WO2019151827A1 - 빌리루빈 유도체 기반의 진단 및 치료용 초음파 조영제 - Google Patents

빌리루빈 유도체 기반의 진단 및 치료용 초음파 조영제 Download PDF

Info

Publication number
WO2019151827A1
WO2019151827A1 PCT/KR2019/001443 KR2019001443W WO2019151827A1 WO 2019151827 A1 WO2019151827 A1 WO 2019151827A1 KR 2019001443 W KR2019001443 W KR 2019001443W WO 2019151827 A1 WO2019151827 A1 WO 2019151827A1
Authority
WO
WIPO (PCT)
Prior art keywords
poly
bilirubin
microparticles
present
contrast agent
Prior art date
Application number
PCT/KR2019/001443
Other languages
English (en)
French (fr)
Inventor
전상용
이동윤
이용현
김진용
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Priority to JP2020542067A priority Critical patent/JP7256554B2/ja
Priority to EP19747609.6A priority patent/EP3750563A4/en
Priority to CN201980011762.2A priority patent/CN111757758A/zh
Priority to CN202311006588.7A priority patent/CN116999578A/zh
Publication of WO2019151827A1 publication Critical patent/WO2019151827A1/ko
Priority to US16/985,219 priority patent/US11571486B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/22Echographic preparations; Ultrasound imaging preparations ; Optoacoustic imaging preparations
    • A61K49/222Echographic preparations; Ultrasound imaging preparations ; Optoacoustic imaging preparations characterised by a special physical form, e.g. emulsions, liposomes
    • A61K49/225Microparticles, microcapsules
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/22Echographic preparations; Ultrasound imaging preparations ; Optoacoustic imaging preparations
    • A61K49/222Echographic preparations; Ultrasound imaging preparations ; Optoacoustic imaging preparations characterised by a special physical form, e.g. emulsions, liposomes
    • A61K49/223Microbubbles, hollow microspheres, free gas bubbles, gas microspheres
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/13Amines
    • A61K31/135Amines having aromatic rings, e.g. ketamine, nortriptyline
    • A61K31/136Amines having aromatic rings, e.g. ketamine, nortriptyline having the amino group directly attached to the aromatic ring, e.g. benzeneamine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/28Compounds containing heavy metals
    • A61K31/282Platinum compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/337Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having four-membered rings, e.g. taxol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • A61K31/409Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil having four such rings, e.g. porphine derivatives, bilirubin, biliverdine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/473Quinolines; Isoquinolines ortho- or peri-condensed with carbocyclic ring systems, e.g. acridines, phenanthridines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/4738Quinolines; Isoquinolines ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/4745Quinolines; Isoquinolines ortho- or peri-condensed with heterocyclic ring systems condensed with ring systems having nitrogen as a ring hetero atom, e.g. phenantrolines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/555Heterocyclic compounds containing heavy metals, e.g. hemin, hematin, melarsoprol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7028Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
    • A61K31/7034Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
    • A61K31/704Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin attached to a condensed carbocyclic ring system, e.g. sennosides, thiocolchicosides, escin, daunorubicin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7052Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
    • A61K31/706Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom
    • A61K31/7064Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines
    • A61K31/7068Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines having oxo groups directly attached to the pyrimidine ring, e.g. cytidine, cytidylic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/24Heavy metals; Compounds thereof
    • A61K33/243Platinum; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0028Disruption, e.g. by heat or ultrasounds, sonophysical or sonochemical activation, e.g. thermosensitive or heat-sensitive liposomes, disruption of calculi with a medicinal preparation and ultrasounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/46Ingredients of undetermined constitution or reaction products thereof, e.g. skin, bone, milk, cotton fibre, eggshell, oxgall or plant extracts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6921Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
    • A61K47/6923Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being an inorganic particle, e.g. ceramic particles, silica particles, ferrite or synsorb
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6921Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
    • A61K47/6927Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores
    • A61K47/6929Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6921Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
    • A61K47/6927Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores
    • A61K47/6929Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle
    • A61K47/6931Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle the material constituting the nanoparticle being a polymer
    • A61K47/6939Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle the material constituting the nanoparticle being a polymer the polymer being a polysaccharide, e.g. starch, chitosan, chitin, cellulose or pectin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/18Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
    • A61K49/1818Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles
    • A61K49/1821Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles
    • A61K49/1824Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles
    • A61K49/1827Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle
    • A61K49/1833Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle having a (super)(para)magnetic core coated or functionalised with a small organic molecule
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/18Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
    • A61K49/1818Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles
    • A61K49/1821Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles
    • A61K49/1824Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles
    • A61K49/1827Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle
    • A61K49/1851Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle having a (super)(para)magnetic core coated or functionalised with an organic macromolecular compound, i.e. oligomeric, polymeric, dendrimeric organic molecule
    • A61K49/1857Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle having a (super)(para)magnetic core coated or functionalised with an organic macromolecular compound, i.e. oligomeric, polymeric, dendrimeric organic molecule the organic macromolecular compound being obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. PLGA
    • A61K49/186Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle having a (super)(para)magnetic core coated or functionalised with an organic macromolecular compound, i.e. oligomeric, polymeric, dendrimeric organic molecule the organic macromolecular compound being obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. PLGA the organic macromolecular compound being polyethyleneglycol [PEG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/22Echographic preparations; Ultrasound imaging preparations ; Optoacoustic imaging preparations
    • A61K49/221Echographic preparations; Ultrasound imaging preparations ; Optoacoustic imaging preparations characterised by the targeting agent or modifying agent linked to the acoustically-active agent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • A61K51/041Heterocyclic compounds
    • A61K51/044Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine, rifamycins
    • A61K51/0446Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine, rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • A61K51/0451Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine, rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil having four such rings, e.g. phorphine derivatives, bilirubin, biliverdine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0085Brain, e.g. brain implants; Spinal cord
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/167Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction with an outer layer or coating comprising drug; with chemically bound drugs or non-active substances on their surface
    • A61K9/1676Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction with an outer layer or coating comprising drug; with chemically bound drugs or non-active substances on their surface having a drug-free core with discrete complete coating layer containing drug
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5005Wall or coating material
    • A61K9/5021Organic macromolecular compounds
    • A61K9/5031Organic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, poly(lactide-co-glycolide)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Definitions

  • the present invention relates to ultrasound contrast agents for diagnosis and treatment based on bilirubin derivatives.
  • Ultrasound refers to sound waves with frequencies above 20000 Hz, which are higher than the human audible range, and use them to spread, reflect, and absorb sound waves at various interfaces, including internal organs, bones, muscle tissue, and blood. Implementing the difference of signals generated through scattering into an image is called an ultrasonography.
  • Ultrasound imaging devices for medical diagnostics are one of the most widely used diagnostic technologies today, and are highly safe and fast compared to techniques such as magnetic resonance imaging (MRI) and computed tomography (CT). It is a low cost, high efficiency diagnostic technique. However, compared to techniques such as MRI, CT, and PET, the image quality is low, and various ultrasound contrast agents are being developed to improve the image quality.
  • Ultrasound contrast agent is composed of a microbubble or nanobubble centered around a hydrophobic gas core and surrounded by a shell made of protein, (phospholipid), or polymer. Form.
  • a bubble of gaseous ultrasound contrast agent enters the blood in a liquid state and is exposed to ultrasound, resonance may occur and ultrasonic scattering may occur, and an image signal may be enhanced to obtain a clearer image.
  • the bubbles of contrast medium should not be ruptured by temperature or pressure changes at the interface between gas and liquid. Therefore, the material forming the shell surrounding the ultrasound contrast agent should impart structural stability to the bubble and should be less affected by the body's immune system. Since hydrophilic molecules are more likely to be processed by the body's immune system before reaching a desired target point, hydrophobic molecules have been studied mainly for materials that make contact with the core of an ultrasound contrast agent.
  • amphiphilic bilirubin derivatives prepared by introducing hydrophilic molecules into bilirubin can be used as shells of ultrasonic contrast agent particles having a hydrophobic gas as a core, and react sensitively to reactive oxygen species (ROS), and nano-oxides of iron oxide.
  • ROS reactive oxygen species
  • the present invention has been completed by confirming that metals including particles can be effectively loaded or chelated.
  • an object of the present invention is a core portion containing a hydrophobic gas therein;
  • microparticle comprising a shell layer (shell) comprising a bilirubin derivative surrounding the surface of the core portion.
  • Another object of the present invention to provide an ultrasound contrast agent containing the microparticles.
  • Another object of the present invention is to administer to the patient an effective amount of an ultrasound contrast agent comprising the microparticles; And it provides a diagnostic imaging method of a patient comprising the step of imaging the body part or tissue of the patient.
  • Another object of the present invention is to administer to the patient an effective amount of an ultrasound contrast agent comprising the microparticles; And treating a lesion of a body part or tissue of the patient.
  • Another object of the present invention to provide a method for producing the fine particles.
  • the present invention includes a core (core) including a hydrophobic gas (gas) therein; And a bilirubin derivative and comprising a shell layer surrounding the surface of the core part.
  • core including a hydrophobic gas (gas) therein
  • gas hydrophobic gas
  • bilirubin derivative and comprising a shell layer surrounding the surface of the core part.
  • microparticle of the present invention has a bubble structure including a core part including a hydrophobic gas therein and a shell layer surrounding the surface of the core part. Therefore, the microparticles of the present invention are synonymous with “fine bubbles” or “fine bubbles.” In addition, the “fine particles” of the present invention have a particle size of 1 nm-100 ⁇ m. Thus, “microparticles” can be used interchangeably with the terms “nano bubble” or “micro bubble”.
  • the microparticles of the present invention can be used as a contrast agent that can enhance the signal of the ultrasound image.
  • Ultrasound contrast agents are used to diagnose signal differences in ultrasound generated at the nano- or micro-sized bubble interface injected into the body.
  • Ultrasonic contrast agents generally have a structure in which a gas core is surrounded by a thin film (shell) made of a protein, a lipid, or a polymer.
  • the gas core of the ultrasonic contrast medium is sensitive to changes in surface tension and external pressure due to the nature of molecules in a gaseous state. Therefore, the contrast agent is less stable in the blood than the contrast medium in the liquid state.
  • hydrophobic gas with low solubility in the blood should be used as the gas core of the contrast agent.
  • the material forming the shell layer of the contrast agent should give structural stability so that bubbles do not burst by the change of temperature or pressure at the interface between the gas and the liquid, and should be less affected by the body's immune system.
  • the present invention is characterized by the use of bilirubin derivatives (bilirubin derivatives) as a material forming the shell layer of the fine particles.
  • the microparticles of the present invention are characterized by using a bilirubin derivative as a material forming a shell layer containing a bilirubin derivative.
  • the hydrophobic gas of the microparticles of the present invention may be used any hydrophobic gas that can be used in the art.
  • the hydrophobic gas is for example air, nitrogen, helium, argon, carbon dioxide, sulfur hexafluoride (sulfur hexfluoride (SF 6 ) and C 1 to C 10 perfluorocarbon (PFC) It may be selected from the group consisting of, but is not necessarily limited thereto.
  • the perfluorocarbon of C 1 to C 10 include perfluorobutane, perfluoropentane, octafluoropropane, decafluoropentane, and the like.
  • the bilirubin derivative of the present invention is a covalently bonded hydrophilic molecule to bilirubin.
  • the bilirubin derivative has amphipathicity by covalent bonding of hydrophobic bilirubin and hydrophilic molecules.
  • hydrophilicity refers to the property of dissolving in water with strong affinity with water as a tendency to appear mainly in polar materials.
  • the hydrophilic polymer compound is well soluble in water, and the contact angle when the water droplet is dropped on the solid surface coated with the hydrophilic material is 90 ° or less.
  • hydrophobiccity refers to agglomeration excluded from water molecules with a tendency to appear in nonpolar materials.
  • hydrophobic bonds between the hydrophobic materials are increased to aggregate the hydrophobic materials.
  • the contact angle when the water droplets are dropped on the solid surface coated with the hydrophobic polymer compound is 90 ° or more.
  • the hydrophilic molecule is dextran (cartrandextran), polysaccharide (polysaccharide), cyclodextran (cyclodextran), pullulan (pluronic), Cellulose, starch, glycogen, carbohydrate, monosaccharides, bisaccharides and oligosaccharides, polypeptides, polyphosphagens , Polylactide, polylactic-co-glycolic acid (poly (lactic-co-glycolic acid)), polycaprolactone, polyanhydride, polymaleic acid And derivatives of polymalic acid, polyalkylcyanoacrylate, polyhydroxybutylate, polycarbonate, polyorthoester, poly Polyethyleneglycol (PEG), methoxy polyethyleneglycol (mPEG), polypropylene glycol, polyethylenimine, poly-L-lysine, polyglycolide, poly Methyl methacrylate (poly
  • the hydrophilic molecule of the present invention is covalently bonded to the carboxyl group of bilirubin to form a hydrophilic / amphiphilic bilirubin derivative (Amphiphiles: Molecular Assembly and Applications (ACS Symposium Series) 1st Edition by Ramanathan Nagarajan and Various Self-Assembly Behaviors of Amphiphilic Molecules in Ionic Liquids By Bin Dong and Yanan Gao, DOI: 10.5772 / 59095). Bilirubin in the form of a covalently bonded hydrophilic molecule is amphiphilic.
  • the present invention is applicable to both hydrophobic and hydrophilic formulations because it is not only soluble in water-soluble solvents but also self-assembled spontaneously to form particles.
  • the present inventors have a simple reaction of forming an amide bond to carboxylate using a hydrophilic compound, polyethyleneglycol (PEG), PEGylated bilirubin (PEG-BR, Pegylated bilirubin) Was prepared.
  • the hydrophilic molecule is polyethylene glycol or a derivative thereof.
  • the polyethylene glycol derivative is, for example, methoxy PEG (methoxy polyethylene glycol), succinimide of PEG propionic acid, PEG butanoic acid succinimide of PEG butanoic acid, eggplant Branched PEG-NHS, PEG succinimidyl succinate, succinimide of carboxymethylated PEG, benzotriazole carbonate of PEG, PEG-glycidyl ether, PEG-oxycarbonylimidazole, PEG nitrophenyl carbonates, PEG-aldehyde, PEG succinimidyl carboxymethyl ester PEG succinimidyl carboxymethyl ester) and PEG succinimidyl ester.
  • the average molecular weight of the polyethylene glycol is 200 to 20000 Da.
  • hydrophilic molecule usable in the present invention is a polypeptide consisting of two or more (eg 2-50) amino acids.
  • the amino acids include natural amino acids as well as non-natural amino acids.
  • Hydrophilic amino acids include glutamine, aspartic acid, glutamic acid, threonine, asparagine, arginine, serine, and the like, and hydrophobic amino acids include phenylalanine, tryptophan, isoleucine, leucine, proline, methionine, valine, and alanine.
  • Uncoded hydrophilic amino acids include, for example, Cit and hCys. Those skilled in the art can easily synthesize hydrophilic polypeptides based on the above information and peptide synthesis techniques known in the art and use them for the preparation of bilirubin nanoparticles.
  • the range of the hydrophilic molecule includes not only the above-mentioned compounds but also derivatives thereof. More specifically, the hydrophilic molecules may have an amine group or may be modified to have an amine group. In this case, it is apparent to those skilled in the art related to the present invention that the carboxyl group of the bilirubin of the present invention can be covalently bonded to the amine group of the hydrophilic molecule very easily through an amide bond.
  • the microparticles of the present invention are Cu, Ga, Rb, Zr, Y, Tc, In, Ti, Gd, Mn, Fe, Au, Pt, Zn, Na, K, Mg, Ca And ions or metal compounds of metals selected from the group consisting of Sr, and lanthanide metals.
  • the microparticles of the present invention are cisplatin, carboplatin, carboplatin, oxaliplatin, oxaplatin, nedaplatin, and heptaplatin. It further comprises a platinum-based anticancer agent selected from.
  • the microparticles of the present invention further include superparamagnetic iron oxide nanoparticles (SPION).
  • SPION superparamagnetic iron oxide nanoparticles
  • the microparticles (microbubbles) of the present invention can efficiently load iron oxide nanoparticles (SPION), can be easily extracted through a magnet.
  • the present invention provides an ultrasound contrast agent comprising the microparticles of the present invention described above.
  • Ultrasound contrast agent in the present invention abdominal ultrasound, urogenital ultrasound, breast ultrasound, musculoskeletal ultrasound, thyroid ultrasound, cardiac ultrasound, transcranial ultrasound, intravascular ultrasound (Intra-Vascular Ultrasound, IVUS), Doppler sonography Can be used for all ultrasound examinations used in the art. In addition, it can be applied to all examinations by using an ultrasonic endoscope (Endoscopic Ultrasound, EUS), bronchial ultrasound endoscope (Endo-Bronchial Ultrasound, EBUS), etc. in parallel.
  • EUS Ultrasonic Ultrasound
  • EUS bronchial ultrasound endoscope
  • EBUS Endo-Bronchial Ultrasound
  • the fine particles containing iron oxide nanoparticles according to an embodiment of the present invention has a magnetic resonance (MR) sensitivity by the superparamagnetism of iron oxide, not only as an ultrasound contrast agent but also magnetic resonance (MR) It can also be used as a diagnostic for imaging.
  • MR magnetic resonance
  • the ultrasound contrast agent may further be used for the treatment of MR-guided focused ultrasound (MRgFUS).
  • MgFUS MR-guided focused ultrasound
  • the magnetic resonance-guided focused ultrasound therapy is a treatment method using a combination of magnetic resonance image (MRI) and ultrasound (ulstrasound, US).
  • This treatment is mainly used to treat fibroids.
  • This method is a non-invasive treatment that can accurately identify the location of myoma of the uterus through magnetic resonance imaging and complete ablation without surgical resection of the diseased part (myoma tissue) using high-intensity ultrasound. to be.
  • the ultrasonic contrast agent containing the microparticles of the present invention may also be used as a drug delivery agent.
  • It can be used as a carrier for anti-cancer and anti-inflammatory delivery because it can temporarily break the vascular endothelial cell binding of the tissue to deliver the drug through the vacuum cavitation that only the ultrasound contrast agent has. .
  • hydrophobic drugs include, but are not limited to, paclitaxel, docetaxel, and camptothecin-based anticancer agents. It is apparent to those skilled in the art that hydrophobic drugs used in the art such as anticancer agents, anti-inflammatory agents, anti-inflammatory agents, etc. can be delivered by binding to the microparticles of the present invention without limitation.
  • the microparticles of the present invention include bilirubin to form a coordination bond with the metal. Therefore, the fine particles of the present invention are Cu, Ga, Rb, Zr, Y, Tc, In, Ti, Gd, Mn, Fe, Au, Pt, Zn, Na, K, Mg, Ca, Sr, and Lanthanon easily binds to metal ions and their metal compounds and platinum-based anticancer agents such as cisplatin, carboplatin, oxaliplatin, nedaplatin, and heptalatin .
  • platinum-based anticancer agents such as cisplatin, carboplatin, oxaliplatin, nedaplatin, and heptalatin .
  • the coordination bond formed with the bilirubin derivative and the metal ion, the metal compound, or the platinum-based anticancer agent is formed between the carboxyl group, the pyrroling group, or the lactam group of the metal ion and the bilirubin derivative.
  • the microparticles of the present invention further include an anthracycline-based anticancer agent, a taxane-based anticancer agent, or a camptothecin-based anticancer agent which is a hydrophobic drug.
  • the anthracycline-based anticancer agents include, for example, daunorubicin, doxorubicin, epirubicin, idarubicin, gemcitabine, mitosantron, pyrarubicin, and varubicin, but are not limited thereto.
  • taxane-based anticancer agent in the present invention for example, paclitaxel (paclitaxel), docetaxel (docetaxel) and Cabazitaxel (cabazitaxel) and the like, but is not limited thereto.
  • the microparticles of the present invention include bilirubin, a natural antioxidant and reactive oxygen species (ROS) sensitive substance, and thus, by scavenging free radicals at sites such as cancer and inflammation, which produce abnormal levels of free radicals. It has anti-inflammatory activity.
  • the bilirubin derivative included in the microparticles of the present invention has anticancer action and angiogenesis inhibitory action of the bilirubin derivative itself as disclosed in Korean Patent Application No. 10-2014-0190881. Therefore, the microparticles of the present invention may be used as a pharmaceutical composition for treating cancer diseases or angiogenic diseases.
  • Inflammatory diseases to which the microparticles of the present invention are applicable include, for example, inflammatory bowel disease, atopic dermatitis, edema, dermatitis, allergy, asthma, conjunctivitis, periodontitis, rhinitis, otitis media, atherosclerosis, sore throat, tonsillitis , Pneumonia, gastric ulcer, gastritis, Crohn's disease, colitis, hemorrhoids, gout, spondylitis, rheumatic fever, lupus, fibromyalgia, psoriatic arthritis, osteoarthritis, rheumatoid arthritis, periarthritis, tendinitis, hay salt, myositis, hepatitis, cystitis , Nephritis, Sjogren's syndrome, and multiple sclerosis, but are not limited thereto.
  • the microparticles of the present invention can also be used in ultrasonic thrombolysis (Sonothrombolysis) in which ischemic treatment is performed by directly dissolving the thrombus in ischemic diseases such as stroke and myocardial infarction.
  • ischemic treatment is performed by directly dissolving the thrombus in ischemic diseases such as stroke and myocardial infarction.
  • the bilirubin shell acts to remove free radicals, which can also be used for the prophylactic treatment of ischemic-reperfusion injury that occurs suddenly after reperfusion in peripheral ischemic tissues receiving acute or chronic hypoxia. As a result, it is possible to differentiate the conventional ultrasound contrast agent.
  • the present invention comprises the steps of administering to the patient an effective amount of an ultrasound contrast agent comprising the microparticles of the present invention; And a method of diagnostic imaging of a patient comprising imaging a body part or tissue of the patient.
  • the present invention comprises the steps of administering to the patient an effective amount of an ultrasound contrast agent comprising the microparticles of the present invention; And treating a lesion of a body part or tissue of the patient.
  • the diagnostic imaging refers to an imaging technique that provides information necessary for diagnosis by enhancing contrast of an image of a body part or tissue of a patient by using a contrast agent.
  • Therapeutic imaging includes a method of treating a patient's disease using a contrast agent, which refers to a contrast agent that can exert or exert a biological effect on in vivo and / or in vitro.
  • a contrast agent refers to a contrast agent that can exert or exert a biological effect on in vivo and / or in vitro.
  • Therapeutic imaging is a concept that includes drug delivery through magnetic resonance-guided focused ultrasound therapy and drug encapsulation described above.
  • administer refers to the formation of the same amount in the subject's body by administering a diagnostic or therapeutically effective amount of the contrast agent (composition) of the invention directly to the subject (object or patient). Say what you can.
  • a “therapeutically effective amount” of the composition means a content of the composition sufficient to provide a therapeutic or prophylactic effect to a subject to which the composition is to be administered, and means to include a “prophylactically effective amount”.
  • diagnostic effective amount of the composition is meant a content of the composition sufficient to provide an enhancement effect of contrast in order to provide information necessary for diagnosis to the subject to whom the composition is to be administered.
  • the term "subject” includes, without limitation, human, mouse, rat, guinea pig, dog, cat, horse, cow, pig, monkey, chimpanzee, baboon or rhesus monkey. Specifically, the subject of the present invention is a human.
  • diagnostic imaging method and the therapeutic imaging method of the present invention are methods comprising administering microparticles or an ultrasound contrast agent including the microparticles, which is an aspect of the present invention, it is not necessary to duplicate the contents of the present specification. Omitted to avoid complexity.
  • the present invention provides a method for producing microparticles comprising the following steps:
  • the production method of the fine particles of the present invention is schematically illustrated in FIG. Hereinafter will be described in detail step by step the production method of the fine particles of the present invention.
  • This step is to prepare a hydrophilic or amphiphilic bilirubin derivative in which bilirubin is combined with a hydrophilic molecule, and from this, a nanoparticle solvent comprising a bilirubin derivative is prepared.
  • the binding of the bilirubin to the hydrophilic molecule specifically uses EDC (1-Ethyl-3- (3-dimethylaminopropyl) carbodiimide) to activate the carboxyl group of bilirubin, and covalent through an amide bond with a hydrophilic molecule having an amine group.
  • EDC Ethyl-3- (3-dimethylaminopropyl) carbodiimide
  • Induce binding Hydrophilic molecules bound to the bilirubin are modified to have amine groups or amine groups as the aforementioned hydrophilic molecules.
  • bilirubin is first dissolved in an organic solvent (eg, dimethyl sulfoxide, DMSO), and EDC is added to activate carboxyl groups present in bilirubin and reacted at room temperature for 5-30 minutes. Thereafter, a hydrophilic molecule having an amine group (for example, polyethylene glycol) is added to the terminal and reacted for a predetermined time to synthesize a bilirubin derivative to which the hydrophilic molecule is bound. Next, the bilirubin derivative having an amide bond formed by the reaction between the carboxyl group and the amine group is purely separated and extracted from the by-product through a silica column.
  • an organic solvent eg, dimethyl sulfoxide, DMSO
  • EDC is added to activate carboxyl groups present in bilirubin and reacted at room temperature for 5-30 minutes.
  • a hydrophilic molecule having an amine group for example, polyethylene glycol
  • the bilirubin derivative prepared above is dissolved in an organic solvent (eg, chloroform), and then dried under a nitrogen atmosphere or in a vacuum to form a film layer. Thereafter, an aqueous solvent such as a phosphate buffer solution or deionized water is added to the film layer and subjected to sonication to prepare a nanoparticle solution including a bilirubin derivative.
  • an organic solvent eg, chloroform
  • the bilirubin derivative nanoparticles are nanoparticles formed by self-assembly of bilirubin derivatives in an aqueous solvent, hydrophobic bilirubin portion of the bilirubin derivative is located inside, and the hydrophilic molecular portion conjugated to bilirubin is an aqueous solvent. It may be in the form of a micelle in contact with the interface.
  • the contents related to the preparation of the nanoparticle solution of bilirubin are known in the art. In this regard, all the contents of Korean Patent Application No. 10-2014-0190881 are incorporated herein by reference.
  • This step is to prepare a microparticle by mixing a hydrophobic gas (such as perfluorocarbons) in the bilirubin derivative nanoparticle solution and encapsulating the hydrophobic gas in the hydrophobic core of the bilirubin derivative nanoparticles.
  • a hydrophobic gas such as perfluorocarbons
  • a sonication is performed for a predetermined time while dropping an oil phase hydrophobic gas (such as perfluoropentane) in a bilirubin nanoparticle solution in which a previously prepared bilirubin derivative (Pegylated bilirubin) is dissolved in deionized water.
  • an oil phase hydrophobic gas such as perfluoropentane
  • a hydrophobic gas is used as a core, and an emulsion-type nano- or micro-bubble system in which a bilirubin derivative forms a shell is prepared (FIG. 1).
  • bilirubin derivative nanoparticles solution hydrophobic gas
  • metals selected from the group consisting of Cu, Ga, Rb, Zr, Y, Tc, In, Ti, Gd, Mn, Fe, Au, Pt, Zn, Na, K, Mg, Ca, Sr, and lanthanide metals.
  • Microparticles further comprising a metal ion or a metal compound may be prepared by mixing and ultrasonicating an oily solvent containing an ion or a metal compound.
  • the bilirubin derivative nanoparticle solution instead of the step (b), hydrophobic gas; And an ultrasonic treatment by mixing an oily solvent containing a platinum-based anticancer agent selected from the group consisting of cisplatin, carboplatin, oxaliplatin, oxaliplatin, nedaplatin, and heptalatin.
  • a platinum-based anticancer agent selected from the group consisting of cisplatin, carboplatin, oxaliplatin, oxaliplatin, nedaplatin, and heptalatin.
  • an ultrasonic treatment by mixing an oil solution containing an anthracycline-based anticancer agent, a taxane-based anticancer agent, or a camptothecin-based anticancer agent, thereby preparing microparticles further comprising an anthracycline-based anticancer agent or a taxane-based anticancer agent.
  • SPION superparamagnetic iron oxide nanoparticles
  • the overlapping parts such as the kind of gas forming the core portion, the kind of hydrophilic molecules conjugated to bilirubin derivatives, and the like, may be excessively complex. The description is omitted for the purpose of prevention.
  • the present invention core portion (core) containing a hydrophobic gas therein;
  • the present invention provides a microparticle including a bilirubin derivative and including a shell layer surrounding a surface of the core part, a method for preparing the same, and an ultrasound contrast agent including the same.
  • microparticles including the bilirubin derivative of the present invention are sensitive to reactive oxygen species (ROS) to eliminate the active oxygen.
  • ROS reactive oxygen species
  • the microparticles of the present invention bind to hydrophobic drugs and can effectively chelate metals including iron oxide nanoparticles. Therefore, the microparticles of the present invention can be used not only as a contrast agent for ultrasound diagnosis but also as a carrier for magnetic resonance imaging contrast agent and a hydrophobic drug or a platinum-based drug.
  • FIG. 1 is a diagram schematically illustrating a method for preparing an ultrasound contrast agent coated with pegylated bilirubin of the present invention.
  • Figure 2 is a photograph taken by making the ultrasound contrast agent coated with pegylated bilirubin of the present invention.
  • FIG. 4 is a chronological view of the change in phantom image with different volume concentrations (PFP 0, 2.5, 5, 10% v / v) of PFP of pegylated bilirubin coated ultrasound contrast agent.
  • FIG. 5 is a graph showing the normalized ultrasound intensity over time of phantom images according to the volume concentration of PFP (PFP 0, 2.5, 5, 10% v / v) of ultrasound contrast agent coated with pegylated bilirubin.
  • FIG. 6 is a diagram showing a transmission electron microscope image of the ultrasound contrast agent coated with pegylated bilirubin.
  • the measured contrast bubble size was 2-4 ⁇ m.
  • FIG. 7 shows an image A under an optical microscope of a pegylated bilirubin coated ultrasound contrast medium (white arrow) and an image B dispensed on a hemocytometer grid to count the number of contrast medium particles per volume.
  • FIG. 8 is a diagram showing a gradual increase in the hydrodynamic size of the pegylated bilirubin-coated ultrasonic contrast agent after treatment with reactive oxygen species (red ( ⁇ ), 1 green ( ⁇ ) ⁇ 2 blue ( ⁇ )).
  • FIG. 9 is a diagram schematically illustrating iron oxide nanoparticle loaded pegylated bilirubin coated ultrasound contrast agent.
  • Figure 10 (A) is a diagram showing the position (arrow) attached to the magnet pegylated bilirubin loaded with iron oxide nanoparticles
  • Figure 10 (B) is an ultrasonic wave coated with pegylated bilirubin loaded with iron oxide nanoparticles Transmission electron microscopy image of contrast agent (iron oxide nanoparticle-loaded PEGylated bilirubin coated US contrast agents).
  • Example 1 of the present invention Peg Preparation of Bilirubin-Based Ultrasound Contrast Agent
  • Bilirubin derivatives Peg Bilirubin, Pegylated bilirubin Manufacturing
  • the present inventors prepared amphipathic derivatives of bilirubin in which hydrophilic molecules were bound to bilirubin prior to preparing bilirubin-based ultrasound contrast agents.
  • Polyethyleneglycol was used as the hydrophilic molecule.
  • bilirubin is dissolved in dimethylsulfoxide (DMSO), and an appropriate amount of EDC (1-Ethyl-3- (3-dimethylaminopropyl) carbodiimide) is added to induce a desired reaction by activating a carboxyl group present in bilirubin. And reacted at room temperature for about 10 minutes.
  • EDC Ethyl-3- (3-dimethylaminopropyl) carbodiimide
  • polyethyleneglycol having an amine group was added to the terminal and reacted for a predetermined time to synthesize a bilirubin derivative in which a carboxyl group of bilirubin and an amine group of polyethyleneglycol were covalently bonded by an amide bond.
  • the final bilirubin derivative prepared above was separated and extracted purely from the by-products through a silica column.
  • Bilirubin-based eco-negative microparticles (echogenic nanoparticles, or microparticles) of the present invention were prepared by a simple oil-in-water (O / W) emulsion conversion method.
  • the bilirubin derivative (Pegylated bilirubin) prepared in Example 1-1 was dissolved in deionized water to prepare a bilirubin microparticle solution (1.2 mg / 2 ml), and transferred to an ice bath equipped with a probe-type ultrasonic grinder.
  • Perfluoropentane (PFP) was used as a hydrophobic gas to form the core of the bubble.
  • Perfluoropentane which is in the form of an oil phase, is dipped into the bilirubin microparticle solution (water phase) at various volume ratios (PFP, 2.5, 5, 10% v / v) and at 30% power. The sonication process was performed for 90 seconds. As a result, a nano- or micro-bubble system was prepared in which the hydrophobic gas (perfluoropentane) in the form of an emulsion was used as a core and bilirubin derivatives form a shell (FIGS. 1 and 2).
  • Example 2 of the present invention Peg Phantom of Bilirubin-Based Ultrasound Contrast Agent Imaging
  • Ultrasound phantom images were acquired using a Vevo770 (High-Resolution Micro-Imaging System, Visualsonics, Toronto, Canada) equipped with an RMV 706 probe, an ultrasound device probe for mice.
  • agar-gel phantoms prepared by embedding 500 ⁇ L units of Eppendorf tubes in 3% (w / v) agarose gel to simulate the body conditions for ultrasound imaging.
  • PFP perfluoropentane
  • FIG. 4 is a chronological view of the change in phantom image with different volume concentrations (PFP 0, 2.5, 5, 10% v / v) of PFP of pegylated bilirubin coated ultrasound contrast agent.
  • the sample with the highest echo shading was the PFP 5.0% (v / v) experimental group.
  • FIG. 5 shows the standardized ultrasound intensity of phantom images over time with different volume concentrations of perfluoropentane (PFP 0, 2.5, 5, 10% v / v) of pegylated bilirubin coated ultrasound contrast agent. It is a graph. The in situ half-life of the echo signal of pegylated bilirubin-based ultrasound contrast medium was about 45 minutes.
  • the prepared bilirubin derivative-based microbubbles of the present invention can be usefully used as an ultrasound contrast agent.
  • Example 3 of the present invention Peg Characteristics of Bilirubin-Based Ultrasound Contrast Agent
  • Figure 6 shows the PEGylated bilirubin-based ultrasound contrast agent of the present invention observed by transmission electron microscopy (TEM). 6 shows micro-sized bubble particles constituting the ultrasonic contrast agent of the present invention.
  • Figure 7 (A) shows the pegylated bilirubin-based ultrasound contrast agent of the present invention observed with an optical microscope.
  • the PEGylated bilirubin-based contrast agent of the present invention was placed on a hemocytometer grid to count the number of bubbles contained per volume of contrast medium (FIG. 7B). Counting results indicated that about 2.0 ⁇ 10 9 bubbles were contained per ml of contrast medium of the present invention.
  • Pegylated bilirubin-based ultrasound contrast agent of the present invention includes a natural antioxidant bilirubin.
  • the present inventors using the Nanosizer ZS 90 (Malvern Instruments, Ltd., Malvern, UK) to determine the reactivity to the reactive oxygen species (ROS) species of the ultrasound contrast agent of the present invention, the reactive oxygen species (ROS; The hydrodynamic size distribution of the microbubbles of the contrast medium of the present invention before and after treatment with H 2 O 2 ) was measured. The results are shown in FIG. As shown in FIG. 8, the ultrasonic contrast agent of the present invention reacted with reactive oxygen species (H 2 O 2 ) to increase the hydrodynamic size of the bubble.
  • ROS reactive oxygen species
  • Bilirubin is a natural antioxidant in the body. When bilirubin reacts with reactive oxygen species in disease regions rich in reactive oxygen species, bilirubin is converted to biliverdin. The result is a weak hydrophobic interaction between the bilirubin derivatives and the gas core, which breaks the amphipathic bilirubin derivative-coated shell of the contrast agent bubble. As a result, contrast enhancement of the ultrasound image occurs which is proportional to the gradual increase in size after the instantaneous conglomeration of the hydrophobic gas core (FIG. 8).
  • bilirubin derivatives combined with hydrophilic molecules, including PEGylated bilirubin of the present invention enhance the ultrasound image of disease-rich disease-rich regions, and may exhibit an antioxidant effect due to inherent antioxidant properties. Therefore, the microparticles containing the bilirubin derivative of the present invention can be usefully used for the treatment as well as the diagnosis of diseases using ultrasound.
  • Example 4 loading iron oxide nanoparticles Peg Preparation of Bilirubin-Based Ultrasound Contrast Agent
  • the ultrasonic contrast agent of the present invention has a hydrophilic portion (hydrophilic molecule) of bilirubin to which a hydrophilic polymer is bound, toward the water-phase, and the hydrophobic portion (bilirubin) is directly connected to the hydrophobic gas (PFP) core. Abut the shell.
  • the reaction in which the iron oxide nanoparticles bind to bilirubin is that the oleic acid layer coated on the iron oxide nanoparticles is separated, and instead, the carboxyl group of bilirubin binds to the iron oxide nanoparticles by chelation reaction.
  • 15 nm-sized iron oxide nanoparticles may be loaded into the larger volume hydrophobic gas core due to hydrophobic bonding between the iron oxide nanoparticle and the hydrophobic gas core.
  • FIG. 10 (A) shows that a pegylated bilirubin contrast agent loaded with iron oxide nanoparticles was extracted using a magnet, and a contrast agent containing iron oxide nanoparticles was attached to the magnet (red arrow).
  • 10B shows a transmission electron microscope image of an ultrasound contrast medium coated with pegylated bilirubin loaded with iron oxide nanoparticles.
  • the arrows in FIG. 10 (B) indicate iron oxide nanoparticles loaded into the microbubbles of the pegylated bilirubin-based ultrasound contrast medium of the present invention.
  • the size of the iron oxide nanoparticles corresponds to about 15 nm.
  • the ultrasound contrast agent based bilirubin derivative combined with the hydrophilic molecule of the present invention can load magnetic resonance sensitive metal particles including iron oxide nanoparticles. Therefore, the bilirubin derivative-based ultrasound contrast agent of the present invention can be used not only as an ultrasound contrast agent but also very useful as a contrast agent for MR-guided focused ultrasound (MRgFUS).
  • MMRgFUS MR-guided focused ultrasound
  • magnetic resonance-guided focused ultrasound is a novel technique that can temporarily increase blood-brain barrier (BBB) permeability.
  • BBB blood-brain barrier
  • Magnetic resonance-guided focused ultrasound enables the delivery of therapeutic agents into the central nervous system and increases efficiency in treating brain tumors. Therefore, the ultrasound contrast system of the present invention can be usefully used as a platform technology capable of simultaneously performing three roles as an ultrasound contrast agent, a magnetic resonance sensitive contrast agent, and an antioxidant / anticancer delivery carrier.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Immunology (AREA)
  • Inorganic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Psychology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Neurology (AREA)
  • Biomedical Technology (AREA)
  • Ceramic Engineering (AREA)
  • Botany (AREA)
  • Neurosurgery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Medicinal Preparation (AREA)

Abstract

본 발명은 빌리루빈 유도체 기반의 진단 및 치료용 초음파 조영제에 관한 것이다. 본 발명의 빌리루빈 유도체를 포함하는 미세입자는, 활성산소종(reactive oxygen species, ROS)에 민감하게 반응하고, 소수성 약물과 결합하며, 산화철 나노입자를 비롯한 금속을 효과적으로 킬레이팅 할 수 있다. 따라서 본 발명의 미세입자는 초음파 진단용 조영제로서 사용할 수 있을 뿐만 아니라 자기공명영상 진단용 조영제, 및 소수성 및 플래티넘 기반 약물의 전달체로서도 유용하게 사용될 수 있다.

Description

빌리루빈 유도체 기반의 진단 및 치료용 초음파 조영제
본 특허출원은 2018년 2월 5일에 대한민국 특허청에 제출된 대한민국 특허출원 제10-2018-0014160호에 대하여 우선권을 주장하며, 상기 특허출원의 개시사항은 본 명세서에 참조로서 삽입된다.
본 발명은 빌리루빈 유도체 기반의 진단 및 치료용 초음파 조영제에 관한 것이다.
초음파(ultrasound)는 인간의 가청음역보다 높은 범위인 20000 Hz 이상의 주파수를 가진 음파를 지칭하며 이러한 초음파를 이용하여 인체 내부 장기나 뼈, 근육조직, 혈액 등 다양한 경계면에서 음파의 확산, 반사, 흡수 및 산란을 통해 생성된 신호의 차이를 영상으로 구현한 것을 초음파 영상(ultrasonography)이라고 한다. 의료 진단용 초음파 영상 장치는 현재 가장 널리 사용되는 진단 기술 중 하나로 이동성과 접근성이 뛰어난 동시에 자기공명영상(magnetic resonance imaging, MRI), 컴퓨터단층촬영(Computed tomography, CT) 등의 기법에 비해 가장 안전하고 빠르며, 저비용 고효율의 진단 기법이다. 그러나 MRI, CT, PET 와 같은 기법과 비교하여 영상의 질은 낮기 때문에 영상의 질을 개선하기 위해 다양한 초음파 조영제가 개발되고 있다.
초음파 조영제는 소수성의 가스 코어(gas core)가 중심에 위치하고, 이를 단백질, (인)지질, 또는 고분자 등으로 이루어진 쉘(shell)이 둘러싸고 있는 마이크로 버블(micro bubble) 또는 나노 버블(nano bubble)의 형태이다. 기체 상태인 초음파 조영제의 버블이 액체 상태에 혈액에 유입된 후 초음파에 노출되면 공명현상이 발생하여 초음파 산란이 일어나고, 영상 신호가 증강되어 보다 명확한 영상을 얻을 수 있다. 그러나 원하는 위치의 영상을 증강시키기 위해서는 조영제의 버블이 기체와 액체의 계면에서 온도나 압력 변화에 의해 파열되지 않아야 한다. 따라서 초음파 조영제를 둘러싸는 쉘을 이루는 물질은 버블에 구조적인 안정성을 부여하여야 하며 또한 체내의 면역 체계에 의한 영향도 적어야 한다. 친수성 분자의 경우 원하는 목표 지점에 도달하기 전에 체내 면역 체계에 의해 처리될 가능성이 높기 때문에 초음파 조영제의 중심부(core)와 접촉면을 이루는 물질은 주로 소수성 분자들이 연구되어져 왔다.
최근에는 초음파를 이용하여 질병을 진단하는 영역에서 벗어나 비침습적인 방법으로 질병을 치료하는 연구들이 시도되고 있다. 특히 초음파를 한 곳에 집중시켜 체내 조직의 온도를 체온 이상으로 가열(tissue heating)하여 세포의 괴사를 유도하거나, 짧은 시간에 고온에 노출시켜(ablative therapy) 조직을 제거하는 방법이 개발되었으며, 나아가 초음파 조영제를 약물전달체로 이용하여 진단과 치료를 동시에 수행할 수 있는 조영제 입자의 개발 또한 이루어지고 있다.
[선행기술문헌]
[특허문헌]
대한민국 등록특허 제10-1681299호
본 발명자들은 초음파를 이용하여 진단과 치료를 동시에 수행할 수 있는 새로운 초음파 조영제 입자를 개발하고자 예의 연구 노력하였다. 그러던 중 빌리루빈에 친수성 분자를 도입하여 제조한 양친매성의 빌리루빈 유도체가 소수성 가스를 코어로 하는 초음파 조영제 입자의 쉘로 사용될 수 있으며, 활성산소종(reactive oxygen species, ROS)에 민감하게 반응하고, 산화철 나노입자를 비롯한 금속을 효과적으로 로딩 또는 킬레이팅 할 수 있음을 확인함으로써 본 발명을 완성하게 되었다.
따라서, 본 발명의 목적은 내부에 소수성 가스를 포함하는 코어(core)부; 및
상기 코어부의 표면을 둘러싸는 빌리루빈 유도체를 포함하는 쉘(shell)층을 포함하는 미세입자를 제공하는데 있다.
본 발명의 다른 목적은 상기 미세입자를 포함하는 초음파 조영제를 제공하는데 있다.
본 발명의 또 다른 목적은 상기 미세입자를 포함하는 초음파 조영제의 유효량을 환자에 투여하는 단계; 및 상기 환자의 신체 일부 또는 조직을 이미징하는 단계를 포함하는 환자의 진단적 이미징 방법을 제공하는데 있다.
본 발명의 또 다른 목적은 상기 미세입자를 포함하는 초음파 조영제의 유효량을 환자에 투여하는 단계; 및 상기 환자의 신체 일부 또는 조직의 병변을 치료하는 단계를 포함하는 환자의 치료적 이미징 방법을 제공하는데 있다.
본 발명의 또 다른 목적은 상기 미세입자의 제조방법을 제공하는데 있다.
본 발명의 일 양태에 따르면, 본 발명은 내부에 소수성 가스(gas)를 포함하는 코어(core)부; 및 빌리루빈 유도체를 포함하며 상기 코어부의 표면을 둘러싸는 쉘(shell)층을 포함하는 미세입자를 제공한다.
본 발명의 “미세입자”는 내부에 소수성 가스를 포함하는 코어부와, 상기 코어부의 표면을 둘러싸는 쉘층을 포함하는 버블(거품, bubble)구조를 가지고 있다. 따라서 본 발명의 미세입자는 “미세거품” 또는 “미세버블”과 동의어이다. 또한 본 발명의 “미세입자”는 1 nm - 100 μm 의 입자크기를 가진다. 따라서 “미세입자”는 “나노버블(nano bubble)” 또는 “마이크로버블(micro bubble)”이라는 용어와 혼용될 수 있다.
또한 본 발명의 미세입자는 초음파 영상의 신호를 증강시킬 수 있는 조영제로서 사용가능하다. 초음파 조영제는 체내로 주입된 나노 또는 마이크로 크기의 버블 계면에서 발생하는 초음파의 신호 차이를 진단에 이용하는 것이다. 초음파 조영제는 일반적으로 가스 코어(core)를 단백질, 지질, 또는 고분자 등으로 이루어진 얇은 막(쉘, shell)이 감싸는 구조를 가진다.
초음파 조영제의 가스 코어는 기체 상태인 분자가 가지는 특성상 표면장력 및 외부 압력의 변화에 민감하다. 따라서 초음파 조영제는 혈액에서의 안정성이 액체가 고체 상태의 조영제에 비하여 낮은 편이다. 초음파 조영제가 혈액 내에서 안정한 상태를 유지하려면 혈액 내에서 용해도가 낮은 소수성의 가스를 조영제의 가스 코어로서 사용하여야 한다. 그리고 조영제의 쉘층을 이루는 물질은 기체와 액체의 계면에서 온도나 압력의 변화에 의해 버블이 파열되지 않도록 구조적인 안정성을 부여하여야 하고, 체내의 면역 체계에 의한 영향이 적어야 한다.
본 발명은 상기한 미세입자의 쉘층을 이루는 물질로서 빌리루빈 유도체(bilirubin derivatives)를 사용하는 것을 기술적 특징으로 한다.
다시 말해, 본 발명의 미세입자는 빌리루빈 유도체를 포함하는 쉘층을 이루는 물질로서 빌리루빈 유도체를 사용하는 것을 기술적 특징으로 한다. 따라서 본 발명의 미세입자의 소수성 가스는 당업계에서 사용될 수 있는 어떠한 소수성 가스라도 사용될 수 있다.
본 발명의 일 구현예에 따르면, 상기 소수성 가스는 예컨대 공기, 질소, 헬륨, 아르곤, 이산화탄소, 설퍼 헥사플루오라이드(sulfur hexfluoride, SF6) 및 C1 내지 C10의 과플루오르화탄소(perfluorocarbon, PFC)로 이루어진 군으로부터 선택될 수 있으나, 반드시 이에 한정되는 것은 아니다. 상기 C1 내지 C10의 과플루오르화탄소(perfluorocarbon)의 예로는 과플루오르화부탄(perfluorobutane), 과플루오르화펜탄(perfluoropentane), 옥타플루오로프로판, 데카플루오로펜탄(decafluoropentane) 등이 있다.
본 발명의 일 구현예에 따르면, 본 발명의 상기 빌리루빈 유도체는 빌리루빈에 친수성 분자가 공유결합된 것이다. 상기 빌리루빈 유도체는 소수성의 빌리루빈과 친수성 분자가 공유결합되어 양친매성을 가진다.
본 명세서에서 용어, "친수성(hydrophilicity)"은 주로 극성 물질에서 나타나는 경향으로 물과 강한 친화력을 가지고 물에 용해되는 성질을 의미한다. 예컨대 친수성 고분자 화합물은 물에 잘 용해되고, 친수성 물질을 코팅한 고체 표면위에 물방울을 떨어뜨린 경우의 접촉각은 90°이하이다.
본 명세서에서 용어, "소수성(hydrophobicity)"은 비극성 물질에서 나타나는 경향으로 물 분자에서 배제되어 응집되는 것을 말한다. 소수성 물질이 친수성 액체 내에 있을 때에는 소수성 물질간의 소수성 결합이 증가되어 소수성 물질들이 응집한다. 소수성 고분자 화합물을 코팅한 고체 표면 위에 물방울을 떨어뜨린 경우의 접촉각은 90°이상이 된다.
본 발명의 구체적인 구현예에 따르면, 상기 친수성 분자(화합물)는 덱스트란 (dextran), 카르보덱스트란(carbodextran), 폴리사카라이드(polysaccharide), 사이클로덱스트란(cyclodextran), 풀루란(pluronic), 셀룰로오즈(cellulose), 녹말(starch), 글리코겐(glycogen), 카르보하이드레이트(carbohydrate), 단당류(monosaccharide), 이당류(bisaccharide) 및 올리고당류 (oligosaccharide), 폴리펩타이드(polypeptide), 폴리포스파젠 (polyphosphagen), 폴리락타이드(polylactide), 폴리락티드-코-글리콜라이드 (poly(lactic-co-glycolic acid)), 폴리카프로락톤(polycaprolactone), 폴리안하이드라이드(polyanhydride), 폴리말릭산(polymaleic acid) 및 폴리말릭산의 유도체, 폴리알킬시아노아크릴레이트(polyalkylcyanoacrylate), 폴리하이드로옥시부틸레이트(polyhydroxybutylate), 폴리카르보네이트(polycarbonate), 폴리오르소에스테르(polyorthoester), 폴리에틸렌 글리콜(polyethyleneglycol, PEG), 메톡시 폴리에틸렌 글리콜(methoxy polyethyleneglycol, mPEG), 폴리프로필렌글리콜, 폴리에틸렌이민(polyethylenimine), 폴리-L-라이신(poly-L-lysine), 폴리글리콜라이드(polyglycolide), 폴리메틸메타아크릴레이트(polymetacrylate), 폴리비닐피롤리돈(polyvinylpyrrolidone), 폴리(아크릴산염)(poly[acrylate]), 폴리(아크릴아마이드)(poly[acrylamide]), 폴리(비닐에스테르)(poly[vinylester]), 폴리(비닐알콜)(poly[vinyl alcohol]), 폴리스티렌(polystryene), 폴리옥사이드(polyoxide), 폴리일렉트로라이트(polyelectrolyte), 폴리(1-니트로프로필렌)(poly[1-nitropropylene]), 폴리(N-비닐피롤리돈)(poly[N-vinyl pyrrolidone]), 폴리비닐아민(poly[vinyl amine]), 폴리(베타-히드록시에틸 메타아크릴레이트)(Poly[beta-hydroxyethylmethacrylate]), 폴리에틸렌 옥사이드(Polyethyleneoxide), 폴리(에틸렌옥시드-b-프로필렌 옥사이드(Poly[ethylene oxide-bpropyleneoxide]) 및 폴리라이신(Polylysine)로 이루어진 군으로부터 선택될 수 있고, 당업계에서 사용될 수 있는 어떠한 친수성 분자라도 사용될 수 있다.
본 발명의 상기 친수성 분자는 빌리루빈의 카르복실기에 공유결합되어 친수성/양친매성 빌리루빈 유도체를 형성한다(Amphiphiles: Molecular Assembly and Applications (ACS Symposium Series) 1st Edition by Ramanathan Nagarajan 및 Various Self-Assembly Behaviors of Amphiphilic Molecules in Ionic Liquids By Bin Dong and Yanan Gao, DOI:10.5772/59095 참조). 친수성 분자가 공유결합된 형태의 빌리루빈은 양친매성을 가진다. 따라서 수용성 용매에 용해가 가능할 뿐만 아니라 자발적으로 자기 조립(self-assembled)되어 입자를 형성하기 때문에 소수성 및 친수성 제제 모두에 대해 적용이 가능하다. 본 발명의 실시예에서 확인된 바와 같이, 본 발명자들은 친수성 화합물인 폴리에틸렌글리콜(polyethyleneglycol, PEG)을 사용하여 카르복실산염에 아마이드 결합을 형성하는 단순한 반응으로 페길화 빌리루빈(PEG-BR, Pegylated bilirubin)을 제조하였다.
본 발명의 다른 구체적인 구현예에 따르면, 상기 친수성 분자(화합물)는 폴리에틸렌 글리콜 또는 이의 유도체이다. 상기 폴리에틸렌 글리콜 유도체는, 예를 들면, 메톡시 PEG(methoxy polyethylene glycol), PEG 프로피론산의 숙시니미드(succinimide of PEG propionic acid), PEG 부타논산의 숙시니미드(succinimide of PEG butanoic acid), 가지 달린 PEG-HNS(branched PEG-NHS), PEG 숙시니미딜 숙시네이트(PEG succinimidyl succinate), 카복시메틸화 PEG의 숙시니미드(succinimide of carboxymethylated PEG), PEG의 벤조트리아졸 카보네이트(benzotriazole carbonate of PEG), PEG-글리시딜 에테르(PEG-glycidyl ether), PEG-옥시카보닐이미다졸(PEGoxycarbonylimidazole), PEG 니트로페닐 카보네이트(PEG nitrophenyl carbonates), PEG-알데히드(PEGaldehyde), PEG 숙시니미딜 카르복시메틸 에스테르(PEG succinimidyl carboxymethyl ester) 및 PEG 숙시니미딜에스테르(PEG succinimidyl ester) 등을 들 수 있다.
본 발명의 일 구현예에 따르면, 상기 폴리에틸렌글리콜의 평균 분자량은 200 내지 20000 Da 이다.
본 발명에서 사용 가능한 친수성 분자의 또 다른 구체적인 예로는, 2개 이상(예컨대 2-50개)의 아미노산으로 이루어진 폴리펩타이드가 있다. 상기 아미노산에는 천연형 아미노산뿐만 아니라, 비천연 아미노산도 포함된다. 친수성 아미노산에는 글루타민, 아스파라긴산, 글루탐산, 트레오닌, 아스파라긴, 아르기닌, 세린 등이 있으며, 소수성 아미노산에는 페닐알라닌, 트립토판, 이소류신, 류신, 프롤린, 메티오닌, 발린, 알라닌 등이 있다. 비코드화된 친수성 아미노산은, 예를 들어, Cit 및 hCys 등이 있다. 당업자는 상기 정보와 당업계에 공지된 펩타이드 합성기술을 바탕으로 친수성의 폴리펩타이드를 용이하게 합성하여 빌리루빈 나노입자의 제조에 사용할 수 있다.
상기 친수성 분자의 범위에는, 위에서 언급한 화합물뿐만 아니라, 이들의 유도체도 포함된다. 보다 구체적으로 상기 친수성 분자들은 아민 그룹을 가지거나, 아민 그룹을 가지도록 변형된 것일 수 있다. 이 경우 본 발명의 빌리루빈의 카르복실기가 상기 친수성 분자의 아민 그룹과 아마이드 결합을 통하여 매우 쉽게 공유결합 될 수 있음은 본 발명과 관련된 당업자에게 자명하다.
본 발명의 다른 구현예에 따르면, 본 발명의 미세입자는 Cu, Ga, Rb, Zr, Y, Tc, In, Ti, Gd, Mn, Fe, Au, Pt, Zn, Na, K, Mg, Ca, Sr, 및 란탄족 금속으로 이루어진 군으로부터 선택된 금속의 이온 또는 금속 화합물을 추가적으로 포함한다.
본 발명의 다른 일 구현예에 따르면, 본 발명의 미세입자는 시스플라틴(cisplatin), 카르보플라틴(carboplatin), 옥살리플라틴(oxaliplatin), 네다플라틴(nedaplatin), 및 헵타플라틴(heptaplatin)으로 이루어진 군으로부터 선택된 플래티넘 계열 항암제를 추가적으로 포함한다.
본 발명의 또 다른 일 구현예에 따르면, 본 발명의 미세입자는 초상자성 산화철 나노입자(superparamagnetic iron oxide nanoparticle, SPION)를 추가적으로 포함한다. 본 발명의 일 실시예에 나타낸 바와 같이, 본 발명의 미세입자(미세버블)은 산화철 나노입자(SPION)을 효율적으로 로딩할 수 있으며, 자석을 통하여 쉽게 추출이 가능하다.
상기한 본 발명의 미세입자에 추가적으로 포함되는 금속 이온, 금속 화합물, 플래티넘 계열 항암제, 초상자성 산화철 나노입자 등은 초음파 조영제로 사용될 수 있는 미세입자에 각각 추가적인 기능성을 부여한다.
본 발명의 다른 일 양태에 따르면 본 발명은 상기한 본 발명의 미세입자를 포함하는 초음파 조영제를 제공한다.
본 발명에서 초음파 조영제는 복부 초음파, 비뇨생식기 초음파, 유방 초음파, 근골격 초음파, 갑상선 초음파, 심장 초음파, 경두개 초음파 (Transcranial ultrasound), 혈관 내 초음파(Intra-Vascular Ultrasound, IVUS), 도플러 초음파 (Doppler sonography) 등 당업계에서 사용되는 모든 초음파 검사에 이용될 수 있다. 또한, 초음파 내시경(Endoscopic Ultrasound, EUS), 기관지 초음파 내시경(Endo-Bronchial Ultrasound, EBUS), 등 초음파를 병행하여 사용하여 모든 검사에도 적용가능하다.
특히, 본 발명의 일 구현예에 따른 산화철 나노입자(SPION)를 포함하는 미세입자는 산화철의 초상자성에 의해 자기공명(MR) 감응성을 가지므로, 초음파 조영제로서 뿐만 아니라 자기공명(magnetic resonance, MR)에 의한 영상 진단 겸용으로도 사용될 수 있다.
또한, 본 발명의 구체적인 구현예에 따르면, 상기 초음파 조영제는 나아가 자기공명-가이드 집속 초음파(MR-guided focused ultrasound, MRgFUS) 치료용으로 사용될 수 있다.
본 발명에서 상기 자기공명-가이드 집속 초음파 치료란 자기공명영상(magnetic resonance image, MRI)과 초음파(ulstrasound, US)가 결합된 장비를 이용하여 하는 치료방법이다. 이 치료방법은 주로 자궁 근종을 치료하는데 사용된다. 이 치료방법은 자기공명영상을 통하여 자궁 근종의 위치를 정확히 3차원적으로 파악하고, 고집적 초음파를 이용해 질환부위(근종 조직)를 수술적 절제를 하지 않고도 완전히 소작(ablation)할 수 있는 비침습적 치료법이다.
본 발명의 다른 일 구현예에 따르면, 본 발명의 미세입자를 포함하는 초음파 조영제는 약물전달체 용도로서도 사용될 수 있다.
초음파 조영제만이 가지는 진공현상 (cavitation)을 통하여 약물을 전달하고자 하는 조직의 혈관내피세포 결합을 일시적으로 와해시켜 더 깊은 조직 내로 침투를 가능하게 할 수 있으므로 항암 및 항염증제 전달의 전달체로서 사용 될 수 있다.
구체적으로 본 발명의 미세입자는 소수성의 빌리루빈을 포함하므로, 소수성을 가진 약물과 소수성 상호작용에 의한 결합이 가능하다. 소수성을 가진 약물의 예로는 파클리탁셀(paclitaxel), 도세탁셀(docetaxel), 캄토테신계 항암제 등이 있으나 이에 한정되는 것은 아니다. 항암제, 항염증제, 소염제 등 당업계에 사용되는 소수성 약물은 제한없이 본 발명의 미세입자에 결합하여 약물전달이 가능함은 당업자에게 자명하다.
또한, 본 발명의 미세입자는 금속과 배위결합을 형성하는 빌리루빈을 포함한다. 따라서 본 발명의 미세입자는 상술한 Cu, Ga, Rb, Zr, Y, Tc, In, Ti, Gd, Mn, Fe, Au, Pt, Zn, Na, K, Mg, Ca, Sr, 및 란탄족 금속의 이온 및 이들의 금속 화합물, 그리고 시스플라틴(cisplatin), 카르보플라틴(carboplatin), 옥살리플라틴(oxaliplatin), 네다플라틴(nedaplatin), 및 헵타플라틴(heptaplatin) 등의 플래티넘 계열 항암제와 쉽게 결합한다.
본 발명에서 빌리루빈 유도체와 상기 금속 이온, 금속화합물 또는 플래티넘 계열 항암제와 형성되는 배위결합은 금속이온과 빌리루빈 유도체의 카르복실기, 피롤링 또는 락탐기 간에 형성된다.
본 발명의 일 구현예에 있어서, 본 발명의 미세입자는 소수성 약물인 안트라사이클린 계열 항암제, 탁산(taxane) 계열 항암제 또는 캄토테신(camptothecin) 계열 항암제를 추가적으로 포함한다.
본 발명에서 상기 안트라사이클린 계열 항암제는 예를 들어, 다우노루비신, 독소루비신, 에피루비신, 이다루비신, 젬시타빈, 미토산트론, 피라루비신 및 발루비신 등이 있으나, 이에 한정되는 것은 아니다.
또한, 본 발명에서 상기 탁산 계열 항암제는 예를 들어, 파클리탁셀(paclitaxel), 도세탁셀(docetaxel) 및 카바지탁셀(cabazitaxel) 등이 있으나, 이에 한정되는 것은 아니다.
또한, 본 발명의 미세입자는 천연 항산화제이자 활성산소종(reactive oxygen species, ROS) 민감성 물질인 빌리루빈을 포함하므로, 비정상적 수준의 활성산소를 발생시키는 암, 염증 등의 부위에서 활성산소를 소거함으로써 항염활성을 나타낸다. 본 발명의 미세입자가 포함하는 빌리루빈 유도체는 대한민국 특허출원 제10-2014-0190881호에 개시된 바와 같이, 빌리루빈 유도체 자체의 항암 작용, 혈관신생 억제 작용을 가진다. 따라서 본 발명의 미세입자는 암 질환 또는 혈관신생 질환 치료용 약학적 조성물의 용도로도 사용 가능성이 있다.
본 발명의 미세입자의 적용이 가능한 염증성 질환은 예를 들면, 염증성 장질환(inflammatory bowel disease), 아토피 피부염, 부종, 피부염, 알레르기, 천식, 결막염, 치주염, 비염, 중이염, 죽상경화증, 인후염, 편도염, 폐렴, 위궤양, 위염, 크론병, 대장염, 치질, 통풍, 간직성 척추염, 류마티스 열, 루푸스, 섬유근통(fibromyalgia), 건선관절염, 골관절염, 류마티스 관절염, 견관절주위염, 건염, 건초염, 근육염, 간염, 방광염, 신장염, 쇼그렌 증후군(sjogren's syndrome) 및 다발성 경화증 등을 들 수 있으나 이에 한정되는 것은 아니다.
중풍이나 심근 경색등의 허혈성 질환에서 혈전에 직접 초음파를 쬐어 분해하여 치료하는 초음파 혈전용해술 (Sonothrombolysis)에도 본 발명의 미세입자는 사용될 수 있다. 나아가, 빌리루빈이라는 쉘이 활성산소를 제거하는 역할을 하므로 급성 혹은 만성적으로 저산소공급을 받고 있는 주변 허혈조직들에서 재관류 후에 갑작스럽게 발생하는 허혈-재관류 손상 (ischemic-reperfusion injury)의 예방적 치료에도 적용 가능하므로 기존의 초음파 조영제와는 차별성 있는 적응이 가능하다.
본 발명의 다른 일 양태에 따르면, 본 발명은 본 발명의 미세입자를 포함하는 초음파 조영제의 유효량을 환자에 투여하는 단계; 및 상기 환자의 신체 일부 또는 조직을 이미징하는 단계를 포함하는 환자의 진단적 이미징 방법(method of diagnostic imaging of a patient)을 제공한다.
본 발명의 또 다른 일 양태에 따르면, 본 발명은 본 발명의 미세입자를 포함하는 초음파 조영제의 유효량을 환자에 투여하는 단계; 및 상기 환자의 신체 일부 또는 조직의 병변을 치료하는 단계를 포함하는 환자의 치료적 이미징 방법(method of therapeutic imaging of a patient)을 제공한다.
상기 진단적 이미징은 조영제를 사용함으로써 환자의 신체의 일부(body part) 또는 조직의 이미지의 콘트라스트를 강화시켜 진단에 필요한 정보를 제공하는 영상화 기법을 의미한다.
치료적 이미징은 조영제를 사용하여 환자의 질병을 치료하는 방법을 포함하며, 상기 조영제는 인 비보 및/또는 인비트로 상에서 생물학적 효과를 발휘하거나 발휘할 수 있는 조영제를 의미한다. 치료적 이미징은 상술한 자기공명-가이드 집속 초음파 치료 및 약물 봉입을 통한 약물전달을 포함하는 개념이다.
본 명세서에서 사용된 용어, "투여" 또는 "투여하다"는 본 발명의 조영제 (조성물)의 진단적 또는 치료적 유효량을 대상체(개체 또는 환자)에 직접적으로 투여함으로써 대상체의 체내에서 동일한 양이 형성되도록 하는 것을 말한다.
상기 조성물의 "치료적 유효량"은 조성물을 투여하고자 하는 대상체에게 치료적 또는 예방적 효과를 제공하기에 충분한 조성물의 함량을 의미하며, 이에 "예방적 유효량"을 포함하는 의미이다.
상기 조성물의 "진단적 유효량"은 조성물을 투여하고자 하는 대상체에게 진단에 필요한 정보를 제공하기 위하여 콘트라스트의 증강효과를 제공하기에 충분한 조성물의 함량을 의미한다.
또한, 본 명세서에서 사용된 용어, "대상체"는 제한 없이 인간, 마우스, 랫트, 기니아 피그, 개, 고양이, 말, 소, 돼지, 원숭이, 침팬지, 비비(baboon) 또는 붉은털 원숭이를 포함한다. 구체적으로는, 본 발명의 대상체는 인간이다.
본 발명의 상기 진단적 이미징 방법 및 치료적 이미징 방법은, 본 발명의 일 양태인 미세입자 또는 미세입자를 포함하는 초음파 조영제를 투여하는 단계를 포함하는 방법이므로, 중복되는 내용에 대해서는 본 명세서의 과도한 복잡성을 피하기 위해 생략한다.
본 발명의 또 다른 일 양태에 따르면, 본 발명은 다음의 단계를 포함하는 미세입자의 제조방법을 제공한다:
(a) 빌리루빈에 친수성 분자를 컨쥬게이션시킨 빌리루빈 유도체를 포함하는 나노입자를 수성 용매에 용해시켜 빌리루빈 유도체 나노입자 용액을 제조하는 단계; 및
(b) 빌리루빈 유도체 나노입자 용액에, 가스가 포함된 유상 용액을 혼합하여 초음파 처리함으로써, 내부에 가스가 포집되어 코어부를 형성하고 상기 코어부의 표면을 빌리루빈 유도체 나노입자가 둘러싸며 쉘층을 이루는 미세입자를 제조하는 단계.
상기 본 발명의 미세입자의 제조방법은 도 1에 도식적으로 설명되어 있다. 이하에서는 본 발명의 미세입자의 제조방법을 단계별로 상세히 설명한다.
단계 (a): 빌리루빈에 친수성 분자를 결합시킨 빌리루빈 유도체를 포함하는 나노입자를 수성 용매에 용해시켜 빌리루빈 유도체 나노입자 용액을 제조하는 단계
본 단계는 빌리루빈을 친수성 분자와 결합한 친수성 내지는 양친매성의 빌리루빈 유도체를 제조하고, 이로부터 빌리루빈 유도체를 포함하는 나노입자 용매를 제조하는 단계이다.
상기 빌리루빈과 친수성 분자와의 결합은 구체적으로는 EDC(1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide)를 이용해 빌리루빈의 카르복실 그룹을 활성화시키고, 아민 그룹을 가지는 친수성 분자와 아마이드 결합을 통한 공유결합을 유도한다. 상기 빌리루빈과 결합되는 친수성 분자는 상술한 친수성 분자들로서 아민 그룹을 가지거나, 아민 그룹을 가지도록 변형된 것이다.
구체적으로 먼저 빌리루빈을 유기용매(예컨대 디메틸설폭사이드, DMSO)에 녹이고, 빌리루빈에 존재하는 카르복실 그룹을 활성화시키기 위하여 EDC를 첨가하고 상온에서 5-30분 간 반응시킨다. 그 후, 말단에 아민기를 가지는 친수성 분자(예컨대, 폴리에틸렌글리콜)를 첨가하고, 일정 시간 반응시켜 친수성 분자가 결합된 빌리루빈 유도체를 합성한다. 다음으로 카르복실 그룹과 아민 그룹간의 반응으로 생성된 아마이드 결합을 가지는 빌리루빈 유도체를 실리카 컬럼을 통해 부산물로부터 순수하게 분리 및 추출한다.
위에서 제조한 빌리루빈 유도체를 유기용매(예컨대, 클로로포름)에 용해시킨 뒤, 질소 대기하 또는 진공상태에서 건조시켜 필름층을 만든다. 그 후 상기 필름층에 인산완충용액, 탈이온수 등의 수성 용매를 첨가하고 초음파 처리를 하여 빌리루빈 유도체를 포함하는 나노입자 용액을 제조한다.
상기 빌리루빈 유도체 나노입자는 빌리루빈 유도체가 수성 용매 내에서 자가조립(self-assembled)되어 형성된 나노입자로서, 빌리루빈 유도체 중 소수성의 빌리루빈 부분이 내부에 위치하고, 빌리루빈에 컨쥬게이션된 친수성 분자부분이 수성용매의 계면과 접하는 미셀(micelle) 형태일 수 있다. 상기 빌리루빈의 나노입자 액의 제조와 관련한 내용은 종래 공지되어 있다. 이와 관련하여 대한민국 특허출원 제10-2014-0190881호의 모든 내용은 본 명세서에 참조로서 통합된다.
단계 (b): 빌리루빈 유도체 나노입자 용액에, 가스가 포함된 유상 용액을 혼합하여 초음파 처리함으로써, 내부에 가스가 포집되어 코어부를 형성하고 상기 코어부의 표면을 빌리루빈 유도체 나노입자가 둘러싸며 쉘층을 이루는 미세입자를 제조하는 단계
본 단계는 상기 빌리루빈 유도체 나노입자 용액에 소수성 가스(예컨대 과플루오르화탄소)를 혼합하고, 소수성 가스를 빌리루빈 유도체 나노입자의 소수성 코어에 봉입시킴으로써 미세입자를 제조하는 단계이다.
미리 제조한 빌리루빈 유도체(Pegylated bilirubin)를 탈이온수에 용해시킨 빌리루빈 나노입자 용액에 유상(oil phase)의 소수성 가스(예컨대 과플루오로펜탄)를 점적하면서 일정 시간 초음파를 처리(sonication)한다. 상기 과정을 통하여 소수성 가스를 코어로 하고, 빌리루빈 유도체가 쉘을 이루는 에멀젼(emulsion) 형태의 나노- 또는 마이크로-버블 시스템을 제조한다(도 1).
본 발명의 일 구현예에 따르면, 상기 (b) 단계 대신 빌리루빈 유도체 나노입자 용액에, 소수성 가스; 및 Cu, Ga, Rb, Zr, Y, Tc, In, Ti, Gd, Mn, Fe, Au, Pt, Zn, Na, K, Mg, Ca, Sr, 및 란탄족 금속으로 이루어진 군으로부터 선택된 금속의 이온 또는 금속 화합물이 포함된 유상 용매를 혼합하여 초음파 처리함으로써 금속 이온 또는 금속 화합물을 더 포함하는 미세입자를 제조할 수 있다.
본 발명의 다른 구현예에 따르면, 상기 (b) 단계 대신 빌리루빈 유도체 나노입자 용액에, 소수성 가스; 및 시스플라틴(cisplatin), 카르보플라틴(carboplatin), 옥살리플라틴(oxaliplatin), 네다플라틴(nedaplatin), 및 헵타플라틴(heptaplatin)으로 이루어진 군으로부터 선택된 플래티넘 계열 항암제가 포함된 유상 용매를 혼합하여 초음파 처리함으로써 플래티넘 계열 항암제를 더 포함하는 미세입자를 제조할 수 있다.
본 발명의 일 구현예에 따르면, 상기 상기 (b) 단계 대신 빌리루빈 유도체 나노입자 용액에, 소수성 가스; 및 안트라사이클린 계열 항암제, 탁산(taxane) 계열 항암제, 또는 캄토테신(camptothecin) 계열 항암제가 포함된 유상 용액을 혼합하여 초음파 처리함으로써 안트라사이클린 계열 항암제 또는 탁산 계열 항암제를 더 포함하는 미세입자를 제조할 수 있다.
본 발명의 또 다른 구현예에 따르면, 상기 (b) 단계 대신 빌리루빈 유도체 나노입자 용액에, 소수성 가스; 및 초상자성 산화철 나노입자(SPION: superparamagnetic iron oxide nanoparticle)가 포함된 유상 용매를 혼합하여 초음파 처리함으로써 초상자성 산화철 나노입자를 더 포함하는 미세입자를 제조할 수 있다.
본 발명의 상기 미세입자 제조방법은 상술한 미세입자와 그 구성성분이 공통되므로, 코어부를 형성하는 가스의 종류, 빌리루빈 유도체에 컨쥬게이션된 친수성 분자의 종류 등 중복되는 부분은 본 명세서의 과도한 복잡성을 방지하기 위하여 그 기재를 생략한다.
본 발명은 내부에 소수성 가스를 포함하는 코어(core)부; 및
빌리루빈 유도체를 포함하며 상기 코어부의 표면을 둘러싸는 쉘(shell)층을 포함하는 미세입자, 이의 제조방법 및 이를 포함하는 초음파 조영제를 제공한다.
본 발명의 빌리루빈 유도체를 포함하는 미세입자는, 활성산소종(reactive oxygen species, ROS)에 민감하게 반응하여 활성산소를 소거한다. 또한 본 발명의 미세입자는 소수성 약물과 결합하며, 산화철 나노입자를 비롯한 금속을 효과적으로 킬레이팅 할 수 있다. 따라서 본 발명의 미세입자는 초음파 진단용 조영제로서 사용할 수 있을 뿐만 아니라 자기공명영상 진단용 조영제, 및 소수성 약물 또는 플래티넘 기반 약물의 전달체로서도 유용하게 사용될 수 있다.
도 1은 본 발명의 페길화된 빌리루빈으로 코팅된 초음파 조영제를 제작하는 방법을 도식적으로 설명한 그림이다.
도 2는 본 발명의 페길화된 빌리루빈으로 코팅된 초음파 조영제를 제작하여 촬영한 사진이다.
도 3은 페길화된 빌리루빈으로 코팅된 초음파 조영제에서 PFP의 서로 다른 부피 농도(PFP 0, 2.5, 5, 10% v/v)에 따른 측정 시작 시점(t=0 min)에서의 대표 팬텀 이미지를 나타낸 도이다.
도 4는 페길화된 빌리루빈으로 코팅된 초음파 조영제의 PFP의 서로 다른 부피 농도(PFP 0, 2.5, 5, 10% v/v)에 따른 팬텀 이미지의 변화를 시간순으로 나타낸 도이다.
도 5는 페길화된 빌리루빈으로 코팅된 초음파 조영제의 PFP의 부피 농도(PFP 0, 2.5, 5, 10% v/v)에 따른 팬텀 이미지의 표준화된 초음파 강도를 시간에 따라 나타낸 그래프이다.
도 6은 페길화된 빌리루빈으로 코팅된 초음파 조영제의 투과전자현미경 이미지를 나타낸 도이다. 측정된 조영제 버블의 크기는 2-4 μm 였다.
도 7은 페길화 빌리루빈 코팅된 초음파 조영제(흰 화살표)의 광학현미경 하 이미지(A) 및 부피당 조영제 입자의 개수를 계수하기 위하여 혈구계수기 그리드 상에 분주한 이미지(B)를 나타낸 도이다.
도 8은 활성산소종 처리 후 페길화 빌리루빈 코팅된 초음파 조영제의 수력학적 크기의 점진적인 증가[빨간색(●), ①녹색(■) → ②청색(▲)]를 나타낸 도이다.
도 9는 산화철 나노입자 로딩된 페길화 빌리루빈 코팅된 초음파 조영제를 도식적으로 설명한 도이다.
도 10의 (A)는 산화철 나노입자가 로딩된 페길화 빌리루빈이 자석에 부착된 위치(화살표)를 나타낸 도이고, 도 10의 (B)는 산화철 나노입자가 로딩된 페길화 빌리루빈으로 코팅된 초음파 조영제(iron oxide nanoparticle-loaded PEGylated bilirubin coated US contrast agents)의 투과전자 현미경 이미지이다.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.
실시예
실시예 1: 본 발명의 페길화 빌리루빈 기반 초음파 조영제의 제조
1-1. 빌리루빈 유도체( 페길화 빌리루빈, Pegylated bilirubin )의 제조
본 발명자들은 빌리루빈 기반의 초음파 조영제를 제조하기에 앞서 빌리루빈에 친수성 분자를 결합시킨 빌리루빈의 양친매성 유도체를 제조하였다. 친수성 분자로는 폴리에틸렌글리콜(polyethyleneglycol)을 사용하였다.
구체적으로 먼저 빌리루빈을 디메틸설폭사이드(dimethylsulfoxide, DMSO)에 녹이고, 빌리루빈에 존재하는 카르복실 그룹을 활성화시켜 원하는 반응을 유도하기 위하여 EDC(1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide)를 적당량 첨가하고 상온에서 약 10분 간 반응시켰다. 다음으로, 말단에 아민기를 가지는 폴리에틸렌글리콜을 첨가하고, 일정 시간 반응시켜 빌리루빈의 카르복실 그룹과, 폴리에틸렌글리콜의 아민 그룹이 아마이드 결합으로 공유결합된 빌리루빈 유도체(Pegylated bilirubin)를 합성하였다. 마지막으로 상기 제조된 최종 빌리루빈 유도체를 실리카 컬럼을 통해 부산물로부터 순수하게 분리 및 추출하였다.
1-2. 페길화 빌리루빈으로 코팅된 초음파 조영제의 제조
본 발명의 빌리루빈 기반의 에코음영성 미세입자(echogenic nanoparticle, or microparticle)는 간단한 수중유(oil-in-water, O/W) 에멀전화 방법으로 제조되었다. 상기 실시예 1-1에서 미리 제조한 빌리루빈 유도체(Pegylated bilirubin)를 탈이온수에 용해시켜 빌리루빈 미세입자 용액(1.2 mg/2 ml)을 제조하고, 프로브 타입의 초음파분쇄기가 구비된 아이스 배스에 옮겼다. 버블의 코어를 형성하는 소수성 가스로는 과플루오로펜탄(perfluoropentane, PFP)을 사용하였다. 유상(oil phase)의 형태로 존재하는 과플루오로펜탄을 다양한 부피비(PFP, 2.5, 5, 10% v/v)로 빌리루빈 미세입자 용액(수상, water phase)에 점적하고, 30%의 파워로 90초간 초음파 처리 과정을 수행하였다. 그 결과 에멀젼 형태의 소수성 기체(과플루오로펜탄)를 코어로 하고, 빌리루빈 유도체가 쉘을 이루는 나노- 또는 마이크로-버블 시스템을 제조하였다(도 1 및 도 2).
실시예 2: 본 발명의 페길화 빌리루빈 기반 초음파 조영제의 팬텀 이미징
초음파 팬텀 이미지는 마우스용 초음파 장치 프로브인 RMV 706 프로브가 구비된 Vevo770 (High-Resolution Micro-Imaging System, Visualsonics, Toronto, Canada)을 사용하여 획득하였다. 본 발명자들은 초음파 이미징을 위한 체내 조건을 모사하고자, 3% (w/v) 아가로즈 겔에 500 μL 단위의 에펜도르프 튜브를 포매하여 제조한 아가-겔 팬텀을 사용하였다.
먼저 과플루오로펜탄(perfluoropentane, PFP)을 소수성 가스 코어로 하는 본 발명의 페길화 빌리루빈 기반 조영제 샘플(PFP 0, 2.5, 5, 10% v/v) 각 300 μL를 아가-겔 팬텀에 넣고, 40 MHz의 초음파로 영상을 얻었다. 각 샘플(PFP 0, 2.5, 5, 10% v/v)의 초음파 강도의 변화는 180분 동안 측정되었고, 표준화 과정으로 물 대조군의 초음파 강도를 샘플의 초음파 강도에서 감산(subtraction)하였다. 페길화 빌리루빈 용액에 대한 가스 코어의 부피 비에 따른 시간별 에코음영 특성을 모니터링한 결과는 도 3 내지 5에 나타내었다.
도 3은 측정 시작 시점(t=0 min)의, 페길화된 빌리루빈으로 코팅된 초음파 조영제에서 과플루오로펜탄의 서로 다른 부피 농도(PFP 0, 2.5, 5, 10% v/v)에 따른 대표 팬텀 이미지를 나타낸 도이다. 도 4는 페길화된 빌리루빈으로 코팅된 초음파 조영제의 PFP의 서로 다른 부피 농도(PFP 0, 2.5, 5, 10% v/v)에 따른 팬텀 이미지의 변화를 시간순으로 나타낸 도이다. 도 3 및 4에 나타낸 바와 같이, 가장 높은 에코음영이 확인된 샘플은 PFP 5.0%(v/v) 실험군이었다.
도 5는 페길화된 빌리루빈으로 코팅된 초음파 조영제의 과플루오로펜탄의 서로 다른 부피 농도(PFP 0, 2.5, 5, 10% v/v)에 따른 팬텀 이미지의 표준화된 초음파 강도를 시간에 따라 나타낸 그래프이다. 페길화 빌리루빈 기반의 초음파 조영제의 에코 신호의 in situ 반감기는 약 45분 이었다.
상기 결과로부터 본 발명의 페길화 빌리루빈을 비롯한 친수성 분자로 결합시킨 빌리루빈 유도체는 소수성 가스 코어를 둘러싸는 쉘로써 안정적으로 기능하고, 팬텀 이미징으로부터 초음파 영상 증강효과가 인정됨을 확인하였다. 따라서 본 발명의 제조된 빌리루빈 유도체 기반 미세버블은 초음파 조영제로서 유용하게 사용할 수 있다.
실시예 3: 본 발명의 페길화 빌리루빈 기반 초음파 조영제의 특징
3-1. 현미경 형태학
미세입자의 현미경 형태학은 아세트산 우라늄(uranium acetate)의 음성 염색과(with negative staining) 투과전자현미경(Tecnai G2 F30, Eindhoven, Netherlands)(도 6) 및 커버 슬립 하의 광학 현미경(도 7)으로 관찰하였다.
도 6은 투과전자 현미경(TEM, transmission electron microscopy)으로 관찰한 본 발명의 페길화 빌리루빈 기반 초음파 조영제를 나타낸 것이다. 도 6은 본 발명의 초음파 조영제를 이루는 마이크로 크기의 버블 입자를 나타낸다. 도 7의 (A)는 광학현미경으로 관찰한 본 발명의 페길화 빌리루빈 기반 초음파 조영제를 나타낸 것이다.
또한, 조영제의 부피당 포함된 버블의 수를 측정하기 위하여 본 발명의 페길화 빌리루빈 기반 조영제를 혈구계수기 격자에 놓고 계수하였다(도 7의 (B)). 계수 결과, 본 발명의 조영제 1 ml 당 약 2.0x109 개의 버블이 포함되어 있는 것으로 확인되었다.
3-2. 페길화 빌리루빈 기반 초음파 조영제의 활성산소종(ROS)에 대한 활성
본 발명의 페길화 빌리루빈 기반 초음파 조영제는 천연 항산화제인 빌리루빈을 포함하고 있다. 본 발명자들은 본 발명의 초음파 조영제의 활성산소(reactive oxygen species, ROS)종에 대한 반응성을 확인하기 위하여, Nanosizer ZS 90 (Malvern Instruments, Ltd., Malvern, UK)를 이용하여 활성산소종(ROS; H2O2)을 처리하기 전/후의 본 발명의 조영제의 미세버블의 수력학적 크기 분포(hydrodynamic size distribution)를 측정하였다. 결과는 도 8에 나타내었다. 도 8에 나타낸 바와 같이, 본 발명의 초음파 조영제는 활성산소종(H2O2)과 반응하여 버블의 수력학적 크기가 증가하였다.
빌리루빈은 체내의 천연 항산화제이다. 빌리루빈이 활성산소종이 풍부한 질환부위의 활성산소종과 반응하면, 빌리루빈이 빌리버딘(biliverdin)으로 변화된다. 그 결과 빌리루빈 유도체 간, 그리고 기체 코어(core)와의 소수성 상호작용이 약화되어, 조영제 버블의 양친매성의 빌리루빈 유도체-코팅 쉘이 파괴된다. 결국, 소수성 가스 코어의 순간적인 응집(conglomeration) 후 점진적인 크기의 증가에 비례하는 초음파 영상의 콘트라스트 증강이 일어난다(도 8).
따라서, 본 발명의 페길화 빌리루빈을 비롯한, 친수성 분자와 결합된 빌리루빈 유도체는 활성산소종이 풍부한 질환부의 초음파 영상을 증강시키고, 고유의 항산화 특성으로 인해 질환부에 항산화 효과를 나타낼 수 있다. 따라서 본 발명의 빌리루빈 유도체를 포함하는 미세입자는 초음파를 이용한 질병의 진단뿐만 아니라 치료에도 유용하게 사용될 수 있다.
실시예 4: 산화철 나노입자를 로딩한 페길화 빌리루빈 기반 초음파 조영제의 제조
산화철 나노입자(iron oxide nanoparticle)의 로딩은 상기한 실시예 1의 제조방법을 변형하여 수행되었다. 수중유(oil-in-water, O/W) 층을 만들 때, 헥산(hexane)에 분산시킨 산화철 나노입자를 유상(oil phase)으로 존재하는 과플루오르화펜탄(PFP)과 동시에 점적하였다. 그 다음, 상기 기술한 대로 초음파 처리하여 얻어진 에멀젼을 흐릿한 빛(dim light) 아래에서 6시간 동안 교반하여 헥산을 증발시킨 후, 5000 rpm 에서 원심분리하여 응집체를 제거하였다. 상층액을 분액하고, 희토류 자석(rare earth magnet)을 이용하여, 산화철 나노입자가 로딩된 페길화 빌리루빈 미세버블(iron oxide nanoparticles-loaded PEGylated bilirubin microbubble)을 추출하였다(도 9 및 10).
도 9는 상기에서 제조한 산화철 나노입자를 로딩한 페길화 빌리루빈 기반의 초음파 조영제를 도식적으로 설명한 그림이다. 도 9에 나타낸 바와 같이, 본 발명의 초음파 조영제는 친수성 폴리머가 결합된 빌리루빈의 친수성 부분(친수성 분자)이 수상(water-phase)을 향하고, 소수성 부분(빌리루빈)은 소수성 기체(PFP) 코어와 직접 맞닿아 쉘을 이룬다. 여기에서 산화철 나노입자가 빌리루빈에 결합하는 반응은 산화철 나노입자에 코팅되어 있던 올레산(oleic acid) 층이 떨어져 나가고, 그 대신 빌리루빈의 카르복실 그룹이 산화철 나노입자와 킬레이션 반응을 통해 결합하는 것이다. 혹은 더 큰 부피를 가지는 소수성 기체 코어에 15 nm 크기의 산화철 나노입자들이 산화철 나노입자와 소수성 기체 코어 간의 소수성 결합으로 인해 로딩될 수 있다.
도 10의 (A)는 산화철 나노입자가 로딩된 페길화 빌리루빈 조영제를 자석을 이용하여 추출한 결과, 산화철 나노입자를 포함하는 조영제가 자석에 부착됨(빨간 화살표)을 나타낸다. 도 10의 (B)는 산화철 나노입자가 로딩된 페길화 빌리루빈으로 코팅된 초음파 조영제의 투과전자 현미경 이미지를 나타낸다. 도 10 (B)의 화살표는 본 발명의 페길화 빌리루빈 기반 초음파 조영제의 미세버블에 로딩된 산화철 나노입자를 가리킨다. 산화철 나노입자의 크기는 약 15 nm에 해당한다.
상기 결과로부터 본 발명의 친수성 분자와 결합시킨 빌리루빈 유도체 기반의 초음파 조영제는 산화철 나노입자를 비롯한 자기공명 감응성 금속입자를 로딩할 수 있음을 확인하였다. 따라서 본 발명의 빌리루빈 유도체 기반 초음파 조영제는 초음파 조영제로 사용될 수 있을 뿐만 아니라, 자기공명-가이드 집속 초음파(MR-guided focused ultrasound, MRgFUS)용 조영제로서도 매우 유용하게 사용될 수 있다.
나아가 빌리루빈의 금속입자의 킬레이팅 특성을 이용해, 본 발명의 초음파 조영제에 산화철 나노입자가 아닌 백금입자 기반의 항암제를 로딩시키는 경우에는 항암제를 전달할 수 있는 캐리어로서도 사용이 가능하다. 특히 자기공명-가이드 집속 초음파(MRgFUS)는 혈액-뇌 관문(blood-brain barrier, BBB) 투과성을 일시적으로 증가시킬 수 있는 신규한 기술이다. 자기공명-가이드 집속 초음파를 사용하면 치료제의 중추신경계 내 전달이 가능하고, 뇌종양 치료에서 효율성을 높일 수 있다. 따라서 본 발명의 초음파 조영제 시스템은 초음파 조영제, 자기공명감응성 조영제, 및 항산화제/항암제 전달 캐리어로서의 세가지 역할을 동시에 수행할 수 있는 플랫폼 기술로서 유용하게 사용될 수 있다.

Claims (23)

  1. 내부에 가스를 포함하는 코어(core)부; 및
    빌리루빈 유도체를 포함하며 상기 코어부의 표면을 둘러싸는 쉘(shell)층을 포함하는 미세입자.
  2. 제 1 항에 있어서, 상기 가스는 공기, 질소, 헬륨, 아르곤, 이산화탄소, 설퍼 헥사플루오라이드(sulfur hexfluoride, SF6) 및 C1 내지 C10의 과플루오르화탄소(perfluorocarbon)로 이루어진 군으로부터 선택되는 것을 특징으로 하는 미세입자.
  3. 제 1 항에 있어서, 상기 빌리루빈 유도체는 빌리루빈에 친수성 분자가 결합된 것을 특징으로 하는 미세입자.
  4. 제 3 항에 있어서, 상기 친수성 분자는 덱스트란 (dextran), 카르보덱스트란(carbodextran), 폴리사카라이드(polysaccharide), 사이클로덱스트란(cyclodextran), 풀루란(pluronic), 셀룰로오즈(cellulose), 녹말(starch), 글리코겐(glycogen), 카르보하이드레이트(carbohydrate), 단당류(monosaccharide), 이당류(bisaccharide) 및 올리고당류 (oligosaccharide), 폴리펩타이드(polypeptide), 폴리포스파젠 (polyphosphagen), 폴리락타이드(polylactide), 폴리락티드-코-글리콜라이드 (poly(lactic-co-glycolic acid)), 폴리카프로락톤(polycaprolactone), 폴리안하이드라이드(polyanhydride), 폴리말릭산(polymaleic acid) 및 폴리말릭산의 유도체, 폴리알킬시아노아크릴레이트(polyalkylcyanoacrylate), 폴리하이드로옥시부틸레이트(polyhydroxybutylate), 폴리카르보네이트(polycarbonate), 폴리오르소에스테르(polyorthoester), 폴리에틸렌 글리콜(polyethyleneglycol, PEG), 메톡시 폴리에틸렌 글리콜(methoxy polyethyleneglycol, mPEG), 폴리프로필렌글리콜, 폴리에틸렌이민(polyethylenimine), 폴리-L-라이신(poly-L-lysine), 폴리글리콜라이드(polyglycolide), 폴리메틸메타아크릴레이트(polymetacrylate), 폴리비닐피롤리돈(polyvinylpyrrolidone), 폴리(아크릴산염)(poly[acrylate]), 폴리(아크릴아마이드)(poly[acrylamide]), 폴리(비닐에스테르)(poly[vinylester]), 폴리(비닐알콜)(poly[vinyl alcohol]), 폴리스티렌(polystryene), 폴리옥사이드(polyoxide), 폴리일렉트로라이트(polyelectrolyte), 폴리(1-니트로프로필렌)(poly[1-nitropropylene]), 폴리(N-비닐피롤리돈)(poly[N-vinyl pyrrolidone]), 폴리비닐아민(poly[vinyl amine]), 폴리(베타-히드록시에틸 메타아크릴레이트)(Poly[beta-hydroxyethylmethacrylate]), 폴리에틸렌 옥사이드(Polyethyleneoxide), 폴리(에틸렌옥시드-b-프로필렌 옥사이드(Poly[ethylene oxide-bpropyleneoxide]) 및 폴리라이신(Polylysine)로 이루어진 군으로부터 선택된 것을 특징으로 하는 미세입자.
  5. 제 1 항에 있어서, 상기 미세입자는 Cu, Ga, Rb, Zr, Y, Tc, In, Ti, Gd, Mn, Fe, Au, Pt, Zn, Na, K, Mg, Ca, Sr, 및 란탄족 금속으로 이루어진 군으로부터 선택된 금속의 이온 또는 금속 화합물을 추가적으로 포함하는 것을 특징으로 하는 미세입자.
  6. 제 1 항에 있어서, 상기 미세입자는 시스플라틴(cisplatin), 카르보플라틴(carboplatin), 옥살리플라틴(oxaliplatin), 네다플라틴(nedaplatin), 및 헵타플라틴(heptaplatin)으로 이루어진 군으로부터 선택된 플래티넘 계열 항암제를 추가적으로 포함하는 것을 특징으로 하는 미세입자.
  7. 제 1 항에 있어서, 상기 미세입자는 안트라사이클린 계열 항암제, 탁산(taxane) 계열 항암제 또는 캄토테신(camptothecin) 계열 항암제를 추가적으로 포함하는 것을 특징으로 하는 미세입자.
  8. 제 7 항에 있어서, 상기 안트라사이클린 계열 항암제는 다우노루비신, 독소루비신, 에피루비신, 이다루비신, 젬시타빈, 미토산트론, 피라루비신 및 발루비신으로 구성된 군으로부터 선택되는 것을 특징으로 하는 것을 특징으로 하는 미세입자.
  9. 제 7 항에 있어서, 상기 탁산 계열 항암제는 파클리탁셀(paclitaxel), 도세탁셀(docetaxel) 및 카바지탁셀(cabazitaxel)로 이루어진 군으로부터 선택되는 것을 특징으로 하는 미세입자.
  10. 제 1 항에 있어서, 상기 미세입자는 초상자성 산화철 나노입자(SPION: superparamagnetic iron oxide nanoparticle)를 추가적으로 포함하는 것을 특징으로 하는 미세입자.
  11. 제 1 항 내지 제 10 항 중 어느 한 항의 미세입자를 포함하는 초음파 조영제.
  12. 제 11 항에 있어서, 상기 초음파 조영제는 자기공명(magnetic resonance, MR)에 의한 영상 진단 겸용인 것을 특징으로 하는 초음파 조영제.
  13. 제 12 항에 있어서, 상기 초음파 조영제는 자기공명-가이드 집속 초음파(MR-guided focused ultrasound, MRgFUS)용인 것을 특징으로 하는 초음파 조영제.
  14. 제 11 항에 있어서, 상기 초음파 조영제는 약물전달체 겸용인 것을 특징으로 하는 초음파 조영제.
  15. 다음의 단계를 포함하는 미세입자의 제조방법:
    (a) 빌리루빈에 친수성 분자가 결합된 빌리루빈 유도체를 포함하는 나노입자를 수성 용매에 용해시켜 빌리루빈 유도체 나노입자 용액을 제조하는 단계; 및
    (b) 빌리루빈 유도체 나노입자 용액에, 가스가 포함된 유상 용액을 혼합하고 초음파를 처리함으로써, 내부에 가스가 포집되어 코어부를 형성하고 상기 코어부의 표면을 빌리루빈 유도체 나노입자가 둘러싸며 쉘층을 이루는 미세입자를 제조하는 단계.
  16. 제 15 항에 있어서, 상기 가스는 공기, 질소, 헬륨, 아르곤, 이산화탄소, 설퍼 헥사플루오라이드(sulfur hexfluoride, SF6) 및 C1 내지 C10의 과플루오르화탄소(perfluorocarbon)로 이루어진 군으로부터 선택되는 것을 특징으로 하는 미세입자의 제조방법.
  17. 제 15 항에 있어서, 상기 친수성 분자는 덱스트란 (dextran), 카르보덱스트란(carbodextran), 폴리사카라이드(polysaccharide), 사이클로덱스트란(cyclodextran), 풀루란(pluronic), 셀룰로오즈(cellulose), 녹말(starch), 글리코겐(glycogen), 카르보하이드레이트(carbohydrate), 단당류(monosaccharide), 이당류(bisaccharide) 및 올리고당류 (oligosaccharide), 폴리펩타이드(polypeptide), 폴리포스파젠 (polyphosphagen), 폴리락타이드(polylactide), 폴리락티드-코-글리콜라이드 (poly(lactic-co-glycolic acid)), 폴리카프로락톤(polycaprolactone), 폴리안하이드라이드(polyanhydride), 폴리말릭산(polymaleic acid) 및 폴리말릭산의 유도체, 폴리알킬시아노아크릴레이트(polyalkylcyanoacrylate), 폴리하이드로옥시부틸레이트(polyhydroxybutylate), 폴리카르보네이트(polycarbonate), 폴리오르소에스테르(polyorthoester), 폴리에틸렌 글리콜(polyethyleneglycol, PEG), 메톡시 폴리에틸렌 글리콜(methoxy polyethyleneglycol, mPEG), 폴리프로필렌글리콜, 폴리에틸렌이민(polyethylenimine), 폴리-L-라이신(poly-L-lysine), 폴리글리콜라이드(polyglycolide), 폴리메틸메타아크릴레이트(polymetacrylate), 폴리비닐피롤리돈(polyvinylpyrrolidone), 폴리(아크릴산염)(poly[acrylate]), 폴리(아크릴아마이드)(poly[acrylamide]), 폴리(비닐에스테르)(poly[vinylester]), 폴리(비닐알콜)(poly[vinyl alcohol]), 폴리스티렌(polystryene), 폴리옥사이드(polyoxide), 폴리일렉트로라이트(polyelectrolyte), 폴리(1-니트로프로필렌)(poly[1-nitropropylene]), 폴리(N-비닐피롤리돈)(poly[N-vinyl pyrrolidone]), 폴리비닐아민(poly[vinyl amine]), 폴리(베타-히드록시에틸 메타아크릴레이트)(Poly[beta-hydroxyethylmethacrylate]), 폴리에틸렌 옥사이드(Polyethyleneoxide), 폴리(에틸렌옥시드-b-프로필렌 옥사이드(Poly[ethylene oxide-bpropyleneoxide]) 및 폴리라이신(Polylysine)로 이루어진 군으로부터 선택된 것을 특징으로 하는 미세입자의 제조방법.
  18. 제 15 항에 있어서, 상기 (b) 단계는 빌리루빈 유도체 나노입자 용액에,
    가스; 및 Cu, Ga, Rb, Zr, Y, Tc, In, Ti, Gd, Mn, Fe, Au, Pt, Zn, Na, K, Mg, Ca, Sr, 및 란탄족 금속으로 이루어진 군으로부터 선택된 금속의 이온 또는 금속 화합물이 포함된 유상 용액을 혼합하여 초음파 처리하는 것을 특징으로 하는 미세입자의 제조방법.
  19. 제 15 항에 있어서, 상기 (b) 단계는 빌리루빈 유도체 나노입자 용액에,
    가스; 및 시스플라틴(cisplatin), 카르보플라틴(carboplatin), 옥살리플라틴(oxaliplatin), 네다플라틴(nedaplatin), 및 헵타플라틴(heptaplatin)으로 이루어진 군으로부터 선택된 플래티넘 계열 항암제가 포함된 유상 용액을 혼합하여 초음파 처리하는 것을 특징으로 하는 미세입자의 제조방법.
  20. 제 15 항에 있어서, 상기 (b) 단계는 빌리루빈 유도체 나노입자 용액에,
    가스; 및 안트라사이클린 계열 항암제, 탁산(taxane) 계열 항암제 또는 캄토테신(camptothecin) 계열 항암제가 포함된 유상 용액을 혼합하여 초음파 처리하는 특징으로 하는 미세입자의 제조방법.
  21. 제 20 항에 있어서, 상기 안트라사이클린 계열 항암제는 다우노루비신(daunorubicin), 독소루비신(doxorubicin), 에피루비신(epirubicin), 이다루비신(idarubicin), 픽산트론(pixantrone), 미톡산트론(mitoxantrone) 및 발루비신(valrubicin)으로 구성된 군으로부터 선택되는 것을 특징으로 하는 것을 특징으로 하는 미세입자의 제조방법.
  22. 제 20 항에 있어서, 상기 탁산 계열 항암제는 파클리탁셀(paclitaxel), 도세탁셀(docetaxel) 및 카바지탁셀(cabazitaxel)로 이루어진 군으로부터 선택되는 것을 특징으로 하는 미세입자의 제조방법.
  23. 제 15 항에 있어서, 상기 (b) 단계는 빌리루빈 유도체 나노입자 용액에,
    가스; 및 초상자성 산화철 나노입자(SPION: superparamagnetic iron oxide nanoparticle)가 포함된 유상 용액을 혼합하여 초음파 처리하는 것을 특징으로 하는 미세입자의 제조방법.
PCT/KR2019/001443 2018-02-05 2019-02-01 빌리루빈 유도체 기반의 진단 및 치료용 초음파 조영제 WO2019151827A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2020542067A JP7256554B2 (ja) 2018-02-05 2019-02-01 ビリルビン誘導体基盤の診断および治療用超音波造影剤
EP19747609.6A EP3750563A4 (en) 2018-02-05 2019-02-01 DIAGNOSTIC AND THERAPEUTIC ULTRASONIC CONTRAST AGENT ON THE BASIS OF A BILIRUBIN DERIVATIVE
CN201980011762.2A CN111757758A (zh) 2018-02-05 2019-02-01 一种基于胆红素衍生物的用于诊断及治疗的超声波造影剂
CN202311006588.7A CN116999578A (zh) 2018-02-05 2019-02-01 一种基于胆红素衍生物的用于诊断及治疗的超声波造影剂
US16/985,219 US11571486B2 (en) 2018-02-05 2020-08-04 Bilirubin derivative-based diagnostic and therapeutic ultrasound contrast agent

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0014160 2018-02-05
KR1020180014160A KR102056948B1 (ko) 2018-02-05 2018-02-05 빌리루빈 유도체 기반의 진단 및 치료용 초음파 조영제

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/985,219 Continuation US11571486B2 (en) 2018-02-05 2020-08-04 Bilirubin derivative-based diagnostic and therapeutic ultrasound contrast agent

Publications (1)

Publication Number Publication Date
WO2019151827A1 true WO2019151827A1 (ko) 2019-08-08

Family

ID=67479447

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/001443 WO2019151827A1 (ko) 2018-02-05 2019-02-01 빌리루빈 유도체 기반의 진단 및 치료용 초음파 조영제

Country Status (6)

Country Link
US (1) US11571486B2 (ko)
EP (1) EP3750563A4 (ko)
JP (1) JP7256554B2 (ko)
KR (1) KR102056948B1 (ko)
CN (2) CN111757758A (ko)
WO (1) WO2019151827A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112386690A (zh) * 2019-08-12 2021-02-23 湖南早晨纳米机器人有限公司 镁合金载药纳米机器人及其制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102591787B1 (ko) * 2021-01-13 2023-10-20 한국과학기술원 키토산-빌리루빈 접합체를 포함하는 입자 및 이를 포함하는 약제학적 조성물
CN114839240B (zh) * 2021-02-01 2024-02-13 北京百龙腾(武汉)科贸有限公司 一种不含甲醛的电极法临床电解质测量试剂
CN115317437B (zh) * 2021-05-11 2023-09-08 中国科学院上海硅酸盐研究所 一种基于胆红素纳米材料的胰岛素递送微针及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140130360A (ko) * 2013-04-05 2014-11-10 주식회사 인트론바이오테크놀로지 금속 산화물 나노입자 기반의 t1 및 t2 이중 기능의 자기공명영상 조영제
KR20150079436A (ko) * 2013-12-27 2015-07-08 한국과학기술원 빌리루빈 나노입자, 이의 용도 및 제조방법
KR20170085278A (ko) * 2016-01-14 2017-07-24 연세대학교 산학협력단 Tl 및 T2 이중 기능의 자기공명영상 조영제
KR20180014160A (ko) 2015-06-03 2018-02-07 사빅 글로벌 테크놀러지스 비.브이. 폴리이미드 전구체의 재료 압출 방식의 적층 가공법

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07173079A (ja) * 1992-12-22 1995-07-11 Nippon Oil & Fats Co Ltd 両親媒性ポリエチレングリコール誘導体および用途
US6416740B1 (en) 1997-05-13 2002-07-09 Bristol-Myers Squibb Medical Imaging, Inc. Acoustically active drug delivery systems
GB9809084D0 (en) 1998-04-28 1998-06-24 Nycomed Imaging As Improvements in or relating to diagnostic/therapeutic agents
WO2005023981A2 (en) * 2003-09-09 2005-03-17 Zephyr Proteomix Ltd. Libraries of chimeric cellulose binding proteins and methods of use thereof
WO2007103427A2 (en) * 2006-03-06 2007-09-13 Wang Xiang H Medical use of bilirubin and its structural analogues
CN103212094B (zh) * 2013-04-28 2014-10-22 重庆医科大学附属儿童医院 一种氧氟脂质微泡及其制备方法
CN107708742B (zh) 2015-06-10 2021-01-15 学校法人帝京大学 诊断治疗用气泡制剂(tb)及其使用方法
KR102254093B1 (ko) * 2017-05-12 2021-05-20 주식회사 빌릭스 빌리루빈 유도체 및 금속을 포함하는 입자

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140130360A (ko) * 2013-04-05 2014-11-10 주식회사 인트론바이오테크놀로지 금속 산화물 나노입자 기반의 t1 및 t2 이중 기능의 자기공명영상 조영제
KR20150079436A (ko) * 2013-12-27 2015-07-08 한국과학기술원 빌리루빈 나노입자, 이의 용도 및 제조방법
KR20180014160A (ko) 2015-06-03 2018-02-07 사빅 글로벌 테크놀러지스 비.브이. 폴리이미드 전구체의 재료 압출 방식의 적층 가공법
KR20170085278A (ko) * 2016-01-14 2017-07-24 연세대학교 산학협력단 Tl 및 T2 이중 기능의 자기공명영상 조영제

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BIN DONGYANAN GAO, VARIOUS SELF-ASSEMBLY BEHAVIORS OF AMPHIPHILIC MOLECULES IN IONIC LIQUIDS
BLACK PIGMENT GALLSTONE INSPIRED PLATINUM-CHELATED BILIRUBIN NANOPARTICLES FOR COMBINED PHOTOACOUSTIC IMAGING AND PHOTOTHERMAL THE: "LEE, DONG YUN et al", ANGEWANDTE CHEMIE INTERNATIONAL EDITION, vol. 129, no. 44, 22 September 2017 (2017-09-22), pages 13675 - 13688, XP055628022 *
LEE, JEONG YU O: "Nanoparticle-Loaded Protein-Polymer Nanodroplets for Improved Stability and Conversion Efficiency in Ultrasound Imaging and Drug Delivery", ADVANCED MATERIALS, vol. 27, no. 37, 11 August 2015 (2015-08-11), pages 5484 - 5492, XP055628026 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112386690A (zh) * 2019-08-12 2021-02-23 湖南早晨纳米机器人有限公司 镁合金载药纳米机器人及其制备方法

Also Published As

Publication number Publication date
CN111757758A (zh) 2020-10-09
EP3750563A4 (en) 2021-11-24
EP3750563A1 (en) 2020-12-16
JP7256554B2 (ja) 2023-04-12
US11571486B2 (en) 2023-02-07
CN116999578A (zh) 2023-11-07
KR20190094699A (ko) 2019-08-14
KR102056948B1 (ko) 2019-12-17
JP2021514941A (ja) 2021-06-17
US20210030897A1 (en) 2021-02-04

Similar Documents

Publication Publication Date Title
WO2019151827A1 (ko) 빌리루빈 유도체 기반의 진단 및 치료용 초음파 조영제
JP5266548B2 (ja) 磁性ナノ粒子組成物およびその使用
JP6585504B2 (ja) ポルフィリン修飾されたテロデンドリマー
KR101043407B1 (ko) 암 표적성이 우수한 단백질 복합체 및 이의 제조방법
RU2756753C2 (ru) Частицы, содержащие производное билирубина и металл
Wang et al. Antibody-conjugated liposomes loaded with indocyanine green for oral targeted photoacoustic imaging-guided sonodynamic therapy of Helicobacter pylori infection
WO2006028129A1 (ja) 医薬品製剤
WO2015141917A1 (ko) 약물을 함유한 나노입자가 결합된 이중-목적 pat/초음파 조영제 및 이의 제조방법
Yin et al. Folic acid-conjugated organically modified silica nanoparticles for enhanced targeted delivery in cancer cells and tumor in vivo
Deng et al. Enzymatically triggered multifunctional delivery system based on hyaluronic acid micelles
Zhang et al. Chitosan coated gold nanorod chelating gadolinium for MRI-visible photothermal therapy of cancer
Zhang et al. Gadolinium-loaded chitosan nanoparticles as magnetic resonance imaging contrast agents for the diagnosis of tumor
Yaghoobi et al. Therapeutic effect of deferrioxamine conjugated to PEGylated gold nanoparticles and complexed with Mn (II) beside the CT scan and MRI diagnostic studies
WO2006064227A1 (en) Magnetic resonance contrast media
Chen et al. Theranostic nanosystem mediating cascade catalytic reactions for effective immunotherapy of highly immunosuppressive and poorly penetrable pancreatic tumor
CN113413470B (zh) 肿瘤诊疗剂及其制备方法和应用
CN113307824B (zh) 一种双亲性材料及其在制备脂质体中的应用
WO2022252012A1 (zh) 肿瘤诊疗剂及其制备方法和应用
KR20090085834A (ko) 산화철 나노입자가 봉입된 수용성 키토산-소수성 리놀레산복합체 자기-조립 나노입자, 이의 제조방법 및 이를포함하는 간질환 진단용 조영제
KR20220097285A (ko) 멜리틴 기반의 나노입자 복합체 및 이의 제조방법
Kong et al. Novel biodegradable polymer tethered platinum (II) for photoacoustic imaging
KR20190130226A (ko) 양친매성 고분자, 이를 포함하는 수분산성 금속나노입자 및 이의 제조방법
Lee et al. External Stimuli-Responsive Melanin-Like Nanoparticles for Photoacoustic Imaging-Guided Therapy
WO2018062865A1 (ko) 항암제를 담지한 인간 혈청 알부민 나노입자를 이용한 간동맥 화학색전술용 조성물 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19747609

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020542067

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019747609

Country of ref document: EP

Effective date: 20200907