WO2020067473A1 - Tire - Google Patents

Tire Download PDF

Info

Publication number
WO2020067473A1
WO2020067473A1 PCT/JP2019/038259 JP2019038259W WO2020067473A1 WO 2020067473 A1 WO2020067473 A1 WO 2020067473A1 JP 2019038259 W JP2019038259 W JP 2019038259W WO 2020067473 A1 WO2020067473 A1 WO 2020067473A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin layer
coating resin
tire
bead
based thermoplastic
Prior art date
Application number
PCT/JP2019/038259
Other languages
French (fr)
Japanese (ja)
Inventor
行紀 中北
啓之 筆本
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Priority to JP2020549460A priority Critical patent/JPWO2020067473A1/en
Publication of WO2020067473A1 publication Critical patent/WO2020067473A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C15/00Tyre beads, e.g. ply turn-up or overlap
    • B60C15/04Bead cores

Definitions

  • the present disclosure relates to a tire.
  • a pneumatic tire having a pair of bead portions, a pair of tire side portions extending outward from the bead portion in the tire radial direction, and a tread portion extending from one tire side portion to the other tire side portion has been used.
  • a structure in which a bead core having a bead wire is buried is employed from the viewpoint of improving the fixing performance to the rim.
  • Patent Literature 1 proposes a tire formed of at least a thermoplastic resin material and having an annular tire skeleton, wherein the thermoplastic resin material includes at least a polyester-based thermoplastic elastomer, Further, a structure in which an annular bead core made of a metal material is embedded is disclosed.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2012-046025
  • Patent Literature 1 discloses a technology in which an annular bead core made of a metal material is embedded.
  • the bead wire may be corroded or deteriorated by the contact with the water. Therefore, from the viewpoint of further improving the durability of the bead portion of the tire, it is conceivable to suppress the penetration of water into the bead wire at the bead portion.
  • the present disclosure has been made in view of the above circumstances, and aims to provide a tire having excellent durability in a bead portion.
  • a tire having a pair of bead portions At least one of the pair of bead portions has a bead wire, an adhesive layer, a first coating resin layer, and a second coating resin layer in this order, In a direction where the distance from the surface of the bead wire to the outer surface of the second coating resin layer is minimized in the inward and outward directions in the axial direction of the tire, and in all the inward directions in the radial direction of the tire.
  • the thickness a of the second coating resin layer, the thickness b of the first coating resin layer, and the thickness c of the adhesive layer satisfy the following conditions (a1), (b1) and (c1), respectively:
  • the water permeability A of the second coating resin layer, the water permeability B of the first coating resin layer, and the water permeability C of the adhesive layer satisfy the following conditions (A1), (B1), and (C1), respectively. Meet the tire.
  • FIG. 1A It is a mimetic diagram of a perpendicular section to the length direction of a bead wire which shows an example of a bead part in a tire concerning one embodiment of this indication.
  • the distance from the surface of the bead wire to the outer surface of the second coating resin layer is the smallest in the inward and outward directions in the axial direction of the tire, and in the inward direction in the radial direction of the tire.
  • FIG. 2A is a tire half-sectional view showing one side of a section which cut a tire concerning one embodiment of the present disclosure along a tire width direction.
  • resin is a concept including a thermoplastic resin, a thermoplastic elastomer, and a thermosetting resin, and does not include a vulcanized rubber.
  • the same type means a resin having a skeleton common to the skeleton constituting the main chain of the resin, such as an ester type or a styrene type.
  • a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit and an upper limit.
  • step includes not only an independent step but also the term “step” as long as its purpose is achieved, even if it cannot be clearly distinguished from other steps. include.
  • the amount of each component in the composition is, when a plurality of substances corresponding to each component are present in the composition, unless otherwise specified, the sum of a plurality of substances present in the composition. Means quantity.
  • the “main component” means a component having the largest content by mass in a mixture unless otherwise specified.
  • thermoplastic resin refers to a polymer compound in which a material softens and flows with an increase in temperature and becomes relatively hard and strong when cooled, but does not have rubber-like elasticity.
  • thermoplastic elastomer refers to a copolymer having a hard segment and a soft segment. Examples of the thermoplastic elastomer include an elastomer which softens and flows with an increase in temperature, becomes relatively hard and strong when cooled, and has rubber-like elasticity.
  • thermoplastic elastomer for example, a polymer that forms a hard segment having a high melting point or a hard segment having a high cohesive force and a polymer that forms an amorphous soft segment having a low glass transition temperature, Copolymer having the same.
  • the hard segment indicates a component that is relatively harder than the soft segment.
  • the hard segment is preferably a molecular constraint component serving as a crosslinking point of the crosslinked rubber for preventing plastic deformation.
  • a segment such as a structure having a rigid group such as an aromatic group or an alicyclic group in a main skeleton, or a structure capable of packing between molecules by intermolecular hydrogen bonding or ⁇ - ⁇ interaction is used. No.
  • the soft segment indicates a component relatively softer than the hard segment.
  • the soft segment is preferably a flexible component exhibiting rubber elasticity.
  • examples of the soft segment include a segment having a structure in which a main chain has a long-chain group (for example, a long-chain alkylene group or the like), has a high degree of freedom of molecular rotation, and has elasticity.
  • a tire according to an embodiment of the present disclosure includes a pair of bead portions. And at least one of the pair of bead portions has a bead wire, an adhesive layer, a first coating resin layer, and a second coating resin layer in this order, and the inner and outer directions in the axial direction of the tire, and The thickness a of the second coating resin layer, where the distance from the surface of the bead wire to the outer surface of the second coating resin layer is minimized in all directions in the radially inward direction of the tire.
  • the thickness b of the coating resin layer and the thickness c of the adhesive layer satisfy the following conditions (a1), (b1) and (c1), respectively, and the water permeability A of the second coating resin layer is
  • the water permeability B of the first coating resin layer and the water permeability C of the adhesive layer satisfy the following conditions (A1), (B1) and (C1), respectively.
  • a bead member that satisfies the above conditions (A1), (B1) and (C1) is also simply referred to as a “specific bead portion”.
  • FIG. 1A is a cross-sectional view illustrating a cross section orthogonal to the circumferential direction of the bead portion 10.
  • 1A includes a bead core 1 having a bead wire 11, an adhesive layer 12 that covers the bead wire 11, and a first coating resin layer 13 that covers the periphery of the adhesive layer 12.
  • it has a bead filler 3 extending outward from the second coating resin layer 14 in the tire radial direction.
  • the second coating resin layer 14 and the bead filler 3 are drawn as separate bodies, but the second coating resin layer 14 and the bead filler 3 are integrally formed as one body. May be used.
  • the axial direction of the tire is drawn in the horizontal direction, ie, the directions of arrows Y1 and Y2, and the radial direction of the tire is drawn in the vertical direction, ie, the directions of arrows X1 and X2.
  • the outer direction in the tire axial direction is the arrow “Y1” direction
  • the inner direction in the tire axial direction is the arrow “Y2” direction
  • the outer direction in the tire radial direction is the arrow “X1” direction
  • the inward direction in the radial direction of the tire is the direction of the arrow “X2”.
  • the distance from the surface of the bead wire to the outer surface of the second coating resin layer is the smallest in the inward and outward directions in the axial direction of the tire, and in all the inward directions in the radial direction of the tire. At some point, the conditions (a1), (b1), and (c1) are satisfied.
  • inward and outward directions in the axial direction of the tire, and all directions inward in the radial direction of the tire when observing a cross section orthogonal to the circumferential direction of the bead portion, All directions in the direction of 45 ° on both sides from the inner direction in the axial direction, in the direction of 45 ° on both sides from the outer direction in the tire axial direction, and in the direction of 45 ° on both sides from the inner direction in the tire radial direction. Point to. In other words, it means a direction in the entire 270 ° range, excluding the direction in the range of 45 ° on both sides from the outer direction in the tire radial direction. More specifically, for example, in FIG.
  • it means the direction of the entire range excluding the direction in the range of 45 ° on both sides from the outer direction (direction of arrow X1) in the tire radial direction (that is, the range indicated by ⁇ 1).
  • the bead wires are formed in the inward and outward directions in the axial direction of the tire, and in all the inward directions in the radial direction of the tire (hereinafter, also simply referred to as “specific target directions” in the present specification).
  • the location where the distance from the surface to the outer surface of the second coating resin layer is minimum is targeted. That is, in the case of the bead portion 10 shown in FIG. 1A, the distance from the surface of the bead wire 11 to the outer surface of the second coating resin layer 14 in a specific target direction (that is, a direction in a range indicated by ⁇ 2, ⁇ 3, and ⁇ 4).
  • the minimum location [m1] is the target.
  • FIG. 1B is an enlarged view of a portion [m1] in FIG. 1A.
  • the thickness a of the second coating resin layer 14, the thickness b of the first coating resin layer 13, and the thickness c of the adhesive layer 12 at the point [m1] are (a1 ), (B1) and (c1).
  • the water permeability A of the second covering resin layer 14, the water permeability B of the first covering resin layer 13, and the water permeability C of the adhesive layer 12 are (A1) and (B1), respectively.
  • (C1) the thickness a of the second coating resin layer 14
  • the thickness b of the first coating resin layer 13 and the thickness c of the adhesive layer 12 at the point [m1] are (a1 ), (B1) and (c1).
  • the water permeability A of the second covering resin layer 14, the water permeability B of the first covering resin layer 13, and the water permeability C of the adhesive layer 12 are (A1) and (B1), respectively.
  • (C1) the water permeability A of the second covering resin
  • FIG. 2A is a cross-sectional view illustrating a cross section orthogonal to the circumferential direction of the bead portion 110.
  • FIG. 2A shows a bead portion 110 in which three bead wires 111 are arranged in parallel and stacked in three stages, that is, in an embodiment having nine bead wires 111.
  • Each bead wire 111 is covered with an adhesive layer 112, and the periphery of the bead wire 111 and the adhesive layer 112 is covered with a first covering resin layer 113 to form a bead core 101. Further, a second coating resin layer 114 covering the periphery of the bead core 101 is provided. In addition, it has a bead filler 103 extending outward from the second coating resin layer 114 in the tire radial direction. In the bead portion 110 shown in FIG. 2A, the second coating resin layer 114 and the bead filler 103 are drawn as separate bodies, but the second coating resin layer 114 and the bead filler 103 are integrally formed in the same body. May be used. In FIG.
  • the outer direction in the axial direction of the tire is an arrow “Y1” direction
  • the inner direction in the axial direction of the tire is an arrow “Y2” direction
  • the outer direction in the radial direction of the tire is an arrow “X1” direction
  • the inner direction in the tire radial direction is the direction of the arrow “X2”.
  • a direction in a range of 45 ° on both sides from a specific target direction that is, an inner direction (arrow Y2 direction) in the tire axial direction) and an outer direction (arrow Y1 direction) in the tire axial direction.
  • the second coating resin extends from the surface of the bead wire 111 in a direction of a range of 45 ° on both sides and a direction of an inner side in the tire radial direction (direction of arrow X2) in a range of 45 ° on both sides in all 270 ° directions.
  • the conditions (a1), (b1), and (c1) are satisfied.
  • FIG. 2A In the case of having a plurality of bead wires, as shown in FIG. 2A, a portion of the plurality of bead wires 111 from the surface of the bead wire 111 in a specific target direction to the outer surface of the second coating resin layer 114. One line having the minimum distance is selected, and a portion [m2] where the distance is minimum is targeted.
  • FIG. 2B is an enlarged view of a portion [m2] in FIG. 2A. 2B, at the point [m2], the thickness a of the second coating resin layer 114, the thickness b of the first coating resin layer 113, and the thickness c of the adhesive layer 112 are respectively the same. The conditions (a1), (b1), and (c1) are satisfied.
  • the water permeability A of the second covering resin layer 114, the water permeability B of the first covering resin layer 113, and the water permeability C of the adhesive layer 112 are (A1) and (B1), respectively. , And (C1).
  • a bead having a bead wire, an adhesive layer, a first coating resin layer, and a second coating resin layer in this order has been used as a bead that plays a role of fixing the tire to a rim.
  • a metal wire such as a steel cord, a resin wire, and the like are often used as bead wires.
  • the bead wire When water permeates from the outside of the tire to the inside of the bead portion and reaches the bead wire, the bead wire may be corroded or deteriorated by contact with water.
  • the tire satisfies the conditions (a1), (b1), (c1), (A1), (B1), and (C1) in the bead portion.
  • the adhesive layer closest to the bead wire among the adhesive layer, the first coating resin layer, and the second coating resin layer is required to be thin from the viewpoint of maintaining adhesiveness, strength, and suppressing cracking due to impact. Specifically, it is required that the condition (c1) 0.005 mm ⁇ c ⁇ 0.1 mm is satisfied.
  • the adhesive layer closest to the bead wire is required to have a high property of suppressing water penetration, on the assumption that the above condition (c1) is satisfied, the water permeability is (C1) C ⁇ 80 g ⁇ mm / (M 2 ⁇ day) is required to be satisfied. Further, the second coating resin layer and the first coating resin layer disposed on the adhesive layer each have a water permeability (A1) A ⁇ 300 g ⁇ mm / (m 2 ⁇ day) and to meet the (B1) B ⁇ 300g ⁇ mm / (m 2 ⁇ day) is determined.
  • the thickness of the first coating resin layer satisfies (b1) 0.05 mm ⁇ b ⁇ 0.5 mm from both viewpoints of moldability, adhesiveness, strength, and the like and suppression of water penetration.
  • the thickness of the second coating resin layer is required to be thicker than the adhesive layer and the first coating resin layer from the viewpoint of suppressing water penetration, that is, (a1) satisfying 10 mm ⁇ a ⁇ 80 mm Is required.
  • the adhesive layer satisfies the conditions (c1) and (C1)
  • the first coating resin layer satisfies the conditions (b1) and (B1)
  • the second coating resin layer satisfies the conditions (b1) and (B1).
  • the thickness of the adhesive layer and the water permeability In a specific target direction, a location where the distance from the surface of the bead wire to the outer surface of the second coating resin layer is minimum (for example, the location [m1] in FIGS. 1A and 1B, In FIG. 2A and FIG. 2B, at the position [m2]), the thickness c of the adhesive layer satisfies (c1) below. In addition, it is preferable to satisfy the following (c2), and it is more preferable to satisfy the following (c3).
  • the thickness c of the adhesive layer is 0.005 mm or more, penetration of water into the bead wire is suppressed, and the durability of the bead portion is excellent.
  • the thickness c of the adhesive layer is set to 0.1 mm or less from the viewpoint of maintaining adhesiveness, strength, and suppressing cracking due to impact.
  • the water permeability C of the adhesive layer satisfies the following (C1). In addition, it is preferable that the following (C2) is satisfied, and it is more preferable that the following (C3) is satisfied.
  • the water permeability C of the adhesive layer is 80 g ⁇ mm / (m 2 ⁇ day) or less, permeation of water into the bead wire is suppressed, and the durability of the bead portion is excellent.
  • the water permeability C of the adhesive layer is preferably 3 g ⁇ mm / (m 2 ⁇ day) or more from the viewpoint of the degree of
  • b satisfies the following (b1).
  • the thickness b of the first coating resin layer is 0.05 mm or more, permeation of water into the bead wire is suppressed, and the durability of the bead portion is excellent.
  • the thickness b of the first coating resin layer is set to 0.5 mm or less from both viewpoints of moldability, adhesiveness, strength, and the like and suppression of water penetration.
  • the water permeability B of the first coating resin layer satisfies the following (B1). In addition, it is preferable to satisfy the following (B2), and it is more preferable to satisfy the following (B3).
  • the water permeability B of the first coating resin layer is 300 g ⁇ mm / (m 2 ⁇ day) or less, permeation of water into the bead wire is suppressed, and the durability of the bead portion is excellent.
  • the water permeability B of the first coating resin layer is preferably 25 g ⁇ mm / (m 2 ⁇ day) or more from
  • the thickness of the second coating resin layer at a point where the distance from the surface of the bead wire to the outer surface of the second coating resin layer is minimum. a satisfies the following (a1). In addition, it is preferable to satisfy the following (a2), and it is more preferable to satisfy the following (a3). (A1) 10 mm ⁇ a ⁇ 80 mm (A2) 10 mm ⁇ a ⁇ 50 mm (A3) 10 mm ⁇ a ⁇ 25 mm
  • the thickness a of the second coating resin layer is set to 80 mm or less from the viewpoint of material cost and bulk durability.
  • the water permeability A of the second coating resin layer satisfies the following (A1). In addition, it is preferable to satisfy the following (A2), and it is more preferable to satisfy the following (A3).
  • (A1) A ⁇ 300 g ⁇ mm / (m 2 ⁇ day) (A2) 25 g ⁇ mm / (m 2 ⁇ day) ⁇ A ⁇ 280 g ⁇ mm / (m 2 ⁇ day) (A3) 50 g ⁇ mm / (m 2 ⁇ day) ⁇ A ⁇ 220 g ⁇ mm / (m 2 ⁇ day)
  • the water permeability A of the second coating resin layer is 300 g ⁇ mm / (m 2 ⁇ day) or less, permeation of water into the bead wire is suppressed, and the durability of the bead portion is excellent.
  • the water permeability A of the second coating resin layer is preferably 25 g ⁇ mm / (m 2 ⁇ day) or more
  • the ratio of the water permeability A of the second coating resin layer to the water permeability C of the adhesive layer preferably satisfies the following condition (RA1), and more preferably satisfies the following (RA2). More preferably, it satisfies the following (RA3).
  • (RA1) 2.50 ⁇ A / C
  • (RA2) 2.75 ⁇ A / C ⁇ 40
  • (RA3) 2.75 ⁇ A / C ⁇ 20
  • the ratio [A / C] of the water permeability C of the adhesive layer to the water permeability A of the second coating resin layer is 2.50 or more, permeation of water into the bead wire is suppressed, and the durability of the bead portion is improved. Excellent in nature.
  • the ratio [A / C] is preferably 40 or less from the viewpoint of the degree of freedom in selecting the resin of the second coating resin layer.
  • the ratio of the water permeability B of the first coating resin layer to the water permeability C of the adhesive layer preferably satisfies the following condition (RB1), more preferably satisfies the following (RB2), and more preferably satisfies the following (RB3) It is more preferable to satisfy the following.
  • (RB1) 1.47 ⁇ B / C (RB2) 2.00 ⁇ B / C ⁇ 100 (RB3) 2.75 ⁇ B / C ⁇ 50
  • the ratio [B / C] of the water permeability C of the adhesive layer and the water permeability B of the first coating resin layer is 1.47 or more, permeation of water into the bead wire is suppressed, and the durability of the bead portion is improved. Excellent in nature.
  • the ratio [B / C] is preferably 100 or less from the viewpoint of the degree of freedom in selecting the resin of the first coating resin layer.
  • the ratio of the water permeability B of the first coating resin layer to the water permeability A of the second coating resin layer preferably satisfies the following condition (RC1), more preferably satisfies the following (RC2), and More preferably, (RC3) is satisfied.
  • (RC1) 0.50 ⁇ B / A
  • (RC2) 0.70 ⁇ B / A ⁇ 3.00
  • (RC3) 1.00 ⁇ B / A ⁇ 2.00
  • the ratio [B / A] of the water permeability A of the second coating resin layer to the water permeability B of the first coating resin layer is 0.50 or more, the penetration of water into the bead wire is suppressed and the bead is formed. The durability of the part is excellent.
  • the ratio [B / A] is preferably 3.00 or less from the viewpoint of the degree of freedom in selecting the resin of the first coating resin layer.
  • the melt viscosity of the second coating resin layer at 270 ° C is preferably 150 Pa ⁇ s or more and 600 Pa ⁇ s or less, more preferably 150 Pa ⁇ s or more and 300 Pa ⁇ s or less, and 150 Pa ⁇ s or more. More preferably, it is 250 Pa ⁇ s or less.
  • the melt viscosity of the second coating resin layer is 150 Pa ⁇ s or more, excellent adhesion to the second coating resin layer is ensured.
  • the melt viscosity is 600 Pa ⁇ s or less, the moldability of the second coating resin layer (particularly, the moldability when forming the second coating resin layer by injection molding) is excellent.
  • the ratio of the melt viscosity Mb at 270 ° C. of the first coating resin layer to the melt viscosity Ma at 270 ° C. of the second coating resin layer preferably satisfies the following condition (Ma1), and satisfies the following condition (Ma2). Is more preferable, and it is still more preferable to satisfy the following (Ma3).
  • the ratio [Mb / Ma] of the melt viscosity between the second coating resin layer and the first coating resin layer is 0.4 or more means that the melt viscosity Ma of the second coating resin layer and the melt viscosity of the first coating resin layer. This indicates that Mb is not too far away, whereby excellent adhesion between the second coating resin layer and the first coating resin layer is exhibited.
  • the ratio [Mb / Ma] is preferably 2.5 or less from the same viewpoint as described above.
  • the melt viscosity at 270 ° C. of the first coating resin layer is preferably 150 Pa ⁇ s or more and 600 Pa ⁇ s or less, and 150 Pa ⁇ s or more and 300 Pa ⁇ s or less. Is more preferable, and more preferably 150 Pa ⁇ s or more and 250 Pa ⁇ s or less.
  • the melt viscosity Mc at 270 ° C. of the adhesive layer is preferably 10 Pa ⁇ s or more and 3000 Pa ⁇ s or less, more preferably 30 Pa ⁇ s or more and 2500 Pa ⁇ s or less, and 50 Pa ⁇ s or more and 2000 Pa ⁇ s or less. It is more preferred that there be.
  • the water permeability of each layer is measured by measuring the moisture permeability of the sample in accordance with JIS Z 0208: 1976 (80 ° C., 90% RH, 80 ° C., moisture permeability test method for moisture-proof packaging material). .
  • the melt viscosity of each layer is measured for the sample using a flow tester (CFT-D, manufactured by Shimadzu Corporation) under the following measurement conditions: temperature 270 ° C., load 1.00 kg, interval 25 mm, orifice 1.00 ⁇ ⁇ 10 L (mm). .
  • the sample used for the measurement of the water permeability and the melt viscosity may be a sample piece of each layer obtained directly from the bead portion. Further, when it is not easy to obtain a sample piece serving as a sample, a sample piece serving as a sample may be separately manufactured using the same material as that used for forming each layer.
  • each member (bead wire, adhesive layer, first coating resin layer, second coating resin layer, etc.) in the bead portion will be described.
  • the bead portion includes a bead core having a bead wire, an adhesive layer provided on the bead wire, and a first coating resin layer provided around the adhesive layer.
  • a second coating resin layer provided around the bead core is provided. Note that a bead filler extending from the second coating resin layer 14 outward in the tire radial direction may be further provided.
  • the bead wire is not particularly limited, and for example, a metal cord or an organic resin cord used for a conventional rubber tire can be used as appropriate.
  • a metal cord or an organic resin cord used for a conventional rubber tire can be used as appropriate.
  • it is composed of a monofilament (single wire) such as a metal fiber or an organic fiber, or a multifilament (twisted wire) obtained by twisting these fibers.
  • a metal cord is preferable, and an iron cord, that is, a steel cord is more preferable.
  • the bead wire a monofilament (single wire) is preferable from the viewpoint of further improving the durability of the tire.
  • the cross-sectional shape, size (diameter) and the like of the bead wire are not particularly limited, and a wire suitable for a desired tire can be appropriately selected and used.
  • the bead wire is a stranded wire of a plurality of cords, the number of the plurality of cords is, for example, 2 to 10, preferably 5 to 9.
  • the surface of the bead wire is made of a metal material containing, as a main component, at least one metal element selected from the group consisting of Cu, Zn, Fe, Al, and Co from the viewpoint of adhesiveness with the adhesive layer.
  • a steel cord is an example of a configuration mainly containing an Fe element.
  • a configuration in which the surface of a steel cord is covered by plating is given.
  • the method of forming the plating on the surface of the cord is not particularly limited, and can be performed by a known method.
  • a plating process is performed by immersing a cord serving as a core wire of a plated element wire into, for example, a copper plating bath, a zinc plating bath, or the like.
  • a copper plating bath for example, a copper cyanide bath, a copper borofluoride bath, a copper sulfate bath, etc.
  • zinc plating it is treated by a zinc cyanide bath, a zinc chloride bath, a zincate bath, or the like.
  • a heat diffusion treatment may be applied to the cord immersed in the plating bath. After that, the cord may be drawn from the viewpoint of a predetermined plating thickness.
  • the amount of plating applied is, for example, preferably 0.1 ⁇ m or more and 10 ⁇ m or less, more preferably 0.2 ⁇ m or more and 8.0 ⁇ m or less, as an average thickness of the plating.
  • the plating thickness can be measured by observation with a scanning electron microscope (SEM).
  • the thickness (that is, the average diameter) of the bead wire is preferably from 0.3 mm to 3 mm, and more preferably from 0.5 mm to 2 mm, from the viewpoint of achieving both the internal pressure resistance and the weight reduction of the tire.
  • the thickness of the bead wire is a number average value of the thickness measured at five arbitrarily selected cross sections (a cross section perpendicular to the length direction of the bead wire).
  • the strength of the bead wire itself is usually from 1000 N to 3000 N, preferably from 1200 N to 2800 N, and more preferably from 1300 N to 2700 N.
  • the strength of the bead wire is calculated from a breaking point by drawing a stress-strain curve using a ZWICK type chuck with a tensile tester.
  • the elongation at break (tensile elongation at break) of the bead wire itself is usually 0.1% to 15%, preferably 1% to 15%, more preferably 1% to 10%.
  • the tensile elongation at break of the bead wire can be determined from the strain by drawing a stress-strain curve using a ZWICK type chuck with a tensile tester.
  • Adhesive layer As the material of the adhesive layer, a material that satisfies the requirement (condition (C1)) of the water permeability C described above is used.
  • the adhesive layer is preferably a layer containing a resin as an adhesive, and is preferably a thermoplastic resin or a thermoplastic elastomer.
  • a method of controlling the water transmittance C of the adhesive layer to a range that satisfies the condition (C1) a method of selecting the type of the resin in the adhesive layer, adjusting the content of the resin, and the like can be mentioned.
  • thermoplastic resin examples include a polyester-based thermoplastic resin, a polyamide-based thermoplastic resin, a polystyrene-based thermoplastic resin, a polyurethane-based thermoplastic resin, and an olefin-based thermoplastic resin (eg, a polyethylene resin and a polypropylene resin).
  • thermoplastic elastomer examples include a polyester-based thermoplastic elastomer, a polyamide-based thermoplastic elastomer, a polystyrene-based thermoplastic elastomer, a polyurethane-based thermoplastic elastomer, and an olefin-based thermoplastic elastomer.
  • the resin used as the adhesive includes a polyester thermoplastic elastomer, a polyester thermoplastic resin, an olefin thermoplastic elastomer, an olefin thermoplastic resin, a polyamide thermoplastic elastomer, and a polyamide thermoplastic resin. It preferably contains at least one selected from the group consisting of polyester, and more preferably contains a polyester thermoplastic elastomer.
  • the acid-modified thermoplastic material is a thermoplastic material in which an acid group is introduced into a part of a molecule of a thermoplastic resin or a thermoplastic elastomer.
  • the acid group include a carboxy group (—COOH) and its anhydride group, a sulfate group, a phosphate group and the like, and among them, the carboxy group and its anhydride group are preferable.
  • the adhesive layer may be used alone or in combination of two or more thermoplastic resins and thermoplastic elastomers.
  • the content of the resin contained in the adhesive layer is preferably 50% by mass or more, more preferably 60% by mass or more, even more preferably 75% by mass or more of the whole adhesive layer.
  • First coating resin layer As the material of the first coating resin layer, a material that satisfies the above requirement of water permeability B (condition (B1)) is used.
  • the first coating resin layer contains a resin.
  • the method of controlling the water permeability B of the first coating resin layer to be in a range satisfying the condition (B1) includes selection of the type of the resin in the first coating resin layer and adjustment of the content of the resin. Method.
  • the resin contained in the first coating resin layer include a thermoplastic resin, a thermoplastic elastomer, and a thermosetting resin.
  • the first coating resin layer preferably contains, as a resin, a thermoplastic resin or a thermoplastic elastomer from the viewpoint of moldability, and more preferably contains a thermoplastic elastomer.
  • the first coating resin layer only needs to contain at least the resin, and may contain other components such as additives as long as the effects of the present embodiment are not impaired.
  • the content of the resin in the first coating resin layer is preferably 50% by mass or more, more preferably 60% by mass or more, even more preferably 75% by mass or more based on the total amount of the first coating resin layer.
  • thermoplastic resin examples include a polyester-based thermoplastic resin, a polyamide-based thermoplastic resin, an olefin-based thermoplastic resin, a polyurethane-based thermoplastic resin, a vinyl chloride-based thermoplastic resin, and a polystyrene-based thermoplastic resin.
  • thermoplastic elastomer examples include polyester-based thermoplastic elastomer (TPC), polyamide-based thermoplastic elastomer (TPA), polystyrene-based thermoplastic elastomer (TPS), polyurethane-based thermoplastic elastomer (TPU) specified in JIS K6418, An olefin-based thermoplastic elastomer (TPO), a crosslinked thermoplastic rubber (TPV), or another thermoplastic elastomer (TPZ) may be used.
  • thermosetting resin examples include a phenol-based thermosetting resin, a urea-based thermosetting resin, a melamine-based thermosetting resin, and an epoxy-based thermosetting resin.
  • the resin used for the first coating resin layer includes polyester-based thermoplastic elastomer, polyester-based thermoplastic resin, olefin-based thermoplastic elastomer, olefin-based thermoplastic resin, polyamide-based thermoplastic elastomer, and polyamide-based thermoplastic resin. It is preferable to include at least one selected from the group consisting of: and more preferably a polyester-based thermoplastic elastomer.
  • an acid-modified thermoplastic material for the resin used for the first coating resin layer.
  • the acid group in the acid modification include a carboxy group (—COOH) and its anhydride group, a sulfate group, a phosphoric acid group, and the like. Among them, a carboxy group and its anhydride group are preferable.
  • thermoplastic elastomers and thermoplastic resins will be described in detail.
  • polyester thermoplastic elastomer- (Polyester thermoplastic elastomer)
  • polyester-based thermoplastic elastomer for example, at least polyester forms a hard segment having a crystalline and high melting point and another polymer (eg, polyester or polyether) has an amorphous and soft segment having a low glass transition temperature. The material being formed is mentioned.
  • an aromatic polyester can be used as the polyester forming the hard segment.
  • the aromatic polyester can be formed, for example, from an aromatic dicarboxylic acid or an ester-forming derivative thereof and an aliphatic diol.
  • the aromatic polyester is preferably polybutylene terephthalate derived from at least one selected from the group consisting of terephthalic acid and dimethyl terephthalate, and 1,4-butanediol.
  • aromatic polyesters include, for example, isophthalic acid, phthalic acid, naphthalene-2,6-dicarboxylic acid, naphthalene-2,7-dicarboxylic acid, diphenyl-4,4′-dicarboxylic acid, diphenoxyethanedicarboxylic acid, A dicarboxylic acid component such as sulfoisophthalic acid or an ester-forming derivative thereof, and a diol having a molecular weight of 300 or less (eg, ethylene glycol, trimethylene glycol, pentamethylene glycol, hexamethylene glycol, neopentyl glycol, decamethylene glycol, etc.) Aliphatic diols; alicyclic diols such as 1,4-cyclohexanedimethanol and tricyclodecanedimethylol; xylylene glycol, bis (p-hydroxy) diphenyl, bis (p-hydroxyphenyl) propane, 2,2- Bi [
  • polyester forming the hard segment examples include polyethylene terephthalate, polybutylene terephthalate, polymethylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, and the like, with polybutylene terephthalate being preferred.
  • Examples of the polymer that forms the soft segment include aliphatic polyester and aliphatic polyether.
  • Examples of the aliphatic polyether include poly (ethylene oxide) glycol, poly (propylene oxide) glycol, poly (tetramethylene oxide) glycol, poly (hexamethylene oxide) glycol, a copolymer of ethylene oxide and propylene oxide, and poly (propylene oxide).
  • Ethylene oxide addition polymers of glycols and copolymers of ethylene oxide and tetrahydrofuran examples of the aliphatic polyester include poly ( ⁇ -caprolactone), polyenantholactone, polycaprylolactone, polybutylene adipate, polyethylene adipate and the like.
  • polymers forming soft segments include poly (tetramethylene oxide) glycol and poly (propylene oxide) glycol.
  • Preferred are ethylene oxide adducts, poly ( ⁇ -caprolactone), polybutylene adipate, polyethylene adipate and the like.
  • the number average molecular weight of the polymer forming the soft segment is preferably from 300 to 6000 from the viewpoint of toughness and low-temperature flexibility.
  • the mass ratio (x: y) of the hard segment (x) to the soft segment (y) is preferably from 99: 1 to 20:80, more preferably from 98: 2 to 30:70 from the viewpoint of moldability. .
  • each combination of the above-mentioned hard segment and soft segment can be given.
  • a combination in which the hard segment is polybutylene terephthalate and the soft segment is an aliphatic polyether is preferable, and the hard segment is polybutylene terephthalate, and the soft segment is Are more preferably poly (ethylene oxide) glycols.
  • polyester-based thermoplastic elastomers include, for example, "Hytrel” series (for example, 3046, 5557, 6347, 4047N, 4767N, etc.) manufactured by Dupont Toray, and "Perprene” series, manufactured by Toyobo Co., Ltd. (For example, P30B, P40B, P40H, P55B, P70B, P150B, P280B, E450B, P150M, S1001, S2001, S5001, S6001, S9001, etc.) can be used.
  • “Hytrel” series for example, 3046, 5557, 6347, 4047N, 4767N, etc.
  • Perprene manufactured by Toyobo Co., Ltd.
  • the polyester-based thermoplastic elastomer can be synthesized by copolymerizing a polymer forming a hard segment and a polymer forming a soft segment by a known method.
  • Polyamide thermoplastic elastomer is a thermoplastic resin material composed of a copolymer having a polymer which forms a hard segment having a high melting point which is crystalline and a polymer which forms an amorphous soft segment having a low glass transition temperature.
  • a polymer having an amide bond (—CONH—) in the main chain of a polymer forming a hard segment is meant.
  • the polyamide-based thermoplastic elastomer for example, at least a polyamide forms a hard segment having a crystalline and high melting point, and another polymer (for example, polyester, polyether, etc.) has an amorphous and a soft segment having a low glass transition temperature.
  • the polyamide-based thermoplastic elastomer may be formed by using a chain extender such as dicarboxylic acid in addition to the hard segment and the soft segment.
  • a chain extender such as dicarboxylic acid
  • Specific examples of the polyamide-based thermoplastic elastomer include an amide-based thermoplastic elastomer (TPA) specified in JIS K6418: 2007, and a polyamide-based elastomer described in JP-A-2004-346273. it can.
  • examples of the polyamide forming the hard segment include a polyamide formed by a monomer represented by the following general formula (1) or (2).
  • R 1 represents a molecular chain of a hydrocarbon having 2 to 20 carbon atoms (for example, an alkylene group having 2 to 20 carbon atoms).
  • R 2 represents a molecular chain of a hydrocarbon having 3 to 20 carbon atoms (for example, an alkylene group having 3 to 20 carbon atoms).
  • R 1 is preferably a hydrocarbon molecular chain having 3 to 18 carbon atoms, for example, an alkylene group having 3 to 18 carbon atoms, and a molecular chain of a hydrocarbon having 4 to 15 carbon atoms, for example, carbon atom.
  • An alkylene group having 4 to 15 carbon atoms is more preferable, and a hydrocarbon chain having 10 to 15 carbon atoms, for example, an alkylene group having 10 to 15 carbon atoms is particularly preferable.
  • R 2 a molecular chain of a hydrocarbon having 3 to 18 carbon atoms, for example, an alkylene group having 3 to 18 carbon atoms is preferable, and a molecular chain of a hydrocarbon having 4 to 15 carbon atoms;
  • an alkylene group having 4 to 15 carbon atoms is more preferable, and a molecular chain of a hydrocarbon having 10 to 15 carbon atoms, for example, an alkylene group having 10 to 15 carbon atoms is particularly preferable.
  • the monomer represented by the general formula (1) or (2) include ⁇ -aminocarboxylic acid or lactam.
  • the polyamide forming the hard segment include polycondensates of these ⁇ -aminocarboxylic acids or lactams, and copolycondensates of diamines and dicarboxylic acids.
  • Examples of the ⁇ -aminocarboxylic acid include those having 5 to 20 carbon atoms such as 6-aminocaproic acid, 7-aminoheptanoic acid, 8-aminooctanoic acid, 10-aminocapric acid, 11-aminoundecanoic acid and 12-aminododecanoic acid. Examples thereof include aliphatic ⁇ -aminocarboxylic acids.
  • Examples of the lactam include aliphatic lactams having 5 to 20 carbon atoms, such as lauryl lactam, ⁇ -caprolactam, udecan lactam, ⁇ -enantholactam, and 2-pyrrolidone.
  • Examples of the diamine include an aliphatic diamine having 2 to 20 carbon atoms and an aromatic diamine having 6 to 20 carbon atoms.
  • Examples of the aliphatic diamine having 2 to 20 carbon atoms and the aromatic diamine having 6 to 20 carbon atoms include ethylene diamine, trimethylene diamine, tetramethylene diamine, hexamethylene diamine, heptamethylene diamine, octamethylene diamine, nonamethylene diamine, and the like. Decamethylenediamine, undecamethylenediamine, dodecamethylenediamine, 2,2,4-trimethylhexamethylenediamine, 2,4,4-trimethylhexamethylenediamine, 3-methylpentamethylenediamine, metaxylenediamine and the like.
  • the dicarboxylic acid can be represented by HOOC- (R 3 ) m —COOH (R 3 : a molecular chain of a hydrocarbon having 3 to 20 carbon atoms, m: 0 or 1).
  • R 3 a molecular chain of a hydrocarbon having 3 to 20 carbon atoms, m: 0 or 1.
  • oxalic acid, succinic acid And aliphatic dicarboxylic acids having 2 to 20 carbon atoms such as glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid and dodecane diacid.
  • a polyamide obtained by ring-opening polycondensation of lauryl lactam, ⁇ -caprolactam, or udecan lactam can be preferably used.
  • polymer forming the soft segment examples include polyester and polyether, and specific examples include polyethylene glycol, polypropylene glycol, polytetramethylene ether glycol, and ABA-type triblock polyether. These can be used alone or in combination of two or more. Further, a polyether diamine or the like obtained by reacting ammonia or the like with the terminal of the polyether can also be used.
  • ABA-type triblock polyether means a polyether represented by the following general formula (3).
  • x and z represent an integer of 1 to 20.
  • y represents an integer of 4 to 50.
  • x and z are each preferably an integer of 1 to 18, more preferably an integer of 1 to 16, further preferably an integer of 1 to 14, and particularly preferably an integer of 1 to 12.
  • y is preferably an integer of 5 to 45, more preferably an integer of 6 to 40, further preferably an integer of 7 to 35, and particularly preferably an integer of 8 to 30.
  • the combination of a hard segment and a soft segment includes a combination of lauryl lactam ring-opening polycondensate / polyethylene glycol, a combination of lauryl lactam ring-opening polycondensate / polypropylene glycol, and a ring-opening polycondensation of lauryl lactam
  • the combination of isomer / polytetramethylene ether glycol, or the combination of ring-opening polycondensate of lauryl lactam / ABA type triblock polyether is preferable, and the combination of ring-opening polycondensate of lauryl lactam / ABA type triblock polyether is more preferable preferable.
  • the number average molecular weight of the polymer (polyamide) forming the hard segment is preferably from 300 to 15,000 from the viewpoint of melt moldability.
  • the number average molecular weight of the polymer forming the soft segment is preferably from 200 to 6000 from the viewpoint of toughness and flexibility at low temperature.
  • the mass ratio (x: y) to the hard segment (x) and the soft segment (y) is preferably from 50:50 to 90:10, and more preferably from 50:50 to 80:20 from the viewpoint of moldability. .
  • the polyamide-based thermoplastic elastomer can be synthesized by copolymerizing a polymer forming a hard segment and a polymer forming a soft segment by a known method.
  • polyamide-based thermoplastic elastomers include, for example, Ube Industries, Ltd.'s "UBESTA @ XPA” series (eg, XPA9068X1, XPA9063X1, XPA9055X1, XPA9048X2, XPA9048X1, XPA9040X1, XPA9040X2XPA9044), and Daicel Eponik. "Vestamide” series (eg, E40-S3, E47-S1, E47-S3, E55-S1, E55-S3, EX9200, E50-R2, etc.) can be used.
  • polystyrene-based thermoplastic elastomer As the polystyrene-based thermoplastic elastomer, for example, at least polystyrene forms a hard segment, and another polymer (eg, polybutadiene, polyisoprene, polyethylene, hydrogenated polybutadiene, hydrogenated polyisoprene, etc.) is amorphous and has a glass transition temperature. Low soft segment.
  • the polystyrene forming the hard segment for example, those obtained by a known radical polymerization method, ionic polymerization method, or the like are preferably used, and specific examples include polystyrene having anion living polymerization. Examples of the polymer forming the soft segment include polybutadiene, polyisoprene, and poly (2,3-dimethyl-butadiene).
  • the combination of the hard segment and the soft segment is preferably a combination of polystyrene / polybutadiene or a combination of polystyrene / polyisoprene. Further, in order to suppress an unintended crosslinking reaction of the thermoplastic elastomer, the soft segment is preferably hydrogenated.
  • the number average molecular weight of the polymer (polystyrene) forming the hard segment is preferably from 5,000 to 500,000, more preferably from 10,000 to 200,000.
  • the number average molecular weight of the polymer forming the soft segment is preferably from 5,000 to 1,000,000, more preferably from 10,000 to 800,000, even more preferably from 30,000 to 500,000.
  • the volume ratio (x: y) of the hard segment (x) and the soft segment (y) is preferably from 5:95 to 80:20, more preferably from 10:90 to 70:30 from the viewpoint of moldability. .
  • the polystyrene-based thermoplastic elastomer can be synthesized by copolymerizing a polymer forming a hard segment and a polymer forming a soft segment by a known method.
  • the polystyrene-based thermoplastic elastomer include styrene-butadiene-based copolymer [SBS (polystyrene-poly (butylene) block-polystyrene), SEBS (polystyrene-poly (ethylene / butylene) block-polystyrene)], styrene-isoprene Copolymer (polystyrene-polyisoprene block-polystyrene), styrene-propylene-based copolymer [SEP (polystyrene- (ethylene / propylene) block], SEPS (polystyrene-poly (ethylene / propylene) block-
  • polystyrene-based thermoplastic elastomers include, for example, "ToughTech” series manufactured by Asahi Kasei Corporation (for example, H1031, H1041, H1043, H1051, H1052, H1053, H1062, H1082, H1141, H1221, H1272, etc.).
  • "SEBS” series (8007, 8076, etc.) and “SEPS” series (2002, 2063, etc.) manufactured by Kuraray Co., Ltd. can be used.
  • Polyurethane-based thermoplastic elastomer As a polyurethane-based thermoplastic elastomer, for example, at least polyurethane forms a hard segment in which pseudo-crosslinking is formed by physical aggregation, and another polymer forms a soft segment having an amorphous and low glass transition temperature. Materials. Specific examples of the polyurethane-based thermoplastic elastomer include a polyurethane-based thermoplastic elastomer (TPU) specified in JIS K6418: 2007. The polyurethane-based thermoplastic elastomer can be represented as a copolymer including a soft segment containing a unit structure represented by the following formula A and a hard segment containing a unit structure represented by the following formula B.
  • P represents a long-chain aliphatic polyether or a long-chain aliphatic polyester.
  • R represents an aliphatic hydrocarbon, an alicyclic hydrocarbon, or an aromatic hydrocarbon.
  • P ' represents a short-chain aliphatic hydrocarbon, an alicyclic hydrocarbon, or an aromatic hydrocarbon.
  • P is derived from a diol compound containing a long-chain aliphatic polyether represented by P and a long-chain aliphatic polyester.
  • Examples of such a diol compound include polyethylene glycol, polypropylene glycol, polytetramethylene ether glycol, poly (butylene adipate) diol, poly- ⁇ -caprolactone diol, and poly (hexamethylene carbonate) having a molecular weight within the above range.
  • Diols and ABA-type triblock polyethers These can be used alone or in combination of two or more.
  • R is a partial structure introduced using a diisocyanate compound containing an aliphatic hydrocarbon, an alicyclic hydrocarbon, or an aromatic hydrocarbon represented by R.
  • the aliphatic diisocyanate compound containing an aliphatic hydrocarbon represented by R include 1,2-ethylene diisocyanate, 1,3-propylene diisocyanate, 1,4-butane diisocyanate, and 1,6-hexamethylene diisocyanate.
  • Examples of the diisocyanate compound containing an alicyclic hydrocarbon represented by R include 1,4-cyclohexane diisocyanate and 4,4-cyclohexane diisocyanate.
  • the aromatic diisocyanate compound containing an aromatic hydrocarbon represented by R include 4,4′-diphenylmethane diisocyanate and tolylene diisocyanate. These can be used alone or in combination of two or more.
  • P ′ As the short-chain aliphatic hydrocarbon, alicyclic hydrocarbon, or aromatic hydrocarbon represented by P ′, for example, those having a molecular weight of less than 500 can be used.
  • P ′ is derived from a diol compound containing a short-chain aliphatic hydrocarbon, alicyclic hydrocarbon, or aromatic hydrocarbon represented by P ′.
  • Examples of the aliphatic diol compound containing a short-chain aliphatic hydrocarbon represented by P ′ include glycol and polyalkylene glycol, and specifically, ethylene glycol, propylene glycol, trimethylene glycol, 1,4 -Butanediol, 1,3-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol, 1,10- Decanediol and the like.
  • Examples of the alicyclic diol compound containing an alicyclic hydrocarbon represented by P ′ include cyclopentane-1,2-diol, cyclohexane-1,2-diol, cyclohexane-1,3-diol, Cyclohexane-1,4-diol, cyclohexane-1,4-dimethanol and the like can be mentioned.
  • examples of the aromatic diol compound containing an aromatic hydrocarbon represented by P ′ include hydroquinone, resorcin, chlorohydroquinone, bromohydroquinone, methylhydroquinone, phenylhydroquinone, methoxyhydroquinone, phenoxyhydroquinone, 4,4′- Dihydroxybiphenyl, 4,4'-dihydroxydiphenylether, 4,4'-dihydroxydiphenylsulfide, 4,4'-dihydroxydiphenylsulfone, 4,4'-dihydroxybenzophenone, 4,4'-dihydroxydiphenylmethane, bisphenol A, 1, Examples thereof include 1-di (4-hydroxyphenyl) cyclohexane, 1,2-bis (4-hydroxyphenoxy) ethane, 1,4-dihydroxynaphthalene, and 2,6-dihydroxynaphthalene. These can be used alone or in combination of two or more.
  • the number average molecular weight of the polymer (polyurethane) forming the hard segment is preferably from 300 to 1500 from the viewpoint of melt moldability.
  • the number average molecular weight of the polymer forming the soft segment is preferably from 500 to 20,000, more preferably from 500 to 5,000, particularly preferably from 500 to 3,000, from the viewpoint of the flexibility and thermal stability of the polyurethane thermoplastic elastomer.
  • the mass ratio (x: y) of the hard segment (x) to the soft segment (y) is preferably from 15:85 to 90:10, and more preferably from 30:70 to 90:10 from the viewpoint of moldability. .
  • the polyurethane-based thermoplastic elastomer can be synthesized by copolymerizing a polymer forming a hard segment and a polymer forming a soft segment by a known method.
  • the polyurethane-based thermoplastic elastomer for example, the thermoplastic polyurethane described in JP-A-5-331256 can be used.
  • thermoplastic elastomer specifically, a combination of a hard segment composed of an aromatic diol and an aromatic diisocyanate and a soft segment composed of a polycarbonate is preferable. More specifically, tolylene diisocyanate ( TDI) / polyester-based polyol copolymer, TDI / polyether-based polyol copolymer, TDI / caprolactone-based polyol copolymer, TDI / polycarbonate-based polyol copolymer, 4,4′-diphenylmethane diisocyanate (MDI) / polyester -Based polyol copolymer, MDI / polyether-based polyol copolymer, MDI / caprolactone-based polyol copolymer, MDI / polycarbonate-based polyol copolymer, and MDI + hydroquinone / polyhexamethyl At least one selected from the group consisting of carbonate copoly
  • thermoplastic elastomers examples include, for example, “Elastoran” series manufactured by BASF (eg, ET680, ET880, ET690, ET890, etc.), and “Kuramilon U” series manufactured by Kuraray Co., Ltd. (for example, , 2000s, 3000s, 8000s, 9000s, etc.), "Milactran” series manufactured by Nippon Miractran Co., Ltd. (for example, XN-2001, XN-2004, P390RSUP, P480RSUI, P26MRNAT, E490, E590, P890, etc.) Etc. can be used.
  • polyolefin thermoplastic elastomer As a polyolefin-based thermoplastic elastomer, for example, at least polyolefin forms a hard segment having a high melting point which is crystalline, and another polymer (eg, polyolefin, other polyolefin, polyvinyl compound, etc.) is amorphous and has a glass transition temperature. Materials that form a low soft segment are included. Examples of the polyolefin forming the hard segment include polyethylene, polypropylene, isotactic polypropylene, and polybutene.
  • polyolefin-based thermoplastic elastomer examples include an olefin- ⁇ -olefin random copolymer, an olefin block copolymer and the like.
  • polyolefin-based thermoplastic elastomers include propylene block copolymers, ethylene-propylene copolymers, propylene-1-hexene copolymers, propylene-4-methyl-1-pentene copolymers, and propylene-1-propylene.
  • Butene copolymer ethylene-1-hexene copolymer, ethylene-4-methyl-pentene copolymer, ethylene-1-butene copolymer, ethylene-methacrylic acid copolymer, ethylene-methyl methacrylate copolymer , Ethylene-ethyl methacrylate copolymer, ethylene-butyl methacrylate copolymer, ethylene-methyl acrylate copolymer, ethylene-ethyl acrylate copolymer, ethylene-butyl acrylate copolymer, propylene-methacrylic acid copolymer , A propylene-methyl methacrylate copolymer, Propylene-ethyl methacrylate copolymer, propylene-butyl methacrylate copolymer, propylene-methyl acrylate copolymer, propylene-ethyl acrylate copolymer, propylene-butyl acrylate copolymer,
  • olefin resins such as ethylene and propylene may be used in combination.
  • the olefin resin content in the polyolefin-based thermoplastic elastomer is preferably from 50% by mass to 100% by mass.
  • the number average molecular weight of the polyolefin-based thermoplastic elastomer is preferably from 5,000 to 100,000,000. When the number average molecular weight of the polyolefin-based thermoplastic elastomer is 5,000 to 100,000,000, the mechanical properties of the thermoplastic resin material are sufficient and the workability is excellent. From the same viewpoint, the number average molecular weight of the polyolefin-based thermoplastic elastomer is more preferably from 7,000 to 1,000,000, and particularly preferably from 10,000 to 1,000,000. Thereby, the mechanical properties and workability of the thermoplastic resin material can be further improved.
  • the number average molecular weight of the polymer forming the soft segment is preferably from 200 to 6000 from the viewpoint of toughness and flexibility at low temperature.
  • the mass ratio (x: y) to the hard segment (x) and the soft segment (y) is preferably from 50:50 to 95:15, more preferably from 50:50 to 90:10 from the viewpoint of moldability.
  • the polyolefin-based thermoplastic elastomer can be synthesized by copolymerization according to a known method.
  • polyolefin-based thermoplastic elastomer an elastomer obtained by acid-modifying a polyolefin-based thermoplastic elastomer may be used.
  • the term "obtained by acid-modifying a polyolefin-based thermoplastic elastomer” refers to a product obtained by bonding an unsaturated compound having an acidic group such as a carboxylic acid group, a sulfuric acid group, or a phosphoric acid group to a polyolefin-based thermoplastic elastomer.
  • Polyolefin-based thermoplastic elastomer carboxylic acid group, sulfuric acid group, as to bond an unsaturated compound having an acidic group such as a phosphoric acid group, for example, to a polyolefin-based thermoplastic elastomer, as an unsaturated compound having an acidic group, Bonding (for example, graft polymerization) the unsaturated bond site of an unsaturated carboxylic acid (generally maleic anhydride).
  • an unsaturated compound having a carboxylic acid group which is a weak acid group is preferable from the viewpoint of suppressing deterioration of the polyolefin-based thermoplastic elastomer.
  • the unsaturated compound having a carboxylic acid group include acrylic acid, methacrylic acid, itaconic acid, crotonic acid, isocrotonic acid, and maleic acid.
  • thermoplastic elastomers include, for example, "Tuffmer” series manufactured by Mitsui Chemicals, Inc. (for example, A0550S, A1050S, A4050S, A1070S, A4070S, A35070S, A1085S, A4085S, A7090, A70090, MH7007, MH7010).
  • polyester-based thermoplastic resin examples include polyesters forming hard segments of the above-mentioned polyester-based thermoplastic elastomers.
  • Specific examples of the polyester-based thermoplastic resin include polylactic acid, polyhydroxy-3-butylbutyric acid, polyhydroxy-3-hexylbutyric acid, poly ( ⁇ -caprolactone), polyenantholactone, polycaprylolactone, and polybutylene.
  • examples thereof include aliphatic polyesters such as adipate and polyethylene adipate, and aromatic polyesters such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, and polybutylene naphthalate.
  • polybutylene terephthalate is preferred as the polyester-based thermoplastic resin from the viewpoint of heat resistance and processability.
  • polyester-based thermoplastic resins include, for example, “Duranex” series (for example, 2000 and 2002) manufactured by Polyplastics Co., Ltd., and “Novaduran” series (for example, 5010R5) manufactured by Mitsubishi Engineering-Plastics Corporation. , 5010R3-2, etc.) and “Toraycon” series manufactured by Toray Industries (eg, 1401X06, 1401X31, etc.).
  • polyamide-based thermoplastic resin examples include polyamides forming hard segments of the above-described polyamide-based thermoplastic elastomer.
  • Specific examples of the polyamide-based thermoplastic resin include polyamide (amide 6) obtained by ring-opening polycondensation of ⁇ -caprolactam, polyamide (amide 11) obtained by ring-opening polycondensation of undecane lactam, and ring-opening polycondensation of lauryl lactam.
  • examples thereof include polyamide (amide 12), polyamide (amide 66) obtained by polycondensation of diamine and dibasic acid, and polyamide (amide MX) having metaxylenediamine as a constituent unit.
  • Amide 6 can be represented, for example, by ⁇ CO— (CH 2 ) 5 —NH ⁇ n .
  • the amide 11 can be represented, for example, by ⁇ CO— (CH 2 ) 10 —NH ⁇ n .
  • the amide 12 can be represented, for example, by ⁇ CO— (CH 2 ) 11 —NH ⁇ n .
  • the amide 66 can be represented, for example, by ⁇ CO (CH 2 ) 4 CONH (CH 2 ) 6 NH ⁇ n .
  • Amide MX can be represented, for example, by the following structural formula (A-1). Here, n represents the number of repeating units.
  • amide 6 As a commercially available product of amide 6, for example, the "UBE nylon” series (for example, 1022B, 1011FB, etc.) manufactured by Ube Industries, Ltd. can be used. As a commercially available amide 11, for example, "Rilsan @ B” series manufactured by Arkema Corporation can be used. As a commercially available product of the amide 12, for example, the "UBE nylon” series (for example, 3024U, 3020U, 3014U, etc.) manufactured by Ube Industries, Ltd. can be used. As a commercially available amide 66, for example, the "Leona” series (for example, 1300S, 1700S, etc.) manufactured by Asahi Kasei Corporation can be used. As a commercially available amide MX, for example, "MX Nylon” series (for example, S6001, S6021, S6011, etc.) manufactured by Mitsubishi Gas Chemical Co., Ltd. can be used.
  • amide MX for example, "MX Nylon” series
  • the polyamide-based thermoplastic resin may be a homopolymer formed of only the above-mentioned constituent units, or a copolymer of the above-mentioned constituent units and another monomer.
  • the content of the above structural unit in each polyamide-based thermoplastic resin is preferably 40% by mass or more.
  • polyolefin thermoplastic resin examples include polyolefins that form the hard segments of the aforementioned polyolefin-based thermoplastic elastomer.
  • Specific examples of the polyolefin-based thermoplastic resin include a polyethylene-based thermoplastic resin, a polypropylene-based thermoplastic resin, and a polybutadiene-based thermoplastic resin. Among them, a polypropylene-based thermoplastic resin is preferable as the polyolefin-based thermoplastic resin from the viewpoint of heat resistance and workability.
  • polypropylene-based thermoplastic resin examples include a propylene homopolymer, a propylene- ⁇ -olefin random copolymer, and a propylene- ⁇ -olefin block copolymer.
  • ⁇ -olefin examples include propylene, 1-butene, 1-pentene, 3-methyl-1-butene, 1-hexene, 4-methyl-1-pentene, 3-methyl-1-pentene, 1-heptene, ⁇ -olefins having about 3 to 20 carbon atoms, such as 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, and 1-eicosene.
  • the first coating resin layer may use a thermoplastic resin and a thermoplastic elastomer alone or in combination of two or more.
  • the first coating resin layer may contain other components in addition to the resin.
  • Other components include rubber, various fillers (eg, silica, calcium carbonate, clay, etc.), antioxidants, oils, plasticizers, coloring agents, weathering agents, and the like.
  • the second coating resin layer contains a resin.
  • a method of controlling the water permeability A of the second coating resin layer to a range that satisfies the condition (A1) a method of selecting the type of the resin in the second coating resin layer, adjusting the content of the resin, and the like. Method.
  • the resin contained in the second coating resin layer those listed as the resin contained in the first coating resin layer are similarly used. Further, the kind of the preferable resin, the preferable content, other components that may be included, and the like are the same as in the first coating resin layer.
  • the tire may have a bead filler extending outward from the second coating resin layer in the tire radial direction in the bead portion.
  • the bead filler may be a single member integrally formed with the second coating resin layer.
  • the material of the bead filler is not particularly limited, and a conventionally known elastic material such as resin or rubber is used.
  • the bead filler preferably contains a resin as an elastic material, and for example, those listed as the resin contained in the first coating resin layer are similarly used. Further, the kind of the preferable resin, the preferable content, other components that may be included, and the like are the same as in the first coating resin layer.
  • Method of forming bead portion a method of forming a bead portion in the tire will be described with an example. Specifically, the formation method will be described using the bead portion having the configuration shown in FIG. 2A as an example.
  • FIG. 2A is a cross-sectional view showing a cross section orthogonal to the circumferential direction (longitudinal direction of bead wire 111) of bead portion 110 having a plurality of bead wires 111.
  • FIG. 2A shows a bead portion 110 in which three bead wires 111 are arranged in parallel and stacked in three stages, that is, in an embodiment having nine bead wires 111.
  • “arranged in parallel” means that a plurality of bead wires 111 have a positional relationship such that they do not intersect in a bead portion 110 cut to a length necessary for application to a tire.
  • Each bead wire 111 is covered with an adhesive layer 112, and the periphery of the bead wire 111 and the adhesive layer 112 is covered with a first covering resin layer 113 to form a bead core 101. Further, a second coating resin layer 114 covering the periphery of the bead core 101 is provided. In addition, it has a bead filler 103 extending outward from the second coating resin layer 114 in the tire radial direction.
  • the bead core 101 in the bead portion 110 shown in FIG. 2A first covers the periphery of the bead wire 111 with the adhesive layer 112, and then three bead wires covered with the adhesive layer 112 A strip member is formed by covering 111 with the first coating resin layer 113.
  • the bead core 101 is formed by winding this strip member and laminating three stages of strip members having a substantially rectangular cross section.
  • the number of the bead wires 111 in the bead core 101 is nine, but is not limited to this, and the number of the bead wires 111 may be one or more.
  • the number of the bead wires 111 may be one or more.
  • FIG. 1A an embodiment having only one bead wire 11 may be employed.
  • FIG. 2A shows a mode in which the strip members are stacked in three stages in cross section, but the present invention is not limited to this. For example, one or two stages or four or more stages are stacked. Good.
  • a material for example, an adhesive for forming the adhesive layer 112 in the molten state is coated on the outer peripheral surface of the bead wire 111, and the first coating resin layer in the molten state is further applied to the surface of the material for forming the adhesive layer 112.
  • a strip member is formed by coating a material (for example, a resin) forming 113 and solidifying it by cooling.
  • the cross-sectional shape of the strip member (the cross-sectional shape orthogonal to the longitudinal direction of the bead wire 111) is substantially rectangular in the present embodiment, but is not limited thereto, and may be various shapes such as a substantially parallelogram. it can.
  • the formation of the adhesive layer 112 and the formation of the first coating resin layer 113 can be performed by a known method, for example, a method such as extrusion molding.
  • the bead core 101 can be formed by winding and stacking strip members, and the steps are joined by melting the first coating resin layer 113 by a known method such as hot plate welding. And solidifying the melted first coating resin layer 113.
  • the steps can be joined by bonding the steps with an adhesive or the like.
  • the surface of the obtained bead core 101 is coated with a material (for example, resin) for forming the second coating resin layer 114 in a molten state, and is solidified by cooling, thereby forming the second.
  • the coating resin layer 114 is formed.
  • the formation of the second coating resin layer 114 can be performed by a known method, for example, a method such as injection molding. Specifically, the bead core 101 is arranged in the cavity of the injection mold, and a material for forming the second coating resin layer 114 in a molten state is injected into the cavity. Next, the second coating resin layer 114 is formed by solidifying the injected material by cooling.
  • the bead part 110 shown in FIG. 2A has a structure in which the bead filler 103 is arranged outward of the second coating resin layer 114 in the tire radial direction.
  • the bead filler 103 can be formed by a known method. For example, when the bead filler 103 is formed of a resin, a method such as injection molding can be used. When the bead filler 103 is the same member integrally formed with the second coating resin layer 114, the bead filler 103 and the second coating resin layer 114 are once molded using an injection molding die. The two members can also be integrally molded by injection of the same.
  • FIG. 3 is a cross-sectional view in the tire width direction showing a half portion in the tire width direction of an example of the tire 20 having the bead portions 110 shown in FIG. 2A as a pair of bead portions.
  • FIG. 3 shows only a half of the tire 20 in the tire width direction with the equator plane CL as a boundary, but the other half (not shown) has the same configuration.
  • the tire 20 shown in FIG. 3 has a bead portion 110 shown in FIG. 2A embedded in a pair of bead portions, a carcass 16 straddling the bead portion 110 in a toroidal shape, and two belt layers on a radially outer side of the carcass 16 in the tire radial direction. And a belt 17 made of.
  • the tire width direction refers to a direction parallel to the rotation axis of the tire 20, and is also referred to as a tire axial direction.
  • the tire radial direction refers to a direction orthogonal to the rotation axis of the tire 20.
  • Reference symbol CL indicates an equatorial plane of the tire 20.
  • the rotation axis side of the tire 20 along the tire radial direction is referred to as “inside in the tire radial direction”
  • the side opposite to the rotation axis of the tire 20 along the tire radial direction is referred to as “outside in the tire radial direction”. I do.
  • the tire equatorial plane CL side along the tire width direction is described as “inside in the tire width direction”
  • the side opposite to the tire equatorial plane CL along the tire width direction is described as “outside in the tire width direction”.
  • FIG. 3 shows the tire 20 when mounted on a standard rim (not shown) and filled with standard air pressure.
  • the standard rim refers to a standard rim in an applicable size described in the Year @ Book 2017 edition of JATMA (Japan Automobile Tire Association).
  • the standard air pressure is an air pressure corresponding to the maximum load capacity of JATMA's Year Book 2017 version.
  • the load is the maximum load (maximum load capacity) of a single wheel in the applicable size described in the following standard
  • the internal pressure is the maximum load of a single wheel described in the following standard
  • the rim refers to a standard rim (or “Approved @ Rim” or “Recommended @ Rim”) in an applicable size described in the following standard.
  • the standards are determined by industry standards that are in effect in the area where the tire is manufactured or used. For example, in the United States, "The Book of the Tire and Rim Association of Inc., Year Book", in Europe, “The European, Tire and Rim, Technical, Organization, Standards of Automotive, Japan Association of Automobiles, Japan Motor Company, Japan Association of motorcycles, Japan Association of motorcycles, Japan Motor Company, Korea, Japan, Japan. Have been.
  • the tire 20 shown in FIG. 3 has a flatness of 55 or more, and has a tire section height (tire section height) of 115 mm or more.
  • the section height (tire section height) refers to a half length of a difference between a tire outer diameter and a rim diameter in a state where the tire 20 is mounted on a standard rim and an internal pressure is set to a standard air pressure.
  • the flatness of the tire 20 is set to 55 or more and the tire section height is set to 115 mm or more, but the present embodiment is not limited to this configuration.
  • the tire 20 includes a pair of left and right bead parts 110 (only one bead part 110 is shown in FIG. 3) and a pair of tire side parts extending outward from the pair of bead parts 110 in the tire radial direction. And a tread portion 19 extending from one tire side portion 18 to the other tire side portion 18.
  • a bead core is embedded in each of the pair of bead portions 110, and the carcass 16 straddles the pair of bead cores.
  • the end of the carcass 16 is locked to a bead core.
  • the end of the carcass 16 is folded back from the inside of the tire to the outside around the bead core and is locked.
  • the end of the carcass 16 is arranged in a range (region) corresponding to the tire side portion 18, but the present embodiment is not limited to this configuration.
  • the end of the carcass 16 may be arranged in a range corresponding to the tread portion 19, particularly in a range corresponding to the belt 17.
  • the carcass 16 extends from one bead core to the other bead core in a toroidal manner to form the skeleton of the tire 20.
  • a plurality (two layers in this embodiment) of belts 17 are provided outside the carcass in the tire radial direction.
  • a cap layer may be provided on the outside of the belt 17 in the tire radial direction so as to cover the entire belt 17, and further on both sides of the cap layer in the tire radial direction, both ends of the cap layer may be covered.
  • a pair of layer layers may be provided.
  • the present embodiment is not limited to the above configuration, and may be configured to cover only one end of the cap layer with a layer layer, or to cover both end portions of the cap layer with one layer layer continuous in the tire width direction. It may be. Further, the cap layer and the layer layer may be omitted according to the specifications of the tire 20.
  • the carcass 16, the belt 17, the cap layer, and the layer layer may have the structure of each member used in a conventionally known tire.
  • a tread is provided outside the belt 17 in the tire radial direction.
  • the tread is a part that contacts the road surface during traveling.
  • a circumferential groove extending in the tire circumferential direction may be formed on the tread surface of the tread, and a width groove extending in the tire width direction may be formed on the tread.
  • the shape and number of the circumferential grooves and the width grooves are appropriately set in accordance with the required performance of the tire 20 such as drainage and steering stability.
  • the bead filler 110 is embedded in the bead portion 110 and extends along the outer surface of the carcass 16 from the bead core outward in the tire radial direction.
  • the bead filler is arranged in a region surrounded by the carcass 16 and the folded portion. Further, the thickness of the bead filler decreases outward in the tire radial direction.
  • the height of the bead filler shown in FIG. 3 is preferably set within a range of 30 to 50% of the tire cross-section height.
  • the height of the bead filler referred to here is the height from the tire radial outer end to the tip of the bead portion 110 when the tire 20 is mounted on a standard rim and the internal pressure is set to the standard air pressure (the tire (Length along the radial direction).
  • the height of the bead filler is 30% or more of the tire cross-sectional height, for example, durability during running can be sufficiently ensured.
  • the height BH of the bead filler is 50% or less of the tire cross-section height SH, the ride comfort is excellent.
  • the end of the bead filler is disposed inside the tire 20 in the tire radial direction from the maximum width position of the tire 20.
  • the maximum width position of the tire 20 refers to a position where the width is widest along the tire width direction of the tire 20.
  • An inner liner (not shown) is provided on the inner surface of the tire 20 from one bead portion 110 to the other bead portion 110.
  • a known rubber material and resin for example, butyl rubber
  • the tire 20 shown in Fig. 3 is mainly composed of an elastic material. That is, the region around the carcass 16 in the bead portion 110, the region around the carcass 16 in the tire side portion 18, the region around the belt 17 in the tread portion 19, and the like are made of an elastic material.
  • the elastic material examples include a rubber material (a tire mainly composed of a rubber material is a so-called rubber tire) and a resin material (a tire mainly composed of a resin material is a so-called resin tire).
  • a rubber material a tire mainly composed of a rubber material is a so-called rubber tire
  • a resin material a tire mainly composed of a resin material is a so-called resin tire.
  • each of the above-described parts is a rubber tire made of a rubber material.
  • the rubber material only needs to contain at least rubber (rubber component), and may contain other components such as additives as long as the effects of the present embodiment are not impaired.
  • the content of the rubber (rubber component) in the rubber material is preferably 50% by mass or more, more preferably 90% by mass or more, based on the total amount of the rubber material.
  • the rubber component used in the tire is not particularly limited, and natural rubber and various synthetic rubbers conventionally used in rubber compounding can be used alone or in combination of two or more.
  • a rubber as shown below, or a rubber blend of two or more of these rubbers can be used.
  • the natural rubber may be a sheet rubber or a block rubber, and all of RSS # 1 to # 5 can be used.
  • the synthetic rubber include various diene-based synthetic rubbers, diene-based copolymer rubbers, special rubbers, and modified rubbers.
  • the synthetic rubber include, for example, butadiene (BR), a copolymer of butadiene and an aromatic vinyl compound (for example, SBR and NBR), and a butadiene-based copolymer such as a copolymer of butadiene and another diene-based compound.
  • BR butadiene
  • SBR and NBR aromatic vinyl compound
  • butadiene-based copolymer such as a copolymer of butadiene and another diene-based compound.
  • Isoprene-based polymers such as polyisoprene (IR), copolymers of isoprene and aromatic vinyl compounds, and copolymers of isoprene and other diene compounds; chloroprene rubber (CR), butyl rubber (IIR) And halogenated butyl rubber (X-IIR); ethylene-propylene-based copolymer rubber (EPM), ethylene-propylene-diene-based copolymer rubber (EPDM), and any blends thereof.
  • IR polyisoprene
  • CR chloroprene rubber
  • IIR butyl rubber
  • X-IIR halogenated butyl rubber
  • EPM ethylene-propylene-based copolymer rubber
  • EPDM ethylene-propylene-diene-based copolymer rubber
  • the rubber material used for the tire may include other components such as an additive added to the rubber according to the purpose.
  • the additive include a reinforcing material such as carbon black, a filler, a vulcanizing agent, a vulcanization accelerator, a fatty acid or a salt thereof, a metal oxide, a process oil, an antioxidant, and the like. can do.
  • a tire mainly composed of a rubber material is obtained by molding an unvulcanized rubber material into a tire shape and vulcanizing the unvulcanized rubber by heating.
  • the resin material only needs to contain at least the resin (resin component), and may contain other components such as additives as long as the effects of the present embodiment are not impaired.
  • the content of the resin (resin component) in the resin material is preferably 50% by mass or more, more preferably 90% by mass or more, based on the total amount of the resin material.
  • the tire frame can be formed using, for example, a resin material.
  • the resin contained in the tire frame includes a thermoplastic resin, a thermoplastic elastomer, and a thermosetting resin.
  • thermosetting resin examples include a phenol-based thermosetting resin, a urea-based thermosetting resin, a melamine-based thermosetting resin, and an epoxy-based thermosetting resin.
  • thermoplastic resin examples include a polyamide-based thermoplastic resin, a polyester-based thermoplastic resin, an olefin-based thermoplastic resin, a polyurethane-based thermoplastic resin, a vinyl chloride-based thermoplastic resin, and a polystyrene-based thermoplastic resin. These may be used alone or in combination of two or more.
  • the thermoplastic resin is preferably at least one selected from the group consisting of a polyamide-based thermoplastic resin, a polyester-based thermoplastic resin, and an olefin-based thermoplastic resin, and is preferably a polyamide-based thermoplastic resin and an olefin-based thermoplastic resin. At least one selected from the group consisting of resins is more preferred.
  • thermoplastic elastomer examples include a polyamide-based thermoplastic elastomer (TPA), a polystyrene-based thermoplastic elastomer (TPS), a polyurethane-based thermoplastic elastomer (TPU), an olefin-based thermoplastic elastomer (TPO) specified in JIS K6418, Examples thereof include a polyester-based thermoplastic elastomer (TPEE), a crosslinked thermoplastic rubber (TPV), and other thermoplastic elastomers (TPZ).
  • the resin material forming the tire skeleton should be at least one selected from the group consisting of thermoplastic resins and thermoplastic elastomers.
  • thermoplastic elastomer from the viewpoint of riding comfort during running.
  • the resin material may contain other components other than the resin, if desired.
  • Other components include, for example, resins, rubbers, various fillers (eg, silica, calcium carbonate, clay), antioxidants, oils, plasticizers, coloring agents, weathering agents, reinforcing materials, and the like.
  • the melting point of the resin contained in the resin material is, for example, about 100 ° C to 350 ° C, and the durability of the tire increases.
  • the temperature is preferably about 100 ° C. to 250 ° C., and more preferably 120 ° C. to 250 ° C.
  • the tensile modulus of the elastic material (tire skeleton) itself specified in JIS K7113: 1995 is preferably from 50 MPa to 1000 MPa, more preferably from 50 MPa to 800 MPa, and particularly preferably from 50 MPa to 700 MPa.
  • the elastic modulus of the elastic material is 50 MPa to 1000 MPa, the rim can be efficiently assembled while maintaining the shape of the tire frame.
  • the tensile strength of the elastic material (tire frame body) itself specified in JIS K7113 (1995) is usually about 15 MPa to 70 MPa, preferably 17 MPa to 60 MPa, more preferably 20 MPa to 55 MPa.
  • the tensile yield strength of the elastic material (tire frame) itself as defined in JIS K7113 (1995) is preferably 5 MPa or more, more preferably 5 MPa to 20 MPa, and particularly preferably 5 MPa to 17 MPa.
  • the tensile yield strength of the elastic material is 5 MPa or more, the elastic material can withstand deformation due to a load applied to the tire during running or the like.
  • the tensile yield elongation of the elastic material (tire frame body) itself specified in JIS K7113 (1995) is preferably 10% or more, more preferably 10% to 70%, and particularly preferably 15% to 60%.
  • the tensile yield elongation of the elastic material is 10% or more, the elastic region is large, and the rim assemblability can be improved.
  • the tensile elongation at break specified in JIS K7113 (1995) of the elastic material (tire frame) itself is preferably 50% or more, more preferably 100% or more, particularly preferably 150% or more, and most preferably 200% or more.
  • the rim assemblability is good, and it is possible to make it difficult to break in a collision.
  • the deflection temperature under load (under a load of 0.45 MPa) specified by ISO 75-2 or ASTM D648 of the elastic material (tire frame) itself is preferably 50 ° C. or higher, more preferably 50 ° C. to 150 ° C., and more preferably 50 ° C. 130 ° C. is particularly preferred.
  • the deflection temperature under load of the elastic material is 50 ° C. or more, the deformation of the tire frame can be suppressed even when vulcanization is performed in the manufacture of the tire.
  • an inner liner (not shown) made of a rubber material, a bead core, a bead filler, and a cord are formed of an elastic material (that is, a rubber material or a resin material) around a known tire forming drum.
  • An unvulcanized tire case is formed having the covered carcass 16, the area around the carcass 16 in the tire side portion 18 formed of an elastic material (that is, a rubber material or a resin material), and the like.
  • a member such as a wire wound on a reel is unwound while rotating the tire case, and the wire is wound around the tread portion 19 a predetermined number of times. 17 may be formed.
  • the wire is coated with a resin
  • the coated resin may be welded to the tread portion 19 by applying heat and pressure.
  • an unvulcanized tread is attached to the outer peripheral surface of the belt 17, and a green tire is obtained.
  • the green tire thus manufactured is vulcanized and molded by a vulcanization molding mold, and the tire 20 is completed.
  • a tire having a pair of bead portions At least one of the pair of bead portions has a bead wire, an adhesive layer, a first coating resin layer, and a second coating resin layer in this order, In a direction where the distance from the surface of the bead wire to the outer surface of the second coating resin layer is minimized in the inward and outward directions in the axial direction of the tire, and in all the inward directions in the radial direction of the tire.
  • the thickness a of the second coating resin layer, the thickness b of the first coating resin layer, and the thickness c of the adhesive layer satisfy the following conditions (a1), (b1), and (c1), respectively.
  • the water permeability A of the second coating resin layer, the water permeability B of the first coating resin layer, and the water permeability C of the adhesive layer are as follows (A1), (B1), and (C1), respectively.
  • the thickness a of the second coating resin layer, the thickness b of the first coating resin layer, and the thickness c of the adhesive layer satisfy the following conditions (a2), (b2), and (c2), respectively.
  • the melt viscosity at 270 ° C. of the second coating resin layer is 150 Pa ⁇ s or more and 600 Pa ⁇ s or less, ⁇ 1> to ⁇ 3>, wherein the ratio of the melt viscosity Mb at 270 ° C. of the first coating resin layer to the melt viscosity Ma at 270 ° C. of the second coating resin layer satisfies the following condition (Ma1).
  • the adhesive layer, the first coating resin layer, and the second coating resin layer are each independently formed of an olefin-based thermoplastic elastomer, an olefin-based thermoplastic resin, a polyamide-based thermoplastic elastomer, a polyamide-based thermoplastic resin, or a polyester-based thermoplastic resin.
  • ⁇ 6> The tire according to ⁇ 5>, wherein the first coating resin layer and the second coating resin layer include a polyester-based thermoplastic elastomer.
  • ⁇ 7> The tire according to ⁇ 5> or ⁇ 6>, wherein the adhesive layer includes a polyester-based thermoplastic elastomer.
  • ⁇ 8> The tire according to any one of ⁇ 1> to ⁇ 7>, wherein at least one of the adhesive layer, the first coating resin layer, and the second coating resin layer contains an acid-modified thermoplastic material. .
  • ⁇ 9> The tire according to ⁇ 8>, wherein the adhesive layer includes an acid-modified thermoplastic material.
  • the bead wire is a monofilament, and the surface of the monofilament is made of a metal material mainly containing at least one metal element selected from the group consisting of Cu, Zn, Fe, Al, and Co.
  • Examples 1 to 18, Comparative Examples 1 to 11 ⁇ Production of bead member>
  • a monofilament (monofilament having an average diameter of 1.25 mm, made of steel, strength: 2700 N, elongation: 7%) is used.
  • the adhesives shown in Tables 1 to 4 are extruded and adhered to the surface of the bead wire in a state of being melted by heating with an extruder.
  • the conditions for extruding the adhesive layer are as follows: the temperature of the adhesive is 240 ° C.
  • the bead wire to which the adhesive was adhered was placed in a mold so as to be arranged side by side, and the resin of the first coating resin layer shown in Tables 1 to 4 was extruded by an extruder to obtain a surface of the adhesive. And coated and cooled.
  • the extrusion conditions of the first coating resin layer are such that the temperature of the resin is 240 ° C.
  • the bead core obtained as described above is placed in a mold previously processed into the shape of the second coating resin layer, and the resin of the second coating resin layer shown in Tables 1 to 4 is injected by an injection molding machine.
  • a member having a structure in which the outer periphery of the bead core is covered with the second coating resin layer (that is, the structure shown in FIG. 2A) is manufactured.
  • the mold temperature during injection molding is 80 ° C., and the molding temperature is 270 ° C.
  • the bead filler shown in FIG. 2A is formed by injection molding to produce a bead member.
  • the second coating resin is formed from the surface of the bead wire.
  • Tables 1 to 4 show the thickness a of the second coating resin layer, the thickness b of the first coating resin layer, and the thickness c of the adhesive layer at the point where the distance to the outer surface of the layer becomes minimum. Show.
  • a / C is the ratio of the water permeability A of the second coating resin layer to the water permeability C of the adhesive layer, and the ratio of the water permeability B of the first coating resin layer to the water permeability C of the adhesive layer.
  • Tables 1 to 4 show B / C and B / A, which is the ratio of the water permeability C of the adhesive layer to the water permeability A of the second coating resin layer.
  • the viscosity b / viscosity a which is the ratio of the melt viscosity Mb at 270 ° C. of the first coating resin layer to the melt viscosity Ma at 270 ° C. of the second coating resin layer, and the viscosity at 270 ° C. of the first coating resin layer
  • Tables 1 to 4 show the viscosity c / viscosity b, which is the ratio of the melt viscosity Mc at 270 ° C. of the adhesive layer to the melt viscosity Mb.
  • the tire of the embodiment shown in FIG. 3 described above is manufactured using the bead member obtained as described above for a pair of bead portions.
  • a bead member obtained as described above and a carcass made of a ply cord made of polyethylene terephthalate are prepared, and a tire side portion (carcass tire) using a mixed rubber material of natural rubber (NR) and styrene butadiene rubber (SBR) is prepared.
  • a green tire is manufactured using the outer side in the width direction), the side reinforcing rubber, the tread portion, and the belt layer of the stranded wire.
  • the raw tire to be produced is heated (rubber vulcanization) at 160 ° C. for 21 minutes.
  • the resulting tire has a tire size of 225 / 40R18 and a tread thickness of 10 mm.
  • Adhesive 1 Acid-modified polypropylene resin, hot melt adhesive (trade name “Admer QE060”, manufactured by Mitsui Chemicals, Inc.), water permeability 10 g ⁇ mm / (m 2 ⁇ day)
  • Adhesive 2 Acid-modified polypropylene resin, hot melt adhesive (trade name “Admer QF500”, manufactured by Mitsui Chemicals, Inc.), water permeability 5 g ⁇ mm / (m 2 ⁇ day)
  • Adhesive 3 Polypropylene resin unmodified homo PP, manufactured by Prime Polymer Co., Ltd., trade name "Prime Polypro J-700GP", water permeability 3 g ⁇ mm / (m 2 ⁇ day)
  • Adhesive 4 Polyamide-based resin, hot melt adhesive (trade name “Platamid B409”, manufactured by Arkema Corporation), water permeability 100
  • a 180 ° peel test was conducted at a tensile speed of 100 mm / min in a room temperature environment (25 ° C.) using “TENSIRON RTF-1210” manufactured by A & D Corporation, and the peel force (unit) was measured. : N), and the adhesiveness is evaluated according to the following evaluation criteria.
  • B The peeling force is 14 N or more and less than 17 N.
  • C The peeling force is 10 N or more and less than 14 N.
  • D The peel force is less than 10N.
  • ⁇ JIS drum test after wet heat deterioration treatment> The tires manufactured in the examples and the comparative examples are filled with air so that the internal pressure becomes 250 kPa, and then subjected to a deterioration treatment for 10 days at a temperature of 75 ° C. and a humidity of 95%.
  • the tire after the deterioration treatment is subjected to a durability drum test as described below, and is evaluated according to the following evaluation criteria.
  • the tire is adjusted to an internal pressure of 3.0 kg / cm 2 in a room at 25 ⁇ 2 ° C., and then left for 24 hours.
  • the air pressure is readjusted, the tire is applied with a load 1.8 times the JIS load, and the tire is run at a speed of 60 km / h at a maximum of 20,000 km on a drum having a diameter of about 3 m. Then, the distance traveled before the tire breaks down is measured and evaluated according to the following evaluation criteria. The longer the traveling distance, the better the durability of the tire, and if it is classified as [A], it can be said that it is practically preferable.
  • -Evaluation criteria - A: Complete 20,000 km.
  • B The traveling distance until the occurrence of the failure is not less than 10,000 km and less than 20,000 km.
  • C The traveling distance until the occurrence of the failure is less than 10,000 km.
  • Examples 1 and 6 are data obtained by actually performing the test, while Examples 2 to 5, 7 to 18 and Comparative Examples 1 to 11 are data. This is prediction data from data obtained by actually performing a test.
  • the tires of the examples satisfying the conditions (a1), (b1), (c1), (A1), (B1), and (C1) are of the comparative example that does not satisfy any of the above conditions.
  • a good evaluation is obtained in any of the tests as compared with the tire.

Abstract

This tire is provided with a pair of bead portions, at least one of which includes a bead wire, an adhesive layer, a first coating resin layer, and a second coating resin layer, in this order, wherein, in inside and outside directions in the axial direction of the tire, and in an inside direction in the radial direction of the tire, in positions in which the distance from the surface of the bead wire to the outside surface of the second coating resin layer is smallest, a thickness a and a water permeability A of the second coating resin layer, a thickness b and a water permeability B of the first coating resin layer, and a thickness c and a water permeability C of the adhesive layer satisfy the following conditions. (a1) 10 mm ≤ a ≤ 80 mm (b1) 0.05 mm ≤ b ≤ 0.5 mm (c1) 0.005 mm ≤ c ≤ 0.1 mm (A1) A ≤ 300 g·mm/(m²·day) (B1) B ≤ 300 g·mm/(m²·day) (C1) C ≤ 80 g·mm/(m²·day)

Description

タイヤtire
 本開示は、タイヤに関する。 The present disclosure relates to a tire.
 従来から、一対のビード部と、ビード部からタイヤ径方向外側へ延びる一対のタイヤサイド部と、一方のタイヤサイド部から他方のタイヤサイド部へ延びるトレッド部と、を有する空気入りタイヤが用いられている。なお、空気入りタイヤのビード部においては、リムへの固定性能を高める観点で、ビードワイヤーを有するビードコアが埋設された構造が採用されている。 Conventionally, a pneumatic tire having a pair of bead portions, a pair of tire side portions extending outward from the bead portion in the tire radial direction, and a tread portion extending from one tire side portion to the other tire side portion has been used. ing. In the bead portion of the pneumatic tire, a structure in which a bead core having a bead wire is buried is employed from the viewpoint of improving the fixing performance to the rim.
 例えば、特許文献1には、少なくとも熱可塑性樹脂材料で形成され且つ環状のタイヤ骨格体を有するタイヤであって、前記熱可塑性樹脂材料が少なくともポリエステル系熱可塑性エラストマーを含むタイヤが提案されており、さらに金属材料からなる環状のビードコアが埋設された構造が開示されている。 For example, Patent Literature 1 proposes a tire formed of at least a thermoplastic resin material and having an annular tire skeleton, wherein the thermoplastic resin material includes at least a polyester-based thermoplastic elastomer, Further, a structure in which an annular bead core made of a metal material is embedded is disclosed.
  特許文献1:特開2012-046025号公報 Patent Document 1: Japanese Patent Application Laid-Open No. 2012-046025
 上記のように特許文献1には、金属材料からなる環状のビードコアが埋設された技術が開示されている。
 しかし、ビード部にタイヤ外部から水が浸透した場合、この水との接触によってビードワイヤーが腐食したり、劣化したりすることが考えられ。そのため、タイヤにおけるビード部の耐久性をより向上させる観点から、ビード部においてビードワイヤーへの水の浸透を抑制することが考えられる。
As described above, Patent Literature 1 discloses a technology in which an annular bead core made of a metal material is embedded.
However, when water permeates into the bead portion from the outside of the tire, the bead wire may be corroded or deteriorated by the contact with the water. Therefore, from the viewpoint of further improving the durability of the bead portion of the tire, it is conceivable to suppress the penetration of water into the bead wire at the bead portion.
 本開示は、上記事情に鑑み、ビード部における耐久性に優れたタイヤを提供することを目的とする。 The present disclosure has been made in view of the above circumstances, and aims to provide a tire having excellent durability in a bead portion.
 前記課題を解決するための具体的な手段には、以下の実施形態が含まれる。 具体 Specific means for solving the above problems include the following embodiments.
<1>
 一対のビード部を備えるタイヤであって、
 前記一対のビード部の少なくとも一方が、ビードワイヤーと接着層と第1被覆樹脂層と第2被覆樹脂層とをこの順に有し、
 前記タイヤの軸方向における内側方向及び外側方向、並びに前記タイヤの径方向における内側方向の全方向において、前記ビードワイヤーの表面から前記第2被覆樹脂層の外側表面までの距離が最小となる箇所で、前記第2被覆樹脂層の厚さa、前記第1被覆樹脂層の厚さb、及び前記接着層の厚さcがそれぞれ下記(a1)、(b1)及び(c1)の条件を満たし、且つ前記第2被覆樹脂層の水透過率A、前記第1被覆樹脂層の水透過率B、及び前記接着層の水透過率Cがそれぞれ下記(A1)、(B1)及び(C1)の条件を満たすタイヤ。
 (a1)10mm≦a≦80mm
 (b1)0.05mm≦b≦0.5mm
 (c1)0.005mm≦c≦0.1mm
 (A1)A≦300g・mm/(m・day)
 (B1)B≦300g・mm/(m・day)
 (C1)C≦80g・mm/(m・day)
<1>
A tire having a pair of bead portions,
At least one of the pair of bead portions has a bead wire, an adhesive layer, a first coating resin layer, and a second coating resin layer in this order,
In a direction where the distance from the surface of the bead wire to the outer surface of the second coating resin layer is minimized in the inward and outward directions in the axial direction of the tire, and in all the inward directions in the radial direction of the tire. The thickness a of the second coating resin layer, the thickness b of the first coating resin layer, and the thickness c of the adhesive layer satisfy the following conditions (a1), (b1) and (c1), respectively: In addition, the water permeability A of the second coating resin layer, the water permeability B of the first coating resin layer, and the water permeability C of the adhesive layer satisfy the following conditions (A1), (B1), and (C1), respectively. Meet the tire.
(A1) 10 mm ≦ a ≦ 80 mm
(B1) 0.05 mm ≦ b ≦ 0.5 mm
(C1) 0.005 mm ≦ c ≦ 0.1 mm
(A1) A ≦ 300 g · mm / (m 2 · day)
(B1) B ≦ 300 g · mm / (m 2 · day)
(C1) C ≦ 80 g · mm / (m 2 · day)
 本開示によれば、ビード部における耐久性に優れたタイヤを提供することができる。 According to the present disclosure, it is possible to provide a tire having excellent durability in a bead portion.
本開示の一実施形態に係るタイヤにおけるビード部の一例を示す、ビードワイヤーの長さ方向に対する垂直切断面の模式図である。It is a mimetic diagram of a perpendicular section to the length direction of a bead wire which shows an example of a bead part in a tire concerning one embodiment of this indication. 図1Aに示すビード部の、タイヤの軸方向における内側方向及び外側方向、並びにタイヤの径方向における内側方向の全方向において、ビードワイヤーの表面から第2被覆樹脂層の外側表面までの距離が最小となる箇所における拡大図である。In the bead portion shown in FIG. 1A, the distance from the surface of the bead wire to the outer surface of the second coating resin layer is the smallest in the inward and outward directions in the axial direction of the tire, and in the inward direction in the radial direction of the tire. FIG. 本開示の一実施形態に係るタイヤにおけるビード部の他の一例を示す、ビードワイヤーの長さ方向に対する垂直切断面の模式図である。It is a mimetic diagram of a perpendicular section to the longitudinal direction of a bead wire which shows other examples of a bead part in a tire concerning one embodiment of the present disclosure. 図2Aに示すビード部の、タイヤの軸方向における内側方向及び外側方向、並びにタイヤの径方向における内側方向の全方向において、ビードワイヤーの表面から第2被覆樹脂層の外側表面までの距離が最小となる箇所における拡大図である。In the bead portion shown in FIG. 2A, the distance from the surface of the bead wire to the outer surface of the second coating resin layer is the smallest in the inward and outward directions in the axial direction of the tire and in all the inward directions in the radial direction of the tire. FIG. 本開示の一実施形態に係るタイヤをタイヤ幅方向に沿って切断した切断面の片側を示すタイヤ半断面図である。It is a tire half-sectional view showing one side of a section which cut a tire concerning one embodiment of the present disclosure along a tire width direction.
 以下、本開示の具体的な実施形態について詳細に説明するが、本開示は、以下の実施形態に何ら限定されるものではなく、本開示の目的の範囲内において、適宜変更を加えて実施することができる。
 なお、各図における部材の大きさは概念的なものであり、部材間の大きさの相対的な関係はこれに限定されない。また、実質的に同一の機能を有する部材には全図面を通じて同じ符号を付し、重複する説明は省略する場合がある。
Hereinafter, specific embodiments of the present disclosure will be described in detail. However, the present disclosure is not limited to the following embodiments, and is implemented with appropriate changes within the scope of the present disclosure. be able to.
The size of the members in each drawing is conceptual, and the relative relationship between the sizes of the members is not limited to this. Members having substantially the same function are denoted by the same reference numerals throughout the drawings, and overlapping description may be omitted.
 本明細書において「樹脂」とは、熱可塑性樹脂、熱可塑性エラストマー、及び熱硬化性樹脂を含む概念であり、加硫ゴムは含まない。また、以下の樹脂の説明において「同種」とは、エステル系同士、スチレン系同士等、樹脂の主鎖を構成する骨格と共通する骨格を備えたものを意味する。
 本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 本明細書において「工程」との語には、独立した工程だけではなく、他の工程と明確に区別できない場合であっても、その目的が達成されるものであれば、当該工程も本用語に含まれる。
 本明細書において、組成物中の各成分の量は、各成分に該当する物質が組成物中に複数存在する場合には、特に断りがない限り、組成物中に存在する複数の物質の合計量を意味する。
 本明細書において、「主成分」とは、特に断りがない限り、混合物中における質量基準の含有量が最も多い成分を意味する。
In this specification, “resin” is a concept including a thermoplastic resin, a thermoplastic elastomer, and a thermosetting resin, and does not include a vulcanized rubber. In the following description of the resin, “the same type” means a resin having a skeleton common to the skeleton constituting the main chain of the resin, such as an ester type or a styrene type.
In this specification, a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit and an upper limit.
In this specification, the term "step" includes not only an independent step but also the term "step" as long as its purpose is achieved, even if it cannot be clearly distinguished from other steps. include.
In the present specification, the amount of each component in the composition is, when a plurality of substances corresponding to each component are present in the composition, unless otherwise specified, the sum of a plurality of substances present in the composition. Means quantity.
In the present specification, the “main component” means a component having the largest content by mass in a mixture unless otherwise specified.
 また、本明細書において「熱可塑性樹脂」とは、温度上昇とともに材料が軟化、流動し、冷却すると比較的硬く強度のある状態になるが、ゴム状弾性を有しない高分子化合物を意味する。
 本明細書において「熱可塑性エラストマー」とは、ハードセグメント及びソフトセグメントを有する共重合体を意味する。熱可塑性エラストマーとしては、温度上昇とともに材料が軟化、流動し、冷却すると比較的硬く強度のある状態になり、かつ、ゴム状弾性を有するものが挙げられる。熱可塑性エラストマーとして具体的には、例えば、結晶性で融点の高いハードセグメント又は高い凝集力のハードセグメントを構成するポリマーと、非晶性でガラス転移温度の低いソフトセグメントを構成するポリマーと、を有する共重合体が挙げられる。
 なお、上記ハードセグメントは、ソフトセグメントよりも相対的に硬い成分を指す。ハードセグメントは塑性変形を防止する架橋ゴムの架橋点の役目を果たす分子拘束成分であることが好ましい。例えばハードセグメントとしては、主骨格に芳香族基若しくは脂環式基等の剛直な基を有する構造、又は分子間水素結合若しくはπ-π相互作用による分子間パッキングを可能にする構造等のセグメントが挙げられる。
 また、上記ソフトセグメントは、ハードセグメントよりも相対的に柔らかい成分を指す。ソフトセグメントはゴム弾性を示す柔軟性成分であることが好ましい。例えばソフトセグメントとしては、主鎖に長鎖の基(例えば長鎖のアルキレン基等)を有し、分子回転の自由度が高く、伸縮性を有する構造のセグメントが挙げられる。
Further, in the present specification, the term "thermoplastic resin" refers to a polymer compound in which a material softens and flows with an increase in temperature and becomes relatively hard and strong when cooled, but does not have rubber-like elasticity.
As used herein, “thermoplastic elastomer” refers to a copolymer having a hard segment and a soft segment. Examples of the thermoplastic elastomer include an elastomer which softens and flows with an increase in temperature, becomes relatively hard and strong when cooled, and has rubber-like elasticity. Specifically, as the thermoplastic elastomer, for example, a polymer that forms a hard segment having a high melting point or a hard segment having a high cohesive force and a polymer that forms an amorphous soft segment having a low glass transition temperature, Copolymer having the same.
The hard segment indicates a component that is relatively harder than the soft segment. The hard segment is preferably a molecular constraint component serving as a crosslinking point of the crosslinked rubber for preventing plastic deformation. For example, as the hard segment, a segment such as a structure having a rigid group such as an aromatic group or an alicyclic group in a main skeleton, or a structure capable of packing between molecules by intermolecular hydrogen bonding or π-π interaction is used. No.
The soft segment indicates a component relatively softer than the hard segment. The soft segment is preferably a flexible component exhibiting rubber elasticity. For example, examples of the soft segment include a segment having a structure in which a main chain has a long-chain group (for example, a long-chain alkylene group or the like), has a high degree of freedom of molecular rotation, and has elasticity.
<タイヤ>
 本開示の一実施形態に係るタイヤは、一対のビード部を備える。
 そして、この一対のビード部の少なくとも一方が、ビードワイヤーと接着層と第1被覆樹脂層と第2被覆樹脂層とをこの順に有し、前記タイヤの軸方向における内側方向及び外側方向、並びに前記タイヤの径方向における内側方向の全方向において、前記ビードワイヤーの表面から前記第2被覆樹脂層の外側表面までの距離が最小となる箇所で、前記第2被覆樹脂層の厚さa、前記第1被覆樹脂層の厚さb、及び前記接着層の厚さcがそれぞれ下記(a1)、(b1)及び(c1)の条件を満たし、且つ前記第2被覆樹脂層の水透過率A、前記第1被覆樹脂層の水透過率B、及び前記接着層の水透過率Cがそれぞれ下記(A1)、(B1)及び(C1)の条件を満たす。
 (a1)10mm≦a≦80mm
 (b1)0.05mm≦b≦0.5mm
 (c1)0.005mm≦c≦0.1mm
 (A1)A≦300g・mm/(m・day)
 (B1)B≦300g・mm/(m・day)
 (C1)C≦80g・mm/(m・day)
<Tire>
A tire according to an embodiment of the present disclosure includes a pair of bead portions.
And at least one of the pair of bead portions has a bead wire, an adhesive layer, a first coating resin layer, and a second coating resin layer in this order, and the inner and outer directions in the axial direction of the tire, and The thickness a of the second coating resin layer, where the distance from the surface of the bead wire to the outer surface of the second coating resin layer is minimized in all directions in the radially inward direction of the tire. 1 The thickness b of the coating resin layer and the thickness c of the adhesive layer satisfy the following conditions (a1), (b1) and (c1), respectively, and the water permeability A of the second coating resin layer is The water permeability B of the first coating resin layer and the water permeability C of the adhesive layer satisfy the following conditions (A1), (B1) and (C1), respectively.
(A1) 10 mm ≦ a ≦ 80 mm
(B1) 0.05 mm ≦ b ≦ 0.5 mm
(C1) 0.005 mm ≦ c ≦ 0.1 mm
(A1) A ≦ 300 g · mm / (m 2 · day)
(B1) B ≦ 300 g · mm / (m 2 · day)
(C1) C ≦ 80 g · mm / (m 2 · day)
 なお、以下において、上記の(A1)、(B1)及び(C1)の条件を満たすビード部材を、単に「特定のビード部」とも称す。 In the following, a bead member that satisfies the above conditions (A1), (B1) and (C1) is also simply referred to as a “specific bead portion”.
 ここで、上記タイヤが有する特定のビード部について、一例を挙げて図面に基づき説明する。
 図1Aは、ビード部10の周方向に直交する断面を示す断面図である。図1Aのビード部10は、ビードワイヤー11と、ビードワイヤー11を被覆する接着層12と、接着層12の周囲を覆う第1被覆樹脂層13と、を有するビードコア1を有し、さらにビードコア1の周囲を覆う第2被覆樹脂層14を有する。また、第2被覆樹脂層14からタイヤ径方向外側へ延びるビードフィラー3を有する。なお、図1Aに示すビード部10では、第2被覆樹脂層14とビードフィラー3とが別体として描かれているが、第2被覆樹脂層14とビードフィラー3とは一体成形された同一体の部材であってもよい。
 図1Aでは、タイヤの軸方向が横方向つまり矢印Y1方向及び矢印Y2方向に描かれ、またタイヤの径方向が縦方向つまり矢印X1方向及び矢印X2方向に描かれている。したがって、タイヤの軸方向における外側方向が矢印「Y1」方向であり、タイヤの軸方向における内側方向が矢印「Y2」方向であり、タイヤの径方向における外側方向が矢印「X1」方向であり、タイヤの径方向における内側方向が矢印「X2」方向である。
Here, the specific bead portion of the tire will be described with reference to the drawings by way of an example.
FIG. 1A is a cross-sectional view illustrating a cross section orthogonal to the circumferential direction of the bead portion 10. 1A includes a bead core 1 having a bead wire 11, an adhesive layer 12 that covers the bead wire 11, and a first coating resin layer 13 that covers the periphery of the adhesive layer 12. Has a second coating resin layer 14 that covers the periphery of the second resin layer. Further, it has a bead filler 3 extending outward from the second coating resin layer 14 in the tire radial direction. In the bead portion 10 shown in FIG. 1A, the second coating resin layer 14 and the bead filler 3 are drawn as separate bodies, but the second coating resin layer 14 and the bead filler 3 are integrally formed as one body. May be used.
In FIG. 1A, the axial direction of the tire is drawn in the horizontal direction, ie, the directions of arrows Y1 and Y2, and the radial direction of the tire is drawn in the vertical direction, ie, the directions of arrows X1 and X2. Therefore, the outer direction in the tire axial direction is the arrow “Y1” direction, the inner direction in the tire axial direction is the arrow “Y2” direction, the outer direction in the tire radial direction is the arrow “X1” direction, The inward direction in the radial direction of the tire is the direction of the arrow “X2”.
 なお、本実施形態では、タイヤの軸方向における内側方向及び外側方向、並びにタイヤの径方向における内側方向の全方向において、ビードワイヤーの表面から第2被覆樹脂層の外側表面までの距離が最小となる箇所で、前記(a1)、(b1)、(c1)の条件を満たす。
 ここで、本明細書において「タイヤの軸方向における内側方向及び外側方向、並びにタイヤの径方向における内側方向の全方向」とは、ビード部の周方向に直交する断面を観察した際に、タイヤの軸方向における内側方向から両側45°の範囲の方向、タイヤの軸方向における外側方向から両側45°の範囲の方向、及びタイヤの径方向における内側方向から両側45°の範囲の方向の全方向を指す。つまり、タイヤの径方向における外側方向から両側45°の範囲の方向を除く、全270°の範囲の方向を意味する。
 具体的に説明すると、例えば図1Aでは、タイヤ軸方向における内側方向(矢印Y2方向)から両側45°の範囲(つまりθ3で示す範囲)の方向と、タイヤの軸方向における外側方向(矢印Y1方向)から両側45°の範囲(つまりθ2で示す範囲)の方向と、タイヤ径方向における内側方向(矢印X2方向)から両側45°の範囲(つまりθ4で示す範囲)の方向と、の全270°の方向全てを指す。言い換えれば、タイヤ径方向における外側方向(矢印X1方向)から両側45°の範囲(つまりθ1で示す範囲)の方向を除く、全範囲の方向を意味する。
In the present embodiment, the distance from the surface of the bead wire to the outer surface of the second coating resin layer is the smallest in the inward and outward directions in the axial direction of the tire, and in all the inward directions in the radial direction of the tire. At some point, the conditions (a1), (b1), and (c1) are satisfied.
Here, in the present specification, "inward and outward directions in the axial direction of the tire, and all directions inward in the radial direction of the tire", when observing a cross section orthogonal to the circumferential direction of the bead portion, All directions in the direction of 45 ° on both sides from the inner direction in the axial direction, in the direction of 45 ° on both sides from the outer direction in the tire axial direction, and in the direction of 45 ° on both sides from the inner direction in the tire radial direction. Point to. In other words, it means a direction in the entire 270 ° range, excluding the direction in the range of 45 ° on both sides from the outer direction in the tire radial direction.
More specifically, for example, in FIG. 1A, a direction in a range of 45 ° on both sides from the inward direction (arrow Y2 direction) in the tire axial direction (that is, a range indicated by θ3) and an outward direction in the tire axial direction (arrow Y1 direction) ), And a direction in a range of 45 ° on both sides from the inside direction (direction of arrow X2) in the tire radial direction (ie, a range indicated by θ4) in a range of 45 ° on both sides (ie, a range indicated by θ2). In all directions. In other words, it means the direction of the entire range excluding the direction in the range of 45 ° on both sides from the outer direction (direction of arrow X1) in the tire radial direction (that is, the range indicated by θ1).
 そして、本実施形態では、タイヤの軸方向における内側方向及び外側方向、並びにタイヤの径方向における内側方向の全方向(以下本明細書において単に「特定の対象方向」とも称す)において、ビードワイヤーの表面から第2被覆樹脂層の外側表面までの距離が最小となる箇所を、対象とする。つまり、図1Aに示すビード部10の場合、特定の対象方向(つまりθ2、θ3及びθ4で示す範囲の方向)において、ビードワイヤー11の表面から第2被覆樹脂層14の外側表面までの距離が最小となる箇所[m1]が、対象となる。なお、図1Aにおける箇所[m1]部分の拡大図を、図1Bに示す。
 図1Bに示すビード部10は、箇所[m1]において、第2被覆樹脂層14の厚さa、第1被覆樹脂層13の厚さb、及び接着層12の厚さcがそれぞれ前記(a1)、(b1)及び(c1)の条件を満たす。
 また、ビード部10は、第2被覆樹脂層14の水透過率A、第1被覆樹脂層13の水透過率B、及び接着層12の水透過率Cがそれぞれ前記(A1)、(B1)及び(C1)の条件を満たす。
In the present embodiment, the bead wires are formed in the inward and outward directions in the axial direction of the tire, and in all the inward directions in the radial direction of the tire (hereinafter, also simply referred to as “specific target directions” in the present specification). The location where the distance from the surface to the outer surface of the second coating resin layer is minimum is targeted. That is, in the case of the bead portion 10 shown in FIG. 1A, the distance from the surface of the bead wire 11 to the outer surface of the second coating resin layer 14 in a specific target direction (that is, a direction in a range indicated by θ2, θ3, and θ4). The minimum location [m1] is the target. FIG. 1B is an enlarged view of a portion [m1] in FIG. 1A.
In the bead portion 10 shown in FIG. 1B, the thickness a of the second coating resin layer 14, the thickness b of the first coating resin layer 13, and the thickness c of the adhesive layer 12 at the point [m1] are (a1 ), (B1) and (c1).
In the bead portion 10, the water permeability A of the second covering resin layer 14, the water permeability B of the first covering resin layer 13, and the water permeability C of the adhesive layer 12 are (A1) and (B1), respectively. And (C1).
 また、タイヤが有する特定のビード部は、図1Aに示す態様には限られず、例えばビードワイヤーを複数本有する態様であってもよい。ここで、ビードワイヤーを複数本有する態様について、さらに一例を挙げて図面に基づき説明する。
 図2Aは、ビード部110の周方向に直交する断面を示す断面図である。図2Aには、3本のビードワイヤー111が並列に並べられると共に3段に積層された態様、つまり9本のビードワイヤー111を有する態様のビード部110が示されている。各ビードワイヤー111はそれぞれ接着層112で被覆され、さらにビードワイヤー111及び接着層112の周囲が第1被覆樹脂層113で被覆されて、ビードコア101を形成する。さらに、ビードコア101の周囲を覆う第2被覆樹脂層114を有する。また、第2被覆樹脂層114からタイヤ径方向外側へ延びるビードフィラー103を有する。なお、図2Aに示すビード部110では、第2被覆樹脂層114とビードフィラー103とが別体として描かれているが、第2被覆樹脂層114とビードフィラー103とは一体成形された同一体の部材であってもよい。
 図2Aでは、タイヤの軸方向における外側方向が矢印「Y1」方向であり、タイヤの軸方向における内側方向が矢印「Y2」方向であり、タイヤの径方向における外側方向が矢印「X1」方向であり、タイヤの径方向における内側方向が矢印「X2」方向である。
Further, the specific bead portion of the tire is not limited to the embodiment shown in FIG. 1A, and may be, for example, an embodiment having a plurality of bead wires. Here, an embodiment having a plurality of bead wires will be described with reference to the drawings by further giving an example.
FIG. 2A is a cross-sectional view illustrating a cross section orthogonal to the circumferential direction of the bead portion 110. FIG. 2A shows a bead portion 110 in which three bead wires 111 are arranged in parallel and stacked in three stages, that is, in an embodiment having nine bead wires 111. Each bead wire 111 is covered with an adhesive layer 112, and the periphery of the bead wire 111 and the adhesive layer 112 is covered with a first covering resin layer 113 to form a bead core 101. Further, a second coating resin layer 114 covering the periphery of the bead core 101 is provided. In addition, it has a bead filler 103 extending outward from the second coating resin layer 114 in the tire radial direction. In the bead portion 110 shown in FIG. 2A, the second coating resin layer 114 and the bead filler 103 are drawn as separate bodies, but the second coating resin layer 114 and the bead filler 103 are integrally formed in the same body. May be used.
In FIG. 2A, the outer direction in the axial direction of the tire is an arrow “Y1” direction, the inner direction in the axial direction of the tire is an arrow “Y2” direction, and the outer direction in the radial direction of the tire is an arrow “X1” direction. The inner direction in the tire radial direction is the direction of the arrow “X2”.
 図2Aに示すビード部110では、特定の対象方向(つまり、タイヤ軸方向における内側方向(矢印Y2方向)から両側45°の範囲の方向と、タイヤの軸方向における外側方向(矢印Y1方向)から両側45°の範囲の方向と、タイヤ径方向における内側方向(矢印X2方向)から両側45°の範囲の方向と、の全270°の方向全て)において、ビードワイヤー111の表面から第2被覆樹脂層114の外側表面までの距離が最小となる箇所で、前記(a1)、(b1)、及び(c1)の条件を満たす。なお、ビードワイヤーを複数本有する場合には、図2Aに示すように、複数本のビードワイヤー111のうち特定の対象方向でのビードワイヤー111の表面から第2被覆樹脂層114の外側表面までの距離が最小となる1本を選び、その距離が最小となる箇所[m2]が、対象となる。なお、図2Aにおける箇所[m2]部分の拡大図を、図2Bに示す。
 そして、図2Bに示すビード部110は、箇所[m2]において、第2被覆樹脂層114の厚さa、第1被覆樹脂層113の厚さb、及び接着層112の厚さcがそれぞれ前記(a1)、(b1)、及び(c1)の条件を満たす。
 また、ビード部110は、第2被覆樹脂層114の水透過率A、第1被覆樹脂層113の水透過率B、及び接着層112の水透過率Cがそれぞれ前記(A1)、(B1)、及び(C1)の条件を満たす。
In the bead portion 110 shown in FIG. 2A, a direction in a range of 45 ° on both sides from a specific target direction (that is, an inner direction (arrow Y2 direction) in the tire axial direction) and an outer direction (arrow Y1 direction) in the tire axial direction. The second coating resin extends from the surface of the bead wire 111 in a direction of a range of 45 ° on both sides and a direction of an inner side in the tire radial direction (direction of arrow X2) in a range of 45 ° on both sides in all 270 ° directions. At the point where the distance to the outer surface of the layer 114 is minimum, the conditions (a1), (b1), and (c1) are satisfied. In the case of having a plurality of bead wires, as shown in FIG. 2A, a portion of the plurality of bead wires 111 from the surface of the bead wire 111 in a specific target direction to the outer surface of the second coating resin layer 114. One line having the minimum distance is selected, and a portion [m2] where the distance is minimum is targeted. FIG. 2B is an enlarged view of a portion [m2] in FIG. 2A.
2B, at the point [m2], the thickness a of the second coating resin layer 114, the thickness b of the first coating resin layer 113, and the thickness c of the adhesive layer 112 are respectively the same. The conditions (a1), (b1), and (c1) are satisfied.
In the bead portion 110, the water permeability A of the second covering resin layer 114, the water permeability B of the first covering resin layer 113, and the water permeability C of the adhesive layer 112 are (A1) and (B1), respectively. , And (C1).
 このような構成を満たすタイヤによれば、ビード部の耐久性に優れたタイヤを提供することができる。 According to the tire satisfying such a configuration, a tire having excellent bead portion durability can be provided.
 タイヤのリムへの固定の役割を担うビード部として、ビードワイヤーと接着層と第1被覆樹脂層と第2被覆樹脂層とをこの順に有するビード部が、従来から用いられている。なお、ビードワイヤーにはスチールコード等の金属製のワイヤー、及び樹脂製のワイヤー等が多く用いられている。タイヤの外部からこのビード部の内部にまで水が浸透してビードワイヤーに到達した場合、水との接触によってビードワイヤーが腐食したり、劣化することがある。また、ビード部の周囲にゴム製の部材が存在する場合、そのゴム中の添加剤が溶解した水がビード部の内部に浸透し、この添加剤との接触によってビードワイヤーが劣化することもある。
 そのため、ビード部においてはビードワイヤーへの水の浸透を抑制することが求められる。
Conventionally, a bead having a bead wire, an adhesive layer, a first coating resin layer, and a second coating resin layer in this order has been used as a bead that plays a role of fixing the tire to a rim. Note that a metal wire such as a steel cord, a resin wire, and the like are often used as bead wires. When water permeates from the outside of the tire to the inside of the bead portion and reaches the bead wire, the bead wire may be corroded or deteriorated by contact with water. Further, when a rubber member is present around the bead portion, water in which the additive in the rubber is dissolved permeates into the bead portion, and the bead wire may be deteriorated by contact with the additive. .
Therefore, it is required to suppress the penetration of water into the bead wire in the bead portion.
 これに対し、上記タイヤは、ビード部において前記(a1)、(b1)、(c1)、(A1)、(B1)、及び(C1)の条件を満たす。
 接着層、第1被覆樹脂層、及び第2被覆樹脂層の中でビードワイヤーに最も近い接着層は、接着性の維持、強度、衝撃による割れの抑制等の観点から薄いことが求められ、具体的には条件(c1)0.005mm≦c≦0.1mmを満たすことが求められる。一方で、ビードワイヤーに最も近い接着層には水の浸透を抑制する特性が高く求められるため、上記(c1)の条件を満たす前提においては、水透過率として(C1)C≦80g・mm/(m・day)を満たすことが求められる。また、接着層上に配置される第2被覆樹脂層及び第1被覆樹脂層には、接着層までの水の浸透を抑制する観点から、水透過率としてそれぞれ(A1)A≦300g・mm/(m・day)及び(B1)B≦300g・mm/(m・day)を満たすことが求められる。さらに、第1被覆樹脂層の厚さは、成形性、接着性、強度等の観点と水浸透の抑制の観点の両観点から、(b1)0.05mm≦b≦0.5mmを満たすことが求められ、一方第2被覆樹脂層の厚さは、水浸透の抑制の観点から接着層及び第1被覆樹脂層よりも厚くすることが求められ、つまり(a1)10mm≦a≦80mmを満たすことが求められる。
 したがって、ビード部における各層の厚さ及び水透過率について、接着層が条件(c1)及び(C1)を満たし、第1被覆樹脂層が条件(b1)及び(B1)を満たし、さらに第2被覆樹脂層が条件(a1)及び(A1)を満たすことで、ビードワイヤーへの水の浸透が抑制され、ビード部の耐久性に優れたタイヤが提供される。
On the other hand, the tire satisfies the conditions (a1), (b1), (c1), (A1), (B1), and (C1) in the bead portion.
The adhesive layer closest to the bead wire among the adhesive layer, the first coating resin layer, and the second coating resin layer is required to be thin from the viewpoint of maintaining adhesiveness, strength, and suppressing cracking due to impact. Specifically, it is required that the condition (c1) 0.005 mm ≦ c ≦ 0.1 mm is satisfied. On the other hand, since the adhesive layer closest to the bead wire is required to have a high property of suppressing water penetration, on the assumption that the above condition (c1) is satisfied, the water permeability is (C1) C ≦ 80 g · mm / (M 2 · day) is required to be satisfied. Further, the second coating resin layer and the first coating resin layer disposed on the adhesive layer each have a water permeability (A1) A ≦ 300 g · mm / (m 2 · day) and to meet the (B1) B ≦ 300g · mm / (m 2 · day) is determined. Furthermore, the thickness of the first coating resin layer satisfies (b1) 0.05 mm ≦ b ≦ 0.5 mm from both viewpoints of moldability, adhesiveness, strength, and the like and suppression of water penetration. On the other hand, the thickness of the second coating resin layer is required to be thicker than the adhesive layer and the first coating resin layer from the viewpoint of suppressing water penetration, that is, (a1) satisfying 10 mm ≦ a ≦ 80 mm Is required.
Therefore, regarding the thickness and water permeability of each layer in the bead portion, the adhesive layer satisfies the conditions (c1) and (C1), the first coating resin layer satisfies the conditions (b1) and (B1), and further, the second coating resin layer satisfies the conditions (b1) and (B1). When the resin layer satisfies the conditions (a1) and (A1), permeation of water into the bead wire is suppressed, and a tire having excellent bead portion durability is provided.
 ・接着層の厚さ及び水透過率
 特定の対象方向において、ビードワイヤーの表面から第2被覆樹脂層の外側表面までの距離が最小となる箇所(例えば図1A及び図1Bでは箇所[m1]、図2A及び図2Bでは箇所[m2])で、接着層の厚さcは下記(c1)を満たす。なお、下記(c2)を満たすことが好ましく、下記(c3)を満たすことがより好ましい。
 (c1)0.005mm≦c≦0.1mm
 (c2)0.005mm≦c≦0.05mm
 (c3)0.005mm≦c≦0.01mm
 接着層の厚さcが0.005mm以上であることで、ビードワイヤーへの水の浸透が抑制されビード部の耐久性に優れる。一方、接着層の厚さcは、接着性の維持、強度、衝撃による割れの抑制等の観点から、0.1mm以下とする。
The thickness of the adhesive layer and the water permeability In a specific target direction, a location where the distance from the surface of the bead wire to the outer surface of the second coating resin layer is minimum (for example, the location [m1] in FIGS. 1A and 1B, In FIG. 2A and FIG. 2B, at the position [m2]), the thickness c of the adhesive layer satisfies (c1) below. In addition, it is preferable to satisfy the following (c2), and it is more preferable to satisfy the following (c3).
(C1) 0.005 mm ≦ c ≦ 0.1 mm
(C2) 0.005 mm ≦ c ≦ 0.05 mm
(C3) 0.005 mm ≦ c ≦ 0.01 mm
When the thickness c of the adhesive layer is 0.005 mm or more, penetration of water into the bead wire is suppressed, and the durability of the bead portion is excellent. On the other hand, the thickness c of the adhesive layer is set to 0.1 mm or less from the viewpoint of maintaining adhesiveness, strength, and suppressing cracking due to impact.
 接着層の水透過率Cは下記(C1)を満たす。なお、下記(C2)を満たすことが好ましく、下記(C3)を満たすことがより好ましい。
 (C1)C≦80g・mm/(m・day)
 (C2)5g・mm/(m・day)≦C≦50g・mm/(m・day)
 (C3)10g・mm/(m・day)≦C≦30g・mm/(m・day)
 接着層の水透過率Cが80g・mm/(m・day)以下であることで、ビードワイヤーへの水の浸透が抑制されビード部の耐久性に優れる。一方、接着層の水透過率Cは、接着剤の選択自由度等の観点から、3g・mm/(m・day)以上であることが好ましい。
The water permeability C of the adhesive layer satisfies the following (C1). In addition, it is preferable that the following (C2) is satisfied, and it is more preferable that the following (C3) is satisfied.
(C1) C ≦ 80 g · mm / (m 2 · day)
(C2) 5 g · mm / (m 2 · day) ≦ C ≦ 50 g · mm / (m 2 · day)
(C3) 10 g · mm / (m 2 · day) ≦ C ≦ 30 g · mm / (m 2 · day)
When the water permeability C of the adhesive layer is 80 g · mm / (m 2 · day) or less, permeation of water into the bead wire is suppressed, and the durability of the bead portion is excellent. On the other hand, the water permeability C of the adhesive layer is preferably 3 g · mm / (m 2 · day) or more from the viewpoint of the degree of freedom in selecting the adhesive.
 ・第1被覆樹脂層の厚さ及び水透過率
 特定の対象方向において、ビードワイヤーの表面から第2被覆樹脂層の外側表面までの距離が最小となる箇所で、第1被覆樹脂層の厚さbは下記(b1)を満たす。なお、下記(b2)を満たすことが好ましく、下記(b3)を満たすことがより好ましい。
 (b1)0.05mm≦b≦0.5mm
 (b2)0.05mm≦b≦0.1mm
 (b3)0.05mm≦b≦0.08mm
 第1被覆樹脂層の厚さbが0.05mm以上であることで、ビードワイヤーへの水の浸透が抑制されビード部の耐久性に優れる。一方、第1被覆樹脂層の厚さbは、成形性、接着性、強度等の観点と水浸透の抑制の観点の両観点から、0.5mm以下とする。
-Thickness and water permeability of the first coating resin layer In a specific target direction, the thickness of the first coating resin layer at a point where the distance from the surface of the bead wire to the outer surface of the second coating resin layer is minimum. b satisfies the following (b1). In addition, it is preferable to satisfy the following (b2), and it is more preferable to satisfy the following (b3).
(B1) 0.05 mm ≦ b ≦ 0.5 mm
(B2) 0.05 mm ≦ b ≦ 0.1 mm
(B3) 0.05 mm ≦ b ≦ 0.08 mm
When the thickness b of the first coating resin layer is 0.05 mm or more, permeation of water into the bead wire is suppressed, and the durability of the bead portion is excellent. On the other hand, the thickness b of the first coating resin layer is set to 0.5 mm or less from both viewpoints of moldability, adhesiveness, strength, and the like and suppression of water penetration.
 第1被覆樹脂層の水透過率Bは下記(B1)を満たす。なお、下記(B2)を満たすことが好ましく、下記(B3)を満たすことがより好ましい。
 (B1)B≦300g・mm/(m・day)
 (B2)25g・mm/(m・day)≦B≦280g・mm/(m・day)
 (B3)50g・mm/(m・day)≦B≦220g・mm/(m・day)
 第1被覆樹脂層の水透過率Bが300g・mm/(m・day)以下であることで、ビードワイヤーへの水の浸透が抑制されビード部の耐久性に優れる。一方、第1被覆樹脂層の水透過率Bは、樹脂の選択自由度等の観点から、25g・mm/(m・day)以上であることが好ましい。
The water permeability B of the first coating resin layer satisfies the following (B1). In addition, it is preferable to satisfy the following (B2), and it is more preferable to satisfy the following (B3).
(B1) B ≦ 300 g · mm / (m 2 · day)
(B2) 25 g · mm / (m 2 · day) ≦ B ≦ 280 g · mm / (m 2 · day)
(B3) 50 g · mm / (m 2 · day) ≦ B ≦ 220 g · mm / (m 2 · day)
When the water permeability B of the first coating resin layer is 300 g · mm / (m 2 · day) or less, permeation of water into the bead wire is suppressed, and the durability of the bead portion is excellent. On the other hand, the water permeability B of the first coating resin layer is preferably 25 g · mm / (m 2 · day) or more from the viewpoint of the degree of freedom in selecting the resin.
 ・第2被覆樹脂層の厚さ及び水透過率
 特定の対象方向において、ビードワイヤーの表面から第2被覆樹脂層の外側表面までの距離が最小となる箇所で、第2被覆樹脂層の厚さaは下記(a1)を満たす。なお、下記(a2)を満たすことが好ましく、下記(a3)を満たすことがより好ましい。
 (a1)10mm≦a≦80mm
 (a2)10mm≦a≦50mm
 (a3)10mm≦a≦25mm
 第2被覆樹脂層の厚さaが10mm以上であることで、ビードワイヤーへの水の浸透が抑制されビード部の耐久性に優れる。一方、第2被覆樹脂層の厚さaは、材料コスト及びバルク耐久性の観点から、80mm以下とする。
-Thickness and water permeability of the second coating resin layer In a specific target direction, the thickness of the second coating resin layer at a point where the distance from the surface of the bead wire to the outer surface of the second coating resin layer is minimum. a satisfies the following (a1). In addition, it is preferable to satisfy the following (a2), and it is more preferable to satisfy the following (a3).
(A1) 10 mm ≦ a ≦ 80 mm
(A2) 10 mm ≦ a ≦ 50 mm
(A3) 10 mm ≦ a ≦ 25 mm
When the thickness a of the second coating resin layer is 10 mm or more, penetration of water into the bead wire is suppressed, and the durability of the bead portion is excellent. On the other hand, the thickness a of the second coating resin layer is set to 80 mm or less from the viewpoint of material cost and bulk durability.
 第2被覆樹脂層の水透過率Aは下記(A1)を満たす。なお、下記(A2)を満たすことが好ましく、下記(A3)を満たすことがより好ましい。
 (A1)A≦300g・mm/(m・day)
 (A2)25g・mm/(m・day)≦A≦280g・mm/(m・day)
 (A3)50g・mm/(m・day)≦A≦220g・mm/(m・day)
 第2被覆樹脂層の水透過率Aが300g・mm/(m・day)以下であることで、ビードワイヤーへの水の浸透が抑制されビード部の耐久性に優れる。一方、第2被覆樹脂層の水透過率Aは、樹脂の選択自由度等の観点から、25g・mm/(m・day)以上であることが好ましい。
The water permeability A of the second coating resin layer satisfies the following (A1). In addition, it is preferable to satisfy the following (A2), and it is more preferable to satisfy the following (A3).
(A1) A ≦ 300 g · mm / (m 2 · day)
(A2) 25 g · mm / (m 2 · day) ≦ A ≦ 280 g · mm / (m 2 · day)
(A3) 50 g · mm / (m 2 · day) ≦ A ≦ 220 g · mm / (m 2 · day)
When the water permeability A of the second coating resin layer is 300 g · mm / (m 2 · day) or less, permeation of water into the bead wire is suppressed, and the durability of the bead portion is excellent. On the other hand, the water permeability A of the second coating resin layer is preferably 25 g · mm / (m 2 · day) or more from the viewpoint of the degree of freedom in selecting the resin.
 ・水透過率の比率
 接着層の水透過率Cに対する、第2被覆樹脂層の水透過率Aの比率は、下記(RA1)の条件を満たすことが好ましく、下記(RA2)を満たすことがより好ましく、下記(RA3)を満たすことがさらに好ましい。
 (RA1)2.50≦A/C
 (RA2)2.75≦A/C≦40
 (RA3)2.75≦A/C≦20
 接着層の水透過率Cと第2被覆樹脂層の水透過率Aとの比率[A/C]が2.50以上であることで、ビードワイヤーへの水の浸透が抑制されビード部の耐久性に優れる。一方、比率[A/C]は、第2被覆樹脂層の樹脂の選択自由度等の観点から、40以下であることが好ましい。
-Ratio of water permeability The ratio of the water permeability A of the second coating resin layer to the water permeability C of the adhesive layer preferably satisfies the following condition (RA1), and more preferably satisfies the following (RA2). More preferably, it satisfies the following (RA3).
(RA1) 2.50 ≦ A / C
(RA2) 2.75 ≦ A / C ≦ 40
(RA3) 2.75 ≦ A / C ≦ 20
When the ratio [A / C] of the water permeability C of the adhesive layer to the water permeability A of the second coating resin layer is 2.50 or more, permeation of water into the bead wire is suppressed, and the durability of the bead portion is improved. Excellent in nature. On the other hand, the ratio [A / C] is preferably 40 or less from the viewpoint of the degree of freedom in selecting the resin of the second coating resin layer.
 接着層の水透過率Cに対する、第1被覆樹脂層の水透過率Bの比率は、下記(RB1)の条件を満たすことが好ましく、下記(RB2)を満たすことがより好ましく、下記(RB3)を満たすことがさらに好ましい。
 (RB1)1.47≦B/C
 (RB2)2.00≦B/C≦100
 (RB3)2.75≦B/C≦50
 接着層の水透過率Cと第1被覆樹脂層の水透過率Bとの比率[B/C]が1.47以上であることで、ビードワイヤーへの水の浸透が抑制されビード部の耐久性に優れる。一方、比率[B/C]は、第1被覆樹脂層の樹脂の選択自由度等の観点から、100以下であることが好ましい。
The ratio of the water permeability B of the first coating resin layer to the water permeability C of the adhesive layer preferably satisfies the following condition (RB1), more preferably satisfies the following (RB2), and more preferably satisfies the following (RB3) It is more preferable to satisfy the following.
(RB1) 1.47 ≦ B / C
(RB2) 2.00 ≦ B / C ≦ 100
(RB3) 2.75 ≦ B / C ≦ 50
When the ratio [B / C] of the water permeability C of the adhesive layer and the water permeability B of the first coating resin layer is 1.47 or more, permeation of water into the bead wire is suppressed, and the durability of the bead portion is improved. Excellent in nature. On the other hand, the ratio [B / C] is preferably 100 or less from the viewpoint of the degree of freedom in selecting the resin of the first coating resin layer.
 第2被覆樹脂層の水透過率Aに対する、第1被覆樹脂層の水透過率Bの比率は、下記(RC1)の条件を満たすことが好ましく、下記(RC2)を満たすことがより好ましく、下記(RC3)を満たすことがさらに好ましい。
 (RC1)0.50≦B/A
 (RC2)0.70≦B/A≦3.00
 (RC3)1.00≦B/A≦2.00
 第2被覆樹脂層の水透過率Aと第1被覆樹脂層の水透過率Bとの比率[B/A]が0.50以上であることで、ビードワイヤーへの水の浸透が抑制されビード部の耐久性に優れる。一方、比率[B/A]は、第1被覆樹脂層の樹脂の選択自由度等の観点から、3.00以下であることが好ましい。
The ratio of the water permeability B of the first coating resin layer to the water permeability A of the second coating resin layer preferably satisfies the following condition (RC1), more preferably satisfies the following (RC2), and More preferably, (RC3) is satisfied.
(RC1) 0.50 ≦ B / A
(RC2) 0.70≤B / A≤3.00
(RC3) 1.00 ≦ B / A ≦ 2.00
When the ratio [B / A] of the water permeability A of the second coating resin layer to the water permeability B of the first coating resin layer is 0.50 or more, the penetration of water into the bead wire is suppressed and the bead is formed. The durability of the part is excellent. On the other hand, the ratio [B / A] is preferably 3.00 or less from the viewpoint of the degree of freedom in selecting the resin of the first coating resin layer.
 ・溶融粘度
 第2被覆樹脂層の270℃での溶融粘度は、150Pa・s以上600Pa・s以下であることが好ましく、150Pa・s以上300Pa・s以下であることがより好ましく、150Pa・s以上250Pa・s以下であることがさらに好ましい。
 第2被覆樹脂層の溶融粘度が150Pa・s以上であることで、第2被覆樹脂層との溶着性確保に優れる。一方、溶融粘度が600Pa・s以下であることで第2被覆樹脂層の成形性(特に射出成形によって第2被覆樹脂層を形成する際の成形性)に優れる。
-Melt viscosity The melt viscosity of the second coating resin layer at 270 ° C is preferably 150 Pa · s or more and 600 Pa · s or less, more preferably 150 Pa · s or more and 300 Pa · s or less, and 150 Pa · s or more. More preferably, it is 250 Pa · s or less.
When the melt viscosity of the second coating resin layer is 150 Pa · s or more, excellent adhesion to the second coating resin layer is ensured. On the other hand, when the melt viscosity is 600 Pa · s or less, the moldability of the second coating resin layer (particularly, the moldability when forming the second coating resin layer by injection molding) is excellent.
 第2被覆樹脂層の270℃での溶融粘度Maに対する第1被覆樹脂層の270℃での溶融粘度Mbの比率は、下記(Ma1)の条件を満たすことが好ましく、下記(Ma2)を満たすことがより好ましく、下記(Ma3)を満たすことがさらに好ましい。
 (Ma1)0.4≦Mb/Ma≦2.5
 (Ma2)0.5≦Mb/Ma≦2.0
 (Ma3)0.8≦Mb/Ma≦1.5
 第2被覆樹脂層と第1被覆樹脂層との溶融粘度の比率[Mb/Ma]が0.4以上であることは、第2被覆樹脂層の溶融粘度Maと第1被覆樹脂層の溶融粘度Mbとが離れ過ぎていないことを表し、これにより第2被覆樹脂層と第1被覆樹脂層との優れた接着性が発揮される。一方、比率[Mb/Ma]は、上記同様の観点から、2.5以下であることが好ましい。
The ratio of the melt viscosity Mb at 270 ° C. of the first coating resin layer to the melt viscosity Ma at 270 ° C. of the second coating resin layer preferably satisfies the following condition (Ma1), and satisfies the following condition (Ma2). Is more preferable, and it is still more preferable to satisfy the following (Ma3).
(Ma1) 0.4 ≦ Mb / Ma ≦ 2.5
(Ma2) 0.5 ≦ Mb / Ma ≦ 2.0
(Ma3) 0.8 ≦ Mb / Ma ≦ 1.5
The fact that the ratio [Mb / Ma] of the melt viscosity between the second coating resin layer and the first coating resin layer is 0.4 or more means that the melt viscosity Ma of the second coating resin layer and the melt viscosity of the first coating resin layer. This indicates that Mb is not too far away, whereby excellent adhesion between the second coating resin layer and the first coating resin layer is exhibited. On the other hand, the ratio [Mb / Ma] is preferably 2.5 or less from the same viewpoint as described above.
 なお、上記の比率[Mb/Ma]を満たす観点から、第1被覆樹脂層の270℃での溶融粘度が150Pa・s以上600Pa・s以下であることが好ましく、150Pa・s以上300Pa・s以下であることがより好ましく、150Pa・s以上250Pa・s以下であることがさらに好ましい。 In addition, from the viewpoint of satisfying the above ratio [Mb / Ma], the melt viscosity at 270 ° C. of the first coating resin layer is preferably 150 Pa · s or more and 600 Pa · s or less, and 150 Pa · s or more and 300 Pa · s or less. Is more preferable, and more preferably 150 Pa · s or more and 250 Pa · s or less.
 接着層の270℃での溶融粘度Mcは、10Pa・s以上3000Pa・s以下であることが好ましく、30Pa・s以上2500Pa・s以下であることがより好ましく、50Pa・s以上2000Pa・s以下であることがさらに好ましい。 The melt viscosity Mc at 270 ° C. of the adhesive layer is preferably 10 Pa · s or more and 3000 Pa · s or less, more preferably 30 Pa · s or more and 2500 Pa · s or less, and 50 Pa · s or more and 2000 Pa · s or less. It is more preferred that there be.
 ・測定方法
 各層の厚みの測定は、まずビードワイヤーの長さ方向に直交する垂直断面のビデオマイクロスコープ等の顕微鏡による拡大画像を、任意の5箇所から取得する。そして、特定の対象方向においてビードワイヤーの表面から第2被覆樹脂層の外側表面までの距離が最小となる箇所について、得られた各拡大画像から測定される各層の厚みの数平均値とする。
-Measurement method In the measurement of the thickness of each layer, first, an enlarged image of a vertical section perpendicular to the length direction of the bead wire by a microscope such as a video microscope is acquired from any five places. Then, for a portion where the distance from the surface of the bead wire to the outer surface of the second coating resin layer in the specific target direction is minimum, the number average value of the thickness of each layer measured from each obtained enlarged image is used.
 各層の水透過率の測定は、JIS Z 0208:1976(防湿包装材料の透湿度試験方法(カップ法)80℃、90%RH)に準拠して、サンプルの透湿度を測定することで行われる。 The water permeability of each layer is measured by measuring the moisture permeability of the sample in accordance with JIS Z 0208: 1976 (80 ° C., 90% RH, 80 ° C., moisture permeability test method for moisture-proof packaging material). .
 各層の溶融粘度は、フローテスター(CFT-D、島津製作所製)を用い、測定条件を温度270℃、荷重1.00kg、インターバル25mm、オリフィス1.00Φ×10L(mm)として、サンプルについて測定する。
 なお、上記水透過率及び溶融粘度の測定に用いるサンプルには、ビード部から直接取得した各層の試料片を用いてもよい。また、サンプルとなる試料片を取得することが容易でない場合には、各層の形成に用いた材料と同じ材料を用いて別途サンプルとなる試料片を作製してもよい。
The melt viscosity of each layer is measured for the sample using a flow tester (CFT-D, manufactured by Shimadzu Corporation) under the following measurement conditions: temperature 270 ° C., load 1.00 kg, interval 25 mm, orifice 1.00 Φ × 10 L (mm). .
In addition, the sample used for the measurement of the water permeability and the melt viscosity may be a sample piece of each layer obtained directly from the bead portion. Further, when it is not easy to obtain a sample piece serving as a sample, a sample piece serving as a sample may be separately manufactured using the same material as that used for forming each layer.
 次いで、上記タイヤにおいて、ビード部における各部材(ビードワイヤー、接着層、第1被覆樹脂層、第2被覆樹脂層等)を構成する材料等について説明する。 Next, in the above-mentioned tire, materials and the like constituting each member (bead wire, adhesive layer, first coating resin layer, second coating resin layer, etc.) in the bead portion will be described.
 なお、ビード部は、ビードワイヤーと、ビードワイヤー上に設けられる接着層と、接着層の周囲に設けられる第1被覆樹脂層と、を有するビードコアを備える。また、ビードコアの周囲に設けられる第2被覆樹脂層を備える。なお、さらに第2被覆樹脂層14からタイヤ径方向外側へ延びるビードフィラーを有していてもよい。 The bead portion includes a bead core having a bead wire, an adhesive layer provided on the bead wire, and a first coating resin layer provided around the adhesive layer. In addition, a second coating resin layer provided around the bead core is provided. Note that a bead filler extending from the second coating resin layer 14 outward in the tire radial direction may be further provided.
[ビードワイヤー]
 ビードワイヤーは特に制限されず、例えば従来のゴム製タイヤに用いられる金属製のコード、有機樹脂製のコード等を適宜用いることができる。例えば、金属繊維又は有機繊維等のモノフィラメント(単線)、又はこれらの繊維を撚ったマルチフィラメント(撚り線)で構成される。中でも、金属製のコードが好ましく、より好ましくは鉄製のコード、つまりスチールコードである。
[Bead wire]
The bead wire is not particularly limited, and for example, a metal cord or an organic resin cord used for a conventional rubber tire can be used as appropriate. For example, it is composed of a monofilament (single wire) such as a metal fiber or an organic fiber, or a multifilament (twisted wire) obtained by twisting these fibers. Among them, a metal cord is preferable, and an iron cord, that is, a steel cord is more preferable.
 ビードワイヤーとしては、タイヤの耐久性をより向上させる観点からは、モノフィラメント(単線)が好ましい。ビードワイヤーの断面形状、サイズ(直径)等は、特に限定されるものではなく、所望のタイヤに適したものを適宜選定して用いることができる。
 ビードワイヤーが複数本のコードの撚り線である場合、複数本のコードの数としては、例えば2本~10本が挙げられ、5本~9本が好ましい。
As the bead wire, a monofilament (single wire) is preferable from the viewpoint of further improving the durability of the tire. The cross-sectional shape, size (diameter) and the like of the bead wire are not particularly limited, and a wire suitable for a desired tire can be appropriately selected and used.
When the bead wire is a stranded wire of a plurality of cords, the number of the plurality of cords is, for example, 2 to 10, preferably 5 to 9.
 ビードワイヤーの表面は、接着層との接着性の観点から、Cu、Zn、Fe、Al、及びCoからなる群より選択される少なくとも一種の金属元素を主成分とする金属材料で構成されていることが好ましい。
 例えば、Fe元素を主成分とする構成としては、スチールコードが挙げられる。
 また、Cu、Zn、Al、及びCoからなる群より選択される少なくとも一種の金属元素を主成分とする構成としては、スチールコードの表面がめっきにより被覆された構成が挙げられる。
The surface of the bead wire is made of a metal material containing, as a main component, at least one metal element selected from the group consisting of Cu, Zn, Fe, Al, and Co from the viewpoint of adhesiveness with the adhesive layer. Is preferred.
For example, a steel cord is an example of a configuration mainly containing an Fe element.
In addition, as a configuration mainly containing at least one metal element selected from the group consisting of Cu, Zn, Al, and Co, a configuration in which the surface of a steel cord is covered by plating is given.
 コードの表面へのめっきの形成方法は、特に限定されず、公知の方法により行うことができる。例えば、めっき素線の芯線となるコードを、例えば銅めっき浴、亜鉛めっき浴等にそれぞれ通過浸漬してめっき処理が行われる。例えば、銅めっきを形成する場合には、シアン化銅浴、ホウフッ化銅浴、硫酸銅浴等により処理され、また亜鉛めっきの場合、シアン化亜鉛浴、塩化亜鉛浴、ジンケート浴等により処理される。めっき浴を通過浸漬させたコードに熱拡散処理を施してもよい。またその後に、所定のめっき厚さとする観点から、コードを伸線加工してもよい。 方法 The method of forming the plating on the surface of the cord is not particularly limited, and can be performed by a known method. For example, a plating process is performed by immersing a cord serving as a core wire of a plated element wire into, for example, a copper plating bath, a zinc plating bath, or the like. For example, when forming copper plating, it is treated by a copper cyanide bath, a copper borofluoride bath, a copper sulfate bath, etc., and in the case of zinc plating, it is treated by a zinc cyanide bath, a zinc chloride bath, a zincate bath, or the like. You. A heat diffusion treatment may be applied to the cord immersed in the plating bath. After that, the cord may be drawn from the viewpoint of a predetermined plating thickness.
 めっきの付着量としては、例えばめっきの平均厚さとして、0.1μm以上10μm以下が好ましく、0.2μm以上8.0μm以下がより好ましい。なお、めっき厚さは走査型電子顕微鏡(SEM)による観察により測定することができる。 (4) The amount of plating applied is, for example, preferably 0.1 μm or more and 10 μm or less, more preferably 0.2 μm or more and 8.0 μm or less, as an average thickness of the plating. The plating thickness can be measured by observation with a scanning electron microscope (SEM).
 ビードワイヤーの太さ(つまり平均直径)は、タイヤの耐内圧性と軽量化とを両立する観点から、0.3mm~3mmであることが好ましく、0.5mm~2mmであることがより好ましい。ビードワイヤーの太さは、任意に選択した5箇所の断面(ビードワイヤーの長さ方向に対する垂直断面)において測定した太さの数平均値とする。 The thickness (that is, the average diameter) of the bead wire is preferably from 0.3 mm to 3 mm, and more preferably from 0.5 mm to 2 mm, from the viewpoint of achieving both the internal pressure resistance and the weight reduction of the tire. The thickness of the bead wire is a number average value of the thickness measured at five arbitrarily selected cross sections (a cross section perpendicular to the length direction of the bead wire).
 ビードワイヤー自体の強力は、通常1000N~3000Nであり、1200N~2800Nであることが好ましく、1300N~2700Nであることがさらに好ましい。なお、ビードワイヤーの強力は、引張試験機にてZWICK型チャックを用いて応力-歪曲線を描き、その破断点から算出する。 (4) The strength of the bead wire itself is usually from 1000 N to 3000 N, preferably from 1200 N to 2800 N, and more preferably from 1300 N to 2700 N. The strength of the bead wire is calculated from a breaking point by drawing a stress-strain curve using a ZWICK type chuck with a tensile tester.
 ビードワイヤー自体の破断伸び(引張破断伸び)は、通常0.1%~15%であり、1%~15%が好ましく、1%~10%が更に好ましい。ビードワイヤーの引張破断伸びは、引張試験機にてZWICK型チャックを用いて応力-歪曲線を描き、歪から求めることができる。 The elongation at break (tensile elongation at break) of the bead wire itself is usually 0.1% to 15%, preferably 1% to 15%, more preferably 1% to 10%. The tensile elongation at break of the bead wire can be determined from the strain by drawing a stress-strain curve using a ZWICK type chuck with a tensile tester.
[接着層]
 接着層の材質には、前述の水透過率Cの要件(条件(C1))を満たす材料が用いられる。
[Adhesive layer]
As the material of the adhesive layer, a material that satisfies the requirement (condition (C1)) of the water permeability C described above is used.
 接着層は、接着剤として樹脂を含む層であることが好ましく、この樹脂としては熱可塑性樹脂及び熱可塑性エラストマーが好ましい。
 なお、接着層の水透過率Cを前記条件(C1)を満たす範囲に制御する方法としては、接着層中の樹脂の種類の選択、及び樹脂の含有量の調整等の方法が挙げられる。
The adhesive layer is preferably a layer containing a resin as an adhesive, and is preferably a thermoplastic resin or a thermoplastic elastomer.
In addition, as a method of controlling the water transmittance C of the adhesive layer to a range that satisfies the condition (C1), a method of selecting the type of the resin in the adhesive layer, adjusting the content of the resin, and the like can be mentioned.
 熱可塑性樹脂としては、例えば、ポリエステル系熱可塑性樹脂、ポリアミド系熱可塑性樹脂、ポリスチレン系熱可塑性樹脂、ポリウレタン系熱可塑性樹脂、及びオレフィン系熱可塑性樹脂(例えばポリエチレン樹脂、ポリプロピレン樹脂等)等が挙げられる。
 熱可塑性エラストマーとしては、例えば、ポリエステル系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマー、ポリスチレン系熱可塑性エラストマー、ポリウレタン系熱可塑性エラストマー、及びオレフィン系熱可塑性エラストマー等が挙げられる。
Examples of the thermoplastic resin include a polyester-based thermoplastic resin, a polyamide-based thermoplastic resin, a polystyrene-based thermoplastic resin, a polyurethane-based thermoplastic resin, and an olefin-based thermoplastic resin (eg, a polyethylene resin and a polypropylene resin). Can be
Examples of the thermoplastic elastomer include a polyester-based thermoplastic elastomer, a polyamide-based thermoplastic elastomer, a polystyrene-based thermoplastic elastomer, a polyurethane-based thermoplastic elastomer, and an olefin-based thermoplastic elastomer.
 中でも、接着剤として用いられる樹脂には、ポリエステル系熱可塑性エラストマー、ポリエステル系熱可塑性樹脂、オレフィン系熱可塑性エラストマー、オレフィン系熱可塑性樹脂、ポリアミド系熱可塑性エラストマー、及びポリアミド系熱可塑性樹脂からなる群より選択される少なくとも一種を含むことが好ましく、ポリエステル系熱可塑性エラストマーを含むことがより好ましい。 Among them, the resin used as the adhesive includes a polyester thermoplastic elastomer, a polyester thermoplastic resin, an olefin thermoplastic elastomer, an olefin thermoplastic resin, a polyamide thermoplastic elastomer, and a polyamide thermoplastic resin. It preferably contains at least one selected from the group consisting of polyester, and more preferably contains a polyester thermoplastic elastomer.
 また、接着剤として用いられる樹脂に、酸変性された熱可塑性材料を用いることも好ましい。酸変性熱可塑性材料とは、熱可塑性樹脂又は熱可塑性エラストマーの分子の一部に酸基が導入された熱可塑性材料である。酸基としては、カルボキシ基(-COOH)及びその無水物基、硫酸基、燐酸基等が挙げられ、中でもカルボキシ基及びその無水物基が好ましい。 酸 It is also preferable to use an acid-modified thermoplastic material for the resin used as the adhesive. The acid-modified thermoplastic material is a thermoplastic material in which an acid group is introduced into a part of a molecule of a thermoplastic resin or a thermoplastic elastomer. Examples of the acid group include a carboxy group (—COOH) and its anhydride group, a sulfate group, a phosphate group and the like, and among them, the carboxy group and its anhydride group are preferable.
 接着層は、熱可塑性樹脂及び熱可塑性エラストマーを単独で又は2種以上を組み合わせて用いてもよい。 The adhesive layer may be used alone or in combination of two or more thermoplastic resins and thermoplastic elastomers.
 接着層に含まれる樹脂の含有率は、接着層全体の50質量%以上であることが好ましく、60質量%以上であることがより好ましく、75質量%以上であることがさらに好ましい。 (4) The content of the resin contained in the adhesive layer is preferably 50% by mass or more, more preferably 60% by mass or more, even more preferably 75% by mass or more of the whole adhesive layer.
[第1被覆樹脂層]
 第1被覆樹脂層の材質には、前述の水透過率Bの要件(条件(B1))を満たす材料が用いられる。
[First coating resin layer]
As the material of the first coating resin layer, a material that satisfies the above requirement of water permeability B (condition (B1)) is used.
 第1被覆樹脂層は樹脂を含む。なお、第1被覆樹脂層の水透過率Bを前記条件(B1)を満たす範囲に制御する方法としては、第1被覆樹脂層中の樹脂の種類の選択、及び樹脂の含有量の調整等の方法が挙げられる。
 第1被覆樹脂層に含まれる樹脂としては、例えば、熱可塑性樹脂、熱可塑性エラストマー、及び熱硬化性樹脂が挙げられる。
 第1被覆樹脂層は、成形容易性の観点から、樹脂として、熱可塑性樹脂又は熱可塑性エラストマーを含むことが好ましく、熱可塑性エラストマーを含むことがより好ましい。
The first coating resin layer contains a resin. The method of controlling the water permeability B of the first coating resin layer to be in a range satisfying the condition (B1) includes selection of the type of the resin in the first coating resin layer and adjustment of the content of the resin. Method.
Examples of the resin contained in the first coating resin layer include a thermoplastic resin, a thermoplastic elastomer, and a thermosetting resin.
The first coating resin layer preferably contains, as a resin, a thermoplastic resin or a thermoplastic elastomer from the viewpoint of moldability, and more preferably contains a thermoplastic elastomer.
 第1被覆樹脂層は、樹脂を少なくとも含んでいればよく、本実施形態による効果を損なわない範囲で、添加剤等の他の成分を含んでもよい。ただし、第1被覆樹脂層中における樹脂の含有量は、第1被覆樹脂層の総量に対して、50質量%以上が好ましく、60質量%以上がより好ましく、75質量%以上がさらに好ましい。 The first coating resin layer only needs to contain at least the resin, and may contain other components such as additives as long as the effects of the present embodiment are not impaired. However, the content of the resin in the first coating resin layer is preferably 50% by mass or more, more preferably 60% by mass or more, even more preferably 75% by mass or more based on the total amount of the first coating resin layer.
 熱可塑性樹脂としては、ポリエステル系熱可塑性樹脂、ポリアミド系熱可塑性樹脂、オレフィン系熱可塑性樹脂、ポリウレタン系熱可塑性樹脂、塩化ビニル系熱可塑性樹脂、ポリスチレン系熱可塑性樹脂等を例示することができる。
 熱可塑性エラストマーとしては、例えば、JIS K6418に規定されるポリエステル系熱可塑性エラストマー(TPC)、ポリアミド系熱可塑性エラストマー(TPA)、ポリスチレン系熱可塑性エラストマー(TPS)、ポリウレタン系熱可塑性エラストマー(TPU)、オレフィン系熱可塑性エラストマー(TPO)、熱可塑性ゴム架橋体(TPV)、若しくはその他の熱可塑性エラストマー(TPZ)等が挙げられる。
 熱硬化性樹脂としては、例えば、フェノール系熱硬化性樹脂、ユリア系熱硬化性樹脂、メラミン系熱硬化性樹脂、エポキシ系熱硬化性樹脂等が挙げられる。
Examples of the thermoplastic resin include a polyester-based thermoplastic resin, a polyamide-based thermoplastic resin, an olefin-based thermoplastic resin, a polyurethane-based thermoplastic resin, a vinyl chloride-based thermoplastic resin, and a polystyrene-based thermoplastic resin.
Examples of the thermoplastic elastomer include polyester-based thermoplastic elastomer (TPC), polyamide-based thermoplastic elastomer (TPA), polystyrene-based thermoplastic elastomer (TPS), polyurethane-based thermoplastic elastomer (TPU) specified in JIS K6418, An olefin-based thermoplastic elastomer (TPO), a crosslinked thermoplastic rubber (TPV), or another thermoplastic elastomer (TPZ) may be used.
Examples of the thermosetting resin include a phenol-based thermosetting resin, a urea-based thermosetting resin, a melamine-based thermosetting resin, and an epoxy-based thermosetting resin.
 中でも、第1被覆樹脂層に用いられる樹脂には、ポリエステル系熱可塑性エラストマー、ポリエステル系熱可塑性樹脂、オレフィン系熱可塑性エラストマー、オレフィン系熱可塑性樹脂、ポリアミド系熱可塑性エラストマー、及びポリアミド系熱可塑性樹脂からなる群より選択される少なくとも一種を含むことが好ましく、ポリエステル系熱可塑性エラストマーを含むことがより好ましい。 Among them, the resin used for the first coating resin layer includes polyester-based thermoplastic elastomer, polyester-based thermoplastic resin, olefin-based thermoplastic elastomer, olefin-based thermoplastic resin, polyamide-based thermoplastic elastomer, and polyamide-based thermoplastic resin. It is preferable to include at least one selected from the group consisting of: and more preferably a polyester-based thermoplastic elastomer.
 また、第1被覆樹脂層に用いられる樹脂に、酸変性された熱可塑性材料を用いることも好ましい。酸変性における酸基としては、カルボキシ基(-COOH)及びその無水物基、硫酸基、燐酸基等が挙げられ、中でもカルボキシ基及びその無水物基が好ましい。 It is also preferable to use an acid-modified thermoplastic material for the resin used for the first coating resin layer. Examples of the acid group in the acid modification include a carboxy group (—COOH) and its anhydride group, a sulfate group, a phosphoric acid group, and the like. Among them, a carboxy group and its anhydride group are preferable.
 ここで、各種熱可塑性エラストマー及び熱可塑性樹脂について、詳述する。 Here, various thermoplastic elastomers and thermoplastic resins will be described in detail.
-熱可塑性エラストマー-
(ポリエステル系熱可塑性エラストマー)
 ポリエステル系熱可塑性エラストマーとしては、例えば、少なくともポリエステルが結晶性で融点の高いハードセグメントを形成し、他のポリマー(例えば、ポリエステル又はポリエーテル等)が非晶性でガラス転移温度の低いソフトセグメントを形成している材料が挙げられる。
-Thermoplastic elastomer-
(Polyester thermoplastic elastomer)
As the polyester-based thermoplastic elastomer, for example, at least polyester forms a hard segment having a crystalline and high melting point and another polymer (eg, polyester or polyether) has an amorphous and soft segment having a low glass transition temperature. The material being formed is mentioned.
 ハードセグメントを形成するポリエステルとしては、芳香族ポリエステルを用いることができる。芳香族ポリエステルは、例えば、芳香族ジカルボン酸又はそのエステル形成性誘導体と脂肪族ジオールとから形成することができる。芳香族ポリエステルは、好ましくは、テレフタル酸及びジメチルテレフタレートからなる群より選択される少なくとも1種と、1,4-ブタンジオールと、から誘導されるポリブチレンテレフタレートである。また、芳香族ポリエステルは、例えば、イソフタル酸、フタル酸、ナフタレン-2,6-ジカルボン酸、ナフタレン-2,7-ジカルボン酸、ジフェニル-4,4’-ジカルボン酸、ジフェノキシエタンジカルボン酸、5-スルホイソフタル酸、若しくはこれらのエステル形成性誘導体等のジカルボン酸成分と、分子量300以下のジオール(例えば、エチレングリコール、トリメチレングリコール、ペンタメチレングリコール、ヘキサメチレングリコール、ネオペンチルグリコール、デカメチレングリコール等の脂肪族ジオール;1,4-シクロヘキサンジメタノール、トリシクロデカンジメチロール等の脂環式ジオール;キシリレングリコール、ビス(p-ヒドロキシ)ジフェニル、ビス(p-ヒドロキシフェニル)プロパン、2,2-ビス[4-(2-ヒドロキシエトキシ)フェニル]プロパン、ビス[4-(2-ヒドロキシ)フェニル]スルホン、1,1-ビス[4-(2-ヒドロキシエトキシ)フェニル]シクロヘキサン、4,4’-ジヒドロキシ-p-ターフェニル、4,4’-ジヒドロキシ-p-クオーターフェニル等の芳香族ジオール;等)と、から誘導されるポリエステル、又はこれらのジカルボン酸成分及びジオール成分を2種以上併用した共重合ポリエステルであってもよい。また、3官能以上の多官能カルボン酸成分、多官能オキシ酸成分、多官能ヒドロキシ成分等を5モル%以下の範囲で共重合することも可能である。
 ハードセグメントを形成するポリエステルとしては、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリメチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート等が挙げられ、ポリブチレンテレフタレートが好ましい。
As the polyester forming the hard segment, an aromatic polyester can be used. The aromatic polyester can be formed, for example, from an aromatic dicarboxylic acid or an ester-forming derivative thereof and an aliphatic diol. The aromatic polyester is preferably polybutylene terephthalate derived from at least one selected from the group consisting of terephthalic acid and dimethyl terephthalate, and 1,4-butanediol. Further, aromatic polyesters include, for example, isophthalic acid, phthalic acid, naphthalene-2,6-dicarboxylic acid, naphthalene-2,7-dicarboxylic acid, diphenyl-4,4′-dicarboxylic acid, diphenoxyethanedicarboxylic acid, A dicarboxylic acid component such as sulfoisophthalic acid or an ester-forming derivative thereof, and a diol having a molecular weight of 300 or less (eg, ethylene glycol, trimethylene glycol, pentamethylene glycol, hexamethylene glycol, neopentyl glycol, decamethylene glycol, etc.) Aliphatic diols; alicyclic diols such as 1,4-cyclohexanedimethanol and tricyclodecanedimethylol; xylylene glycol, bis (p-hydroxy) diphenyl, bis (p-hydroxyphenyl) propane, 2,2- Bi [4- (2-hydroxyethoxy) phenyl] propane, bis [4- (2-hydroxy) phenyl] sulfone, 1,1-bis [4- (2-hydroxyethoxy) phenyl] cyclohexane, 4,4′- Aromatic diols such as dihydroxy-p-terphenyl and 4,4'-dihydroxy-p-quarterphenyl; etc.), and polyesters derived therefrom, or a mixture of two or more of these dicarboxylic acid components and diol components. It may be a polymerized polyester. It is also possible to copolymerize a trifunctional or higher polyfunctional carboxylic acid component, a polyfunctional oxyacid component, a polyfunctional hydroxy component or the like in a range of 5 mol% or less.
Examples of the polyester forming the hard segment include polyethylene terephthalate, polybutylene terephthalate, polymethylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, and the like, with polybutylene terephthalate being preferred.
 また、ソフトセグメントを形成するポリマーとしては、例えば、脂肪族ポリエステル、脂肪族ポリエーテル等が挙げられる。
 脂肪族ポリエーテルとしては、ポリ(エチレンオキシド)グリコール、ポリ(プロピレンオキシド)グリコール、ポリ(テトラメチレンオキシド)グリコール、ポリ(ヘキサメチレンオキシド)グリコール、エチレンオキシドとプロピレンオキシドとの共重合体、ポリ(プロピレンオキシド)グリコールのエチレンオキシド付加重合体、エチレンオキシドとテトラヒドロフランとの共重合体等が挙げられる。
 脂肪族ポリエステルとしては、ポリ(ε-カプロラクトン)、ポリエナントラクトン、ポリカプリロラクトン、ポリブチレンアジペート、ポリエチレンアジペート等が挙げられる。
 これらの脂肪族ポリエーテル及び脂肪族ポリエステルの中でも、得られるポリエステルブロック共重合体の弾性特性の観点から、ソフトセグメントを形成するポリマーとしては、ポリ(テトラメチレンオキシド)グリコール、ポリ(プロピレンオキシド)グリコールのエチレンオキシド付加物、ポリ(ε-カプロラクトン)、ポリブチレンアジペート、ポリエチレンアジペート等が好ましい。
Examples of the polymer that forms the soft segment include aliphatic polyester and aliphatic polyether.
Examples of the aliphatic polyether include poly (ethylene oxide) glycol, poly (propylene oxide) glycol, poly (tetramethylene oxide) glycol, poly (hexamethylene oxide) glycol, a copolymer of ethylene oxide and propylene oxide, and poly (propylene oxide). ) Ethylene oxide addition polymers of glycols and copolymers of ethylene oxide and tetrahydrofuran.
Examples of the aliphatic polyester include poly (ε-caprolactone), polyenantholactone, polycaprylolactone, polybutylene adipate, polyethylene adipate and the like.
Among these aliphatic polyethers and aliphatic polyesters, from the viewpoint of the elastic properties of the obtained polyester block copolymer, polymers forming soft segments include poly (tetramethylene oxide) glycol and poly (propylene oxide) glycol. Preferred are ethylene oxide adducts, poly (ε-caprolactone), polybutylene adipate, polyethylene adipate and the like.
 また、ソフトセグメントを形成するポリマーの数平均分子量は、強靱性及び低温柔軟性の観点から、300~6000が好ましい。さらに、ハードセグメント(x)とソフトセグメント(y)との質量比(x:y)は、成形性の観点から、99:1~20:80が好ましく、98:2~30:70が更に好ましい。 数 Further, the number average molecular weight of the polymer forming the soft segment is preferably from 300 to 6000 from the viewpoint of toughness and low-temperature flexibility. Further, the mass ratio (x: y) of the hard segment (x) to the soft segment (y) is preferably from 99: 1 to 20:80, more preferably from 98: 2 to 30:70 from the viewpoint of moldability. .
 上述のハードセグメントとソフトセグメントとの組合せとしては、例えば、上述で挙げたハードセグメントとソフトセグメントとのそれぞれの組合せを挙げることができる。これらの中でも、上述のハードセグメントとソフトセグメントとの組合せとしては、ハードセグメントがポリブチレンテレフタレートであり、ソフトセグメントが脂肪族ポリエーテルである組み合わせが好ましく、ハードセグメントがポリブチレンテレフタレートであり、ソフトセグメントがポリ(エチレンオキシド)グリコールである組み合わせが更に好ましい。 組合 せ As a combination of the above-mentioned hard segment and soft segment, for example, each combination of the above-mentioned hard segment and soft segment can be given. Among these, as the combination of the above-mentioned hard segment and soft segment, a combination in which the hard segment is polybutylene terephthalate and the soft segment is an aliphatic polyether is preferable, and the hard segment is polybutylene terephthalate, and the soft segment is Are more preferably poly (ethylene oxide) glycols.
 ポリエステル系熱可塑性エラストマーの市販品としては、例えば、東レ・デュポン(株)製の「ハイトレル」シリーズ(例えば、3046、5557、6347、4047N、4767N等)、東洋紡(株)製の「ペルプレン」シリーズ(例えば、P30B、P40B、P40H、P55B、P70B、P150B、P280B、E450B、P150M、S1001、S2001、S5001、S6001、S9001等)等を用いることができる。 Commercially available polyester-based thermoplastic elastomers include, for example, "Hytrel" series (for example, 3046, 5557, 6347, 4047N, 4767N, etc.) manufactured by Dupont Toray, and "Perprene" series, manufactured by Toyobo Co., Ltd. (For example, P30B, P40B, P40H, P55B, P70B, P150B, P280B, E450B, P150M, S1001, S2001, S5001, S6001, S9001, etc.) can be used.
 ポリエステル系熱可塑性エラストマーは、ハードセグメントを形成するポリマー及びソフトセグメントを形成するポリマーを公知の方法によって共重合することで合成することができる。 The polyester-based thermoplastic elastomer can be synthesized by copolymerizing a polymer forming a hard segment and a polymer forming a soft segment by a known method.
(ポリアミド系熱可塑性エラストマー)
 ポリアミド系熱可塑性エラストマーとは、結晶性で融点の高いハードセグメントを形成するポリマーと非晶性でガラス転移温度の低いソフトセグメントを形成するポリマーとを有する共重合体からなる熱可塑性の樹脂材料であって、ハードセグメントを形成するポリマーの主鎖にアミド結合(-CONH-)を有するものを意味する。
 ポリアミド系熱可塑性エラストマーとしては、例えば、少なくともポリアミドが結晶性で融点の高いハードセグメントを形成し、他のポリマー(例えば、ポリエステル、ポリエーテル等)が非晶性でガラス転移温度の低いソフトセグメントを形成している材料が挙げられる。また、ポリアミド系熱可塑性エラストマーは、ハードセグメント及びソフトセグメントの他に、ジカルボン酸等の鎖長延長剤を用いて形成されてもよい。
 ポリアミド系熱可塑性エラストマーとしては、具体的には、JIS K6418:2007に規定されるアミド系熱可塑性エラストマー(TPA)等、及び特開2004-346273号公報に記載のポリアミド系エラストマー等を挙げることができる。
(Polyamide thermoplastic elastomer)
Polyamide-based thermoplastic elastomer is a thermoplastic resin material composed of a copolymer having a polymer which forms a hard segment having a high melting point which is crystalline and a polymer which forms an amorphous soft segment having a low glass transition temperature. In addition, a polymer having an amide bond (—CONH—) in the main chain of a polymer forming a hard segment is meant.
As the polyamide-based thermoplastic elastomer, for example, at least a polyamide forms a hard segment having a crystalline and high melting point, and another polymer (for example, polyester, polyether, etc.) has an amorphous and a soft segment having a low glass transition temperature. The material being formed is mentioned. Further, the polyamide-based thermoplastic elastomer may be formed by using a chain extender such as dicarboxylic acid in addition to the hard segment and the soft segment.
Specific examples of the polyamide-based thermoplastic elastomer include an amide-based thermoplastic elastomer (TPA) specified in JIS K6418: 2007, and a polyamide-based elastomer described in JP-A-2004-346273. it can.
 ポリアミド系熱可塑性エラストマーにおいて、ハードセグメントを形成するポリアミドとしては、例えば、下記一般式(1)又は一般式(2)で表されるモノマーによって生成されるポリアミドを挙げることができる。 に お い て In the polyamide-based thermoplastic elastomer, examples of the polyamide forming the hard segment include a polyamide formed by a monomer represented by the following general formula (1) or (2).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 一般式(1)中、Rは、炭素数2~20の炭化水素の分子鎖(例えば炭素数2~20のアルキレン基)を表す。 In the general formula (1), R 1 represents a molecular chain of a hydrocarbon having 2 to 20 carbon atoms (for example, an alkylene group having 2 to 20 carbon atoms).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 一般式(2)中、Rは、炭素数3~20の炭化水素の分子鎖(例えば炭素数3~20のアルキレン基)を表す。 In the general formula (2), R 2 represents a molecular chain of a hydrocarbon having 3 to 20 carbon atoms (for example, an alkylene group having 3 to 20 carbon atoms).
 一般式(1)中、Rとしては、炭素数3~18の炭化水素の分子鎖、例えば炭素数3~18のアルキレン基が好ましく、炭素数4~15の炭化水素の分子鎖、例えば炭素数4~15のアルキレン基が更に好ましく、炭素数10~15の炭化水素の分子鎖、例えば炭素数10~15のアルキレン基が特に好ましい。
 また、一般式(2)中、Rとしては、炭素数3~18の炭化水素の分子鎖、例えば炭素数3~18のアルキレン基が好ましく、炭素数4~15の炭化水素の分子鎖、例えば炭素数4~15のアルキレン基が更に好ましく、炭素数10~15の炭化水素の分子鎖、例えば炭素数10~15のアルキレン基が特に好ましい。
 一般式(1)又は一般式(2)で表されるモノマーとしては、ω-アミノカルボン酸又はラクタムが挙げられる。また、ハードセグメントを形成するポリアミドとしては、これらω-アミノカルボン酸又はラクタムの重縮合体、ジアミンとジカルボン酸との共縮重合体等が挙げられる。
In the general formula (1), R 1 is preferably a hydrocarbon molecular chain having 3 to 18 carbon atoms, for example, an alkylene group having 3 to 18 carbon atoms, and a molecular chain of a hydrocarbon having 4 to 15 carbon atoms, for example, carbon atom. An alkylene group having 4 to 15 carbon atoms is more preferable, and a hydrocarbon chain having 10 to 15 carbon atoms, for example, an alkylene group having 10 to 15 carbon atoms is particularly preferable.
Further, in the general formula (2), as R 2 , a molecular chain of a hydrocarbon having 3 to 18 carbon atoms, for example, an alkylene group having 3 to 18 carbon atoms is preferable, and a molecular chain of a hydrocarbon having 4 to 15 carbon atoms; For example, an alkylene group having 4 to 15 carbon atoms is more preferable, and a molecular chain of a hydrocarbon having 10 to 15 carbon atoms, for example, an alkylene group having 10 to 15 carbon atoms is particularly preferable.
Examples of the monomer represented by the general formula (1) or (2) include ω-aminocarboxylic acid or lactam. Examples of the polyamide forming the hard segment include polycondensates of these ω-aminocarboxylic acids or lactams, and copolycondensates of diamines and dicarboxylic acids.
 ω-アミノカルボン酸としては、6-アミノカプロン酸、7-アミノヘプタン酸、8-アミノオクタン酸、10-アミノカプリン酸、11-アミノウンデカン酸、12-アミノドデカン酸等の炭素数5~20の脂肪族ω-アミノカルボン酸等を挙げることができる。また、ラクタムとしては、ラウリルラクタム、ε-カプロラクタム、ウデカンラクタム、ω-エナントラクタム、2-ピロリドン等の炭素数5~20の脂肪族ラクタム等を挙げることができる。
 ジアミンとしては、例えば、炭素数2~20の脂肪族ジアミン及び炭素数6~20の芳香族ジアミン等が挙げられる。炭素数2~20の脂肪族ジアミン及び炭素数6~20の芳香族ジアミンとしては、例えば、エチレンジアミン、トリメチレンジアミン、テトラメチレンジアミン、ヘキサメチレンジアミン、ヘプタメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、デカメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミン、2,2,4-トリメチルヘキサメチレンジアミン、2,4,4-トリメチルヘキサメチレンジアミン、3-メチルペンタメチレンジアミン、メタキシレンジアミン等を挙げることができる。
 また、ジカルボン酸は、HOOC-(R-COOH(R:炭素数3~20の炭化水素の分子鎖、m:0又は1)で表すことができ、例えば、シュウ酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカン二酸等の炭素数2~20の脂肪族ジカルボン酸を挙げることができる。
 ハードセグメントを形成するポリアミドとしては、ラウリルラクタム、ε-カプロラクタム、又はウデカンラクタムを開環重縮合したポリアミドを好ましく用いることができる。
Examples of the ω-aminocarboxylic acid include those having 5 to 20 carbon atoms such as 6-aminocaproic acid, 7-aminoheptanoic acid, 8-aminooctanoic acid, 10-aminocapric acid, 11-aminoundecanoic acid and 12-aminododecanoic acid. Examples thereof include aliphatic ω-aminocarboxylic acids. Examples of the lactam include aliphatic lactams having 5 to 20 carbon atoms, such as lauryl lactam, ε-caprolactam, udecan lactam, ω-enantholactam, and 2-pyrrolidone.
Examples of the diamine include an aliphatic diamine having 2 to 20 carbon atoms and an aromatic diamine having 6 to 20 carbon atoms. Examples of the aliphatic diamine having 2 to 20 carbon atoms and the aromatic diamine having 6 to 20 carbon atoms include ethylene diamine, trimethylene diamine, tetramethylene diamine, hexamethylene diamine, heptamethylene diamine, octamethylene diamine, nonamethylene diamine, and the like. Decamethylenediamine, undecamethylenediamine, dodecamethylenediamine, 2,2,4-trimethylhexamethylenediamine, 2,4,4-trimethylhexamethylenediamine, 3-methylpentamethylenediamine, metaxylenediamine and the like. it can.
The dicarboxylic acid can be represented by HOOC- (R 3 ) m —COOH (R 3 : a molecular chain of a hydrocarbon having 3 to 20 carbon atoms, m: 0 or 1). For example, oxalic acid, succinic acid And aliphatic dicarboxylic acids having 2 to 20 carbon atoms such as glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid and dodecane diacid.
As the polyamide forming the hard segment, a polyamide obtained by ring-opening polycondensation of lauryl lactam, ε-caprolactam, or udecan lactam can be preferably used.
 また、ソフトセグメントを形成するポリマーとしては、例えば、ポリエステル、ポリエーテル等が挙げられ、具体的には、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレンエーテルグリコール、ABA型トリブロックポリエーテル等が挙げられる。これらは単独で又は2種以上を組み合わせて用いることができる。また、ポリエーテルの末端にアンモニア等を反応させることによって得られるポリエーテルジアミン等も用いることができる。
 ここで、「ABA型トリブロックポリエーテル」とは、下記一般式(3)に示されるポリエーテルを意味する。
Examples of the polymer forming the soft segment include polyester and polyether, and specific examples include polyethylene glycol, polypropylene glycol, polytetramethylene ether glycol, and ABA-type triblock polyether. These can be used alone or in combination of two or more. Further, a polyether diamine or the like obtained by reacting ammonia or the like with the terminal of the polyether can also be used.
Here, the “ABA-type triblock polyether” means a polyether represented by the following general formula (3).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 一般式(3)中、x及びzは、1~20の整数を表す。yは、4~50の整数を表す。 中 In the general formula (3), x and z represent an integer of 1 to 20. y represents an integer of 4 to 50.
 一般式(3)において、x及びzは、それぞれ、1~18の整数が好ましく、1~16の整数がより好ましく、1~14の整数が更に好ましく、1~12の整数が特に好ましい。また、一般式(3)において、yは、5~45の整数が好ましく、6~40の整数がより好ましく、7~35の整数が更に好ましく、8~30の整数が特に好ましい。 In the general formula (3), x and z are each preferably an integer of 1 to 18, more preferably an integer of 1 to 16, further preferably an integer of 1 to 14, and particularly preferably an integer of 1 to 12. In the general formula (3), y is preferably an integer of 5 to 45, more preferably an integer of 6 to 40, further preferably an integer of 7 to 35, and particularly preferably an integer of 8 to 30.
 ハードセグメントとソフトセグメントとの組合せとしては、上述で挙げたハードセグメントとソフトセグメントとのそれぞれの組合せを挙げることができる。これらの中でも、ハードセグメントとソフトセグメントとの組合せとしては、ラウリルラクタムの開環重縮合体/ポリエチレングリコールの組合せ、ラウリルラクタムの開環重縮合体/ポリプロピレングリコールの組合せ、ラウリルラクタムの開環重縮合体/ポリテトラメチレンエーテルグリコールの組合せ、又はラウリルラクタムの開環重縮合体/ABA型トリブロックポリエーテルの組合せが好ましく、ラウリルラクタムの開環重縮合体/ABA型トリブロックポリエーテルの組合せがより好ましい。 組合 せ As the combination of the hard segment and the soft segment, the respective combinations of the hard segment and the soft segment described above can be cited. Among these, the combination of a hard segment and a soft segment includes a combination of lauryl lactam ring-opening polycondensate / polyethylene glycol, a combination of lauryl lactam ring-opening polycondensate / polypropylene glycol, and a ring-opening polycondensation of lauryl lactam The combination of isomer / polytetramethylene ether glycol, or the combination of ring-opening polycondensate of lauryl lactam / ABA type triblock polyether is preferable, and the combination of ring-opening polycondensate of lauryl lactam / ABA type triblock polyether is more preferable preferable.
 ハードセグメントを形成するポリマー(ポリアミド)の数平均分子量は、溶融成形性の観点から、300~15000が好ましい。また、ソフトセグメントを形成するポリマーの数平均分子量としては、強靱性及び低温柔軟性の観点から、200~6000が好ましい。さらに、ハードセグメント(x)及びソフトセグメント(y)との質量比(x:y)は、成形性の観点から、50:50~90:10が好ましく、50:50~80:20がより好ましい。 数 The number average molecular weight of the polymer (polyamide) forming the hard segment is preferably from 300 to 15,000 from the viewpoint of melt moldability. The number average molecular weight of the polymer forming the soft segment is preferably from 200 to 6000 from the viewpoint of toughness and flexibility at low temperature. Further, the mass ratio (x: y) to the hard segment (x) and the soft segment (y) is preferably from 50:50 to 90:10, and more preferably from 50:50 to 80:20 from the viewpoint of moldability. .
 ポリアミド系熱可塑性エラストマーは、ハードセグメントを形成するポリマー及びソフトセグメントを形成するポリマーを公知の方法によって共重合することで合成することができる。 The polyamide-based thermoplastic elastomer can be synthesized by copolymerizing a polymer forming a hard segment and a polymer forming a soft segment by a known method.
 ポリアミド系熱可塑性エラストマーの市販品としては、例えば、宇部興産(株)の「UBESTA XPA」シリーズ(例えば、XPA9068X1、XPA9063X1、XPA9055X1、XPA9048X2、XPA9048X1、XPA9040X1、XPA9040X2XPA9044等)、ダイセル・エポニック(株)の「ベスタミド」シリーズ(例えば、E40-S3、E47-S1、E47-S3、E55-S1、E55-S3、EX9200、E50-R2等)等を用いることができる。 Commercially available polyamide-based thermoplastic elastomers include, for example, Ube Industries, Ltd.'s "UBESTA @ XPA" series (eg, XPA9068X1, XPA9063X1, XPA9055X1, XPA9048X2, XPA9048X1, XPA9040X1, XPA9040X2XPA9044), and Daicel Eponik. "Vestamide" series (eg, E40-S3, E47-S1, E47-S3, E55-S1, E55-S3, EX9200, E50-R2, etc.) can be used.
(ポリスチレン系熱可塑性エラストマー)
 ポリスチレン系熱可塑性エラストマーとしては、例えば、少なくともポリスチレンがハードセグメントを形成し、他のポリマー(例えば、ポリブタジエン、ポリイソプレン、ポリエチレン、水添ポリブタジエン、水添ポリイソプレン等)が非晶性でガラス転移温度の低いソフトセグメントを形成している材料が挙げられる。ハードセグメントを形成するポリスチレンとしては、例えば、公知のラジカル重合法、イオン性重合法等で得られるものが好ましく用いられ、具体的には、アニオンリビング重合を持つポリスチレンが挙げられる。また、ソフトセグメントを形成するポリマーとしては、例えば、ポリブタジエン、ポリイソプレン、ポリ(2,3-ジメチル-ブタジエン)等が挙げられる。
(Polystyrene-based thermoplastic elastomer)
As the polystyrene-based thermoplastic elastomer, for example, at least polystyrene forms a hard segment, and another polymer (eg, polybutadiene, polyisoprene, polyethylene, hydrogenated polybutadiene, hydrogenated polyisoprene, etc.) is amorphous and has a glass transition temperature. Low soft segment. As the polystyrene forming the hard segment, for example, those obtained by a known radical polymerization method, ionic polymerization method, or the like are preferably used, and specific examples include polystyrene having anion living polymerization. Examples of the polymer forming the soft segment include polybutadiene, polyisoprene, and poly (2,3-dimethyl-butadiene).
 ハードセグメントとソフトセグメントとの組合せとしては、上述で挙げたハードセグメントとソフトセグメントとのそれぞれの組合せを挙げることができる。これらの中でも、ハードセグメントとソフトセグメントとの組合せとしては、ポリスチレン/ポリブタジエンの組合せ、又はポリスチレン/ポリイソプレンの組合せが好ましい。また、熱可塑性エラストマーの意図しない架橋反応を抑制するため、ソフトセグメントは水素添加されていることが好ましい。 組合 せ As the combination of the hard segment and the soft segment, the respective combinations of the hard segment and the soft segment described above can be cited. Among them, the combination of the hard segment and the soft segment is preferably a combination of polystyrene / polybutadiene or a combination of polystyrene / polyisoprene. Further, in order to suppress an unintended crosslinking reaction of the thermoplastic elastomer, the soft segment is preferably hydrogenated.
 ハードセグメントを形成するポリマー(ポリスチレン)の数平均分子量は、5000~500000が好ましく、10000~200000がより好ましい。
 また、ソフトセグメントを形成するポリマーの数平均分子量としては、5000~1000000が好ましく、10000~800000がより好ましく、30000~500000が更に好ましい。さらに、ハードセグメント(x)及びソフトセグメント(y)との体積比(x:y)は、成形性の観点から、5:95~80:20が好ましく、10:90~70:30がより好ましい。
The number average molecular weight of the polymer (polystyrene) forming the hard segment is preferably from 5,000 to 500,000, more preferably from 10,000 to 200,000.
The number average molecular weight of the polymer forming the soft segment is preferably from 5,000 to 1,000,000, more preferably from 10,000 to 800,000, even more preferably from 30,000 to 500,000. Further, the volume ratio (x: y) of the hard segment (x) and the soft segment (y) is preferably from 5:95 to 80:20, more preferably from 10:90 to 70:30 from the viewpoint of moldability. .
 ポリスチレン系熱可塑性エラストマーは、ハードセグメントを形成するポリマー及びソフトセグメントを形成するポリマーを公知の方法によって共重合することで合成することができる。
 ポリスチレン系熱可塑性エラストマーとしては、例えば、スチレン-ブタジエン系共重合体[SBS(ポリスチレン-ポリ(ブチレン)ブロック-ポリスチレン)、SEBS(ポリスチレン-ポリ(エチレン/ブチレン)ブロック-ポリスチレン)]、スチレン-イソプレン共重合体(ポリスチレン-ポリイソプレンブロック-ポリスチレン)、スチレン-プロピレン系共重合体[SEP(ポリスチレン-(エチレン/プロピレン)ブロック)、SEPS(ポリスチレン-ポリ(エチレン/プロピレン)ブロック-ポリスチレン)、SEEPS(ポリスチレン-ポリ(エチレン-エチレン/プロピレン)ブロック-ポリスチレン)、SEB(ポリスチレン(エチレン/ブチレン)ブロック)]等が挙げられる。
The polystyrene-based thermoplastic elastomer can be synthesized by copolymerizing a polymer forming a hard segment and a polymer forming a soft segment by a known method.
Examples of the polystyrene-based thermoplastic elastomer include styrene-butadiene-based copolymer [SBS (polystyrene-poly (butylene) block-polystyrene), SEBS (polystyrene-poly (ethylene / butylene) block-polystyrene)], styrene-isoprene Copolymer (polystyrene-polyisoprene block-polystyrene), styrene-propylene-based copolymer [SEP (polystyrene- (ethylene / propylene) block], SEPS (polystyrene-poly (ethylene / propylene) block-polystyrene), SEEPS ( Polystyrene-poly (ethylene-ethylene / propylene) block-polystyrene), SEB (polystyrene (ethylene / butylene) block)] and the like.
 ポリスチレン系熱可塑性エラストマーの市販品としては、例えば、旭化成(株)製の「タフテック」シリーズ(例えば、H1031、H1041、H1043、H1051、H1052、H1053、H1062、H1082、H1141、H1221、H1272等)、(株)クラレ製の「SEBS」シリーズ(8007、8076等)、「SEPS」シリーズ(2002、2063等)等を用いることができる。 Commercially available polystyrene-based thermoplastic elastomers include, for example, "ToughTech" series manufactured by Asahi Kasei Corporation (for example, H1031, H1041, H1043, H1051, H1052, H1053, H1062, H1082, H1141, H1221, H1272, etc.). "SEBS" series (8007, 8076, etc.) and "SEPS" series (2002, 2063, etc.) manufactured by Kuraray Co., Ltd. can be used.
(ポリウレタン系熱可塑性エラストマー)
 ポリウレタン系熱可塑性エラストマーとしては、例えば、少なくともポリウレタンが物理的な凝集によって疑似架橋を形成しているハードセグメントを形成し、他のポリマーが非晶性でガラス転移温度の低いソフトセグメントを形成している材料が挙げられる。
 ポリウレタン系熱可塑性エラストマーとしては、具体的には、JIS K6418:2007に規定されるポリウレタン系熱可塑性エラストマー(TPU)が挙げられる。ポリウレタン系熱可塑性エラストマーは、下記式Aで表される単位構造を含むソフトセグメントと、下記式Bで表される単位構造を含むハードセグメントとを含む共重合体として表すことができる。
(Polyurethane-based thermoplastic elastomer)
As a polyurethane-based thermoplastic elastomer, for example, at least polyurethane forms a hard segment in which pseudo-crosslinking is formed by physical aggregation, and another polymer forms a soft segment having an amorphous and low glass transition temperature. Materials.
Specific examples of the polyurethane-based thermoplastic elastomer include a polyurethane-based thermoplastic elastomer (TPU) specified in JIS K6418: 2007. The polyurethane-based thermoplastic elastomer can be represented as a copolymer including a soft segment containing a unit structure represented by the following formula A and a hard segment containing a unit structure represented by the following formula B.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 式中、Pは、長鎖脂肪族ポリエーテル又は長鎖脂肪族ポリエステルを表す。Rは、脂肪族炭化水素、脂環族炭化水素、又は芳香族炭化水素を表す。P’は、短鎖脂肪族炭化水素、脂環族炭化水素、又は芳香族炭化水素を表す。 中 In the formula, P represents a long-chain aliphatic polyether or a long-chain aliphatic polyester. R represents an aliphatic hydrocarbon, an alicyclic hydrocarbon, or an aromatic hydrocarbon. P 'represents a short-chain aliphatic hydrocarbon, an alicyclic hydrocarbon, or an aromatic hydrocarbon.
 式A中、Pで表される長鎖脂肪族ポリエーテル又は長鎖脂肪族ポリエステルとしては、例えば、分子量500~5000のものを使用することができる。Pは、Pで表される長鎖脂肪族ポリエーテル及び長鎖脂肪族ポリエステルを含むジオール化合物に由来する。このようなジオール化合物としては、例えば、分子量が前記範囲内にある、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレンエーテルグリコール、ポリ(ブチレンアジペート)ジオール、ポリ-ε-カプロラクトンジオール、ポリ(ヘキサメチレンカーボネート)ジオール、ABA型トリブロックポリエーテル等が挙げられる。
 これらは、単独で又は2種以上を組み合わせて用いることができる。
In Formula A, as the long-chain aliphatic polyether or long-chain aliphatic polyester represented by P, for example, those having a molecular weight of 500 to 5,000 can be used. P is derived from a diol compound containing a long-chain aliphatic polyether represented by P and a long-chain aliphatic polyester. Examples of such a diol compound include polyethylene glycol, polypropylene glycol, polytetramethylene ether glycol, poly (butylene adipate) diol, poly-ε-caprolactone diol, and poly (hexamethylene carbonate) having a molecular weight within the above range. Diols and ABA-type triblock polyethers.
These can be used alone or in combination of two or more.
 式A及び式B中、Rは、Rで表される脂肪族炭化水素、脂環族炭化水素、又は芳香族炭化水素を含むジイソシアネート化合物を用いて導入された部分構造である。Rで表される脂肪族炭化水素を含む脂肪族ジイソシアネート化合物としては、例えば、1,2-エチレンジイソシアネート、1,3-プロピレンジイソシアネート、1,4-ブタンジイソシアネート、1,6-ヘキサメチレンジイソシアネート等が挙げられる。
 また、Rで表される脂環族炭化水素を含むジイソシアネート化合物としては、例えば、1,4-シクロヘキサンジイソシアネート、4,4-シクロヘキサンジイソシアネート等が挙げられる。さらに、Rで表される芳香族炭化水素を含む芳香族ジイソシアネート化合物としては、例えば、4,4’-ジフェニルメタンジイソシアネート、トリレンジイソシアネート等が挙げられる。
 これらは、単独で又は2種以上を組み合わせて用いることができる。
In Formulas A and B, R is a partial structure introduced using a diisocyanate compound containing an aliphatic hydrocarbon, an alicyclic hydrocarbon, or an aromatic hydrocarbon represented by R. Examples of the aliphatic diisocyanate compound containing an aliphatic hydrocarbon represented by R include 1,2-ethylene diisocyanate, 1,3-propylene diisocyanate, 1,4-butane diisocyanate, and 1,6-hexamethylene diisocyanate. No.
Examples of the diisocyanate compound containing an alicyclic hydrocarbon represented by R include 1,4-cyclohexane diisocyanate and 4,4-cyclohexane diisocyanate. Further, examples of the aromatic diisocyanate compound containing an aromatic hydrocarbon represented by R include 4,4′-diphenylmethane diisocyanate and tolylene diisocyanate.
These can be used alone or in combination of two or more.
 式B中、P’で表される短鎖脂肪族炭化水素、脂環族炭化水素、又は芳香族炭化水素としては、例えば、分子量500未満のものを使用することができる。また、P’は、P’で表される短鎖脂肪族炭化水素、脂環族炭化水素、又は芳香族炭化水素を含むジオール化合物に由来する。P’で表される短鎖脂肪族炭化水素を含む脂肪族ジオール化合物としては、例えば、グリコール及びポリアルキレングリコールが挙げられ、具体的には、エチレングリコール、プロピレングリコール、トリメチレングリコール、1,4-ブタンジオール、1,3-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,7-ヘプタンジオール、1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール等が挙げられる。
 また、P’で表される脂環族炭化水素を含む脂環族ジオール化合物としては、例えば、シクロペンタン-1,2-ジオール、シクロヘキサン-1,2-ジオール、シクロヘキサン-1,3-ジオール、シクロヘキサン-1,4-ジオール、シクロヘキサン-1,4-ジメタノール等が挙げられる。
 さらに、P’で表される芳香族炭化水素を含む芳香族ジオール化合物としては、例えば、ヒドロキノン、レゾルシン、クロロヒドロキノン、ブロモヒドロキノン、メチルヒドロキノン、フェニルヒドロキノン、メトキシヒドロキノン、フェノキシヒドロキノン、4,4’-ジヒドロキシビフェニル、4,4’-ジヒドロキシジフェニルエーテル、4,4’-ジヒドロキシジフェニルサルファイド、4,4’-ジヒドロキシジフェニルスルホン、4,4’-ジヒドロキシベンゾフェノン、4,4’-ジヒドロキシジフェニルメタン、ビスフェノールA、1,1-ジ(4-ヒドロキシフェニル)シクロヘキサン、1,2-ビス(4-ヒドロキシフェノキシ)エタン、1,4-ジヒドロキシナフタリン、2,6-ジヒドロキシナフタリン等が挙げられる。
 これらは、単独で又は2種以上を組み合わせて用いることができる。
In Formula B, as the short-chain aliphatic hydrocarbon, alicyclic hydrocarbon, or aromatic hydrocarbon represented by P ′, for example, those having a molecular weight of less than 500 can be used. P ′ is derived from a diol compound containing a short-chain aliphatic hydrocarbon, alicyclic hydrocarbon, or aromatic hydrocarbon represented by P ′. Examples of the aliphatic diol compound containing a short-chain aliphatic hydrocarbon represented by P ′ include glycol and polyalkylene glycol, and specifically, ethylene glycol, propylene glycol, trimethylene glycol, 1,4 -Butanediol, 1,3-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol, 1,10- Decanediol and the like.
Examples of the alicyclic diol compound containing an alicyclic hydrocarbon represented by P ′ include cyclopentane-1,2-diol, cyclohexane-1,2-diol, cyclohexane-1,3-diol, Cyclohexane-1,4-diol, cyclohexane-1,4-dimethanol and the like can be mentioned.
Further, examples of the aromatic diol compound containing an aromatic hydrocarbon represented by P ′ include hydroquinone, resorcin, chlorohydroquinone, bromohydroquinone, methylhydroquinone, phenylhydroquinone, methoxyhydroquinone, phenoxyhydroquinone, 4,4′- Dihydroxybiphenyl, 4,4'-dihydroxydiphenylether, 4,4'-dihydroxydiphenylsulfide, 4,4'-dihydroxydiphenylsulfone, 4,4'-dihydroxybenzophenone, 4,4'-dihydroxydiphenylmethane, bisphenol A, 1, Examples thereof include 1-di (4-hydroxyphenyl) cyclohexane, 1,2-bis (4-hydroxyphenoxy) ethane, 1,4-dihydroxynaphthalene, and 2,6-dihydroxynaphthalene.
These can be used alone or in combination of two or more.
 ハードセグメントを形成するポリマー(ポリウレタン)の数平均分子量は、溶融成形性の観点から、300~1500が好ましい。また、ソフトセグメントを形成するポリマーの数平均分子量としては、ポリウレタン系熱可塑性エラストマーの柔軟性及び熱安定性の観点から、500~20000が好ましく、500~5000が更に好ましく、500~3000が特に好ましい。また、ハードセグメント(x)及びソフトセグメント(y)との質量比(x:y)は、成形性の観点から、15:85~90:10が好ましく、30:70~90:10が更に好ましい。 ポ リ マ ー The number average molecular weight of the polymer (polyurethane) forming the hard segment is preferably from 300 to 1500 from the viewpoint of melt moldability. The number average molecular weight of the polymer forming the soft segment is preferably from 500 to 20,000, more preferably from 500 to 5,000, particularly preferably from 500 to 3,000, from the viewpoint of the flexibility and thermal stability of the polyurethane thermoplastic elastomer. . The mass ratio (x: y) of the hard segment (x) to the soft segment (y) is preferably from 15:85 to 90:10, and more preferably from 30:70 to 90:10 from the viewpoint of moldability. .
 ポリウレタン系熱可塑性エラストマーは、ハードセグメントを形成するポリマー及びソフトセグメントを形成するポリマーを公知の方法によって共重合することで合成することができる。ポリウレタン系熱可塑性エラストマーとしては、例えば、特開平5-331256号公報に記載の熱可塑性ポリウレタンを用いることができる。 The polyurethane-based thermoplastic elastomer can be synthesized by copolymerizing a polymer forming a hard segment and a polymer forming a soft segment by a known method. As the polyurethane-based thermoplastic elastomer, for example, the thermoplastic polyurethane described in JP-A-5-331256 can be used.
 ポリウレタン系熱可塑性エラストマーとしては、具体的には、芳香族ジオールと芳香族ジイソシアネートとからなるハードセグメントと、ポリ炭酸エステルからなるソフトセグメントとの組合せが好ましく、より具体的には、トリレンジイソシアネート(TDI)/ポリエステル系ポリオール共重合体、TDI/ポリエーテル系ポリオール共重合体、TDI/カプロラクトン系ポリオール共重合体、TDI/ポリカーボネート系ポリオール共重合体、4,4’-ジフェニルメタンジイソシアネート(MDI)/ポリエステル系ポリオール共重合体、MDI/ポリエーテル系ポリオール共重合体、MDI/カプロラクトン系ポリオール共重合体、MDI/ポリカーボネート系ポリオール共重合体、及びMDI+ヒドロキノン/ポリヘキサメチレンカーボネート共重合体からなる群より選ばれる少なくとも1種が好ましく、TDI/ポリエステル系ポリオール共重合体、TDI/ポリエーテル系ポリオール共重合体、MDI/ポリエステルポリオール共重合体、MDI/ポリエーテル系ポリオール共重合体、及びMDI+ヒドロキノン/ポリヘキサメチレンカーボネート共重合体からなる群より選ばれる少なくとも1種が更に好ましい。 As the polyurethane-based thermoplastic elastomer, specifically, a combination of a hard segment composed of an aromatic diol and an aromatic diisocyanate and a soft segment composed of a polycarbonate is preferable. More specifically, tolylene diisocyanate ( TDI) / polyester-based polyol copolymer, TDI / polyether-based polyol copolymer, TDI / caprolactone-based polyol copolymer, TDI / polycarbonate-based polyol copolymer, 4,4′-diphenylmethane diisocyanate (MDI) / polyester -Based polyol copolymer, MDI / polyether-based polyol copolymer, MDI / caprolactone-based polyol copolymer, MDI / polycarbonate-based polyol copolymer, and MDI + hydroquinone / polyhexamethyl At least one selected from the group consisting of carbonate copolymers is preferred, and TDI / polyester polyol copolymer, TDI / polyether polyol copolymer, MDI / polyester polyol copolymer, MDI / polyether polyol At least one selected from the group consisting of a copolymer and MDI + hydroquinone / polyhexamethylene carbonate copolymer is more preferred.
 また、ポリウレタン系熱可塑性エラストマーの市販品としては、例えば、BASF社製の「エラストラン」シリーズ(例えば、ET680、ET880、ET690、ET890等)、(株)クラレ社製「クラミロンU」シリーズ(例えば、2000番台、3000番台、8000番台、9000番台等)、日本ミラクトラン(株)製の「ミラクトラン」シリーズ(例えば、XN-2001、XN-2004、P390RSUP、P480RSUI、P26MRNAT、E490、E590、P890等)等を用いることができる。 Examples of commercially available polyurethane-based thermoplastic elastomers include, for example, “Elastoran” series manufactured by BASF (eg, ET680, ET880, ET690, ET890, etc.), and “Kuramilon U” series manufactured by Kuraray Co., Ltd. (for example, , 2000s, 3000s, 8000s, 9000s, etc.), "Milactran" series manufactured by Nippon Miractran Co., Ltd. (for example, XN-2001, XN-2004, P390RSUP, P480RSUI, P26MRNAT, E490, E590, P890, etc.) Etc. can be used.
(ポリオレフィン系熱可塑性エラストマー)
 ポリオレフィン系熱可塑性エラストマーとしては、例えば、少なくともポリオレフィンが結晶性で融点の高いハードセグメントを形成し、他のポリマー(例えば、ポリオレフィン、他のポリオレフィン、ポリビニル化合物等)が非晶性でガラス転移温度の低いソフトセグメントを形成している材料が挙げられる。ハードセグメントを形成するポリオレフィンとしては、例えば、ポリエチレン、ポリプロピレン、アイソタクチックポリプロピレン、ポリブテン等が挙げられる。
(Polyolefin thermoplastic elastomer)
As a polyolefin-based thermoplastic elastomer, for example, at least polyolefin forms a hard segment having a high melting point which is crystalline, and another polymer (eg, polyolefin, other polyolefin, polyvinyl compound, etc.) is amorphous and has a glass transition temperature. Materials that form a low soft segment are included. Examples of the polyolefin forming the hard segment include polyethylene, polypropylene, isotactic polypropylene, and polybutene.
 ポリオレフィン系熱可塑性エラストマーとしては、例えば、オレフィン-α-オレフィンランダム共重合体、オレフィンブロック共重合体等が挙げられ、具体的には、プロピレンブロック共重合体、エチレン-プロピレン共重合体、プロピレン-1-ヘキセン共重合体、プロピレン-4-メチル-1ペンテン共重合体、プロピレン-1-ブテン共重合体、エチレン-1-ヘキセン共重合体、エチレン-4-メチル-ペンテン共重合体、エチレン-1-ブテン共重合体、1-ブテン-1-ヘキセン共重合体、1-ブテン-4-メチル-ペンテン、エチレン-メタクリル酸共重合体、エチレン-メタクリル酸メチル共重合体、エチレン-メタクリル酸エチル共重合体、エチレン-メタクリル酸ブチル共重合体、エチレン-メチルアクリレート共重合体、エチレン-エチルアクリレート共重合体、エチレン-ブチルアクリレート共重合体、プロピレン-メタクリル酸共重合体、プロピレン-メタクリル酸メチル共重合体、プロピレン-メタクリル酸エチル共重合体、プロピレン-メタクリル酸ブチル共重合体、プロピレン-メチルアクリレート共重合体、プロピレン-エチルアクリレート共重合体、プロピレン-ブチルアクリレート共重合体、エチレン-酢酸ビニル共重合体、プロピレン-酢酸ビニル共重合体等が挙げられる。 Examples of the polyolefin-based thermoplastic elastomer include an olefin-α-olefin random copolymer, an olefin block copolymer and the like. Specifically, a propylene block copolymer, an ethylene-propylene copolymer, a propylene- 1-hexene copolymer, propylene-4-methyl-1-pentene copolymer, propylene-1-butene copolymer, ethylene-1-hexene copolymer, ethylene-4-methyl-pentene copolymer, ethylene- 1-butene copolymer, 1-butene-1-hexene copolymer, 1-butene-4-methyl-pentene, ethylene-methacrylic acid copolymer, ethylene-methyl methacrylate copolymer, ethylene-ethyl methacrylate Copolymer, ethylene-butyl methacrylate copolymer, ethylene-methyl acrylate copolymer Copolymer, ethylene-ethyl acrylate copolymer, ethylene-butyl acrylate copolymer, propylene-methacrylic acid copolymer, propylene-methyl methacrylate copolymer, propylene-ethyl methacrylate copolymer, propylene-butyl methacrylate copolymer Examples include a polymer, a propylene-methyl acrylate copolymer, a propylene-ethyl acrylate copolymer, a propylene-butyl acrylate copolymer, an ethylene-vinyl acetate copolymer, a propylene-vinyl acetate copolymer, and the like.
 これらの中でも、ポリオレフィン系熱可塑性エラストマーとしては、プロピレンブロック共重合体、エチレン-プロピレン共重合体、プロピレン-1-ヘキセン共重合体、プロピレン-4-メチル-1ペンテン共重合体、プロピレン-1-ブテン共重合体、エチレン-1-ヘキセン共重合体、エチレン-4-メチル-ペンテン共重合体、エチレン-1-ブテン共重合体、エチレン-メタクリル酸共重合体、エチレン-メタクリル酸メチル共重合体、エチレン-メタクリル酸エチル共重合体、エチレン-メタクリル酸ブチル共重合体、エチレン-メチルアクリレート共重合体、エチレン-エチルアクリレート共重合体、エチレン-ブチルアクリレート共重合体、プロピレン-メタクリル酸共重合体、プロピレン-メタクリル酸メチル共重合体、プロピレン-メタクリル酸エチル共重合体、プロピレン-メタクリル酸ブチル共重合体、プロピレン-メチルアクリレート共重合体、プロピレン-エチルアクリレート共重合体、プロピレン-ブチルアクリレート共重合体、エチレン-酢酸ビニル共重合体、及びプロピレン-酢酸ビニル共重合体からなる群より選ばれる少なくとも1種が好ましく、エチレン-プロピレン共重合体、プロピレン-1-ブテン共重合体、エチレン-1-ブテン共重合体、エチレン-メタクリル酸メチル共重合体、エチレン-メチルアクリレート共重合体、エチレン-エチルアクリレート共重合体、及びエチレン-ブチルアクリレート共重合体からなる群より選ばれる少なくとも1種が更に好ましい。
 また、エチレンとプロピレンといったように2種以上のオレフィン樹脂を組み合わせて用いてもよい。また、ポリオレフィン系熱可塑性エラストマー中のオレフィン樹脂含有率は、50質量%以上100質量%以下が好ましい。
Among them, polyolefin-based thermoplastic elastomers include propylene block copolymers, ethylene-propylene copolymers, propylene-1-hexene copolymers, propylene-4-methyl-1-pentene copolymers, and propylene-1-propylene. Butene copolymer, ethylene-1-hexene copolymer, ethylene-4-methyl-pentene copolymer, ethylene-1-butene copolymer, ethylene-methacrylic acid copolymer, ethylene-methyl methacrylate copolymer , Ethylene-ethyl methacrylate copolymer, ethylene-butyl methacrylate copolymer, ethylene-methyl acrylate copolymer, ethylene-ethyl acrylate copolymer, ethylene-butyl acrylate copolymer, propylene-methacrylic acid copolymer , A propylene-methyl methacrylate copolymer, Propylene-ethyl methacrylate copolymer, propylene-butyl methacrylate copolymer, propylene-methyl acrylate copolymer, propylene-ethyl acrylate copolymer, propylene-butyl acrylate copolymer, ethylene-vinyl acetate copolymer, And at least one member selected from the group consisting of propylene-vinyl acetate copolymer, and ethylene-propylene copolymer, propylene-1-butene copolymer, ethylene-1-butene copolymer, ethylene-methyl methacrylate At least one selected from the group consisting of a copolymer, an ethylene-methyl acrylate copolymer, an ethylene-ethyl acrylate copolymer, and an ethylene-butyl acrylate copolymer is more preferable.
Further, two or more olefin resins such as ethylene and propylene may be used in combination. Further, the olefin resin content in the polyolefin-based thermoplastic elastomer is preferably from 50% by mass to 100% by mass.
 ポリオレフィン系熱可塑性エラストマーの数平均分子量は、5000~10000000であることが好ましい。ポリオレフィン系熱可塑性エラストマーの数平均分子量が5000~10000000であると、熱可塑性樹脂材料の機械的物性が十分であり、加工性にも優れる。同様の観点から、ポリオレフィン系熱可塑性エラストマーの数平均分子量は、7000~1000000であることが更に好ましく、10000~1000000が特に好ましい。これにより、熱可塑性樹脂材料の機械的物性及び加工性を更に向上させることができる。また、ソフトセグメントを形成するポリマーの数平均分子量としては、強靱性及び低温柔軟性の観点から、200~6000が好ましい。更に、ハードセグメント(x)及びソフトセグメント(y)との質量比(x:y)は、成形性の観点から、50:50~95:15が好ましく、50:50~90:10が更に好ましい。
 ポリオレフィン系熱可塑性エラストマーは、公知の方法によって共重合することで合成することができる。
The number average molecular weight of the polyolefin-based thermoplastic elastomer is preferably from 5,000 to 100,000,000. When the number average molecular weight of the polyolefin-based thermoplastic elastomer is 5,000 to 100,000,000, the mechanical properties of the thermoplastic resin material are sufficient and the workability is excellent. From the same viewpoint, the number average molecular weight of the polyolefin-based thermoplastic elastomer is more preferably from 7,000 to 1,000,000, and particularly preferably from 10,000 to 1,000,000. Thereby, the mechanical properties and workability of the thermoplastic resin material can be further improved. The number average molecular weight of the polymer forming the soft segment is preferably from 200 to 6000 from the viewpoint of toughness and flexibility at low temperature. Further, the mass ratio (x: y) to the hard segment (x) and the soft segment (y) is preferably from 50:50 to 95:15, more preferably from 50:50 to 90:10 from the viewpoint of moldability. .
The polyolefin-based thermoplastic elastomer can be synthesized by copolymerization according to a known method.
 また、ポリオレフィン系熱可塑性エラストマーとしては、ポリオレフィン系熱可塑性エラストマーを酸変性してなるものを用いてもよい。
 「ポリオレフィン系熱可塑性エラストマーを酸変性してなるもの」とは、ポリオレフィン系熱可塑性エラストマーに、カルボン酸基、硫酸基、燐酸基等の酸性基を有する不飽和化合物を結合させたものをいう。
 ポリオレフィン系熱可塑性エラストマーに、カルボン酸基、硫酸基、燐酸基等の酸性基を有する不飽和化合物を結合させることとしては、例えば、ポリオレフィン系熱可塑性エラストマーに、酸性基を有する不飽和化合物として、不飽和カルボン酸(一般的には、無水マレイン酸)の不飽和結合部位を結合(例えば、グラフト重合)させることが挙げられる。
 酸性基を有する不飽和化合物としては、ポリオレフィン系熱可塑性エラストマーの劣化抑制の観点からは、弱酸基であるカルボン酸基を有する不飽和化合物が好ましい。カルボン酸基を有する不飽和化合物としては、例えば、アクリル酸、メタクリル酸、イタコン酸、クロトン酸、イソクロトン酸、マレイン酸等が挙げられる。
Further, as the polyolefin-based thermoplastic elastomer, an elastomer obtained by acid-modifying a polyolefin-based thermoplastic elastomer may be used.
The term "obtained by acid-modifying a polyolefin-based thermoplastic elastomer" refers to a product obtained by bonding an unsaturated compound having an acidic group such as a carboxylic acid group, a sulfuric acid group, or a phosphoric acid group to a polyolefin-based thermoplastic elastomer.
Polyolefin-based thermoplastic elastomer, carboxylic acid group, sulfuric acid group, as to bond an unsaturated compound having an acidic group such as a phosphoric acid group, for example, to a polyolefin-based thermoplastic elastomer, as an unsaturated compound having an acidic group, Bonding (for example, graft polymerization) the unsaturated bond site of an unsaturated carboxylic acid (generally maleic anhydride).
As the unsaturated compound having an acidic group, an unsaturated compound having a carboxylic acid group which is a weak acid group is preferable from the viewpoint of suppressing deterioration of the polyolefin-based thermoplastic elastomer. Examples of the unsaturated compound having a carboxylic acid group include acrylic acid, methacrylic acid, itaconic acid, crotonic acid, isocrotonic acid, and maleic acid.
 ポリオレフィン系熱可塑性エラストマーの市販品としては、例えば、三井化学(株)製の「タフマー」シリーズ(例えば、A0550S、A1050S、A4050S、A1070S、A4070S、A35070S、A1085S、A4085S、A7090、A70090、MH7007、MH7010、XM-7070、XM-7080、BL4000、BL2481、BL3110、BL3450、P-0275、P-0375、P-0775、P-0180、P-0280、P-0480、P-0680等)、三井・デュポンポリケミカル(株)製の「ニュクレル」シリーズ(例えば、AN4214C、AN4225C、AN42115C、N0903HC、N0908C、AN42012C、N410、N1050H、N1108C、N1110H、N1207C、N1214、AN4221C、N1525、N1560、N0200H、AN4228C、AN4213C、N035C)等、「エルバロイAC」シリーズ(例えば、1125AC、1209AC、1218AC、1609AC、1820AC、1913AC、2112AC、2116AC、2615AC、2715AC、3117AC、3427AC、3717AC等)、住友化学(株)の「アクリフト」シリーズ、「エバテート」シリーズ等、東ソー(株)製の「ウルトラセン」シリーズ等、プライムポリマー製の「プライムTPO」シリーズ(例えば、E-2900H、F-3900H、E-2900、F-3900、J-5900、E-2910、F-3910、J-5910、E-2710、F-3710、J-5910、E-2740、F-3740、R110MP、R110E、T310E、M142E等)等も用いることができる。 Commercially available polyolefin-based thermoplastic elastomers include, for example, "Tuffmer" series manufactured by Mitsui Chemicals, Inc. (for example, A0550S, A1050S, A4050S, A1070S, A4070S, A35070S, A1085S, A4085S, A7090, A70090, MH7007, MH7010). XM-7070, XM-7080, BL4000, BL2481, BL3110, BL3450, P-0275, P-0375, P-0775, P-0180, P-0280, P-0480, P-0680, etc.), Mitsui / Dupont "Nucrel" series manufactured by Polychemical Corporation (for example, AN4214C, AN4225C, AN42115C, N0903HC, N0908C, AN42012C, N410, N1050H, N11 8C, N1110H, N1207C, N1214, AN4221C, N1525, N1560, N0200H, AN4228C, AN4213C, N035C, etc., and "Elvaloy AC" series (for example, 1125AC, 1209AC, 1218AC, 1609AC, 1820AC, 1913AC, 2112AC, 2116AC, 2615AC). 2715AC, 3117AC, 3427AC, 3717AC, etc.), Sumitomo Chemical's "Acrift" series, "Evatate" series, etc., Tosoh Corporation's "Ultracene" series, etc., Prime Polymer's "Prime TPO" series ( For example, E-2900H, F-3900H, E-2900, F-3900, J-5900, E-2910, F-3910, J-5910, E-2710 F-3710, J-5910, E-2740, F-3740, R110MP, R110E, can be used T310E, also M142E, etc.) and the like.
-熱可塑性樹脂-
(ポリエステル系熱可塑性樹脂)
 ポリエステル系熱可塑性樹脂としては、前述のポリエステル系熱可塑性エラストマーのハードセグメントを形成するポリエステルを挙げることができる。
 ポリエステル系熱可塑性樹脂としては、具体的には、ポリ乳酸、ポリヒドロキシ-3-ブチル酪酸、ポリヒドロキシ-3-ヘキシル酪酸、ポリ(ε-カプロラクトン)、ポリエナントラクトン、ポリカプリロラクトン、ポリブチレンアジペート、ポリエチレンアジペート等の脂肪族ポリエステル、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート等の芳香族ポリエステルなどを例示することができる。これらの中でも、耐熱性及び加工性の観点から、ポリエステル系熱可塑性樹脂としては、ポリブチレンテレフタレートが好ましい。
-Thermoplastic resin-
(Polyester thermoplastic resin)
Examples of the polyester-based thermoplastic resin include polyesters forming hard segments of the above-mentioned polyester-based thermoplastic elastomers.
Specific examples of the polyester-based thermoplastic resin include polylactic acid, polyhydroxy-3-butylbutyric acid, polyhydroxy-3-hexylbutyric acid, poly (ε-caprolactone), polyenantholactone, polycaprylolactone, and polybutylene. Examples thereof include aliphatic polyesters such as adipate and polyethylene adipate, and aromatic polyesters such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, and polybutylene naphthalate. Among these, polybutylene terephthalate is preferred as the polyester-based thermoplastic resin from the viewpoint of heat resistance and processability.
 ポリエステル系熱可塑性樹脂の市販品としては、例えば、ポリプラスチック(株)製の「ジュラネックス」シリーズ(例えば、2000、2002等)、三菱エンジニアリングプラスチック(株)製の「ノバデュラン」シリーズ(例えば、5010R5、5010R3-2等)、東レ(株)製の「トレコン」シリーズ(例えば、1401X06、1401X31等)等を用いることができる。 Commercially available polyester-based thermoplastic resins include, for example, "Duranex" series (for example, 2000 and 2002) manufactured by Polyplastics Co., Ltd., and "Novaduran" series (for example, 5010R5) manufactured by Mitsubishi Engineering-Plastics Corporation. , 5010R3-2, etc.) and “Toraycon” series manufactured by Toray Industries (eg, 1401X06, 1401X31, etc.).
(ポリアミド系熱可塑性樹脂)
 ポリアミド系熱可塑性樹脂としては、前述のポリアミド系熱可塑性エラストマーのハードセグメントを形成するポリアミドを挙げることができる。
 ポリアミド系熱可塑性樹脂としては、具体的には、ε-カプロラクタムを開環重縮合したポリアミド(アミド6)、ウンデカンラクタムを開環重縮合したポリアミド(アミド11)、ラウリルラクタムを開環重縮合したポリアミド(アミド12)、ジアミンと二塩基酸とを重縮合したポリアミド(アミド66)、メタキシレンジアミンを構成単位として有するポリアミド(アミドMX)等を例示することができる。
(Polyamide-based thermoplastic resin)
Examples of the polyamide-based thermoplastic resin include polyamides forming hard segments of the above-described polyamide-based thermoplastic elastomer.
Specific examples of the polyamide-based thermoplastic resin include polyamide (amide 6) obtained by ring-opening polycondensation of ε-caprolactam, polyamide (amide 11) obtained by ring-opening polycondensation of undecane lactam, and ring-opening polycondensation of lauryl lactam. Examples thereof include polyamide (amide 12), polyamide (amide 66) obtained by polycondensation of diamine and dibasic acid, and polyamide (amide MX) having metaxylenediamine as a constituent unit.
 アミド6は、例えば、{CO-(CH-NH}で表すことができる。アミド11は、例えば、{CO-(CH10-NH}で表すことができる。アミド12は、例えば、{CO-(CH11-NH}で表すことができる。アミド66は、例えば、{CO(CHCONH(CHNH}で表すことができる。アミドMXは、例えば、下記構造式(A-1)で表すことができる。ここで、nは繰り返し単位数を表す。 Amide 6 can be represented, for example, by {CO— (CH 2 ) 5 —NH} n . The amide 11 can be represented, for example, by {CO— (CH 2 ) 10 —NH} n . The amide 12 can be represented, for example, by {CO— (CH 2 ) 11 —NH} n . The amide 66 can be represented, for example, by {CO (CH 2 ) 4 CONH (CH 2 ) 6 NH} n . Amide MX can be represented, for example, by the following structural formula (A-1). Here, n represents the number of repeating units.
Figure JPOXMLDOC01-appb-C000005

 
Figure JPOXMLDOC01-appb-C000005

 
 アミド6の市販品としては、例えば、宇部興産(株)製の「UBEナイロン」シリーズ(例えば、1022B、1011FB等)を用いることができる。アミド11の市販品としては、例えば、アルケマ(株)製の「Rilsan B」シリーズを用いることができる。アミド12の市販品としては、例えば、宇部興産(株)製の「UBEナイロン」シリーズ(例えば、3024U、3020U、3014U等)を用いることができる。アミド66の市販品としては、例えば、旭化成(株)製の「レオナ」シリーズ(例えば、1300S、1700S等)を用いることができる。アミドMXの市販品としては、例えば、三菱ガス化学(株)製の「MXナイロン」シリーズ(例えば、S6001、S6021、S6011等)を用いることができる。 As a commercially available product of amide 6, for example, the "UBE nylon" series (for example, 1022B, 1011FB, etc.) manufactured by Ube Industries, Ltd. can be used. As a commercially available amide 11, for example, "Rilsan @ B" series manufactured by Arkema Corporation can be used. As a commercially available product of the amide 12, for example, the "UBE nylon" series (for example, 3024U, 3020U, 3014U, etc.) manufactured by Ube Industries, Ltd. can be used. As a commercially available amide 66, for example, the "Leona" series (for example, 1300S, 1700S, etc.) manufactured by Asahi Kasei Corporation can be used. As a commercially available amide MX, for example, "MX Nylon" series (for example, S6001, S6021, S6011, etc.) manufactured by Mitsubishi Gas Chemical Co., Ltd. can be used.
 ポリアミド系熱可塑性樹脂は、上記の構成単位のみで形成されるホモポリマーであってもよく、上記の構成単位と他のモノマーとのコポリマーであってもよい。コポリマーの場合、各ポリアミド系熱可塑性樹脂における上記構成単位の含有率は、40質量%以上であることが好ましい。 (4) The polyamide-based thermoplastic resin may be a homopolymer formed of only the above-mentioned constituent units, or a copolymer of the above-mentioned constituent units and another monomer. In the case of a copolymer, the content of the above structural unit in each polyamide-based thermoplastic resin is preferably 40% by mass or more.
(ポリオレフィン系熱可塑性樹脂)
 ポリオレフィン系熱可塑性樹脂としては、前述のポリオレフィン系熱可塑性エラストマーのハードセグメントを形成するポリオレフィンを挙げることができる。
 ポリオレフィン系熱可塑性樹脂としては、具体的には、ポリエチレン系熱可塑性樹脂、ポリプロピレン系熱可塑性樹脂、ポリブタジエン系熱可塑性樹脂等を例示することができる。これらの中でも、耐熱性及び加工性の点から、ポリオレフィン系熱可塑性樹脂としては、ポリプロピレン系熱可塑性樹脂が好ましい。
 ポリプロピレン系熱可塑性樹脂の具体例としては、プロピレンホモ重合体、プロピレン-α-オレフィンランダム共重合体、プロピレン-α-オレフィンブロック共重合体等が挙げられる。α-オレフィンとしては、例えば、プロピレン、1-ブテン、1-ペンテン、3-メチル-1-ブテン、1-ヘキセン、4-メチル-1-ペンテン、3-メチル-1-ペンテン、1-ヘプテン、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-オクタデセン、1-エイコセン等の炭素数3~20程度のα-オレフィン等が挙げられる。
(Polyolefin thermoplastic resin)
Examples of the polyolefin-based thermoplastic resin include polyolefins that form the hard segments of the aforementioned polyolefin-based thermoplastic elastomer.
Specific examples of the polyolefin-based thermoplastic resin include a polyethylene-based thermoplastic resin, a polypropylene-based thermoplastic resin, and a polybutadiene-based thermoplastic resin. Among them, a polypropylene-based thermoplastic resin is preferable as the polyolefin-based thermoplastic resin from the viewpoint of heat resistance and workability.
Specific examples of the polypropylene-based thermoplastic resin include a propylene homopolymer, a propylene-α-olefin random copolymer, and a propylene-α-olefin block copolymer. Examples of the α-olefin include propylene, 1-butene, 1-pentene, 3-methyl-1-butene, 1-hexene, 4-methyl-1-pentene, 3-methyl-1-pentene, 1-heptene, Α-olefins having about 3 to 20 carbon atoms, such as 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, and 1-eicosene.
 第1被覆樹脂層は、熱可塑性樹脂及び熱可塑性エラストマーを単独で又は2種以上を組み合わせて用いてもよい。 The first coating resin layer may use a thermoplastic resin and a thermoplastic elastomer alone or in combination of two or more.
 第1被覆樹脂層は、樹脂以外にも他の成分を含んでもよい。他の成分としては、ゴム、各種充填剤(例えば、シリカ、炭酸カルシウム、クレイ等)、老化防止剤、オイル、可塑剤、発色剤、耐候剤等が挙げられる。 The first coating resin layer may contain other components in addition to the resin. Other components include rubber, various fillers (eg, silica, calcium carbonate, clay, etc.), antioxidants, oils, plasticizers, coloring agents, weathering agents, and the like.
[第2被覆樹脂層]
 第2被覆樹脂層の材質には、前述の水透過率Aの要件(条件(A1))を満たす材料が用いられる。
[Second coating resin layer]
As the material of the second coating resin layer, a material that satisfies the requirement (condition (A1)) of the water permeability A described above is used.
 第2被覆樹脂層は樹脂を含む。なお、第2被覆樹脂層の水透過率Aを前記条件(A1)を満たす範囲に制御する方法としては、第2被覆樹脂層中の樹脂の種類の選択、及び樹脂の含有量の調整等の方法が挙げられる。 The second coating resin layer contains a resin. In addition, as a method of controlling the water permeability A of the second coating resin layer to a range that satisfies the condition (A1), a method of selecting the type of the resin in the second coating resin layer, adjusting the content of the resin, and the like. Method.
 第2被覆樹脂層に含まれる樹脂としては、前記第1被覆樹脂層に含まれる樹脂として列挙されたものが同様に用いられる。また、その好ましい樹脂の種類、好ましい含有量、含んでもよい他の成分等も、前記第1被覆樹脂層と同様である。 樹脂 As the resin contained in the second coating resin layer, those listed as the resin contained in the first coating resin layer are similarly used. Further, the kind of the preferable resin, the preferable content, other components that may be included, and the like are the same as in the first coating resin layer.
[ビードフィラー]
 タイヤは、ビード部において、第2被覆樹脂層からタイヤ径方向外側へ延びるビードフィラーを有していてもよい。また、このビードフィラーは、第2被覆樹脂層と一体成形された同一体の部材であってもよい。
[Bead filler]
The tire may have a bead filler extending outward from the second coating resin layer in the tire radial direction in the bead portion. In addition, the bead filler may be a single member integrally formed with the second coating resin layer.
 ビードフィラーの材質としては、特に限定されるものではなく、樹脂又はゴム等の従来公知の弾性材料が用いられる。ビードフィラーは、弾性材料として樹脂を含むことが好ましく、例えば前記第1被覆樹脂層に含まれる樹脂として列挙されたものが同様に用いられる。また、その好ましい樹脂の種類、好ましい含有量、含んでもよい他の成分等も、前記第1被覆樹脂層と同様である。 材質 The material of the bead filler is not particularly limited, and a conventionally known elastic material such as resin or rubber is used. The bead filler preferably contains a resin as an elastic material, and for example, those listed as the resin contained in the first coating resin layer are similarly used. Further, the kind of the preferable resin, the preferable content, other components that may be included, and the like are the same as in the first coating resin layer.
[ビード部の形成方法]
 ここで、上記タイヤにおけるビード部の形成方法について、一例を挙げて説明する。具体的には、図2Aに示す構成のビード部を例にして形成方法を説明する。
[Method of forming bead portion]
Here, a method of forming a bead portion in the tire will be described with an example. Specifically, the formation method will be described using the bead portion having the configuration shown in FIG. 2A as an example.
 図2Aは、ビードワイヤー111を複数本有するビード部110の周方向(ビードワイヤー111の長手方向)に直交する断面を示す断面図である。図2Aには、3本のビードワイヤー111が並列に並べられると共に3段に積層された態様、つまり9本のビードワイヤー111を有する態様のビード部110が示されている。なお、ここで「並列に並べられる」とは、タイヤに適用する際に必要な長さに切断したビード部110中で、複数のビードワイヤー111同士が交差しない位置関係にあることを意味する。
 各ビードワイヤー111はそれぞれ接着層112で被覆され、さらにビードワイヤー111及び接着層112の周囲が第1被覆樹脂層113で被覆されて、ビードコア101を形成する。さらに、ビードコア101の周囲を覆う第2被覆樹脂層114を有する。また、第2被覆樹脂層114からタイヤ径方向外側へ延びるビードフィラー103を有する。
FIG. 2A is a cross-sectional view showing a cross section orthogonal to the circumferential direction (longitudinal direction of bead wire 111) of bead portion 110 having a plurality of bead wires 111. FIG. 2A shows a bead portion 110 in which three bead wires 111 are arranged in parallel and stacked in three stages, that is, in an embodiment having nine bead wires 111. Here, “arranged in parallel” means that a plurality of bead wires 111 have a positional relationship such that they do not intersect in a bead portion 110 cut to a length necessary for application to a tire.
Each bead wire 111 is covered with an adhesive layer 112, and the periphery of the bead wire 111 and the adhesive layer 112 is covered with a first covering resin layer 113 to form a bead core 101. Further, a second coating resin layer 114 covering the periphery of the bead core 101 is provided. In addition, it has a bead filler 103 extending outward from the second coating resin layer 114 in the tire radial direction.
 ・接着層及び第1被覆樹脂層の形成
 図2Aに示すビード部110におけるビードコア101は、まずビードワイヤー111の周囲を接着層112で被覆し、その後接着層112で被覆された3本のビードワイヤー111を第1被覆樹脂層113で被覆してなるストリップ部材を形成する。さらに、このストリップ部材を巻回して、断面での形状が略長方形であるストリップ部材を3段積層することで、ビードコア101を形成する。
Formation of Adhesive Layer and First Coating Resin Layer The bead core 101 in the bead portion 110 shown in FIG. 2A first covers the periphery of the bead wire 111 with the adhesive layer 112, and then three bead wires covered with the adhesive layer 112 A strip member is formed by covering 111 with the first coating resin layer 113. The bead core 101 is formed by winding this strip member and laminating three stages of strip members having a substantially rectangular cross section.
 なお、図2Aでは、ビードコア101中のビードワイヤー111の数は9本であるが、これに限定されるものではなく、ビードワイヤー111の本数は1本以上であればよい。例えば、図1Aに示すように、ビードワイヤー11を1本のみ有する態様であってもよい。また、図2Aでは、ストリップ部材が断面で3段に積層された態様を示すが、これに限定されるものではなく、例えば1段又は2段であっても、4段以上積層されていてもよい。 In FIG. 2A, the number of the bead wires 111 in the bead core 101 is nine, but is not limited to this, and the number of the bead wires 111 may be one or more. For example, as shown in FIG. 1A, an embodiment having only one bead wire 11 may be employed. Further, FIG. 2A shows a mode in which the strip members are stacked in three stages in cross section, but the present invention is not limited to this. For example, one or two stages or four or more stages are stacked. Good.
 本実施形態では、溶融状態の接着層112を形成する材料(例えば接着剤)をビードワイヤー111の外周表面に被覆し、さらに接着層112を形成する材料の表面に溶融状態の第1被覆樹脂層113を形成する材料(例えば樹脂)を被覆して、冷却により固化させることで、ストリップ部材を形成する。ストリップ部材の断面形状(ビードワイヤー111の長手方向に直交する断面の形状)は、本実施形態では略長方形であるが、これに限られず、例えば略平行四辺形等の様々な形状とすることができる。接着層112の形成及び第1被覆樹脂層113の形成は、公知の方法により行うことができ、例えば押出成形等の方法が挙げられる。そして、ビードコア101はストリップ部材を巻回して段積みすることにより形成することができ、段同士の接合は、例えば熱板溶着等の公知の方法で第1被覆樹脂層113を溶融させながらストリップ部材を巻回して、溶融した第1被覆樹脂層113を固化することにより行うことができる。あるいは、段同士を接着剤等により接着することにより接合することもできる。 In the present embodiment, a material (for example, an adhesive) for forming the adhesive layer 112 in the molten state is coated on the outer peripheral surface of the bead wire 111, and the first coating resin layer in the molten state is further applied to the surface of the material for forming the adhesive layer 112. A strip member is formed by coating a material (for example, a resin) forming 113 and solidifying it by cooling. The cross-sectional shape of the strip member (the cross-sectional shape orthogonal to the longitudinal direction of the bead wire 111) is substantially rectangular in the present embodiment, but is not limited thereto, and may be various shapes such as a substantially parallelogram. it can. The formation of the adhesive layer 112 and the formation of the first coating resin layer 113 can be performed by a known method, for example, a method such as extrusion molding. The bead core 101 can be formed by winding and stacking strip members, and the steps are joined by melting the first coating resin layer 113 by a known method such as hot plate welding. And solidifying the melted first coating resin layer 113. Alternatively, the steps can be joined by bonding the steps with an adhesive or the like.
 ・第2被覆樹脂層の形成
 次いで、得られたビードコア101の表面に、溶融状態の第2被覆樹脂層114を形成する材料(例えば樹脂)を被覆して、冷却により固化させることで、第2被覆樹脂層114を形成する。第2被覆樹脂層114の形成は、公知の方法により行うことができ、例えば射出成形等の方法が挙げられる。
 具体的には、射出成形金型のキャビティにビードコア101を配置し、溶融状態の第2被覆樹脂層114を形成する材料をキャビティに射出する。次に、射出した材料を冷却により固化させることで、第2被覆樹脂層114を形成する。
-Formation of second coating resin layer Next, the surface of the obtained bead core 101 is coated with a material (for example, resin) for forming the second coating resin layer 114 in a molten state, and is solidified by cooling, thereby forming the second. The coating resin layer 114 is formed. The formation of the second coating resin layer 114 can be performed by a known method, for example, a method such as injection molding.
Specifically, the bead core 101 is arranged in the cavity of the injection mold, and a material for forming the second coating resin layer 114 in a molten state is injected into the cavity. Next, the second coating resin layer 114 is formed by solidifying the injected material by cooling.
 ・ビードフィラーの形成
 図2Aに示すビード部110は、第2被覆樹脂層114のタイヤ径方向外側に向かって、ビードフィラー103が配置された構造を有する。ビードフィラー103の形成は、公知の方法により行うことができ、例えばビードフィラー103を樹脂で形成する場合には射出成形等の方法が挙げられる。なお、ビードフィラー103が第2被覆樹脂層114と一体成形された同一体の部材である場合、ビードフィラー103及び第2被覆樹脂層114の形状に加工された射出成形金型を用いて、一度の射出により両部材を一体成形することもできる。
-Formation of Bead Filler The bead part 110 shown in FIG. 2A has a structure in which the bead filler 103 is arranged outward of the second coating resin layer 114 in the tire radial direction. The bead filler 103 can be formed by a known method. For example, when the bead filler 103 is formed of a resin, a method such as injection molding can be used. When the bead filler 103 is the same member integrally formed with the second coating resin layer 114, the bead filler 103 and the second coating resin layer 114 are once molded using an injection molding die. The two members can also be integrally molded by injection of the same.
 次いで、前述のビード部を有するタイヤの構成について、例を挙げて図面に基づき説明する。 Next, the configuration of the tire having the above-described bead portion will be described with reference to the drawings using examples.
 図3は、一対のビード部として、図2Aに示すビード部110を有するタイヤ20の一例のタイヤ幅方向半部を示す、タイヤ幅方向断面図である。図3においては、タイヤ20の赤道面CLを境界とするタイヤ幅方向半部のみを示しているが、図示しない他方の半部についても同様の構成である。図3に示すタイヤ20は、一対のビード部に図2Aに示すビード部110を埋設し、このビード部110にトロイダル状に跨るカーカス16と、カーカス16のタイヤ径方向外側に2層のベルト層からなるベルト17と、を有している。 FIG. 3 is a cross-sectional view in the tire width direction showing a half portion in the tire width direction of an example of the tire 20 having the bead portions 110 shown in FIG. 2A as a pair of bead portions. FIG. 3 shows only a half of the tire 20 in the tire width direction with the equator plane CL as a boundary, but the other half (not shown) has the same configuration. The tire 20 shown in FIG. 3 has a bead portion 110 shown in FIG. 2A embedded in a pair of bead portions, a carcass 16 straddling the bead portion 110 in a toroidal shape, and two belt layers on a radially outer side of the carcass 16 in the tire radial direction. And a belt 17 made of.
 なお、ここでいうタイヤ幅方向とは、タイヤ20の回転軸と平行な方向を指し、タイヤ軸方向ともいう。また、タイヤ径方向とは、タイヤ20の回転軸と直交する方向をいう。また、符号CLはタイヤ20の赤道面を示している。
 また、本明細書では、タイヤ径方向に沿ってタイヤ20の回転軸側を「タイヤ径方向内側」、タイヤ径方向に沿ってタイヤ20の回転軸と反対側を「タイヤ径方向外側」と記載する。一方、タイヤ幅方向に沿ってタイヤ赤道面CL側を「タイヤ幅方向内側」、タイヤ幅方向に沿ってタイヤ赤道面CLと反対側を「タイヤ幅方向外側」と記載する。
Here, the tire width direction refers to a direction parallel to the rotation axis of the tire 20, and is also referred to as a tire axial direction. The tire radial direction refers to a direction orthogonal to the rotation axis of the tire 20. Reference symbol CL indicates an equatorial plane of the tire 20.
Further, in this specification, the rotation axis side of the tire 20 along the tire radial direction is referred to as “inside in the tire radial direction”, and the side opposite to the rotation axis of the tire 20 along the tire radial direction is referred to as “outside in the tire radial direction”. I do. On the other hand, the tire equatorial plane CL side along the tire width direction is described as “inside in the tire width direction”, and the side opposite to the tire equatorial plane CL along the tire width direction is described as “outside in the tire width direction”.
 図3では、標準リム(図示せず)に装着して標準空気圧を充填したときのタイヤ20を示している。ここでいう標準リムとは、JATMA(日本自動車タイヤ協会)のYear Book2017年度版に記載されている、適用サイズにおける標準リムを指す。また、上記標準空気圧とは、JATMAのYear Book2017年度版の最大負荷能力に対応する空気圧である。 FIG. 3 shows the tire 20 when mounted on a standard rim (not shown) and filled with standard air pressure. Here, the standard rim refers to a standard rim in an applicable size described in the Year @ Book 2017 edition of JATMA (Japan Automobile Tire Association). The standard air pressure is an air pressure corresponding to the maximum load capacity of JATMA's Year Book 2017 version.
 なお、以下の説明において、荷重とは下記規格に記載されている適用サイズにおける単輪の最大荷重(最大負荷能力)のことであり、内圧とは下記規格に記載されている単輪の最大荷重(最大負荷能力)に対応する空気圧のことであり、リムとは下記規格に記載されている適用サイズにおける標準リム(または、”Approved Rim”、”Recommended Rim”)のことである。規格は、タイヤが生産又は使用される地域に有効な産業規格によって決められている。例えば、アメリカ合衆国では、”The Tire and Rim Association Inc.のYear Book ”で、欧州では”The European Tire and Rim Technical OrganizationのStandards Manual”で、日本では日本自動車タイヤ協会の“JATMA Year Book”にて規定されている。 In the following description, the load is the maximum load (maximum load capacity) of a single wheel in the applicable size described in the following standard, and the internal pressure is the maximum load of a single wheel described in the following standard The rim refers to a standard rim (or “Approved @ Rim” or “Recommended @ Rim”) in an applicable size described in the following standard. The standards are determined by industry standards that are in effect in the area where the tire is manufactured or used. For example, in the United States, "The Book of the Tire and Rim Association of Inc., Year Book", in Europe, "The European, Tire and Rim, Technical, Organization, Standards of Automotive, Japan Association of Automobiles, Japan Motor Company, Japan Association of Motorcycles, Japan Association of Motorcycles, Japan Motor Company, Korea, Japan, Japan. Have been.
 なお、図3に示すタイヤ20は、偏平率が55以上のタイヤであり、タイヤ断面高さ(タイヤセクションハイト)が115mm以上に設定されている。なお、ここでいうセクションハイト(タイヤ断面高さ)とは、タイヤ20を標準リムに組み付けて内圧を標準空気圧とした状態におけるタイヤ外径とリム径との差の1/2の長さを指す。また、本実施形態では、タイヤ20の偏平率を55以上で且つタイヤ断面高さを115mm以上に設定しているが、本実施形態はこの構成に限定されない。 The tire 20 shown in FIG. 3 has a flatness of 55 or more, and has a tire section height (tire section height) of 115 mm or more. Here, the section height (tire section height) refers to a half length of a difference between a tire outer diameter and a rim diameter in a state where the tire 20 is mounted on a standard rim and an internal pressure is set to a standard air pressure. . Further, in the present embodiment, the flatness of the tire 20 is set to 55 or more and the tire section height is set to 115 mm or more, but the present embodiment is not limited to this configuration.
 図3に示されるように、タイヤ20は、左右一対のビード部110(図3では、片側のビード部110のみ図示)と、一対のビード部110からタイヤ径方向外側へそれぞれ延びる一対のタイヤサイド部18と、一方のタイヤサイド部18から他方のタイヤサイド部18へ延びるトレッド部19と、を有している。 As shown in FIG. 3, the tire 20 includes a pair of left and right bead parts 110 (only one bead part 110 is shown in FIG. 3) and a pair of tire side parts extending outward from the pair of bead parts 110 in the tire radial direction. And a tread portion 19 extending from one tire side portion 18 to the other tire side portion 18.
 図3に示されるように、一対のビード部110には、ビードコアがそれぞれ埋設され、一対のビードコアにはカーカス16が跨っている。このカーカス16の端部側はビードコアに係止されている。カーカス16は、端部側がビードコア周りにタイヤ内側から外側へ折り返されて係止されている。なお、本実施形態では、カーカス16の端部がタイヤサイド部18に対応する範囲(領域)に配置されているが、本実施形態はこの構成に限定されない。例えば、カーカス16の端部をトレッド部19に対応する範囲、特にベルト17に対応する範囲に配置してもよい。 As shown in FIG. 3, a bead core is embedded in each of the pair of bead portions 110, and the carcass 16 straddles the pair of bead cores. The end of the carcass 16 is locked to a bead core. The end of the carcass 16 is folded back from the inside of the tire to the outside around the bead core and is locked. In the present embodiment, the end of the carcass 16 is arranged in a range (region) corresponding to the tire side portion 18, but the present embodiment is not limited to this configuration. For example, the end of the carcass 16 may be arranged in a range corresponding to the tread portion 19, particularly in a range corresponding to the belt 17.
 また、カーカス16は、一方のビードコアから他方のビードコアへトロイダル状に延びてタイヤ20の骨格を構成している。 The carcass 16 extends from one bead core to the other bead core in a toroidal manner to form the skeleton of the tire 20.
 カーカスのタイヤ径方向外側には、複数(本実施形態では2層)のベルト17が設けられている。なお、このベルト17のタイヤ径方向外側には、ベルト17の全体を覆うようにキャップ層が設けられていてもよく、さらにキャップ層のタイヤ径方向外側には、キャップ層の両端部をそれぞれ覆うように一対のレイヤー層が設けられていてもよい。なお、本実施形態は上記構成に限定されず、キャップ層の片側の端部のみをレイヤー層で覆う構成としてもよく、キャップ層の両端部をタイヤ幅方向に連続する一つのレイヤー層で覆う構成としてもよい。また、タイヤ20の仕様に応じて、キャップ層及びレイヤー層を省略してもよい。
 また、カーカス16、ベルト17、キャップ層、及びレイヤー層には、従来公知のタイヤで用いる各部材の構造を用いることができる。
A plurality (two layers in this embodiment) of belts 17 are provided outside the carcass in the tire radial direction. A cap layer may be provided on the outside of the belt 17 in the tire radial direction so as to cover the entire belt 17, and further on both sides of the cap layer in the tire radial direction, both ends of the cap layer may be covered. Thus, a pair of layer layers may be provided. Note that the present embodiment is not limited to the above configuration, and may be configured to cover only one end of the cap layer with a layer layer, or to cover both end portions of the cap layer with one layer layer continuous in the tire width direction. It may be. Further, the cap layer and the layer layer may be omitted according to the specifications of the tire 20.
The carcass 16, the belt 17, the cap layer, and the layer layer may have the structure of each member used in a conventionally known tire.
 トレッド部19において、ベルト17のタイヤ径方向外側にはトレッドが設けられている。このトレッドは、走行中に路面に接地する部位である。なお、トレッドの踏面には、タイヤ周方向に延びる周方向溝が形成されていてもよく、またトレッドにはタイヤ幅方向に延びる幅方向溝が形成されていてもよい。なお、周方向溝及び幅方向溝の形状や本数は、タイヤ20に要求される排水性及び操縦安定性等の性能に応じて適宜設定される。 In the tread portion 19, a tread is provided outside the belt 17 in the tire radial direction. The tread is a part that contacts the road surface during traveling. A circumferential groove extending in the tire circumferential direction may be formed on the tread surface of the tread, and a width groove extending in the tire width direction may be formed on the tread. The shape and number of the circumferential grooves and the width grooves are appropriately set in accordance with the required performance of the tire 20 such as drainage and steering stability.
 ビード部110には、ビードコアからタイヤ径方向外側へカーカス16の外面に沿って延びる、ビードフィラーが埋設されている。ビードフィラーは、カーカス16とその折返し部分とで囲まれた領域に配置されている。また、ビードフィラーは、タイヤ径方向外側に向けて厚みが減少している。 The bead filler 110 is embedded in the bead portion 110 and extends along the outer surface of the carcass 16 from the bead core outward in the tire radial direction. The bead filler is arranged in a region surrounded by the carcass 16 and the folded portion. Further, the thickness of the bead filler decreases outward in the tire radial direction.
 図3に示されるビードフィラーの高さは、タイヤ断面高さの30~50%の範囲内に設定するのが好ましい。なお、ここでいうビードフィラーの高さとは、タイヤ20を標準リムに組み付けて内圧を標準空気圧とした状態におけるビードフィラーのタイヤ径方向外側の端部からビード部110の先端までの高さ(タイヤ径方向に沿った長さ)を指す。ここで、ビードフィラーの高さがタイヤ断面高さの30%以上であることにより、例えば走行時の耐久性が十分に確保できる。また、ビードフィラーの高さBHがタイヤ断面高さSHの50%以下であることにより、乗り心地性に優れる。 高 The height of the bead filler shown in FIG. 3 is preferably set within a range of 30 to 50% of the tire cross-section height. The height of the bead filler referred to here is the height from the tire radial outer end to the tip of the bead portion 110 when the tire 20 is mounted on a standard rim and the internal pressure is set to the standard air pressure (the tire (Length along the radial direction). Here, when the height of the bead filler is 30% or more of the tire cross-sectional height, for example, durability during running can be sufficiently ensured. Further, since the height BH of the bead filler is 50% or less of the tire cross-section height SH, the ride comfort is excellent.
 また、本実施形態では、ビードフィラーの端部をタイヤ20の最大幅位置よりもタイヤ径方向内側に配置している。なお、ここでいうタイヤ20の最大幅位置とは、タイヤ20のタイヤ幅方向に沿って最も幅が広い位置を指している。 In addition, in the present embodiment, the end of the bead filler is disposed inside the tire 20 in the tire radial direction from the maximum width position of the tire 20. Here, the maximum width position of the tire 20 refers to a position where the width is widest along the tire width direction of the tire 20.
 タイヤ20の内面には、一方のビード部110から他方のビード部110にわたって図示しないインナーライナーが設けられている。インナーライナーの主成分としては、公知のゴム材及び樹脂等(例えばブチルゴム)が用いられる。 An inner liner (not shown) is provided on the inner surface of the tire 20 from one bead portion 110 to the other bead portion 110. As a main component of the inner liner, a known rubber material and resin (for example, butyl rubber) are used.
 ・材質
 図3に示されるタイヤ20は、主に弾性材料で構成される。つまり、ビード部110におけるカーカス16の周囲の領域、タイヤサイド部18におけるカーカス16の周囲の領域、トレッド部19におけるベルト17の周囲の領域等が弾性材料で構成される。
-Material The tire 20 shown in Fig. 3 is mainly composed of an elastic material. That is, the region around the carcass 16 in the bead portion 110, the region around the carcass 16 in the tire side portion 18, the region around the belt 17 in the tread portion 19, and the like are made of an elastic material.
 弾性材料としては、例えばゴム材料(主にゴム材料で構成されるタイヤがいわゆるゴムタイヤである)、樹脂材料(主に樹脂材料で構成されるタイヤがいわゆる樹脂タイヤである)等が挙げられる。
 特に、図3に示されるタイヤ20においては、上記の各部がゴム材料で構成されたゴムタイヤであることが好ましい。
Examples of the elastic material include a rubber material (a tire mainly composed of a rubber material is a so-called rubber tire) and a resin material (a tire mainly composed of a resin material is a so-called resin tire).
In particular, in the tire 20 shown in FIG. 3, it is preferable that each of the above-described parts is a rubber tire made of a rubber material.
 (弾性材料:ゴム材料)
 ゴム材料は、ゴム(ゴム成分)を少なくとも含んでいればよく、本実施形態における効果を損なわない範囲で、添加剤等の他の成分を含んでもよい。ただし、前記ゴム材料中におけるゴム(ゴム成分)の含有量は、ゴム材料の総量に対して、50質量%以上が好ましく、90質量%以上が更に好ましい。
(Elastic material: rubber material)
The rubber material only needs to contain at least rubber (rubber component), and may contain other components such as additives as long as the effects of the present embodiment are not impaired. However, the content of the rubber (rubber component) in the rubber material is preferably 50% by mass or more, more preferably 90% by mass or more, based on the total amount of the rubber material.
 タイヤに用いるゴム成分としては、特に限定はなく、従来より公知のゴム配合に使用される天然ゴム及び各種合成ゴムを、単独もしくは2種以上混合して用いることができる。例えば、下記に示す様なゴム、もしくはこれらの2種以上のゴムブレンドを使用することができる。
 上記天然ゴムとしては、シートゴムでもブロックゴムでもよく、RSS#1~#5の総てを用いることができる。
 上記合成ゴムの例としては、各種ジエン系合成ゴム及びジエン系共重合体ゴム並びに特殊ゴム及び変性ゴム等が挙げられる。合成ゴムの具体例としては、例えば、ポリブタジエン(BR)、ブタジエンと芳香族ビニル化合物との共重合体(例えばSBR、NBRなど)、ブタジエンと他のジエン系化合物との共重合体等のブタジエン系重合体;ポリイソプレン(IR)、イソプレンと芳香族ビニル化合物との共重合体、イソプレンと他のジエン系化合物との共重合体等のイソプレン系重合体;クロロプレンゴム(CR)、ブチルゴム(IIR)、ハロゲン化ブチルゴム(X-IIR);エチレン-プロピレン系共重合体ゴム(EPM)、エチレン-プロピレン-ジエン系共重合体ゴム(EPDM)、及びこれらの任意のブレンド物等が挙げられる。
The rubber component used in the tire is not particularly limited, and natural rubber and various synthetic rubbers conventionally used in rubber compounding can be used alone or in combination of two or more. For example, a rubber as shown below, or a rubber blend of two or more of these rubbers can be used.
The natural rubber may be a sheet rubber or a block rubber, and all of RSS # 1 to # 5 can be used.
Examples of the synthetic rubber include various diene-based synthetic rubbers, diene-based copolymer rubbers, special rubbers, and modified rubbers. Specific examples of the synthetic rubber include, for example, butadiene (BR), a copolymer of butadiene and an aromatic vinyl compound (for example, SBR and NBR), and a butadiene-based copolymer such as a copolymer of butadiene and another diene-based compound. Polymers: Isoprene-based polymers such as polyisoprene (IR), copolymers of isoprene and aromatic vinyl compounds, and copolymers of isoprene and other diene compounds; chloroprene rubber (CR), butyl rubber (IIR) And halogenated butyl rubber (X-IIR); ethylene-propylene-based copolymer rubber (EPM), ethylene-propylene-diene-based copolymer rubber (EPDM), and any blends thereof.
 また、タイヤに用いるゴム材料は、目的に応じてゴムに添加物等の他の成分を加えてもよい。
 添加物としては、例えば、カーボンブラック等の補強材、充填剤、加硫剤、加硫促進剤、脂肪酸又はその塩、金属酸化物、プロセスオイル、老化防止剤等が挙げられ、これらを適宜配合することができる。
Further, the rubber material used for the tire may include other components such as an additive added to the rubber according to the purpose.
Examples of the additive include a reinforcing material such as carbon black, a filler, a vulcanizing agent, a vulcanization accelerator, a fatty acid or a salt thereof, a metal oxide, a process oil, an antioxidant, and the like. can do.
 主にゴム材料で構成されるタイヤは、未加硫のゴム材料をタイヤの形状に成形し、加熱によって未加硫ゴムを加硫することで得られる。 タ イ ヤ A tire mainly composed of a rubber material is obtained by molding an unvulcanized rubber material into a tire shape and vulcanizing the unvulcanized rubber by heating.
 (弾性材料:樹脂材料)
 樹脂材料は、樹脂(樹脂成分)を少なくとも含んでいればよく、本実施形態における効果を損なわない範囲で、添加剤等の他の成分を含んでもよい。ただし、前記樹脂材料中における樹脂(樹脂成分)の含有量は、樹脂材料の総量に対して、50質量%以上が好ましく、90質量%以上が更に好ましい。タイヤ骨格体は、例えば樹脂材料を用いて形成することができる。
(Elastic material: resin material)
The resin material only needs to contain at least the resin (resin component), and may contain other components such as additives as long as the effects of the present embodiment are not impaired. However, the content of the resin (resin component) in the resin material is preferably 50% by mass or more, more preferably 90% by mass or more, based on the total amount of the resin material. The tire frame can be formed using, for example, a resin material.
 タイヤ骨格体に含まれる樹脂としては、熱可塑性樹脂、熱可塑性エラストマー、及び熱硬化性樹脂が挙げられる。 樹脂 The resin contained in the tire frame includes a thermoplastic resin, a thermoplastic elastomer, and a thermosetting resin.
 熱硬化性樹脂としては、例えば、フェノール系熱硬化性樹脂、ユリア系熱硬化性樹脂、メラミン系熱硬化性樹脂、エポキシ系熱硬化性樹脂等が挙げられる。
 熱可塑性樹脂としては、ポリアミド系熱可塑性樹脂、ポリエステル系熱可塑性樹脂、オレフィン系熱可塑性樹脂、ポリウレタン系熱可塑性樹脂、塩化ビニル系熱可塑性樹脂、ポリスチレン系熱可塑性樹脂等を例示することができる。これらは単独で又は2種以上を組み合わせて用いてもよい。これらの中でも、熱可塑性樹脂としては、ポリアミド系熱可塑性樹脂、ポリエステル系熱可塑性樹脂、及びオレフィン系熱可塑性樹脂からなる群より選ばれる少なくとも1種が好ましく、ポリアミド系熱可塑性樹脂及びオレフィン系熱可塑性樹脂からなる群より選ばれる少なくとも1種が更に好ましい。
Examples of the thermosetting resin include a phenol-based thermosetting resin, a urea-based thermosetting resin, a melamine-based thermosetting resin, and an epoxy-based thermosetting resin.
Examples of the thermoplastic resin include a polyamide-based thermoplastic resin, a polyester-based thermoplastic resin, an olefin-based thermoplastic resin, a polyurethane-based thermoplastic resin, a vinyl chloride-based thermoplastic resin, and a polystyrene-based thermoplastic resin. These may be used alone or in combination of two or more. Among them, the thermoplastic resin is preferably at least one selected from the group consisting of a polyamide-based thermoplastic resin, a polyester-based thermoplastic resin, and an olefin-based thermoplastic resin, and is preferably a polyamide-based thermoplastic resin and an olefin-based thermoplastic resin. At least one selected from the group consisting of resins is more preferred.
 熱可塑性エラストマーとしては、例えば、JIS K6418に規定されるポリアミド系熱可塑性エラストマー(TPA)、ポリスチレン系熱可塑性エラストマー(TPS)、ポリウレタン系熱可塑性エラストマー(TPU)、オレフィン系熱可塑性エラストマー(TPO)、ポリエステル系熱可塑性エラストマー(TPEE)、熱可塑性ゴム架橋体(TPV)、若しくはその他の熱可塑性エラストマー(TPZ)等が挙げられる。
 なお、走行時に必要とされる弾性、製造時の成形性等を考慮すると、タイヤ骨格体を形成する樹脂材料としては、熱可塑性樹脂及び熱可塑性エラストマーからなる群より選択される少なくとも一種を用いることが好ましく、走行時の乗り心地の観点から、熱可塑性エラストマーを含むことがより好ましい。中でも、ポリアミド系熱可塑性エラストマー及びポリエステル系熱可塑性エラストマーからなる群より選択される少なくとも一種を含むことがさらに好ましい。
Examples of the thermoplastic elastomer include a polyamide-based thermoplastic elastomer (TPA), a polystyrene-based thermoplastic elastomer (TPS), a polyurethane-based thermoplastic elastomer (TPU), an olefin-based thermoplastic elastomer (TPO) specified in JIS K6418, Examples thereof include a polyester-based thermoplastic elastomer (TPEE), a crosslinked thermoplastic rubber (TPV), and other thermoplastic elastomers (TPZ).
In consideration of elasticity required during running, moldability during manufacturing, and the like, the resin material forming the tire skeleton should be at least one selected from the group consisting of thermoplastic resins and thermoplastic elastomers. It is more preferable to contain a thermoplastic elastomer from the viewpoint of riding comfort during running. Among them, it is more preferable to include at least one selected from the group consisting of a polyamide-based thermoplastic elastomer and a polyester-based thermoplastic elastomer.
 樹脂材料は、所望に応じて、樹脂以外の他の成分を含んでもよい。他の成分としては、例えば、樹脂、ゴム、各種充填剤(例えば、シリカ、炭酸カルシウム、クレイ)、老化防止剤、オイル、可塑剤、着色剤、耐候剤、補強材等が挙げられる。 The resin material may contain other components other than the resin, if desired. Other components include, for example, resins, rubbers, various fillers (eg, silica, calcium carbonate, clay), antioxidants, oils, plasticizers, coloring agents, weathering agents, reinforcing materials, and the like.
 ・弾性材料の物性
 弾性材料として樹脂材料を用いる場合(つまり樹脂タイヤ用のタイヤ骨格体の場合)、樹脂材料に含まれる樹脂の融点は、例えば100℃~350℃程度が挙げられ、タイヤの耐久性及び生産性の観点から、100℃~250℃程度が好ましく、120℃~250℃が更に好ましい。
-Physical properties of elastic material When a resin material is used as the elastic material (that is, in the case of a tire frame for a resin tire), the melting point of the resin contained in the resin material is, for example, about 100 ° C to 350 ° C, and the durability of the tire increases. From the viewpoint of productivity and productivity, the temperature is preferably about 100 ° C. to 250 ° C., and more preferably 120 ° C. to 250 ° C.
 弾性材料(タイヤ骨格体)自体のJIS K7113:1995に規定される引張弾性率は、50MPa~1000MPaが好ましく、50MPa~800MPaが更に好ましく、50MPa~700MPaが特に好ましい。弾性材料の引張弾性率が、50MPa~1000MPaであると、タイヤ骨格の形状を保持しつつ、リム組みを効率的に行なうことができる。 The tensile modulus of the elastic material (tire skeleton) itself specified in JIS K7113: 1995 is preferably from 50 MPa to 1000 MPa, more preferably from 50 MPa to 800 MPa, and particularly preferably from 50 MPa to 700 MPa. When the elastic modulus of the elastic material is 50 MPa to 1000 MPa, the rim can be efficiently assembled while maintaining the shape of the tire frame.
 弾性材料(タイヤ骨格体)自体のJIS K7113(1995)に規定される引張強さは、通常、15MPa~70MPa程度であり、17MPa~60MPaが好ましく、20MPa~55MPaが更に好ましい。 The tensile strength of the elastic material (tire frame body) itself specified in JIS K7113 (1995) is usually about 15 MPa to 70 MPa, preferably 17 MPa to 60 MPa, more preferably 20 MPa to 55 MPa.
 弾性材料(タイヤ骨格体)自体のJIS K7113(1995)に規定される引張降伏強さは、5MPa以上が好ましく、5MPa~20MPaが更に好ましく、5MPa~17MPaが特に好ましい。弾性材料の引張降伏強さが、5MPa以上であると、走行時等にタイヤにかかる荷重に対する変形に耐えることができる。 (4) The tensile yield strength of the elastic material (tire frame) itself as defined in JIS K7113 (1995) is preferably 5 MPa or more, more preferably 5 MPa to 20 MPa, and particularly preferably 5 MPa to 17 MPa. When the tensile yield strength of the elastic material is 5 MPa or more, the elastic material can withstand deformation due to a load applied to the tire during running or the like.
 弾性材料(タイヤ骨格体)自体のJIS K7113(1995)に規定される引張降伏伸びは、10%以上が好ましく、10%~70%が更に好ましく、15%~60%が特に好ましい。弾性材料の引張降伏伸びが、10%以上であると、弾性領域が大きく、リム組み性を良好にすることができる。 引 張 The tensile yield elongation of the elastic material (tire frame body) itself specified in JIS K7113 (1995) is preferably 10% or more, more preferably 10% to 70%, and particularly preferably 15% to 60%. When the tensile yield elongation of the elastic material is 10% or more, the elastic region is large, and the rim assemblability can be improved.
 弾性材料(タイヤ骨格体)自体のJIS K7113(1995)に規定される引張破断伸びは、50%以上が好ましく、100%以上が更に好ましく、150%以上が特に好ましく、200%以上が最も好ましい。弾性材料の引張破断伸びが、50%以上であると、リム組み性が良好であり、衝突に対して破壊し難くすることができる。 (5) The tensile elongation at break specified in JIS K7113 (1995) of the elastic material (tire frame) itself is preferably 50% or more, more preferably 100% or more, particularly preferably 150% or more, and most preferably 200% or more. When the tensile elongation at break of the elastic material is 50% or more, the rim assemblability is good, and it is possible to make it difficult to break in a collision.
 弾性材料(タイヤ骨格体)自体のISO 75-2又はASTM D648に規定される荷重たわみ温度(0.45MPa荷重時)は、50℃以上が好ましく、50℃~150℃が更に好ましく、50℃~130℃が特に好ましい。弾性材料の荷重たわみ温度が、50℃以上であると、タイヤの製造において加硫を行う場合であってもタイヤ骨格体の変形を抑制するこができる。 The deflection temperature under load (under a load of 0.45 MPa) specified by ISO 75-2 or ASTM D648 of the elastic material (tire frame) itself is preferably 50 ° C. or higher, more preferably 50 ° C. to 150 ° C., and more preferably 50 ° C. 130 ° C. is particularly preferred. When the deflection temperature under load of the elastic material is 50 ° C. or more, the deformation of the tire frame can be suppressed even when vulcanization is performed in the manufacture of the tire.
 ・タイヤの製造
 タイヤ20の製造方法としては、公知のタイヤ成形ドラムの外周に、ゴム材料からなるインナーライナー(不図示)、ビードコア、ビードフィラー、コードを弾性材料(つまりゴム材料又は樹脂材料)で被覆したカーカス16、弾性材料(つまりゴム材料又は樹脂材料)で形成されるタイヤサイド部18におけるカーカス16の周囲の領域、等を有する、未加硫のタイヤケースを形成する。
-Manufacture of tire As a method of manufacturing the tire 20, an inner liner (not shown) made of a rubber material, a bead core, a bead filler, and a cord are formed of an elastic material (that is, a rubber material or a resin material) around a known tire forming drum. An unvulcanized tire case is formed having the covered carcass 16, the area around the carcass 16 in the tire side portion 18 formed of an elastic material (that is, a rubber material or a resin material), and the like.
 タイヤケースのトレッド部19にベルト17を形成する方法としては、例えば、前記タイヤケースを回転させながらリールに巻き取ったワイヤー等の部材を巻き出し、ワイヤーをトレッド部19に所定の回数巻き付けてベルト17を形成してもよい。なお、ワイヤーが樹脂で被覆されている場合、加熱及び加圧を行って被覆されている樹脂をトレッド部19に溶着させてもよい。
 最後に、ベルト17の外周面に、未加硫のトレッドを貼り付け、生タイヤが得られる。このようにして製造された生タイヤは、加硫成形モールドで加硫成形され、タイヤ20が完成する。
As a method for forming the belt 17 on the tread portion 19 of the tire case, for example, a member such as a wire wound on a reel is unwound while rotating the tire case, and the wire is wound around the tread portion 19 a predetermined number of times. 17 may be formed. When the wire is coated with a resin, the coated resin may be welded to the tread portion 19 by applying heat and pressure.
Finally, an unvulcanized tread is attached to the outer peripheral surface of the belt 17, and a green tire is obtained. The green tire thus manufactured is vulcanized and molded by a vulcanization molding mold, and the tire 20 is completed.
 以上、例を挙げて本実施形態に係るタイヤの構成を説明したが、上記に示す本実施形態は一例であり、その要旨を逸脱しない範囲内において、種々変更を加えて実施することができる。また、本開示の権利範囲がこれらの実施形態に限定されないことは言うまでもない。 Although the configuration of the tire according to the present embodiment has been described above by way of example, the above-described embodiment is merely an example, and various modifications can be made without departing from the scope of the invention. Needless to say, the scope of rights of the present disclosure is not limited to these embodiments.
 なお、本開示の一実施形態は、以下に示す態様が含まれる。
<1>
 一対のビード部を備えるタイヤであって、
 前記一対のビード部の少なくとも一方が、ビードワイヤーと接着層と第1被覆樹脂層と第2被覆樹脂層とをこの順に有し、
 前記タイヤの軸方向における内側方向及び外側方向、並びに前記タイヤの径方向における内側方向の全方向において、前記ビードワイヤーの表面から前記第2被覆樹脂層の外側表面までの距離が最小となる箇所で、前記第2被覆樹脂層の厚さa、前記第1被覆樹脂層の厚さb、及び前記接着層の厚さcがそれぞれ下記(a1)、(b1)、及び(c1)の条件を満たし、且つ前記第2被覆樹脂層の水透過率A、前記第1被覆樹脂層の水透過率B、及び前記接着層の水透過率Cがそれぞれ下記(A1)、(B1)、及び(C1)の条件を満たすタイヤ。
 (a1)10mm≦a≦80mm
 (b1)0.05mm≦b≦0.5mm
 (c1)0.005mm≦c≦0.1mm
 (A1)A≦300g・mm/(m・day)
 (B1)B≦300g・mm/(m・day)
 (C1)C≦80g・mm/(m・day)
<2>
 前記第2被覆樹脂層の厚さa、前記第1被覆樹脂層の厚さb、及び前記接着層の厚さcがそれぞれ下記(a2)、(b2)、及び(c2)の条件を満たす、<1>に記載のタイヤ。
 (a2)10mm≦a≦50mm
 (b2)0.05mm≦b≦0.1mm
 (c2)0.005mm≦c≦0.05mm
<3>
 前記接着層の水透過率Cに対する前記第2被覆樹脂層の水透過率Aの比率、前記接着層の水透過率Cに対する前記第1被覆樹脂層の水透過率Bの比率、及び前記第1被覆樹脂層の水透過率Bに対する前記第2被覆樹脂層の水透過率Aの比率が、それぞれ下記(RA1)、(RB1)、及び(RC1)の条件を満たす、<1>又は<2>に記載のタイヤ。
 (RA1)2.50≦A/C
 (RB1)1.47≦B/C
 (RC1)0.50≦B/A
<4>
 前記第2被覆樹脂層の270℃での溶融粘度が150Pa・s以上600Pa・s以下であり、
 且つ前記第2被覆樹脂層の270℃での溶融粘度Maに対する前記第1被覆樹脂層の270℃での溶融粘度Mbの比率が下記(Ma1)の条件を満たす、<1>~<3>のいずれか1つに記載のタイヤ。
 (Ma1)0.4≦Mb/Ma≦2.5
<5>
 前記接着層、前記第1被覆樹脂層、及び前記第2被覆樹脂層は、それぞれ独立に、オレフィン系熱可塑性エラストマー、オレフィン系熱可塑性樹脂、ポリアミド系熱可塑性エラストマー、ポリアミド系熱可塑性樹脂、ポリエステル系熱可塑性エラストマー、及びポリエステル系熱可塑性樹脂からなる群より選択される少なくとも一種を含む、<1>~<4>のいずれか1つに記載のタイヤ。
<6>
 前記第1被覆樹脂層及び前記第2被覆樹脂層は、ポリエステル系熱可塑性エラストマーを含む、<5>に記載のタイヤ。
<7>
 前記接着層は、ポリエステル系熱可塑性エラストマーを含む、<5>又は<6>に記載のタイヤ。
<8>
 前記接着層、前記第1被覆樹脂層、及び前記第2被覆樹脂層のうち少なくとも一層は、酸変性された熱可塑性材料を含む、<1>~<7>のいずれか1つに記載のタイヤ。
<9>
 前記接着層は、酸変性された熱可塑性材料を含む、<8>に記載のタイヤ。
<10>
 前記ビードワイヤーはモノフィラメントであり、かつ前記モノフィラメントの表面はCu、Zn、Fe、Al、及びCoからなる群より選択される少なくとも一種の金属元素を主成分とする金属材料で構成されている、<1>~<9>のいずれか1つに記載のタイヤ。
Note that an embodiment of the present disclosure includes the following aspects.
<1>
A tire having a pair of bead portions,
At least one of the pair of bead portions has a bead wire, an adhesive layer, a first coating resin layer, and a second coating resin layer in this order,
In a direction where the distance from the surface of the bead wire to the outer surface of the second coating resin layer is minimized in the inward and outward directions in the axial direction of the tire, and in all the inward directions in the radial direction of the tire. The thickness a of the second coating resin layer, the thickness b of the first coating resin layer, and the thickness c of the adhesive layer satisfy the following conditions (a1), (b1), and (c1), respectively. The water permeability A of the second coating resin layer, the water permeability B of the first coating resin layer, and the water permeability C of the adhesive layer are as follows (A1), (B1), and (C1), respectively. A tire that meets the conditions of
(A1) 10 mm ≦ a ≦ 80 mm
(B1) 0.05 mm ≦ b ≦ 0.5 mm
(C1) 0.005 mm ≦ c ≦ 0.1 mm
(A1) A ≦ 300 g · mm / (m 2 · day)
(B1) B ≦ 300 g · mm / (m 2 · day)
(C1) C ≦ 80 g · mm / (m 2 · day)
<2>
The thickness a of the second coating resin layer, the thickness b of the first coating resin layer, and the thickness c of the adhesive layer satisfy the following conditions (a2), (b2), and (c2), respectively. The tire according to <1>.
(A2) 10 mm ≦ a ≦ 50 mm
(B2) 0.05 mm ≦ b ≦ 0.1 mm
(C2) 0.005 mm ≦ c ≦ 0.05 mm
<3>
A ratio of a water permeability A of the second coating resin layer to a water permeability C of the adhesive layer, a ratio of a water permeability B of the first coating resin layer to a water permeability C of the adhesive layer, and <1> or <2>, wherein the ratio of the water permeability A of the second coating resin layer to the water permeability B of the coating resin layer satisfies the following conditions (RA1), (RB1), and (RC1), respectively. The tire described in the above.
(RA1) 2.50 ≦ A / C
(RB1) 1.47 ≦ B / C
(RC1) 0.50 ≦ B / A
<4>
The melt viscosity at 270 ° C. of the second coating resin layer is 150 Pa · s or more and 600 Pa · s or less,
<1> to <3>, wherein the ratio of the melt viscosity Mb at 270 ° C. of the first coating resin layer to the melt viscosity Ma at 270 ° C. of the second coating resin layer satisfies the following condition (Ma1). The tire according to any one of the above.
(Ma1) 0.4 ≦ Mb / Ma ≦ 2.5
<5>
The adhesive layer, the first coating resin layer, and the second coating resin layer are each independently formed of an olefin-based thermoplastic elastomer, an olefin-based thermoplastic resin, a polyamide-based thermoplastic elastomer, a polyamide-based thermoplastic resin, or a polyester-based thermoplastic resin. The tire according to any one of <1> to <4>, including at least one selected from the group consisting of a thermoplastic elastomer and a polyester-based thermoplastic resin.
<6>
The tire according to <5>, wherein the first coating resin layer and the second coating resin layer include a polyester-based thermoplastic elastomer.
<7>
The tire according to <5> or <6>, wherein the adhesive layer includes a polyester-based thermoplastic elastomer.
<8>
The tire according to any one of <1> to <7>, wherein at least one of the adhesive layer, the first coating resin layer, and the second coating resin layer contains an acid-modified thermoplastic material. .
<9>
The tire according to <8>, wherein the adhesive layer includes an acid-modified thermoplastic material.
<10>
The bead wire is a monofilament, and the surface of the monofilament is made of a metal material mainly containing at least one metal element selected from the group consisting of Cu, Zn, Fe, Al, and Co. The tire according to any one of 1> to <9>.
 以下、実施例により本開示を具体的に説明するが、本開示はこれらの記載に何ら制限を受けるものではない。 Hereinafter, the present disclosure will be specifically described with reference to examples, but the present disclosure is not limited by these descriptions.
〔実施例1~18、比較例1~11〕
<ビード部材の作製>
 ビードワイヤーとして、モノフィラメント(平均直径φ1.25mmのモノフィラメント、スチール製、強力:2700N、伸度:7%)を使用する。
[Examples 1 to 18, Comparative Examples 1 to 11]
<Production of bead member>
As the bead wire, a monofilament (monofilament having an average diameter of 1.25 mm, made of steel, strength: 2700 N, elongation: 7%) is used.
 表1~表4に示す接着剤を加熱溶融した状態で上記のビードワイヤーの表面に押出機にて押し出し付着させる。なお、接着層の押出条件は接着剤の温度を240℃とする。 (4) The adhesives shown in Tables 1 to 4 are extruded and adhered to the surface of the bead wire in a state of being melted by heating with an extruder. The conditions for extruding the adhesive layer are as follows: the temperature of the adhesive is 240 ° C.
 次いで、接着剤が付着したビードワイヤーが3本並んで配置されるよう金型に設置し、表1~表4に示す第1被覆樹脂層の樹脂を、押出機にて押し出して接着剤の表面に付着させて被覆し、冷却する。なお、第1被覆樹脂層の押出条件は、樹脂の温度を240℃とする。こうして形成されるビードワイヤーが3本並んだ部材を、熱風で溶着しながら巻回しすることで、9本のビードワイヤーがそれぞれ接着層で被覆され、さらにその周囲が第1被覆樹脂層で被覆された構造(つまり図2Aに示す構造)を有するビードコアを作製する。なお、隣り合うビードワイヤー間の平均距離は200μmである。 Next, the bead wire to which the adhesive was adhered was placed in a mold so as to be arranged side by side, and the resin of the first coating resin layer shown in Tables 1 to 4 was extruded by an extruder to obtain a surface of the adhesive. And coated and cooled. In addition, the extrusion conditions of the first coating resin layer are such that the temperature of the resin is 240 ° C. By winding a member in which three bead wires formed in this manner are arranged while being welded by hot air, nine bead wires are respectively covered with an adhesive layer, and the periphery thereof is further covered with a first covering resin layer. A bead core having the bent structure (that is, the structure shown in FIG. 2A) is manufactured. The average distance between adjacent bead wires is 200 μm.
 次いで、予め第2被覆樹脂層の形状に加工した金型に前記より得たビードコアを設置し、表1~表4に示す第2被覆樹脂層の樹脂を射出成形機にて射出することで、ビードコアの外周に第2被覆樹脂層が被覆された構造(つまり図2Aに示す構造)を有する部材を作製する。なお、射出成形時の金型温度は80℃、成形温度は270℃とする。 Next, the bead core obtained as described above is placed in a mold previously processed into the shape of the second coating resin layer, and the resin of the second coating resin layer shown in Tables 1 to 4 is injected by an injection molding machine. A member having a structure in which the outer periphery of the bead core is covered with the second coating resin layer (that is, the structure shown in FIG. 2A) is manufactured. The mold temperature during injection molding is 80 ° C., and the molding temperature is 270 ° C.
 さらに、第2被覆樹脂層に用いた樹脂と同じ樹脂を用いて、図2Aに示すビードフィラーを射出成形により形成し、ビード部材を作製する。 {Circle around (2)} Using the same resin as that used for the second coating resin layer, the bead filler shown in FIG. 2A is formed by injection molding to produce a bead member.
 なお、得られるビード部材に関し、タイヤ軸方向における内側方向及び外側方向、並びにタイヤ径方向における内側方向の全方向(つまり本明細書における特定の対象方向)において、ビードワイヤーの表面から第2被覆樹脂層の外側表面までの距離が最小となる箇所での、第2被覆樹脂層の厚さa、第1被覆樹脂層の厚さb、及び接着層の厚さcを、表1~表4に示す。また、接着層の水透過率Cに対する第2被覆樹脂層の水透過率Aの比率であるA/C、接着層の水透過率Cに対する第1被覆樹脂層の水透過率Bの比率であるB/C、及び第2被覆樹脂層の水透過率Aに対する接着層の水透過率Cの比率であるB/Aを表1~表4に示す。また、第2被覆樹脂層の270℃での溶融粘度Maに対する第1被覆樹脂層の270℃での溶融粘度Mbの比率である粘度b/粘度a、及び第1被覆樹脂層の270℃での溶融粘度Mbに対する接着層の270℃での溶融粘度Mcの比率である粘度c/粘度bを表1~表4に示す。   In addition, regarding the obtained bead member, in all the inward and outward directions in the tire axial direction and the inward direction in the tire radial direction (that is, a specific target direction in this specification), the second coating resin is formed from the surface of the bead wire. Tables 1 to 4 show the thickness a of the second coating resin layer, the thickness b of the first coating resin layer, and the thickness c of the adhesive layer at the point where the distance to the outer surface of the layer becomes minimum. Show. A / C is the ratio of the water permeability A of the second coating resin layer to the water permeability C of the adhesive layer, and the ratio of the water permeability B of the first coating resin layer to the water permeability C of the adhesive layer. Tables 1 to 4 show B / C and B / A, which is the ratio of the water permeability C of the adhesive layer to the water permeability A of the second coating resin layer. The viscosity b / viscosity a, which is the ratio of the melt viscosity Mb at 270 ° C. of the first coating resin layer to the melt viscosity Ma at 270 ° C. of the second coating resin layer, and the viscosity at 270 ° C. of the first coating resin layer Tables 1 to 4 show the viscosity c / viscosity b, which is the ratio of the melt viscosity Mc at 270 ° C. of the adhesive layer to the melt viscosity Mb.
<ビード部材をビード部として備えるタイヤの作製>
 上述の図3に示す態様のタイヤを、前記より得られるビード部材を一対のビード部に用いて作製する。
 前記より得られるビード部材、及びポリエチレンテレフタレート製のプライコードからなるカーカスを準備し、これに天然ゴム(NR)とスチレンブタジエンゴム(SBR)との混合ゴム材料を用いたタイヤサイド部(カーカスのタイヤ幅方向外側の領域)、サイド補強ゴム、及びトレッド部、並びに撚り線のベルト層を用いて、生タイヤを作製する。
 作製される生タイヤについて、160℃、21分の条件で加熱(ゴムの加硫)を行う。
 得られるタイヤは、タイヤサイズ225/40R18、トレッド部の厚み10mmである。
<Production of tire having bead member as bead portion>
The tire of the embodiment shown in FIG. 3 described above is manufactured using the bead member obtained as described above for a pair of bead portions.
A bead member obtained as described above and a carcass made of a ply cord made of polyethylene terephthalate are prepared, and a tire side portion (carcass tire) using a mixed rubber material of natural rubber (NR) and styrene butadiene rubber (SBR) is prepared. A green tire is manufactured using the outer side in the width direction), the side reinforcing rubber, the tread portion, and the belt layer of the stranded wire.
The raw tire to be produced is heated (rubber vulcanization) at 160 ° C. for 21 minutes.
The resulting tire has a tire size of 225 / 40R18 and a tread thickness of 10 mm.
 なお、各実施例及び比較例において、第1被覆樹脂層及び第2被覆樹脂層の形成に用いる樹脂の詳細は、以下の通りである。
・樹脂1
 ポリアミド系熱可塑性エラストマー(宇部興産株式会社製、商品名「UBESTA XPA9055」)、水透過率140g・mm/(m・day)
・樹脂2
 ポリアミド系熱可塑性エラストマー(宇部興産株式会社製、商品名「UBESTA XPA9048」)、水透過率280g・mm/(m・day)
・樹脂3
 ポリアミド系熱可塑性樹脂(PA6、宇部興産株式会社製、商品名「UBEナイロン 1013B」)、水透過率400g・mm/(m・day)
・樹脂4
 ポリエステル系熱可塑性エラストマー、水透過率220g・mm/(m・day)
・樹脂5
 ポリエステル系熱可塑性エラストマー(東洋紡株式会社製、商品名「ペルプレンP90B」)、水透過率200g・mm/(m・day)
In each of the examples and comparative examples, the details of the resin used for forming the first coating resin layer and the second coating resin layer are as follows.
Resin 1
Polyamide-based thermoplastic elastomer (manufactured by Ube Industries, Ltd., trade name “UBESTA XPA9055”), water permeability 140 g · mm / (m 2 · day)
・ Resin 2
Polyamide-based thermoplastic elastomer (trade name “UBESTA XPA9048” manufactured by Ube Industries, Ltd.), water permeability 280 g · mm / (m 2 · day)
Resin 3
Polyamide-based thermoplastic resin (PA6, manufactured by Ube Industries, Ltd., trade name “UBE nylon 1013B”), water permeability 400 g · mm / (m 2 · day)
・ Resin 4
Polyester-based thermoplastic elastomer, water permeability 220 g · mm / (m 2 · day)
・ Resin 5
Polyester-based thermoplastic elastomer (manufactured by Toyobo Co., Ltd., trade name “Perprene P90B”), water permeability 200 g · mm / (m 2 · day)
 また、各実施例及び比較例において、接着層の形成に用いた接着剤の詳細は、以下の通りである。
・接着剤1
 酸変性ポリプロピレン樹脂、ホットメルト接着剤(三井化学株式会社製、商品名「アドマーQE060」)、水透過率10g・mm/(m・day)
・接着剤2
 酸変性ポリプロピレン樹脂、ホットメルト接着剤(三井化学株式会社製、商品名「アドマーQF500」)、水透過率5g・mm/(m・day)
・接着剤3
 ポリプロピレン樹脂(無変性ホモPP、株式会社プライムポリマー製、商品名「プライムポリプロJ-700GP」)、水透過率3g・mm/(m・day)
・接着剤4
 ポリアミド系樹脂、ホットメルト接着剤(アルケマ株式会社製、商品名「PlatamidB409」)、水透過率100g・mm/(m・day)
・接着剤5
 ポリアミド系樹脂、ホットメルト接着剤(ダイセル・エボニック株式会社製、商品名「ダイアミドA6492」)、水透過率50g・mm/(m・day)
・接着剤6
 酸変性ポリエステル系熱可塑性エラストマー、ホットメルト接着剤、水透過率150g・mm/(m・day)
・接着剤7
 酸変性ポリエステル系熱可塑性エラストマー、ホットメルト接着剤、水透過率500g・mm/(m・day)
・接着剤8
 酸変性ポリエステル系熱可塑性エラストマー、ホットメルト接着剤、水透過率80g・mm/(m・day)
The details of the adhesive used for forming the adhesive layer in each example and comparative example are as follows.
Adhesive 1
Acid-modified polypropylene resin, hot melt adhesive (trade name “Admer QE060”, manufactured by Mitsui Chemicals, Inc.), water permeability 10 g · mm / (m 2 · day)
・ Adhesive 2
Acid-modified polypropylene resin, hot melt adhesive (trade name “Admer QF500”, manufactured by Mitsui Chemicals, Inc.), water permeability 5 g · mm / (m 2 · day)
Adhesive 3
Polypropylene resin (unmodified homo PP, manufactured by Prime Polymer Co., Ltd., trade name "Prime Polypro J-700GP"), water permeability 3 g · mm / (m 2 · day)
・ Adhesive 4
Polyamide-based resin, hot melt adhesive (trade name “Platamid B409”, manufactured by Arkema Corporation), water permeability 100 g · mm / (m 2 · day)
・ Adhesive 5
Polyamide-based resin, hot melt adhesive (manufactured by Daicel Evonik Co., Ltd., trade name "Daiamide A6492"), water permeability 50 g · mm / (m 2 · day)
・ Adhesive 6
Acid-modified polyester-based thermoplastic elastomer, hot melt adhesive, water permeability 150 g · mm / (m 2 · day)
・ Adhesive 7
Acid-modified polyester-based thermoplastic elastomer, hot melt adhesive, water permeability 500 g · mm / (m 2 · day)
・ Adhesive 8
Acid-modified polyester-based thermoplastic elastomer, hot melt adhesive, water permeability 80 g · mm / (m 2 · day)
〔評価試験〕
<水圧試験>
 実施例及び比較例で作製されるタイヤをリムに組み込んだ後、タイヤ内部に水を注入して、タイヤが破壊したときの水圧値(タイヤ強度)及びその破壊の態様を比較する。水圧値は、比較例2のタイヤが破壊されるときの値を100として指数化し、以下の評価基準に従って接着性を評価する。数値が大きいほど、耐久性が良好である。
-評価基準-
 A 110より大きい。
 B 100より大きく110以下である。
 C 100以下である。
〔Evaluation test〕
<Hydraulic test>
After assembling the tires manufactured in Examples and Comparative Examples into a rim, water is injected into the tires, and a water pressure value (tire strength) when the tire is broken and a mode of the breaking are compared. The water pressure value is indexed with the value when the tire of Comparative Example 2 is broken as 100, and the adhesiveness is evaluated according to the following evaluation criteria. The higher the value, the better the durability.
-Evaluation criteria-
A Greater than 110.
B is larger than 100 and 110 or less.
C is 100 or less.
<湿熱劣化処理後接着性試験(湿熱劣化耐久性試験)>
 実施例及び比較例で作製される、ビードフィラーを形成する前のビード部材(つまりビードワイヤーに接着層、第1被覆樹脂層、及び第2被覆樹脂層が形成された状態の部材)に対し、温度75℃、湿度95%で3週間劣化処理を行う。その後、初期接着性試験に記載した方法と同様にして剥離力(単位:N)を測定し、以下の評価基準に従って評価する。
-評価基準-
 A 劣化処理後の剥離力が、作製直後の剥離力の75%以上である。
 B 劣化処理後の剥離力が、作製直後の剥離力の50%以上75%未満である。
 C 劣化処理後の剥離力が、作製直後の剥離力の50%未満である。
<Adhesion test after wet heat deterioration treatment (wet heat deterioration durability test)>
For the bead member before forming the bead filler (that is, the member in which the adhesive layer, the first coating resin layer, and the second coating resin layer are formed on the bead wire) before being formed in Examples and Comparative Examples, Deterioration is performed for 3 weeks at a temperature of 75 ° C. and a humidity of 95%. Thereafter, the peeling force (unit: N) is measured in the same manner as in the method described in the initial adhesion test, and evaluated according to the following evaluation criteria.
-Evaluation criteria-
A: The peeling force after the deterioration treatment is 75% or more of the peeling force immediately after fabrication.
B: The peeling force after the deterioration treatment is 50% or more and less than 75% of the peeling force immediately after production.
C The peel force after the deterioration treatment is less than 50% of the peel force immediately after the production.
<初期接着性試験>
 実施例及び比較例で作製される、ビードフィラーを形成する前のビード部材(つまりビードワイヤーに接着層、第1被覆樹脂層、及び第2被覆樹脂層が形成された状態の部材)に対し、接着層とビードワイヤーとの間の接着性の指標として、上記部材の作製直後にビードワイヤーから接着層、第1被覆樹脂層、及び第2被覆樹脂層を剥離する際の剥離力を測定する。
 具体的には、(株)エー・アンド・デイ製の「TENSIRON RTF-1210」を用いて、室温環境(25℃)で引張速度100mm/minで180°剥離試験を行って、剥離力(単位:N)を測定し、以下の評価基準に従って接着性を評価する。
-評価基準-
 A 剥離力が17N以上である。
 B 剥離力が14N以上17N未満である。
 C 剥離力が10N以上14N未満である。
 D 剥離力が10N未満である。
<Initial adhesion test>
For the bead member before forming the bead filler (that is, the member in which the adhesive layer, the first coating resin layer, and the second coating resin layer are formed on the bead wire) before being formed in Examples and Comparative Examples, As an index of the adhesiveness between the adhesive layer and the bead wire, a peeling force when the adhesive layer, the first coating resin layer, and the second coating resin layer are peeled off from the bead wire immediately after the production of the above member is measured.
Specifically, a 180 ° peel test was conducted at a tensile speed of 100 mm / min in a room temperature environment (25 ° C.) using “TENSIRON RTF-1210” manufactured by A & D Corporation, and the peel force (unit) was measured. : N), and the adhesiveness is evaluated according to the following evaluation criteria.
-Evaluation criteria-
A The peeling force is 17 N or more.
B The peeling force is 14 N or more and less than 17 N.
C The peeling force is 10 N or more and less than 14 N.
D The peel force is less than 10N.
<湿熱劣化処理後JISドラム試験>
 実施例及び比較例で作製されるタイヤに対し、空気を内圧が250kPaになるように充填した後、温度75℃、湿度95%の条件下で10日間の劣化処理を行う。劣化処理後のタイヤに対し、下記のようにして耐久ドラム試験を行い、下記の評価基準に従って評価を行う。
 タイヤを25±2℃の室内で内圧3.0kg/cmに調整した後、24時間放置する。その後、空気圧の再調整を行い、JIS荷重の1.8倍荷重をタイヤに負荷して、直径約3mのドラム上で、速度60km/hにて最大2万km走行させる。そして、タイヤが故障するまでに走行する距離を計測し、下記の評価基準に従って評価を行う。走行距離が長いほどタイヤの耐久性が優れていることを示し、[A]に分類されるものであれば実用上好ましいと言える。
-評価基準-
 A:2万km完走する。
 B:故障発生までの走行距離が1万km以上2万km未満である。
 C:故障発生までの走行距離が1万km未満である。
<JIS drum test after wet heat deterioration treatment>
The tires manufactured in the examples and the comparative examples are filled with air so that the internal pressure becomes 250 kPa, and then subjected to a deterioration treatment for 10 days at a temperature of 75 ° C. and a humidity of 95%. The tire after the deterioration treatment is subjected to a durability drum test as described below, and is evaluated according to the following evaluation criteria.
The tire is adjusted to an internal pressure of 3.0 kg / cm 2 in a room at 25 ± 2 ° C., and then left for 24 hours. Thereafter, the air pressure is readjusted, the tire is applied with a load 1.8 times the JIS load, and the tire is run at a speed of 60 km / h at a maximum of 20,000 km on a drum having a diameter of about 3 m. Then, the distance traveled before the tire breaks down is measured and evaluated according to the following evaluation criteria. The longer the traveling distance, the better the durability of the tire, and if it is classified as [A], it can be said that it is practically preferable.
-Evaluation criteria-
A: Complete 20,000 km.
B: The traveling distance until the occurrence of the failure is not less than 10,000 km and less than 20,000 km.
C: The traveling distance until the occurrence of the failure is less than 10,000 km.
Figure JPOXMLDOC01-appb-T000006

 
Figure JPOXMLDOC01-appb-T000006

 
Figure JPOXMLDOC01-appb-T000007

 
Figure JPOXMLDOC01-appb-T000007

 
Figure JPOXMLDOC01-appb-T000008

 
Figure JPOXMLDOC01-appb-T000008

 
Figure JPOXMLDOC01-appb-T000009

 
Figure JPOXMLDOC01-appb-T000009

 
 表中、「水透過率」は単位=g・mm/(m・day)、「粘度」は単位=Pa・s,(測定温度270℃)である。 In the table, “water permeability” is unit = g · mm / (m 2 · day), and “viscosity” is unit = Pa · s (measuring temperature 270 ° C.).
 なお、上記表に示す各評価試験の結果に関して、実施例1及び6は実際に試験を実施して得たデータであり、一方実施例2~5、7~18、及び比較例1~11は実際に試験を実施して得られたデータからの予測データである。 With respect to the results of each evaluation test shown in the above table, Examples 1 and 6 are data obtained by actually performing the test, while Examples 2 to 5, 7 to 18 and Comparative Examples 1 to 11 are data. This is prediction data from data obtained by actually performing a test.
 表に示すように、条件(a1)、(b1)、(c1)、(A1)、(B1)、及び(C1)を満たす実施例のタイヤは、上記条件のいずれかを満たさない比較例のタイヤに比べて、いずれの試験においても良好な評価が得られる。 As shown in the table, the tires of the examples satisfying the conditions (a1), (b1), (c1), (A1), (B1), and (C1) are of the comparative example that does not satisfy any of the above conditions. A good evaluation is obtained in any of the tests as compared with the tire.
 2018年9月28日に出願された日本国特許出願2018-183809号の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に取り込まれる。
The disclosure of Japanese Patent Application No. 2018-183809 filed on September 28, 2018 is incorporated herein by reference in its entirety.
All documents, patent applications, and technical standards mentioned herein are to the same extent as if each individual document, patent application, and technical standard were specifically and individually stated to be incorporated by reference. Incorporated herein.
1、101 ビードコア
3、103 ビードフィラー
10、110 ビード部
11、111 ビードワイヤー
12、112 接着層
13、113 第1被覆樹脂層
14、114 第2被覆樹脂層
16 カーカス
17 ベルト
18 タイヤサイド部
19 トレッド部
20 タイヤ
CL 赤道面
1, 101 bead core 3, 103 bead filler 10, 110 bead portion 11, 111 bead wire 12, 112 adhesive layer 13, 113 first coating resin layer 14, 114 second coating resin layer 16 carcass 17 belt 18 tire side portion 19 tread Part 20 Tire CL Equatorial plane

Claims (10)

  1.  一対のビード部を備えるタイヤであって、
     前記一対のビード部の少なくとも一方が、ビードワイヤーと接着層と第1被覆樹脂層と第2被覆樹脂層とをこの順に有し、
     前記タイヤの軸方向における内側方向及び外側方向、並びに前記タイヤの径方向における内側方向の全方向において、前記ビードワイヤーの表面から前記第2被覆樹脂層の外側表面までの距離が最小となる箇所で、前記第2被覆樹脂層の厚さa、前記第1被覆樹脂層の厚さb、及び前記接着層の厚さcがそれぞれ下記(a1)、(b1)、及び(c1)の条件を満たし、且つ前記第2被覆樹脂層の水透過率A、前記第1被覆樹脂層の水透過率B、及び前記接着層の水透過率Cがそれぞれ下記(A1)、(B1)、及び(C1)の条件を満たすタイヤ。
     (a1)10mm≦a≦80mm
     (b1)0.05mm≦b≦0.5mm
     (c1)0.005mm≦c≦0.1mm
     (A1)A≦300g・mm/(m・day)
     (B1)B≦300g・mm/(m・day)
     (C1)C≦80g・mm/(m・day)
    A tire having a pair of bead portions,
    At least one of the pair of bead portions has a bead wire, an adhesive layer, a first coating resin layer, and a second coating resin layer in this order,
    In a direction where the distance from the surface of the bead wire to the outer surface of the second coating resin layer is minimized in the inward and outward directions in the axial direction of the tire, and in all the inward directions in the radial direction of the tire. The thickness a of the second coating resin layer, the thickness b of the first coating resin layer, and the thickness c of the adhesive layer satisfy the following conditions (a1), (b1), and (c1), respectively. The water permeability A of the second coating resin layer, the water permeability B of the first coating resin layer, and the water permeability C of the adhesive layer are as follows (A1), (B1), and (C1), respectively. A tire that meets the conditions of
    (A1) 10 mm ≦ a ≦ 80 mm
    (B1) 0.05 mm ≦ b ≦ 0.5 mm
    (C1) 0.005 mm ≦ c ≦ 0.1 mm
    (A1) A ≦ 300 g · mm / (m 2 · day)
    (B1) B ≦ 300 g · mm / (m 2 · day)
    (C1) C ≦ 80 g · mm / (m 2 · day)
  2.  前記第2被覆樹脂層の厚さa、前記第1被覆樹脂層の厚さb、及び前記接着層の厚さcがそれぞれ下記(a2)、(b2)、及び(c2)の条件を満たす、請求項1に記載のタイヤ。
     (a2)10mm≦a≦50mm
     (b2)0.05mm≦b≦0.1mm
     (c2)0.005mm≦c≦0.05mm
    The thickness a of the second coating resin layer, the thickness b of the first coating resin layer, and the thickness c of the adhesive layer satisfy the following conditions (a2), (b2), and (c2), respectively. The tire according to claim 1.
    (A2) 10 mm ≦ a ≦ 50 mm
    (B2) 0.05 mm ≦ b ≦ 0.1 mm
    (C2) 0.005 mm ≦ c ≦ 0.05 mm
  3.  前記接着層の水透過率Cに対する前記第2被覆樹脂層の水透過率Aの比率、前記接着層の水透過率Cに対する前記第1被覆樹脂層の水透過率Bの比率、及び前記第1被覆樹脂層の水透過率Bに対する前記第2被覆樹脂層の水透過率Aの比率が、それぞれ下記(RA1)、(RB1)、及び(RC1)の条件を満たす、請求項1又は請求項2に記載のタイヤ。
     (RA1)2.50≦A/C
     (RB1)1.47≦B/C
     (RC1)0.50≦B/A
    A ratio of a water permeability A of the second coating resin layer to a water permeability C of the adhesive layer, a ratio of a water permeability B of the first coating resin layer to a water permeability C of the adhesive layer, and The ratio of the water permeability A of the second coating resin layer to the water permeability B of the coating resin layer satisfies the following conditions (RA1), (RB1), and (RC1), respectively. The tire described in the above.
    (RA1) 2.50 ≦ A / C
    (RB1) 1.47 ≦ B / C
    (RC1) 0.50 ≦ B / A
  4.  前記第2被覆樹脂層の270℃での溶融粘度が150Pa・s以上600Pa・s以下であり、
     且つ前記第2被覆樹脂層の270℃での溶融粘度Maに対する前記第1被覆樹脂層の270℃での溶融粘度Mbの比率が下記(Ma1)の条件を満たす、請求項1~請求項3のいずれか1項に記載のタイヤ。
     (Ma1)0.4≦Mb/Ma≦2.5
    The melt viscosity at 270 ° C. of the second coating resin layer is 150 Pa · s or more and 600 Pa · s or less,
    And the ratio of the melt viscosity Mb at 270 ° C. of the first coating resin layer to the melt viscosity Ma at 270 ° C. of the second coating resin layer satisfies the following condition (Ma1). A tire according to any one of the preceding claims.
    (Ma1) 0.4 ≦ Mb / Ma ≦ 2.5
  5.  前記接着層、前記第1被覆樹脂層、及び前記第2被覆樹脂層は、それぞれ独立に、オレフィン系熱可塑性エラストマー、オレフィン系熱可塑性樹脂、ポリアミド系熱可塑性エラストマー、ポリアミド系熱可塑性樹脂、ポリエステル系熱可塑性エラストマー、及びポリエステル系熱可塑性樹脂からなる群より選択される少なくとも一種を含む、請求項1~請求項4のいずれか1項に記載のタイヤ。 The adhesive layer, the first coating resin layer, and the second coating resin layer are each independently an olefin-based thermoplastic elastomer, an olefin-based thermoplastic resin, a polyamide-based thermoplastic elastomer, a polyamide-based thermoplastic resin, or a polyester-based thermoplastic elastomer. The tire according to any one of claims 1 to 4, comprising at least one selected from the group consisting of a thermoplastic elastomer and a polyester-based thermoplastic resin.
  6.  前記第1被覆樹脂層及び前記第2被覆樹脂層は、ポリエステル系熱可塑性エラストマーを含む、請求項5に記載のタイヤ。 The tire according to claim 5, wherein the first coating resin layer and the second coating resin layer include a polyester-based thermoplastic elastomer.
  7.  前記接着層は、ポリエステル系熱可塑性エラストマーを含む、請求項5又は請求項6に記載のタイヤ。 The tire according to claim 5 or 6, wherein the adhesive layer contains a polyester-based thermoplastic elastomer.
  8.  前記接着層、前記第1被覆樹脂層、及び前記第2被覆樹脂層のうち少なくとも一層は、酸変性された熱可塑性材料を含む、請求項1~請求項7のいずれか1項に記載のタイヤ。 The tire according to any one of claims 1 to 7, wherein at least one of the adhesive layer, the first coating resin layer, and the second coating resin layer contains an acid-modified thermoplastic material. .
  9.  前記接着層は、酸変性された熱可塑性材料を含む、請求項8に記載のタイヤ。 The tire according to claim 8, wherein the adhesive layer includes an acid-modified thermoplastic material.
  10.  前記ビードワイヤーはモノフィラメントであり、かつ前記モノフィラメントの表面はCu、Zn、Fe、Al、及びCoからなる群より選択される少なくとも一種の金属元素を主成分とする金属材料で構成されている、請求項1~請求項9のいずれか1項に記載のタイヤ。 The bead wire is a monofilament, and the surface of the monofilament is made of a metal material mainly containing at least one metal element selected from the group consisting of Cu, Zn, Fe, Al, and Co. The tire according to any one of claims 1 to 9.
PCT/JP2019/038259 2018-09-28 2019-09-27 Tire WO2020067473A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020549460A JPWO2020067473A1 (en) 2018-09-28 2019-09-27 tire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-183809 2018-09-28
JP2018183809 2018-09-28

Publications (1)

Publication Number Publication Date
WO2020067473A1 true WO2020067473A1 (en) 2020-04-02

Family

ID=69950134

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/038259 WO2020067473A1 (en) 2018-09-28 2019-09-27 Tire

Country Status (2)

Country Link
JP (1) JPWO2020067473A1 (en)
WO (1) WO2020067473A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03148308A (en) * 1985-01-18 1991-06-25 Michelin & Cie Tire provided with reinforcement assembly
JP2011207157A (en) * 2010-03-30 2011-10-20 Bridgestone Corp Method of manufacturing tire, and tire
JP2011235835A (en) * 2010-05-13 2011-11-24 Yokohama Rubber Co Ltd:The Pneumatic tire
JP2016097945A (en) * 2014-11-26 2016-05-30 株式会社ブリヂストン tire
JP2016097944A (en) * 2014-11-26 2016-05-30 株式会社ブリヂストン tire
JP2017109612A (en) * 2015-12-16 2017-06-22 株式会社ブリヂストン tire
JP2018176872A (en) * 2017-04-06 2018-11-15 株式会社ブリヂストン Resin-metal composite member for tire, and tire

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03148308A (en) * 1985-01-18 1991-06-25 Michelin & Cie Tire provided with reinforcement assembly
JP2011207157A (en) * 2010-03-30 2011-10-20 Bridgestone Corp Method of manufacturing tire, and tire
JP2011235835A (en) * 2010-05-13 2011-11-24 Yokohama Rubber Co Ltd:The Pneumatic tire
JP2016097945A (en) * 2014-11-26 2016-05-30 株式会社ブリヂストン tire
JP2016097944A (en) * 2014-11-26 2016-05-30 株式会社ブリヂストン tire
JP2017109612A (en) * 2015-12-16 2017-06-22 株式会社ブリヂストン tire
JP2018176872A (en) * 2017-04-06 2018-11-15 株式会社ブリヂストン Resin-metal composite member for tire, and tire

Also Published As

Publication number Publication date
JPWO2020067473A1 (en) 2021-08-30

Similar Documents

Publication Publication Date Title
WO2013129525A1 (en) Tire
EP3392060B1 (en) Tire
WO2018230271A1 (en) Resin-metal composite member for tire, and tire
JP6785245B2 (en) tire
WO2017104484A1 (en) Tire
WO2018186271A1 (en) Resin-metal composite member for tire, and tire
JP2013180652A (en) Tire
EP3805013A1 (en) Resin metal composite member for tires, method for producing same, and tire
JP7221951B2 (en) Resin-metal composite member for tire, manufacturing method thereof, and tire
WO2020059890A1 (en) Resin rubber composite for tire and tire
WO2017104214A1 (en) Tire
WO2020067473A1 (en) Tire
JP7331316B2 (en) tire
JP6049273B2 (en) tire
JP6114498B2 (en) tire
JP5840534B2 (en) tire
WO2020095891A1 (en) Run-flat tire
EP4074518B1 (en) Resin composition, resin-metal composite member, and tire
WO2021117427A1 (en) Tire resin member, bead member, tire belt, tire frame body and tire, and methods for manufacturing same
JP2019069672A (en) Bead member for tire and tire
JP6745284B2 (en) tire
WO2021117418A1 (en) Resin/metal composite member for tire, and tire
WO2020096000A1 (en) Run flat tire
JP2020062935A (en) Wire-resin composite member for tire, and tire
WO2019225622A1 (en) Bead member for tires, and tire

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19865387

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020549460

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19865387

Country of ref document: EP

Kind code of ref document: A1