주사제 조성물
WO2022235040A1 (ko) 바이오이미징용, 및 암의 진단 또는 치료용 복합체
WO2022169329A1 (ko) 초음파 감응성 리포좀을 유효성분으로 포함하는 혈액-뇌 장벽 투과용 조성물
CN115192578B (zh) 一种载槲皮素和尼达尼布混合胶束的制备
WO2019203400A1 (ko) 항암제 봉입 마이셀 제제 조성물
Gao et al. Crosslinkable poloxamer in-situ gel as a submucosal cushion for gastric endoscopic submucosal dissection

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19882937

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021523782

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019882937

Country of ref document: EP

Effective date: 20210607