WO2020095891A1 - Run-flat tire - Google Patents

Run-flat tire Download PDF

Info

Publication number
WO2020095891A1
WO2020095891A1 PCT/JP2019/043278 JP2019043278W WO2020095891A1 WO 2020095891 A1 WO2020095891 A1 WO 2020095891A1 JP 2019043278 W JP2019043278 W JP 2019043278W WO 2020095891 A1 WO2020095891 A1 WO 2020095891A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
rubber
resin
carcass
inner liner
Prior art date
Application number
PCT/JP2019/043278
Other languages
French (fr)
Japanese (ja)
Inventor
山本 淳
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Priority to JP2020556075A priority Critical patent/JPWO2020095891A1/en
Publication of WO2020095891A1 publication Critical patent/WO2020095891A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C15/00Tyre beads, e.g. ply turn-up or overlap
    • B60C15/06Flipper strips, fillers, or chafing strips and reinforcing layers for the construction of the bead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C17/00Tyres characterised by means enabling restricted operation in damaged or deflated condition; Accessories therefor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/18Homopolymers or copolymers of hydrocarbons having four or more carbon atoms
    • C08L23/20Homopolymers or copolymers of hydrocarbons having four or more carbon atoms having four to nine carbon atoms
    • C08L23/22Copolymers of isobutene; Butyl rubber ; Homo- or copolymers of other iso-olefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L7/00Compositions of natural rubber

Definitions

  • the present disclosure relates to a run flat tire.
  • Patent Document 1 proposes a run-flat tire in which an inner liner containing a non-diene rubber and a side reinforcing rubber layer containing a diene rubber contain the same kind of vulcanization accelerator.
  • a reinforcing cord member which is a spirally wound metallic reinforcing cord, is provided on the outer periphery of the tire body.
  • a reinforcing cord member one in which a resin-coated cord having a periphery of the reinforcing cord covered with a resin is wound is also used.
  • a tire formed of at least a thermoplastic resin material and having an annular tire skeleton is wound around the outer periphery of the tire skeleton in the circumferential direction to form a reinforcing cord layer.
  • a tire having a reinforcing cord member and the reinforcing cord layer including a resin material has been proposed.
  • Patent Document 1 Patent 5629786 Patent Document 2: JP 2012-046025 A
  • Patent Document 2 describes a tire having a reinforcing cord member containing a resin material as described above.
  • the side-reinforcing rubber layer and the inner liner there is no description about the side-reinforcing rubber layer and the inner liner, and there is no description focusing on the adhesiveness between the two and the internal pressure retention by air permeation.
  • the inner liner provided for the purpose of suppressing the air permeation of the pneumatic tire to maintain the internal pressure
  • the side reinforcing rubber layer provided to reinforce the tire side portion that supports the load during run-flat traveling, A rubber material having a composition according to the purpose of is used.
  • Patent Document 1 describes a run-flat tire in which the side reinforcing rubber layer and the inner liner contain the same type of vulcanization accelerator to improve the adhesiveness between the two.
  • a rubber material having a composition according to each purpose is used for the inner liner and the side-reinforcing rubber layer.
  • the vulcanization accelerator has a high degree of freedom in selection. ..
  • the composition of the inner liner and the composition of the side reinforcing rubber layer are brought close to each other in order to enhance the adhesiveness of the interface, it becomes difficult to achieve the respective objects. Therefore, it is difficult to achieve both the tire internal pressure holding property and the run flat running property.
  • the present disclosure aims to provide a run-flat tire that has both the internal pressure holding property and the run-flat running property.
  • a pair of bead cores A carcass straddling the pair of bead cores, the end portion of which is locked to the bead core,
  • An inner liner provided on the tire inner surface side of the carcass, wherein the content of the diene rubber is 20% by mass or more based on the total amount of rubber contained in the inner liner,
  • a side reinforcing rubber layer provided in direct contact with the inner liner between the carcass of the tire side portion and the inner liner, and extending in the tire radial direction along the inner surface of the carcass
  • a belt layer provided on the outer side in the tire radial direction of the carcass, having a cord and a cord coating layer that coats the cord and contains a resin
  • a tread provided on the tire radial direction outer side of the belt layer, Run-flat tire with.
  • FIG. 3 is a half cross-sectional view showing one side of a cut surface obtained by cutting the run-flat tire according to the embodiment of the present disclosure along the tire width direction and the tire radial direction in a state of being assembled to a rim. It is a partial expanded sectional view showing a bead core in a run flat tire concerning one embodiment of this indication.
  • 1 is a perspective view showing a belt layer in a run flat tire according to an embodiment of the present disclosure.
  • FIG. 9 is a partially enlarged cross-sectional view showing a modified example in which a bead core is formed by a wire bundle in which a plurality of bead wires are coated with a coating resin in a run-flat tire according to an embodiment of the present disclosure.
  • a run-flat tire according to an embodiment of the present disclosure, a half cross-sectional view showing a modified example in which a plurality of reinforcing cords are coated with a coating resin and a belt layer is formed using a resin-coated cord having a substantially parallelogram shape in section.
  • the "resin” is a concept including a thermoplastic resin, a thermoplastic elastomer, and a thermosetting resin, and does not include a vulcanized rubber.
  • “same type” means a resin having a skeleton common to the skeleton constituting the resin main chain, such as ester-based resins and styrene-based resins.
  • a numerical range represented by “to” means a range including the numerical values before and after “to” as a lower limit value and an upper limit value.
  • the amount of each component in the composition is the sum of a plurality of substances present in the composition, unless a plurality of substances corresponding to each component are present in the composition.
  • the “main component” means a component having the largest content by mass in the mixture, unless otherwise specified.
  • thermoplastic resin means a polymer compound in which the material softens and flows as the temperature rises and becomes relatively hard and strong when cooled, but does not have rubber-like elasticity.
  • thermoplastic elastomer as used herein means a copolymer having a hard segment and a soft segment.
  • thermoplastic elastomer for example, a polymer that constitutes a crystalline hard segment having a high melting point or a hard segment having a high cohesive force, and a polymer that constitutes an amorphous and soft segment having a low glass transition temperature, The copolymer which has is mentioned.
  • thermoplastic elastomer examples include ones in which the material softens and flows as the temperature rises, becomes relatively hard and strong when cooled, and has rubber-like elasticity.
  • the hard segment refers to a component that is relatively harder than the soft segment.
  • the hard segment is preferably a molecular constraining component that functions as a crosslinking point of the crosslinked rubber that prevents plastic deformation.
  • the hard segment for example, a segment having a structure having a rigid group such as an aromatic group or an alicyclic group in the main skeleton, or a structure capable of intermolecular packing by intermolecular hydrogen bond or ⁇ - ⁇ interaction Is mentioned.
  • the soft segment refers to a component that is relatively softer than the hard segment.
  • the soft segment is preferably a flexible component exhibiting rubber elasticity.
  • Examples of the soft segment include a segment having a long-chain group (for example, a long-chain alkylene group) in the main chain, a high degree of freedom of molecular rotation, and a stretchable structure.
  • FIG. 1 illustrates a cut surface (along a tire circumferential direction) cut along a tire width direction and a tire radial direction in an example of a run flat tire (hereinafter, referred to as “tire 10”) according to an embodiment of the present disclosure. Shows one side of the cross section as seen from the direction).
  • the arrow W in the figure indicates the width direction of the tire 10 (tire width direction), and the arrow R indicates the radial direction of the tire 10 (tire radial direction).
  • the tire width direction mentioned here refers to a direction parallel to the rotation axis of the tire 10. Further, the tire radial direction means a direction orthogonal to the rotation axis of the tire 10.
  • Reference numeral CL indicates the equatorial plane of the tire 10 (tire equatorial plane).
  • the side closer to the rotation axis of the tire 10 along the tire radial direction is “the tire radial direction inner side”, and the side farther from the rotation axis of the tire 10 along the tire radial direction is the “tire radial direction outer side”.
  • the side closer to the tire equatorial plane CL along the tire width direction is referred to as “tire width direction inner side”
  • the side farther from the tire equatorial plane CL along the tire width direction is referred to as "tire width direction outer side”.
  • FIG. 1 shows the tire 10 when assembled to a rim 30 which is a standard rim and filled with standard air pressure.
  • the "standard rim” referred to here is the rim defined by JATMA (Japan Automobile Tire Manufacturer's Association) Year Book 2018 version. Further, the standard air pressure is the air pressure corresponding to the maximum load capacity of Year Book 2018 version of JATMA (Japan Automobile Tire Manufacturers Association).
  • the tire 10 includes a pair of bead cores 26 embedded in the bead portion 12, a carcass 14 whose end portions straddle the bead core 26 are locked to the bead core 26, and a carcass 14 on the tire inner surface side.
  • the inner liner 16 provided and between the carcass 14 of the tire side portion 22 and the inner liner 16 are provided in direct contact with the inner liner 16 and extend along the inner surface of the carcass 14 in the tire radial direction (i.e., side reinforcement rubber 24).
  • a side reinforcing rubber layer) a belt layer 40 provided on the tire radial direction outer side of the tread portion 18 of the carcass 14, and a tread 20 provided on the tire radial direction outer side of the belt layer 40.
  • FIG. 1 only the bead portion 12 on one side is shown.
  • the inner liner 16 is made of a rubber material containing rubber, and the diene rubber is contained in an amount of 20% by mass or more based on the entire rubber (total amount of rubber) contained in the inner liner 16.
  • the belt layer 40 is configured to include a reinforcing cord 42C and a coating resin 42S (that is, a cord coating layer) that covers the reinforcing cord 42C and contains a resin. That is, the belt layer 40 contains resin. The details of the resin material forming the coating resin 42S will be described later.
  • the inner liner is a layer provided to enhance the internal pressure retention of the tire, and is preferably a layer having low air permeability, and therefore a rubber other than the diene rubber (that is, a non-diene rubber) is used. Often composed of a rubber material including (rubber).
  • the side-reinforcing rubber is a layer for reinforcing the tire side portion that generally bears the load acting on the tire during run-flat running, and it is desirable that the side-reinforcing rubber has a hardness high enough to enable reinforcement. Therefore, the inner liner is composed of a rubber material having a different composition.
  • the adhesive force at the interface hardly increases.
  • the adhesive strength at the interface for example, if the composition of the rubber material used for the inner liner is brought close to the composition of the rubber material used for the side reinforcing rubber, the adhesive strength at the interface increases, but the air permeability of the inner liner increases. May increase, and the internal pressure retention may decrease.
  • the inner liner 16 that is in direct contact with the side reinforcing rubber 24 contains 20 mass% or more of diene rubber with respect to the entire rubber (total amount of rubber), and the belt layer 40 contains resin. ..
  • both the internal pressure holding property and the run flat traveling property are compatible. The reason is not clear, but it is presumed as follows.
  • vulcanization is performed at a relatively high vulcanization speed in order to form a layer having a hardness that is high enough to reinforce the tire side portion 22.
  • the vulcanization speed is higher in the process of manufacturing the inner liner 16 as compared with the case where the diene rubber is not included, and the vulcanization speeds of both approaches. it is conceivable that. Therefore, if vulcanization is performed with the unvulcanized inner liner and the unvulcanized side reinforcing rubber in contact with each other, they will be vulcanized at a similar speed, which facilitates co-crosslinking and the adhesive strength of the interface.
  • the inner liner 16 when the side reinforcing rubber 24 contains a diene rubber, the inner liner 16 also contains 20% by mass or more of the diene rubber, so that further co-crosslinking occurs as compared with the case where the inner liner 16 does not contain the diene rubber. It is presumed that it will be easier and the adhesive strength at the interface will be higher. In this way, the adhesive force between the inner liner 16 and the side reinforcing rubber 24 is increased, so that peeling of the interface hardly occurs and the run-flat traveling property is improved.
  • the belt layer 40 contains the resin, the inner pressure retaining property of the entire tire 10 is easily maintained. That is, the resin is used for the belt layer provided in the tread portion, which is a region in the tire where the internal pressure retention is likely to be deteriorated due to the permeation of air. Resins generally have lower air permeability than rubbers. Therefore, even if the inner liner contains a diene rubber and the air barrier property of the inner liner itself is lowered, the air permeability in the tread portion can be kept low, and the inner pressure holding property of the tire as a whole is maintained. .. As described above, in the tire 10, it is presumed that the internal pressure holding property and the run flat running property are compatible with each other. Hereinafter, each part of the tire 10 will be described.
  • a bead core 26 including a wire bundle is embedded in each of the pair of bead portions 12.
  • the carcass 14 straddles these bead cores 26.
  • the bead core 26 can adopt various structures in a pneumatic tire, such as a circular cross section and a polygonal shape, and can adopt, for example, a hexagon as the polygon, but in the present embodiment, it is a quadrangle. There is.
  • the bead core 26 includes, for example, a bead wire 26A and a coating resin 26B that covers the bead wire 26A and contains a resin (that is, a bead coating layer).
  • the bead core 26 is formed by winding a single bead wire 26A coated with the coating resin 26B a plurality of times and laminating it. Specifically, the bead wire 26A coated with the coating resin 26B is wound in the tire width direction without gaps to form a first row, and thereafter, the rows are stacked on the tire radial direction outside with no gaps, and the cross-sectional shape is quadrangular. To form the bead core 26.
  • the coating resins 26B of the bead wires 26A that are adjacent to each other in the tire width direction and the radial direction are joined to each other.
  • the bead core 26 in which the bead wire 26A is coated with the coating resin 26B is formed.
  • the belt layer 40 but also the bead core 26 contains a resin, so that the internal pressure retention of the tire 10 is more likely to be maintained, and the internal pressure retention and the run flat traveling property are more compatible.
  • the resin material forming the coating resin 26B is the same as the resin material forming the coating resin 42S described later.
  • the bead core 26 is formed by winding one bead wire 26A coated with the coating resin 26B and laminating the bead wire 26A, but the embodiment of the present disclosure is not limited to this.
  • a wire bundle in which a plurality of bead wires 60A are coated with a coating resin 60B may be wound and laminated.
  • the interface during lamination is fused by heat welding.
  • the number of bead wires 60A included in one wire bundle is not limited to three, and may be two or four or more. Further, the number of wire bundles in each layer for stacking the wire bundles may be one as shown in FIG. 4, or may be two or more bundles adjacent to each other in the tire width direction.
  • the bead wire 26A is coated with the coating resin 26B to form the bead core 26, but the embodiment of the present disclosure is not limited to this.
  • a coating rubber containing rubber instead of the coating resin 26B, a coating rubber containing rubber may be used.
  • the tire 10 further includes a bead filler 28 embedded in the bead portion 12 and extending from the bead core 26 to the tire radial direction outer side along the outer surface of the carcass 14.
  • the bead filler 28 contains a resin and is embedded in a region of the bead portion 12 surrounded by the carcass 14 (a region outside the portion of the carcass 14 that is arranged inside the tire width direction around the bead core 26). Further, the bead filler 28 has a thickness that decreases toward the end portion 28A on the outer side in the tire radial direction.
  • the bead filler 28 contains a resin, so that the internal pressure retention of the tire 10 is more easily maintained, and the internal pressure retention and the run flat traveling property are improved. More compatible.
  • the resin material forming the bead filler 28 is the same as the resin material forming the coating resin 42S described later.
  • the bead filler 28 containing a resin is used, but the embodiment of the present disclosure is not limited to this, and includes, for example, rubber (preferably containing rubber as a main component (for example, for the whole bead filler). Bead filler may be used.
  • the carcass 14 is a tire frame member including two carcass plies 14A and 14B.
  • the carcass ply 14A is a carcass ply arranged on the tire equatorial plane CL on the outer side in the tire radial direction
  • the carcass ply 14B is a carcass ply arranged on the inner side in the tire radial direction.
  • Each of the carcass plies 14A and 14B is configured to include a plurality of cords and a coated rubber that coats the cords and contains rubber.
  • the coated rubber is not particularly limited, and examples thereof include a rubber material containing a diene rubber (for example, natural rubber).
  • the inner liner 16 contains 20% by mass or more of the diene-based rubber, whereby the inner liner 16 and the carcass 14 are The adhesiveness with is also high. Therefore, run-flat traveling performance is further improved.
  • the carcass 14 thus formed extends in a toroidal shape from one bead core 26 to the other bead core 26 to form a tire skeleton.
  • the end portion side of the carcass 14 is locked to the bead core 26.
  • the end portion side of the carcass 14 is folded back around the bead core 26 from the tire width direction inner side to the tire width direction outer side and locked.
  • the folded back end portions (end portions 14AE and 14BE) of the carcass 14 are arranged on the tire side portion 22.
  • the end portion 14AE of the carcass ply 14A is arranged inside the end portion 14BE of the carcass ply 14B in the tire radial direction.
  • the end portion of the carcass 14 is arranged on the tire side portion 22, but the present disclosure is not limited to this structure.
  • the end portion of the carcass 14 is arranged on the belt layer 40. Good.
  • the end portion side of the carcass 14 may be sandwiched between a plurality of bead cores 26 or may be wound around the bead cores 26 without being folded back.
  • "locking" the end of the carcass 14 to the bead core 26 includes various embodiments such as these.
  • the carcass 14 is a radial carcass.
  • the material of the cord included in the carcass 14 is not particularly limited, and rayon, nylon, polyethylene naphthalate (PEN), polyethylene terephthalate (PET), aramid, glass fiber, carbon fiber, steel or the like can be used. From the viewpoint of weight reduction, the organic fiber cord is preferable. Further, the number of driving the carcass is set in the range of 20 to 60 pieces / 50 mm, but the number is not limited to this range.
  • a belt layer 40 is disposed on the outer side of the carcass 14 in the tire radial direction. As shown in FIG. 3, the belt layer 40 is a ring-shaped batter formed by spirally winding the resin-coated cord 42 around the outer peripheral surface of the carcass 14 along the tire circumferential direction.
  • the resin-coated cord 42 is formed by coating the reinforcing cord 42C with the coating resin 42S, and has a substantially square cross section as shown in FIG.
  • the coating resin 42S on the inner peripheral portion of the resin coated cord 42 in the tire radial direction is configured to be bonded to the outer peripheral surface of the carcass 14 via rubber and, if necessary, an adhesive. Further, the coating resins 42S that are adjacent to each other in the tire width direction of the resin coating cord 42 are integrally joined by heat welding or an adhesive. As a result, the belt layer 40 (resin-coated belt layer) including the reinforcing cord 42C coated with the coating resin 42S is formed.
  • the resin coated cord 42 is configured by coating one reinforcing cord 42C with the coating resin 42S, but may be configured by coating a plurality of reinforcing cords 42C with the coating resin 42S. Good.
  • bead wire 26A in the bead core 26 and the reinforcing cord 42C in the belt layer 40 of the present embodiment are steel cords.
  • This steel cord is mainly composed of steel and can contain various trace contents such as carbon, manganese, silicon, phosphorus, sulfur, copper and chromium.
  • the embodiment of the present disclosure is not limited to this, and as at least one selected from the group consisting of the bead wire 26A and the reinforcing cord 42C, a monofilament cord, a cord obtained by twisting a plurality of filaments, or the like is used instead of the steel cord. May be used. Various designs can be adopted for the twist structure, and various cross-sectional structures, twist pitches, twist directions, and distances between adjacent filaments can be used. Further, a cord obtained by twisting filaments made of different materials can be adopted, and the cross-sectional structure is not particularly limited, and various twist structures such as single twist, layer twist, and multiple twist can be adopted. A resin cord (that is, a cord containing a resin) may be used as at least one selected from the group consisting of the bead wire 26A and the reinforcing cord 42C.
  • the belt layer 40 is formed by winding the substantially square resin-coated cord 42 formed by coating one reinforcing cord 42C with the coating resin 42S around the outer peripheral surface of the carcass 14.
  • the embodiment of the present disclosure is not limited to this.
  • a resin-coated cord 72 having a substantially parallelogram-shaped cross section which is formed by coating a plurality of reinforcing cords 72C with a coating resin 72S, is wound around the outer peripheral surface of the carcass 14. You may form it.
  • a tread 20 is provided outside the belt layer 40 in the tire radial direction in the tread portion 18.
  • the tread 20 is a portion that comes into contact with the road surface during traveling, and a plurality of circumferential grooves 50 extending in the tire circumferential direction are formed on the tread surface of the tread 20.
  • the shape and the number of the circumferential grooves 50 are appropriately set according to performances such as drainage and steering stability required for the tire 10.
  • the inner liner 16 is provided as a continuous layer on the tire inner surface side of the carcass 14 (that is, the tire width direction inner side of the bead portion 12, the tire width direction inner side of the tire side portion 22, and the tread portion 18 tire radial direction inner side). ing.
  • the inner liner 16 is a layer provided to increase the internal pressure retention of the tire 10 by reducing the air permeability.
  • the inner liner 16 is provided in direct contact with at least the inner peripheral surface of the side reinforcing rubber 24 (that is, the inner surface in the tire width direction).
  • the inner liner 16 is also provided in direct contact with the inner peripheral surface (that is, the inner surface in the tire radial direction) of the tread portion 18 of the carcass 14.
  • the present invention is not limited to this, and the carcass 14 and the inner It may have another layer between it and the liner 16.
  • the inner liner 16 is provided as a continuous layer from one bead portion 12 to the other bead portion 12.
  • the inner liner 16 is not limited to this as long as it is provided in contact with at least a part of the side reinforcing rubber 24 in a region where it is desirable to block air, but from the viewpoint of the internal pressure retaining property, the tire of the tire 10 is not limited thereto. It is preferably provided on the entire inner surface.
  • the thickness of the inner liner 16 is, for example, in the range of 0.1 mm or more and 0.4 mm or less.
  • the inner liner 16 may have the same thickness from the one bead portion 12 to the other bead portion 12, and in particular, the region where it is desired to reduce the air permeability may be relatively thick.
  • the inner liner 16 contains at least a diene rubber.
  • the content ratio of the diene rubber to the entire rubber (total amount of rubber) contained in the inner liner 16 is 20% by mass or more, and from the viewpoint of adhesiveness with the side reinforcing rubber 24, 35% by mass or more is preferable, and 50% by mass. % Or more is more preferable.
  • the inner liner 16 contains the diene rubber in the above range, the adhesion between the inner liner and the side reinforcing rubber 24 becomes high.
  • the adhesion between the inner liner 16 and the carcass 14 is also high.
  • the diene rubber refers to a rubber containing a double bond in the main chain of the rubber (specifically, containing 2.5 mol% or more).
  • the diene rubber include natural rubber (NR), polybutadiene rubber (BR), styrene-butadiene copolymer rubber (SBR), acrylonitrile-butadiene copolymer rubber (NBR), and polychloroprene rubber (CR). ) And other synthetic rubbers.
  • the diene rubbers may be used alone or as a mixture of two or more.
  • natural rubber (NR) is preferable as the diene rubber from the viewpoint of adhesiveness with the side reinforcing rubber 24.
  • the inner liner 16 preferably contains a non-diene rubber in addition to the diene rubber from the viewpoint of lowering air permeability.
  • the content of the non-diene rubber with respect to the entire rubber (total amount of rubber) contained in the inner liner 16 is preferably 20% by mass or more, more preferably 30% by mass or more, and 40% by mass from the viewpoint of reducing air permeability. The above is more preferable. That is, the content ratio of the diene rubber to the entire rubber (total amount of rubber) contained in the inner liner 16 is preferably 80% by mass or less, more preferably 70% by mass or less, from the viewpoint of reducing air permeability. It is more preferably not more than mass%.
  • the non-diene rubber refers to a rubber that contains almost no double bonds in the main chain of the rubber (specifically, less than 2.5 mol%).
  • the non-diene rubber include butyl rubber (butyl rubber (IIR), halogenated butyl rubber, etc.), ethylene / propylene rubber (EPM, EPDM), urethane rubber (U), silicone rubber (Q), chlorosulfonated rubber. (CSM), acrylic rubber (ACM), fluororubber (FKM), chlorosulfonated polyethylene and the like.
  • butyl rubber is preferable among them from the viewpoint of reducing air permeability, and among them, butyl rubber (IIR) and bromobutyl rubber are more preferable.
  • the rubber material forming the inner liner 16 may include other components other than rubber, if necessary, in addition to rubber.
  • Other components include, for example, reinforcing materials such as carbon black, fillers (fillers, short fibers, resins, etc.), vulcanizing agents, vulcanization accelerators, fatty acids or salts thereof, metal oxides, process oils, anti-aging agents. Agents and the like.
  • the vulcanizing agent known vulcanizing agents such as sulfur, organic peroxides, resin vulcanizing agents and the like are used. Among them, it is preferable that sulfur is used as the vulcanizing agent.
  • vulcanization accelerator known vulcanization accelerators such as aldehydes, ammonias, amines, guanidines, thioureas, thiazoles, sulfenamides, thiurams, dithiocarbamates, xanthates and the like are used. Be done.
  • the fatty acid include stearic acid, palmitic acid, myristic acid, and lauric acid, and these may be blended in a salt state such as zinc stearate. Of these, stearic acid is preferred.
  • the metal oxide include zinc white (ZnO), iron oxide, magnesium oxide, and the like, and zinc white is preferable.
  • the process oil may be any of aromatic type, naphthene type and paraffin type.
  • antiaging agent amine-ketone type, imidazole type, amine type, phenol type, sulfur type, phosphorus type and the like can be mentioned.
  • the tire side portion 22 is configured to extend in the tire radial direction, connect the bead portion 12 and the tread portion 18, and can bear the load acting on the tire 10 during run flat traveling.
  • a side reinforcing rubber 24 that reinforces the tire side portion 22 is provided inside the carcass 14 in the tire width direction.
  • the side reinforcing rubber 24 is provided between the carcass 14 and the inner liner 16 and at least in direct contact with the inner liner 16.
  • the side reinforcing rubber 24 is a reinforcing rubber for traveling a predetermined distance while supporting the weight of the vehicle and an occupant when the internal pressure of the tire 10 decreases due to puncture or the like.
  • the side reinforcing rubber 24 extends in the tire radial direction from the bead portion 12 side to the tread 20 side along the inner surface of the carcass 14. Further, the side reinforcing rubber 24 has a shape in which the thickness decreases from the central portion toward the bead portion 12 side and the tread 20 side, for example, a substantially crescent shape.
  • the thickness of the side reinforcing rubber 24 referred to here means the length along the normal line of the carcass 14.
  • the lower end portion 24B of the side reinforcing rubber 24 on the bead portion 12 side overlaps the bead filler 28 with the carcass 14 in between when viewed in the tire width direction.
  • the upper end portion 24A of the side reinforcing rubber 24 on the tread 20 side overlaps with the belt layer 40 when viewed in the tire radial direction.
  • the upper end portion 24A of the side reinforcing rubber 24 overlaps the belt layer 40 with the carcass 14 interposed therebetween.
  • the upper end portion 24A of the side reinforcing rubber 24 is located inside the tire width direction end portion 40E of the belt layer 40 in the tire width direction.
  • the side reinforcing rubber 24 is formed of one type of rubber material, but the embodiment of the present disclosure is not limited to this, and may be formed of a plurality of rubber materials.
  • the side-reinforcing rubber 24 preferably contains rubber as a main component, and from the viewpoint of run-flat running property, it is preferable that the side-reinforcing rubber 24 include a diene rubber, and more preferably, a butadiene rubber (BR). It is also preferable to contain butadiene rubber (BR) and natural rubber (NR).
  • the content of the diene rubber with respect to the entire rubber (total amount of rubber) contained in the side reinforcing rubber 24 is preferably 70% by mass or more, and more preferably 90% by mass or more, from the viewpoint of run-flat traveling property.
  • the rubber material forming the side reinforcing rubber 24 may include, in addition to rubber, other components other than rubber, if necessary.
  • the other components include the same components as the other components that may be included in the rubber material forming the inner liner 16 if necessary.
  • the rubber material forming the side reinforcing rubber 24 preferably contains a thiuram accelerator as a vulcanization accelerator in order to enhance durability during run-flat running.
  • the hardness of the side reinforcing rubber 24 is preferably 70 or more and 85 or less from the viewpoint of run-flat traveling property.
  • the hardness of the side reinforcing rubber 24 refers to the hardness defined by JIS K6253 (type A durometer).
  • the loss coefficient tan ⁇ of the side reinforcing rubber 24 at a temperature of 60 ° C. and a frequency of 20 Hz is preferably 0.10 or less.
  • the loss coefficient tan ⁇ is a value measured using a viscoelastic spectrometer (a spectrometer manufactured by Toyo Seiki Seisaku-sho, Ltd.) under the conditions of a frequency of 20 Hz, an initial strain of 10%, a dynamic strain of ⁇ 2%, and a temperature of 60 ° C.
  • the resin material used for the coating resin 42S in the belt layer 40 is the same as the resin material used for the coating resin 42S in the belt layer 40.
  • the resin material contains at least a resin and may contain other components as necessary.
  • the resin material preferably contains a resin as a main component. Specifically, the resin content with respect to the total amount of the resin material is preferably 50% by mass or more, more preferably 60% by mass or more, and further preferably 75% by mass or more.
  • the resin material may contain any of a thermoplastic resin, a thermoplastic elastomer, and a thermosetting resin as the resin, but preferably contains at least one selected from the group consisting of a thermoplastic resin and a thermoplastic elastomer, More preferably, it contains a thermoplastic elastomer.
  • thermoplastic resin examples include polyester-based thermoplastic resin, polyamide-based thermoplastic resin, polystyrene-based thermoplastic resin, polyurethane-based thermoplastic resin, polyolefin-based thermoplastic resin, vinyl chloride-based thermoplastic resin, and the like.
  • thermoplastic elastomer examples include polyester thermoplastic elastomer (TPC), polyamide thermoplastic elastomer (TPA), polystyrene thermoplastic elastomer (TPS), polyurethane thermoplastic elastomer (TPU), which are defined in JIS K6418.
  • TPC polyester thermoplastic elastomer
  • TPA polyamide thermoplastic elastomer
  • TPS polystyrene thermoplastic elastomer
  • TPU polyurethane thermoplastic elastomer
  • TPO polyolefin-based thermoplastic elastomer
  • TPV crosslinked thermoplastic rubber
  • TPZ thermoplastic elastomer
  • thermosetting resin examples include phenol-based thermosetting resin, urea-based thermosetting resin, melamine-based thermosetting resin, and epoxy-based thermosetting resin.
  • the resin material may contain one of these resins alone, or may contain two or more kinds of resins in combination.
  • the resin polyester-based thermoplastic elastomer, polyester-based thermoplastic resin, polyamide-based thermoplastic elastomer, polyamide-based thermoplastic resin, polystyrene-based thermoplastic elastomer, polystyrene-based thermoplastic resin, polyurethane-based thermoplastic elastomer, A polyurethane-based thermoplastic resin, a polyolefin-based thermoplastic elastomer, or a polyolefin-based thermoplastic resin is preferable.
  • the resin material preferably contains at least one selected from the group consisting of a polyester-based thermoplastic elastomer, a polyester-based thermoplastic resin, a polyamide-based thermoplastic elastomer, and a polyamide-based thermoplastic resin.
  • the polyester-based thermoplastic elastomer and the polyester It is more preferable to include at least one selected from the group consisting of thermoplastic resins.
  • polyester thermoplastic elastomer- (Polyester thermoplastic elastomer)
  • polyester-based thermoplastic elastomer for example, at least polyester forms a hard segment having a high melting point and another polymer (for example, polyester or polyether) is a soft segment having a low glass transition temperature and being amorphous.
  • the forming material is mentioned.
  • an aromatic polyester can be used as the polyester forming the hard segment.
  • the aromatic polyester can be formed from, for example, an aromatic dicarboxylic acid or its ester-forming derivative and an aliphatic diol.
  • the aromatic polyester is preferably polybutylene terephthalate derived from at least one selected from the group consisting of terephthalic acid and dimethyl terephthalate, and 1,4-butanediol.
  • the aromatic polyesters include, for example, isophthalic acid, phthalic acid, naphthalene-2,6-dicarboxylic acid, naphthalene-2,7-dicarboxylic acid, diphenyl-4,4'-dicarboxylic acid, diphenoxyethanedicarboxylic acid, 5
  • a dicarboxylic acid component such as sulfoisophthalic acid or an ester-forming derivative thereof, and a diol having a molecular weight of 300 or less (eg, ethylene glycol, trimethylene glycol, pentamethylene glycol, hexamethylene glycol, neopentyl glycol, decamethylene glycol, etc.
  • Aliphatic diols such as 1,4-cyclohexanedimethanol and tricyclodecanedimethylol; xylylene glycol, bis (p-hydroxy) diphenyl, bis (p-hydroxyphenyl) propane, 2,2- B Sus [4- (2-hydroxyethoxy) phenyl] propane, bis [4- (2-hydroxy) phenyl] sulfone, 1,1-bis [4- (2-hydroxyethoxy) phenyl] cyclohexane, 4,4'- Aromatic diols such as dihydroxy-p-terphenyl and 4,4′-dihydroxy-p-quarterphenyl; etc.) and polyesters derived from these, or a combination of two or more of these dicarboxylic acid components and diol components It may be polymerized polyester.
  • polyester forming the hard segment examples include polyethylene terephthalate, polybutylene terephthalate, polymethylene terephthalate, polyethylene naphthalate and polybutylene naphthalate, and polybutylene terephthalate is preferable.
  • Examples of the polymer that forms the soft segment include aliphatic polyester and aliphatic polyether.
  • Examples of the aliphatic polyether include poly (ethylene oxide) glycol, poly (propylene oxide) glycol, poly (tetramethylene oxide) glycol, poly (hexamethylene oxide) glycol, a copolymer of ethylene oxide and propylene oxide, and poly (propylene oxide).
  • An ethylene oxide addition polymer of glycol, a copolymer of ethylene oxide and tetrahydrofuran and the like can be mentioned.
  • Examples of the aliphatic polyester include poly ( ⁇ -caprolactone), polyenanthlactone, polycaprylolactone, polybutylene adipate, polyethylene adipate and the like.
  • poly (tetramethylene oxide) glycol and poly (propylene oxide) glycol are used from the viewpoint of the elastic properties of the obtained polyester block copolymer.
  • Ethylene oxide adduct, poly ( ⁇ -caprolactone), polybutylene adipate, polyethylene adipate and the like are preferable.
  • the number average molecular weight of the polymer forming the soft segment is preferably 300 to 6000 from the viewpoint of toughness and low temperature flexibility. Further, the mass ratio (x: y) of the hard segment (x) and the soft segment (y) is preferably 99: 1 to 20:80, and more preferably 98: 2 to 30:70 from the viewpoint of moldability. ..
  • the hard segment is polybutylene terephthalate, preferably a combination in which the soft segment is an aliphatic polyether, the hard segment is polybutylene terephthalate, the soft segment More preferred is the combination where is a poly (ethylene oxide) glycol.
  • polyester thermoplastic elastomers examples include “Hytrel” series (for example, 3046, 5557, 6347, 4047N, 4767N) manufactured by Toray-Dupont Co., Ltd., "Perprene” series manufactured by Toyobo Co., Ltd. (For example, P30B, P40B, P40H, P55B, P70B, P150B, P280B, E450B, P150M, S1001, S2001, S5001, S6001, S9001, etc.) can be used.
  • Hytrel for example, 3046, 5557, 6347, 4047N, 4767N
  • Perprene manufactured by Toyobo Co., Ltd.
  • the polyester-based thermoplastic elastomer can be synthesized by copolymerizing a polymer forming a hard segment and a polymer forming a soft segment by a known method.
  • the polyamide-based thermoplastic elastomer is a thermoplastic resin material composed of a copolymer having a polymer that forms a crystalline and hard segment with a high melting point and an amorphous polymer that forms a soft segment with a low glass transition temperature. It means that the main chain of the polymer forming the hard segment has an amide bond (—CONH—).
  • the thermoplastic polyamide-based elastomer for example, at least polyamide is a crystalline soft segment having a high melting point, and another polymer (for example, polyester, polyether, etc.) is a soft segment having a low glass transition temperature and being amorphous.
  • the forming material is mentioned.
  • the polyamide-based thermoplastic elastomer may be formed using a chain extender such as dicarboxylic acid.
  • a chain extender such as dicarboxylic acid.
  • Specific examples of the polyamide-based thermoplastic elastomer include the amide-based thermoplastic elastomer (TPA) defined in JIS K6418: 2007, and the polyamide-based elastomer described in JP 2004-346273 A. it can.
  • examples of the polyamide that forms the hard segment include a polyamide formed by a monomer represented by the following general formula (1) or (2).
  • R 1 represents a hydrocarbon molecular chain having 2 to 20 carbon atoms (for example, an alkylene group having 2 to 20 carbon atoms).
  • R 2 represents a hydrocarbon molecular chain having 3 to 20 carbon atoms (for example, an alkylene group having 3 to 20 carbon atoms).
  • R 1 is preferably a hydrocarbon molecular chain having 3 to 18 carbon atoms, for example, an alkylene group having 3 to 18 carbon atoms, and a molecular chain of hydrocarbon having 4 to 15 carbon atoms, for example, carbon An alkylene group having 4 to 15 carbon atoms is more preferable, and a hydrocarbon molecular chain having 10 to 15 carbon atoms, for example, an alkylene group having 10 to 15 carbon atoms is particularly preferable.
  • a hydrocarbon molecular chain having 3 to 18 carbon atoms for example, an alkylene group having 3 to 18 carbon atoms is preferable, and a molecular chain of hydrocarbon having 4 to 15 carbon atoms, for example, an alkylene group having 4 to 15 carbon atoms is more preferable, and a hydrocarbon molecular chain having 10 to 15 carbon atoms, for example, an alkylene group having 10 to 15 carbon atoms is particularly preferable.
  • the monomer represented by the general formula (1) or the general formula (2) include ⁇ -aminocarboxylic acid and lactam.
  • polyamides that form the hard segment include polycondensates of these ⁇ -aminocarboxylic acids or lactams, and copolycondensates of diamines and dicarboxylic acids.
  • Examples of ⁇ -aminocarboxylic acid include 6-aminocaproic acid, 7-aminoheptanoic acid, 8-aminooctanoic acid, 10-aminocapric acid, 11-aminoundecanoic acid, 12-aminododecanoic acid and the like having 5 to 20 carbon atoms.
  • Examples thereof include aliphatic ⁇ -aminocarboxylic acid.
  • lactams include aliphatic lactams having 5 to 20 carbon atoms such as lauryl lactam, ⁇ -caprolactam, udecane lactam, ⁇ -enanthlactam and 2-pyrrolidone.
  • diamines examples include aliphatic diamines having 2 to 20 carbon atoms and aromatic diamines having 6 to 20 carbon atoms.
  • examples of the aliphatic diamine having 2 to 20 carbon atoms and the aromatic diamine having 6 to 20 carbon atoms include, for example, ethylenediamine, trimethylenediamine, tetramethylenediamine, hexamethylenediamine, heptamethylenediamine, octamethylenediamine, nonamethylenediamine, Examples include decamethylenediamine, undecamethylenediamine, dodecamethylenediamine, 2,2,4-trimethylhexamethylenediamine, 2,4,4-trimethylhexamethylenediamine, 3-methylpentamethylenediamine, and metaxylenediamine.
  • the dicarboxylic acid can be represented by HOOC- (R 3 ) m —COOH (R 3 : a molecular chain of a hydrocarbon having 3 to 20 carbon atoms, m: 0 or 1), and examples thereof include oxalic acid and succinic acid.
  • aliphatic dicarboxylic acids having 2 to 20 carbon atoms such as glutamic acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, and dodecanedioic acid.
  • a polyamide obtained by ring-opening polycondensation of lauryl lactam, ⁇ -caprolactam, or udecanlactam can be preferably used.
  • polymer that forms the soft segment examples include polyester and polyether. Specific examples include polyethylene glycol, polypropylene glycol, polytetramethylene ether glycol, and ABA type triblock polyether. These may be used alone or in combination of two or more. Further, polyether diamine or the like obtained by reacting the end of polyether with ammonia or the like can also be used.
  • ABA type triblock polyether means a polyether represented by the following general formula (3).
  • x and z represent an integer of 1 to 20.
  • y represents an integer of 4 to 50.
  • each of x and z is preferably an integer of 1 to 18, more preferably an integer of 1 to 16, even more preferably an integer of 1 to 14, and particularly preferably an integer of 1 to 12.
  • y is preferably an integer of 5 to 45, more preferably an integer of 6 to 40, further preferably an integer of 7 to 35, particularly preferably an integer of 8 to 30.
  • each combination of the hard segment and the soft segment mentioned above can be mentioned.
  • the combination of the hard segment and the soft segment the combination of lauryl lactam ring-opening polycondensate / polyethylene glycol, the combination of lauryl lactam ring-opening polycondensate / polypropylene glycol, the lauryl lactam ring-opening polycondensation Body / polytetramethylene ether glycol combination, or a combination of lauryl lactam ring-opening polycondensate / ABA type triblock polyether, and a combination of lauryl lactam ring-opening polycondensate / ABA type triblock polyether is more preferable. preferable.
  • the number average molecular weight of the polymer (polyamide) forming the hard segment is preferably 300 to 15,000 from the viewpoint of melt moldability.
  • the number average molecular weight of the polymer forming the soft segment is preferably 200 to 6000 from the viewpoint of toughness and low temperature flexibility.
  • the mass ratio (x: y) of the hard segment (x) and the soft segment (y) is preferably 50:50 to 90:10, and more preferably 50:50 to 80:20 from the viewpoint of moldability. ..
  • thermoplastic polyamide-based elastomer can be synthesized by copolymerizing a polymer forming a hard segment and a polymer forming a soft segment by a known method.
  • polyamide-based thermoplastic elastomers include, for example, UBE Industries' UBESTA XPA series (eg, XPA9068X1, XPA9063X1, XPA9055X1, XPA9048X2, XPA9048X1, XPA9040X1, XPA9040X2XPA9044, etc.), Daicel Eponic Co., Ltd. “Vestamide” series (eg, E40-S3, E47-S1, E47-S3, E55-S1, E55-S3, EX9200, E50-R2, etc.) can be used.
  • UBE Industries' UBESTA XPA series eg, XPA9068X1, XPA9063X1, XPA9055X1, XPA9048X2, XPA9048X1, XPA9040X1, XPA9040X2XPA9044, etc.
  • Vestamide eg, E40-S3, E47-S1, E47-S3, E55-S1,
  • thermoplastic polystyrene-based elastomer for example, at least polystyrene forms a hard segment, and other polymers (for example, polybutadiene, polyisoprene, polyethylene, hydrogenated polybutadiene, hydrogenated polyisoprene) are amorphous and have a glass transition temperature. A material forming a low soft segment is included.
  • polystyrene forming the hard segment for example, those obtained by a known radical polymerization method, ionic polymerization method or the like are preferably used, and specifically, polystyrene having anion living polymerization is mentioned.
  • the polymer forming the soft segment include polybutadiene, polyisoprene, poly (2,3-dimethyl-butadiene) and the like.
  • the combination of the hard segment and the soft segment each combination of the hard segment and the soft segment mentioned above can be mentioned.
  • the combination of the hard segment and the soft segment is preferably the combination of polystyrene / polybutadiene or the combination of polystyrene / polyisoprene.
  • the soft segment is preferably hydrogenated in order to suppress an unintended crosslinking reaction of the thermoplastic elastomer.
  • the number average molecular weight of the polymer (polystyrene) forming the hard segment is preferably 5,000 to 500,000, more preferably 10,000 to 200,000.
  • the number average molecular weight of the polymer forming the soft segment is preferably 5,000 to 1,000,000, more preferably 10,000 to 800,000, and further preferably 30,000 to 500,000.
  • the volume ratio (x: y) of the hard segment (x) and the soft segment (y) is preferably 5:95 to 80:20 and more preferably 10:90 to 70:30 from the viewpoint of moldability. ..
  • thermoplastic polystyrene-based elastomer can be synthesized by copolymerizing a polymer forming a hard segment and a polymer forming a soft segment by a known method.
  • examples of the polystyrene-based thermoplastic elastomer include styrene-butadiene-based copolymers [SBS (polystyrene-poly (butylene) block-polystyrene), SEBS (polystyrene-poly (ethylene / butylene) block-polystyrene)], styrene-isoprene.
  • Copolymer polystyrene-polyisoprene block-polystyrene
  • styrene-propylene copolymer [SEP (polystyrene- (ethylene / propylene) block), SEPS (polystyrene-poly (ethylene / propylene) block-polystyrene), SEEPS ( Polystyrene-poly (ethylene-ethylene / propylene) block-polystyrene), SEB (polystyrene (ethylene / butylene) block)] and the like.
  • SEP polystyrene- (ethylene / propylene) block
  • SEPS polystyrene-poly (ethylene / propylene) block-polystyrene
  • SEEPS Polystyrene-poly (ethylene-ethylene / propylene) block-polystyrene
  • SEB polystyrene (ethylene / butylene) block
  • thermoplastic elastomers examples include, for example, "Tuftec” series manufactured by Asahi Kasei (for example, H1031, H1041, H1043, H1051, H1052, H1053, H1062, H1082, H1141, H1221, H1272, etc.), "SEBS” series (8007, 8076, etc.) and “SEPS” series (2002, 2063, etc.) manufactured by Kuraray Co., Ltd. can be used.
  • thermoplastic polyurethane-based elastomer for example, at least polyurethane forms a hard segment in which pseudo-crosslinking is formed by physical agglomeration, and another polymer forms an amorphous soft segment having a low glass transition temperature. Ingredients are listed. Specific examples of the polyurethane-based thermoplastic elastomer include a polyurethane-based thermoplastic elastomer (TPU) defined in JIS K6418: 2007. The polyurethane-based thermoplastic elastomer can be represented as a copolymer including a soft segment including a unit structure represented by the following formula A and a hard segment including a unit structure represented by the following formula B.
  • TPU polyurethane-based thermoplastic elastomer
  • P represents a long-chain aliphatic polyether or a long-chain aliphatic polyester.
  • R represents an aliphatic hydrocarbon, an alicyclic hydrocarbon, or an aromatic hydrocarbon.
  • P' represents a short chain aliphatic hydrocarbon, an alicyclic hydrocarbon, or an aromatic hydrocarbon.
  • P is derived from a diol compound containing a long-chain aliphatic polyether represented by P and a long-chain aliphatic polyester.
  • Examples of such a diol compound include polyethylene glycol, polypropylene glycol, polytetramethylene ether glycol, poly (butylene adipate) diol, poly- ⁇ -caprolactone diol, poly (hexamethylene carbonate) having a molecular weight within the above range.
  • diols and ABA type triblock polyethers These may be used alone or in combination of two or more.
  • R is a partial structure introduced using a diisocyanate compound containing an aliphatic hydrocarbon, an alicyclic hydrocarbon, or an aromatic hydrocarbon represented by R.
  • the aliphatic diisocyanate compound containing an aliphatic hydrocarbon represented by R include 1,2-ethylene diisocyanate, 1,3-propylene diisocyanate, 1,4-butane diisocyanate and 1,6-hexamethylene diisocyanate.
  • Examples of the diisocyanate compound containing an alicyclic hydrocarbon represented by R include 1,4-cyclohexane diisocyanate and 4,4-cyclohexane diisocyanate.
  • the aromatic diisocyanate compound containing an aromatic hydrocarbon represented by R include 4,4′-diphenylmethane diisocyanate and tolylene diisocyanate. These may be used alone or in combination of two or more.
  • alicyclic hydrocarbon or aromatic hydrocarbon represented by P ′ in the formula B for example, those having a molecular weight of less than 500 can be used.
  • P' is derived from a diol compound containing a short chain aliphatic hydrocarbon, alicyclic hydrocarbon, or aromatic hydrocarbon represented by P '.
  • Examples of the aliphatic diol compound containing a short chain aliphatic hydrocarbon represented by P ′ include glycol and polyalkylene glycol, and specifically, ethylene glycol, propylene glycol, trimethylene glycol, 1,4 -Butanediol, 1,3-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol, 1,10- Decanediol and the like can be mentioned.
  • Examples of the alicyclic diol compound containing an alicyclic hydrocarbon represented by P ′ include cyclopentane-1,2-diol, cyclohexane-1,2-diol, cyclohexane-1,3-diol, Examples thereof include cyclohexane-1,4-diol and cyclohexane-1,4-dimethanol.
  • examples of the aromatic diol compound containing an aromatic hydrocarbon represented by P ′ include hydroquinone, resorcin, chlorohydroquinone, bromohydroquinone, methylhydroquinone, phenylhydroquinone, methoxyhydroquinone, phenoxyhydroquinone, 4,4′- Dihydroxybiphenyl, 4,4'-dihydroxydiphenyl ether, 4,4'-dihydroxydiphenyl sulfide, 4,4'-dihydroxydiphenyl sulfone, 4,4'-dihydroxybenzophenone, 4,4'-dihydroxydiphenylmethane, bisphenol A, 1, Examples thereof include 1-di (4-hydroxyphenyl) cyclohexane, 1,2-bis (4-hydroxyphenoxy) ethane, 1,4-dihydroxynaphthalene and 2,6-dihydroxynaphthalene. These may be used alone or in combination of two or more.
  • the number average molecular weight of the polymer (polyurethane) forming the hard segment is preferably 300 to 1500 from the viewpoint of melt moldability.
  • the number average molecular weight of the polymer forming the soft segment is preferably 500 to 20,000, more preferably 500 to 5,000, and particularly preferably 500 to 3,000, from the viewpoint of the flexibility and thermal stability of the polyurethane-based thermoplastic elastomer. ..
  • the mass ratio (x: y) of the hard segment (x) and the soft segment (y) is preferably 15:85 to 90:10, more preferably 30:70 to 90:10 from the viewpoint of moldability. ..
  • the polyurethane-based thermoplastic elastomer can be synthesized by copolymerizing a polymer forming a hard segment and a polymer forming a soft segment by a known method.
  • the polyurethane-based thermoplastic elastomer for example, the thermoplastic polyurethane described in JP-A-5-331256 can be used.
  • thermoplastic elastomer specifically, a combination of a hard segment made of an aromatic diol and an aromatic diisocyanate and a soft segment made of a polycarbonate is preferable, and more specifically, a tolylene diisocyanate ( TDI) / polyester type polyol copolymer, TDI / polyether type polyol copolymer, TDI / caprolactone type polyol copolymer, TDI / polycarbonate type polyol copolymer, 4,4′-diphenylmethane diisocyanate (MDI) / polyester -Based polyol copolymer, MDI / polyether-based polyol copolymer, MDI / caprolactone-based polyol copolymer, MDI / polycarbonate-based polyol copolymer, and MDI + hydroquinone / polyhexamethyi At least one selected from the group consisting of carbonate cop
  • thermoplastic elastomers examples include "Elastollan” series manufactured by BASF (for example, ET680, ET880, ET690, ET890, etc.) and “Kuramilon U” series manufactured by Kuraray Co., Ltd. (for example, , 2000-series, 3000-series, 8000-series, 9000-series, etc.), "Miractran” series manufactured by Nippon Miractolan Co., Ltd. (eg, XN-2001, XN-2004, P390RSUP, P480RSUI, P26MRNAT, E490, E590, P890 etc.) Etc. can be used.
  • thermoplastic polyolefin-based elastomer for example, at least polyolefin forms crystalline hard segments having a high melting point, and other polymers (eg, polyolefin, other polyolefins, polyvinyl compounds, etc.) are amorphous and have a glass transition temperature of The material forming the low soft segment may be mentioned.
  • polyolefin forming the hard segment include polyethylene, polypropylene, isotactic polypropylene, polybutene and the like.
  • thermoplastic polyolefin-based elastomer examples include olefin- ⁇ -olefin random copolymers and olefin block copolymers.
  • specific examples include propylene block copolymers, ethylene-propylene copolymers and propylene- 1-hexene copolymer, propylene-4-methyl-1 pentene copolymer, propylene-1-butene copolymer, ethylene-1-hexene copolymer, ethylene-4-methyl-pentene copolymer, ethylene- 1-butene copolymer, 1-butene-1-hexene copolymer, 1-butene-4-methyl-pentene, ethylene-methacrylic acid copolymer, ethylene-methyl methacrylate copolymer, ethylene-ethyl methacrylate Copolymer, ethylene-butyl methacrylate copolymer, ethylene-methyl acrylate copolymer Polymer, ethylene-eth
  • thermoplastic polyolefin-based elastomers include propylene block copolymers, ethylene-propylene copolymers, propylene-1-hexene copolymers, propylene-4-methyl-1pentene copolymers, propylene-1- Butene copolymer, ethylene-1-hexene copolymer, ethylene-4-methyl-pentene copolymer, ethylene-1-butene copolymer, ethylene-methacrylic acid copolymer, ethylene-methyl methacrylate copolymer , Ethylene-ethyl methacrylate copolymer, ethylene-butyl methacrylate copolymer, ethylene-methyl acrylate copolymer, ethylene-ethyl acrylate copolymer, ethylene-butyl acrylate copolymer, propylene-methacrylic acid copolymer , Propylene-methyl methacrylate copolymer, Ropylene
  • thermoplastic polyolefin-based elastomer is preferably 50% by mass or more and 100% by mass or less.
  • the number average molecular weight of the thermoplastic polyolefin-based elastomer is preferably 5,000 to 10,000,000.
  • the number average molecular weight of the thermoplastic polyolefin-based elastomer is 5,000 to 10,000,000
  • the thermoplastic resin material has sufficient mechanical properties and excellent processability.
  • the number average molecular weight of the polyolefin-based thermoplastic elastomer is more preferably 7,000 to 1,000,000, and particularly preferably 10,000 to 1,000,000. Thereby, the mechanical properties and processability of the thermoplastic resin material can be further improved.
  • the number average molecular weight of the polymer forming the soft segment is preferably 200 to 6000 from the viewpoint of toughness and low temperature flexibility.
  • the mass ratio (x: y) of the hard segment (x) and the soft segment (y) is preferably 50:50 to 95:15, more preferably 50:50 to 90:10 from the viewpoint of moldability. ..
  • the thermoplastic polyolefin-based elastomer can be synthesized by copolymerization by a known method.
  • polyolefin-based thermoplastic elastomer one obtained by acid-modifying a polyolefin-based thermoplastic elastomer may be used.
  • the "acid-modified polyolefin-based thermoplastic elastomer” refers to a polyolefin-based thermoplastic elastomer to which an unsaturated compound having an acidic group such as a carboxylic acid group, a sulfuric acid group or a phosphoric acid group is bonded.
  • an unsaturated compound having an acidic group such as a carboxylic acid group, a sulfuric acid group, and a phosphoric acid group
  • the polyolefin-based thermoplastic elastomer for example, a polyolefin-based thermoplastic elastomer
  • an unsaturated compound having an acidic group examples thereof include bonding (for example, graft polymerization) of unsaturated bond sites of unsaturated carboxylic acid (generally maleic anhydride).
  • an unsaturated compound having a carboxylic acid group which is a weak acid group, is preferable from the viewpoint of suppressing deterioration of the thermoplastic polyolefin-based elastomer.
  • the unsaturated compound having a carboxylic acid group include acrylic acid, methacrylic acid, itaconic acid, crotonic acid, isocrotonic acid, maleic acid and the like.
  • thermoplastic elastomers examples include "Toughmer” series manufactured by Mitsui Chemicals, Inc. (for example, A0550S, A1050S, A4050S, A1070S, A4070S, A35070S, A1085S, A4085S, A7090, A70090, MH7007, MH7010).
  • polyester-based thermoplastic resin examples include polyesters that form the hard segment of the above-mentioned polyester-based thermoplastic elastomer.
  • Specific examples of the polyester-based thermoplastic resin include polylactic acid, polyhydroxy-3-butylbutyric acid, polyhydroxy-3-hexylbutyric acid, poly ( ⁇ -caprolactone), polyenanthlactone, polycaprylolactone, and polybutylene.
  • examples thereof include aliphatic polyesters such as adipate and polyethylene adipate, and aromatic polyesters such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate and polybutylene naphthalate.
  • polybutylene terephthalate is preferable as the polyester thermoplastic resin from the viewpoint of heat resistance and processability.
  • polyester-based thermoplastic resins include, for example, “Duranex” series manufactured by Polyplastics Co., Ltd. (for example, 2000, 2002, etc.) and “Novaduran” series manufactured by Mitsubishi Engineering Plastics Co., Ltd. (for example, 5010R5). , 5010R3-2, etc.), “Toraycon” series manufactured by Toray Industries, Inc. (eg, 1401X06, 1401X31, etc.) and the like can be used.
  • polyamide thermoplastic resin examples include polyamides that form the hard segment of the above-mentioned polyamide-based thermoplastic elastomer.
  • Specific examples of the polyamide-based thermoplastic resin include polyamide obtained by ring-opening polycondensation of ⁇ -caprolactam (amide 6), polyamide obtained by ring-opening polycondensation of undecane lactam (amide 11), ring-opening polycondensation of lauryl lactam.
  • examples thereof include polyamide (amide 12), polyamide (amide 66) obtained by polycondensing diamine and dibasic acid, and polyamide (amide MX) having metaxylene diamine as a constituent unit.
  • the amide 6 can be represented by, for example, ⁇ CO— (CH 2 ) 5 —NH ⁇ n .
  • the amide 11 can be represented by, for example, ⁇ CO— (CH 2 ) 10 —NH ⁇ n .
  • the amide 12 can be represented by, for example, ⁇ CO— (CH 2 ) 11 —NH ⁇ n .
  • the amide 66 can be represented by, for example, ⁇ CO (CH 2 ) 4 CONH (CH 2 ) 6 NH ⁇ n .
  • the amide MX can be represented by, for example, the following structural formula (A-1). Here, n represents the number of repeating units.
  • amide 6 for example, "UBE nylon” series (for example, 1022B, 1011FB, etc.) manufactured by Ube Industries, Ltd. can be used.
  • amide 11 for example, “Rilsan B” series manufactured by Arkema Ltd. can be used.
  • amide 12 for example, "UBE nylon” series (for example, 3024U, 3020U, 3014U, etc.) manufactured by Ube Industries, Ltd. can be used.
  • As a commercially available product of the amide 66 for example, "Leona” series (for example, 1300S, 1700S, etc.) manufactured by Asahi Kasei Co., Ltd. can be used.
  • amide MX for example, "MX Nylon” series (for example, S6001, S6021, S6011, etc.) manufactured by Mitsubishi Gas Chemical Co., Inc. can be used.
  • thermoplastic polyamide-based resin may be a homopolymer formed of only the above structural unit or a copolymer of the above structural unit and another monomer.
  • the content of the above structural units in each polyamide-based thermoplastic resin is preferably 40% by mass or more.
  • polyolefin thermoplastic resin examples include the polyolefins that form the hard segments of the above-mentioned polyolefin-based thermoplastic elastomer.
  • Specific examples of the polyolefin-based thermoplastic resin include polyethylene-based thermoplastic resin, polypropylene-based thermoplastic resin, polybutadiene-based thermoplastic resin, and the like.
  • polypropylene-based thermoplastic resin is preferable as the polyolefin-based thermoplastic resin from the viewpoint of heat resistance and processability.
  • polypropylene-based thermoplastic resin examples include propylene homopolymer, propylene- ⁇ -olefin random copolymer, propylene- ⁇ -olefin block copolymer and the like.
  • ⁇ -olefin examples include propylene, 1-butene, 1-pentene, 3-methyl-1-butene, 1-hexene, 4-methyl-1-pentene, 3-methyl-1-pentene, 1-heptene,
  • ⁇ -olefins having about 3 to 20 carbon atoms such as 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene and 1-eicosene.
  • the resin material may contain other components such as additives within a range that does not impair the effect.
  • other components include rubber, various fillers (eg, silica, calcium carbonate, clay, etc.), antioxidants, oils, plasticizers, coloring agents, weathering agents, and the like.
  • an unvulcanized inner liner 16 an unvulcanized side reinforcing rubber 24, a carcass 14 including an unvulcanized rubber material, a bead core 26, and a bead filler 28 are provided on the outer periphery of a known tire forming drum (not shown). Forming an unvulcanized tire case.
  • the belt layer 40 is formed as follows. Specifically, the resin coating cord 42 is sent toward the outer peripheral surface of the belt forming drum (not shown). The resin coating cord 42 is pressed against the outer peripheral surface of the belt forming drum in a state where the coating resin 42S is heated by hot air and melted, and then cooled. In this manner, the resin-coated cord 42 is spirally wound around the outer peripheral surface of the belt forming drum and pressed against the outer peripheral surface, whereby a layer of the resin coated cord 42 is formed on the outer peripheral surface of the belt forming drum.
  • the belt layer 40 in which the resin coating cord 42 is cooled and the coating resin 42S is solidified is removed from the belt forming drum. Then, after the adhesive is applied to the inner peripheral surface of the removed belt layer 40 as required, the belt layer 40 is arranged on the tire molding drum in the radial direction outside of the unvulcanized tire case. Then, the unvulcanized tire case is expanded, and the outer peripheral surface of the tire case, in other words, the outer peripheral surface of the carcass 14 is pressure-bonded to the inner peripheral surface of the belt layer 40. Finally, an adhesive is applied to the outer peripheral surface of the belt layer 40 as needed, and then the unvulcanized tread 20 is attached to complete the green tire. The green tire manufactured in this way is vulcanized and molded by the vulcanization mold to complete the tire 10.
  • a pair of bead cores A carcass straddling the pair of bead cores, the end portion of which is locked to the bead core,
  • An inner liner provided on the tire inner surface side of the carcass, wherein the content of the diene rubber is 20% by mass or more based on the total amount of rubber contained in the inner liner,
  • a side reinforcing rubber layer provided in direct contact with the inner liner between the carcass of the tire side portion and the inner liner, and extending in the tire radial direction along the inner surface of the carcass
  • a belt layer provided on the outer side in the tire radial direction of the carcass, having a cord and a cord coating layer that coats the cord and contains a resin
  • a tread provided on the tire radial direction outer side of the belt layer, Run-flat tire with.
  • ⁇ 2> The run-flat tire according to ⁇ 1>, wherein the diene rubber contained in the inner liner contains natural rubber.
  • ⁇ 3> The run-flat tire according to ⁇ 1> or ⁇ 2>, wherein the inner liner further contains butyl rubber.
  • ⁇ 4> The run-flat tire according to any one of ⁇ 1> to ⁇ 3>, in which the side reinforcing rubber layer contains a diene rubber.
  • ⁇ 5> The run flat according to any one of ⁇ 1> to ⁇ 4>, which is arranged so as to extend from the bead core to a tire radial direction outer side along an outer surface of the carcass and further includes a bead filler containing a resin. tire.
  • ⁇ 6> The run flat tire according to any one of ⁇ 1> to ⁇ 5>, wherein the bead core has a bead wire and a bead coating layer that covers the bead wire and contains a resin.
  • Example 1 ⁇ Preparation of coated resin cord> An adhesive (made by Mitsubishi Chemical Co., Ltd.) that was heated and melted into a multifilament having an average diameter of ⁇ 1.15 mm (a monofilament having a diameter of 0.35 mm (steel, strength: 280 N, elongation: 3%) twisted wire of 7 pieces) , Maleic anhydride-modified polyester-based thermoplastic elastomer, product name: Primalloy-AP GQ730).
  • a coating resin (a polyester thermoplastic elastomer manufactured by Toray-Dupont Co., Ltd., product name: Hytrel 5557) extruded by an extruder is attached to the outer periphery of the resin to coat and cool it.
  • the extrusion conditions are that the temperature of the metal member is 200 ° C., the temperature of the coating resin is 240 ° C., and the extrusion speed is 30 m / min.
  • the coated resin cord is produced as described above.
  • ⁇ Preparation of unvulcanized side reinforcing rubber> The following components are kneaded and molded with a Banbury mixer (Mixtron BB MIXER, manufactured by Kobe Steel, Ltd.) to prepare an unvulcanized side reinforcing rubber.
  • ⁇ Preparation of unvulcanized tread> The following components are kneaded with a Banbury mixer (Mixtron BB MIXER, manufactured by Kobe Steel, Ltd.) and molded into a sheet shape to prepare an unvulcanized tread.
  • -Natural rubber RSS # 3 ... 50 parts by mass-Styrene / butadiene copolymer rubber (SBR): # 1500 (emulsion polymerization SBR), manufactured by JSR ...
  • a belt layer is installed on the outer peripheral surface of an unvulcanized tire case, and an unvulcanized tread is wound around the outer periphery of the belt layer to obtain a raw tire. Then, the obtained raw tire is vulcanized by heating at 160 ° C. for 20 minutes to obtain a tire.
  • Example 2 In the production of the unvulcanized inner liner, the tire is produced and evaluated in the same manner as in Example 1 except that the addition amount of natural rubber is 50 parts by mass and the addition amount of bromobutyl rubber is 50 parts by mass.
  • Example 3 In the production of the unvulcanized inner liner, the tire is produced and evaluated in the same manner as in Example 1 except that the addition amount of natural rubber is 80 parts by mass and the addition amount of bromobutyl rubber is 20 parts by mass.
  • Example 1 In the production of the coated resin cord, the coated rubber (natural rubber) is used instead of the coated resin, and in the production of the unvulcanized inner liner, the addition amount of the natural rubber is 0 part by mass and the addition amount of the bromobutyl rubber is 100 parts by mass A tire is manufactured and evaluated in the same manner as in Example 1 except that a coated rubber (natural rubber) is used instead of the coating resin in the bead core and a bead filler made of rubber (natural rubber) is used as the bead filler.
  • Example 2 In the production of the coated resin cord, a tire was prepared in the same manner as in Example 1 except that a coated rubber was used instead of the coated resin, a coated rubber was used instead of the coated resin in the bead core, and a bead filler made of rubber was used as a bead filler. The production and evaluation of
  • Example 3 In the production of the coated resin cord, a tire was prepared in the same manner as in Example 2 except that a coated rubber was used instead of the coated resin, a coated rubber was used instead of the coated resin in the bead core, and a bead filler made of rubber was used as a bead filler. The production and evaluation of

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Tires In General (AREA)

Abstract

This run-flat tire is provided with: a pair of bead cores; a carcass that is provided across the pair of bead cores and that has ends locked with the bead cores; an inner liner provided on the tire inner surface side of the carcass and that has a diene rubber content not less than 20 mass% with respect to the total amount of rubber included in the inner liner; a side-reinforcing rubber layer that is provided between the inner liner and the carcass at the tire side portions so as to be in direct contact with the inner liner, and that extends in the tire radial direction along the inner surface of the carcass; and a belt layer that is provided outward in the tire radial direction of the carcass, and that has a cord and a cord-coating layer containing a resin and coating the cord; and a tread provided outward in the tire radial direction of the belt layer.

Description

ランフラットタイヤRun flat tires
 本開示は、ランフラットタイヤに関する。 The present disclosure relates to a run flat tire.
 タイヤサイド部をサイド補強ゴムで補強し、ランフラット走行時(空気圧が低下した異常走行時)の耐久性を確保したサイド補強型のランフラットタイヤが知られている。
 例えば、特許文献1には、非ジエン系ゴムを含むインナーライナーとジエン系ゴムを含むサイド補強ゴム層とが、同種の加硫促進剤を含有するランフラットタイヤが提案されている。
There is known a side-reinforcement type run-flat tire in which the tire side portion is reinforced with a side-reinforcing rubber to ensure durability during run-flat running (during abnormal running when air pressure decreases).
For example, Patent Document 1 proposes a run-flat tire in which an inner liner containing a non-diene rubber and a side reinforcing rubber layer containing a diene rubber contain the same kind of vulcanization accelerator.
 一方、タイヤの耐久性(例えば耐応力、耐内圧及び剛性)を高める試みのひとつとして、タイヤ本体の外周に、金属部材である補強コードを螺旋状に巻回した補強コード部材を設けることが行なわれている。そして、近年、補強コード部材として、補強コードの周囲を樹脂により被覆した樹脂被覆コードを巻回したものも用いられている。
 例えば、特許文献2には、少なくとも熱可塑性樹脂材料で形成され且つ環状のタイヤ骨格体を有するタイヤであって、前記タイヤ骨格体の外周部に周方向に巻回されて補強コード層を形成する補強コード部材を有し、前記補強コード層が樹脂材料を含んで構成されるタイヤが提案されている。
On the other hand, as one attempt to improve the durability of the tire (for example, stress resistance, internal pressure resistance, and rigidity), a reinforcing cord member, which is a spirally wound metallic reinforcing cord, is provided on the outer periphery of the tire body. Has been. Further, in recent years, as a reinforcing cord member, one in which a resin-coated cord having a periphery of the reinforcing cord covered with a resin is wound is also used.
For example, in Patent Document 2, a tire formed of at least a thermoplastic resin material and having an annular tire skeleton is wound around the outer periphery of the tire skeleton in the circumferential direction to form a reinforcing cord layer. A tire having a reinforcing cord member and the reinforcing cord layer including a resin material has been proposed.
   特許文献1:特許5629786号
   特許文献2:特開2012-046025号公報
Patent Document 1: Patent 5629786 Patent Document 2: JP 2012-046025 A
 特許文献2には、前記の通り樹脂材料を含んだ補強コード部材を有するタイヤが記載されている。しかし、サイド補強ゴム層及びインナーライナーについての記載はなく、またこの両者の接着性に着目した記載、及び空気透過による内圧保持性に着目した記載はない。
 ここで、空気入りタイヤの空気透過を抑制して内圧を保持する目的で設けられるインナーライナーと、ランフラット走行時に荷重を支えるタイヤサイド部を補強するために設けられるサイド補強ゴム層とは、それぞれの目的に応じた組成のゴム材料が用いられる。
 そのため、インナーライナーとサイド補強ゴム層とが直接接触して設けられたランフラットタイヤでは、両者の組成が互いに異なることにより、界面の接着性が低く、ランフラット走行時に剥離が生じることがある。そして、界面の剥離が生じると、その箇所がランフラット走行性(つまりランフラット走行時の耐久性)に影響を及ぼす場合がある。
 これに対し、特許文献1には、サイド補強ゴム層とインナーライナーとに同種の加硫促進剤を含有することで、両者の接着性を高めたランフラットタイヤが記載されている。しかし、前記の通り、インナーライナーとサイド補強ゴム層とにはそれぞれの目的に応じた組成のゴム材料が用いられるため、この観点から各層での加硫促進剤の選択自由度は高いことが好ましい。
 一方、前記界面の接着性を高めるために、インナーライナーの組成とサイド補強ゴム層の組成とを近づけると、それぞれの目的が達成されにくくなる。したがって、タイヤの内圧保持性とランフラット走行性とを両立させることは難しい。
Patent Document 2 describes a tire having a reinforcing cord member containing a resin material as described above. However, there is no description about the side-reinforcing rubber layer and the inner liner, and there is no description focusing on the adhesiveness between the two and the internal pressure retention by air permeation.
Here, the inner liner provided for the purpose of suppressing the air permeation of the pneumatic tire to maintain the internal pressure, and the side reinforcing rubber layer provided to reinforce the tire side portion that supports the load during run-flat traveling, A rubber material having a composition according to the purpose of is used.
Therefore, in a run flat tire in which the inner liner and the side reinforcing rubber layer are in direct contact with each other, the compositions of the two are different from each other, so that the adhesiveness at the interface is low and peeling may occur during run flat running. When the interface peels off, the location may affect the run-flat traveling property (that is, the durability during run-flat traveling).
On the other hand, Patent Document 1 describes a run-flat tire in which the side reinforcing rubber layer and the inner liner contain the same type of vulcanization accelerator to improve the adhesiveness between the two. However, as described above, a rubber material having a composition according to each purpose is used for the inner liner and the side-reinforcing rubber layer. Therefore, from this viewpoint, it is preferable that the vulcanization accelerator has a high degree of freedom in selection. ..
On the other hand, if the composition of the inner liner and the composition of the side reinforcing rubber layer are brought close to each other in order to enhance the adhesiveness of the interface, it becomes difficult to achieve the respective objects. Therefore, it is difficult to achieve both the tire internal pressure holding property and the run flat running property.
 本開示は上記事実を考慮して、内圧保持性とランフラット走行性とを両立させたランフラットタイヤを提供することを目的とする。 In consideration of the above facts, the present disclosure aims to provide a run-flat tire that has both the internal pressure holding property and the run-flat running property.
 前記課題を解決するための具体的な手段は、以下の実施形態が含まれる。
<1> 一対のビードコアと、
 前記一対のビードコアに跨り、端部が前記ビードコアに係止されたカーカスと、
 前記カーカスのタイヤ内面側に設けられたインナーライナーであって、前記インナーライナーに含まれるゴムの総量に対しジエン系ゴムの含有率が20質量%以上であるインナーライナーと、
 タイヤサイド部の前記カーカスと前記インナーライナーとの間に前記インナーライナーと直接接して設けられ、前記カーカスの内面に沿ってタイヤ径方向に延びるサイド補強ゴム層と、
 前記カーカスのタイヤ径方向外側に設けられ、コードと前記コードを被覆し樹脂を含むコード被覆層とを有するベルト層と、
 前記ベルト層のタイヤ径方向外側に設けられたトレッドと、
 を備えるランフラットタイヤ。
Specific means for solving the problems include the following embodiments.
<1> A pair of bead cores,
A carcass straddling the pair of bead cores, the end portion of which is locked to the bead core,
An inner liner provided on the tire inner surface side of the carcass, wherein the content of the diene rubber is 20% by mass or more based on the total amount of rubber contained in the inner liner,
A side reinforcing rubber layer provided in direct contact with the inner liner between the carcass of the tire side portion and the inner liner, and extending in the tire radial direction along the inner surface of the carcass,
A belt layer provided on the outer side in the tire radial direction of the carcass, having a cord and a cord coating layer that coats the cord and contains a resin,
A tread provided on the tire radial direction outer side of the belt layer,
Run-flat tire with.
 本開示によれば、内圧保持性とランフラット走行性とを両立させたランフラットタイヤを提供することができる。 According to the present disclosure, it is possible to provide a run-flat tire that has both the internal pressure holding property and the run-flat running property.
本開示の一実施形態に係るランフラットタイヤを、リムに組み付けた状態でタイヤ幅方向及びタイヤ径方向に沿って切断した切断面の片側を示す半断面図である。FIG. 3 is a half cross-sectional view showing one side of a cut surface obtained by cutting the run-flat tire according to the embodiment of the present disclosure along the tire width direction and the tire radial direction in a state of being assembled to a rim. 本開示の一実施形態に係るランフラットタイヤにおけるビードコアを示す部分拡大断面図である。It is a partial expanded sectional view showing a bead core in a run flat tire concerning one embodiment of this indication. 本開示の一実施形態に係るランフラットタイヤにおけるベルト層を示す斜視図である。1 is a perspective view showing a belt layer in a run flat tire according to an embodiment of the present disclosure. 本開示の一実施形態に係るランフラットタイヤにおいて、複数本のビードワイヤを被覆樹脂で被覆したワイヤ束でビードコアを形成した変形例を示す部分拡大断面図である。FIG. 9 is a partially enlarged cross-sectional view showing a modified example in which a bead core is formed by a wire bundle in which a plurality of bead wires are coated with a coating resin in a run-flat tire according to an embodiment of the present disclosure. 本開示の一実施形態に係るランフラットタイヤにおいて、複数本の補強コードを被覆樹脂で被覆した、断面が略平行四辺形状の樹脂被覆コードを用いてベルト層を形成した変形例を示す半断面図である。In a run-flat tire according to an embodiment of the present disclosure, a half cross-sectional view showing a modified example in which a plurality of reinforcing cords are coated with a coating resin and a belt layer is formed using a resin-coated cord having a substantially parallelogram shape in section. Is.
 以下、本開示の具体的な実施形態について詳細に説明するが、本開示は、以下の実施形態に何ら限定されるものではなく、本開示の目的の範囲内において、適宜変更を加えて実施することができる。
 なお、各図における部材の大きさは概念的なものであり、部材間の大きさの相対的な関係はこれに限定されない。また、実質的に同一の機能を有する部材には全図面を通じて同じ符号を付し、重複する説明は省略する場合がある。
Hereinafter, specific embodiments of the present disclosure will be described in detail, but the present disclosure is not limited to the following embodiments and is appropriately modified and implemented within the scope of the object of the present disclosure. be able to.
The size of the members in each drawing is conceptual, and the relative size relationship between the members is not limited to this. In addition, members having substantially the same function are denoted by the same reference numerals throughout the drawings, and redundant description may be omitted.
 本明細書において「樹脂」とは、熱可塑性樹脂、熱可塑性エラストマー、及び熱硬化性樹脂を含む概念であり、加硫ゴムは含まない。また、以下の樹脂の説明において「同種」とは、エステル系同士、スチレン系同士等、樹脂の主鎖を構成する骨格と共通する骨格を備えたものを意味する。
 本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 本明細書において、組成物中の各成分の量は、各成分に該当する物質が組成物中に複数存在する場合には、特に断りがない限り、組成物中に存在する複数の物質の合計量を意味する。
 本明細書において、「主成分」とは、特に断りがない限り、混合物中における質量基準の含有量が最も多い成分を意味する。
In the present specification, the "resin" is a concept including a thermoplastic resin, a thermoplastic elastomer, and a thermosetting resin, and does not include a vulcanized rubber. Further, in the following description of the resin, “same type” means a resin having a skeleton common to the skeleton constituting the resin main chain, such as ester-based resins and styrene-based resins.
In the present specification, a numerical range represented by “to” means a range including the numerical values before and after “to” as a lower limit value and an upper limit value.
In the present specification, the amount of each component in the composition is the sum of a plurality of substances present in the composition, unless a plurality of substances corresponding to each component are present in the composition. Means quantity.
In the present specification, the “main component” means a component having the largest content by mass in the mixture, unless otherwise specified.
 また、本明細書において「熱可塑性樹脂」とは、温度上昇とともに材料が軟化、流動し、冷却すると比較的硬く強度のある状態になるが、ゴム状弾性を有しない高分子化合物を意味する。
 本明細書において「熱可塑性エラストマー」とは、ハードセグメント及びソフトセグメントを有する共重合体を意味する。熱可塑性エラストマーとして具体的には、例えば、結晶性で融点の高いハードセグメント又は高い凝集力のハードセグメントを構成するポリマーと、非晶性でガラス転移温度の低いソフトセグメントを構成するポリマーと、を有する共重合体が挙げられる。また、熱可塑性エラストマーとしては、例えば、温度上昇とともに材料が軟化、流動し、冷却すると比較的硬く強度のある状態になり、かつ、ゴム状弾性を有するものが挙げられる。
 なお、上記ハードセグメントは、ソフトセグメントよりも相対的に硬い成分を指す。ハードセグメントは塑性変形を防止する架橋ゴムの架橋点の役目を果たす分子拘束成分であることが好ましい。ハードセグメントとしては、例えば、主骨格に芳香族基若しくは脂環式基等の剛直な基を有する構造、又は分子間水素結合若しくはπ-π相互作用による分子間パッキングを可能にする構造等のセグメントが挙げられる。また、ソフトセグメントは、ハードセグメントよりも相対的に柔らかい成分を指す。ソフトセグメントはゴム弾性を示す柔軟性成分であることが好ましい。ソフトセグメントとしては、例えば、主鎖に長鎖の基(例えば長鎖のアルキレン基等)を有し、分子回転の自由度が高く、伸縮性を有する構造のセグメントが挙げられる。
Further, in the present specification, the term “thermoplastic resin” means a polymer compound in which the material softens and flows as the temperature rises and becomes relatively hard and strong when cooled, but does not have rubber-like elasticity.
The term "thermoplastic elastomer" as used herein means a copolymer having a hard segment and a soft segment. Specifically, as the thermoplastic elastomer, for example, a polymer that constitutes a crystalline hard segment having a high melting point or a hard segment having a high cohesive force, and a polymer that constitutes an amorphous and soft segment having a low glass transition temperature, The copolymer which has is mentioned. Further, examples of the thermoplastic elastomer include ones in which the material softens and flows as the temperature rises, becomes relatively hard and strong when cooled, and has rubber-like elasticity.
The hard segment refers to a component that is relatively harder than the soft segment. The hard segment is preferably a molecular constraining component that functions as a crosslinking point of the crosslinked rubber that prevents plastic deformation. As the hard segment, for example, a segment having a structure having a rigid group such as an aromatic group or an alicyclic group in the main skeleton, or a structure capable of intermolecular packing by intermolecular hydrogen bond or π-π interaction Is mentioned. Also, the soft segment refers to a component that is relatively softer than the hard segment. The soft segment is preferably a flexible component exhibiting rubber elasticity. Examples of the soft segment include a segment having a long-chain group (for example, a long-chain alkylene group) in the main chain, a high degree of freedom of molecular rotation, and a stretchable structure.
[ランフラットタイヤ]
 図1に、本開示の一実施形態に係るランフラットタイヤの一例(以下、「タイヤ10」と称する。)における、タイヤ幅方向及びタイヤ径方向に沿って切断した切断面(タイヤ周方向に沿った方向から見た断面)の片側を示す。
 なお、図中矢印Wはタイヤ10の幅方向(タイヤ幅方向)を示し、矢印Rはタイヤ10の径方向(タイヤ径方向)を示す。ここでいうタイヤ幅方向とは、タイヤ10の回転軸と平行な方向を指している。また、タイヤ径方向とは、タイヤ10の回転軸と直交する方向をいう。また、符号CLはタイヤ10の赤道面(タイヤ赤道面)を示している。
[Run flat tire]
FIG. 1 illustrates a cut surface (along a tire circumferential direction) cut along a tire width direction and a tire radial direction in an example of a run flat tire (hereinafter, referred to as “tire 10”) according to an embodiment of the present disclosure. Shows one side of the cross section as seen from the direction).
The arrow W in the figure indicates the width direction of the tire 10 (tire width direction), and the arrow R indicates the radial direction of the tire 10 (tire radial direction). The tire width direction mentioned here refers to a direction parallel to the rotation axis of the tire 10. Further, the tire radial direction means a direction orthogonal to the rotation axis of the tire 10. Reference numeral CL indicates the equatorial plane of the tire 10 (tire equatorial plane).
 また、本実施形態では、タイヤ径方向に沿ってタイヤ10の回転軸に近い側を「タイヤ径方向内側」、タイヤ径方向に沿ってタイヤ10の回転軸から遠い側を「タイヤ径方向外側」と記載する。一方、タイヤ幅方向に沿ってタイヤ赤道面CLに近い側を「タイヤ幅方向内側」、タイヤ幅方向に沿ってタイヤ赤道面CLから遠い側を「タイヤ幅方向外側」と記載する。 In the present embodiment, the side closer to the rotation axis of the tire 10 along the tire radial direction is “the tire radial direction inner side”, and the side farther from the rotation axis of the tire 10 along the tire radial direction is the “tire radial direction outer side”. Enter. On the other hand, the side closer to the tire equatorial plane CL along the tire width direction is referred to as "tire width direction inner side", and the side farther from the tire equatorial plane CL along the tire width direction is referred to as "tire width direction outer side".
 図1は、標準リムであるリム30に組み付けて標準空気圧を充填したときのタイヤ10を示している。なお、ここでいう「標準リム」とは、JATMA(日本自動車タイヤ協会)のYear Book2018年版規定のリムを指す。また、上記標準空気圧とは、JATMA(日本自動車タイヤ協会)のYear Book2018年版の最大負荷能力に対応する空気圧である。 FIG. 1 shows the tire 10 when assembled to a rim 30 which is a standard rim and filled with standard air pressure. The "standard rim" referred to here is the rim defined by JATMA (Japan Automobile Tire Manufacturer's Association) Year Book 2018 version. Further, the standard air pressure is the air pressure corresponding to the maximum load capacity of Year Book 2018 version of JATMA (Japan Automobile Tire Manufacturers Association).
 図1に示されるように、タイヤ10は、ビード部12に埋設された一対のビードコア26と、ビードコア26に跨り端部がビードコア26に係止されたカーカス14と、カーカス14のタイヤ内面側に設けられたインナーライナー16と、タイヤサイド部22のカーカス14とインナーライナー16との間にインナーライナー16と直接接して設けられカーカス14の内面に沿ってタイヤ径方向に延びるサイド補強ゴム24(すなわち、サイド補強ゴム層)と、カーカス14のトレッド部18におけるタイヤ径方向外側に設けられたベルト層40と、ベルト層40のタイヤ径方向外側に設けられたトレッド20と、を備えている。なお、図1では、片側のビード部12のみが図示されている。 As shown in FIG. 1, the tire 10 includes a pair of bead cores 26 embedded in the bead portion 12, a carcass 14 whose end portions straddle the bead core 26 are locked to the bead core 26, and a carcass 14 on the tire inner surface side. The inner liner 16 provided and between the carcass 14 of the tire side portion 22 and the inner liner 16 are provided in direct contact with the inner liner 16 and extend along the inner surface of the carcass 14 in the tire radial direction (i.e., side reinforcement rubber 24). A side reinforcing rubber layer), a belt layer 40 provided on the tire radial direction outer side of the tread portion 18 of the carcass 14, and a tread 20 provided on the tire radial direction outer side of the belt layer 40. In FIG. 1, only the bead portion 12 on one side is shown.
 インナーライナー16は、ゴムを含むゴム材料で構成され、インナーライナー16に含まれるゴム全体(ゴムの総量)に対し、ジエン系ゴムが20質量%以上含まれている。
 また、ベルト層40は、補強コード42Cと、補強コード42Cを被覆し樹脂を含む被覆樹脂42S(すなわちコード被覆層)と、を含んで構成されている。つまり、ベルト層40は樹脂を含む。なお、被覆樹脂42Sを構成する樹脂材料の詳細については後述する。
The inner liner 16 is made of a rubber material containing rubber, and the diene rubber is contained in an amount of 20% by mass or more based on the entire rubber (total amount of rubber) contained in the inner liner 16.
The belt layer 40 is configured to include a reinforcing cord 42C and a coating resin 42S (that is, a cord coating layer) that covers the reinforcing cord 42C and contains a resin. That is, the belt layer 40 contains resin. The details of the resin material forming the coating resin 42S will be described later.
 ここで、一般的にインナーライナーは、タイヤの内圧保持性を高めるために設けられる層であり、空気透過性の低い層であることが好ましいため、ジエン系ゴム以外のゴム(すなわち、非ジエン系ゴム)を含むゴム材料で構成されることが多い。一方、サイド補強ゴムは、一般的にランフラット走行時においてタイヤに作用する荷重を支えるタイヤサイド部を補強するための層であり、補強が可能な程度に高い硬度を有していることが望ましいため、インナーライナーとは異なる組成のゴム材料で構成される。そのため、未加硫のインナーライナーと未加硫のサイド補強ゴムとが接した状態で加硫を行っても、界面の接着力が高くなりにくい。
 また、界面の接着力を高めるため、例えばインナーライナーに用いられるゴム材料の組成をサイド補強ゴムに用いられるゴム材料の組成に近づけると、界面の接着力は高くなるものの、インナーライナーの空気透過性も高くなり、内圧保持性が下がる場合がある。
Here, generally, the inner liner is a layer provided to enhance the internal pressure retention of the tire, and is preferably a layer having low air permeability, and therefore a rubber other than the diene rubber (that is, a non-diene rubber) is used. Often composed of a rubber material including (rubber). On the other hand, the side-reinforcing rubber is a layer for reinforcing the tire side portion that generally bears the load acting on the tire during run-flat running, and it is desirable that the side-reinforcing rubber has a hardness high enough to enable reinforcement. Therefore, the inner liner is composed of a rubber material having a different composition. Therefore, even if vulcanization is performed in a state where the unvulcanized inner liner and the unvulcanized side reinforcing rubber are in contact with each other, the adhesive force at the interface hardly increases.
In addition, in order to increase the adhesive strength at the interface, for example, if the composition of the rubber material used for the inner liner is brought close to the composition of the rubber material used for the side reinforcing rubber, the adhesive strength at the interface increases, but the air permeability of the inner liner increases. May increase, and the internal pressure retention may decrease.
 これに対して、タイヤ10では、サイド補強ゴム24に直接接するインナーライナー16がゴム全体(ゴムの総量)に対して20質量%以上のジエン系ゴムを含み、かつ、ベルト層40が樹脂を含む。それにより、内圧保持性とランフラット走行性とが両立される。その理由は定かでは無いが、以下のように推測される。 On the other hand, in the tire 10, the inner liner 16 that is in direct contact with the side reinforcing rubber 24 contains 20 mass% or more of diene rubber with respect to the entire rubber (total amount of rubber), and the belt layer 40 contains resin. .. As a result, both the internal pressure holding property and the run flat traveling property are compatible. The reason is not clear, but it is presumed as follows.
 サイド補強ゴム24を製造する過程においては、タイヤサイド部22の補強が可能な程度に高い硬度を有する層を形成する目的で、比較的速い加硫速度で加硫が行われる。そして、インナーライナー16が20質量%以上のジエン系ゴムを含むと、インナーライナー16を製造する過程において、ジエン系ゴムを含まない場合に比べて加硫速度が速く、両者の加硫速度が近づくと考えられる。そのため、未加硫のインナーライナーと未加硫のサイド補強ゴムとが接した状態で加硫を行うと、両者が近い速度で加硫されることで、共架橋しやすくなり、界面の接着力が高くなると推測される。
 特に、サイド補強ゴム24がジエン系ゴムを含む場合、インナーライナー16も20質量%以上のジエン系ゴムを含むことで、インナーライナー16がジエン系ゴムを含まない場合に比べてさらに共架橋が起こりやすく、界面の接着力がより高くなると推測される。
 このようにして、インナーライナー16とサイド補強ゴム24との接着力が高くなることで、界面の剥離が起こりにくく、ランフラット走行性が向上する。
In the process of manufacturing the side reinforcing rubber 24, vulcanization is performed at a relatively high vulcanization speed in order to form a layer having a hardness that is high enough to reinforce the tire side portion 22. When the inner liner 16 contains 20% by mass or more of the diene rubber, the vulcanization speed is higher in the process of manufacturing the inner liner 16 as compared with the case where the diene rubber is not included, and the vulcanization speeds of both approaches. it is conceivable that. Therefore, if vulcanization is performed with the unvulcanized inner liner and the unvulcanized side reinforcing rubber in contact with each other, they will be vulcanized at a similar speed, which facilitates co-crosslinking and the adhesive strength of the interface. Is estimated to be high.
In particular, when the side reinforcing rubber 24 contains a diene rubber, the inner liner 16 also contains 20% by mass or more of the diene rubber, so that further co-crosslinking occurs as compared with the case where the inner liner 16 does not contain the diene rubber. It is presumed that it will be easier and the adhesive strength at the interface will be higher.
In this way, the adhesive force between the inner liner 16 and the side reinforcing rubber 24 is increased, so that peeling of the interface hardly occurs and the run-flat traveling property is improved.
 加えて、ベルト層40が樹脂を含むことで、タイヤ10全体の内圧保持性が維持されやすくなる。つまり、タイヤの中でも空気の透過により内圧保持性の低下を引き起こしやすい領域であるトレッド部に設けられるベルト層に樹脂を用いる。樹脂は、一般的にゴムに比べて空気透過性が低い。そのため、インナーライナーがジエン系ゴムを含むことでインナーライナー自体の空気遮断性が低下しても、トレッド部における空気透過性を低く維持することができ、タイヤ全体としての内圧保持性が維持される。
 以上のようにして、タイヤ10では、内圧保持性とランフラット走行性とが両立されると推測される。
 以下、タイヤ10の各部についてそれぞれ説明する。
In addition, since the belt layer 40 contains the resin, the inner pressure retaining property of the entire tire 10 is easily maintained. That is, the resin is used for the belt layer provided in the tread portion, which is a region in the tire where the internal pressure retention is likely to be deteriorated due to the permeation of air. Resins generally have lower air permeability than rubbers. Therefore, even if the inner liner contains a diene rubber and the air barrier property of the inner liner itself is lowered, the air permeability in the tread portion can be kept low, and the inner pressure holding property of the tire as a whole is maintained. ..
As described above, in the tire 10, it is presumed that the internal pressure holding property and the run flat running property are compatible with each other.
Hereinafter, each part of the tire 10 will be described.
<ビード部>
 一対のビード部12には、ワイヤ束を含むビードコア26がそれぞれ埋設されている。これらのビードコア26には、カーカス14が跨っている。ビードコア26は、断面が円形及び多角形状など、空気入りタイヤにおけるさまざまな構造を採用することができ、多角形としては例えば六角形を採用することができるが、本実施形態においては四角形とされている。
<Bead part>
A bead core 26 including a wire bundle is embedded in each of the pair of bead portions 12. The carcass 14 straddles these bead cores 26. The bead core 26 can adopt various structures in a pneumatic tire, such as a circular cross section and a polygonal shape, and can adopt, for example, a hexagon as the polygon, but in the present embodiment, it is a quadrangle. There is.
 図2に示すように、ビードコア26は、例えば、ビードワイヤ26Aと、ビードワイヤ26Aを被覆し樹脂を含む被覆樹脂26B(すなわちビード被覆層)と、を有する。ビードコア26は、被覆樹脂26Bに被覆された1本のビードワイヤ26Aを複数回巻回し、積層して形成される。具体的には、被覆樹脂26Bに被覆されたビードワイヤ26Aをタイヤ幅方向に隙間無く巻回して一段目の列を形成し、以後同様にして隙間無くタイヤ径方向外側に積み重ね、断面形状が四角形状のビードコア26を形成する。このとき、タイヤ幅方向及び径方向に互いに隣接するビードワイヤ26Aの被覆樹脂26B同士は互いに接合される。これにより、ビードワイヤ26Aが被覆樹脂26Bで被覆されたビードコア26が形成される。 As shown in FIG. 2, the bead core 26 includes, for example, a bead wire 26A and a coating resin 26B that covers the bead wire 26A and contains a resin (that is, a bead coating layer). The bead core 26 is formed by winding a single bead wire 26A coated with the coating resin 26B a plurality of times and laminating it. Specifically, the bead wire 26A coated with the coating resin 26B is wound in the tire width direction without gaps to form a first row, and thereafter, the rows are stacked on the tire radial direction outside with no gaps, and the cross-sectional shape is quadrangular. To form the bead core 26. At this time, the coating resins 26B of the bead wires 26A that are adjacent to each other in the tire width direction and the radial direction are joined to each other. Thereby, the bead core 26 in which the bead wire 26A is coated with the coating resin 26B is formed.
 図1及び図2に示すタイヤ10では、ベルト層40だけでなく、ビードコア26も樹脂を含むため、さらにタイヤ10の内圧保持性が維持されやすく、内圧保持性とランフラット走行性とがより両立される。なお、被覆樹脂26Bを構成する樹脂材料としては、後述する被覆樹脂42Sを構成する樹脂材料と同様のものが用いられる。 In the tire 10 shown in FIGS. 1 and 2, not only the belt layer 40 but also the bead core 26 contains a resin, so that the internal pressure retention of the tire 10 is more likely to be maintained, and the internal pressure retention and the run flat traveling property are more compatible. To be done. The resin material forming the coating resin 26B is the same as the resin material forming the coating resin 42S described later.
 なお、本実施形態においてビードコア26は、被覆樹脂26Bに被覆された1本のビードワイヤ26Aを巻回し、積層して形成されるものとしたが、本開示の実施形態はこれに限らない。例えば図4に示すビードコア60のように、複数本のビードワイヤ60Aを被覆樹脂60Bで被覆したワイヤ束を巻回させて積層して形成してもよい。 In the present embodiment, the bead core 26 is formed by winding one bead wire 26A coated with the coating resin 26B and laminating the bead wire 26A, but the embodiment of the present disclosure is not limited to this. For example, like a bead core 60 shown in FIG. 4, a wire bundle in which a plurality of bead wires 60A are coated with a coating resin 60B may be wound and laminated.
 この場合、積層時の界面を熱溶着で融着させる。1つのワイヤ束に含まれるビードワイヤ60Aの数は3本に限定されるものではなく、2本でも4本以上でもよい。また、ワイヤ束を積層させる各層におけるワイヤ束の数は、図4に示されるように1束でもよいし、タイヤ幅方向に複数隣接させて2束以上としてもよい。 In this case, the interface during lamination is fused by heat welding. The number of bead wires 60A included in one wire bundle is not limited to three, and may be two or four or more. Further, the number of wire bundles in each layer for stacking the wire bundles may be one as shown in FIG. 4, or may be two or more bundles adjacent to each other in the tire width direction.
 なお、本実施形態においては、ビードワイヤ26Aを被覆樹脂26Bで被覆してビードコア26を形成したが、本開示の実施形態はこれに限らない。例えば被覆樹脂26Bに代えてゴムを含む被覆ゴムを用いてもよい。 In the present embodiment, the bead wire 26A is coated with the coating resin 26B to form the bead core 26, but the embodiment of the present disclosure is not limited to this. For example, instead of the coating resin 26B, a coating rubber containing rubber may be used.
 タイヤ10は、図1に示すように、ビード部12に埋設されビードコア26からタイヤ径方向外側へカーカス14の外面に沿って伸びるビードフィラー28をさらに備えている。ビードフィラー28は、樹脂を含み、ビード部12のカーカス14で囲まれた領域(カーカス14においてビードコア26周りにタイヤ幅方向内側に配置された部分の外側の領域)に埋設されている。また、ビードフィラー28は、タイヤ径方向外側の端部28Aに向けて厚みが減少している。 As shown in FIG. 1, the tire 10 further includes a bead filler 28 embedded in the bead portion 12 and extending from the bead core 26 to the tire radial direction outer side along the outer surface of the carcass 14. The bead filler 28 contains a resin and is embedded in a region of the bead portion 12 surrounded by the carcass 14 (a region outside the portion of the carcass 14 that is arranged inside the tire width direction around the bead core 26). Further, the bead filler 28 has a thickness that decreases toward the end portion 28A on the outer side in the tire radial direction.
 図1及び図2に示すタイヤ10では、ベルト層40だけでなく、ビードフィラー28も樹脂を含むことにより、さらにタイヤ10の内圧保持性が維持されやすく、内圧保持性とランフラット走行性とがより両立される。なお、ビードフィラー28を構成する樹脂材料としては、後述する被覆樹脂42Sを構成する樹脂材料と同様のものが用いられる。 In the tire 10 shown in FIG. 1 and FIG. 2, not only the belt layer 40 but also the bead filler 28 contains a resin, so that the internal pressure retention of the tire 10 is more easily maintained, and the internal pressure retention and the run flat traveling property are improved. More compatible. The resin material forming the bead filler 28 is the same as the resin material forming the coating resin 42S described later.
 本実施形態においては、ビードフィラー28として樹脂を含むものを用いたが、本開示の実施形態はこれに限られず、例えばゴムを含む(好ましくはゴムを主成分として含む(例えばビードフィラー全体に対して50質量%以上含む))ビードフィラーを用いてもよい。 In the present embodiment, the bead filler 28 containing a resin is used, but the embodiment of the present disclosure is not limited to this, and includes, for example, rubber (preferably containing rubber as a main component (for example, for the whole bead filler). Bead filler may be used.
<カーカス>
 カーカス14は、2枚のカーカスプライ14A、14Bによって構成されたタイヤ骨格部材である。カーカスプライ14Aはタイヤ赤道面CLにおいてタイヤ径方向外側に配置されるカーカスプライであり、カーカスプライ14Bはタイヤ径方向内側に配置されるカーカスプライである。カーカスプライ14A、14Bは、それぞれ、複数本のコードと、コードを被覆しゴムを含む被覆ゴムと、を含んで構成されている。
 上記被覆ゴムは、特に限定されるものではなく、例えばジエン系ゴム(例えば天然ゴム)を含むゴム材料が挙げられる。特に、上記被覆ゴムがジエン系ゴムを含み、かつ、カーカス14とインナーライナー16とが直接接する場合、インナーライナー16に20質量%以上のジエン系ゴムを含有させることで、インナーライナー16とカーカス14との接着性も高くなる。そのため、ランフラット走行性がさらに向上する。
<Carcass>
The carcass 14 is a tire frame member including two carcass plies 14A and 14B. The carcass ply 14A is a carcass ply arranged on the tire equatorial plane CL on the outer side in the tire radial direction, and the carcass ply 14B is a carcass ply arranged on the inner side in the tire radial direction. Each of the carcass plies 14A and 14B is configured to include a plurality of cords and a coated rubber that coats the cords and contains rubber.
The coated rubber is not particularly limited, and examples thereof include a rubber material containing a diene rubber (for example, natural rubber). In particular, when the coating rubber contains a diene-based rubber and the carcass 14 and the inner liner 16 are in direct contact with each other, the inner liner 16 contains 20% by mass or more of the diene-based rubber, whereby the inner liner 16 and the carcass 14 are The adhesiveness with is also high. Therefore, run-flat traveling performance is further improved.
 このようにして形成されたカーカス14が、一方のビードコア26から他方のビードコア26へトロイド状に延びてタイヤの骨格を構成している。また、カーカス14の端部側は、ビードコア26に係止されている。具体的には、カーカス14は、端部側がビードコア26周りにタイヤ幅方向内側からタイヤ幅方向外側へ折り返されて係止されている。また、カーカス14の折り返された端部(端部14AE、14BE)は、タイヤサイド部22に配置されている。カーカスプライ14Aの端部14AEは、カーカスプライ14Bの端部14BEよりもタイヤ径方向内側に配置されている。 The carcass 14 thus formed extends in a toroidal shape from one bead core 26 to the other bead core 26 to form a tire skeleton. The end portion side of the carcass 14 is locked to the bead core 26. Specifically, the end portion side of the carcass 14 is folded back around the bead core 26 from the tire width direction inner side to the tire width direction outer side and locked. Further, the folded back end portions (end portions 14AE and 14BE) of the carcass 14 are arranged on the tire side portion 22. The end portion 14AE of the carcass ply 14A is arranged inside the end portion 14BE of the carcass ply 14B in the tire radial direction.
 なお、本実施形態では、カーカス14の端部をタイヤサイド部22に配置する構成としているが、本開示はこの構成に限定されず、例えばカーカス14の端部をベルト層40に配置する構成としてもよい。また、カーカス14の端部側を折り返さず、複数のビードコア26で挟み込んだり、ビードコア26に巻き付けた構造を採用したりすることもできる。本明細書において、カーカス14の端部をビードコア26に「係止」するとは、これらのような各種の実施形態を含むものとする。 In the present embodiment, the end portion of the carcass 14 is arranged on the tire side portion 22, but the present disclosure is not limited to this structure. For example, the end portion of the carcass 14 is arranged on the belt layer 40. Good. Alternatively, the end portion side of the carcass 14 may be sandwiched between a plurality of bead cores 26 or may be wound around the bead cores 26 without being folded back. In this specification, "locking" the end of the carcass 14 to the bead core 26 includes various embodiments such as these.
 なお、本実施形態においてカーカス14はラジアルカーカスとされている。また、カーカス14に含まれるコードの材質は特に限定されず、レーヨン、ナイロン、ポリエチレンナフタレート(PEN)、ポリエチレンテレフタレート(PET)、アラミド、ガラス繊維、カーボン繊維、スチール等が採用できる。なお、軽量化の点からは、有機繊維コードが好ましい。また、カーカスの打ち込み数は20~60本/50mmの範囲とされているが、この範囲に限定されるのもではない。 Note that, in the present embodiment, the carcass 14 is a radial carcass. The material of the cord included in the carcass 14 is not particularly limited, and rayon, nylon, polyethylene naphthalate (PEN), polyethylene terephthalate (PET), aramid, glass fiber, carbon fiber, steel or the like can be used. From the viewpoint of weight reduction, the organic fiber cord is preferable. Further, the number of driving the carcass is set in the range of 20 to 60 pieces / 50 mm, but the number is not limited to this range.
<ベルト層>
 カーカス14のタイヤ径方向外側には、ベルト層40が配設されている。図3に示すように、ベルト層40は、樹脂被覆コード42がカーカス14の外周面にタイヤ周方向に沿って螺旋状に巻かれて形成されたリング状の箍(たが)である。
<Belt layer>
A belt layer 40 is disposed on the outer side of the carcass 14 in the tire radial direction. As shown in FIG. 3, the belt layer 40 is a ring-shaped batter formed by spirally winding the resin-coated cord 42 around the outer peripheral surface of the carcass 14 along the tire circumferential direction.
 樹脂被覆コード42は、補強コード42Cを被覆樹脂42Sで被覆して構成されており、図1に示すように、断面が略正方形状とされている。樹脂被覆コード42のタイヤ径方向の内周部分の被覆樹脂42Sは、例えば、カーカス14の外周面にゴム及び必要に応じて接着剤を介して接合されて構成されている。また、樹脂被覆コード42のタイヤ幅方向に互いに隣接する被覆樹脂42S同士は、熱溶着又は接着剤などで一体的に接合されている。これにより、被覆樹脂42Sにて被覆された補強コード42Cからなるベルト層40(樹脂被覆ベルト層)が形成される。 The resin-coated cord 42 is formed by coating the reinforcing cord 42C with the coating resin 42S, and has a substantially square cross section as shown in FIG. The coating resin 42S on the inner peripheral portion of the resin coated cord 42 in the tire radial direction is configured to be bonded to the outer peripheral surface of the carcass 14 via rubber and, if necessary, an adhesive. Further, the coating resins 42S that are adjacent to each other in the tire width direction of the resin coating cord 42 are integrally joined by heat welding or an adhesive. As a result, the belt layer 40 (resin-coated belt layer) including the reinforcing cord 42C coated with the coating resin 42S is formed.
 なお本実施形態では、樹脂被覆コード42は、1本の補強コード42Cを被覆樹脂42Sで被覆して構成しているが、複数本の補強コード42Cを被覆樹脂42Sで被覆して構成してもよい。 In the present embodiment, the resin coated cord 42 is configured by coating one reinforcing cord 42C with the coating resin 42S, but may be configured by coating a plurality of reinforcing cords 42C with the coating resin 42S. Good.
 また、本実施形態のビードコア26におけるビードワイヤ26A及びベルト層40における補強コード42Cは、それぞれスチールコードとされている。このスチールコードは、スチールを主成分とし、炭素、マンガン、ケイ素、リン、硫黄、銅、クロムなど種々の微量含有物を含むことができる。 Further, the bead wire 26A in the bead core 26 and the reinforcing cord 42C in the belt layer 40 of the present embodiment are steel cords. This steel cord is mainly composed of steel and can contain various trace contents such as carbon, manganese, silicon, phosphorus, sulfur, copper and chromium.
 なお、本開示の実施形態はこれに限らず、ビードワイヤ26A及び補強コード42Cからなる群より選択される少なくとも一方として、それぞれ、スチールコードに代えて、モノフィラメントコード、複数のフィラメントを撚り合せたコード等を用いてもよい。撚り構造も種々の設計が採用可能であり、断面構造、撚りピッチ、撚り方向、隣接するフィラメント同士の距離も様々なものが使用できる。更には異なる材質のフィラメントを縒り合せたコードを採用することもでき、断面構造としても特に限定されず、単撚り、層撚り、複撚りなど様々な撚り構造を取ることができる。また、ビードワイヤ26A及び補強コード42Cからなる群より選択される少なくとも一方として、樹脂コード(すなわち、樹脂を含むコード)を用いてもよい。 Note that the embodiment of the present disclosure is not limited to this, and as at least one selected from the group consisting of the bead wire 26A and the reinforcing cord 42C, a monofilament cord, a cord obtained by twisting a plurality of filaments, or the like is used instead of the steel cord. May be used. Various designs can be adopted for the twist structure, and various cross-sectional structures, twist pitches, twist directions, and distances between adjacent filaments can be used. Further, a cord obtained by twisting filaments made of different materials can be adopted, and the cross-sectional structure is not particularly limited, and various twist structures such as single twist, layer twist, and multiple twist can be adopted. A resin cord (that is, a cord containing a resin) may be used as at least one selected from the group consisting of the bead wire 26A and the reinforcing cord 42C.
 また、本実施形態においてベルト層40は、1本の補強コード42Cを被覆樹脂42Sで被覆して形成された略正方形状の樹脂被覆コード42を、カーカス14の外周面に巻いて形成したが、本開示の実施形態はこれに限らない。
 例えば図5に示すベルト層70のように、複数本の補強コード72Cを被覆樹脂72Sで被覆して形成された、断面が略平行四辺形状の樹脂被覆コード72を、カーカス14の外周面に巻いて形成してもよい。
Further, in the present embodiment, the belt layer 40 is formed by winding the substantially square resin-coated cord 42 formed by coating one reinforcing cord 42C with the coating resin 42S around the outer peripheral surface of the carcass 14. The embodiment of the present disclosure is not limited to this.
For example, as in the belt layer 70 shown in FIG. 5, a resin-coated cord 72 having a substantially parallelogram-shaped cross section, which is formed by coating a plurality of reinforcing cords 72C with a coating resin 72S, is wound around the outer peripheral surface of the carcass 14. You may form it.
<トレッド>
 トレッド部18におけるベルト層40のタイヤ径方向外側には、トレッド20が設けられている。トレッド20は、走行中に路面に接地する部位であり、トレッド20の踏面には、タイヤ周方向に延びる周方向溝50が複数本形成されている。周方向溝50の形状及び本数は、タイヤ10に要求される排水性及び操縦安定性等の性能に応じて適宜設定される。
<Tread>
A tread 20 is provided outside the belt layer 40 in the tire radial direction in the tread portion 18. The tread 20 is a portion that comes into contact with the road surface during traveling, and a plurality of circumferential grooves 50 extending in the tire circumferential direction are formed on the tread surface of the tread 20. The shape and the number of the circumferential grooves 50 are appropriately set according to performances such as drainage and steering stability required for the tire 10.
<インナーライナー>
 インナーライナー16は、カーカス14のタイヤ内面側(すなわち、ビード部12のタイヤ幅方向内側、タイヤサイド部22のタイヤ幅方向内側、及びトレッド部18のタイヤ径方向内側)に連続した層として設けられている。インナーライナー16は、空気透過性を低減することでタイヤ10の内圧保持性を高めるために設けられる層である。
 インナーライナー16は、少なくともサイド補強ゴム24の内周面(すなわち、タイヤ幅方向内側の面)に直接接して設けられている。一方、タイヤ10では、インナーライナー16がカーカス14のトレッド部18における内周面(すなわち、タイヤ径方向内側の面)にも直接接して設けられているが、これに限られず、カーカス14とインナーライナー16との間に他の層を有していてもよい。
<Inner liner>
The inner liner 16 is provided as a continuous layer on the tire inner surface side of the carcass 14 (that is, the tire width direction inner side of the bead portion 12, the tire width direction inner side of the tire side portion 22, and the tread portion 18 tire radial direction inner side). ing. The inner liner 16 is a layer provided to increase the internal pressure retention of the tire 10 by reducing the air permeability.
The inner liner 16 is provided in direct contact with at least the inner peripheral surface of the side reinforcing rubber 24 (that is, the inner surface in the tire width direction). On the other hand, in the tire 10, the inner liner 16 is also provided in direct contact with the inner peripheral surface (that is, the inner surface in the tire radial direction) of the tread portion 18 of the carcass 14. However, the present invention is not limited to this, and the carcass 14 and the inner It may have another layer between it and the liner 16.
 また、タイヤ10では、一方のビード部12から他方のビード部12まで連続した層としてインナーライナー16が設けられている。インナーライナー16は、空気を遮断することが望ましい領域に、サイド補強ゴム24の少なくとも一部に接して設けられていれば、これに限られるものではないが、内圧保持性の観点からタイヤ10の内面全体に設けられていることが好ましい。
 インナーライナー16の厚みとしては、例えば0.1mm以上0.4mm以下の範囲が挙げられる。インナーライナー16の厚みは、一方のビード部12から他方のビード部12まで同じ厚みでもよく、特に空気透過性を低減することが望ましい領域を相対的に厚くしてもよい。
Further, in the tire 10, the inner liner 16 is provided as a continuous layer from one bead portion 12 to the other bead portion 12. The inner liner 16 is not limited to this as long as it is provided in contact with at least a part of the side reinforcing rubber 24 in a region where it is desirable to block air, but from the viewpoint of the internal pressure retaining property, the tire of the tire 10 is not limited thereto. It is preferably provided on the entire inner surface.
The thickness of the inner liner 16 is, for example, in the range of 0.1 mm or more and 0.4 mm or less. The inner liner 16 may have the same thickness from the one bead portion 12 to the other bead portion 12, and in particular, the region where it is desired to reduce the air permeability may be relatively thick.
 インナーライナー16は、少なくともジエン系ゴムを含む。インナーライナー16に含まれるゴム全体(ゴムの総量)に対するジエン系ゴムの含有率は、20質量%以上であり、サイド補強ゴム24との接着性の観点から、35質量%以上が好ましく、50質量%以上がより好ましい。
 インナーライナー16がジエン系ゴムを上記範囲で含むことにより、インナーライナーとサイド補強ゴム24との接着性が高くなる。加えて、インナーライナー16がカーカス14と接している場合には、インナーライナー16とカーカス14との接着性も高くなる。
The inner liner 16 contains at least a diene rubber. The content ratio of the diene rubber to the entire rubber (total amount of rubber) contained in the inner liner 16 is 20% by mass or more, and from the viewpoint of adhesiveness with the side reinforcing rubber 24, 35% by mass or more is preferable, and 50% by mass. % Or more is more preferable.
When the inner liner 16 contains the diene rubber in the above range, the adhesion between the inner liner and the side reinforcing rubber 24 becomes high. In addition, when the inner liner 16 is in contact with the carcass 14, the adhesion between the inner liner 16 and the carcass 14 is also high.
 ここで、ジエン系ゴムとは、ゴムの主鎖に二重結合を含む(具体的には、2.5mol%以上含む)ものをいう。ジエン系ゴムとしては、例えば、天然ゴム(NR)の他、ポリブタジエンゴム(BR)、スチレン-ブタジエン共重合体ゴム(SBR)、アクリロニトリル-ブタジエン共重合体ゴム(NBR)、及びポリクロロプレンゴム(CR)等の合成ゴムが挙げられる。ジエン系ゴムは、1種を単独で用いてもよく、2種以上を混合物として用いてもよい。
 ジエン系ゴムとしては、サイド補強ゴム24との接着性の観点から、これらの中でも、天然ゴム(NR)が好ましい。
Here, the diene rubber refers to a rubber containing a double bond in the main chain of the rubber (specifically, containing 2.5 mol% or more). Examples of the diene rubber include natural rubber (NR), polybutadiene rubber (BR), styrene-butadiene copolymer rubber (SBR), acrylonitrile-butadiene copolymer rubber (NBR), and polychloroprene rubber (CR). ) And other synthetic rubbers. The diene rubbers may be used alone or as a mixture of two or more.
Among these, natural rubber (NR) is preferable as the diene rubber from the viewpoint of adhesiveness with the side reinforcing rubber 24.
 インナーライナー16は、空気透過性を低くする観点で、ジエン系ゴムに加えて非ジエン系ゴムを含むことが好ましい。インナーライナー16に含まれるゴム全体(ゴムの総量)に対する非ジエン系ゴムの含有率は、空気透過性を低くする観点から、20質量%以上が好ましく、30質量%以上がより好ましく、40質量%以上がさらに好ましい。つまり、インナーライナー16に含まれるゴム全体(ゴムの総量)に対するジエン系ゴムの含有率は、空気透過性を低くする観点からは、80質量%以下が好ましく、70質量%以下がより好ましく、60質量%以下がさらに好ましい。 The inner liner 16 preferably contains a non-diene rubber in addition to the diene rubber from the viewpoint of lowering air permeability. The content of the non-diene rubber with respect to the entire rubber (total amount of rubber) contained in the inner liner 16 is preferably 20% by mass or more, more preferably 30% by mass or more, and 40% by mass from the viewpoint of reducing air permeability. The above is more preferable. That is, the content ratio of the diene rubber to the entire rubber (total amount of rubber) contained in the inner liner 16 is preferably 80% by mass or less, more preferably 70% by mass or less, from the viewpoint of reducing air permeability. It is more preferably not more than mass%.
 ここで、非ジエン系ゴムとは、ゴムの主鎖に二重結合をほとんど含まない(具体的には、2.5mol%未満の)ものをいう。非ジエン系ゴムとしては、例えば、ブチル系ゴム(ブチルゴム(IIR)、ハロゲン化ブチルゴム等)、エチレン・プロピレンゴム(EPM、EPDM)、ウレタンゴム(U)、シリコーンゴム(Q)、クロロスルホン化ゴム(CSM)、アクリルゴム(ACM)、フッ素ゴム(FKM)、クロロスルホン化ポリエチレン等が挙げられる。
 非ジエン系ゴムとしては、空気透過性を低くする観点から、これらの中でもブチル系ゴムが好ましく、その中でもブチルゴム(IIR)、ブロモブチルゴムがより好ましい。
Here, the non-diene rubber refers to a rubber that contains almost no double bonds in the main chain of the rubber (specifically, less than 2.5 mol%). Examples of the non-diene rubber include butyl rubber (butyl rubber (IIR), halogenated butyl rubber, etc.), ethylene / propylene rubber (EPM, EPDM), urethane rubber (U), silicone rubber (Q), chlorosulfonated rubber. (CSM), acrylic rubber (ACM), fluororubber (FKM), chlorosulfonated polyethylene and the like.
As the non-diene rubber, butyl rubber is preferable among them from the viewpoint of reducing air permeability, and among them, butyl rubber (IIR) and bromobutyl rubber are more preferable.
 インナーライナー16を構成するゴム材料は、ゴムの他に、必要に応じてゴム以外のその他の成分を含んでもよい。
 その他の成分としては、例えば、カーボンブラック等の補強材、充填剤(フィラー、短繊維、樹脂等)、加硫剤、加硫促進剤、脂肪酸又はその塩、金属酸化物、プロセスオイル、老化防止剤等が挙げられる。
 加硫剤としては、公知の加硫剤、例えば硫黄、有機過酸化物、樹脂加硫剤等が用いられる。その中でも、加硫剤として硫黄が用いられていることが好ましい。
 加硫促進剤としては、公知の加硫促進剤、例えばアルデヒド類、アンモニア類、アミン類、グアニジン類、チオウレア類、チアゾール類、スルフェンアミド類、チウラム類、ジチオカーバメイト類、キサンテート類等が用いられる。
 脂肪酸としては、ステアリン酸、パルミチン酸、ミリスチン酸、ラウリン酸などが挙げられ、また、これらはステアリン酸亜鉛のように塩の状態で配合されてもよい。これらの中でも、ステアリン酸が好ましい。
 また、金属酸化物としては、亜鉛華(ZnO)、酸化鉄、酸化マグネシウム等が挙げられ、中でも亜鉛華が好ましい。
 プロセスオイルは、アロマティック系、ナフテン系、パラフィン系のいずれを用いてもよい
 老化防止剤としては、アミン-ケトン系、イミダゾール系、アミン系、フェノール系、硫黄系及び燐系などが挙げられる。
The rubber material forming the inner liner 16 may include other components other than rubber, if necessary, in addition to rubber.
Other components include, for example, reinforcing materials such as carbon black, fillers (fillers, short fibers, resins, etc.), vulcanizing agents, vulcanization accelerators, fatty acids or salts thereof, metal oxides, process oils, anti-aging agents. Agents and the like.
As the vulcanizing agent, known vulcanizing agents such as sulfur, organic peroxides, resin vulcanizing agents and the like are used. Among them, it is preferable that sulfur is used as the vulcanizing agent.
As the vulcanization accelerator, known vulcanization accelerators such as aldehydes, ammonias, amines, guanidines, thioureas, thiazoles, sulfenamides, thiurams, dithiocarbamates, xanthates and the like are used. Be done.
Examples of the fatty acid include stearic acid, palmitic acid, myristic acid, and lauric acid, and these may be blended in a salt state such as zinc stearate. Of these, stearic acid is preferred.
Examples of the metal oxide include zinc white (ZnO), iron oxide, magnesium oxide, and the like, and zinc white is preferable.
The process oil may be any of aromatic type, naphthene type and paraffin type. As the antiaging agent, amine-ketone type, imidazole type, amine type, phenol type, sulfur type, phosphorus type and the like can be mentioned.
<サイド補強ゴム>
 タイヤサイド部22は、タイヤ径方向に延びてビード部12とトレッド部18とをつなぎ、ランフラット走行時にタイヤ10に作用する荷重を負担できるように構成されている。このタイヤサイド部22においてカーカス14のタイヤ幅方向内側には、タイヤサイド部22を補強するサイド補強ゴム24が設けられている。具体的には、サイド補強ゴム24は、カーカス14とインナーライナー16との間に、少なくともインナーライナー16と直接接して設けられている。サイド補強ゴム24は、パンクなどでタイヤ10の内圧が減少した場合に、車両及び乗員の重量を支えた状態で所定の距離を走行させるための補強ゴムである。
<Side reinforcement rubber>
The tire side portion 22 is configured to extend in the tire radial direction, connect the bead portion 12 and the tread portion 18, and can bear the load acting on the tire 10 during run flat traveling. In the tire side portion 22, a side reinforcing rubber 24 that reinforces the tire side portion 22 is provided inside the carcass 14 in the tire width direction. Specifically, the side reinforcing rubber 24 is provided between the carcass 14 and the inner liner 16 and at least in direct contact with the inner liner 16. The side reinforcing rubber 24 is a reinforcing rubber for traveling a predetermined distance while supporting the weight of the vehicle and an occupant when the internal pressure of the tire 10 decreases due to puncture or the like.
 サイド補強ゴム24は、カーカス14の内面に沿ってビード部12側からトレッド20側へタイヤ径方向に延びている。また、サイド補強ゴム24は、中央部分からビード部12側及びトレッド20側に向かうにつれて厚みが減少する形状、例えば、略三日月形状とされている。なお、ここでいうサイド補強ゴム24の厚みとは、カーカス14の法線に沿った長さを指す。 The side reinforcing rubber 24 extends in the tire radial direction from the bead portion 12 side to the tread 20 side along the inner surface of the carcass 14. Further, the side reinforcing rubber 24 has a shape in which the thickness decreases from the central portion toward the bead portion 12 side and the tread 20 side, for example, a substantially crescent shape. The thickness of the side reinforcing rubber 24 referred to here means the length along the normal line of the carcass 14.
 サイド補強ゴム24のビード部12側の下端部24Bは、カーカス14を挟んでビードフィラー28とタイヤ幅方向から見て重なっている。また、サイド補強ゴム24のトレッド20側の上端部24Aは、ベルト層40とタイヤ径方向から見て重なっている。具体的には、サイド補強ゴム24の上端部24Aは、カーカス14を挟んでベルト層40と重なっている。換言すれば、サイド補強ゴム24の上端部24Aは、ベルト層40のタイヤ幅方向端部40Eよりもタイヤ幅方向内側に位置している。 The lower end portion 24B of the side reinforcing rubber 24 on the bead portion 12 side overlaps the bead filler 28 with the carcass 14 in between when viewed in the tire width direction. Further, the upper end portion 24A of the side reinforcing rubber 24 on the tread 20 side overlaps with the belt layer 40 when viewed in the tire radial direction. Specifically, the upper end portion 24A of the side reinforcing rubber 24 overlaps the belt layer 40 with the carcass 14 interposed therebetween. In other words, the upper end portion 24A of the side reinforcing rubber 24 is located inside the tire width direction end portion 40E of the belt layer 40 in the tire width direction.
 本実施形態では、サイド補強ゴム24を1種類のゴム材料で形成しているが、本開示の実施形態はこれに限らず、複数のゴム材料で形成してもよい。
 サイド補強ゴム24は、ゴムが主成分であることが好ましく、ランフラット走行性の観点から、ゴムの中でもジエン系ゴムを含むことが好ましく、その中でもブタジエンゴム(BR)を含むことがより好ましい。また、ブタジエンゴム(BR)と天然ゴム(NR)とを含むことも好ましい。
 サイド補強ゴム24に含まれるゴム全体(ゴムの総量)に対するジエン系ゴムの含有率は、ランフラット走行性の観点から、70質量%以上が好ましく、90質量%以上がより好ましい。
In the present embodiment, the side reinforcing rubber 24 is formed of one type of rubber material, but the embodiment of the present disclosure is not limited to this, and may be formed of a plurality of rubber materials.
The side-reinforcing rubber 24 preferably contains rubber as a main component, and from the viewpoint of run-flat running property, it is preferable that the side-reinforcing rubber 24 include a diene rubber, and more preferably, a butadiene rubber (BR). It is also preferable to contain butadiene rubber (BR) and natural rubber (NR).
The content of the diene rubber with respect to the entire rubber (total amount of rubber) contained in the side reinforcing rubber 24 is preferably 70% by mass or more, and more preferably 90% by mass or more, from the viewpoint of run-flat traveling property.
 サイド補強ゴム24を構成するゴム材料は、ゴムの他に、必要に応じてゴム以外のその他の成分を含んでもよい。その他の成分としては、前記インナーライナー16を構成するゴム材料に必要に応じて含んでもよいその他の成分と同様のものが挙げられる。
 その中でも、サイド補強ゴム24を構成するゴム材料は、ランフラット走行時の耐久力を高めるため、加硫促進剤として、チウラム系促進剤を含むことが好ましい。
The rubber material forming the side reinforcing rubber 24 may include, in addition to rubber, other components other than rubber, if necessary. Examples of the other components include the same components as the other components that may be included in the rubber material forming the inner liner 16 if necessary.
Among them, the rubber material forming the side reinforcing rubber 24 preferably contains a thiuram accelerator as a vulcanization accelerator in order to enhance durability during run-flat running.
 サイド補強ゴム24の硬度は、ランフラット走行性の観点から、70以上85以下が好ましい。上記サイド補強ゴム24の硬度は、JIS K6253(タイプAデュロメータ)で規定される硬さを指す。
 また、サイド補強ゴム24の温度60℃、周波数20Hzにおける損失係数tanδは、0.10以下が好ましい。上記損失係数tanδは、粘弾性スペクトロメータ(東洋精機製作所製スペクトロメータ)を用いて周波数20Hz、初期歪み10%、動歪み±2%、温度60℃の条件で測定した値である。
The hardness of the side reinforcing rubber 24 is preferably 70 or more and 85 or less from the viewpoint of run-flat traveling property. The hardness of the side reinforcing rubber 24 refers to the hardness defined by JIS K6253 (type A durometer).
Further, the loss coefficient tan δ of the side reinforcing rubber 24 at a temperature of 60 ° C. and a frequency of 20 Hz is preferably 0.10 or less. The loss coefficient tan δ is a value measured using a viscoelastic spectrometer (a spectrometer manufactured by Toyo Seiki Seisaku-sho, Ltd.) under the conditions of a frequency of 20 Hz, an initial strain of 10%, a dynamic strain of ± 2%, and a temperature of 60 ° C.
<樹脂材料>
 以下、ベルト層40における被覆樹脂42Sに用いられる樹脂材料について説明する。なお、ビードコア26における被覆樹脂26B及びビードフィラー28に用いられる樹脂材料も、ベルト層40における被覆樹脂42Sに用いられる樹脂材料と同様のものが用いられる。
 樹脂材料は、少なくとも樹脂を含み、必要に応じてその他の成分を含んでもよい。
 樹脂材料は、樹脂を主成分として含むことが好ましい。具体的には、樹脂材料の総量に対する樹脂の含有率が、50質量%以上であることが好ましく、60質量%以上であることがより好ましく、75質量%以上であることがさらに好ましい。
 樹脂材料は、樹脂として、熱可塑性樹脂、熱可塑性エラストマー、及び熱硬化性樹脂のいずれを含んでもよいが、熱可塑性樹脂及び熱可塑性エラストマーからなる群より選ばれる少なくとも1種を含むことが好ましく、熱可塑性エラストマーを含むことがより好ましい。
<Resin material>
Hereinafter, the resin material used for the coating resin 42S in the belt layer 40 will be described. The resin material used for the coating resin 26B and the bead filler 28 in the bead core 26 is the same as the resin material used for the coating resin 42S in the belt layer 40.
The resin material contains at least a resin and may contain other components as necessary.
The resin material preferably contains a resin as a main component. Specifically, the resin content with respect to the total amount of the resin material is preferably 50% by mass or more, more preferably 60% by mass or more, and further preferably 75% by mass or more.
The resin material may contain any of a thermoplastic resin, a thermoplastic elastomer, and a thermosetting resin as the resin, but preferably contains at least one selected from the group consisting of a thermoplastic resin and a thermoplastic elastomer, More preferably, it contains a thermoplastic elastomer.
 熱可塑性樹脂としては、例えば、ポリエステル系熱可塑性樹脂、ポリアミド系熱可塑性樹脂、ポリスチレン系熱可塑性樹脂、ポリウレタン系熱可塑性樹脂、ポリオレフィン系熱可塑性樹脂、塩化ビニル系熱可塑性樹脂等が挙げられる。 Examples of the thermoplastic resin include polyester-based thermoplastic resin, polyamide-based thermoplastic resin, polystyrene-based thermoplastic resin, polyurethane-based thermoplastic resin, polyolefin-based thermoplastic resin, vinyl chloride-based thermoplastic resin, and the like.
 熱可塑性エラストマーとしては、例えば、JIS K6418に規定されるポリエステル系熱可塑性エラストマー(TPC)、ポリアミド系熱可塑性エラストマー(TPA)、ポリスチレン系熱可塑性エラストマー(TPS)、ポリウレタン系熱可塑性エラストマー(TPU)、ポリオレフィン系熱可塑性エラストマー(TPO)、熱可塑性ゴム架橋体(TPV)、若しくはその他の熱可塑性エラストマー(TPZ)等が挙げられる。 Examples of the thermoplastic elastomer include polyester thermoplastic elastomer (TPC), polyamide thermoplastic elastomer (TPA), polystyrene thermoplastic elastomer (TPS), polyurethane thermoplastic elastomer (TPU), which are defined in JIS K6418. Examples thereof include a polyolefin-based thermoplastic elastomer (TPO), a crosslinked thermoplastic rubber (TPV), or another thermoplastic elastomer (TPZ).
 熱硬化性樹脂としては、例えば、フェノール系熱硬化性樹脂、ユリア系熱硬化性樹脂、メラミン系熱硬化性樹脂、エポキシ系熱硬化性樹脂等が挙げられる。 Examples of the thermosetting resin include phenol-based thermosetting resin, urea-based thermosetting resin, melamine-based thermosetting resin, and epoxy-based thermosetting resin.
 樹脂材料は、これらの樹脂が単独で含まれていてもよく、2種以上の樹脂が組み合わせて含まれていてもよい。
 これらの中でも、樹脂としては、ポリエステル系熱可塑性エラストマー、ポリエステル系熱可塑性樹脂、ポリアミド系熱可塑性エラストマー、ポリアミド系熱可塑性樹脂、ポリスチレン系熱可塑性エラストマー、ポリスチレン系熱可塑性樹脂、ポリウレタン系熱可塑性エラストマー、ポリウレタン系熱可塑性樹脂、ポリオレフィン系熱可塑性エラストマー、又はポリオレフィン系熱可塑性樹脂が好ましい。
 樹脂材料は、ポリエステル系熱可塑性エラストマー、ポリエステル系熱可塑性樹脂、ポリアミド系熱可塑性エラストマー、及びポリアミド系熱可塑性樹脂からなる群より選ばれる少なくとも1種を含むことが好ましく、ポリエステル系熱可塑性エラストマー及びポリエステル系熱可塑性樹脂からなる群より選ばれる少なくとも1種を含むことがより好ましい。
The resin material may contain one of these resins alone, or may contain two or more kinds of resins in combination.
Among these, as the resin, polyester-based thermoplastic elastomer, polyester-based thermoplastic resin, polyamide-based thermoplastic elastomer, polyamide-based thermoplastic resin, polystyrene-based thermoplastic elastomer, polystyrene-based thermoplastic resin, polyurethane-based thermoplastic elastomer, A polyurethane-based thermoplastic resin, a polyolefin-based thermoplastic elastomer, or a polyolefin-based thermoplastic resin is preferable.
The resin material preferably contains at least one selected from the group consisting of a polyester-based thermoplastic elastomer, a polyester-based thermoplastic resin, a polyamide-based thermoplastic elastomer, and a polyamide-based thermoplastic resin. The polyester-based thermoplastic elastomer and the polyester It is more preferable to include at least one selected from the group consisting of thermoplastic resins.
-熱可塑性エラストマー-
(ポリエステル系熱可塑性エラストマー)
 ポリエステル系熱可塑性エラストマーとしては、例えば、少なくともポリエステルが結晶性で融点の高いハードセグメントを形成し、他のポリマー(例えば、ポリエステル又はポリエーテル等)が非晶性でガラス転移温度の低いソフトセグメントを形成している材料が挙げられる。
-Thermoplastic elastomer-
(Polyester thermoplastic elastomer)
As the polyester-based thermoplastic elastomer, for example, at least polyester forms a hard segment having a high melting point and another polymer (for example, polyester or polyether) is a soft segment having a low glass transition temperature and being amorphous. The forming material is mentioned.
 ハードセグメントを形成するポリエステルとしては、芳香族ポリエステルを用いることができる。芳香族ポリエステルは、例えば、芳香族ジカルボン酸又はそのエステル形成性誘導体と脂肪族ジオールとから形成することができる。芳香族ポリエステルは、好ましくは、テレフタル酸及びジメチルテレフタレートからなる群より選択される少なくとも1種と、1,4-ブタンジオールと、から誘導されるポリブチレンテレフタレートである。また、芳香族ポリエステルは、例えば、イソフタル酸、フタル酸、ナフタレン-2,6-ジカルボン酸、ナフタレン-2,7-ジカルボン酸、ジフェニル-4,4’-ジカルボン酸、ジフェノキシエタンジカルボン酸、5-スルホイソフタル酸、若しくはこれらのエステル形成性誘導体等のジカルボン酸成分と、分子量300以下のジオール(例えば、エチレングリコール、トリメチレングリコール、ペンタメチレングリコール、ヘキサメチレングリコール、ネオペンチルグリコール、デカメチレングリコール等の脂肪族ジオール;1,4-シクロヘキサンジメタノール、トリシクロデカンジメチロール等の脂環式ジオール;キシリレングリコール、ビス(p-ヒドロキシ)ジフェニル、ビス(p-ヒドロキシフェニル)プロパン、2,2-ビス[4-(2-ヒドロキシエトキシ)フェニル]プロパン、ビス[4-(2-ヒドロキシ)フェニル]スルホン、1,1-ビス[4-(2-ヒドロキシエトキシ)フェニル]シクロヘキサン、4,4’-ジヒドロキシ-p-ターフェニル、4,4’-ジヒドロキシ-p-クオーターフェニル等の芳香族ジオール;等)と、から誘導されるポリエステル、又はこれらのジカルボン酸成分及びジオール成分を2種以上併用した共重合ポリエステルであってもよい。また、3官能以上の多官能カルボン酸成分、多官能オキシ酸成分、多官能ヒドロキシ成分等を5モル%以下の範囲で共重合することも可能である。
 ハードセグメントを形成するポリエステルとしては、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリメチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート等が挙げられ、ポリブチレンテレフタレートが好ましい。
As the polyester forming the hard segment, an aromatic polyester can be used. The aromatic polyester can be formed from, for example, an aromatic dicarboxylic acid or its ester-forming derivative and an aliphatic diol. The aromatic polyester is preferably polybutylene terephthalate derived from at least one selected from the group consisting of terephthalic acid and dimethyl terephthalate, and 1,4-butanediol. The aromatic polyesters include, for example, isophthalic acid, phthalic acid, naphthalene-2,6-dicarboxylic acid, naphthalene-2,7-dicarboxylic acid, diphenyl-4,4'-dicarboxylic acid, diphenoxyethanedicarboxylic acid, 5 A dicarboxylic acid component such as sulfoisophthalic acid or an ester-forming derivative thereof, and a diol having a molecular weight of 300 or less (eg, ethylene glycol, trimethylene glycol, pentamethylene glycol, hexamethylene glycol, neopentyl glycol, decamethylene glycol, etc. Aliphatic diols; alicyclic diols such as 1,4-cyclohexanedimethanol and tricyclodecanedimethylol; xylylene glycol, bis (p-hydroxy) diphenyl, bis (p-hydroxyphenyl) propane, 2,2- B Sus [4- (2-hydroxyethoxy) phenyl] propane, bis [4- (2-hydroxy) phenyl] sulfone, 1,1-bis [4- (2-hydroxyethoxy) phenyl] cyclohexane, 4,4'- Aromatic diols such as dihydroxy-p-terphenyl and 4,4′-dihydroxy-p-quarterphenyl; etc.) and polyesters derived from these, or a combination of two or more of these dicarboxylic acid components and diol components It may be polymerized polyester. It is also possible to copolymerize a trifunctional or higher polyfunctional carboxylic acid component, a polyfunctional oxyacid component, a polyfunctional hydroxy component, etc. within a range of 5 mol% or less.
Examples of the polyester forming the hard segment include polyethylene terephthalate, polybutylene terephthalate, polymethylene terephthalate, polyethylene naphthalate and polybutylene naphthalate, and polybutylene terephthalate is preferable.
 また、ソフトセグメントを形成するポリマーとしては、例えば、脂肪族ポリエステル、脂肪族ポリエーテル等が挙げられる。
 脂肪族ポリエーテルとしては、ポリ(エチレンオキシド)グリコール、ポリ(プロピレンオキシド)グリコール、ポリ(テトラメチレンオキシド)グリコール、ポリ(ヘキサメチレンオキシド)グリコール、エチレンオキシドとプロピレンオキシドとの共重合体、ポリ(プロピレンオキシド)グリコールのエチレンオキシド付加重合体、エチレンオキシドとテトラヒドロフランとの共重合体等が挙げられる。
 脂肪族ポリエステルとしては、ポリ(ε-カプロラクトン)、ポリエナントラクトン、ポリカプリロラクトン、ポリブチレンアジペート、ポリエチレンアジペート等が挙げられる。
 これらの脂肪族ポリエーテル及び脂肪族ポリエステルの中でも、得られるポリエステルブロック共重合体の弾性特性の観点から、ソフトセグメントを形成するポリマーとしては、ポリ(テトラメチレンオキシド)グリコール、ポリ(プロピレンオキシド)グリコールのエチレンオキシド付加物、ポリ(ε-カプロラクトン)、ポリブチレンアジペート、ポリエチレンアジペート等が好ましい。
Examples of the polymer that forms the soft segment include aliphatic polyester and aliphatic polyether.
Examples of the aliphatic polyether include poly (ethylene oxide) glycol, poly (propylene oxide) glycol, poly (tetramethylene oxide) glycol, poly (hexamethylene oxide) glycol, a copolymer of ethylene oxide and propylene oxide, and poly (propylene oxide). ) An ethylene oxide addition polymer of glycol, a copolymer of ethylene oxide and tetrahydrofuran and the like can be mentioned.
Examples of the aliphatic polyester include poly (ε-caprolactone), polyenanthlactone, polycaprylolactone, polybutylene adipate, polyethylene adipate and the like.
Among these aliphatic polyethers and aliphatic polyesters, as the polymer forming the soft segment, poly (tetramethylene oxide) glycol and poly (propylene oxide) glycol are used from the viewpoint of the elastic properties of the obtained polyester block copolymer. Ethylene oxide adduct, poly (ε-caprolactone), polybutylene adipate, polyethylene adipate and the like are preferable.
 また、ソフトセグメントを形成するポリマーの数平均分子量は、強靱性及び低温柔軟性の観点から、300~6000が好ましい。さらに、ハードセグメント(x)とソフトセグメント(y)との質量比(x:y)は、成形性の観点から、99:1~20:80が好ましく、98:2~30:70が更に好ましい。 The number average molecular weight of the polymer forming the soft segment is preferably 300 to 6000 from the viewpoint of toughness and low temperature flexibility. Further, the mass ratio (x: y) of the hard segment (x) and the soft segment (y) is preferably 99: 1 to 20:80, and more preferably 98: 2 to 30:70 from the viewpoint of moldability. ..
 上述のハードセグメントとソフトセグメントとの組合せとしては、例えば、上述で挙げたハードセグメントとソフトセグメントとのそれぞれの組合せを挙げることができる。これらの中でも、上述のハードセグメントとソフトセグメントとの組合せとしては、ハードセグメントがポリブチレンテレフタレートであり、ソフトセグメントが脂肪族ポリエーテルである組み合わせが好ましく、ハードセグメントがポリブチレンテレフタレートであり、ソフトセグメントがポリ(エチレンオキシド)グリコールである組み合わせが更に好ましい。 As a combination of the above-mentioned hard segment and soft segment, for example, each combination of the above-mentioned hard segment and soft segment can be mentioned. Among these, as the combination of the hard segment and the soft segment described above, the hard segment is polybutylene terephthalate, preferably a combination in which the soft segment is an aliphatic polyether, the hard segment is polybutylene terephthalate, the soft segment More preferred is the combination where is a poly (ethylene oxide) glycol.
 ポリエステル系熱可塑性エラストマーの市販品としては、例えば、東レ・デュポン(株)製の「ハイトレル」シリーズ(例えば、3046、5557、6347、4047N、4767N等)、東洋紡(株)製の「ペルプレン」シリーズ(例えば、P30B、P40B、P40H、P55B、P70B、P150B、P280B、E450B、P150M、S1001、S2001、S5001、S6001、S9001等)等を用いることができる。 Examples of commercially available polyester thermoplastic elastomers include "Hytrel" series (for example, 3046, 5557, 6347, 4047N, 4767N) manufactured by Toray-Dupont Co., Ltd., "Perprene" series manufactured by Toyobo Co., Ltd. (For example, P30B, P40B, P40H, P55B, P70B, P150B, P280B, E450B, P150M, S1001, S2001, S5001, S6001, S9001, etc.) can be used.
 ポリエステル系熱可塑性エラストマーは、ハードセグメントを形成するポリマー及びソフトセグメントを形成するポリマーを公知の方法によって共重合することで合成することができる。 The polyester-based thermoplastic elastomer can be synthesized by copolymerizing a polymer forming a hard segment and a polymer forming a soft segment by a known method.
(ポリアミド系熱可塑性エラストマー)
 ポリアミド系熱可塑性エラストマーとは、結晶性で融点の高いハードセグメントを形成するポリマーと非晶性でガラス転移温度の低いソフトセグメントを形成するポリマーとを有する共重合体からなる熱可塑性の樹脂材料であって、ハードセグメントを形成するポリマーの主鎖にアミド結合(-CONH-)を有するものを意味する。
 ポリアミド系熱可塑性エラストマーとしては、例えば、少なくともポリアミドが結晶性で融点の高いハードセグメントを形成し、他のポリマー(例えば、ポリエステル、ポリエーテル等)が非晶性でガラス転移温度の低いソフトセグメントを形成している材料が挙げられる。また、ポリアミド系熱可塑性エラストマーは、ハードセグメント及びソフトセグメントの他に、ジカルボン酸等の鎖長延長剤を用いて形成されてもよい。
 ポリアミド系熱可塑性エラストマーとしては、具体的には、JIS K6418:2007に規定されるアミド系熱可塑性エラストマー(TPA)等、及び特開2004-346273号公報に記載のポリアミド系エラストマー等を挙げることができる。
(Polyamide thermoplastic elastomer)
The polyamide-based thermoplastic elastomer is a thermoplastic resin material composed of a copolymer having a polymer that forms a crystalline and hard segment with a high melting point and an amorphous polymer that forms a soft segment with a low glass transition temperature. It means that the main chain of the polymer forming the hard segment has an amide bond (—CONH—).
As the thermoplastic polyamide-based elastomer, for example, at least polyamide is a crystalline soft segment having a high melting point, and another polymer (for example, polyester, polyether, etc.) is a soft segment having a low glass transition temperature and being amorphous. The forming material is mentioned. In addition to the hard segment and the soft segment, the polyamide-based thermoplastic elastomer may be formed using a chain extender such as dicarboxylic acid.
Specific examples of the polyamide-based thermoplastic elastomer include the amide-based thermoplastic elastomer (TPA) defined in JIS K6418: 2007, and the polyamide-based elastomer described in JP 2004-346273 A. it can.
 ポリアミド系熱可塑性エラストマーにおいて、ハードセグメントを形成するポリアミドとしては、例えば、下記一般式(1)又は一般式(2)で表されるモノマーによって生成されるポリアミドを挙げることができる。 In the polyamide-based thermoplastic elastomer, examples of the polyamide that forms the hard segment include a polyamide formed by a monomer represented by the following general formula (1) or (2).
Figure JPOXMLDOC01-appb-C000001

 
Figure JPOXMLDOC01-appb-C000001

 
 一般式(1)中、Rは、炭素数2~20の炭化水素の分子鎖(例えば炭素数2~20のアルキレン基)を表す。 In the general formula (1), R 1 represents a hydrocarbon molecular chain having 2 to 20 carbon atoms (for example, an alkylene group having 2 to 20 carbon atoms).
Figure JPOXMLDOC01-appb-C000002

 
Figure JPOXMLDOC01-appb-C000002

 
 一般式(2)中、Rは、炭素数3~20の炭化水素の分子鎖(例えば炭素数3~20のアルキレン基)を表す。 In the general formula (2), R 2 represents a hydrocarbon molecular chain having 3 to 20 carbon atoms (for example, an alkylene group having 3 to 20 carbon atoms).
 一般式(1)中、Rとしては、炭素数3~18の炭化水素の分子鎖、例えば炭素数3~18のアルキレン基が好ましく、炭素数4~15の炭化水素の分子鎖、例えば炭素数4~15のアルキレン基が更に好ましく、炭素数10~15の炭化水素の分子鎖、例えば炭素数10~15のアルキレン基が特に好ましい。
 また、一般式(2)中、Rとしては、炭素数3~18の炭化水素の分子鎖、例えば炭素数3~18のアルキレン基が好ましく、炭素数4~15の炭化水素の分子鎖、例えば炭素数4~15のアルキレン基が更に好ましく、炭素数10~15の炭化水素の分子鎖、例えば炭素数10~15のアルキレン基が特に好ましい。
 一般式(1)又は一般式(2)で表されるモノマーとしては、ω-アミノカルボン酸又はラクタムが挙げられる。また、ハードセグメントを形成するポリアミドとしては、これらω-アミノカルボン酸又はラクタムの重縮合体、ジアミンとジカルボン酸との共縮重合体等が挙げられる。
In the general formula (1), R 1 is preferably a hydrocarbon molecular chain having 3 to 18 carbon atoms, for example, an alkylene group having 3 to 18 carbon atoms, and a molecular chain of hydrocarbon having 4 to 15 carbon atoms, for example, carbon An alkylene group having 4 to 15 carbon atoms is more preferable, and a hydrocarbon molecular chain having 10 to 15 carbon atoms, for example, an alkylene group having 10 to 15 carbon atoms is particularly preferable.
Further, in the general formula (2), as R 2 , a hydrocarbon molecular chain having 3 to 18 carbon atoms, for example, an alkylene group having 3 to 18 carbon atoms is preferable, and a molecular chain of hydrocarbon having 4 to 15 carbon atoms, For example, an alkylene group having 4 to 15 carbon atoms is more preferable, and a hydrocarbon molecular chain having 10 to 15 carbon atoms, for example, an alkylene group having 10 to 15 carbon atoms is particularly preferable.
Examples of the monomer represented by the general formula (1) or the general formula (2) include ω-aminocarboxylic acid and lactam. Examples of polyamides that form the hard segment include polycondensates of these ω-aminocarboxylic acids or lactams, and copolycondensates of diamines and dicarboxylic acids.
 ω-アミノカルボン酸としては、6-アミノカプロン酸、7-アミノヘプタン酸、8-アミノオクタン酸、10-アミノカプリン酸、11-アミノウンデカン酸、12-アミノドデカン酸等の炭素数5~20の脂肪族ω-アミノカルボン酸等を挙げることができる。また、ラクタムとしては、ラウリルラクタム、ε-カプロラクタム、ウデカンラクタム、ω-エナントラクタム、2-ピロリドン等の炭素数5~20の脂肪族ラクタム等を挙げることができる。
 ジアミンとしては、例えば、炭素数2~20の脂肪族ジアミン及び炭素数6~20の芳香族ジアミン等が挙げられる。炭素数2~20の脂肪族ジアミン及び炭素数6~20の芳香族ジアミンとしては、例えば、エチレンジアミン、トリメチレンジアミン、テトラメチレンジアミン、ヘキサメチレンジアミン、ヘプタメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、デカメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミン、2,2,4-トリメチルヘキサメチレンジアミン、2,4,4-トリメチルヘキサメチレンジアミン、3-メチルペンタメチレンジアミン、メタキシレンジアミン等を挙げることができる。
 また、ジカルボン酸は、HOOC-(R-COOH(R:炭素数3~20の炭化水素の分子鎖、m:0又は1)で表すことができ、例えば、シュウ酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカン二酸等の炭素数2~20の脂肪族ジカルボン酸を挙げることができる。
 ハードセグメントを形成するポリアミドとしては、ラウリルラクタム、ε-カプロラクタム、又はウデカンラクタムを開環重縮合したポリアミドを好ましく用いることができる。
Examples of ω-aminocarboxylic acid include 6-aminocaproic acid, 7-aminoheptanoic acid, 8-aminooctanoic acid, 10-aminocapric acid, 11-aminoundecanoic acid, 12-aminododecanoic acid and the like having 5 to 20 carbon atoms. Examples thereof include aliphatic ω-aminocarboxylic acid. Examples of lactams include aliphatic lactams having 5 to 20 carbon atoms such as lauryl lactam, ε-caprolactam, udecane lactam, ω-enanthlactam and 2-pyrrolidone.
Examples of diamines include aliphatic diamines having 2 to 20 carbon atoms and aromatic diamines having 6 to 20 carbon atoms. Examples of the aliphatic diamine having 2 to 20 carbon atoms and the aromatic diamine having 6 to 20 carbon atoms include, for example, ethylenediamine, trimethylenediamine, tetramethylenediamine, hexamethylenediamine, heptamethylenediamine, octamethylenediamine, nonamethylenediamine, Examples include decamethylenediamine, undecamethylenediamine, dodecamethylenediamine, 2,2,4-trimethylhexamethylenediamine, 2,4,4-trimethylhexamethylenediamine, 3-methylpentamethylenediamine, and metaxylenediamine. it can.
Further, the dicarboxylic acid can be represented by HOOC- (R 3 ) m —COOH (R 3 : a molecular chain of a hydrocarbon having 3 to 20 carbon atoms, m: 0 or 1), and examples thereof include oxalic acid and succinic acid. And aliphatic dicarboxylic acids having 2 to 20 carbon atoms such as glutamic acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, and dodecanedioic acid.
As the polyamide forming the hard segment, a polyamide obtained by ring-opening polycondensation of lauryl lactam, ε-caprolactam, or udecanlactam can be preferably used.
 また、ソフトセグメントを形成するポリマーとしては、例えば、ポリエステル、ポリエーテル等が挙げられ、具体的には、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレンエーテルグリコール、ABA型トリブロックポリエーテル等が挙げられる。これらは単独で又は2種以上を組み合わせて用いることができる。また、ポリエーテルの末端にアンモニア等を反応させることによって得られるポリエーテルジアミン等も用いることができる。
 ここで、「ABA型トリブロックポリエーテル」とは、下記一般式(3)に示されるポリエーテルを意味する。
Examples of the polymer that forms the soft segment include polyester and polyether. Specific examples include polyethylene glycol, polypropylene glycol, polytetramethylene ether glycol, and ABA type triblock polyether. These may be used alone or in combination of two or more. Further, polyether diamine or the like obtained by reacting the end of polyether with ammonia or the like can also be used.
Here, the "ABA type triblock polyether" means a polyether represented by the following general formula (3).
Figure JPOXMLDOC01-appb-C000003

 
Figure JPOXMLDOC01-appb-C000003

 
 一般式(3)中、x及びzは、1~20の整数を表す。yは、4~50の整数を表す。 In the general formula (3), x and z represent an integer of 1 to 20. y represents an integer of 4 to 50.
 一般式(3)において、x及びzは、それぞれ、1~18の整数が好ましく、1~16の整数がより好ましく、1~14の整数が更に好ましく、1~12の整数が特に好ましい。また、一般式(3)において、yは、5~45の整数が好ましく、6~40の整数がより好ましく、7~35の整数が更に好ましく、8~30の整数が特に好ましい。 In the general formula (3), each of x and z is preferably an integer of 1 to 18, more preferably an integer of 1 to 16, even more preferably an integer of 1 to 14, and particularly preferably an integer of 1 to 12. Further, in the general formula (3), y is preferably an integer of 5 to 45, more preferably an integer of 6 to 40, further preferably an integer of 7 to 35, particularly preferably an integer of 8 to 30.
 ハードセグメントとソフトセグメントとの組合せとしては、上述で挙げたハードセグメントとソフトセグメントとのそれぞれの組合せを挙げることができる。これらの中でも、ハードセグメントとソフトセグメントとの組合せとしては、ラウリルラクタムの開環重縮合体/ポリエチレングリコールの組合せ、ラウリルラクタムの開環重縮合体/ポリプロピレングリコールの組合せ、ラウリルラクタムの開環重縮合体/ポリテトラメチレンエーテルグリコールの組合せ、又はラウリルラクタムの開環重縮合体/ABA型トリブロックポリエーテルの組合せが好ましく、ラウリルラクタムの開環重縮合体/ABA型トリブロックポリエーテルの組合せがより好ましい。 As the combination of the hard segment and the soft segment, each combination of the hard segment and the soft segment mentioned above can be mentioned. Among these, as the combination of the hard segment and the soft segment, the combination of lauryl lactam ring-opening polycondensate / polyethylene glycol, the combination of lauryl lactam ring-opening polycondensate / polypropylene glycol, the lauryl lactam ring-opening polycondensation Body / polytetramethylene ether glycol combination, or a combination of lauryl lactam ring-opening polycondensate / ABA type triblock polyether, and a combination of lauryl lactam ring-opening polycondensate / ABA type triblock polyether is more preferable. preferable.
 ハードセグメントを形成するポリマー(ポリアミド)の数平均分子量は、溶融成形性の観点から、300~15000が好ましい。また、ソフトセグメントを形成するポリマーの数平均分子量としては、強靱性及び低温柔軟性の観点から、200~6000が好ましい。さらに、ハードセグメント(x)及びソフトセグメント(y)との質量比(x:y)は、成形性の観点から、50:50~90:10が好ましく、50:50~80:20がより好ましい。 The number average molecular weight of the polymer (polyamide) forming the hard segment is preferably 300 to 15,000 from the viewpoint of melt moldability. The number average molecular weight of the polymer forming the soft segment is preferably 200 to 6000 from the viewpoint of toughness and low temperature flexibility. Further, the mass ratio (x: y) of the hard segment (x) and the soft segment (y) is preferably 50:50 to 90:10, and more preferably 50:50 to 80:20 from the viewpoint of moldability. ..
 ポリアミド系熱可塑性エラストマーは、ハードセグメントを形成するポリマー及びソフトセグメントを形成するポリマーを公知の方法によって共重合することで合成することができる。 The thermoplastic polyamide-based elastomer can be synthesized by copolymerizing a polymer forming a hard segment and a polymer forming a soft segment by a known method.
 ポリアミド系熱可塑性エラストマーの市販品としては、例えば、宇部興産(株)の「UBESTA XPA」シリーズ(例えば、XPA9068X1、XPA9063X1、XPA9055X1、XPA9048X2、XPA9048X1、XPA9040X1、XPA9040X2XPA9044等)、ダイセル・エポニック(株)の「ベスタミド」シリーズ(例えば、E40-S3、E47-S1、E47-S3、E55-S1、E55-S3、EX9200、E50-R2等)等を用いることができる。 Commercially available polyamide-based thermoplastic elastomers include, for example, UBE Industries' UBESTA XPA series (eg, XPA9068X1, XPA9063X1, XPA9055X1, XPA9048X2, XPA9048X1, XPA9040X1, XPA9040X2XPA9044, etc.), Daicel Eponic Co., Ltd. “Vestamide” series (eg, E40-S3, E47-S1, E47-S3, E55-S1, E55-S3, EX9200, E50-R2, etc.) can be used.
(ポリスチレン系熱可塑性エラストマー)
 ポリスチレン系熱可塑性エラストマーとしては、例えば、少なくともポリスチレンがハードセグメントを形成し、他のポリマー(例えば、ポリブタジエン、ポリイソプレン、ポリエチレン、水添ポリブタジエン、水添ポリイソプレン等)が非晶性でガラス転移温度の低いソフトセグメントを形成している材料が挙げられる。ハードセグメントを形成するポリスチレンとしては、例えば、公知のラジカル重合法、イオン性重合法等で得られるものが好ましく用いられ、具体的には、アニオンリビング重合を持つポリスチレンが挙げられる。また、ソフトセグメントを形成するポリマーとしては、例えば、ポリブタジエン、ポリイソプレン、ポリ(2,3-ジメチル-ブタジエン)等が挙げられる。
(Polystyrene thermoplastic elastomer)
As the thermoplastic polystyrene-based elastomer, for example, at least polystyrene forms a hard segment, and other polymers (for example, polybutadiene, polyisoprene, polyethylene, hydrogenated polybutadiene, hydrogenated polyisoprene) are amorphous and have a glass transition temperature. A material forming a low soft segment is included. As the polystyrene forming the hard segment, for example, those obtained by a known radical polymerization method, ionic polymerization method or the like are preferably used, and specifically, polystyrene having anion living polymerization is mentioned. Examples of the polymer forming the soft segment include polybutadiene, polyisoprene, poly (2,3-dimethyl-butadiene) and the like.
 ハードセグメントとソフトセグメントとの組合せとしては、上述で挙げたハードセグメントとソフトセグメントとのそれぞれの組合せを挙げることができる。これらの中でも、ハードセグメントとソフトセグメントとの組合せとしては、ポリスチレン/ポリブタジエンの組合せ、又はポリスチレン/ポリイソプレンの組合せが好ましい。また、熱可塑性エラストマーの意図しない架橋反応を抑制するため、ソフトセグメントは水素添加されていることが好ましい。 As the combination of the hard segment and the soft segment, each combination of the hard segment and the soft segment mentioned above can be mentioned. Among these, the combination of the hard segment and the soft segment is preferably the combination of polystyrene / polybutadiene or the combination of polystyrene / polyisoprene. Further, the soft segment is preferably hydrogenated in order to suppress an unintended crosslinking reaction of the thermoplastic elastomer.
 ハードセグメントを形成するポリマー(ポリスチレン)の数平均分子量は、5000~500000が好ましく、10000~200000がより好ましい。
 また、ソフトセグメントを形成するポリマーの数平均分子量としては、5000~1000000が好ましく、10000~800000がより好ましく、30000~500000が更に好ましい。さらに、ハードセグメント(x)及びソフトセグメント(y)との体積比(x:y)は、成形性の観点から、5:95~80:20が好ましく、10:90~70:30がより好ましい。
The number average molecular weight of the polymer (polystyrene) forming the hard segment is preferably 5,000 to 500,000, more preferably 10,000 to 200,000.
The number average molecular weight of the polymer forming the soft segment is preferably 5,000 to 1,000,000, more preferably 10,000 to 800,000, and further preferably 30,000 to 500,000. Further, the volume ratio (x: y) of the hard segment (x) and the soft segment (y) is preferably 5:95 to 80:20 and more preferably 10:90 to 70:30 from the viewpoint of moldability. ..
 ポリスチレン系熱可塑性エラストマーは、ハードセグメントを形成するポリマー及びソフトセグメントを形成するポリマーを公知の方法によって共重合することで合成することができる。
 ポリスチレン系熱可塑性エラストマーとしては、例えば、スチレン-ブタジエン系共重合体[SBS(ポリスチレン-ポリ(ブチレン)ブロック-ポリスチレン)、SEBS(ポリスチレン-ポリ(エチレン/ブチレン)ブロック-ポリスチレン)]、スチレン-イソプレン共重合体(ポリスチレン-ポリイソプレンブロック-ポリスチレン)、スチレン-プロピレン系共重合体[SEP(ポリスチレン-(エチレン/プロピレン)ブロック)、SEPS(ポリスチレン-ポリ(エチレン/プロピレン)ブロック-ポリスチレン)、SEEPS(ポリスチレン-ポリ(エチレン-エチレン/プロピレン)ブロック-ポリスチレン)、SEB(ポリスチレン(エチレン/ブチレン)ブロック)]等が挙げられる。
The thermoplastic polystyrene-based elastomer can be synthesized by copolymerizing a polymer forming a hard segment and a polymer forming a soft segment by a known method.
Examples of the polystyrene-based thermoplastic elastomer include styrene-butadiene-based copolymers [SBS (polystyrene-poly (butylene) block-polystyrene), SEBS (polystyrene-poly (ethylene / butylene) block-polystyrene)], styrene-isoprene. Copolymer (polystyrene-polyisoprene block-polystyrene), styrene-propylene copolymer [SEP (polystyrene- (ethylene / propylene) block), SEPS (polystyrene-poly (ethylene / propylene) block-polystyrene), SEEPS ( Polystyrene-poly (ethylene-ethylene / propylene) block-polystyrene), SEB (polystyrene (ethylene / butylene) block)] and the like.
 ポリスチレン系熱可塑性エラストマーの市販品としては、例えば、旭化成(株)製の「タフテック」シリーズ(例えば、H1031、H1041、H1043、H1051、H1052、H1053、H1062、H1082、H1141、H1221、H1272等)、(株)クラレ製の「SEBS」シリーズ(8007、8076等)、「SEPS」シリーズ(2002、2063等)等を用いることができる。 Examples of commercially available polystyrene-based thermoplastic elastomers include, for example, "Tuftec" series manufactured by Asahi Kasei (for example, H1031, H1041, H1043, H1051, H1052, H1053, H1062, H1082, H1141, H1221, H1272, etc.), "SEBS" series (8007, 8076, etc.) and "SEPS" series (2002, 2063, etc.) manufactured by Kuraray Co., Ltd. can be used.
(ポリウレタン系熱可塑性エラストマー)
 ポリウレタン系熱可塑性エラストマーとしては、例えば、少なくともポリウレタンが物理的な凝集によって疑似架橋を形成しているハードセグメントを形成し、他のポリマーが非晶性でガラス転移温度の低いソフトセグメントを形成している材料が挙げられる。
 ポリウレタン系熱可塑性エラストマーとしては、具体的には、JIS K6418:2007に規定されるポリウレタン系熱可塑性エラストマー(TPU)が挙げられる。ポリウレタン系熱可塑性エラストマーは、下記式Aで表される単位構造を含むソフトセグメントと、下記式Bで表される単位構造を含むハードセグメントとを含む共重合体として表すことができる。
(Polyurethane thermoplastic elastomer)
As the thermoplastic polyurethane-based elastomer, for example, at least polyurethane forms a hard segment in which pseudo-crosslinking is formed by physical agglomeration, and another polymer forms an amorphous soft segment having a low glass transition temperature. Ingredients are listed.
Specific examples of the polyurethane-based thermoplastic elastomer include a polyurethane-based thermoplastic elastomer (TPU) defined in JIS K6418: 2007. The polyurethane-based thermoplastic elastomer can be represented as a copolymer including a soft segment including a unit structure represented by the following formula A and a hard segment including a unit structure represented by the following formula B.
Figure JPOXMLDOC01-appb-C000004

 
Figure JPOXMLDOC01-appb-C000004

 
 式中、Pは、長鎖脂肪族ポリエーテル又は長鎖脂肪族ポリエステルを表す。Rは、脂肪族炭化水素、脂環族炭化水素、又は芳香族炭化水素を表す。P’は、短鎖脂肪族炭化水素、脂環族炭化水素、又は芳香族炭化水素を表す。 In the formula, P represents a long-chain aliphatic polyether or a long-chain aliphatic polyester. R represents an aliphatic hydrocarbon, an alicyclic hydrocarbon, or an aromatic hydrocarbon. P'represents a short chain aliphatic hydrocarbon, an alicyclic hydrocarbon, or an aromatic hydrocarbon.
 式A中、Pで表される長鎖脂肪族ポリエーテル又は長鎖脂肪族ポリエステルとしては、例えば、分子量500~5000のものを使用することができる。Pは、Pで表される長鎖脂肪族ポリエーテル及び長鎖脂肪族ポリエステルを含むジオール化合物に由来する。このようなジオール化合物としては、例えば、分子量が前記範囲内にある、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレンエーテルグリコール、ポリ(ブチレンアジペート)ジオール、ポリ-ε-カプロラクトンジオール、ポリ(ヘキサメチレンカーボネート)ジオール、ABA型トリブロックポリエーテル等が挙げられる。
 これらは、単独で又は2種以上を組み合わせて用いることができる。
As the long-chain aliphatic polyether or the long-chain aliphatic polyester represented by P in the formula A, for example, those having a molecular weight of 500 to 5000 can be used. P is derived from a diol compound containing a long-chain aliphatic polyether represented by P and a long-chain aliphatic polyester. Examples of such a diol compound include polyethylene glycol, polypropylene glycol, polytetramethylene ether glycol, poly (butylene adipate) diol, poly-ε-caprolactone diol, poly (hexamethylene carbonate) having a molecular weight within the above range. Examples thereof include diols and ABA type triblock polyethers.
These may be used alone or in combination of two or more.
 式A及び式B中、Rは、Rで表される脂肪族炭化水素、脂環族炭化水素、又は芳香族炭化水素を含むジイソシアネート化合物を用いて導入された部分構造である。Rで表される脂肪族炭化水素を含む脂肪族ジイソシアネート化合物としては、例えば、1,2-エチレンジイソシアネート、1,3-プロピレンジイソシアネート、1,4-ブタンジイソシアネート、1,6-ヘキサメチレンジイソシアネート等が挙げられる。
 また、Rで表される脂環族炭化水素を含むジイソシアネート化合物としては、例えば、1,4-シクロヘキサンジイソシアネート、4,4-シクロヘキサンジイソシアネート等が挙げられる。さらに、Rで表される芳香族炭化水素を含む芳香族ジイソシアネート化合物としては、例えば、4,4’-ジフェニルメタンジイソシアネート、トリレンジイソシアネート等が挙げられる。
 これらは、単独で又は2種以上を組み合わせて用いることができる。
In Formula A and Formula B, R is a partial structure introduced using a diisocyanate compound containing an aliphatic hydrocarbon, an alicyclic hydrocarbon, or an aromatic hydrocarbon represented by R. Examples of the aliphatic diisocyanate compound containing an aliphatic hydrocarbon represented by R include 1,2-ethylene diisocyanate, 1,3-propylene diisocyanate, 1,4-butane diisocyanate and 1,6-hexamethylene diisocyanate. Can be mentioned.
Examples of the diisocyanate compound containing an alicyclic hydrocarbon represented by R include 1,4-cyclohexane diisocyanate and 4,4-cyclohexane diisocyanate. Further, examples of the aromatic diisocyanate compound containing an aromatic hydrocarbon represented by R include 4,4′-diphenylmethane diisocyanate and tolylene diisocyanate.
These may be used alone or in combination of two or more.
 式B中、P’で表される短鎖脂肪族炭化水素、脂環族炭化水素、又は芳香族炭化水素としては、例えば、分子量500未満のものを使用することができる。また、P’は、P’で表される短鎖脂肪族炭化水素、脂環族炭化水素、又は芳香族炭化水素を含むジオール化合物に由来する。P’で表される短鎖脂肪族炭化水素を含む脂肪族ジオール化合物としては、例えば、グリコール及びポリアルキレングリコールが挙げられ、具体的には、エチレングリコール、プロピレングリコール、トリメチレングリコール、1,4-ブタンジオール、1,3-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,7-ヘプタンジオール、1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール等が挙げられる。
 また、P’で表される脂環族炭化水素を含む脂環族ジオール化合物としては、例えば、シクロペンタン-1,2-ジオール、シクロヘキサン-1,2-ジオール、シクロヘキサン-1,3-ジオール、シクロヘキサン-1,4-ジオール、シクロヘキサン-1,4-ジメタノール等が挙げられる。
 さらに、P’で表される芳香族炭化水素を含む芳香族ジオール化合物としては、例えば、ヒドロキノン、レゾルシン、クロロヒドロキノン、ブロモヒドロキノン、メチルヒドロキノン、フェニルヒドロキノン、メトキシヒドロキノン、フェノキシヒドロキノン、4,4’-ジヒドロキシビフェニル、4,4’-ジヒドロキシジフェニルエーテル、4,4’-ジヒドロキシジフェニルサルファイド、4,4’-ジヒドロキシジフェニルスルホン、4,4’-ジヒドロキシベンゾフェノン、4,4’-ジヒドロキシジフェニルメタン、ビスフェノールA、1,1-ジ(4-ヒドロキシフェニル)シクロヘキサン、1,2-ビス(4-ヒドロキシフェノキシ)エタン、1,4-ジヒドロキシナフタリン、2,6-ジヒドロキシナフタリン等が挙げられる。
 これらは、単独で又は2種以上を組み合わせて用いることができる。
As the short-chain aliphatic hydrocarbon, alicyclic hydrocarbon or aromatic hydrocarbon represented by P ′ in the formula B, for example, those having a molecular weight of less than 500 can be used. P'is derived from a diol compound containing a short chain aliphatic hydrocarbon, alicyclic hydrocarbon, or aromatic hydrocarbon represented by P '. Examples of the aliphatic diol compound containing a short chain aliphatic hydrocarbon represented by P ′ include glycol and polyalkylene glycol, and specifically, ethylene glycol, propylene glycol, trimethylene glycol, 1,4 -Butanediol, 1,3-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol, 1,10- Decanediol and the like can be mentioned.
Examples of the alicyclic diol compound containing an alicyclic hydrocarbon represented by P ′ include cyclopentane-1,2-diol, cyclohexane-1,2-diol, cyclohexane-1,3-diol, Examples thereof include cyclohexane-1,4-diol and cyclohexane-1,4-dimethanol.
Furthermore, examples of the aromatic diol compound containing an aromatic hydrocarbon represented by P ′ include hydroquinone, resorcin, chlorohydroquinone, bromohydroquinone, methylhydroquinone, phenylhydroquinone, methoxyhydroquinone, phenoxyhydroquinone, 4,4′- Dihydroxybiphenyl, 4,4'-dihydroxydiphenyl ether, 4,4'-dihydroxydiphenyl sulfide, 4,4'-dihydroxydiphenyl sulfone, 4,4'-dihydroxybenzophenone, 4,4'-dihydroxydiphenylmethane, bisphenol A, 1, Examples thereof include 1-di (4-hydroxyphenyl) cyclohexane, 1,2-bis (4-hydroxyphenoxy) ethane, 1,4-dihydroxynaphthalene and 2,6-dihydroxynaphthalene.
These may be used alone or in combination of two or more.
 ハードセグメントを形成するポリマー(ポリウレタン)の数平均分子量は、溶融成形性の観点から、300~1500が好ましい。また、ソフトセグメントを形成するポリマーの数平均分子量としては、ポリウレタン系熱可塑性エラストマーの柔軟性及び熱安定性の観点から、500~20000が好ましく、500~5000が更に好ましく、500~3000が特に好ましい。また、ハードセグメント(x)及びソフトセグメント(y)との質量比(x:y)は、成形性の観点から、15:85~90:10が好ましく、30:70~90:10が更に好ましい。 The number average molecular weight of the polymer (polyurethane) forming the hard segment is preferably 300 to 1500 from the viewpoint of melt moldability. The number average molecular weight of the polymer forming the soft segment is preferably 500 to 20,000, more preferably 500 to 5,000, and particularly preferably 500 to 3,000, from the viewpoint of the flexibility and thermal stability of the polyurethane-based thermoplastic elastomer. .. The mass ratio (x: y) of the hard segment (x) and the soft segment (y) is preferably 15:85 to 90:10, more preferably 30:70 to 90:10 from the viewpoint of moldability. ..
 ポリウレタン系熱可塑性エラストマーは、ハードセグメントを形成するポリマー及びソフトセグメントを形成するポリマーを公知の方法によって共重合することで合成することができる。ポリウレタン系熱可塑性エラストマーとしては、例えば、特開平5-331256号公報に記載の熱可塑性ポリウレタンを用いることができる。 The polyurethane-based thermoplastic elastomer can be synthesized by copolymerizing a polymer forming a hard segment and a polymer forming a soft segment by a known method. As the polyurethane-based thermoplastic elastomer, for example, the thermoplastic polyurethane described in JP-A-5-331256 can be used.
 ポリウレタン系熱可塑性エラストマーとしては、具体的には、芳香族ジオールと芳香族ジイソシアネートとからなるハードセグメントと、ポリ炭酸エステルからなるソフトセグメントとの組合せが好ましく、より具体的には、トリレンジイソシアネート(TDI)/ポリエステル系ポリオール共重合体、TDI/ポリエーテル系ポリオール共重合体、TDI/カプロラクトン系ポリオール共重合体、TDI/ポリカーボネート系ポリオール共重合体、4,4’-ジフェニルメタンジイソシアネート(MDI)/ポリエステル系ポリオール共重合体、MDI/ポリエーテル系ポリオール共重合体、MDI/カプロラクトン系ポリオール共重合体、MDI/ポリカーボネート系ポリオール共重合体、及びMDI+ヒドロキノン/ポリヘキサメチレンカーボネート共重合体からなる群より選ばれる少なくとも1種が好ましく、TDI/ポリエステル系ポリオール共重合体、TDI/ポリエーテル系ポリオール共重合体、MDI/ポリエステルポリオール共重合体、MDI/ポリエーテル系ポリオール共重合体、及びMDI+ヒドロキノン/ポリヘキサメチレンカーボネート共重合体からなる群より選ばれる少なくとも1種が更に好ましい。 As the polyurethane-based thermoplastic elastomer, specifically, a combination of a hard segment made of an aromatic diol and an aromatic diisocyanate and a soft segment made of a polycarbonate is preferable, and more specifically, a tolylene diisocyanate ( TDI) / polyester type polyol copolymer, TDI / polyether type polyol copolymer, TDI / caprolactone type polyol copolymer, TDI / polycarbonate type polyol copolymer, 4,4′-diphenylmethane diisocyanate (MDI) / polyester -Based polyol copolymer, MDI / polyether-based polyol copolymer, MDI / caprolactone-based polyol copolymer, MDI / polycarbonate-based polyol copolymer, and MDI + hydroquinone / polyhexamethyi At least one selected from the group consisting of carbonate copolymers is preferable, and TDI / polyester polyol copolymer, TDI / polyether polyol copolymer, MDI / polyester polyol copolymer, MDI / polyether polyol At least one selected from the group consisting of a copolymer and an MDI + hydroquinone / polyhexamethylene carbonate copolymer is more preferable.
 また、ポリウレタン系熱可塑性エラストマーの市販品としては、例えば、BASF社製の「エラストラン」シリーズ(例えば、ET680、ET880、ET690、ET890等)、(株)クラレ社製「クラミロンU」シリーズ(例えば、2000番台、3000番台、8000番台、9000番台等)、日本ミラクトラン(株)製の「ミラクトラン」シリーズ(例えば、XN-2001、XN-2004、P390RSUP、P480RSUI、P26MRNAT、E490、E590、P890等)等を用いることができる。 Examples of commercially available polyurethane-based thermoplastic elastomers include "Elastollan" series manufactured by BASF (for example, ET680, ET880, ET690, ET890, etc.) and "Kuramilon U" series manufactured by Kuraray Co., Ltd. (for example, , 2000-series, 3000-series, 8000-series, 9000-series, etc.), "Miractran" series manufactured by Nippon Miractolan Co., Ltd. (eg, XN-2001, XN-2004, P390RSUP, P480RSUI, P26MRNAT, E490, E590, P890 etc.) Etc. can be used.
(ポリオレフィン系熱可塑性エラストマー)
 ポリオレフィン系熱可塑性エラストマーとしては、例えば、少なくともポリオレフィンが結晶性で融点の高いハードセグメントを形成し、他のポリマー(例えば、ポリオレフィン、他のポリオレフィン、ポリビニル化合物等)が非晶性でガラス転移温度の低いソフトセグメントを形成している材料が挙げられる。ハードセグメントを形成するポリオレフィンとしては、例えば、ポリエチレン、ポリプロピレン、アイソタクチックポリプロピレン、ポリブテン等が挙げられる。
(Polyolefin thermoplastic elastomer)
As the thermoplastic polyolefin-based elastomer, for example, at least polyolefin forms crystalline hard segments having a high melting point, and other polymers (eg, polyolefin, other polyolefins, polyvinyl compounds, etc.) are amorphous and have a glass transition temperature of The material forming the low soft segment may be mentioned. Examples of the polyolefin forming the hard segment include polyethylene, polypropylene, isotactic polypropylene, polybutene and the like.
 ポリオレフィン系熱可塑性エラストマーとしては、例えば、オレフィン-α-オレフィンランダム共重合体、オレフィンブロック共重合体等が挙げられ、具体的には、プロピレンブロック共重合体、エチレン-プロピレン共重合体、プロピレン-1-ヘキセン共重合体、プロピレン-4-メチル-1ペンテン共重合体、プロピレン-1-ブテン共重合体、エチレン-1-ヘキセン共重合体、エチレン-4-メチル-ペンテン共重合体、エチレン-1-ブテン共重合体、1-ブテン-1-ヘキセン共重合体、1-ブテン-4-メチル-ペンテン、エチレン-メタクリル酸共重合体、エチレン-メタクリル酸メチル共重合体、エチレン-メタクリル酸エチル共重合体、エチレン-メタクリル酸ブチル共重合体、エチレン-メチルアクリレート共重合体、エチレン-エチルアクリレート共重合体、エチレン-ブチルアクリレート共重合体、プロピレン-メタクリル酸共重合体、プロピレン-メタクリル酸メチル共重合体、プロピレン-メタクリル酸エチル共重合体、プロピレン-メタクリル酸ブチル共重合体、プロピレン-メチルアクリレート共重合体、プロピレン-エチルアクリレート共重合体、プロピレン-ブチルアクリレート共重合体、エチレン-酢酸ビニル共重合体、プロピレン-酢酸ビニル共重合体等が挙げられる。 Examples of the thermoplastic polyolefin-based elastomer include olefin-α-olefin random copolymers and olefin block copolymers. Specific examples include propylene block copolymers, ethylene-propylene copolymers and propylene- 1-hexene copolymer, propylene-4-methyl-1 pentene copolymer, propylene-1-butene copolymer, ethylene-1-hexene copolymer, ethylene-4-methyl-pentene copolymer, ethylene- 1-butene copolymer, 1-butene-1-hexene copolymer, 1-butene-4-methyl-pentene, ethylene-methacrylic acid copolymer, ethylene-methyl methacrylate copolymer, ethylene-ethyl methacrylate Copolymer, ethylene-butyl methacrylate copolymer, ethylene-methyl acrylate copolymer Polymer, ethylene-ethyl acrylate copolymer, ethylene-butyl acrylate copolymer, propylene-methacrylic acid copolymer, propylene-methyl methacrylate copolymer, propylene-ethyl methacrylate copolymer, propylene-butyl methacrylate copolymer Examples thereof include polymers, propylene-methyl acrylate copolymers, propylene-ethyl acrylate copolymers, propylene-butyl acrylate copolymers, ethylene-vinyl acetate copolymers and propylene-vinyl acetate copolymers.
 これらの中でも、ポリオレフィン系熱可塑性エラストマーとしては、プロピレンブロック共重合体、エチレン-プロピレン共重合体、プロピレン-1-ヘキセン共重合体、プロピレン-4-メチル-1ペンテン共重合体、プロピレン-1-ブテン共重合体、エチレン-1-ヘキセン共重合体、エチレン-4-メチル-ペンテン共重合体、エチレン-1-ブテン共重合体、エチレン-メタクリル酸共重合体、エチレン-メタクリル酸メチル共重合体、エチレン-メタクリル酸エチル共重合体、エチレン-メタクリル酸ブチル共重合体、エチレン-メチルアクリレート共重合体、エチレン-エチルアクリレート共重合体、エチレン-ブチルアクリレート共重合体、プロピレン-メタクリル酸共重合体、プロピレン-メタクリル酸メチル共重合体、プロピレン-メタクリル酸エチル共重合体、プロピレン-メタクリル酸ブチル共重合体、プロピレン-メチルアクリレート共重合体、プロピレン-エチルアクリレート共重合体、プロピレン-ブチルアクリレート共重合体、エチレン-酢酸ビニル共重合体、及びプロピレン-酢酸ビニル共重合体からなる群より選ばれる少なくとも1種が好ましく、エチレン-プロピレン共重合体、プロピレン-1-ブテン共重合体、エチレン-1-ブテン共重合体、エチレン-メタクリル酸メチル共重合体、エチレン-メチルアクリレート共重合体、エチレン-エチルアクリレート共重合体、及びエチレン-ブチルアクリレート共重合体からなる群より選ばれる少なくとも1種が更に好ましい。
 また、エチレンとプロピレンといったように2種以上のオレフィン樹脂を組み合わせて用いてもよい。また、ポリオレフィン系熱可塑性エラストマー中のオレフィン樹脂含有率は、50質量%以上100質量%以下が好ましい。
Among them, the thermoplastic polyolefin-based elastomers include propylene block copolymers, ethylene-propylene copolymers, propylene-1-hexene copolymers, propylene-4-methyl-1pentene copolymers, propylene-1- Butene copolymer, ethylene-1-hexene copolymer, ethylene-4-methyl-pentene copolymer, ethylene-1-butene copolymer, ethylene-methacrylic acid copolymer, ethylene-methyl methacrylate copolymer , Ethylene-ethyl methacrylate copolymer, ethylene-butyl methacrylate copolymer, ethylene-methyl acrylate copolymer, ethylene-ethyl acrylate copolymer, ethylene-butyl acrylate copolymer, propylene-methacrylic acid copolymer , Propylene-methyl methacrylate copolymer, Ropylene-ethyl methacrylate copolymer, propylene-butyl methacrylate copolymer, propylene-methyl acrylate copolymer, propylene-ethyl acrylate copolymer, propylene-butyl acrylate copolymer, ethylene-vinyl acetate copolymer, And at least one selected from the group consisting of propylene-vinyl acetate copolymer, ethylene-propylene copolymer, propylene-1-butene copolymer, ethylene-1-butene copolymer, ethylene-methyl methacrylate At least one selected from the group consisting of a copolymer, an ethylene-methyl acrylate copolymer, an ethylene-ethyl acrylate copolymer, and an ethylene-butyl acrylate copolymer is more preferable.
Further, two or more kinds of olefin resins such as ethylene and propylene may be used in combination. The content of the olefin resin in the thermoplastic polyolefin-based elastomer is preferably 50% by mass or more and 100% by mass or less.
 ポリオレフィン系熱可塑性エラストマーの数平均分子量は、5000~10000000であることが好ましい。ポリオレフィン系熱可塑性エラストマーの数平均分子量が5000~10000000であると、熱可塑性樹脂材料の機械的物性が十分であり、加工性にも優れる。同様の観点から、ポリオレフィン系熱可塑性エラストマーの数平均分子量は、7000~1000000であることが更に好ましく、10000~1000000が特に好ましい。これにより、熱可塑性樹脂材料の機械的物性及び加工性を更に向上させることができる。また、ソフトセグメントを形成するポリマーの数平均分子量としては、強靱性及び低温柔軟性の観点から、200~6000が好ましい。更に、ハードセグメント(x)及びソフトセグメント(y)との質量比(x:y)は、成形性の観点から、50:50~95:15が好ましく、50:50~90:10が更に好ましい。
 ポリオレフィン系熱可塑性エラストマーは、公知の方法によって共重合することで合成することができる。
The number average molecular weight of the thermoplastic polyolefin-based elastomer is preferably 5,000 to 10,000,000. When the number average molecular weight of the thermoplastic polyolefin-based elastomer is 5,000 to 10,000,000, the thermoplastic resin material has sufficient mechanical properties and excellent processability. From the same viewpoint, the number average molecular weight of the polyolefin-based thermoplastic elastomer is more preferably 7,000 to 1,000,000, and particularly preferably 10,000 to 1,000,000. Thereby, the mechanical properties and processability of the thermoplastic resin material can be further improved. The number average molecular weight of the polymer forming the soft segment is preferably 200 to 6000 from the viewpoint of toughness and low temperature flexibility. Further, the mass ratio (x: y) of the hard segment (x) and the soft segment (y) is preferably 50:50 to 95:15, more preferably 50:50 to 90:10 from the viewpoint of moldability. ..
The thermoplastic polyolefin-based elastomer can be synthesized by copolymerization by a known method.
 また、ポリオレフィン系熱可塑性エラストマーとしては、ポリオレフィン系熱可塑性エラストマーを酸変性してなるものを用いてもよい。
 「ポリオレフィン系熱可塑性エラストマーを酸変性してなるもの」とは、ポリオレフィン系熱可塑性エラストマーに、カルボン酸基、硫酸基、燐酸基等の酸性基を有する不飽和化合物を結合させたものをいう。
 ポリオレフィン系熱可塑性エラストマーに、カルボン酸基、硫酸基、燐酸基等の酸性基を有する不飽和化合物を結合させることとしては、例えば、ポリオレフィン系熱可塑性エラストマーに、酸性基を有する不飽和化合物として、不飽和カルボン酸(一般的には、無水マレイン酸)の不飽和結合部位を結合(例えば、グラフト重合)させることが挙げられる。
 酸性基を有する不飽和化合物としては、ポリオレフィン系熱可塑性エラストマーの劣化抑制の観点からは、弱酸基であるカルボン酸基を有する不飽和化合物が好ましい。カルボン酸基を有する不飽和化合物としては、例えば、アクリル酸、メタクリル酸、イタコン酸、クロトン酸、イソクロトン酸、マレイン酸等が挙げられる。
Moreover, as the polyolefin-based thermoplastic elastomer, one obtained by acid-modifying a polyolefin-based thermoplastic elastomer may be used.
The "acid-modified polyolefin-based thermoplastic elastomer" refers to a polyolefin-based thermoplastic elastomer to which an unsaturated compound having an acidic group such as a carboxylic acid group, a sulfuric acid group or a phosphoric acid group is bonded.
To bond an unsaturated compound having an acidic group such as a carboxylic acid group, a sulfuric acid group, and a phosphoric acid group to the polyolefin-based thermoplastic elastomer, for example, a polyolefin-based thermoplastic elastomer, as an unsaturated compound having an acidic group, Examples thereof include bonding (for example, graft polymerization) of unsaturated bond sites of unsaturated carboxylic acid (generally maleic anhydride).
As the unsaturated compound having an acidic group, an unsaturated compound having a carboxylic acid group, which is a weak acid group, is preferable from the viewpoint of suppressing deterioration of the thermoplastic polyolefin-based elastomer. Examples of the unsaturated compound having a carboxylic acid group include acrylic acid, methacrylic acid, itaconic acid, crotonic acid, isocrotonic acid, maleic acid and the like.
 ポリオレフィン系熱可塑性エラストマーの市販品としては、例えば、三井化学(株)製の「タフマー」シリーズ(例えば、A0550S、A1050S、A4050S、A1070S、A4070S、A35070S、A1085S、A4085S、A7090、A70090、MH7007、MH7010、XM-7070、XM-7080、BL4000、BL2481、BL3110、BL3450、P-0275、P-0375、P-0775、P-0180、P-0280、P-0480、P-0680等)、三井・デュポンポリケミカル(株)製の「ニュクレル」シリーズ(例えば、AN4214C、AN4225C、AN42115C、N0903HC、N0908C、AN42012C、N410、N1050H、N1108C、N1110H、N1207C、N1214、AN4221C、N1525、N1560、N0200H、AN4228C、AN4213C、N035C)等、「エルバロイAC」シリーズ(例えば、1125AC、1209AC、1218AC、1609AC、1820AC、1913AC、2112AC、2116AC、2615AC、2715AC、3117AC、3427AC、3717AC等)、住友化学(株)の「アクリフト」シリーズ、「エバテート」シリーズ等、東ソー(株)製の「ウルトラセン」シリーズ等、プライムポリマー製の「プライムTPO」シリーズ(例えば、E-2900H、F-3900H、E-2900、F-3900、J-5900、E-2910、F-3910、J-5910、E-2710、F-3710、J-5910、E-2740、F-3740、R110MP、R110E、T310E、M142E等)等も用いることができる。 Examples of commercially available polyolefin-based thermoplastic elastomers include "Toughmer" series manufactured by Mitsui Chemicals, Inc. (for example, A0550S, A1050S, A4050S, A1070S, A4070S, A35070S, A1085S, A4085S, A7090, A70090, MH7007, MH7010). , XM-7070, XM-7080, BL4000, BL2481, BL3110, BL3450, P-0275, P-0375, P-0775, P-0180, P-0280, P-0480, P-0680, etc.), Mitsui DuPont "Nucrel" series manufactured by Polychemical Co., Ltd. (for example, AN4214C, AN4225C, AN42115C, N0903HC, N0908C, AN42012C, N410, N1050H, N11). 8C, N1110H, N1207C, N1214, AN4221C, N1525, N1560, N0200H, AN4228C, AN4213C, N035C, etc. "Elvalloy AC" series (for example, 1125AC, 1209AC, 1218AC, 1609AC, 1820AC, 1913AC, 2112AC, 2116AC, 2615AC, 2715AC, 3117AC, 3427AC, 3717AC, etc.), Sumitomo Chemical Co., Ltd.'s "Aklift" series, "Evatate" series, etc., Tosoh Corporation's "Ultrasen" series, etc., Prime Polymer "Prime TPO" series ( For example, E-2900H, F-3900H, E-2900, F-3900, J-5900, E-2910, F-3910, J-5910, E-2710 F-3710, J-5910, E-2740, F-3740, R110MP, R110E, can be used T310E, also M142E, etc.) and the like.
-熱可塑性樹脂-
(ポリエステル系熱可塑性樹脂)
 ポリエステル系熱可塑性樹脂としては、前述のポリエステル系熱可塑性エラストマーのハードセグメントを形成するポリエステルを挙げることができる。
 ポリエステル系熱可塑性樹脂としては、具体的には、ポリ乳酸、ポリヒドロキシ-3-ブチル酪酸、ポリヒドロキシ-3-ヘキシル酪酸、ポリ(ε-カプロラクトン)、ポリエナントラクトン、ポリカプリロラクトン、ポリブチレンアジペート、ポリエチレンアジペート等の脂肪族ポリエステル、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート等の芳香族ポリエステルなどを例示することができる。これらの中でも、耐熱性及び加工性の観点から、ポリエステル系熱可塑性樹脂としては、ポリブチレンテレフタレートが好ましい。
-Thermoplastic resin-
(Polyester thermoplastic resin)
Examples of the polyester-based thermoplastic resin include polyesters that form the hard segment of the above-mentioned polyester-based thermoplastic elastomer.
Specific examples of the polyester-based thermoplastic resin include polylactic acid, polyhydroxy-3-butylbutyric acid, polyhydroxy-3-hexylbutyric acid, poly (ε-caprolactone), polyenanthlactone, polycaprylolactone, and polybutylene. Examples thereof include aliphatic polyesters such as adipate and polyethylene adipate, and aromatic polyesters such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate and polybutylene naphthalate. Among these, polybutylene terephthalate is preferable as the polyester thermoplastic resin from the viewpoint of heat resistance and processability.
 ポリエステル系熱可塑性樹脂の市販品としては、例えば、ポリプラスチック(株)製の「ジュラネックス」シリーズ(例えば、2000、2002等)、三菱エンジニアリングプラスチック(株)製の「ノバデュラン」シリーズ(例えば、5010R5、5010R3-2等)、東レ(株)製の「トレコン」シリーズ(例えば、1401X06、1401X31等)等を用いることができる。 Commercially available polyester-based thermoplastic resins include, for example, "Duranex" series manufactured by Polyplastics Co., Ltd. (for example, 2000, 2002, etc.) and "Novaduran" series manufactured by Mitsubishi Engineering Plastics Co., Ltd. (for example, 5010R5). , 5010R3-2, etc.), “Toraycon” series manufactured by Toray Industries, Inc. (eg, 1401X06, 1401X31, etc.) and the like can be used.
(ポリアミド系熱可塑性樹脂)
 ポリアミド系熱可塑性樹脂としては、前述のポリアミド系熱可塑性エラストマーのハードセグメントを形成するポリアミドを挙げることができる。
 ポリアミド系熱可塑性樹脂としては、具体的には、ε-カプロラクタムを開環重縮合したポリアミド(アミド6)、ウンデカンラクタムを開環重縮合したポリアミド(アミド11)、ラウリルラクタムを開環重縮合したポリアミド(アミド12)、ジアミンと二塩基酸とを重縮合したポリアミド(アミド66)、メタキシレンジアミンを構成単位として有するポリアミド(アミドMX)等を例示することができる。
(Polyamide thermoplastic resin)
Examples of the polyamide-based thermoplastic resin include polyamides that form the hard segment of the above-mentioned polyamide-based thermoplastic elastomer.
Specific examples of the polyamide-based thermoplastic resin include polyamide obtained by ring-opening polycondensation of ε-caprolactam (amide 6), polyamide obtained by ring-opening polycondensation of undecane lactam (amide 11), ring-opening polycondensation of lauryl lactam. Examples thereof include polyamide (amide 12), polyamide (amide 66) obtained by polycondensing diamine and dibasic acid, and polyamide (amide MX) having metaxylene diamine as a constituent unit.
 アミド6は、例えば、{CO-(CH-NH}で表すことができる。アミド11は、例えば、{CO-(CH10-NH}で表すことができる。アミド12は、例えば、{CO-(CH11-NH}で表すことができる。アミド66は、例えば、{CO(CHCONH(CHNH}で表すことができる。アミドMXは、例えば、下記構造式(A-1)で表すことができる。ここで、nは繰り返し単位数を表す。 The amide 6 can be represented by, for example, {CO— (CH 2 ) 5 —NH} n . The amide 11 can be represented by, for example, {CO— (CH 2 ) 10 —NH} n . The amide 12 can be represented by, for example, {CO— (CH 2 ) 11 —NH} n . The amide 66 can be represented by, for example, {CO (CH 2 ) 4 CONH (CH 2 ) 6 NH} n . The amide MX can be represented by, for example, the following structural formula (A-1). Here, n represents the number of repeating units.
Figure JPOXMLDOC01-appb-C000005

 
Figure JPOXMLDOC01-appb-C000005

 
 アミド6の市販品としては、例えば、宇部興産(株)製の「UBEナイロン」シリーズ(例えば、1022B、1011FB等)を用いることができる。アミド11の市販品としては、例えば、アルケマ(株)製の「Rilsan B」シリーズを用いることができる。アミド12の市販品としては、例えば、宇部興産(株)製の「UBEナイロン」シリーズ(例えば、3024U、3020U、3014U等)を用いることができる。アミド66の市販品としては、例えば、旭化成(株)製の「レオナ」シリーズ(例えば、1300S、1700S等)を用いることができる。アミドMXの市販品としては、例えば、三菱ガス化学(株)製の「MXナイロン」シリーズ(例えば、S6001、S6021、S6011等)を用いることができる。 As a commercially available product of amide 6, for example, "UBE nylon" series (for example, 1022B, 1011FB, etc.) manufactured by Ube Industries, Ltd. can be used. As a commercially available product of amide 11, for example, “Rilsan B” series manufactured by Arkema Ltd. can be used. As a commercially available product of the amide 12, for example, "UBE nylon" series (for example, 3024U, 3020U, 3014U, etc.) manufactured by Ube Industries, Ltd. can be used. As a commercially available product of the amide 66, for example, "Leona" series (for example, 1300S, 1700S, etc.) manufactured by Asahi Kasei Co., Ltd. can be used. As a commercially available product of amide MX, for example, "MX Nylon" series (for example, S6001, S6021, S6011, etc.) manufactured by Mitsubishi Gas Chemical Co., Inc. can be used.
 ポリアミド系熱可塑性樹脂は、上記の構成単位のみで形成されるホモポリマーであってもよく、上記の構成単位と他のモノマーとのコポリマーであってもよい。コポリマーの場合、各ポリアミド系熱可塑性樹脂における上記構成単位の含有率は、40質量%以上であることが好ましい。 The thermoplastic polyamide-based resin may be a homopolymer formed of only the above structural unit or a copolymer of the above structural unit and another monomer. In the case of a copolymer, the content of the above structural units in each polyamide-based thermoplastic resin is preferably 40% by mass or more.
(ポリオレフィン系熱可塑性樹脂)
 ポリオレフィン系熱可塑性樹脂としては、前述のポリオレフィン系熱可塑性エラストマーのハードセグメントを形成するポリオレフィンを挙げることができる。
 ポリオレフィン系熱可塑性樹脂としては、具体的には、ポリエチレン系熱可塑性樹脂、ポリプロピレン系熱可塑性樹脂、ポリブタジエン系熱可塑性樹脂等を例示することができる。これらの中でも、耐熱性及び加工性の点から、ポリオレフィン系熱可塑性樹脂としては、ポリプロピレン系熱可塑性樹脂が好ましい。
 ポリプロピレン系熱可塑性樹脂の具体例としては、プロピレンホモ重合体、プロピレン-α-オレフィンランダム共重合体、プロピレン-α-オレフィンブロック共重合体等が挙げられる。α-オレフィンとしては、例えば、プロピレン、1-ブテン、1-ペンテン、3-メチル-1-ブテン、1-ヘキセン、4-メチル-1-ペンテン、3-メチル-1-ペンテン、1-ヘプテン、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-オクタデセン、1-エイコセン等の炭素数3~20程度のα-オレフィン等が挙げられる。
(Polyolefin thermoplastic resin)
Examples of the polyolefin-based thermoplastic resin include the polyolefins that form the hard segments of the above-mentioned polyolefin-based thermoplastic elastomer.
Specific examples of the polyolefin-based thermoplastic resin include polyethylene-based thermoplastic resin, polypropylene-based thermoplastic resin, polybutadiene-based thermoplastic resin, and the like. Among these, polypropylene-based thermoplastic resin is preferable as the polyolefin-based thermoplastic resin from the viewpoint of heat resistance and processability.
Specific examples of the polypropylene-based thermoplastic resin include propylene homopolymer, propylene-α-olefin random copolymer, propylene-α-olefin block copolymer and the like. Examples of the α-olefin include propylene, 1-butene, 1-pentene, 3-methyl-1-butene, 1-hexene, 4-methyl-1-pentene, 3-methyl-1-pentene, 1-heptene, Examples thereof include α-olefins having about 3 to 20 carbon atoms such as 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene and 1-eicosene.
-他の成分-
 樹脂材料は、樹脂以外にも、効果を損なわない範囲で添加剤等の他の成分を含んでもよい。他の成分としては、例えば、ゴム、各種充填剤(例えば、シリカ、炭酸カルシウム、クレイ等)、老化防止剤、オイル、可塑剤、発色剤、耐候剤等が挙げられる。
-Other ingredients-
In addition to the resin, the resin material may contain other components such as additives within a range that does not impair the effect. Examples of other components include rubber, various fillers (eg, silica, calcium carbonate, clay, etc.), antioxidants, oils, plasticizers, coloring agents, weathering agents, and the like.
<タイヤの作製>
 次に、タイヤ10の製造方法の一例を説明する。
 まず、公知のタイヤ成形ドラム(不図示)の外周に、未加硫のインナーライナー16、未加硫のサイド補強ゴム24、未加硫のゴム材料を含むカーカス14、ビードコア26、及びビードフィラー28を有する未加硫のタイヤケースを形成する。
<Production of tire>
Next, an example of a method for manufacturing the tire 10 will be described.
First, an unvulcanized inner liner 16, an unvulcanized side reinforcing rubber 24, a carcass 14 including an unvulcanized rubber material, a bead core 26, and a bead filler 28 are provided on the outer periphery of a known tire forming drum (not shown). Forming an unvulcanized tire case.
 一方、ベルト層40は、以下のようにして形成する。
 具体的には、ベルト成形ドラム(図示せず)の外周面に向かって樹脂被覆コード42を送り出す。樹脂被覆コード42は、熱風により加熱され被覆樹脂42Sが溶融した状態でベルト成形ドラムの外周面に押し付けられ、その後冷却される。このようにして、樹脂被覆コード42をベルト成形ドラムの外周面に螺旋状に巻き付けると共に該外周面に押し付けていくことで、ベルト成形ドラムの外周面に樹脂被覆コード42の層が形成される。
On the other hand, the belt layer 40 is formed as follows.
Specifically, the resin coating cord 42 is sent toward the outer peripheral surface of the belt forming drum (not shown). The resin coating cord 42 is pressed against the outer peripheral surface of the belt forming drum in a state where the coating resin 42S is heated by hot air and melted, and then cooled. In this manner, the resin-coated cord 42 is spirally wound around the outer peripheral surface of the belt forming drum and pressed against the outer peripheral surface, whereby a layer of the resin coated cord 42 is formed on the outer peripheral surface of the belt forming drum.
 次に、樹脂被覆コード42が冷却されて被覆樹脂42Sが固化したベルト層40を、ベルト成形ドラムから取り外す。そして、取り外したベルト層40の内周面に、必要に応じて接着剤を塗布した後、タイヤ成形ドラムにおける前記未加硫のタイヤケースの径方向外側に上記ベルト層40を配置する。その後、未加硫のタイヤケースを拡張し、タイヤケースの外周面、言い換えればカーカス14の外周面を、ベルト層40の内周面に圧着する。
 最後に、ベルト層40の外周面に、必要に応じて接着剤を塗布した後、未加硫のトレッド20を貼り付け、生タイヤが完成する。
 このようにして製造された生タイヤは、加硫成形モールドで加硫成形され、タイヤ10が完成する。
Next, the belt layer 40 in which the resin coating cord 42 is cooled and the coating resin 42S is solidified is removed from the belt forming drum. Then, after the adhesive is applied to the inner peripheral surface of the removed belt layer 40 as required, the belt layer 40 is arranged on the tire molding drum in the radial direction outside of the unvulcanized tire case. Then, the unvulcanized tire case is expanded, and the outer peripheral surface of the tire case, in other words, the outer peripheral surface of the carcass 14 is pressure-bonded to the inner peripheral surface of the belt layer 40.
Finally, an adhesive is applied to the outer peripheral surface of the belt layer 40 as needed, and then the unvulcanized tread 20 is attached to complete the green tire.
The green tire manufactured in this way is vulcanized and molded by the vulcanization mold to complete the tire 10.
 以上、本開示における実施形態の一例を説明したが、本開示はこれら実施形態に限定されるものではなく、他の種々の実施形態が可能である。 Although examples of the embodiments of the present disclosure have been described above, the present disclosure is not limited to these embodiments, and various other embodiments are possible.
 なお、本開示の一実施形態は、以下に示す態様が含まれる。
<1> 一対のビードコアと、
 前記一対のビードコアに跨り、端部が前記ビードコアに係止されたカーカスと、
 前記カーカスのタイヤ内面側に設けられたインナーライナーであって、前記インナーライナーに含まれるゴムの総量に対しジエン系ゴムの含有率が20質量%以上であるインナーライナーと、
 タイヤサイド部の前記カーカスと前記インナーライナーとの間に前記インナーライナーと直接接して設けられ、前記カーカスの内面に沿ってタイヤ径方向に延びるサイド補強ゴム層と、
 前記カーカスのタイヤ径方向外側に設けられ、コードと前記コードを被覆し樹脂を含むコード被覆層とを有するベルト層と、
 前記ベルト層のタイヤ径方向外側に設けられたトレッドと、
 を備えるランフラットタイヤ。
<2> 前記インナーライナーに含まれるジエン系ゴムは、天然ゴムを含有する<1>に記載のランフラットタイヤ。
<3> 前記インナーライナーは、ブチル系ゴムをさらに含む<1>又は<2>に記載のランフラットタイヤ。
<4> 前記サイド補強ゴム層は、ジエン系ゴムを含む<1>~<3>のいずれか1項に記載のランフラットタイヤ。
<5> 前記ビードコアからタイヤ径方向外側へ前記カーカスの外面に沿って延びるように配置され、樹脂を含むビードフィラーをさらに備えた<1>~<4>のいずれか1項に記載のランフラットタイヤ。
<6> 前記ビードコアは、ビードワイヤと前記ビードワイヤを被覆し樹脂を含むビード被覆層とを有する<1>~<5>のいずれか1項に記載のランフラットタイヤ。
Note that one embodiment of the present disclosure includes the aspects described below.
<1> A pair of bead cores,
A carcass straddling the pair of bead cores, the end portion of which is locked to the bead core,
An inner liner provided on the tire inner surface side of the carcass, wherein the content of the diene rubber is 20% by mass or more based on the total amount of rubber contained in the inner liner,
A side reinforcing rubber layer provided in direct contact with the inner liner between the carcass of the tire side portion and the inner liner, and extending in the tire radial direction along the inner surface of the carcass,
A belt layer provided on the outer side in the tire radial direction of the carcass, having a cord and a cord coating layer that coats the cord and contains a resin,
A tread provided on the tire radial direction outer side of the belt layer,
Run-flat tire with.
<2> The run-flat tire according to <1>, wherein the diene rubber contained in the inner liner contains natural rubber.
<3> The run-flat tire according to <1> or <2>, wherein the inner liner further contains butyl rubber.
<4> The run-flat tire according to any one of <1> to <3>, in which the side reinforcing rubber layer contains a diene rubber.
<5> The run flat according to any one of <1> to <4>, which is arranged so as to extend from the bead core to a tire radial direction outer side along an outer surface of the carcass and further includes a bead filler containing a resin. tire.
<6> The run flat tire according to any one of <1> to <5>, wherein the bead core has a bead wire and a bead coating layer that covers the bead wire and contains a resin.
 以下、実施例により本開示を具体的に説明するが、本開示はこれらの記載に何ら制限を受けるものではない。なお、特に断りのない限り「部」は質量基準を表す。 Hereinafter, the present disclosure will be specifically described by way of examples, but the present disclosure is not limited to these descriptions. In addition, "part" represents a mass standard unless otherwise specified.
[実施例1]
<被覆樹脂コードの作製>
 平均直径φ1.15mmのマルチフィラメント(φ0.35mmのモノフィラメント(スチール製、強力:280N、伸度:3%)7本を撚った撚り線)に、加熱溶融した接着剤(三菱ケミカル株式会社製、無水マレイン酸変性ポリエステル系熱可塑性エラストマー、品名:プリマロイ-AP GQ730)を付着させる。次いで、その外周に、押出機にて押し出した被覆樹脂(東レ・デュポン社製、ポリエステル系熱可塑性エラストマー、品名:ハイトレル5557)を付着させて被覆し、冷却する。なお、押出条件は、金属部材の温度を200℃、被覆樹脂の温度を240℃、押出速度を30m/分とする。以上のようにして、被覆樹脂コードを作製する。
[Example 1]
<Preparation of coated resin cord>
An adhesive (made by Mitsubishi Chemical Co., Ltd.) that was heated and melted into a multifilament having an average diameter of φ1.15 mm (a monofilament having a diameter of 0.35 mm (steel, strength: 280 N, elongation: 3%) twisted wire of 7 pieces) , Maleic anhydride-modified polyester-based thermoplastic elastomer, product name: Primalloy-AP GQ730). Then, a coating resin (a polyester thermoplastic elastomer manufactured by Toray-Dupont Co., Ltd., product name: Hytrel 5557) extruded by an extruder is attached to the outer periphery of the resin to coat and cool it. The extrusion conditions are that the temperature of the metal member is 200 ° C., the temperature of the coating resin is 240 ° C., and the extrusion speed is 30 m / min. The coated resin cord is produced as described above.
<未加硫のインナーライナーの作製>
 下記成分をバンバリミキサー((株)神戸製鋼製、MIXTRON BB MIXER)で混練してシート形状に成形し、未加硫のインナーライナーを作製する。
・天然ゴム(表1中の「NR(PHR)」):RSS#3・・・20質量部
・ブロモブチルゴム(表1中の「Br-IIR(PHR)」、ブロモブチル2225 商標:エクソン社製)・・・80質量部
・カーボンブラック N660(商標:Degissa製)・・・45質量部
・扁平クレー(POLYFIL DL 商標:J.H.Huber製)・・・30質量部
・プロセス油(アロマオイルAROMAX #1 商標:富士興産(株)製)・・・2質量部
<Preparation of unvulcanized inner liner>
The following components are kneaded with a Banbury mixer (Mixtron BB MIXER, manufactured by Kobe Steel, Ltd.) and molded into a sheet shape to prepare an unvulcanized inner liner.
・ Natural rubber (“NR (PHR)” in Table 1): RSS # 3 ... 20 parts by mass Bromobutyl rubber (“Br-IIR (PHR)” in Table 1, bromobutyl 2225 trademark: manufactured by Exxon)・ ・ ・ 80 parts by mass ・ Carbon black N660 (trademark: manufactured by Degissa) ・ ・ ・ 45 parts by mass ・ Flat clay (POLYFIL DL trademark: manufactured by JH Huber) ・ ・ ・ 30 parts by mass ・ Process oil (aroma oil AROMAX # 1 Trademark: Fuji Kosan Co., Ltd ... 2 parts by mass
<未加硫のサイド補強ゴムの作製>
 下記成分をバンバリミキサー((株)神戸製鋼製、MIXTRON BB MIXER)で混練して成形し、未加硫のサイド補強ゴムを作製する。
・天然ゴム:RSS#3・・・25量部
・ブタジエンゴム(BR):BR502、JSR社製・・・75質量部
・カーボンブラック:FEF、旭カーボン社製・・・60質量部
・老化防止剤:アンチゲン6C、住友化学社製・・・2質量部
・加硫促進剤:ノクセラーNS-P、大内新興化学工業社製・・・3質量部
・加硫促進剤:ノクセラーTOT-N、大内新興化学工業社製・・・2質量部
・硫黄・・・5質量部
<Preparation of unvulcanized side reinforcing rubber>
The following components are kneaded and molded with a Banbury mixer (Mixtron BB MIXER, manufactured by Kobe Steel, Ltd.) to prepare an unvulcanized side reinforcing rubber.
・ Natural rubber: RSS # 3: 25 parts by mass ・ Butadiene rubber (BR): BR502, manufactured by JSR Co .: 75 parts by mass ・ Carbon black: FEF, Asahi Carbon Co .: 60 parts by mass ・ Anti-aging Agent: Antigen 6C, manufactured by Sumitomo Chemical Co., Ltd .... 2 parts by mass, vulcanization accelerator: Nocceller NS-P, manufactured by Ouchi Shinko Chemical Co., Ltd .... 3 parts by mass, vulcanization accelerator: Noxcellar TOT-N, Made by Ouchi Shinko Chemical Co., Ltd ... 2 parts by mass, sulfur ... 5 parts by mass
<未加硫のトレッドの作製>
 下記成分をバンバリミキサー((株)神戸製鋼製、MIXTRON BB MIXER)で混練してシート形状に成形し、未加硫のトレッドを作製する。
・天然ゴム:RSS#3・・・50質量部
・スチレン・ブタジエン共重合体ゴム(SBR):#1500(乳化重合SBR)、JSR社製・・・50質量部
・カーボンブラック:ISAF、旭カーボン社製・・・50質量部
・老化防止剤:アンチゲン6C、住友化学社製・・・1質量部
・加硫促進剤:ノクセラーCZ、大内新興化学工業社製・・・0.5質量部
・加硫促進剤:ノクセラーDM、大内新興化学工業社製・・・1質量部
・加硫促進剤:ノクセラーD、大内新興化学工業社製・・・0.5質量部
・硫黄・・・1.5質量部
<Preparation of unvulcanized tread>
The following components are kneaded with a Banbury mixer (Mixtron BB MIXER, manufactured by Kobe Steel, Ltd.) and molded into a sheet shape to prepare an unvulcanized tread.
-Natural rubber: RSS # 3 ... 50 parts by mass-Styrene / butadiene copolymer rubber (SBR): # 1500 (emulsion polymerization SBR), manufactured by JSR ... 50 parts by mass-Carbon black: ISAF, Asahi Carbon Company-made: 50 parts by mass Anti-aging agent: Antigen 6C, Sumitomo Chemical Co., Ltd .: 1 part by mass-Vulcanization accelerator: Nocceller CZ, Ouchi Shinko Chemical Co., Ltd .: 0.5 parts by mass・ Vulcanization accelerator: Nocceller DM, manufactured by Ouchi Shinko Chemical Co., Ltd .... 1 part by mass ・ Vulcanization accelerator: Nocceller D, manufactured by Ouchi Shinko Chemical Co., Ltd .... 0.5 part by mass, sulfur・ 1.5 parts by mass
<タイヤの作製>
 前述の実施形態に従って、未加硫のタイヤケース及びベルト層を作製する。
 なお、ビードコアとしては、図2に示すように、被覆樹脂(ポリエステル系熱可塑性エラストマー、東レ・デュポン社製、品名:ハイトレル5557)に被覆された1本のスチールワイヤー(φ2.1mm)を巻回したものを用いる。また、ビードフィラーとしては、ポリエステル系熱可塑性エラストマー(東レ・デュポン社製、品名:ハイトレル5557)からなるビードフィラーを用いる。また、カーカスとしては、有機繊維コードをジエン系ゴム(天然ゴム)で被覆したものを用いる。
 ベルト層を未加硫のタイヤケースの外周面に設置し、ベルト層の外周に未加硫のトレッドを巻きつけ、生タイヤを得る。そして、得られた生タイヤを160℃で20分間加熱することで加硫し、タイヤを得る。
<Production of tire>
An unvulcanized tire case and belt layer are prepared according to the above-described embodiments.
As the bead core, as shown in FIG. 2, one steel wire (φ2.1 mm) coated with a coating resin (thermoplastic polyester elastomer, manufactured by Toray DuPont, product name: Hytrel 5557) is wound. Use the one that you made. As the bead filler, a bead filler made of a polyester thermoplastic elastomer (manufactured by Toray-Dupont, product name: Hytrel 5557) is used. As the carcass, an organic fiber cord covered with a diene rubber (natural rubber) is used.
A belt layer is installed on the outer peripheral surface of an unvulcanized tire case, and an unvulcanized tread is wound around the outer periphery of the belt layer to obtain a raw tire. Then, the obtained raw tire is vulcanized by heating at 160 ° C. for 20 minutes to obtain a tire.
<評価>
(ランフラット走行性(耐久性)評価)
 ISO規格に基づいた室内ドラム試験において、内圧0kPaで速度80km/hでランフラット走行させる。タイヤ故障または支持体故障により走行が不可能になるまでの走行距離を測定し、比較例1における走行距離を100としたときの指数を求める。結果を表1に示す。なお、指数が大きいほどランフラット走行性(すなわち耐久性)が良好であることを示す。
<Evaluation>
(Run-flat runnability (durability) evaluation)
In an indoor drum test based on the ISO standard, run flat running at an internal pressure of 0 kPa and a speed of 80 km / h. The traveling distance until the traveling becomes impossible due to a tire failure or a support failure is measured, and an index when the traveling distance in Comparative Example 1 is 100 is obtained. The results are shown in Table 1. It should be noted that the larger the index, the better the run-flat running property (that is, the durability).
(内圧保持性評価)
 成型タイヤをリム組みし、内圧0.3MPaとなるようにタイヤ内に空気を充満させて得られるタイヤを、40℃/50%RHの環境下に保持した状態で恒温恒湿槽に3ヶ月放置する。放置前の内圧に対する放置後の内圧の割合から内圧保持率を求め、比較例1における内圧保持率を100としたときの指数を求める。結果を表1に示す。なお、指数が大きいほど内圧保持性が良好であることを示す。
(Internal pressure retention evaluation)
A tire obtained by assembling a molded tire on a rim and filling the inside of the tire with air to an internal pressure of 0.3 MPa is left in a thermo-hygrostat for 3 months while being kept in an environment of 40 ° C / 50% RH. To do. The internal pressure holding ratio is obtained from the ratio of the internal pressure after leaving to the internal pressure before leaving, and the index when the internal pressure holding ratio in Comparative Example 1 is 100 is obtained. The results are shown in Table 1. The larger the index, the better the internal pressure retention.
[実施例2]
 未加硫のインナーライナーの作製において、天然ゴムの添加量を50質量部とし、ブロモブチルゴムの添加量を50質量部とする以外は、実施例1と同様にしてタイヤの作製及び評価を行う。
[Example 2]
In the production of the unvulcanized inner liner, the tire is produced and evaluated in the same manner as in Example 1 except that the addition amount of natural rubber is 50 parts by mass and the addition amount of bromobutyl rubber is 50 parts by mass.
[実施例3]
 未加硫のインナーライナーの作製において、天然ゴムの添加量を80質量部とし、ブロモブチルゴムの添加量を20質量部とする以外は、実施例1と同様にしてタイヤの作製及び評価を行う。
[Example 3]
In the production of the unvulcanized inner liner, the tire is produced and evaluated in the same manner as in Example 1 except that the addition amount of natural rubber is 80 parts by mass and the addition amount of bromobutyl rubber is 20 parts by mass.
[比較例1]
 被覆樹脂コードの作製において、被覆樹脂の代わりに被覆ゴム(天然ゴム)を用い、未加硫のインナーライナーの作製において、天然ゴムの添加量を0質量部、ブロモブチルゴムの添加量を100質量部とし、ビードコアにおける被覆樹脂の代わりに被覆ゴム(天然ゴム)を用い、ビードフィラーとしてゴム(天然ゴム)からなるビードフィラーを用いる以外は、実施例1と同様にしてタイヤの作製及評価を行う。
[Comparative Example 1]
In the production of the coated resin cord, the coated rubber (natural rubber) is used instead of the coated resin, and in the production of the unvulcanized inner liner, the addition amount of the natural rubber is 0 part by mass and the addition amount of the bromobutyl rubber is 100 parts by mass A tire is manufactured and evaluated in the same manner as in Example 1 except that a coated rubber (natural rubber) is used instead of the coating resin in the bead core and a bead filler made of rubber (natural rubber) is used as the bead filler.
[比較例2]
 被覆樹脂コードの作製において、被覆樹脂の代わりに被覆ゴムを用い、ビードコアにおける被覆樹脂の代わりに被覆ゴムを用い、ビードフィラーとしてゴムからなるビードフィラーを用いる以外は、実施例1と同様にしてタイヤの作製及評価を行う。
[Comparative example 2]
In the production of the coated resin cord, a tire was prepared in the same manner as in Example 1 except that a coated rubber was used instead of the coated resin, a coated rubber was used instead of the coated resin in the bead core, and a bead filler made of rubber was used as a bead filler. The production and evaluation of
[比較例3]
 被覆樹脂コードの作製において、被覆樹脂の代わりに被覆ゴムを用い、ビードコアにおける被覆樹脂の代わりに被覆ゴムを用い、ビードフィラーとしてゴムからなるビードフィラーを用いる以外は、実施例2と同様にしてタイヤの作製及評価を行う。
[Comparative Example 3]
In the production of the coated resin cord, a tire was prepared in the same manner as in Example 2 except that a coated rubber was used instead of the coated resin, a coated rubber was used instead of the coated resin in the bead core, and a bead filler made of rubber was used as a bead filler. The production and evaluation of
Figure JPOXMLDOC01-appb-T000006

 
Figure JPOXMLDOC01-appb-T000006

 
 なお、上記表1に示す耐久性評価及び内圧保持性評価の数値は、いずれもシミュレーションによる予測データである。 Note that the numerical values of the durability evaluation and the internal pressure retention evaluation shown in Table 1 above are all prediction data by simulation.
 2018年11月8日に出願された日本国特許出願2018-210297号の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に取り込まれる。
The disclosure of Japanese Patent Application No. 2018-210297 filed on Nov. 8, 2018 is incorporated herein by reference in its entirety.
All publications, patent applications, and technical standards mentioned herein are to the same extent as if each individual publication, patent application, and technical standard were specifically and individually noted to be incorporated by reference, Incorporated herein.
 符号の説明は、以下の通りである。
10…タイヤ(ランフラットタイヤ)、 12…ビード部、 14…カーカス、 16…インナーライナー、 18…トレッド部、 20…トレッド、 22…タイヤサイド部、24…サイド補強ゴム、 26…ビードコア、 28…ビードフィラー、 30…リム、 40…ベルト層、 42…樹脂被覆コード
The description of the reference numerals is as follows.
10 ... Tire (run flat tire), 12 ... Bead part, 14 ... Carcass, 16 ... Inner liner, 18 ... Tread part, 20 ... Tread, 22 ... Tire side part, 24 ... Side reinforcement rubber, 26 ... Bead core, 28 ... Bead filler, 30 ... rim, 40 ... Belt layer, 42 ... Resin coated cord

Claims (6)

  1.  一対のビードコアと、
     前記一対のビードコアに跨り、端部が前記ビードコアに係止されたカーカスと、
     前記カーカスのタイヤ内面側に設けられたインナーライナーであって、前記インナーライナーに含まれるゴムの総量に対しジエン系ゴムの含有率が20質量%以上であるインナーライナーと、
     タイヤサイド部の前記カーカスと前記インナーライナーとの間に前記インナーライナーと直接接して設けられ、前記カーカスの内面に沿ってタイヤ径方向に延びるサイド補強ゴム層と、
     前記カーカスのタイヤ径方向外側に設けられ、コードと前記コードを被覆し樹脂を含むコード被覆層とを有するベルト層と、
     前記ベルト層のタイヤ径方向外側に設けられたトレッドと、
     を備えるランフラットタイヤ。
    A pair of bead cores,
    A carcass straddling the pair of bead cores, the end portion of which is locked to the bead core,
    An inner liner provided on the tire inner surface side of the carcass, wherein the content of the diene rubber is 20% by mass or more based on the total amount of rubber contained in the inner liner,
    A side reinforcing rubber layer provided in direct contact with the inner liner between the carcass of the tire side portion and the inner liner, and extending in the tire radial direction along the inner surface of the carcass,
    A belt layer provided on the outer side in the tire radial direction of the carcass, having a cord and a cord coating layer that coats the cord and contains a resin,
    A tread provided on the tire radial direction outer side of the belt layer,
    Run-flat tire with.
  2.  前記インナーライナーに含まれるジエン系ゴムは、天然ゴムを含有する請求項1に記載のランフラットタイヤ。 The run-flat tire according to claim 1, wherein the diene rubber contained in the inner liner contains natural rubber.
  3.  前記インナーライナーは、ブチル系ゴムをさらに含む請求項1又は請求項2に記載のランフラットタイヤ。 The run-flat tire according to claim 1 or 2, wherein the inner liner further contains butyl rubber.
  4.  前記サイド補強ゴム層は、ジエン系ゴムを含む請求項1~請求項3のいずれか1項に記載のランフラットタイヤ。 The run-flat tire according to any one of claims 1 to 3, wherein the side reinforcing rubber layer contains a diene rubber.
  5.  前記ビードコアからタイヤ径方向外側へ前記カーカスの外面に沿って延びるように配置され、樹脂を含むビードフィラーをさらに備えた請求項1~請求項4のいずれか1項に記載のランフラットタイヤ。 The run-flat tire according to any one of claims 1 to 4, further comprising a bead filler containing a resin, the bead filler being arranged so as to extend from the bead core outward in the tire radial direction along the outer surface of the carcass.
  6.  前記ビードコアは、ビードワイヤと前記ビードワイヤを被覆し樹脂を含むビード被覆層とを有する請求項1~請求項5のいずれか1項に記載のランフラットタイヤ。 The run-flat tire according to any one of claims 1 to 5, wherein the bead core includes a bead wire and a bead coating layer that covers the bead wire and contains a resin.
PCT/JP2019/043278 2018-11-08 2019-11-05 Run-flat tire WO2020095891A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020556075A JPWO2020095891A1 (en) 2018-11-08 2019-11-05 Run flat tire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-210297 2018-11-08
JP2018210297 2018-11-08

Publications (1)

Publication Number Publication Date
WO2020095891A1 true WO2020095891A1 (en) 2020-05-14

Family

ID=70610710

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/043278 WO2020095891A1 (en) 2018-11-08 2019-11-05 Run-flat tire

Country Status (2)

Country Link
JP (1) JPWO2020095891A1 (en)
WO (1) WO2020095891A1 (en)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09300924A (en) * 1996-05-13 1997-11-25 Yokohama Rubber Co Ltd:The Pneumatic tire
JPH11198617A (en) * 1998-01-09 1999-07-27 Yokohama Rubber Co Ltd:The Pneumatic tire
JPH11245636A (en) * 1998-03-06 1999-09-14 Bridgestone Corp Pneumatic safety tire
JP2002103925A (en) * 2000-09-27 2002-04-09 Bridgestone Corp Pneumatic run-flat radial tire
JP2003191711A (en) * 2001-12-26 2003-07-09 Bridgestone Corp Tire and its manufacturing method
JP2007069745A (en) * 2005-09-07 2007-03-22 Yokohama Rubber Co Ltd:The Pneumatic tire
JP2007069775A (en) * 2005-09-07 2007-03-22 Sumitomo Rubber Ind Ltd Runflat tire
JP2010162826A (en) * 2009-01-19 2010-07-29 Yokohama Rubber Co Ltd:The Production process of pneumatic tire and pneumatic tire
JP2011235835A (en) * 2010-05-13 2011-11-24 Yokohama Rubber Co Ltd:The Pneumatic tire
JP2012051970A (en) * 2010-08-31 2012-03-15 Toyo Tire & Rubber Co Ltd Method for producing modified diene-based rubber polymer
JP2015123905A (en) * 2013-12-26 2015-07-06 横浜ゴム株式会社 Pneumatic tire
JP2017114163A (en) * 2015-12-21 2017-06-29 株式会社ブリヂストン Pneumatic tire and tire/rim assembly
JP2017159864A (en) * 2016-03-11 2017-09-14 株式会社ブリヂストン Pneumatic tire and method for producing pneumatic tire

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09300924A (en) * 1996-05-13 1997-11-25 Yokohama Rubber Co Ltd:The Pneumatic tire
JPH11198617A (en) * 1998-01-09 1999-07-27 Yokohama Rubber Co Ltd:The Pneumatic tire
JPH11245636A (en) * 1998-03-06 1999-09-14 Bridgestone Corp Pneumatic safety tire
JP2002103925A (en) * 2000-09-27 2002-04-09 Bridgestone Corp Pneumatic run-flat radial tire
JP2003191711A (en) * 2001-12-26 2003-07-09 Bridgestone Corp Tire and its manufacturing method
JP2007069745A (en) * 2005-09-07 2007-03-22 Yokohama Rubber Co Ltd:The Pneumatic tire
JP2007069775A (en) * 2005-09-07 2007-03-22 Sumitomo Rubber Ind Ltd Runflat tire
JP2010162826A (en) * 2009-01-19 2010-07-29 Yokohama Rubber Co Ltd:The Production process of pneumatic tire and pneumatic tire
JP2011235835A (en) * 2010-05-13 2011-11-24 Yokohama Rubber Co Ltd:The Pneumatic tire
JP2012051970A (en) * 2010-08-31 2012-03-15 Toyo Tire & Rubber Co Ltd Method for producing modified diene-based rubber polymer
JP2015123905A (en) * 2013-12-26 2015-07-06 横浜ゴム株式会社 Pneumatic tire
JP2017114163A (en) * 2015-12-21 2017-06-29 株式会社ブリヂストン Pneumatic tire and tire/rim assembly
JP2017159864A (en) * 2016-03-11 2017-09-14 株式会社ブリヂストン Pneumatic tire and method for producing pneumatic tire

Also Published As

Publication number Publication date
JPWO2020095891A1 (en) 2021-09-24

Similar Documents

Publication Publication Date Title
EP2821253A1 (en) Tire
WO2013154205A1 (en) Tire
WO2013122157A1 (en) Tire
US20200262253A1 (en) Bead member for tire, tire, and method of producing bead member for tire
US20200238649A1 (en) Bead member for tire, tire, and method of producing bead member for tire
EP3805013A1 (en) Resin metal composite member for tires, method for producing same, and tire
EP3569423A1 (en) Tire
JP7221951B2 (en) Resin-metal composite member for tire, manufacturing method thereof, and tire
WO2020095891A1 (en) Run-flat tire
WO2020059890A1 (en) Resin rubber composite for tire and tire
EP3640047B1 (en) Tire
JP6049273B2 (en) tire
WO2020067473A1 (en) Tire
WO2020096000A1 (en) Run flat tire
CN110740874B (en) Tyre for vehicle wheels
JP2019069672A (en) Bead member for tire and tire
WO2019225622A1 (en) Bead member for tires, and tire
WO2021117427A1 (en) Tire resin member, bead member, tire belt, tire frame body and tire, and methods for manufacturing same
WO2020096047A1 (en) Tire
JP6745284B2 (en) tire
JP2020062935A (en) Wire-resin composite member for tire, and tire

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19881707

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020556075

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19881707

Country of ref document: EP

Kind code of ref document: A1