WO2020096000A1 - Run flat tire - Google Patents

Run flat tire Download PDF

Info

Publication number
WO2020096000A1
WO2020096000A1 PCT/JP2019/043698 JP2019043698W WO2020096000A1 WO 2020096000 A1 WO2020096000 A1 WO 2020096000A1 JP 2019043698 W JP2019043698 W JP 2019043698W WO 2020096000 A1 WO2020096000 A1 WO 2020096000A1
Authority
WO
WIPO (PCT)
Prior art keywords
rubber
tire
bead
resin
coating resin
Prior art date
Application number
PCT/JP2019/043698
Other languages
French (fr)
Japanese (ja)
Inventor
英幸 額賀
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Priority to JP2020555588A priority Critical patent/JPWO2020096000A1/en
Publication of WO2020096000A1 publication Critical patent/WO2020096000A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C15/00Tyre beads, e.g. ply turn-up or overlap
    • B60C15/04Bead cores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C17/00Tyres characterised by means enabling restricted operation in damaged or deflated condition; Accessories therefor

Definitions

  • the present disclosure relates to a run flat tire.
  • An inner surface of a carcass of a sidewall portion of a tire which is a so-called run-flat tire that allows the tire to safely travel a certain distance without losing its load-bearing capacity even when the inner pressure of the tire decreases due to puncture or the like.
  • a side reinforcing rubber layer with a crescent-shaped cross-section, which has a relatively high modulus, to improve the rigidity of the side wall part, and to bear the load without significantly increasing the bending deformation of the side wall part when the internal pressure drops.
  • various side-reinforcement type run flat tires such as the above-mentioned tires and tires whose sidewalls are reinforced with various reinforcing members.
  • Patent Document 1 discloses a side-reinforcement type run-flat tire in which the tire side portion is reinforced with a side-reinforcing rubber to ensure durability during run-flat running (that is, during abnormal running with reduced air pressure). ..
  • the problem of the present disclosure is to provide a run flat tire that has both ride comfort during normal running and run flat running durability.
  • FIG. 3 is a half cross-sectional view showing one side of a cut surface of the run-flat tire according to the present embodiment, which is cut along the tire width direction and the tire radial direction in a state of being assembled to a rim. It is a partial expanded sectional view showing a bead core in a run flat tire concerning this embodiment. It is a perspective view showing a belt layer in a run flat tire concerning this embodiment. In the run flat tire which concerns on this embodiment, it is a partial expanded sectional view which shows the modification which formed the bead core with the wire bundle which coat
  • FIG. 8 is a half cross-sectional view showing a modified example of the run-flat tire according to the present embodiment, in which a plurality of reinforcing cords are coated with a coating resin, and a belt layer is formed using a resin-coated cord having a substantially parallelogram cross section. It is a schematic diagram of a vertical cut surface to a length direction of a bead wire which shows another example of a bead part in a tire concerning this embodiment.
  • the "rubber composition” means the state of the composition before vulcanization.
  • formed by a resin composition means that a resin composition is molded.
  • formed of a rubber composition means that the rubber composition is molded. Molding of the rubber composition may include vulcanization.
  • the “resin” is a concept including a thermoplastic resin, a thermoplastic elastomer, and a thermosetting resin, and does not include rubber.
  • unsame type means a resin having a skeleton common to the skeleton constituting the resin main chain, such as ester-based resins and styrene-based resins.
  • a numerical range represented by “to” means a range including the numerical values before and after “to” as a lower limit value and an upper limit value.
  • the term "process” is not limited to an independent process, and even if the process is not clearly distinguishable from other processes, the process is also a term of the present invention as long as the purpose is achieved. include.
  • the amount of each component in the composition is the sum of a plurality of substances present in the composition, unless a plurality of substances corresponding to each component are present in the composition. Means quantity.
  • the “main component” means a component having the largest content by mass in the mixture, unless otherwise specified.
  • thermoplastic resin means a polymer that softens and flows as the temperature rises, and becomes relatively hard and strong when the fluid is cooled, but does not have rubber-like elasticity.
  • thermoplastic elastomer as used herein means a copolymer having a hard segment and a soft segment. Examples of the thermoplastic elastomer include polymer compounds in which the material softens and flows with an increase in temperature, becomes relatively hard and strong when cooled, and has rubber-like elasticity.
  • thermoplastic elastomer for example, a polymer that constitutes a crystalline hard segment having a high melting point or a hard segment having a high cohesive force, and a polymer that constitutes an amorphous and soft segment having a low glass transition temperature
  • the hard segment refers to a component that is relatively harder than the soft segment.
  • the hard segment is preferably a molecular constraining component that functions as a crosslinking point of the crosslinked rubber that prevents plastic deformation.
  • the hard segment includes a structure having a rigid group such as an aromatic group or an alicyclic group in the main skeleton, or a segment capable of intermolecular packing by intermolecular hydrogen bond or ⁇ - ⁇ interaction.
  • the soft segment refers to a component that is relatively softer than the hard segment.
  • the soft segment is preferably a flexible component exhibiting rubber elasticity.
  • Examples of the soft segment include a segment having a long-chain group (for example, a long-chain alkylene group) in the main chain, a high degree of freedom of molecular rotation, and a stretchable structure.
  • the run-flat tire according to the present embodiment has a bead wire and a bead core having a coating resin layer formed by coating the bead wire with a resin composition, and a side reinforcing rubber formed by a rubber composition provided in a tire side portion.
  • the resin composition contains a thermoplastic elastomer, the 1% tensile elastic modulus of the side reinforcing rubber is 8 MPa or less, and the 100% modulus is 10 MPa or more.
  • the load on the tire during run-flat traveling that is, when the internal pressure drops is supported by the tire side part and the bead part. Therefore, the tire side portion and the bead portion tend to be distorted according to the load applied to the tire when the internal pressure decreases.
  • the coating layer of the bead core is a coating layer formed of a rubber material
  • the strain on the bead portion during run-flat running is large, and the strain on the tire side portion tends to be relatively small.
  • the coating layer of the bead core is a coating resin layer formed of a resin composition. Therefore, the bead portion tends to be suppressed from being distorted during the run-flat traveling, and the stress is relatively easily concentrated on the tire side portion, and the tire side portion is distorted.
  • the run-flat tire according to the present embodiment has a conventional run-flat tire including a bead core having a coating layer made of a rubber material, in which a difference between a strain amount during normal running and a strain amount during run-flat running in the side reinforcing rubber is different. It is considered to be larger than the tire.
  • the 1% tensile elastic modulus of the side reinforcing rubber is 8 MPa or less. That is, the side reinforcing rubber can exhibit flexibility in a state where the strain is small. Further, the run-flat tire according to the present embodiment has a 100% modulus of the side reinforcing rubber of 10 MPa or more. That is, the side reinforcing rubber can exhibit high elasticity in a state where the strain is large.
  • the run-flat tire according to the present embodiment includes the bead core having the coating resin layer, the difference between the strain amount during normal running and the strain amount during run-flat running in the side reinforcing rubber is large. And, this side reinforcing rubber satisfies the above-mentioned range of 1% tensile modulus and 100% modulus. As a result, flexibility is likely to be exhibited during normal traveling, while high elasticity is likely to be exhibited during runflat traveling. As a result, it is considered that both the riding comfort during normal running and the running durability during run-flat running are compatible.
  • the properties of the side reinforcing rubber will be described below.
  • 1% Tensile Elastic Modulus The 1% tensile elastic modulus of the side reinforcing rubber is 8 MPa or less, preferably 5 MPa or more and 8 MPa or less, and 6 MPa or more and 7 MPa or less, from the viewpoint of riding comfort during normal traveling. Is more preferable.
  • the 1% tensile elastic modulus of the side reinforcing rubber was measured using a spectrometer manufactured by Ueshima Seisakusho Co., Ltd. under the conditions of an initial load of 160 mg and a frequency of 52 Hz.
  • a method for setting the 1% tensile elastic modulus to 8 MPa or less is not particularly limited, but for example, a method for adjusting the dispersion state of the filler in the side reinforcing rubber by configuring the side reinforcing rubber to include rubber and a filler; Examples include application of modified polybutadiene.
  • the 100% modulus of the side reinforcing rubber is 10 MPa or more, preferably 10 MPa or more and 15 MPa or less, and more preferably 11 MPa or more and 14 MPa or less from the viewpoint of run-flat running durability.
  • “100% modulus” is the tensile stress measured by preparing a JIS dumbbell No. 3 sample and performing a tensile test at room temperature at a speed of 500 ⁇ 50 mm / min in accordance with JIS K6251 (2010). is there.
  • the method for setting the 100% modulus to 10 MPa or more is not particularly limited, and examples thereof include a method of adjusting the crosslink density of the side reinforcing rubber; a method of increasing the amount of the vulcanization accelerator.
  • the 50% modulus of the side reinforcing rubber is preferably 3 MPa or more, more preferably 4 MPa or more and 6 MPa or less, and further preferably 5 MPa or more and 6 MPa or less from the viewpoint of run-flat running durability. preferable.
  • 50% modulus is the tensile stress measured by preparing a JIS dumbbell No. 3 sample and conducting a tensile test at room temperature at a speed of 500 ⁇ 50 mm / min in accordance with JIS K6251 (2010). is there.
  • the method for setting the 50% modulus to 3 MPa or more is not particularly limited, and examples thereof include a method of adjusting the crosslink density of the side reinforcing rubber; a method of increasing the vulcanization accelerator;
  • FIG. 1 is a cross-sectional view of a run-flat tire of the present embodiment (hereinafter referred to as “tire 10”) cut along the tire width direction and the tire radial direction (a cross section viewed from the direction along the tire circumferential direction). ) Is shown on one side.
  • the arrow W in the drawing indicates the width direction of the tire 10 (that is, the tire width direction), and the arrow R indicates the radial direction of the tire 10 (that is, the tire radial direction).
  • the tire width direction mentioned here refers to a direction parallel to the rotation axis of the tire 10.
  • the tire radial direction means a direction orthogonal to the rotation axis of the tire 10.
  • Reference numeral CL indicates the equatorial plane of the tire 10 (tire equatorial plane).
  • the side closer to the rotation axis of the tire 10 along the tire radial direction is “the tire radial direction inner side”, and the side farther from the rotation axis of the tire 10 along the tire radial direction is the “tire radial direction outer side”.
  • the side closer to the tire equatorial plane CL along the tire width direction is referred to as “tire width direction inner side”
  • the side farther from the tire equatorial plane CL along the tire width direction is referred to as "tire width direction outer side”.
  • FIG. 1 shows a tire 10 when assembled to a rim 30 which is a standard rim and filled with standard air pressure.
  • the “standard rim” referred to here is a rim defined by JATMA (Japan Automobile Tire Manufacturer's Association) Year Book 2018 version.
  • the standard air pressure is air pressure corresponding to the maximum load capacity of Year Book 2018 version of JATMA (Japan Automobile Tire Manufacturers Association).
  • a tire 10 is embedded in a pair of bead portions 12, a carcass 14 having a bead core 26 embedded in the bead portion 12, a carcass 14 whose end portion is locked to the bead core 26, and a bead portion 12.
  • a bead filler 28 extending from the bead core 26 outward in the tire radial direction along the outer surface of the carcass 14, a side reinforcing rubber 24 provided in the tire side portion 22 and extending in the tire radial direction along the inner surface of the carcass 14, and a tire of the carcass 14.
  • the belt layer 40 provided on the outer side in the radial direction and the tread 20 provided on the outer side in the tire radial direction of the belt layer 40 are provided. In FIG. 1, only the bead portion 12 on one side is shown.
  • the tread 20 that constitutes the outer peripheral portion of the tire 10 is provided on the outer side of the belt layer 40 in the tire radial direction.
  • the tire side portion 22 includes a sidewall lower portion 22A on the bead portion 12 side and a sidewall upper portion 22B on the tread 20 side, and connects the bead portion 12 and the tread 20.
  • a bead core 26 including a wire bundle is embedded in each of the pair of bead portions 12.
  • the carcass 14 straddles these bead cores 26.
  • the bead core 26 is formed by winding a single bead wire 26A coated with a resin a plurality of times and laminating it. Specifically, the bead wire 26A coated with resin is wound in the tire width direction without any gap to form a first-stage row, and thereafter, the beads are stacked on the outside in the tire radial direction without any gap, and the cross-sectional shape is quadrangular. The bead core 26 is formed. At this time, the coating resins of the bead wires 26A that are adjacent to each other in the tire width direction and the tire radial direction are joined together. As a result, the bead core 26 in which the bead wire 26A is coated with the coating resin 26B is formed.
  • the tire diameter from the bead core 26 is reduced.
  • a resin bead filler 28 extending outward in the direction is embedded.
  • the resin-made bead filler 28 is used in the tire shown in FIG. 1, the present embodiment is not limited to this, and a rubber-made bead filler may be used.
  • a rubber member such as a rubber bead filler is used in direct contact with the coating resin 26B, or when a rubber member is adjacently placed with another member interposed therebetween, the rubber material is destroyed.
  • the composition does not contain a metal (for example, cobalt etc.) and a vulcanization accelerator (for example, N, N-dicyclohexylbenzothiazole-2-sulfenamide: DCBS etc.). Is preferred.
  • a metal for example, cobalt etc.
  • a vulcanization accelerator for example, N, N-dicyclohexylbenzothiazole-2-sulfenamide: DCBS etc.
  • the carcass 14 is a tire frame member including two carcass plies 14A and 14B.
  • the carcass ply 14A is a carcass ply arranged on the tire equatorial plane CL on the outer side in the tire radial direction
  • the carcass ply 14B is a carcass ply arranged on the inner side in the tire radial direction.
  • Each of the carcass plies 14A and 14B is formed by coating a plurality of cords with coating rubber.
  • the carcass 14 thus formed extends in a toroidal shape from one bead core 26 to the other bead core 26 to form a tire skeleton.
  • the end portion side of the carcass 14 is locked to the bead core 26.
  • the end portion side of the carcass 14 is folded back around the bead core 26 from the tire width direction inner side to the tire width direction outer side and locked.
  • the folded back end portions of the carcass 14 (that is, the end portions 14AE and 14BE) are arranged on the tire side portion 22.
  • the end portion 14AE of the carcass ply 14A is arranged inside the end portion 14BE of the carcass ply 14B in the tire radial direction.
  • the end portion of the carcass 14 is arranged on the tire side portion 22, but the present embodiment is not limited to this structure.
  • the end portion of the carcass 14 is arranged on the belt layer 40. May be Alternatively, the end portion side of the carcass 14 may be sandwiched between a plurality of bead cores 26 or may be wound around the bead cores 26 without being folded back. In this specification, "locking" the end of the carcass 14 to the bead core 26 includes various embodiments such as these.
  • the carcass 14 is a radial carcass.
  • the material of the carcass 14 is not particularly limited, and rayon, nylon, polyethylene naphthalate (PEN), polyethylene terephthalate (PET), aramid, glass fiber, carbon fiber, steel or the like can be used. From the viewpoint of weight reduction, the organic fiber cord is preferable. Further, the number of driving the carcass is set in the range of 20 to 60 pieces / 50 mm, but the number is not limited to this range.
  • a belt layer 40 is disposed on the outer side of the carcass 14 in the tire radial direction. As shown in FIG. 3, the belt layer 40 is a ring-shaped broom formed by spirally winding the resin-coated cord 42 on the outer peripheral surface of the carcass 14 along the tire circumferential direction.
  • the resin coated cord 42 makes it difficult for the belt layer 40 to be deformed from an annular surface along the tire circumferential direction and the tire width direction to the outside of the annular surface (for example, the directions indicated by arrows C1 and C2 in FIG. 3).
  • the reinforcing cord 42C is coated with the coating resin 42S.
  • the resin-coated cord 42 has a substantially square cross section.
  • the coating resin 42S on the inner peripheral portion in the tire radial direction of the resin coating cord 42 is configured to be bonded to the outer peripheral surface of the carcass 14 via rubber or an adhesive. Further, the coating resins 42S that are adjacent to each other in the tire width direction of the resin coating cord 42 are integrally joined by heat welding, an adhesive, or the like.
  • the belt layer 40 specifically, a resin-coated belt layer having the reinforcing cord 42C coated with the coating resin 42S is formed.
  • the resin coated cord 42 is configured by coating one reinforcing cord 42C with the coating resin 42S, but may be configured by coating a plurality of reinforcing cords 42C with the coating resin 42S. ..
  • the resin material used for the coating resin 26B of the bead core 26, the bead filler 28, and the coating resin 42S of the belt layer 40 of the present embodiment is a thermoplastic elastomer.
  • the present embodiment is not limited to this, and examples of the resin material include thermoplastic resins, thermosetting resins, and general-purpose resins such as (meth) acrylic resins, EVA resins, vinyl chloride resins, fluorine resins, and silicone resins.
  • engineering plastics and the like can be used. Note that the resin material here does not include rubber.
  • Engineering plastics include super engineering plastics.
  • the resin materials used for the coating resin 26B, the bead filler 28 and the coating resin 42S will be described in detail in the section of the coating resin in the description of the bead core later.
  • the coating resin 42S of the belt layer 40 is made of a resin material, but the coating layer of the belt layer 40 covering the reinforcing cord 42C may be made of a rubber material.
  • the coating layer is a metal (for example, cobalt) and a vulcanization accelerator (for example, from the viewpoint of suppressing deterioration of the destructiveness of the rubber material).
  • a metal for example, cobalt
  • a vulcanization accelerator for example, from the viewpoint of suppressing deterioration of the destructiveness of the rubber material.
  • N, N-dicyclohexylbenzothiazole-2-sulfenamide: DCBS, etc. is preferred.
  • a metal for example, cobalt or the like
  • a vulcanization accelerator for example, N, N-dicyclohexylbenzothiazole-2-sulfenamide: DCBS, etc.
  • the bead wire 26A in the bead core 26 and the reinforcing cord 42C in the belt layer 40 of the present embodiment are steel cords.
  • This steel cord is mainly composed of steel and may contain various trace contents such as carbon, manganese, silicon, phosphorus, sulfur, copper and chromium.
  • the present embodiment is not limited to this, and as the bead wire 26A in the bead core 26 and the reinforcing cord 42C in the belt layer 40, a monofilament cord or a cord formed by twisting a plurality of filaments may be used instead of the steel cord. it can.
  • a monofilament cord or a cord formed by twisting a plurality of filaments may be used instead of the steel cord.
  • Various designs can be adopted for the twist structure, and various cross-sectional structures, twist pitches, twist directions, and distances between adjacent filaments can be used.
  • the cross-sectional structure is not particularly limited, and various twist structures such as single twist, layer twist, and multiple twist can be adopted.
  • a tread 20 is provided outside the belt layer 40 in the tire radial direction.
  • the tread 20 is a portion that comes into contact with the road surface during traveling, and a plurality of circumferential grooves 50 extending in the tire circumferential direction are formed on the tread surface of the tread 20.
  • the shape and the number of the circumferential grooves 50 are appropriately set according to performances such as drainage and steering stability required for the tire 10.
  • the tire side portion 22 is configured to extend in the tire radial direction and connect the bead portion 12 and the tread 20 to bear the load acting on the tire 10 during run flat traveling.
  • a side reinforcing rubber 24 that reinforces the tire side portion 22 is provided inside the carcass 14 in the tire width direction.
  • the side reinforcing rubber 24 is a reinforcing rubber for traveling a predetermined distance while supporting the weight of the vehicle and an occupant when the internal pressure of the tire 10 decreases due to puncture or the like.
  • the side reinforcing rubber 24 may be formed of one type of rubber material or may be formed of a plurality of rubber materials.
  • the side reinforcing rubber 24 may contain other materials such as fillers, short fibers, and resins as long as rubber is the main component, and preferably includes fillers. Further, in order to increase durability during run-flat traveling, a rubber material having a hardness of 70 to 85 may be included as the rubber material forming the side reinforcing rubber 24.
  • the hardness of the rubber here means the hardness measured by a type A durometer, which is defined by JIS K6253. Furthermore, a loss coefficient tan ⁇ measured using a viscoelasticity spectrometer (for example, a Toyo Seiki Seisakusho spectrometer) at a frequency of 20 Hz, an initial strain of 10%, a dynamic strain of ⁇ 2%, and a temperature of 60 ° C. is 0.10 or less.
  • a rubber material having physical properties may be included. The details of the rubber composition used for the side reinforcing rubber 24 will be described later.
  • the side reinforcing rubber 24 extends in the tire radial direction from the bead portion 12 side to the tread 20 side along the inner surface of the carcass 14. Further, the side reinforcing rubber 24 has a shape in which the thickness decreases from the central portion toward the bead portion 12 side and the tread 20 side, for example, a substantially crescent shape.
  • the thickness of the side reinforcing rubber 24 referred to here means the length along the normal line of the carcass 14.
  • the lower end portion 24B of the side reinforcing rubber 24 on the bead portion 12 side overlaps the bead filler 28 with the carcass 14 in between when viewed in the tire width direction.
  • the upper end portion 24A of the side reinforcing rubber 24 on the tread 20 side overlaps with the belt layer 40 when viewed in the tire radial direction.
  • the upper end portion 24A of the side reinforcing rubber 24 overlaps the belt layer 40 with the carcass 14 interposed therebetween.
  • the upper end portion 24A of the side reinforcing rubber 24 is located inside the tire width direction end portion 40E of the belt layer 40 in the tire width direction.
  • the bead core 26 is formed by coating the bead wire 26A with the coating resin 26B.
  • the torsional rigidity of the bead core 26 becomes higher than that in the case where the bead wire 26A is covered with rubber. This makes it difficult for the bead portion 12 to come off from the rim 30, so that the run flat durability can be improved.
  • the bead core 26 is formed by winding and stacking one bead wire 26A coated with the coating resin 26B, but the present embodiment is not limited to this.
  • a wire bundle in which a plurality of bead wires 60A are coated with a coating resin 60B may be wound and laminated.
  • the interface during lamination is fused by heat welding.
  • the number of bead wires 60A included in one wire bundle is not limited to three, and may be two or four or more. Further, the number of wire bundles in each layer in which the wire bundles are laminated may be one as shown in FIG. 4 or may be two or more bundles adjacent to each other in the tire width direction.
  • the bead filler 28 is made of resin, but the present embodiment is not limited to this, and may be made of rubber, for example.
  • the belt layer 40 is formed by winding the substantially square resin-coated cord 42 formed by coating one reinforcing cord 42C with the coating resin 42S around the outer peripheral surface of the carcass 14.
  • the form is not limited to this.
  • a resin-coated cord 72 having a substantially parallelogram-shaped cross section formed by coating a plurality of reinforcing cords 72C with a coating resin 42S is wound around the outer peripheral surface of the carcass 14. You may form it.
  • the bead wire is not particularly limited, and for example, a metal cord used for a conventional rubber tire, an organic resin cord, or the like can be appropriately used.
  • a metal cord used for a conventional rubber tire, an organic resin cord, or the like
  • it is composed of a monofilament (that is, a single wire) such as a metal fiber or an organic fiber, or a multifilament (that is, a twisted wire) obtained by twisting these fibers.
  • metal cords are preferable, and iron cords, that is, steel cords are more preferable.
  • a monofilament that is, a single wire
  • the cross-sectional shape, size (for example, diameter) of the bead wire is not particularly limited, and one suitable for a desired tire can be appropriately selected and used.
  • the bead wire is a stranded wire of a plurality of cords
  • the number of the plurality of cords is, for example, 2 to 10, and preferably 5 to 9.
  • the surface of the bead wire is made of a metal material containing at least one metal element selected from the group consisting of Cu, Zn, Fe, Al, and Co as a main component from the viewpoint of adhesiveness with the adhesive layer.
  • a steel cord can be given as an example of a structure containing Fe as a main component.
  • a structure containing at least one metal element selected from the group consisting of Cu, Zn, Al, and Co as a main component a structure in which the surface of the steel cord is coated with plating can be mentioned.
  • the method for forming the plating on the surface of the cord is not particularly limited, and a known method can be used.
  • the cord which is the core wire of the plating element wire, is passed through and immersed in, for example, a copper plating bath, a zinc plating bath, etc., to perform the plating treatment.
  • a copper plating bath for example, a copper cyanide bath, copper borofluoride bath, copper sulfate bath or the like
  • zinc plating it is treated with a zinc cyanide bath, zinc chloride bath, zincate bath or the like.
  • the cord dipped in the plating bath may be subjected to heat diffusion treatment. After that, the cord may be wire-drawn from the viewpoint of obtaining a predetermined plating thickness.
  • the amount of plating adhered is preferably 0.1 ⁇ m or more and 10 ⁇ m or less, more preferably 0.2 ⁇ m or more and 8.0 ⁇ m or less, for example, as the average thickness of plating.
  • the plating thickness can be measured by observation with a scanning electron microscope (SEM).
  • the thickness (that is, the average diameter) of the bead wire is preferably 0.3 mm to 3 mm, and more preferably 0.5 mm to 2 mm, from the viewpoint of achieving both resistance to internal pressure and weight reduction of the tire.
  • the thickness of the bead wire is the number average value of the thicknesses measured in five arbitrarily selected cross sections (cross sections perpendicular to the length direction of the bead wire).
  • the strength of the bead wire itself is usually 1000 N to 3000 N, preferably 1200 N to 2800 N, and more preferably 1300 N to 2700 N.
  • the strength of the bead wire is calculated from the breaking point by drawing a stress-strain curve using a ZWICK type chuck with a tensile tester.
  • the elongation at break (that is, tensile elongation at break) of the bead wire itself is usually preferably 0.1% to 15%, more preferably 1% to 15%, and further preferably 1% to 10%. preferable.
  • the tensile breaking elongation of the bead wire can be obtained from the strain by drawing a stress-strain curve using a ZWICK type chuck with a tensile tester.
  • the bead core according to the present embodiment may have an adhesive layer between the bead wire and the coating resin layer.
  • the adhesive layer is preferably a layer containing a resin as an adhesive, and the resin is preferably a thermoplastic resin or a thermoplastic elastomer.
  • thermoplastic resin examples include polyester-based thermoplastic resin, polyamide-based thermoplastic resin, polystyrene-based thermoplastic resin, polyurethane-based thermoplastic resin, and olefin-based thermoplastic resin (for example, polyethylene resin, polypropylene resin, etc.) and the like. Be done.
  • thermoplastic elastomer examples include polyester-based thermoplastic elastomers, polyamide-based thermoplastic elastomers, polystyrene-based thermoplastic elastomers, polyurethane-based thermoplastic elastomers, and olefin-based thermoplastic elastomers.
  • the resin used as the adhesive the group consisting of polyester-based thermoplastic elastomer, polyester-based thermoplastic resin, olefin-based thermoplastic elastomer, olefin-based thermoplastic resin, polyamide-based thermoplastic elastomer, and polyamide-based thermoplastic resin It is preferable to include at least one selected from the above, and it is more preferable to include a polyester-based thermoplastic elastomer.
  • the acid-modified thermoplastic material is a thermoplastic material in which an acid group is introduced into a part of the molecule of a thermoplastic resin or a thermoplastic elastomer.
  • the acid group include a carboxy group (—COOH) and its anhydride group, a sulfuric acid group, a phosphoric acid group and the like, and among them, a carboxy group and its anhydride group are preferable.
  • the adhesive layer may use at least one selected from the group consisting of a thermoplastic resin and a thermoplastic elastomer.
  • the thermoplastic resins may be used alone or in combination of two or more.
  • the thermoplastic elastomer may be used alone or in combination of two or more.
  • the content of the resin contained in the adhesive layer is preferably 50% by mass or more of the entire adhesive layer, more preferably 60% by mass or more, and further preferably 75% by mass or more.
  • the bead core according to the present embodiment has a coating resin layer that covers the bead wire and is formed of a resin composition.
  • the coating resin layer is provided on the adhesive layer.
  • the resin composition contains a thermoplastic elastomer.
  • thermoplastic elastomer examples include a polyamide-based thermoplastic elastomer, a polystyrene-based thermoplastic elastomer, a polyurethane-based thermoplastic elastomer, an olefin-based thermoplastic elastomer, and a polyester-based thermoplastic elastomer.
  • the thermoplastic elastomer may be used alone or in combination of two or more.
  • thermoplastic polyamide-based elastomer is a thermoplastic material composed of a copolymer having a polymer that forms a crystalline and hard segment with a high melting point and an amorphous polymer that forms a soft segment with a low glass transition temperature. Means a polymer having an amide bond (—CONH—) in the main chain of a polymer forming a hard segment.
  • the thermoplastic polyamide-based elastomer for example, at least polyamide is a crystalline soft segment having a high melting point, and another polymer (for example, polyester, polyether, etc.) is a soft segment having a low glass transition temperature and being amorphous.
  • the forming material is mentioned.
  • the polyamide-based thermoplastic elastomer may be formed using a chain extender such as dicarboxylic acid.
  • a chain extender such as dicarboxylic acid.
  • Specific examples of the polyamide-based thermoplastic elastomer include amide-based thermoplastic elastomer (TPA) defined in JIS K6418: 2007 and polyamide-based elastomers described in JP-A 2004-346273. it can.
  • examples of the polyamide that forms the hard segment include a polyamide formed by a monomer represented by the following general formula (1) or (2).
  • R 1 represents a hydrocarbon molecular chain having 2 to 20 carbon atoms (for example, an alkylene group having 2 to 20 carbon atoms).
  • R 2 represents a hydrocarbon molecular chain having 3 to 20 carbon atoms (for example, an alkylene group having 3 to 20 carbon atoms).
  • R 1 is preferably a hydrocarbon molecular chain having 3 to 18 carbon atoms, for example, an alkylene group having 3 to 18 carbon atoms, and a molecular chain of hydrocarbon having 4 to 15 carbon atoms, for example, carbon An alkylene group having 4 to 15 carbon atoms is more preferable, and a hydrocarbon molecular chain having 10 to 15 carbon atoms, for example, an alkylene group having 10 to 15 carbon atoms is particularly preferable.
  • a hydrocarbon molecular chain having 3 to 18 carbon atoms for example, an alkylene group having 3 to 18 carbon atoms is preferable, and a molecular chain of hydrocarbon having 4 to 15 carbon atoms, for example, an alkylene group having 4 to 15 carbon atoms is more preferable, and a hydrocarbon molecular chain having 10 to 15 carbon atoms, for example, an alkylene group having 10 to 15 carbon atoms is particularly preferable.
  • the monomer represented by the general formula (1) or the general formula (2) include ⁇ -aminocarboxylic acid and lactam.
  • polyamides that form the hard segment include polycondensates of these ⁇ -aminocarboxylic acids or lactams, and copolycondensates of diamines and dicarboxylic acids.
  • Examples of ⁇ -aminocarboxylic acid include 6-aminocaproic acid, 7-aminoheptanoic acid, 8-aminooctanoic acid, 10-aminocapric acid, 11-aminoundecanoic acid, 12-aminododecanoic acid and the like having 5 to 20 carbon atoms.
  • Examples thereof include aliphatic ⁇ -aminocarboxylic acid.
  • lactams include aliphatic lactams having 5 to 20 carbon atoms such as lauryl lactam, ⁇ -caprolactam, udecane lactam, ⁇ -enanthlactam and 2-pyrrolidone.
  • diamine examples include ethylenediamine, trimethylenediamine, tetramethylenediamine, hexamethylenediamine, heptamethylenediamine, octamethylenediamine, nonamethylenediamine, decamethylenediamine, undecamethylenediamine, dodecamethylenediamine, 2,2,4.
  • diamine compounds such as trimethylhexamethylenediamine, 2,4,4-trimethylhexamethylenediamine, 3-methylpentamethylenediamine, and metaxylenediamine having 2 to 20 carbon atoms.
  • the dicarboxylic acid can be represented by HOOC- (R 3 ) m —COOH (R 3 : a molecular chain of a hydrocarbon having 3 to 20 carbon atoms, m: 0 or 1), and examples thereof include oxalic acid and succinic acid.
  • aliphatic dicarboxylic acids having 2 to 20 carbon atoms such as glutamic acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, and dodecanedioic acid.
  • a polyamide obtained by ring-opening polycondensation of lauryl lactam, ⁇ -caprolactam, or udecanlactam can be preferably used.
  • polymer that forms the soft segment examples include polyester and polyether. Specific examples include polyethylene glycol, polypropylene glycol, polytetramethylene ether glycol, and ABA type triblock polyether. These may be used alone or in combination of two or more. Further, polyether diamine or the like obtained by reacting the end of polyether with ammonia or the like can also be used.
  • ABA type triblock polyether means a polyether represented by the following general formula (3).
  • x and z represent an integer of 1 to 20.
  • y represents an integer of 4 to 50.
  • each of x and z is preferably an integer of 1 to 18, more preferably an integer of 1 to 16, further preferably an integer of 1 to 14, and particularly preferably an integer of 1 to 12.
  • y is preferably an integer of 5 to 45, more preferably an integer of 6 to 40, further preferably an integer of 7 to 35, particularly preferably an integer of 8 to 30.
  • each combination of the hard segment and the soft segment mentioned above can be mentioned.
  • the combination of the hard segment and the soft segment the combination of lauryl lactam ring-opening polycondensate / polyethylene glycol, the combination of lauryl lactam ring-opening polycondensate / polypropylene glycol, the lauryl lactam ring-opening polycondensation Body / polytetramethylene ether glycol combination, or a combination of lauryl lactam ring-opening polycondensate / ABA type triblock polyether, and a combination of lauryl lactam ring-opening polycondensate / ABA type triblock polyether is more preferable. preferable.
  • the number average molecular weight of the polymer forming the hard segment (specifically, polyamide) is preferably 300 to 15,000 from the viewpoint of melt moldability.
  • the number average molecular weight of the polymer forming the soft segment is preferably 200 to 6000 from the viewpoint of toughness and low temperature flexibility.
  • the mass ratio (x: y) of the hard segment (x) and the soft segment (y) is preferably 50:50 to 90:10, and more preferably 50:50 to 80:20 from the viewpoint of moldability. ..
  • thermoplastic polyamide-based elastomer can be synthesized by copolymerizing a polymer forming a hard segment and a polymer forming a soft segment by a known method.
  • polyamide-based thermoplastic elastomers include, for example, "UBESTA XPA” series (for example, XPA9063X1, XPA9055X1, XPA9048X2, XPA9048X1, XPA9040X1, XPA9040X2XPA9044, etc.) by Ube Industries, Ltd., "Vestamide” series by Daicel Eponic Corporation. (For example, E40-S3, E47-S1, E47-S3, E55-S1, E55-S3, EX9200, E50-R2, etc.) can be used.
  • polystyrene thermoplastic elastomer for example, at least polystyrene forms a hard segment, and a polymer other than polystyrene forms an amorphous soft segment having a low glass transition temperature. Materials are listed.
  • polystyrene that forms the hard segment for example, polystyrene obtained by a known radical polymerization method, ionic polymerization method, or the like is preferably used, and specifically, polystyrene obtained by anion living polymerization is used.
  • polymers other than polystyrene that form the soft segment include polybutadiene, polyisoprene, poly (2,3-dimethyl-butadiene), polyethylene, hydrogenated polybutadiene, hydrogenated polyisoprene, and the like.
  • the combination of the hard segment and the soft segment each combination of the hard segment and the soft segment mentioned above can be mentioned.
  • the combination of the hard segment and the soft segment is preferably the combination of polystyrene / polybutadiene or the combination of polystyrene / polyisoprene.
  • the soft segment is preferably hydrogenated in order to suppress an unintended crosslinking reaction of the thermoplastic elastomer.
  • the number average molecular weight of the polymer (specifically polystyrene) forming the hard segment is preferably 5,000 to 500,000, more preferably 10,000 to 200,000.
  • the number average molecular weight of the polymer forming the soft segment is preferably 5,000 to 1,000,000, more preferably 10,000 to 800,000, and further preferably 30,000 to 500,000.
  • the mass ratio (x: y) of the hard segment (x) and the soft segment (y) is preferably 5:95 to 80:20, more preferably 10:90 to 70:30 from the viewpoint of moldability. ..
  • thermoplastic polystyrene-based elastomer can be synthesized by copolymerizing a polymer forming a hard segment and a polymer forming a soft segment by a known method.
  • examples of the polystyrene-based thermoplastic elastomer include styrene-butadiene-based copolymers [SBS (polystyrene-poly (butylene) block-polystyrene), SEBS (polystyrene-poly (ethylene / butylene) block-polystyrene)], styrene-isoprene.
  • Copolymer polystyrene-polyisoprene block-polystyrene
  • styrene-propylene copolymer [SEP (polystyrene- (ethylene / propylene) block), SEPS (polystyrene-poly (ethylene / propylene) block-polystyrene), SEEPS ( Polystyrene-poly (ethylene-ethylene / propylene) block-polystyrene), SEB (polystyrene (ethylene / butylene) block)] and the like.
  • SEP polystyrene- (ethylene / propylene) block
  • SEPS polystyrene-poly (ethylene / propylene) block-polystyrene
  • SEEPS Polystyrene-poly (ethylene-ethylene / propylene) block-polystyrene
  • SEB polystyrene (ethylene / butylene) block
  • polystyrene thermoplastic elastomers examples include, for example, "Tuftec” series manufactured by Asahi Kasei Co., Ltd. (for example, H1031, H1041, H1043, H1051, H1052, H1053, H1062, H1082, H1141, H1221, H1272, etc.) and stocks.
  • "SEBS” series for example, 8007, 8076, etc.
  • "SEPS” series for example, 2002, 2063, etc. manufactured by Kuraray Co., Ltd. can be used.
  • thermoplastic polyurethane-based elastomer for example, at least polyurethane forms a hard segment in which pseudo-crosslinking is formed by physical agglomeration, and another polymer forms an amorphous soft segment having a low glass transition temperature. Ingredients are listed. Specific examples of the polyurethane-based thermoplastic elastomer include a polyurethane-based thermoplastic elastomer (TPU) defined in JIS K6418: 2007.
  • TPU polyurethane-based thermoplastic elastomer
  • the polyurethane-based thermoplastic elastomer can be represented as a copolymer including a soft segment including a unit structure represented by the following formula A and a hard segment including a unit structure represented by the following formula B.
  • P represents a long-chain aliphatic polyether or a long-chain aliphatic polyester.
  • R represents an aliphatic hydrocarbon, an alicyclic hydrocarbon, or an aromatic hydrocarbon.
  • P' represents a short chain aliphatic hydrocarbon, an alicyclic hydrocarbon, or an aromatic hydrocarbon.
  • P is derived from a diol compound containing a long-chain aliphatic polyether represented by P and a long-chain aliphatic polyester.
  • Examples of such a diol compound include polyethylene glycol, polypropylene glycol, polytetramethylene ether glycol, poly (butylene adipate) diol, poly- ⁇ -caprolactone diol, poly (hexamethylene carbonate) having a molecular weight within the above range.
  • Diols, ABA type triblock polyethers and the like may be used alone or in combination of two or more.
  • R is a partial structure introduced using a diisocyanate compound containing an aliphatic hydrocarbon, an alicyclic hydrocarbon, or an aromatic hydrocarbon represented by R.
  • the aliphatic diisocyanate compound containing an aliphatic hydrocarbon represented by R include 1,2-ethylene diisocyanate, 1,3-propylene diisocyanate, 1,4-butane diisocyanate and 1,6-hexamethylene diisocyanate.
  • Examples of the diisocyanate compound containing an alicyclic hydrocarbon represented by R include 1,4-cyclohexane diisocyanate and 4,4-cyclohexane diisocyanate.
  • the aromatic diisocyanate compound containing an aromatic hydrocarbon represented by R include 4,4′-diphenylmethane diisocyanate and tolylene diisocyanate. These may be used alone or in combination of two or more.
  • alicyclic hydrocarbon or aromatic hydrocarbon represented by P ′ in the formula B for example, those having a molecular weight of less than 500 can be used.
  • P' is derived from a diol compound containing a short chain aliphatic hydrocarbon, alicyclic hydrocarbon, or aromatic hydrocarbon represented by P '.
  • Examples of the aliphatic diol compound containing a short chain aliphatic hydrocarbon represented by P ′ include glycol and polyalkylene glycol, and specifically, ethylene glycol, propylene glycol, trimethylene glycol, 1,4 -Butanediol, 1,3-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol, 1,10- Decanediol and the like can be mentioned.
  • Examples of the alicyclic diol compound containing an alicyclic hydrocarbon represented by P ′ include cyclopentane-1,2-diol, cyclohexane-1,2-diol, cyclohexane-1,3-diol, Examples thereof include cyclohexane-1,4-diol and cyclohexane-1,4-dimethanol.
  • examples of the aromatic diol compound containing an aromatic hydrocarbon represented by P ′ include hydroquinone, resorcin, chlorohydroquinone, bromohydroquinone, methylhydroquinone, phenylhydroquinone, methoxyhydroquinone, phenoxyhydroquinone, 4,4′- Dihydroxybiphenyl, 4,4'-dihydroxydiphenyl ether, 4,4'-dihydroxydiphenyl sulfide, 4,4'-dihydroxydiphenyl sulfone, 4,4'-dihydroxybenzophenone, 4,4'-dihydroxydiphenylmethane, bisphenol A, 1, Examples thereof include 1-di (4-hydroxyphenyl) cyclohexane, 1,2-bis (4-hydroxyphenoxy) ethane, 1,4-dihydroxynaphthalene and 2,6-dihydroxynaphthalene. These may be used alone or in combination of two or more.
  • the number average molecular weight of the polymer forming the hard segment is preferably 300 to 1500 from the viewpoint of melt moldability.
  • the number average molecular weight of the polymer forming the soft segment is preferably 500 to 20,000, more preferably 500 to 5,000, and particularly preferably 500 to 3,000, from the viewpoint of the flexibility and thermal stability of the polyurethane-based thermoplastic elastomer. ..
  • the mass ratio (x: y) of the hard segment (x) and the soft segment (y) is preferably 15:85 to 90:10, more preferably 30:70 to 90:10 from the viewpoint of moldability. ..
  • thermoplastic polyurethane-based elastomer can be synthesized by copolymerizing a polymer forming a hard segment and a polymer forming a soft segment by a known method.
  • polyurethane-based thermoplastic elastomer for example, the thermoplastic polyurethane described in JP-A-5-331256 can be used.
  • thermoplastic elastomer specifically, a combination of a hard segment made of an aromatic diol and an aromatic diisocyanate and a soft segment made of a polycarbonate is preferable, and more specifically, a tolylene diisocyanate ( TDI) / polyester type polyol copolymer, TDI / polyether type polyol copolymer, TDI / caprolactone type polyol copolymer, TDI / polycarbonate type polyol copolymer, 4,4′-diphenylmethane diisocyanate (MDI) / polyester -Based polyol copolymers, MDI / polyether-based polyol copolymers, MDI / caprolactone-based polyol copolymers, MDI / polycarbonate-based polyol copolymers, and MDI + hydroquinone / polyhexamethylene At least one selected from the group consisting of carbonate copolymers
  • thermoplastic polyurethane elastomers examples include, for example, "Elastollan” series manufactured by BASF (for example, ET680, ET880, ET690, ET890, etc.), “Kuramiron U” series manufactured by Kuraray Co., Ltd. (for example, 2000-series, 3000-series, 8000-series, 9000-series, etc., "Miractran” series (for example, XN-2001, XN-2004, P390RSUP, P480RSUI, P26MRNAT, E490, E590, P890 etc.) manufactured by Japan Miractolan Co., Ltd. Can be used.
  • thermoplastic elastomer for example, at least polyolefin forms a hard segment having a crystalline and high melting point, and another polymer (for example, a polyolefin different from the polyolefin forming the hard segment, a polyvinyl compound, etc.) is amorphous.
  • the material forming the soft segment having a low glass transition temperature is mentioned.
  • the polyolefin forming the hard segment include polyethylene, polypropylene, isotactic polypropylene, polybutene and the like.
  • olefin-based thermoplastic elastomer examples include olefin- ⁇ -olefin random copolymers, olefin block copolymers, and the like.
  • propylene block copolymers ethylene-propylene copolymers, propylene- 1-hexene copolymer, propylene-4-methyl-1 pentene copolymer, propylene-1-butene copolymer, ethylene-1-hexene copolymer, ethylene-4-methyl-pentene copolymer, ethylene- 1-butene copolymer, 1-butene-1-hexene copolymer, 1-butene-4-methyl-pentene, ethylene-methacrylic acid copolymer, ethylene-methyl methacrylate copolymer, ethylene-ethyl methacrylate Copolymer, ethylene-butyl methacrylate copolymer, ethylene-methyl acrylate copolymer Ethylene-
  • the olefin thermoplastic elastomers include propylene block copolymers, ethylene-propylene copolymers, propylene-1-hexene copolymers, propylene-4-methyl-1pentene copolymers, propylene-1- Butene copolymer, ethylene-1-hexene copolymer, ethylene-4-methyl-pentene copolymer, ethylene-1-butene copolymer, ethylene-methacrylic acid copolymer, ethylene-methyl methacrylate copolymer , Ethylene-ethyl methacrylate copolymer, ethylene-butyl methacrylate copolymer, ethylene-methyl acrylate copolymer, ethylene-ethyl acrylate copolymer, ethylene-butyl acrylate copolymer, propylene-methacrylic acid copolymer , Propylene-methyl methacrylate copolymer, pro Len-eth
  • At least one selected from the group consisting of a methyl copolymer, an ethylene-methyl acrylate copolymer, an ethylene-ethyl acrylate copolymer, and an ethylene-butyl acrylate copolymer is more preferable.
  • two or more kinds of olefin resins such as ethylene and propylene may be used in combination.
  • the olefin resin content in the olefin-based thermoplastic elastomer is preferably 50% by mass or more and 100% by mass or less.
  • the number average molecular weight of the olefin-based thermoplastic elastomer is preferably 5,000 to 10,000,000.
  • the number average molecular weight of the olefin-based thermoplastic elastomer is 5,000 to 10,000,000
  • the thermoplastic resin material has sufficient mechanical properties and excellent processability.
  • the number average molecular weight of the olefin-based thermoplastic elastomer is more preferably 7,000 to 1,000,000, and particularly preferably 10,000 to 1,000,000. Thereby, the mechanical properties and workability of the thermoplastic resin material can be further improved.
  • the number average molecular weight of the polymer forming the soft segment is preferably 200 to 6000 from the viewpoint of toughness and low temperature flexibility.
  • the mass ratio (x: y) of the hard segment (x) and the soft segment (y) is preferably 50:50 to 95: 5, and more preferably 50:50 to 90:10 from the viewpoint of moldability. ..
  • the olefin-based thermoplastic elastomer can be synthesized by copolymerization by a known method.
  • an acid-modified thermoplastic elastomer may be used as the olefin-based thermoplastic elastomer.
  • the "acid-modified olefin-based thermoplastic elastomer” means that an unsaturated compound having an acidic group such as a carboxylic acid group, a sulfuric acid group or a phosphoric acid group is bonded to the olefin-based thermoplastic elastomer.
  • an unsaturated compound having an acidic group such as a carboxylic acid group, a sulfuric acid group, and a phosphoric acid group
  • an unsaturated compound having an acidic group such as a carboxylic acid group, a sulfuric acid group, and a phosphoric acid group
  • bonds thereof include bonding (for example, graft polymerization) of unsaturated bond sites of unsaturated carboxylic acid (generally maleic anhydride).
  • the unsaturated compound having an acidic group is preferably an unsaturated compound having a carboxylic acid group which is a weak acid group, from the viewpoint of suppressing deterioration of the olefinic thermoplastic elastomer, for example, acrylic acid, methacrylic acid, itaconic acid, croton. Acid, isocrotonic acid, maleic acid, etc. may be mentioned.
  • thermoplastic elastomers examples include "Toughmer” series manufactured by Mitsui Chemicals, Inc. (for example, A0550S, A1050S, A4050S, A1070S, A4070S, A35070S, A1085S, A4085S, A7090, A70090, MH7007, MH7010, MH7010, XM-7070, XM-7080, BL4000, BL2481, BL3110, BL3450, P-0275, P-0375, P-0775, P-0180, P-0280, P-0480, P-0680 etc.), Mitsui DuPont Poly "Nucrel” series manufactured by Chemical Co., Ltd.
  • “Elvalloy AC” series (for example, 1125AC, 1209AC, 1218AC, 1609AC, 1820AC, 1913AC, 2112AC, 2116AC, 2615AC, 2715AC, 3117AC, 3427AC, 3717AC, etc.), Sumitomo Chemical Co., Ltd.'s “Aklift” series, “Evatate” series, etc., Tosoh Corporation's “Ultrasen” series, etc., and prime polymer “Prime TPO” series (eg, E-2900H, F-3900H, E-2900, F-3900, J-5900, E-2910, F-3910, J-5910, E-27 0, F-3710, J-5910, E-2740, F-3740, R110MP, R110E, T310E, M142E, etc.) and the like can also be used.
  • thermoplastic elastomer for example, at least polyester forms a hard segment having a high melting point and another polymer (for example, polyester or polyether) is a soft segment having a low glass transition temperature and being amorphous.
  • the forming material is mentioned.
  • Aromatic polyester may be used as the polyester forming the hard segment.
  • the aromatic polyester can be formed from, for example, an aromatic dicarboxylic acid or its ester-forming derivative and an aliphatic diol.
  • the aromatic polyester is preferably polybutylene terephthalate derived from at least one of terephthalic acid and dimethyl terephthalate and 1,4-butanediol.
  • the aromatic polyesters include, for example, isophthalic acid, phthalic acid, naphthalene-2,6-dicarboxylic acid, naphthalene-2,7-dicarboxylic acid, diphenyl-4,4'-dicarboxylic acid, diphenoxyethanedicarboxylic acid, 5
  • a dicarboxylic acid component such as sulfoisophthalic acid or an ester-forming derivative thereof, and a diol having a molecular weight of 300 or less (eg, ethylene glycol, trimethylene glycol, pentamethylene glycol, hexamethylene glycol, neopentyl glycol, decamethylene glycol, etc.
  • Aliphatic diols such as 1,4-cyclohexanedimethanol and tricyclodecanedimethylol; xylylene glycol, bis (p-hydroxy) diphenyl, bis (p-hydroxyphenyl) propane, 2,2- B Sus [4- (2-hydroxyethoxy) phenyl] propane, bis [4- (2-hydroxy) phenyl] sulfone, 1,1-bis [4- (2-hydroxyethoxy) phenyl] cyclohexane, 4,4'- Aromatic diols such as dihydroxy-p-terphenyl and 4,4′-dihydroxy-p-quarterphenyl; etc.) and polyesters derived from these, or a combination of two or more of these dicarboxylic acid components and diol components It may be polymerized polyester.
  • polyester forming the hard segment examples include polyethylene terephthalate, polybutylene terephthalate, polymethylene terephthalate, polyethylene naphthalate and polybutylene naphthalate, and polybutylene terephthalate is preferable.
  • Examples of the polymer that forms the soft segment include aliphatic polyester and aliphatic polyether.
  • Examples of the aliphatic polyether include poly (ethylene oxide) glycol, poly (propylene oxide) glycol, poly (tetramethylene oxide) glycol, poly (hexamethylene oxide) glycol, a copolymer of ethylene oxide and propylene oxide, and poly (propylene oxide).
  • An ethylene oxide addition polymer of glycol, a copolymer of ethylene oxide and tetrahydrofuran and the like can be mentioned.
  • Examples of the aliphatic polyester include poly ( ⁇ -caprolactone), polyenanthlactone, polycaprylolactone, polybutylene adipate, polyethylene adipate and the like.
  • poly (tetramethylene oxide) glycol and poly (propylene oxide) glycol are used from the viewpoint of the elastic properties of the obtained polyester block copolymer.
  • Ethylene oxide adduct, poly ( ⁇ -caprolactone), polybutylene adipate, polyethylene adipate and the like are preferable.
  • the number average molecular weight of the polymer forming the soft segment is preferably 300 to 6000 from the viewpoint of toughness and low temperature flexibility. Further, the mass ratio (x: y) of the hard segment (x) and the soft segment (y) is preferably 99: 1 to 20:80, and more preferably 98: 2 to 30:70 from the viewpoint of moldability. ..
  • the hard segment is polybutylene terephthalate, preferably a combination in which the soft segment is an aliphatic polyether, the hard segment is polybutylene terephthalate, the soft segment Further preferred is the combination wherein is a poly (ethylene oxide) glycol.
  • polyester thermoplastic elastomers include, for example, "Hytrel” series manufactured by Toray-Dupont Co., Ltd. (for example, 3046, 5557, 6347, 4047N, 4767N, etc.), "Perprene” series manufactured by Toyobo Co., Ltd. (for example, , P30B, P40B, P40H, P55B, P70B, P150B, P280B, E450B, P150M, S1001, S2001, S5001, S6001, S9001) and the like can be used.
  • “Hytrel” series manufactured by Toray-Dupont Co., Ltd. for example, 3046, 5557, 6347, 4047N, 4767N, etc.
  • Perprene manufactured by Toyobo Co., Ltd.
  • the polyester-based thermoplastic elastomer can be synthesized by copolymerizing a polymer forming a hard segment and a polymer forming a soft segment by a known method.
  • the resin composition may contain a thermoplastic resin.
  • a thermoplastic resin for example, polyamide-based thermoplastic resin, polyester-based thermoplastic resin, olefin-based thermoplastic resin, polyurethane-based thermoplastic resin, vinyl chloride-based thermoplastic resin, polystyrene-based thermoplastic resin, etc. may be exemplified. it can.
  • the thermoplastic resin is preferably at least one thermoplastic resin selected from the group consisting of a polyamide thermoplastic resin, a polyester thermoplastic resin, and an olefin thermoplastic resin.
  • the thermoplastic resins may be used alone or in combination of two or more.
  • polyamide-based thermoplastic resin examples include polyamides that form the hard segment of the above-mentioned polyamide-based thermoplastic elastomer.
  • polyamide-based thermoplastic resin examples include polyamide obtained by ring-opening polycondensation of ⁇ -caprolactam (amide 6), polyamide obtained by ring-opening polycondensation of undecane lactam (amide 11), ring-opening polycondensation of lauryl lactam.
  • examples thereof include polyamide (amide 12), polyamide (amide 66) obtained by polycondensing diamine and dibasic acid, and polyamide (amide MX) having metaxylene diamine as a constituent unit.
  • the amide 6 can be represented by, for example, ⁇ CO— (CH 2 ) 5 —NH ⁇ n .
  • the amide 11 can be represented by, for example, ⁇ CO— (CH 2 ) 10 —NH ⁇ n .
  • the amide 12 can be represented by, for example, ⁇ CO— (CH 2 ) 11 —NH ⁇ n .
  • the amide 66 can be represented by, for example, ⁇ CO (CH 2 ) 4 CONH (CH 2 ) 6 NH ⁇ n .
  • the amide MX can be represented by, for example, the following structural formula (A-1). Here, n represents the number of repeating units.
  • amide 6 for example, "UBE Nylon” series (for example, 1022B, 1011FB, etc.) manufactured by Ube Industries, Ltd. can be used.
  • amide 11 for example, “Rilsan B” series manufactured by Arkema Ltd. can be used.
  • amide 12 for example, "UBE Nylon” series (for example, 3024U, 3020U, 3014U) manufactured by Ube Industries, Ltd. can be used.
  • amide 66 for example, "Leona” series (for example, 1300S, 1700S, etc.) manufactured by Asahi Kasei Corporation can be used.
  • amide MX for example, "MX Nylon” series (for example, S6001, S6021, S6011, etc.) manufactured by Mitsubishi Gas Chemical Co., Inc. can be used.
  • thermoplastic polyamide-based resin may be a homopolymer formed of only the above structural unit or a copolymer of the above structural unit and another monomer.
  • the content of the above structural units in each polyamide-based thermoplastic resin is preferably 40% by mass or more.
  • polyester-based thermoplastic resin examples include polyesters that form the hard segment of the above-mentioned polyester-based thermoplastic elastomer.
  • Specific examples of the polyester-based thermoplastic resin include polylactic acid, polyhydroxy-3-butylbutyric acid, polyhydroxy-3-hexylbutyric acid, poly ( ⁇ -caprolactone), polyenanthlactone, polycaprylolactone, and polybutylene.
  • examples thereof include aliphatic polyesters such as adipate and polyethylene adipate, and aromatic polyesters such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate and polybutylene naphthalate.
  • polybutylene terephthalate is preferable as the polyester thermoplastic resin from the viewpoint of heat resistance and processability.
  • polyester thermoplastic resins examples include “Duranex” series manufactured by Polyplastics Co., Ltd. (e.g., 2000, 2002) and “Novaduran” series manufactured by Mitsubishi Engineering Plastics Co., Ltd. (e.g., 5010R5, 5010R3-2 etc.), “Toraycon” series manufactured by Toray Industries, Inc. (eg 1401X06, 1401X31 etc.) and the like can be used.
  • thermoplastic resin examples include the above-mentioned polyolefins that form the hard segment of the olefin-based thermoplastic elastomer.
  • specific examples of the olefin-based thermoplastic resin include polyethylene-based thermoplastic resin, polypropylene-based thermoplastic resin, and polybutadiene-based thermoplastic resin.
  • polypropylene-based thermoplastic resins are preferable as the olefin-based thermoplastic resin from the viewpoint of heat resistance and processability.
  • polypropylene-based thermoplastic resin examples include propylene homopolymer, propylene- ⁇ -olefin random copolymer, propylene- ⁇ -olefin block copolymer and the like.
  • ⁇ -olefin examples include propylene, 1-butene, 1-pentene, 3-methyl-1-butene, 1-hexene, 4-methyl-1-pentene, 3-methyl-1-pentene, 1-heptene,
  • ⁇ -olefins having about 3 to 20 carbon atoms such as 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene and 1-eicosene.
  • thermoplastic elastomer As the resin contained in the coating resin layer, a thermoplastic elastomer may be used alone, or two or more thermoplastic elastomers may be used in combination, and one or more thermoplastic elastomers may be used in combination with one or more thermoplastic elastomers. Resins may be used in combination.
  • the total content of the thermoplastic elastomer in the coating resin layer is preferably 50% by mass or more, more preferably 60% by mass or more, and further preferably 75% by mass or more with respect to the entire coating resin layer. preferable.
  • the coating resin layer may contain components other than the thermoplastic resin and the thermoplastic elastomer.
  • components other than the thermoplastic resin and the thermoplastic elastomer include rubber, various fillers (for example, silica, calcium carbonate, clay, etc.), antioxidants, oils, plasticizers, color formers, weathering agents and the like.
  • the average thickness of the coating resin layer is not particularly limited. From the viewpoint of excellent durability and weldability, the thickness is preferably 10 ⁇ m or more and 1000 ⁇ m or less, and more preferably 50 ⁇ m or more and 700 ⁇ m or less.
  • the average thickness of the coating resin layer, the bead wire, the coating resin layer, and the SEM image of the cross section obtained by cutting the bead core along the laminating direction of the adhesive layer used as necessary is obtained from any 5 points, It is the number average value of the thickness of the coating resin layer measured from the obtained SEM image or the image obtained by a video microscope.
  • the thickness of the coating resin layer in each SEM image is a value measured at the smallest thickness portion (the portion where the distance between the interface between the adhesive layer and the coating resin layer and the outer edge of the bead core is minimum).
  • the tensile elastic modulus of the coating resin layer is preferably 50 MPa or more and 1000 MPa or less, and more preferably 50 MPa or more and 800 MPa or less from the viewpoint of achieving both run flat durability and riding comfort during normal traveling. It is preferably 50 MPa or more and 700 MPa or less.
  • the tensile elastic modulus of the coating resin layer is preferably larger than the tensile elastic modulus of the adhesive layer.
  • the tensile elastic modulus of the coating resin layer can be controlled by, for example, the type of resin contained in the coating resin layer.
  • the tensile elastic modulus of the coating resin layer is measured according to JIS K7113: 1995. Specifically, for example, using Shimadzu Autograph AGS-J (5KN) manufactured by Shimadzu Corporation, the tensile speed is set to 100 mm / min, and the tensile elastic modulus is measured.
  • a measuring sample of the same material as the coating resin layer may be separately prepared to measure the tensile elastic modulus.
  • the melt flow rate (MFR) of the coating resin layer has an upper limit value of preferably 16.5 g / 10 min or less (260 ° C., 2.16 kg condition), more preferably 16 g / 10 min or less, and 15.4 g. It is more preferably / 10 min or less.
  • the lower limit of the MFR of the coating resin layer is preferably 0.5 g / 10 min or more (260 ° C., 2.16 kg condition), more preferably 2 g / 10 min or more, and 4 g / 10 min or more. More preferable.
  • the upper and lower limit values of the MFR of the coating resin layer are preferably 2 g / 10 min or more and 16 g / 10 min or less, and more preferably 4 g / 10 min or more and 15.4 g / 10 min or less.
  • the melt flow rate (MFR) of the coating resin layer is measured by the following method after cutting out a measurement sample from the coating resin layer.
  • the measuring method is based on JIS-K7210-1 (2014). Specifically, MFR is performed using a melt indexer (for example, model number 2A-C, Toyo Seisakusho Co., Ltd.).
  • the measurement conditions are a temperature of 260 ° C., a load of 2.16 kg, an interval of 25 mm, an orifice of 2.09 ⁇ ⁇ 8 L (mm), and the MFR is obtained.
  • melt flow rate (MFR) of the coating resin layer As a method for adjusting the melt flow rate (MFR) of the coating resin layer to 0.5 g / 10 min or more and 16.5 g / 10 min or less, use a thermoplastic elastomer having a MFR within the above range as the resin material; Examples include adjusting the types and amounts of the resin and additives so that the MFR falls within the above range.
  • the resin contained in the coating resin layer has a weight average molecular weight Mw (calculated as polymethylmethacrylate) of preferably 44,000 or more, more preferably 45,000 or more, and further preferably 47,000 or more.
  • Mw weight average molecular weight
  • the upper limit of Mw of the resin is preferably 100,000 or less, more preferably 90,000 or less, and further preferably 79000 or less.
  • the upper and lower limit values of Mw of the resin contained in the coating resin layer are preferably 44,000 or more and 100,000 or less, more preferably 45,000 or more and 90,000 or less, and further preferably 47,000 or more and 79000 or less.
  • the weight average molecular weight Mw of the resin contained in the coating resin layer is measured by the following method after cutting out a measurement sample from the coating resin layer.
  • the weight average molecular weight is determined by gel permeation chromatography (also referred to as “GPC”) using model number: HLC-8320GPC, manufactured by Tosoh Corporation.
  • the measurement conditions are: column: TSK-GEL GMHXL (manufactured by Tosoh Corporation), developing solvent: HFIP (hexafluoroisopropanol, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.), column temperature: 40 ° C., flow rate: 1 ml / min, Using a RI detector, the weight average molecular weight in terms of polymethylmethacrylate (PMMA) is determined.
  • the side reinforcing rubber is formed of a rubber composition.
  • the side-reinforcing rubber preferably has a crosslink density of 5 ⁇ 10 ⁇ 4 mol / ml or more and 10 ⁇ 10 ⁇ 4 mol / ml or less, from the viewpoint of improving run flat durability, and 6 ⁇ 10 ⁇ . 4 more preferably mol / ml or more 9 ⁇ is 10 -4 mol / ml or less, still more preferably 7 ⁇ 10 -4 mol / ml or more 9 ⁇ 10 -4 mol / ml or less.
  • the crosslink density can be controlled by adjusting the type and composition ratio of the rubber contained in the rubber composition forming the side-reinforcing rubber; adjusting the amounts and types of vulcanizing agents, vulcanization accelerators, etc.
  • the crosslink density is measured as the total mesh density by the swelling compression method using the theoretical formula of Flory (see, for example, Journal of Japan Rubber Association, Volume 63, No. 7, 1990, P440 to 448).
  • the rubber composition is kneaded using a kneading machine such as a Banbury mixer, a roll, an internal mixer, etc., is molded, and is then vulcanized to be used as a side reinforcing rubber layer of a tire.
  • a kneading machine such as a Banbury mixer, a roll, an internal mixer, etc.
  • Examples of the rubber include natural rubber (NR) and diene-based synthetic rubber.
  • Examples of the diene synthetic rubber include styrene-butadiene copolymer (SBR), polybutadiene (BR), polyisoprene (IR), styrene-isoprene copolymer (SIR), butyl rubber (IIR), halogenated butyl rubber, ethylene. -Propylene-diene terpolymer (EPDM) and mixtures thereof.
  • Diene synthetic rubber is a diene modified rubber in which some or all of the diene synthetic rubber has a branched structure by using a polyfunctional modifier, for example, a modifier such as tin tetrachloride. More preferably.
  • Examples of the rubber include those containing an amine-modified conjugated diene polymer obtained by amine-modifying a conjugated diene polymer.
  • the content of the amine-modified conjugated diene polymer is preferably 30% by mass or more, and particularly preferably 50% by mass or more based on the total amount of the rubber.
  • the obtained rubber composition tends to have low heat generation, and thus it is considered that run-flat running durability is further improved when applied to a tire. ..
  • the amine-modified conjugated diene-based polymer is a conjugated diene-based polymer in which an amine-based functional group such as a protic amino group or an amino group protected by a removable group is introduced into the molecule as a modifying functional group.
  • the amine-modified conjugated diene polymer is preferably a conjugated diene polymer in which, in addition to the amine functional group, a functional group containing a silicon atom is further introduced as a modifying functional group.
  • the functional group containing a silicon atom include a silane group formed by bonding a hydrocarbyloxy group, a hydroxy group or the like to a silicon atom.
  • the modifying functional group may be present at any of the polymerization initiation terminal, the side chain and the polymerization active terminal of the conjugated diene polymer, but in the present embodiment, the modifying functional group is present at the polymerization terminal. Are preferred, and it is more preferred that they are present at the same polymerization active end.
  • protic amino group examples include at least one selected from the group consisting of a primary amino group, a secondary amino group and salts thereof.
  • amino group protected with a removable group examples include N, N-bis (trihydrocarbylsilyl) amino group and N- (trihydrocarbylsilyl) imino group.
  • the amino group protected by the removable group is a hydrocarbyl group containing a trialkylsilyl group having an alkyl group having 1 to 10 carbon atoms from the viewpoint of improving the dispersion of the filler.
  • a hydrocarbyl group containing a trimethylsilyl group is more preferable.
  • Examples of the primary amino group protected by a removable group include N, N-bis (trimethylsilyl) amino group and the like.
  • Examples of the secondary amino group protected with a removable group include N- (trimethylsilyl) imino group and the like.
  • the group containing an N- (trimethylsilyl) imino group may be either an acyclic imine residue or a cyclic imine residue.
  • the amine-modified conjugated diene polymer is a primary amine-modified conjugated diene polymer modified with a primary amino group
  • protection obtained by reacting a protected primary amine compound on the active end of the conjugated diene polymer It is preferably a primary amine-modified conjugated diene-based polymer modified with a primary amino group.
  • the conjugated diene polymer may be a conjugated diene compound homopolymer or a copolymer of a conjugated diene compound and an aromatic vinyl compound.
  • the conjugated diene compound include 1,3-butadiene, isoprene, 1,3-pentadiene, 2,3-dimethyl-1,3-butadiene, 2-phenyl-1,3-butadiene and 1,3-hexadiene. 1,3-butadiene is preferred.
  • the conjugated diene compounds may be used alone or in combination of two or more.
  • aromatic vinyl compound examples include styrene, ⁇ -methylstyrene, 1-vinylnaphthalene, 3-vinyltoluene, ethylvinylbenzene, divinylbenzene, 4-cyclohexylstyrene, 2,4,6-trimethylstyrene and the like. , Styrene is preferred.
  • the aromatic vinyl compounds may be used alone or in combination of two or more.
  • the conjugated diene polymer is preferably polybutadiene or styrene-butadiene copolymer, and more preferably polybutadiene.
  • At least 10% of the polymer chains have living or pseudo-living properties. preferable.
  • Examples of the living polymerization reaction include a reaction in which an organic alkali metal compound is used as an initiator for anionic polymerization in an organic solvent; a reaction in which an anionic polymerization is performed in a solvent containing a lanthanum series rare earth element compound for coordination anionic polymerization. Be done.
  • the living-state polymerization reaction is preferably anionic polymerization from the viewpoint of increasing the content of vinyl bonds in the conjugated diene site and improving heat resistance.
  • the organic alkali metal compound is preferably an organic lithium compound such as hydrocarbyl lithium such as n-butyl lithium; a lithium amide compound such as lithium hexamethylene imide or lithium pyrrolidide.
  • organic lithium compound such as hydrocarbyl lithium such as n-butyl lithium
  • a lithium amide compound such as lithium hexamethylene imide or lithium pyrrolidide.
  • hydrocarbyl lithium is used as the organic alkali metal compound
  • a conjugated diene polymer having a hydrocarbyl group at the polymerization initiation terminal and the other terminal being a polymerization active site can be obtained.
  • the lithium amide compound is used as the organic alkali metal compound, a conjugated diene polymer having a nitrogen-containing group at the polymerization initiation terminal and the other terminal being a polymerization active site can be obtained.
  • the method for producing the amine-modified conjugated diene polymer is not particularly limited, and a conventionally known method such as JP2011-68342A may be used.
  • the Mooney viscosity (ML 1 + 4 , 100 ° C.) of the amine-modified conjugated diene polymer is preferably 10 to 150, more preferably 15 to 100.
  • the Mooney viscosity (ML 1 + 4 , 130 ° C.) of the unvulcanized rubber composition containing the amine-modified conjugated diene polymer is preferably 10 to 150, and more preferably 30 to 100.
  • the ratio (Mw / Mn) of the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the amine-modified conjugated diene polymer, that is, the molecular weight distribution (Mw / Mn) is preferably 1 to 3, It is more preferably 1.1 to 2.7.
  • the number average molecular weight (Mn) of the amine-modified conjugated diene polymer is preferably 100,000 to 500,000, and more preferably 150,000 to 300,000.
  • the content of rubber is preferably 50% by mass or more, more preferably 50% by mass to 80% by mass, and further preferably 55% by mass to 70% by mass with respect to the total amount of the rubber composition. preferable.
  • the rubber composition preferably contains rubber and a filler.
  • the filler include carbon black, silica, an inorganic filler represented by the following general formula (I), and the like.
  • M is at least one metal selected from the group consisting of aluminum, magnesium, titanium, calcium and zirconium, or an oxide, hydroxide, hydrate or carbonate of the metal. Represents.
  • n represents an integer of 1 to 5.
  • x represents an integer of 0 to 10.
  • y represents an integer of 2 to 5.
  • z represents an integer of 0 to 10.
  • carbon black or silica is preferable, and carbon black is more preferable.
  • carbon black various grades of carbon black such as FEF grade, FF grade, HAF grade, ISAF grade, GPF grade and SAF grade can be used alone or in combination.
  • carbon black is preferably FEF grade from the viewpoint of suppressing heat generation of the tire.
  • the silica is not particularly limited, but wet silica, dry silica and colloidal silica are preferable. These can be used alone or in an appropriate mixture.
  • M is preferably at least one selected from the group consisting of aluminum metal and aluminum oxides, hydroxides, hydrates and carbonates. ..
  • the inorganic filler represented by the general formula (I) include Al 2 O 3 : alumina such as ⁇ -alumina and ⁇ -alumina; Al 2 O 3 .H 2 O: alumina such as boehmite and diaspore.
  • Aluminum hydroxide [Al (OH) 3 ] such as gibbsite and bayerite; Aluminum carbonate [Al 2 (CO 3 ) 2 ]; Magnesium hydroxide [Mg (OH) 2 ]; Magnesium oxide (MgO); magnesium carbonate (MgCO 3); talc (3MgO ⁇ 4SiO 2 ⁇ H 2 O); attapulgite (5MgO ⁇ 8SiO 2 ⁇ 9H 2 O); titanium white (TiO 2); titanium black (TiO 2n-1); calcium oxide ( CaO); calcium hydroxide [Ca (OH) 2 ]; magnesium aluminum oxide (MgO.Al 2 O 3 ); clay (Al 2 O 3 .2SiO 2 ); Kaolin (Al 2 O 3 .2SiO 2 2H 2 O); Pyrophyllite (Al 2 O 3 .4SiO 2 .H 2 O); Bentonite (Al 2 O 3 .4SiO 2 2H) 2 O);
  • various additives such as a vulcanizing agent, a vulcanization accelerator, a process oil, an anti-aging agent, an anti-scorch agent, zinc white, stearic acid, etc. are added to the extent that the effects of the present embodiment are not impaired. May be included.
  • the content of the filler by increasing the dispersibility of the filler in the rubber composition, to suppress the heat generation of the tire and the decrease in the elastic modulus of the rubber, from the viewpoint of improving the riding comfort during normal traveling, It is preferably 75% by mass or less, more preferably 30% by mass or more and 70% by mass or less, and further preferably 30% by mass or more and 65% by mass or less based on 100% by mass of rubber.
  • the “carcass” is a member that forms the skeleton of a tire in a conventional tire, and includes so-called radial carcass, bias carcass, semi-radial carcass and the like.
  • a carcass generally has a structure in which a reinforcing material such as a cord or a fiber is covered with a rubber material.
  • the rubber material should just contain at least rubber, and may contain other components, such as an additive, in the range which does not impair the effect concerning this embodiment.
  • the content of rubber in the rubber material is preferably 50% by mass or more, and more preferably 90% by mass or more, based on the total amount of the rubber material.
  • the carcass can be formed using, for example, a rubber material.
  • the rubber used for the carcass is not particularly limited, and natural rubber and various synthetic rubbers used in conventionally known rubber compounding can be used alone or in combination of two or more.
  • a rubber as shown below, or a rubber blend of two or more of these can be used.
  • the natural rubber may be sheet rubber or block rubber, and any of RSS # 1 to # 5 can be used.
  • As the synthetic rubber various diene-based synthetic rubbers, diene-based copolymer rubbers, special rubbers and modified rubbers can be used.
  • a butadiene-based polymer such as polybutadiene (BR), a copolymer of butadiene and an aromatic vinyl compound (for example, SBR, NBR, etc.), a copolymer of butadiene and another diene compound, and the like;
  • Isoprene-based polymers such as polyisoprene (IR), copolymers of isoprene and aromatic vinyl compounds, copolymers of isoprene and other diene compounds; chloroprene rubber (CR); butyl rubber (IIR); halogenated Butyl rubber (X-IIR); ethylene-propylene-based copolymer rubber (EPM); ethylene-propylene-diene-based copolymer rubber (EPDM) and any blend thereof; and the like.
  • BR polybutadiene
  • an aromatic vinyl compound for example, SBR, NBR, etc.
  • Isoprene-based polymers such as polyisoprene (IR), copo
  • the rubber material used for the carcass may be added with other components such as additives to the rubber depending on the purpose.
  • the additive include a reinforcing material such as carbon black, a filler, a vulcanizing agent, a vulcanization accelerator, a fatty acid or a salt thereof, a metal oxide, a process oil, an antiaging agent, and the like, and these are appropriately mixed. can do.
  • a carcass made of rubber material is obtained by heating and vulcanizing unvulcanized rubber material.
  • the rubber material may include other components than rubber, if desired.
  • other components include resins, various fillers (eg, silica, calcium carbonate, clay), antiaging agents, oils, plasticizers, colorants, weathering agents, reinforcing materials, and the like.
  • the material used in ordinary rubber tires can be used and is not particularly limited.
  • the tire according to the present embodiment may have a bead filler that extends outward in the tire radial direction from the coating resin layer in the bead portion. Further, this bead filler may be a member integrally formed with the coating resin layer.
  • the material of the bead filler is not particularly limited, and a conventionally known elastic material such as resin or rubber is used.
  • the bead filler preferably contains a resin as an elastic material, and for example, those listed as the resin contained in the coating resin layer in the bead core according to the above-described embodiment are similarly used. Further, the kind of the preferable resin, the preferable content, other components that may be contained, and the like are the same as those of the coating resin layer.
  • the bead core 101 in the bead portion 110 shown in FIG. 6 can be formed as follows. First, the periphery of the bead wire 111 is covered with the adhesive layer 112, and then the three bead wires 111 covered with the adhesive layer 112 are covered with the first coating resin layer 113 to form a strip member. Furthermore, the bead core 101 is formed by winding this strip member and stacking three strip members each having a substantially rectangular cross-section.
  • the number of the bead wires 111 in the bead core 101 is 9, but the number is not limited to this, and the number of the bead wires 111 may be one or more, and only one. May be.
  • FIG. 6 shows a mode in which the strip members are stacked in three stages in cross section, but the structure of the stacked members is not limited to this, and for example, even if it is one stage or two stages, four stages are provided. The above may be laminated.
  • the outer peripheral surface of the bead wire 111 is coated with a material that forms the adhesive layer 112 in a molten state, and the surface of the material that forms the adhesive layer 112 further has a molten first coating resin layer.
  • the strip member is formed by coating the material forming 113 (that is, the resin composition) and solidifying it by cooling.
  • the cross-sectional shape of the strip member (that is, the shape of the cross section orthogonal to the longitudinal direction of the bead wire 111) is a substantially rectangular shape in the present embodiment, but is not limited to this, and may be various shapes such as a substantially parallelogram. be able to.
  • the formation of the adhesive layer 112 and the formation of the first coating resin layer 113 can be performed by known methods, and examples thereof include extrusion molding.
  • the bead core 101 can be formed by winding and stacking strip members, and the joining of the strip members is performed by melting the first coating resin layer 113 by a known method such as hot plate welding. Can be wound around and the molten first coating resin layer 113 is solidified. Alternatively, the steps can be joined by adhering the steps with an adhesive or the like.
  • the surface of the obtained bead core 101 is coated with a material (for example, a resin) that forms the second coating resin layer 114 in a molten state, and is solidified by cooling.
  • the coating resin layer 114 is formed.
  • the second coating resin layer 114 can be formed by a known method, and examples thereof include injection molding. Specifically, the bead core 101 is arranged in the cavity of the injection molding die, and the material forming the molten second coating resin layer 114 is injected into the cavity. Next, the injected material is solidified by cooling to form the second coating resin layer 114.
  • the bead member 110 shown in FIG. 6 has a structure in which the bead filler 103 is arranged toward the tire radial direction outer side of the second coating resin layer 114.
  • the bead filler 103 can be formed by a known method. For example, when the bead filler 103 is made of resin, a method such as injection molding can be used.
  • the bead filler 103 is a member of the same body integrally molded with the second coating resin layer 114, the bead filler 103 and the second coating resin layer 114 are processed by using an injection molding die once processed. It is also possible to integrally mold both members by injection.
  • Runflat tire [2] The run flat tire according to [1], wherein the melt flow rate of the coating resin layer is 0.5 g / 10 min or more and 16.5 g / 10 min or less.
  • a rubber composition for side-reinforcing rubber having the formulation shown in Table 1 is prepared, and is kneaded and molded by a Banbury mixer of MIXTRON BB MIXER manufactured by Kobe Steel, Ltd. to prepare an unvulcanized side-reinforcing rubber.
  • -Synthetic rubber the following polybutadiene rubber-filler: carbon black, N550 made by Asahi Carbon Co., Ltd.
  • -Antiaging agent Hexamethylenetetramine.
  • -Vulcanization accelerator 1 Thiuram type compound, Nouchira TOT-N manufactured by Ouchi Shinko Chemical Co., Ltd.
  • -Vulcanization accelerator 2 Nocceller NS-P, manufactured by Ouchi Shinko Chemical Co., Ltd.
  • This polymer solution was extracted into a methanol solution containing 1.3 g of 2,6-di-tert-butyl-p-cresol to stop the polymerization, and then the solvent was removed by steam stripping, followed by drying with a roll at 110 ° C. To obtain polybutadiene.
  • the polybutadiene has a microstructure (that is, vinyl bond amount) of 14%, a weight average molecular weight (Mw) of 150,000, and a molecular weight distribution (Mw / Mn) of 1.1.
  • the polymer solution obtained above was maintained at a temperature of 50 ° C.
  • N, N-bis (trimethylsilyl) aminopropylmethyldiethoxysilane having a protected primary amino group that is, 3 .364 mmol
  • 2,6-di-tert-butyl-p-cresol is added to the polymer solution after the reaction.
  • the solvent removal and deprotection of the protected primary amino group are carried out by steam stripping, and the rubber is dried by a hot roll adjusted to 110 ° C. to obtain a primary amine-modified polybutadiene.
  • the modified polybutadiene has a microstructure (that is, vinyl bond amount) of 14%, a weight average molecular weight (Mw) of 150,000, a molecular weight distribution (Mw / Mn) of 1.2, and a primary amino group content of 4.0 mmol /. It is kg.
  • Examples 1-2, Comparative Examples 5-6 (Production of resin bead member) On the surface of a monofilament (monofilament having an average diameter of ⁇ 1.25 mm, made of steel, strength: 2700 N, elongation 7%), as an adhesive, a maleic anhydride-modified polyester thermoplastic elastomer "Primalloy-AP GQ730" manufactured by Mitsubishi Chemical Corporation. In a state of being heated and melted, it is extruded and attached by an extruder. Note that Primalloy-AP GQ730 has a melting point of 204 ° C. and a tensile elastic modulus of 300 MPa.
  • the extrusion condition of the adhesive layer is that the temperature of the adhesive is 240 ° C.
  • the bead wire sample to which the adhesive is attached is placed in a mold so that three bead wire samples are arranged side by side, and a polyester-based thermoplastic elastomer (specifically, manufactured by Toray DuPont Co., Ltd., trade name "Hytrel 5557")
  • a polyester-based thermoplastic elastomer specifically, manufactured by Toray DuPont Co., Ltd., trade name "Hytrel 5557”
  • the extrusion temperature of the thermoplastic polyester elastomer is that the temperature of the resin is 240 ° C.
  • a member having three bead wires formed in this way is wound while being welded with hot air.
  • a bead core having a structure in which the nine bead wires are coated with the adhesive layer and the periphery thereof is further coated with the first coating resin layer (that is, the structure shown in FIG. 6) is produced.
  • the average distance between adjacent bead wires is 200 ⁇ m.
  • the bead core obtained above is placed in a mold pre-processed into the shape of a member in which the second coating resin layer and the bead filler are integrated, and the polyester-based thermoplastic elastomer (specifically, Toray DuPont Co., Ltd. Manufactured by trade name "Hytrel 5557”) is injected by an injection molding machine.
  • the mold temperature during injection molding is 100 ° C, and the molding temperature is 240 ° C.
  • An unvulcanized carcass and belt layer is made according to the previously described embodiments.
  • the belt layer is provided on the outer peripheral surface of the unvulcanized carcass, the unvulcanized tread is wound around the outer periphery of the belt layer, and the side reinforcing rubber made of the rubber composition shown in Tables 1 and 2 is used as the resin prepared above.
  • the obtained raw tire is vulcanized by heating at 160 ° C. for 20 minutes to obtain a tire having the structure shown in FIG. 1.
  • Table 2 shows the results of 1% tensile elastic modulus, 50% modulus, and 100% modulus of the rubber composition for side-reinforcing rubber measured by the above-described measuring method.
  • Example 1 A run is performed in the same manner as in Example 1 except that the resin bead member in Example 1 is a rubber bead member and is combined with a side reinforcing rubber made of a rubber composition shown in Tables 1 and 2. Manufacture flat tires.
  • the rubber composition shown below was used for the rubber bead member.
  • -Natural rubber / filler Asahi # 70K, manufactured by Asahi Carbon Co., Ltd.
  • -Anti-aging agent Non-flex RD-S, manufactured by Seiko Chemical Co., Ltd.
  • -Vulcanization accelerator 1 Nocceller H, manufactured by Ouchi Shinko Chemical Industry Co., Ltd.
  • -Vulcanization accelerator 2 Sunceller CM-G, manufactured by Sanshin Chemical Industry Co., Ltd.
  • the rubber compositions A to D shown in Table 1 are all synthetic materials. Regarding the results of each evaluation test shown in Table 2, Example 1 and Comparative Examples 1 to 4 are data obtained by actually carrying out the test. On the other hand, Example 2 is prediction data by simulation.
  • the run-flat tire of the example has both better riding comfort during normal running and run-flat running durability than the run-flat tire of the comparative example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

A run flat tire which is provided with: a bead core which comprises a bead wire and a covering resin layer that covers the bead wire, while being formed from a resin composition; and a side reinforcement rubber which is provided on a tire side part, while being formed from a rubber composition. This run flat tire is configured such that: the resin composition contains a thermoplastic elastomer; the 1% tensile elastic modulus of the side reinforcement rubber is 8 MPa or less; and the 100% modulus of the side reinforcement rubber is 10 MPa or more.

Description

ランフラットタイヤRun flat tires
 本開示は、ランフラットタイヤに関する。 The present disclosure relates to a run flat tire.
 パンク等によりタイヤの内圧が低下した状態でも、タイヤが荷重支持能力を失うことなくある程度の距離を安全に走行することが可能なタイヤ、いわゆるランフラットタイヤとして、タイヤのサイドウォール部のカーカスの内面に、比較的モジュラスが高い断面三日月状のサイド補強ゴム層を配置してサイドウォール部の剛性を向上させ、内圧低下時にサイドウォール部の撓み変形を極端に増加させることなく荷重を負担できるようにしたタイヤや、サイドウォール部を各種補強部材で補強したタイヤ等の、サイド補強タイプのランフラットタイヤが各種提案されている。 An inner surface of a carcass of a sidewall portion of a tire, which is a so-called run-flat tire that allows the tire to safely travel a certain distance without losing its load-bearing capacity even when the inner pressure of the tire decreases due to puncture or the like. In addition, by arranging a side reinforcing rubber layer with a crescent-shaped cross-section, which has a relatively high modulus, to improve the rigidity of the side wall part, and to bear the load without significantly increasing the bending deformation of the side wall part when the internal pressure drops. There have been proposed various side-reinforcement type run flat tires, such as the above-mentioned tires and tires whose sidewalls are reinforced with various reinforcing members.
 特許文献1には、タイヤサイド部をサイド補強ゴムで補強し、ランフラット走行時(つまり、空気圧が低下した異常走行時)の耐久性を確保したサイド補強型のランフラットタイヤが開示されている。 Patent Document 1 discloses a side-reinforcement type run-flat tire in which the tire side portion is reinforced with a side-reinforcing rubber to ensure durability during run-flat running (that is, during abnormal running with reduced air pressure). ..
   [特許文献1]特開2013-95369号公報 [Patent Document 1] JP2013-95369A
 本開示の課題は、通常走行時の乗り心地性とランフラット走行耐久性とを両立したランフラットタイヤを提供することにある。 The problem of the present disclosure is to provide a run flat tire that has both ride comfort during normal running and run flat running durability.
 前記課題は、以下の本開示により解決される。
[1] ビードワイヤー及び前記ビードワイヤーを被覆し樹脂組成物により形成される被覆樹脂層を有するビードコアと、
 タイヤサイド部に設けられゴム組成物により形成されるサイド補強ゴムと、
 を備え、
 前記樹脂組成物は熱可塑性エラストマーを含み、
 前記サイド補強ゴムの1%引張弾性率が8MPa以下であり、且つ、100%モジュラスが10MPa以上である、
 ランフラットタイヤ。
The above problems are solved by the following present disclosure.
[1] A bead wire and a bead core that covers the bead wire and has a coating resin layer formed of a resin composition,
A side reinforcing rubber formed on the tire side portion and formed of a rubber composition,
Equipped with
The resin composition contains a thermoplastic elastomer,
The 1% tensile elastic modulus of the side reinforcing rubber is 8 MPa or less, and the 100% modulus is 10 MPa or more.
Runflat tire.
 特許文献1に記載されるサイド補強型のランフラットタイヤでは、ランフラット走行時の耐久性、つまり内圧低下時の荷重支持性を向上させるためには、サイド補強ゴムの弾性を高めることが望ましい。一方で、サイド補強ゴムは、弾性が高くなるほど柔軟性が低下する傾向にある。そのため、通常走行時の乗り心地が悪くなる。
 上述するように、サイド補強型のランフラットタイヤでは、サイド補強ゴムによるランフラット走行時の耐久性向上と通常走行時の乗り心地性向上とは、二律背反の関係にある。しかし、ランフラットタイヤにおいては、このランフラット走行時の耐久性向上と通常走行時の乗り心地性向上とを両立することが望ましい。
 本開示によれば、通常走行時の乗り心地性とランフラット走行耐久性とを両立したランフラットタイヤが提供される。
In the side-reinforcement type run-flat tire described in Patent Document 1, it is desirable to increase the elasticity of the side-reinforcing rubber in order to improve the durability during run-flat running, that is, the load supportability when the internal pressure decreases. On the other hand, the side-reinforcing rubber tends to have lower flexibility as the elasticity increases. As a result, the riding comfort during normal running becomes poor.
As described above, in the side-reinforcement type run-flat tire, the durability improvement during run-flat traveling and the improvement in riding comfort during normal traveling due to the side-reinforcing rubber have a trade-off relationship. However, in a runflat tire, it is desirable to achieve both the improvement in durability during runflat running and the improvement in riding comfort during normal running.
According to the present disclosure, there is provided a run-flat tire having both ride comfort during normal running and run-flat running durability.
本実施形態に係るランフラットタイヤを、リムに組み付けた状態でタイヤ幅方向及びタイヤ径方向に沿って切断した切断面の片側を示す半断面図である。FIG. 3 is a half cross-sectional view showing one side of a cut surface of the run-flat tire according to the present embodiment, which is cut along the tire width direction and the tire radial direction in a state of being assembled to a rim. 本実施形態に係るランフラットタイヤにおけるビードコアを示す部分拡大断面図である。It is a partial expanded sectional view showing a bead core in a run flat tire concerning this embodiment. 本実施形態に係るランフラットタイヤにおけるベルト層を示す斜視図である。It is a perspective view showing a belt layer in a run flat tire concerning this embodiment. 本実施形態に係るランフラットタイヤにおいて、複数本のビードワイヤーを被覆樹脂で被覆したワイヤー束でビードコアを形成した変形例を示す部分拡大断面図である。In the run flat tire which concerns on this embodiment, it is a partial expanded sectional view which shows the modification which formed the bead core with the wire bundle which coat | covered several bead wires with the coating resin. 本実施形態に係るランフラットタイヤにおいて、複数本の補強コードを被覆樹脂で被覆した、断面が略平行四辺形状の樹脂被覆コードを用いてベルト層を形成した変形例を示す半断面図である。FIG. 8 is a half cross-sectional view showing a modified example of the run-flat tire according to the present embodiment, in which a plurality of reinforcing cords are coated with a coating resin, and a belt layer is formed using a resin-coated cord having a substantially parallelogram cross section. 本実施形態に係るタイヤにおけるビード部の他の一例を示す、ビードワイヤーの長さ方向に対する垂直切断面の模式図である。It is a schematic diagram of a vertical cut surface to a length direction of a bead wire which shows another example of a bead part in a tire concerning this embodiment.
 以下、本開示の具体的な実施形態について詳細に説明するが、本開示は、以下の実施形態に何ら限定されるものではなく、本開示の目的の範囲内において、適宜変更を加えて実施することができる。 Hereinafter, specific embodiments of the present disclosure will be described in detail, but the present disclosure is not limited to the following embodiments and is appropriately modified and implemented within the scope of the object of the present disclosure. be able to.
 本明細書において「ゴム組成物」とは、加硫前の組成物の状態を意味する。
 本明細書において、「樹脂組成物により形成される」とは、樹脂組成物を成形してなることを表す。また、「ゴム組成物により形成される」とは、ゴム組成物を成形してなることを表す。ゴム組成物の成形は、加硫を含むものであってもよい。
 本明細書において「樹脂」とは、熱可塑性樹脂、熱可塑性エラストマー、及び熱硬化性樹脂を含む概念であり、ゴムは含まない。また、以下の樹脂の説明において「同種」とは、エステル系同士、スチレン系同士等、樹脂の主鎖を構成する骨格と共通する骨格を備えたものを意味する。
 本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 本明細書において「工程」との語には、独立した工程だけではなく、他の工程と明確に区別できない場合であっても、その目的が達成されるものであれば、当該工程も本用語に含まれる。
 本明細書において、組成物中の各成分の量は、各成分に該当する物質が組成物中に複数存在する場合には、特に断りがない限り、組成物中に存在する複数の物質の合計量を意味する。
 本明細書において、「主成分」とは、特に断りがない限り、混合物中における質量基準の含有量が最も多い成分を意味する。
In the present specification, the "rubber composition" means the state of the composition before vulcanization.
In the present specification, "formed by a resin composition" means that a resin composition is molded. Further, “formed of a rubber composition” means that the rubber composition is molded. Molding of the rubber composition may include vulcanization.
In the present specification, the “resin” is a concept including a thermoplastic resin, a thermoplastic elastomer, and a thermosetting resin, and does not include rubber. Further, in the following description of the resin, “same type” means a resin having a skeleton common to the skeleton constituting the resin main chain, such as ester-based resins and styrene-based resins.
In the present specification, a numerical range represented by “to” means a range including the numerical values before and after “to” as a lower limit value and an upper limit value.
In the present specification, the term "process" is not limited to an independent process, and even if the process is not clearly distinguishable from other processes, the process is also a term of the present invention as long as the purpose is achieved. include.
In the present specification, the amount of each component in the composition is the sum of a plurality of substances present in the composition, unless a plurality of substances corresponding to each component are present in the composition. Means quantity.
In the present specification, the “main component” means a component having the largest content by mass in the mixture, unless otherwise specified.
 また、本明細書において「熱可塑性樹脂」とは、温度上昇とともに材料が軟化して流動し、この流動物を冷却すると比較的硬く強度のある状態になるが、ゴム状弾性を有しない高分子化合物を意味する。
 本明細書において「熱可塑性エラストマー」とは、ハードセグメント及びソフトセグメントを有する共重合体を意味する。熱可塑性エラストマーとしては、温度上昇とともに材料が軟化して、流動し、冷却すると比較的硬く強度のある状態になり、かつ、ゴム状弾性を有する高分子化合物が挙げられる。熱可塑性エラストマーとして具体的には、例えば、結晶性で融点の高いハードセグメント又は高い凝集力のハードセグメントを構成するポリマーと、非晶性でガラス転移温度の低いソフトセグメントを構成するポリマーと、を有する共重合体が挙げられる。
 なお、上記ハードセグメントは、ソフトセグメントよりも相対的に硬い成分を指す。ハードセグメントは塑性変形を防止する架橋ゴムの架橋点の役目を果たす分子拘束成分であることが好ましい。例えばハードセグメントとしては、主骨格に芳香族基若しくは脂環式基等の剛直な基を有する構造、又は分子間水素結合若しくはπ-π相互作用による分子間パッキングを可能にする構造等のセグメントが挙げられる。
 また、上記ソフトセグメントは、ハードセグメントよりも相対的に柔らかい成分を指す。ソフトセグメントはゴム弾性を示す柔軟性成分であることが好ましい。例えばソフトセグメントとしては、主鎖に長鎖の基(例えば長鎖のアルキレン基等)を有し、分子回転の自由度が高く、伸縮性を有する構造のセグメントが挙げられる。
In the present specification, the term "thermoplastic resin" means a polymer that softens and flows as the temperature rises, and becomes relatively hard and strong when the fluid is cooled, but does not have rubber-like elasticity. Means a compound.
The term "thermoplastic elastomer" as used herein means a copolymer having a hard segment and a soft segment. Examples of the thermoplastic elastomer include polymer compounds in which the material softens and flows with an increase in temperature, becomes relatively hard and strong when cooled, and has rubber-like elasticity. Specifically, as the thermoplastic elastomer, for example, a polymer that constitutes a crystalline hard segment having a high melting point or a hard segment having a high cohesive force, and a polymer that constitutes an amorphous and soft segment having a low glass transition temperature, The copolymer which has is mentioned.
The hard segment refers to a component that is relatively harder than the soft segment. The hard segment is preferably a molecular constraining component that functions as a crosslinking point of the crosslinked rubber that prevents plastic deformation. For example, the hard segment includes a structure having a rigid group such as an aromatic group or an alicyclic group in the main skeleton, or a segment capable of intermolecular packing by intermolecular hydrogen bond or π-π interaction. Can be mentioned.
The soft segment refers to a component that is relatively softer than the hard segment. The soft segment is preferably a flexible component exhibiting rubber elasticity. Examples of the soft segment include a segment having a long-chain group (for example, a long-chain alkylene group) in the main chain, a high degree of freedom of molecular rotation, and a stretchable structure.
-ランフラットタイヤ-
 本実施形態に係るランフラットタイヤは、ビードワイヤー及び前記ビードワイヤーを被覆し樹脂組成物により形成される被覆樹脂層を有するビードコアと、タイヤサイド部に設けられゴム組成物により形成されるサイド補強ゴムと、を備え、前記樹脂組成物は熱可塑性エラストマーを含み、前記サイド補強ゴムの1%引張弾性率が8MPa以下であり、且つ、100%モジュラスが10MPa以上である。
-Runflat tire-
The run-flat tire according to the present embodiment has a bead wire and a bead core having a coating resin layer formed by coating the bead wire with a resin composition, and a side reinforcing rubber formed by a rubber composition provided in a tire side portion. And the resin composition contains a thermoplastic elastomer, the 1% tensile elastic modulus of the side reinforcing rubber is 8 MPa or less, and the 100% modulus is 10 MPa or more.
 従来、ランフラットタイヤでは、ランフラット走行時の荷重支持のために、ゴム組成物により形成されるサイド補強ゴムを適用する技術が知られている。しかしながら、前記サイド補強ゴム及びゴム製のビードコアを用いたランフラットタイヤでは、前記サイド補強ゴムの弾性により、通常走行時の路面追従性が低下する、つまり、振動等により乗り心地性が低下するという問題があった。 Conventionally, in run-flat tires, a technology is known in which a side reinforcing rubber formed of a rubber composition is applied to support a load during run-flat running. However, in the run-flat tire using the side reinforcing rubber and the rubber bead core, the elasticity of the side reinforcing rubber reduces the road surface followability during normal traveling, that is, the riding comfort is deteriorated due to vibration or the like. There was a problem.
 本発明者らは、上記課題を解決するために鋭意検討した結果、上記構成を有することで、通常走行時の乗り心地性と、ランフラット走行時走行耐久性とを両立することが可能となることを見出した。その理由は、以下のように推察される。 As a result of intensive studies to solve the above-mentioned problems, the present inventors have the above-mentioned configuration, and thus it is possible to achieve both riding comfort during normal traveling and traveling durability during run-flat traveling. I found that. The reason is speculated as follows.
 ランフラット走行時、つまり、内圧低下時にタイヤに係る荷重は、タイヤサイド部及びビード部により支持される。そのため、タイヤサイド部及びビード部は、内圧低下時にタイヤに係る荷重に応じて、歪む傾向にある。 The load on the tire during run-flat traveling, that is, when the internal pressure drops is supported by the tire side part and the bead part. Therefore, the tire side portion and the bead portion tend to be distorted according to the load applied to the tire when the internal pressure decreases.
 従来のランフラットタイヤにおいて、ビードコアの被覆層がゴム材により形成される被覆層である場合、ランフラット走行時におけるビード部の歪みが大きく、相対的にタイヤサイド部の歪みは大きくならない傾向にあった。
 一方、本実施形態に係るランフラットタイヤは、ビードコアの被覆層が樹脂組成物により形成される被覆樹脂層である。そのため、ランフラット走行時のビード部の歪みは抑制される傾向にあり、相対的にタイヤサイド部に応力が集中し易くなり、タイヤサイド部の歪みが大きくなる。つまり、本実施形態に係るランフラットタイヤは、サイド補強ゴムにおける通常走行時の歪量とランフラット走行時の歪量との差が、ゴム材からなる被覆層を有するビードコアを備える従来のランフラットタイヤよりも、大きくなると考えられる。
In a conventional run-flat tire, when the coating layer of the bead core is a coating layer formed of a rubber material, the strain on the bead portion during run-flat running is large, and the strain on the tire side portion tends to be relatively small. It was
On the other hand, in the run-flat tire according to this embodiment, the coating layer of the bead core is a coating resin layer formed of a resin composition. Therefore, the bead portion tends to be suppressed from being distorted during the run-flat traveling, and the stress is relatively easily concentrated on the tire side portion, and the tire side portion is distorted. That is, the run-flat tire according to the present embodiment has a conventional run-flat tire including a bead core having a coating layer made of a rubber material, in which a difference between a strain amount during normal running and a strain amount during run-flat running in the side reinforcing rubber is different. It is considered to be larger than the tire.
 さらに本実施形態に係るランフラットタイヤは、サイド補強ゴムの1%引張弾性率が8MPa以下である。つまり、サイド補強ゴムが、歪みが小さい状態において柔軟性を発揮し得る。また、本実施形態に係るランフラットタイヤは、サイド補強ゴムの100%モジュラスが10MPa以上である。つまり、サイド補強ゴムが、歪みが大きい状態において高い弾性を発揮し得る。 Further, in the run-flat tire according to the present embodiment, the 1% tensile elastic modulus of the side reinforcing rubber is 8 MPa or less. That is, the side reinforcing rubber can exhibit flexibility in a state where the strain is small. Further, the run-flat tire according to the present embodiment has a 100% modulus of the side reinforcing rubber of 10 MPa or more. That is, the side reinforcing rubber can exhibit high elasticity in a state where the strain is large.
 上述するように、本実施形態に係るランフラットタイヤは、被覆樹脂層を有するビードコアを備えているため、サイド補強ゴムにおける通常走行時の歪量とランフラット走行時の歪量との差が大きく、且つ、このサイド補強ゴムが上記範囲の1%引張弾性率及び100%モジュラスを満たす。これにより、通常走行時には柔軟性が発揮され易く、一方ランフラット走行時には高い弾性が発揮され易くなる。その結果、通常走行時の乗り心地性と、ランフラット走行時の走行耐久性とが両立されると考えられる。 As described above, since the run-flat tire according to the present embodiment includes the bead core having the coating resin layer, the difference between the strain amount during normal running and the strain amount during run-flat running in the side reinforcing rubber is large. And, this side reinforcing rubber satisfies the above-mentioned range of 1% tensile modulus and 100% modulus. As a result, flexibility is likely to be exhibited during normal traveling, while high elasticity is likely to be exhibited during runflat traveling. As a result, it is considered that both the riding comfort during normal running and the running durability during run-flat running are compatible.
[サイド補強ゴムの性質]
 以下、サイド補強ゴムの性質について説明する。
・1%引張弾性率
 サイド補強ゴムの1%引張弾性率は、通常走行時の乗り心地性の観点から、8MPa以下であり、5MPa以上8MPa以下であることが好ましく、6MPa以上7MPa以下であることがより好ましい。
 サイド補強ゴムの1%引張弾性率の測定は、株式会社上島製作所製スペクトロメータ-を用いて、初期荷重160mg、周波数52Hzの条件で測定を行った。
[Properties of side reinforcing rubber]
The properties of the side reinforcing rubber will be described below.
1% Tensile Elastic Modulus The 1% tensile elastic modulus of the side reinforcing rubber is 8 MPa or less, preferably 5 MPa or more and 8 MPa or less, and 6 MPa or more and 7 MPa or less, from the viewpoint of riding comfort during normal traveling. Is more preferable.
The 1% tensile elastic modulus of the side reinforcing rubber was measured using a spectrometer manufactured by Ueshima Seisakusho Co., Ltd. under the conditions of an initial load of 160 mg and a frequency of 52 Hz.
 1%引張弾性率を8MPa以下とする手法としては、特に限定されないが、例えば、サイド補強ゴムをゴムと充填材とを含む構成とし、サイド補強ゴムにおける前記充填材の分散状態を調整する手法;変性ポリブタジエンの適用などが挙げられる。 A method for setting the 1% tensile elastic modulus to 8 MPa or less is not particularly limited, but for example, a method for adjusting the dispersion state of the filler in the side reinforcing rubber by configuring the side reinforcing rubber to include rubber and a filler; Examples include application of modified polybutadiene.
・100%モジュラス
 サイド補強ゴムの100%モジュラスは、ランフラット走行耐久性の観点から、10MPa以上であり、10MPa以上15MPa以下であることが好ましく、11MPa以上14MPa以下であることがより好ましい。
100% Modulus The 100% modulus of the side reinforcing rubber is 10 MPa or more, preferably 10 MPa or more and 15 MPa or less, and more preferably 11 MPa or more and 14 MPa or less from the viewpoint of run-flat running durability.
 「100%モジュラス」とは、JISダンベル状3号形サンプルを用意し、JIS K6251(2010年)に準拠して、室温で500±50mm/minの速度で引張試験を行って測定した引張応力である。 "100% modulus" is the tensile stress measured by preparing a JIS dumbbell No. 3 sample and performing a tensile test at room temperature at a speed of 500 ± 50 mm / min in accordance with JIS K6251 (2010). is there.
 100%モジュラスを10MPa以上とする手法としては、特に限定されないが、例えば、サイド補強ゴムの架橋密度を調整する手法;加硫促進剤を増量する手法などが挙げられる。 The method for setting the 100% modulus to 10 MPa or more is not particularly limited, and examples thereof include a method of adjusting the crosslink density of the side reinforcing rubber; a method of increasing the amount of the vulcanization accelerator.
・50%モジュラス
 サイド補強ゴムの50%モジュラスは、ランフラット走行耐久性の観点から、3MPa以上であることが好ましく、4MPa以上6MPa以下であることがより好ましく、5MPa以上6MPa以下であることがさらに好ましい。
50% modulus The 50% modulus of the side reinforcing rubber is preferably 3 MPa or more, more preferably 4 MPa or more and 6 MPa or less, and further preferably 5 MPa or more and 6 MPa or less from the viewpoint of run-flat running durability. preferable.
 「50%モジュラス」とは、JISダンベル状3号形サンプルを用意し、JIS K6251(2010年)に準拠して、室温で500±50mm/minの速度で引張試験を行って測定した引張応力である。 "50% modulus" is the tensile stress measured by preparing a JIS dumbbell No. 3 sample and conducting a tensile test at room temperature at a speed of 500 ± 50 mm / min in accordance with JIS K6251 (2010). is there.
 50%モジュラスを3MPa以上とする手法としては、特に限定されないが、例えば、サイド補強ゴムの架橋密度を調整する手法;加硫促進剤を増量する手法;などが挙げられる。 The method for setting the 50% modulus to 3 MPa or more is not particularly limited, and examples thereof include a method of adjusting the crosslink density of the side reinforcing rubber; a method of increasing the vulcanization accelerator;
[ランフラットタイヤの具体例]
 本実施形態に係るランフラットタイヤについて、一例を挙げて図面に基づき説明する。
 図1には、本実施形態のランフラットタイヤ(以下、「タイヤ10」と称する。)のタイヤ幅方向及びタイヤ径方向に沿って切断した切断面(タイヤ周方向に沿った方向から見た断面)の片側が示されている。なお、図中矢印Wはタイヤ10の幅方向(つまり、タイヤ幅方向)を示し、矢印Rはタイヤ10の径方向(つまり、タイヤ径方向)を示す。ここでいうタイヤ幅方向とは、タイヤ10の回転軸と平行な方向を指している。また、タイヤ径方向とは、タイヤ10の回転軸と直交する方向をいう。また、符号CLはタイヤ10の赤道面(タイヤ赤道面)を示している。
[Specific examples of run-flat tires]
The run flat tire according to the present embodiment will be described with reference to the drawings with an example.
FIG. 1 is a cross-sectional view of a run-flat tire of the present embodiment (hereinafter referred to as “tire 10”) cut along the tire width direction and the tire radial direction (a cross section viewed from the direction along the tire circumferential direction). ) Is shown on one side. The arrow W in the drawing indicates the width direction of the tire 10 (that is, the tire width direction), and the arrow R indicates the radial direction of the tire 10 (that is, the tire radial direction). The tire width direction mentioned here refers to a direction parallel to the rotation axis of the tire 10. Further, the tire radial direction means a direction orthogonal to the rotation axis of the tire 10. Reference numeral CL indicates the equatorial plane of the tire 10 (tire equatorial plane).
 また、本実施形態では、タイヤ径方向に沿ってタイヤ10の回転軸に近い側を「タイヤ径方向内側」、タイヤ径方向に沿ってタイヤ10の回転軸から遠い側を「タイヤ径方向外側」と記載する。一方、タイヤ幅方向に沿ってタイヤ赤道面CLに近い側を「タイヤ幅方向内側」、タイヤ幅方向に沿ってタイヤ赤道面CLから遠い側を「タイヤ幅方向外側」と記載する。 In the present embodiment, the side closer to the rotation axis of the tire 10 along the tire radial direction is “the tire radial direction inner side”, and the side farther from the rotation axis of the tire 10 along the tire radial direction is the “tire radial direction outer side”. Enter. On the other hand, the side closer to the tire equatorial plane CL along the tire width direction is referred to as "tire width direction inner side", and the side farther from the tire equatorial plane CL along the tire width direction is referred to as "tire width direction outer side".
(タイヤ)
 図1は、標準リムであるリム30に組み付けて標準空気圧を充填したときのタイヤ10を示している。なお、ここでいう「標準リム」とは、JATMA(日本自動車タイヤ協会)のYear Book2018年版規定のリムを指す。また、上記標準空気圧とは、JATMA(日本自動車タイヤ協会)のYear Book2018年版の最大負荷能力に対応する空気圧である。
(tire)
FIG. 1 shows a tire 10 when assembled to a rim 30 which is a standard rim and filled with standard air pressure. The “standard rim” referred to here is a rim defined by JATMA (Japan Automobile Tire Manufacturer's Association) Year Book 2018 version. The standard air pressure is air pressure corresponding to the maximum load capacity of Year Book 2018 version of JATMA (Japan Automobile Tire Manufacturers Association).
 図1に示されるように、タイヤ10は、一対のビード部12と、ビード部12に埋設されたビードコア26に跨り端部がビードコア26に係止されたカーカス14と、ビード部12に埋設されビードコア26からタイヤ径方向外側へカーカス14の外面に沿って伸びるビードフィラー28と、タイヤサイド部22に設けられカーカス14の内面に沿ってタイヤ径方向に延びるサイド補強ゴム24と、カーカス14のタイヤ径方向外側に設けられたベルト層40と、ベルト層40のタイヤ径方向外側に設けられたトレッド20と、を備えている。なお、図1では、片側のビード部12のみが図示されている。 As shown in FIG. 1, a tire 10 is embedded in a pair of bead portions 12, a carcass 14 having a bead core 26 embedded in the bead portion 12, a carcass 14 whose end portion is locked to the bead core 26, and a bead portion 12. A bead filler 28 extending from the bead core 26 outward in the tire radial direction along the outer surface of the carcass 14, a side reinforcing rubber 24 provided in the tire side portion 22 and extending in the tire radial direction along the inner surface of the carcass 14, and a tire of the carcass 14. The belt layer 40 provided on the outer side in the radial direction and the tread 20 provided on the outer side in the tire radial direction of the belt layer 40 are provided. In FIG. 1, only the bead portion 12 on one side is shown.
 ベルト層40のタイヤ径方向外側には、タイヤ10の外周部を構成するトレッド20が設けられている。タイヤサイド部22は、ビード部12側のサイドウォール下部22Aと、トレッド20側のサイドウォール上部22Bとで構成され、ビード部12とトレッド20とを連結している。 The tread 20 that constitutes the outer peripheral portion of the tire 10 is provided on the outer side of the belt layer 40 in the tire radial direction. The tire side portion 22 includes a sidewall lower portion 22A on the bead portion 12 side and a sidewall upper portion 22B on the tread 20 side, and connects the bead portion 12 and the tread 20.
(ビード部)
 一対のビード部12には、ワイヤー束を含むビードコア26がそれぞれ埋設されている。これらのビードコア26には、カーカス14が跨っている。ビードコア26の断面の構造としては、円形や多角形状など、空気入りタイヤにおけるさまざまな構造を採用することができ、多角形としては例えば六角形を採用することができるが、本実施形態においては四角形とされている。
(Bead part)
A bead core 26 including a wire bundle is embedded in each of the pair of bead portions 12. The carcass 14 straddles these bead cores 26. As the cross-sectional structure of the bead core 26, various structures in a pneumatic tire such as a circular shape and a polygonal shape can be adopted, and as the polygonal shape, for example, a hexagonal shape can be adopted, but in the present embodiment, it is a quadrangle. It is said that.
 図2に示すように、ビードコア26は樹脂に被覆された1本のビードワイヤー26Aを複数回巻回し、積層して形成される。具体的には、樹脂に被覆されたビードワイヤー26Aをタイヤ幅方向に隙間無く巻回して一段目の列を形成し、以後同様にして隙間無くタイヤ径方向外側に積み重ね、断面形状が四角形状のビードコア26を形成する。このとき、タイヤ幅方向及び径方向に互いに隣接するビードワイヤー26Aの被覆樹脂同士は互いに接合される。これにより、ビードワイヤー26Aが被覆樹脂26Bで被覆されたビードコア26が形成される。 As shown in FIG. 2, the bead core 26 is formed by winding a single bead wire 26A coated with a resin a plurality of times and laminating it. Specifically, the bead wire 26A coated with resin is wound in the tire width direction without any gap to form a first-stage row, and thereafter, the beads are stacked on the outside in the tire radial direction without any gap, and the cross-sectional shape is quadrangular. The bead core 26 is formed. At this time, the coating resins of the bead wires 26A that are adjacent to each other in the tire width direction and the tire radial direction are joined together. As a result, the bead core 26 in which the bead wire 26A is coated with the coating resin 26B is formed.
 図1に示すように、ビード部12のカーカス14で囲まれた領域(つまり、カーカス14においてビードコア26周りにタイヤ幅方向内側に配置された部分の外側の領域)には、ビードコア26からタイヤ径方向外側へ延びる樹脂製のビードフィラー28が埋設されている。
 なお、図1に示すタイヤでは、樹脂製のビードフィラー28を用いているが、本実施形態はこれに限定されず、ゴム製のビードフィラーを用いていてもよい。
 なお、ゴム製のビードフィラーなどゴム製の部材を被覆樹脂26Bに直に接触させて用いる場合、又は、ゴム製の部材を他の部材を間に介して隣接させて用いる場合、ゴム材の破壊性が低下することを抑制する観点から、金属(例えば、コバルト等)及び加硫促進剤(例えば、N,N―ジシクロヘキシルベンゾチアゾール―2―スルフェンアミド:DCBS等)を含まない組成であることが好ましい。
As shown in FIG. 1, in the region of the bead portion 12 surrounded by the carcass 14 (that is, the region outside the portion of the carcass 14 that is disposed inside the tire width direction around the bead core 26), the tire diameter from the bead core 26 is reduced. A resin bead filler 28 extending outward in the direction is embedded.
Although the resin-made bead filler 28 is used in the tire shown in FIG. 1, the present embodiment is not limited to this, and a rubber-made bead filler may be used.
When a rubber member such as a rubber bead filler is used in direct contact with the coating resin 26B, or when a rubber member is adjacently placed with another member interposed therebetween, the rubber material is destroyed. From the viewpoint of suppressing the deterioration of the properties, the composition does not contain a metal (for example, cobalt etc.) and a vulcanization accelerator (for example, N, N-dicyclohexylbenzothiazole-2-sulfenamide: DCBS etc.). Is preferred.
(カーカス)
 カーカス14は、2枚のカーカスプライ14A、14Bによって構成されたタイヤ骨格部材である。カーカスプライ14Aはタイヤ赤道面CLにおいてタイヤ径方向外側に配置されるカーカスプライであり、カーカスプライ14Bはタイヤ径方向内側に配置されるカーカスプライである。カーカスプライ14A、14Bは、それぞれ複数本のコードを被覆ゴムで被覆して形成されている。
(Carcass)
The carcass 14 is a tire frame member including two carcass plies 14A and 14B. The carcass ply 14A is a carcass ply arranged on the tire equatorial plane CL on the outer side in the tire radial direction, and the carcass ply 14B is a carcass ply arranged on the inner side in the tire radial direction. Each of the carcass plies 14A and 14B is formed by coating a plurality of cords with coating rubber.
 このようにして形成されたカーカス14が、一方のビードコア26から他方のビードコア26へトロイド状に延びてタイヤの骨格を構成している。また、カーカス14の端部側は、ビードコア26に係止されている。具体的には、カーカス14は、端部側がビードコア26周りにタイヤ幅方向内側からタイヤ幅方向外側へ折り返されて係止されている。また、カーカス14の折り返された端部(つまり、端部14AE、14BE)は、タイヤサイド部22に配置されている。カーカスプライ14Aの端部14AEは、カーカスプライ14Bの端部14BEよりもタイヤ径方向内側に配置されている。 The carcass 14 thus formed extends in a toroidal shape from one bead core 26 to the other bead core 26 to form a tire skeleton. The end portion side of the carcass 14 is locked to the bead core 26. Specifically, the end portion side of the carcass 14 is folded back around the bead core 26 from the tire width direction inner side to the tire width direction outer side and locked. Further, the folded back end portions of the carcass 14 (that is, the end portions 14AE and 14BE) are arranged on the tire side portion 22. The end portion 14AE of the carcass ply 14A is arranged inside the end portion 14BE of the carcass ply 14B in the tire radial direction.
 なお、本実施形態では、カーカス14の端部をタイヤサイド部22に配置する構成としているが、本実施形態はこの構成に限定されず、例えばカーカス14の端部をベルト層40に配置する構成としてもよい。また、カーカス14の端部側を折り返さず、複数のビードコア26で挟み込んだり、ビードコア26に巻き付けた構造を採用したりすることもできる。本明細書において、カーカス14の端部をビードコア26に「係止」するとは、これらのような各種の実施形態を含むものとする。 In the present embodiment, the end portion of the carcass 14 is arranged on the tire side portion 22, but the present embodiment is not limited to this structure. For example, the end portion of the carcass 14 is arranged on the belt layer 40. May be Alternatively, the end portion side of the carcass 14 may be sandwiched between a plurality of bead cores 26 or may be wound around the bead cores 26 without being folded back. In this specification, "locking" the end of the carcass 14 to the bead core 26 includes various embodiments such as these.
 なお、本実施形態においてカーカス14はラジアルカーカスとされている。また、カーカス14の材質は特に限定されず、レーヨン、ナイロン、ポリエチレンナフタレート(PEN)、ポリエチレンテレフタレート(PET)、アラミド、ガラス繊維、カーボン繊維、スチール等が採用できる。なお、軽量化の点からは、有機繊維コードが好ましい。また、カーカスの打ち込み数は20~60本/50mmの範囲とされているが、この範囲に限定されるのもではない。 Note that, in the present embodiment, the carcass 14 is a radial carcass. The material of the carcass 14 is not particularly limited, and rayon, nylon, polyethylene naphthalate (PEN), polyethylene terephthalate (PET), aramid, glass fiber, carbon fiber, steel or the like can be used. From the viewpoint of weight reduction, the organic fiber cord is preferable. Further, the number of driving the carcass is set in the range of 20 to 60 pieces / 50 mm, but the number is not limited to this range.
(ベルト層)
 カーカス14のタイヤ径方向外側には、ベルト層40が配設されている。図3に示すように、ベルト層40は、樹脂被覆コード42がカーカス14の外周面にタイヤ周方向に沿って螺旋状に巻かれて形成されたリング状の箍である。
(Belt layer)
A belt layer 40 is disposed on the outer side of the carcass 14 in the tire radial direction. As shown in FIG. 3, the belt layer 40 is a ring-shaped broom formed by spirally winding the resin-coated cord 42 on the outer peripheral surface of the carcass 14 along the tire circumferential direction.
 樹脂被覆コード42は、ベルト層40が、タイヤ周方向及びタイヤ幅方向に沿った環状面から、この環状面の外側(例えば図3に矢印C1、C2で示した方向)へ変形しにくくなるよう、補強コード42Cを被覆樹脂42Sで被覆して構成されている。樹脂被覆コード42は、図1に示すように、断面が略正方形状とされている。樹脂被覆コード42のタイヤ径方向の内周部分の被覆樹脂42Sは、カーカス14の外周面にゴムや接着剤を介して接合されて構成されている。また、樹脂被覆コード42のタイヤ幅方向に互いに隣接する被覆樹脂42S同士は、熱溶着や接着剤などで一体的に接合されている。これにより、被覆樹脂42Sにて被覆された補強コード42Cを有するベルト層40(具体的には樹脂被覆ベルト層)が形成される。 The resin coated cord 42 makes it difficult for the belt layer 40 to be deformed from an annular surface along the tire circumferential direction and the tire width direction to the outside of the annular surface (for example, the directions indicated by arrows C1 and C2 in FIG. 3). The reinforcing cord 42C is coated with the coating resin 42S. As shown in FIG. 1, the resin-coated cord 42 has a substantially square cross section. The coating resin 42S on the inner peripheral portion in the tire radial direction of the resin coating cord 42 is configured to be bonded to the outer peripheral surface of the carcass 14 via rubber or an adhesive. Further, the coating resins 42S that are adjacent to each other in the tire width direction of the resin coating cord 42 are integrally joined by heat welding, an adhesive, or the like. As a result, the belt layer 40 (specifically, a resin-coated belt layer) having the reinforcing cord 42C coated with the coating resin 42S is formed.
 本実施形態では、樹脂被覆コード42は、1本の補強コード42Cを被覆樹脂42Sで被覆して構成しているが、複数本の補強コード42Cを被覆樹脂42Sで被覆して構成してもよい。 In the present embodiment, the resin coated cord 42 is configured by coating one reinforcing cord 42C with the coating resin 42S, but may be configured by coating a plurality of reinforcing cords 42C with the coating resin 42S. ..
 本実施形態のビードコア26における被覆樹脂26B、ビードフィラー28、及びベルト層40における被覆樹脂42Sに用いられる樹脂材料は、熱可塑性エラストマーとされている。但し本実施形態はこれに限らず、例えば樹脂材料として、熱可塑性樹脂、熱硬化性樹脂、及び(メタ)アクリル系樹脂、EVA樹脂、塩化ビニル樹脂、フッ素系樹脂、シリコーン系樹脂等の汎用樹脂のほか、エンジニアリングプラスチック等を用いることができる。なお、ここでの樹脂材料には、ゴムは含まれない。エンジニアリングプラスチックは、スーパーエンジニアリングプラスチックを含む。 The resin material used for the coating resin 26B of the bead core 26, the bead filler 28, and the coating resin 42S of the belt layer 40 of the present embodiment is a thermoplastic elastomer. However, the present embodiment is not limited to this, and examples of the resin material include thermoplastic resins, thermosetting resins, and general-purpose resins such as (meth) acrylic resins, EVA resins, vinyl chloride resins, fluorine resins, and silicone resins. Besides, engineering plastics and the like can be used. Note that the resin material here does not include rubber. Engineering plastics include super engineering plastics.
 被覆樹脂26B、ビードフィラー28及び被覆樹脂42Sに用いられる樹脂材料については、後のビードコアの説明における被覆樹脂の項目で詳述する。 The resin materials used for the coating resin 26B, the bead filler 28 and the coating resin 42S will be described in detail in the section of the coating resin in the description of the bead core later.
 本実施形態では、ベルト層40における被覆樹脂42Sは樹脂材料を用いて形成されているが、ベルト層40における補強コード42Cを覆う被覆層は、ゴム材で形成されていてもよい。なお、ゴム製の被覆層を有するベルト層40を用いる場合、ゴム材の破壊性が低下することを抑制する観点から、前記被覆層は、金属(例えば、コバルト等)及び加硫促進剤(例えば、N,N―ジシクロヘキシルベンゾチアゾール―2―スルフェンアミド:DCBS等)を含まない組成であることが好ましい。
 また、前記被覆層に隣接するゴム製の部材(例えば、クッション性を付与する目的で設けられるトレッドアンダークッション、ベルトアンダークッション等)においても、金属(例えば、コバルト等)及び加硫促進剤(例えば、N,N―ジシクロヘキシルベンゾチアゾール―2―スルフェンアミド:DCBS等)を含まない組成であることが好ましい。
In the present embodiment, the coating resin 42S of the belt layer 40 is made of a resin material, but the coating layer of the belt layer 40 covering the reinforcing cord 42C may be made of a rubber material. When the belt layer 40 having a rubber coating layer is used, the coating layer is a metal (for example, cobalt) and a vulcanization accelerator (for example, from the viewpoint of suppressing deterioration of the destructiveness of the rubber material). , N, N-dicyclohexylbenzothiazole-2-sulfenamide: DCBS, etc.) is preferred.
Further, also in a rubber member adjacent to the coating layer (for example, a tread under cushion, a belt under cushion provided for the purpose of providing cushioning properties), a metal (for example, cobalt or the like) and a vulcanization accelerator (for example, , N, N-dicyclohexylbenzothiazole-2-sulfenamide: DCBS, etc.) is preferred.
 また、本実施形態のビードコア26におけるビードワイヤー26A、及びベルト層40における補強コード42Cは、スチールコードとされている。このスチールコードは、スチールを主成分とし、炭素、マンガン、ケイ素、リン、硫黄、銅、クロムなど種々の微量含有物を含んでいてもよい。 Also, the bead wire 26A in the bead core 26 and the reinforcing cord 42C in the belt layer 40 of the present embodiment are steel cords. This steel cord is mainly composed of steel and may contain various trace contents such as carbon, manganese, silicon, phosphorus, sulfur, copper and chromium.
 なお、本実施形態はこれに限らず、ビードコア26におけるビードワイヤー26A、ベルト層40における補強コード42Cとしては、スチールコードに代えて、モノフィラメントコードや、複数のフィラメントを撚り合せたコードを用いることができる。撚り構造も種々の設計が採用可能であり、断面構造、撚りピッチ、撚り方向、隣接するフィラメント同士の距離も様々なものが使用できる。さらには異なる材質のフィラメントを縒り合せたコードを採用することもで、断面構造としても特に限定されず、単撚り、層撚り、複撚りなど様々な撚り構造を取ることができる。 The present embodiment is not limited to this, and as the bead wire 26A in the bead core 26 and the reinforcing cord 42C in the belt layer 40, a monofilament cord or a cord formed by twisting a plurality of filaments may be used instead of the steel cord. it can. Various designs can be adopted for the twist structure, and various cross-sectional structures, twist pitches, twist directions, and distances between adjacent filaments can be used. Furthermore, by adopting a cord in which filaments of different materials are twisted together, the cross-sectional structure is not particularly limited, and various twist structures such as single twist, layer twist, and multiple twist can be adopted.
(トレッド)
 ベルト層40のタイヤ径方向外側には、トレッド20が設けられている。トレッド20は、走行中に路面に接地する部位であり、トレッド20の踏面には、タイヤ周方向に延びる周方向溝50が複数本形成されている。周方向溝50の形状や本数は、タイヤ10に要求される排水性や操縦安定性等の性能に応じて適宜設定される。
(tread)
A tread 20 is provided outside the belt layer 40 in the tire radial direction. The tread 20 is a portion that comes into contact with the road surface during traveling, and a plurality of circumferential grooves 50 extending in the tire circumferential direction are formed on the tread surface of the tread 20. The shape and the number of the circumferential grooves 50 are appropriately set according to performances such as drainage and steering stability required for the tire 10.
(サイド補強ゴム)
 タイヤサイド部22は、タイヤ径方向に延びてビード部12とトレッド20とをつなぎ、ランフラット走行時にタイヤ10に作用する荷重を負担できるように構成されている。このタイヤサイド部22においてカーカス14のタイヤ幅方向内側には、タイヤサイド部22を補強するサイド補強ゴム24が設けられている。サイド補強ゴム24は、パンクなどでタイヤ10の内圧が減少した場合に、車両及び乗員の重量を支えた状態で所定の距離を走行させるための補強ゴムである。
(Side reinforcement rubber)
The tire side portion 22 is configured to extend in the tire radial direction and connect the bead portion 12 and the tread 20 to bear the load acting on the tire 10 during run flat traveling. In the tire side portion 22, a side reinforcing rubber 24 that reinforces the tire side portion 22 is provided inside the carcass 14 in the tire width direction. The side reinforcing rubber 24 is a reinforcing rubber for traveling a predetermined distance while supporting the weight of the vehicle and an occupant when the internal pressure of the tire 10 decreases due to puncture or the like.
 サイド補強ゴム24は、1種類のゴム材で形成されていてもよく、複数のゴム材で形成されていてもよい。 The side reinforcing rubber 24 may be formed of one type of rubber material or may be formed of a plurality of rubber materials.
 このサイド補強ゴム24は、ゴムが主成分であれば、他に充填材、短繊維、樹脂等の材料を含んでもよく、充填材を含むことが好ましい。さらに、ランフラット走行時の耐久力を高めるため、サイド補強ゴム24を構成するゴム材として、硬さが70~85のゴム材を含んでもよい。ここでいうゴムの硬さとは、JIS K6253で規定される、タイプAデュロメータにより測定される硬さを指す。さらに、粘弾性スペクトロメータ(例えば、東洋精機製作所製スペクトロメータ)を用いて周波数20Hz、初期歪み10%、動歪み±2%、温度60℃の条件で測定した損失係数tanδが0.10以下の物性を有するゴム材を含んでもよい。なお、サイド補強ゴム24に用いられるゴム組成物の詳細については後述する。 The side reinforcing rubber 24 may contain other materials such as fillers, short fibers, and resins as long as rubber is the main component, and preferably includes fillers. Further, in order to increase durability during run-flat traveling, a rubber material having a hardness of 70 to 85 may be included as the rubber material forming the side reinforcing rubber 24. The hardness of the rubber here means the hardness measured by a type A durometer, which is defined by JIS K6253. Furthermore, a loss coefficient tan δ measured using a viscoelasticity spectrometer (for example, a Toyo Seiki Seisakusho spectrometer) at a frequency of 20 Hz, an initial strain of 10%, a dynamic strain of ± 2%, and a temperature of 60 ° C. is 0.10 or less. A rubber material having physical properties may be included. The details of the rubber composition used for the side reinforcing rubber 24 will be described later.
 サイド補強ゴム24は、カーカス14の内面に沿ってビード部12側からトレッド20側へタイヤ径方向に延びている。また、サイド補強ゴム24は、中央部分からビード部12側及びトレッド20側に向かうにつれて厚みが減少する形状、例えば、略三日月形状とされている。なお、ここでいうサイド補強ゴム24の厚みとは、カーカス14の法線に沿った長さを指す。 The side reinforcing rubber 24 extends in the tire radial direction from the bead portion 12 side to the tread 20 side along the inner surface of the carcass 14. Further, the side reinforcing rubber 24 has a shape in which the thickness decreases from the central portion toward the bead portion 12 side and the tread 20 side, for example, a substantially crescent shape. The thickness of the side reinforcing rubber 24 referred to here means the length along the normal line of the carcass 14.
 サイド補強ゴム24のビード部12側の下端部24Bは、カーカス14を挟んでビードフィラー28とタイヤ幅方向から見て重なっている。また、サイド補強ゴム24のトレッド20側の上端部24Aは、ベルト層40とタイヤ径方向から見て重なっている。具体的には、サイド補強ゴム24の上端部24Aは、カーカス14を挟んでベルト層40と重なっている。換言すれば、サイド補強ゴム24の上端部24Aは、ベルト層40のタイヤ幅方向端部40Eよりもタイヤ幅方向内側に位置している。 The lower end portion 24B of the side reinforcing rubber 24 on the bead portion 12 side overlaps the bead filler 28 with the carcass 14 in between when viewed in the tire width direction. Further, the upper end portion 24A of the side reinforcing rubber 24 on the tread 20 side overlaps with the belt layer 40 when viewed in the tire radial direction. Specifically, the upper end portion 24A of the side reinforcing rubber 24 overlaps the belt layer 40 with the carcass 14 interposed therebetween. In other words, the upper end portion 24A of the side reinforcing rubber 24 is located inside the tire width direction end portion 40E of the belt layer 40 in the tire width direction.
 本実施形態に係るタイヤ10では、ビードコア26が、ビードワイヤー26Aを被覆樹脂26Bで被覆して形成されている。これにより、ビードワイヤー26Aをゴムで被覆する場合と比較して、ビードコア26のねじり剛性が高くなる。これによりビード部12がリム30から外れにくくなるため、ランフラット耐久性を向上させることができる。 In the tire 10 according to the present embodiment, the bead core 26 is formed by coating the bead wire 26A with the coating resin 26B. As a result, the torsional rigidity of the bead core 26 becomes higher than that in the case where the bead wire 26A is covered with rubber. This makes it difficult for the bead portion 12 to come off from the rim 30, so that the run flat durability can be improved.
 本実施形態においてビードコア26は、被覆樹脂26Bに被覆された1本のビードワイヤー26Aを巻回し、積層して形成されるものとしたが、本実施形態はこれに限らない。例えば図4に示すビードコア60のように、複数本のビードワイヤー60Aを被覆樹脂60Bで被覆したワイヤー束を巻回させて積層して形成してもよい。この場合、積層時の界面を熱溶着で融着させる。1つのワイヤー束に含まれるビードワイヤー60Aの数は3本に限定されるものではなく、2本でも4本以上でもよい。また、ワイヤー束を積層させる各層におけるワイヤー束の数は、図4に示されるように1束でもよいし、タイヤ幅方向に複数隣接させて2束以上としてもよい。 In the present embodiment, the bead core 26 is formed by winding and stacking one bead wire 26A coated with the coating resin 26B, but the present embodiment is not limited to this. For example, like a bead core 60 shown in FIG. 4, a wire bundle in which a plurality of bead wires 60A are coated with a coating resin 60B may be wound and laminated. In this case, the interface during lamination is fused by heat welding. The number of bead wires 60A included in one wire bundle is not limited to three, and may be two or four or more. Further, the number of wire bundles in each layer in which the wire bundles are laminated may be one as shown in FIG. 4 or may be two or more bundles adjacent to each other in the tire width direction.
 本実施形態においては、ビードフィラー28を樹脂製としたが、本実施形態はこれに限らず、例えば、ゴムで形成していてもよい。 In the present embodiment, the bead filler 28 is made of resin, but the present embodiment is not limited to this, and may be made of rubber, for example.
 本実施形態においてベルト層40は、1本の補強コード42Cを被覆樹脂42Sで被覆して形成された略正方形状の樹脂被覆コード42を、カーカス14の外周面に巻いて形成したが、本実施形態はこれに限らない。 In the present embodiment, the belt layer 40 is formed by winding the substantially square resin-coated cord 42 formed by coating one reinforcing cord 42C with the coating resin 42S around the outer peripheral surface of the carcass 14. The form is not limited to this.
 例えば図5に示すベルト層70のように、複数本の補強コード72Cを被覆樹脂42Sで被覆して形成された、断面が略平行四辺形状の樹脂被覆コード72を、カーカス14の外周面に巻いて形成してもよい。 For example, as in a belt layer 70 shown in FIG. 5, a resin-coated cord 72 having a substantially parallelogram-shaped cross section formed by coating a plurality of reinforcing cords 72C with a coating resin 42S is wound around the outer peripheral surface of the carcass 14. You may form it.
 本実施形態に係るランフラットタイヤについて、各部材及び材料に沿って詳細に説明する。なお、符号は省略する。 The runflat tire according to this embodiment will be described in detail along with each member and material. The reference numerals are omitted.
[ビードコア]
(ビードワイヤー)
 ビードワイヤーは特に制限されず、例えば従来のゴム製タイヤに用いられる金属製のコード、有機樹脂製のコード等を適宜用いることができる。例えば、金属繊維や有機繊維等のモノフィラメント(つまり、単線)、又はこれらの繊維を撚ったマルチフィラメント(つまり、撚り線)で構成される。中でも、金属製のコードが好ましく、より好ましくは鉄製のコード、つまりスチールコードである。
[Bead core]
(Bead wire)
The bead wire is not particularly limited, and for example, a metal cord used for a conventional rubber tire, an organic resin cord, or the like can be appropriately used. For example, it is composed of a monofilament (that is, a single wire) such as a metal fiber or an organic fiber, or a multifilament (that is, a twisted wire) obtained by twisting these fibers. Of these, metal cords are preferable, and iron cords, that is, steel cords are more preferable.
 本実施形態におけるビードワイヤーとしては、タイヤの耐久性をより向上させる観点からは、モノフィラメント(つまり、単線)が好ましい。ビードワイヤーの断面形状、サイズ(例えば直径)等は、特に限定されるものではなく、所望のタイヤに適したものを適宜選定して用いることができる。
 ビードワイヤーが複数本のコードの撚り線である場合、複数本のコードの数としては、例えば2本~10本が挙げられ、5本~9本が好ましい。
As the bead wire in the present embodiment, a monofilament (that is, a single wire) is preferable from the viewpoint of further improving the durability of the tire. The cross-sectional shape, size (for example, diameter) of the bead wire is not particularly limited, and one suitable for a desired tire can be appropriately selected and used.
When the bead wire is a stranded wire of a plurality of cords, the number of the plurality of cords is, for example, 2 to 10, and preferably 5 to 9.
 ビードワイヤーの表面は、接着層との接着性の観点から、Cu、Zn、Fe、Al、及びCoからなる群より選択される少なくとも1種の金属元素を主成分とする金属材料で構成されていることが好ましい。
 例えば、Fe元素を主成分とする構成としては、スチールコードが挙げられる。
 また、Cu、Zn、Al、及びCoからなる群より選択される少なくとも1種の金属元素を主成分とする構成としては、スチールコードの表面がめっきにより被覆された構成が挙げられる。
The surface of the bead wire is made of a metal material containing at least one metal element selected from the group consisting of Cu, Zn, Fe, Al, and Co as a main component from the viewpoint of adhesiveness with the adhesive layer. Is preferred.
For example, a steel cord can be given as an example of a structure containing Fe as a main component.
Further, as a structure containing at least one metal element selected from the group consisting of Cu, Zn, Al, and Co as a main component, a structure in which the surface of the steel cord is coated with plating can be mentioned.
 コードの表面へのめっきの形成方法は、特に限定されず、公知の方法により行うことができる。例えば、めっき素線の芯線となるコードを、例えば銅めっき浴、亜鉛めっき浴等にそれぞれ通過浸漬してめっき処理が行われる。例えば、銅めっきを形成する場合には、シアン化銅浴、ホウフッ化銅浴、硫酸銅浴等により処理され、また亜鉛めっきの場合、シアン化亜鉛浴、塩化亜鉛浴、ジンケート浴等により処理される。めっき浴を通過浸漬させたコードに熱拡散処理を施してもよい。またその後に、所定のめっき厚さとする観点から、コードを伸線加工してもよい。 The method for forming the plating on the surface of the cord is not particularly limited, and a known method can be used. For example, the cord, which is the core wire of the plating element wire, is passed through and immersed in, for example, a copper plating bath, a zinc plating bath, etc., to perform the plating treatment. For example, in the case of forming copper plating, it is treated with a copper cyanide bath, copper borofluoride bath, copper sulfate bath or the like, and in the case of zinc plating, it is treated with a zinc cyanide bath, zinc chloride bath, zincate bath or the like. It The cord dipped in the plating bath may be subjected to heat diffusion treatment. After that, the cord may be wire-drawn from the viewpoint of obtaining a predetermined plating thickness.
 めっきの付着量としては、例えばめっきの平均厚さとして、0.1μm以上10μm以下が好ましく、0.2μm以上8.0μm以下がより好ましい。なお、めっき厚さは走査型電子顕微鏡(SEM)による観察により測定することができる。 The amount of plating adhered is preferably 0.1 μm or more and 10 μm or less, more preferably 0.2 μm or more and 8.0 μm or less, for example, as the average thickness of plating. The plating thickness can be measured by observation with a scanning electron microscope (SEM).
 ビードワイヤーの太さ(つまり平均直径)は、タイヤの耐内圧性と軽量化とを両立する観点から、0.3mm~3mmであることが好ましく、0.5mm~2mmであることがより好ましい。ビードワイヤーの太さは、任意に選択した5箇所の断面(ビードワイヤーの長さ方向に対する垂直断面)において測定した太さの数平均値とする。 The thickness (that is, the average diameter) of the bead wire is preferably 0.3 mm to 3 mm, and more preferably 0.5 mm to 2 mm, from the viewpoint of achieving both resistance to internal pressure and weight reduction of the tire. The thickness of the bead wire is the number average value of the thicknesses measured in five arbitrarily selected cross sections (cross sections perpendicular to the length direction of the bead wire).
 ビードワイヤー自体の強力は、通常1000N~3000Nであり、1200N~2800Nであることが好ましく、1300N~2700Nであることがより好ましい。なお、ビードワイヤーの強力は、引張試験機にてZWICK型チャックを用いて応力-歪曲線を描き、その破断点から算出する。 The strength of the bead wire itself is usually 1000 N to 3000 N, preferably 1200 N to 2800 N, and more preferably 1300 N to 2700 N. The strength of the bead wire is calculated from the breaking point by drawing a stress-strain curve using a ZWICK type chuck with a tensile tester.
 ビードワイヤー自体の破断伸び(つまり引張破断伸び)は、通常0.1%~15%であることが好ましく、1%~15%であることがより好ましく、1%~10%であることがさらに好ましい。ビードワイヤーの引張破断伸びは、引張試験機にてZWICK型チャックを用いて応力-歪曲線を描き、歪から求めることができる。 The elongation at break (that is, tensile elongation at break) of the bead wire itself is usually preferably 0.1% to 15%, more preferably 1% to 15%, and further preferably 1% to 10%. preferable. The tensile breaking elongation of the bead wire can be obtained from the strain by drawing a stress-strain curve using a ZWICK type chuck with a tensile tester.
(接着層)
 本実施形態に係るビードコアは、ビードワイヤーと被覆樹脂層との間に接着層を有していてもよい。接着層は、接着剤として樹脂を含む層であることが好ましく、この樹脂としては熱可塑性樹脂及び熱可塑性エラストマーが好ましい。
(Adhesive layer)
The bead core according to the present embodiment may have an adhesive layer between the bead wire and the coating resin layer. The adhesive layer is preferably a layer containing a resin as an adhesive, and the resin is preferably a thermoplastic resin or a thermoplastic elastomer.
 熱可塑性樹脂としては、例えば、ポリエステル系熱可塑性樹脂、ポリアミド系熱可塑性樹脂、ポリスチレン系熱可塑性樹脂、ポリウレタン系熱可塑性樹脂、及びオレフィン系熱可塑性樹脂(例えばポリエチレン樹脂、ポリプロピレン樹脂等)等が挙げられる。
 熱可塑性エラストマーとしては、例えば、ポリエステル系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマー、ポリスチレン系熱可塑性エラストマー、ポリウレタン系熱可塑性エラストマー、及びオレフィン系熱可塑性エラストマー等が挙げられる。
Examples of the thermoplastic resin include polyester-based thermoplastic resin, polyamide-based thermoplastic resin, polystyrene-based thermoplastic resin, polyurethane-based thermoplastic resin, and olefin-based thermoplastic resin (for example, polyethylene resin, polypropylene resin, etc.) and the like. Be done.
Examples of the thermoplastic elastomer include polyester-based thermoplastic elastomers, polyamide-based thermoplastic elastomers, polystyrene-based thermoplastic elastomers, polyurethane-based thermoplastic elastomers, and olefin-based thermoplastic elastomers.
 中でも、接着剤として用いられる樹脂には、ポリエステル系熱可塑性エラストマー、ポリエステル系熱可塑性樹脂、オレフィン系熱可塑性エラストマー、オレフィン系熱可塑性樹脂、ポリアミド系熱可塑性エラストマー、及びポリアミド系熱可塑性樹脂からなる群より選択される少なくとも1種を含むことが好ましく、ポリエステル系熱可塑性エラストマーを含むことがより好ましい。 Among them, the resin used as the adhesive, the group consisting of polyester-based thermoplastic elastomer, polyester-based thermoplastic resin, olefin-based thermoplastic elastomer, olefin-based thermoplastic resin, polyamide-based thermoplastic elastomer, and polyamide-based thermoplastic resin It is preferable to include at least one selected from the above, and it is more preferable to include a polyester-based thermoplastic elastomer.
 また、接着剤として用いられる樹脂に、酸変性された熱可塑性材料を用いることも好ましい。酸変性熱可塑性材料とは、熱可塑性樹脂又は熱可塑性エラストマーの分子の一部に酸基が導入された熱可塑性材料である。酸基としては、カルボキシ基(-COOH)及びその無水物基、硫酸基、燐酸基等が挙げられ、中でもカルボキシ基及びその無水物基が好ましい。 It is also preferable to use an acid-modified thermoplastic material for the resin used as the adhesive. The acid-modified thermoplastic material is a thermoplastic material in which an acid group is introduced into a part of the molecule of a thermoplastic resin or a thermoplastic elastomer. Examples of the acid group include a carboxy group (—COOH) and its anhydride group, a sulfuric acid group, a phosphoric acid group and the like, and among them, a carboxy group and its anhydride group are preferable.
 接着層は、熱可塑性樹脂及び熱可塑性エラストマーからなる群より選択される少なくとも1種を用いてもよい。熱可塑性樹脂は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。熱可塑性エラストマーは、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。 The adhesive layer may use at least one selected from the group consisting of a thermoplastic resin and a thermoplastic elastomer. The thermoplastic resins may be used alone or in combination of two or more. The thermoplastic elastomer may be used alone or in combination of two or more.
 接着層に含まれる樹脂の含有率は、接着層全体の50質量%以上であることが好ましく、60質量%以上であることがより好ましく、75質量%以上であることがさらに好ましい。 The content of the resin contained in the adhesive layer is preferably 50% by mass or more of the entire adhesive layer, more preferably 60% by mass or more, and further preferably 75% by mass or more.
(被覆樹脂層)
 本実施形態に係るビードコアは、ビードワイヤーを被覆し樹脂組成物により形成される被覆樹脂層を有する。ビードコアが前記接着層を有する場合、被覆樹脂層は、接着層の上に設ける。
(Coating resin layer)
The bead core according to the present embodiment has a coating resin layer that covers the bead wire and is formed of a resin composition. When the bead core has the adhesive layer, the coating resin layer is provided on the adhesive layer.
 樹脂組成物は、熱可塑性エラストマーを含む。 The resin composition contains a thermoplastic elastomer.
・熱可塑性エラストマー
 熱可塑性エラストマーとしては、例えば、ポリアミド系熱可塑性エラストマー、ポリスチレン系熱可塑性エラストマー、ポリウレタン系熱可塑性エラストマー、オレフィン系熱可塑性エラストマー、ポリエステル系熱可塑性エラストマー等が挙げられる。熱可塑性エラストマーは、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
-Thermoplastic Elastomer Examples of the thermoplastic elastomer include a polyamide-based thermoplastic elastomer, a polystyrene-based thermoplastic elastomer, a polyurethane-based thermoplastic elastomer, an olefin-based thermoplastic elastomer, and a polyester-based thermoplastic elastomer. The thermoplastic elastomer may be used alone or in combination of two or more.
-ポリアミド系熱可塑性エラストマー-
 ポリアミド系熱可塑性エラストマーとは、結晶性で融点の高いハードセグメントを形成するポリマーと非晶性でガラス転移温度の低いソフトセグメントを形成するポリマーとを有する共重合体からなる熱可塑性の材料であって、ハードセグメントを形成するポリマーの主鎖にアミド結合(-CONH-)を有するものを意味する。
 ポリアミド系熱可塑性エラストマーとしては、例えば、少なくともポリアミドが結晶性で融点の高いハードセグメントを形成し、他のポリマー(例えば、ポリエステル、ポリエーテル等)が非晶性でガラス転移温度の低いソフトセグメントを形成している材料が挙げられる。また、ポリアミド系熱可塑性エラストマーは、ハードセグメント及びソフトセグメントの他に、ジカルボン酸等の鎖長延長剤を用いて形成されてもよい。
 ポリアミド系熱可塑性エラストマーとしては、具体的には、JIS K6418:2007に規定されるアミド系熱可塑性エラストマー(TPA)等や、特開2004-346273号公報に記載のポリアミド系エラストマー等を挙げることができる。
-Polyamide thermoplastic elastomer-
A thermoplastic polyamide-based elastomer is a thermoplastic material composed of a copolymer having a polymer that forms a crystalline and hard segment with a high melting point and an amorphous polymer that forms a soft segment with a low glass transition temperature. Means a polymer having an amide bond (—CONH—) in the main chain of a polymer forming a hard segment.
As the thermoplastic polyamide-based elastomer, for example, at least polyamide is a crystalline soft segment having a high melting point, and another polymer (for example, polyester, polyether, etc.) is a soft segment having a low glass transition temperature and being amorphous. The forming material is mentioned. In addition to the hard segment and the soft segment, the polyamide-based thermoplastic elastomer may be formed using a chain extender such as dicarboxylic acid.
Specific examples of the polyamide-based thermoplastic elastomer include amide-based thermoplastic elastomer (TPA) defined in JIS K6418: 2007 and polyamide-based elastomers described in JP-A 2004-346273. it can.
 ポリアミド系熱可塑性エラストマーにおいて、ハードセグメントを形成するポリアミドとしては、例えば、下記一般式(1)又は一般式(2)で表されるモノマーによって生成されるポリアミドを挙げることができる。 In the polyamide-based thermoplastic elastomer, examples of the polyamide that forms the hard segment include a polyamide formed by a monomer represented by the following general formula (1) or (2).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 上記一般式(1)中、Rは、炭素数2~20の炭化水素の分子鎖(例えば炭素数2~20のアルキレン基)を表す。 In the above general formula (1), R 1 represents a hydrocarbon molecular chain having 2 to 20 carbon atoms (for example, an alkylene group having 2 to 20 carbon atoms).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 上記一般式(2)中、Rは、炭素数3~20の炭化水素の分子鎖(例えば炭素数3~20のアルキレン基)を表す。 In the general formula (2), R 2 represents a hydrocarbon molecular chain having 3 to 20 carbon atoms (for example, an alkylene group having 3 to 20 carbon atoms).
 一般式(1)中、Rとしては、炭素数3~18の炭化水素の分子鎖、例えば炭素数3~18のアルキレン基が好ましく、炭素数4~15の炭化水素の分子鎖、例えば炭素数4~15のアルキレン基がさらに好ましく、炭素数10~15の炭化水素の分子鎖、例えば炭素数10~15のアルキレン基が特に好ましい。
 また、一般式(2)中、Rとしては、炭素数3~18の炭化水素の分子鎖、例えば炭素数3~18のアルキレン基が好ましく、炭素数4~15の炭化水素の分子鎖、例えば炭素数4~15のアルキレン基がさらに好ましく、炭素数10~15の炭化水素の分子鎖、例えば炭素数10~15のアルキレン基が特に好ましい。
 一般式(1)又は一般式(2)で表されるモノマーとしては、ω-アミノカルボン酸又はラクタムが挙げられる。また、ハードセグメントを形成するポリアミドとしては、これらω-アミノカルボン酸又はラクタムの重縮合体、ジアミンとジカルボン酸との共縮重合体等が挙げられる。
In the general formula (1), R 1 is preferably a hydrocarbon molecular chain having 3 to 18 carbon atoms, for example, an alkylene group having 3 to 18 carbon atoms, and a molecular chain of hydrocarbon having 4 to 15 carbon atoms, for example, carbon An alkylene group having 4 to 15 carbon atoms is more preferable, and a hydrocarbon molecular chain having 10 to 15 carbon atoms, for example, an alkylene group having 10 to 15 carbon atoms is particularly preferable.
Further, in the general formula (2), as R 2 , a hydrocarbon molecular chain having 3 to 18 carbon atoms, for example, an alkylene group having 3 to 18 carbon atoms is preferable, and a molecular chain of hydrocarbon having 4 to 15 carbon atoms, For example, an alkylene group having 4 to 15 carbon atoms is more preferable, and a hydrocarbon molecular chain having 10 to 15 carbon atoms, for example, an alkylene group having 10 to 15 carbon atoms is particularly preferable.
Examples of the monomer represented by the general formula (1) or the general formula (2) include ω-aminocarboxylic acid and lactam. Examples of polyamides that form the hard segment include polycondensates of these ω-aminocarboxylic acids or lactams, and copolycondensates of diamines and dicarboxylic acids.
 ω-アミノカルボン酸としては、6-アミノカプロン酸、7-アミノヘプタン酸、8-アミノオクタン酸、10-アミノカプリン酸、11-アミノウンデカン酸、12-アミノドデカン酸等の炭素数5~20の脂肪族ω-アミノカルボン酸等を挙げることができる。また、ラクタムとしては、ラウリルラクタム、ε-カプロラクタム、ウデカンラクタム、ω-エナントラクタム、2-ピロリドン等の炭素数5~20の脂肪族ラクタム等を挙げることができる。
 ジアミンとしては、例えば、エチレンジアミン、トリメチレンジアミン、テトラメチレンジアミン、ヘキサメチレンジアミン、ヘプタメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、デカメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミン、2,2,4-トリメチルヘキサメチレンジアミン、2,4,4-トリメチルヘキサメチレンジアミン、3-メチルペンタメチレンジアミン、メタキシレンジアミン等の炭素数2~20の脂肪族ジアミン等のジアミン化合物を挙げることができる。
 また、ジカルボン酸は、HOOC-(R-COOH(R:炭素数3~20の炭化水素の分子鎖、m:0又は1)で表すことができ、例えば、シュウ酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカン二酸等の炭素数2~20の脂肪族ジカルボン酸を挙げることができる。
 ハードセグメントを形成するポリアミドとしては、ラウリルラクタム、ε-カプロラクタム、又はウデカンラクタムを開環重縮合したポリアミドを好ましく用いることができる。
Examples of ω-aminocarboxylic acid include 6-aminocaproic acid, 7-aminoheptanoic acid, 8-aminooctanoic acid, 10-aminocapric acid, 11-aminoundecanoic acid, 12-aminododecanoic acid and the like having 5 to 20 carbon atoms. Examples thereof include aliphatic ω-aminocarboxylic acid. Examples of lactams include aliphatic lactams having 5 to 20 carbon atoms such as lauryl lactam, ε-caprolactam, udecane lactam, ω-enanthlactam and 2-pyrrolidone.
Examples of the diamine include ethylenediamine, trimethylenediamine, tetramethylenediamine, hexamethylenediamine, heptamethylenediamine, octamethylenediamine, nonamethylenediamine, decamethylenediamine, undecamethylenediamine, dodecamethylenediamine, 2,2,4. Examples include diamine compounds such as trimethylhexamethylenediamine, 2,4,4-trimethylhexamethylenediamine, 3-methylpentamethylenediamine, and metaxylenediamine having 2 to 20 carbon atoms.
Further, the dicarboxylic acid can be represented by HOOC- (R 3 ) m —COOH (R 3 : a molecular chain of a hydrocarbon having 3 to 20 carbon atoms, m: 0 or 1), and examples thereof include oxalic acid and succinic acid. And aliphatic dicarboxylic acids having 2 to 20 carbon atoms such as glutamic acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, and dodecanedioic acid.
As the polyamide forming the hard segment, a polyamide obtained by ring-opening polycondensation of lauryl lactam, ε-caprolactam, or udecanlactam can be preferably used.
 また、ソフトセグメントを形成するポリマーとしては、例えば、ポリエステル、ポリエーテル等が挙げられ、具体的には、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレンエーテルグリコール、ABA型トリブロックポリエーテル等が挙げられる。これらは単独で又は2種以上を組み合わせて用いることができる。また、ポリエーテルの末端にアンモニア等を反応させることによって得られるポリエーテルジアミン等も用いることができる。
 ここで、「ABA型トリブロックポリエーテル」とは、下記一般式(3)に示されるポリエーテルを意味する。
Examples of the polymer that forms the soft segment include polyester and polyether. Specific examples include polyethylene glycol, polypropylene glycol, polytetramethylene ether glycol, and ABA type triblock polyether. These may be used alone or in combination of two or more. Further, polyether diamine or the like obtained by reacting the end of polyether with ammonia or the like can also be used.
Here, the "ABA type triblock polyether" means a polyether represented by the following general formula (3).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 上記一般式(3)中、x及びzは、1~20の整数を表す。yは、4~50の整数を表す。 In the above general formula (3), x and z represent an integer of 1 to 20. y represents an integer of 4 to 50.
 一般式(3)において、x及びzは、それぞれ、1~18の整数が好ましく、1~16の整数がより好ましく、1~14の整数がさらに好ましく、1~12の整数が特に好ましい。また、一般式(3)において、yは、5~45の整数が好ましく、6~40の整数がより好ましく、7~35の整数がさらに好ましく、8~30の整数が特に好ましい。 In the general formula (3), each of x and z is preferably an integer of 1 to 18, more preferably an integer of 1 to 16, further preferably an integer of 1 to 14, and particularly preferably an integer of 1 to 12. Further, in the general formula (3), y is preferably an integer of 5 to 45, more preferably an integer of 6 to 40, further preferably an integer of 7 to 35, particularly preferably an integer of 8 to 30.
 ハードセグメントとソフトセグメントとの組合せとしては、上述で挙げたハードセグメントとソフトセグメントとのそれぞれの組合せを挙げることができる。これらの中でも、ハードセグメントとソフトセグメントとの組合せとしては、ラウリルラクタムの開環重縮合体/ポリエチレングリコールの組合せ、ラウリルラクタムの開環重縮合体/ポリプロピレングリコールの組合せ、ラウリルラクタムの開環重縮合体/ポリテトラメチレンエーテルグリコールの組合せ、又はラウリルラクタムの開環重縮合体/ABA型トリブロックポリエーテルの組合せが好ましく、ラウリルラクタムの開環重縮合体/ABA型トリブロックポリエーテルの組合せがより好ましい。 As the combination of the hard segment and the soft segment, each combination of the hard segment and the soft segment mentioned above can be mentioned. Among these, as the combination of the hard segment and the soft segment, the combination of lauryl lactam ring-opening polycondensate / polyethylene glycol, the combination of lauryl lactam ring-opening polycondensate / polypropylene glycol, the lauryl lactam ring-opening polycondensation Body / polytetramethylene ether glycol combination, or a combination of lauryl lactam ring-opening polycondensate / ABA type triblock polyether, and a combination of lauryl lactam ring-opening polycondensate / ABA type triblock polyether is more preferable. preferable.
 ハードセグメントを形成するポリマー(具体的にはポリアミド)の数平均分子量は、溶融成形性の観点から、300~15000が好ましい。また、ソフトセグメントを形成するポリマーの数平均分子量としては、強靱性及び低温柔軟性の観点から、200~6000が好ましい。さらに、ハードセグメント(x)及びソフトセグメント(y)との質量比(x:y)は、成形性の観点から、50:50~90:10が好ましく、50:50~80:20がより好ましい。 The number average molecular weight of the polymer forming the hard segment (specifically, polyamide) is preferably 300 to 15,000 from the viewpoint of melt moldability. The number average molecular weight of the polymer forming the soft segment is preferably 200 to 6000 from the viewpoint of toughness and low temperature flexibility. Further, the mass ratio (x: y) of the hard segment (x) and the soft segment (y) is preferably 50:50 to 90:10, and more preferably 50:50 to 80:20 from the viewpoint of moldability. ..
 ポリアミド系熱可塑性エラストマーは、ハードセグメントを形成するポリマー及びソフトセグメントを形成するポリマーを公知の方法によって共重合することで合成することができる。 The thermoplastic polyamide-based elastomer can be synthesized by copolymerizing a polymer forming a hard segment and a polymer forming a soft segment by a known method.
 ポリアミド系熱可塑性エラストマーの市販品としては、例えば、宇部興産株式会社の「UBESTA XPA」シリーズ(例えば、XPA9063X1、XPA9055X1、XPA9048X2、XPA9048X1、XPA9040X1、XPA9040X2XPA9044等)、ダイセル・エポニック株式会社の「ベスタミド」シリーズ(例えば、E40-S3、E47-S1、E47-S3、E55-S1、E55-S3、EX9200、E50-R2等)等を用いることができる。 Commercially available polyamide-based thermoplastic elastomers include, for example, "UBESTA XPA" series (for example, XPA9063X1, XPA9055X1, XPA9048X2, XPA9048X1, XPA9040X1, XPA9040X2XPA9044, etc.) by Ube Industries, Ltd., "Vestamide" series by Daicel Eponic Corporation. (For example, E40-S3, E47-S1, E47-S3, E55-S1, E55-S3, EX9200, E50-R2, etc.) can be used.
-ポリスチレン系熱可塑性エラストマー
 ポリスチレン系熱可塑性エラストマーとしては、例えば、少なくともポリスチレンがハードセグメントを形成し、且つ、ポリスチレン以外の他のポリマーが非晶性でガラス転移温度の低いソフトセグメントを形成している材料が挙げられる。
 ハードセグメントを形成するポリスチレンとしては、例えば、公知のラジカル重合法、イオン性重合法等で得られるポリスチレンが好ましく用いられ、具体的には、アニオンリビング重合で得られるポリスチレンが挙げられる。
 ソフトセグメントを形成するポリスチレン以外のポリマーとしては、例えば、ポリブタジエン、ポリイソプレン、ポリ(2,3-ジメチル-ブタジエン)、ポリエチレン、水添ポリブタジエン、水添ポリイソプレン等が挙げられる。
-Polystyrene thermoplastic elastomer As the polystyrene thermoplastic elastomer, for example, at least polystyrene forms a hard segment, and a polymer other than polystyrene forms an amorphous soft segment having a low glass transition temperature. Materials are listed.
As the polystyrene that forms the hard segment, for example, polystyrene obtained by a known radical polymerization method, ionic polymerization method, or the like is preferably used, and specifically, polystyrene obtained by anion living polymerization is used.
Examples of polymers other than polystyrene that form the soft segment include polybutadiene, polyisoprene, poly (2,3-dimethyl-butadiene), polyethylene, hydrogenated polybutadiene, hydrogenated polyisoprene, and the like.
 ハードセグメントとソフトセグメントとの組合せとしては、上述で挙げたハードセグメントとソフトセグメントとのそれぞれの組合せを挙げることができる。これらの中でも、ハードセグメントとソフトセグメントとの組合せとしては、ポリスチレン/ポリブタジエンの組合せ、又はポリスチレン/ポリイソプレンの組合せが好ましい。また、熱可塑性エラストマーの意図しない架橋反応を抑制するため、ソフトセグメントは水素添加されていることが好ましい。 As the combination of the hard segment and the soft segment, each combination of the hard segment and the soft segment mentioned above can be mentioned. Among these, the combination of the hard segment and the soft segment is preferably the combination of polystyrene / polybutadiene or the combination of polystyrene / polyisoprene. Further, the soft segment is preferably hydrogenated in order to suppress an unintended crosslinking reaction of the thermoplastic elastomer.
 ハードセグメントを形成するポリマー(具体的にはポリスチレン)の数平均分子量は、5000~500000が好ましく、10000~200000がより好ましい。
 また、ソフトセグメントを形成するポリマーの数平均分子量としては、5000~1000000が好ましく、10000~800000がより好ましく、30000~500000がさらに好ましい。さらに、ハードセグメント(x)及びソフトセグメント(y)との質量比(x:y)は、成形性の観点から、5:95~80:20が好ましく、10:90~70:30がより好ましい。
The number average molecular weight of the polymer (specifically polystyrene) forming the hard segment is preferably 5,000 to 500,000, more preferably 10,000 to 200,000.
The number average molecular weight of the polymer forming the soft segment is preferably 5,000 to 1,000,000, more preferably 10,000 to 800,000, and further preferably 30,000 to 500,000. Further, the mass ratio (x: y) of the hard segment (x) and the soft segment (y) is preferably 5:95 to 80:20, more preferably 10:90 to 70:30 from the viewpoint of moldability. ..
 ポリスチレン系熱可塑性エラストマーは、ハードセグメントを形成するポリマー及びソフトセグメントを形成するポリマーを公知の方法によって共重合することで合成することができる。
 ポリスチレン系熱可塑性エラストマーとしては、例えば、スチレン-ブタジエン系共重合体[SBS(ポリスチレン-ポリ(ブチレン)ブロック-ポリスチレン)、SEBS(ポリスチレン-ポリ(エチレン/ブチレン)ブロック-ポリスチレン)]、スチレン-イソプレン共重合体(ポリスチレン-ポリイソプレンブロック-ポリスチレン)、スチレン-プロピレン系共重合体[SEP(ポリスチレン-(エチレン/プロピレン)ブロック)、SEPS(ポリスチレン-ポリ(エチレン/プロピレン)ブロック-ポリスチレン)、SEEPS(ポリスチレン-ポリ(エチレン-エチレン/プロピレン)ブロック-ポリスチレン)、SEB(ポリスチレン(エチレン/ブチレン)ブロック)]等が挙げられる。
The thermoplastic polystyrene-based elastomer can be synthesized by copolymerizing a polymer forming a hard segment and a polymer forming a soft segment by a known method.
Examples of the polystyrene-based thermoplastic elastomer include styrene-butadiene-based copolymers [SBS (polystyrene-poly (butylene) block-polystyrene), SEBS (polystyrene-poly (ethylene / butylene) block-polystyrene)], styrene-isoprene. Copolymer (polystyrene-polyisoprene block-polystyrene), styrene-propylene copolymer [SEP (polystyrene- (ethylene / propylene) block), SEPS (polystyrene-poly (ethylene / propylene) block-polystyrene), SEEPS ( Polystyrene-poly (ethylene-ethylene / propylene) block-polystyrene), SEB (polystyrene (ethylene / butylene) block)] and the like.
 ポリスチレン系熱可塑性エラストマーの市販品としては、例えば、旭化成株式会社製の「タフテック」シリーズ(例えば、H1031、H1041、H1043、H1051、H1052、H1053、H1062、H1082、H1141、H1221、H1272等)、株式会社クラレ製の「SEBS」シリーズ(例えば、8007、8076等)、「SEPS」シリーズ(例えば、2002、2063等)等を用いることができる。 Examples of commercially available polystyrene thermoplastic elastomers include, for example, "Tuftec" series manufactured by Asahi Kasei Co., Ltd. (for example, H1031, H1041, H1043, H1051, H1052, H1053, H1062, H1082, H1141, H1221, H1272, etc.) and stocks. "SEBS" series (for example, 8007, 8076, etc.), "SEPS" series (for example, 2002, 2063, etc.) manufactured by Kuraray Co., Ltd. can be used.
-ポリウレタン系熱可塑性エラストマー-
 ポリウレタン系熱可塑性エラストマーとしては、例えば、少なくともポリウレタンが物理的な凝集によって疑似架橋を形成しているハードセグメントを形成し、他のポリマーが非晶性でガラス転移温度の低いソフトセグメントを形成している材料が挙げられる。
 ポリウレタン系熱可塑性エラストマーとしては、具体的には、JIS K6418:2007に規定されるポリウレタン系熱可塑性エラストマー(TPU)が挙げられる。ポリウレタン系熱可塑性エラストマーは、下記式Aで表される単位構造を含むソフトセグメントと、下記式Bで表される単位構造を含むハードセグメントとを含む共重合体として表すことができる。
-Polyurethane type thermoplastic elastomer-
As the thermoplastic polyurethane-based elastomer, for example, at least polyurethane forms a hard segment in which pseudo-crosslinking is formed by physical agglomeration, and another polymer forms an amorphous soft segment having a low glass transition temperature. Ingredients are listed.
Specific examples of the polyurethane-based thermoplastic elastomer include a polyurethane-based thermoplastic elastomer (TPU) defined in JIS K6418: 2007. The polyurethane-based thermoplastic elastomer can be represented as a copolymer including a soft segment including a unit structure represented by the following formula A and a hard segment including a unit structure represented by the following formula B.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 上記式中、Pは、長鎖脂肪族ポリエーテル又は長鎖脂肪族ポリエステルを表す。Rは、脂肪族炭化水素、脂環族炭化水素、又は芳香族炭化水素を表す。P’は、短鎖脂肪族炭化水素、脂環族炭化水素、又は芳香族炭化水素を表す。 In the above formula, P represents a long-chain aliphatic polyether or a long-chain aliphatic polyester. R represents an aliphatic hydrocarbon, an alicyclic hydrocarbon, or an aromatic hydrocarbon. P'represents a short chain aliphatic hydrocarbon, an alicyclic hydrocarbon, or an aromatic hydrocarbon.
 式A中、Pで表される長鎖脂肪族ポリエーテル又は長鎖脂肪族ポリエステルとしては、例えば、分子量500~5000のものを使用することができる。Pは、Pで表される長鎖脂肪族ポリエーテル及び長鎖脂肪族ポリエステルを含むジオール化合物に由来する。このようなジオール化合物としては、例えば、分子量が前記範囲内にある、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレンエーテルグリコール、ポリ(ブチレンアジベート)ジオール、ポリ-ε-カプロラクトンジオール、ポリ(ヘキサメチレンカーボネート)ジオール、ABA型トリブロックポリエーテル等が挙げられる。
 これらは、単独で又は2種以上を組み合わせて用いることができる。
As the long-chain aliphatic polyether or the long-chain aliphatic polyester represented by P in the formula A, for example, those having a molecular weight of 500 to 5000 can be used. P is derived from a diol compound containing a long-chain aliphatic polyether represented by P and a long-chain aliphatic polyester. Examples of such a diol compound include polyethylene glycol, polypropylene glycol, polytetramethylene ether glycol, poly (butylene adipate) diol, poly-ε-caprolactone diol, poly (hexamethylene carbonate) having a molecular weight within the above range. ) Diols, ABA type triblock polyethers and the like.
These may be used alone or in combination of two or more.
 式A及び式B中、Rは、Rで表される脂肪族炭化水素、脂環族炭化水素、又は芳香族炭化水素を含むジイソシアネート化合物を用いて導入された部分構造である。Rで表される脂肪族炭化水素を含む脂肪族ジイソシアネート化合物としては、例えば、1,2-エチレンジイソシアネート、1,3-プロピレンジイソシアネート、1,4-ブタンジイソシアネート、1,6-ヘキサメチレンジイソシアネート等が挙げられる。
 また、Rで表される脂環族炭化水素を含むジイソシアネート化合物としては、例えば、1,4-シクロヘキサンジイソシアネート、4,4-シクロヘキサンジイソシアネート等が挙げられる。さらに、Rで表される芳香族炭化水素を含む芳香族ジイソシアネート化合物としては、例えば、4,4’-ジフェニルメタンジイソシアネート、トリレンジイソシアネート等が挙げられる。
 これらは、単独で又は2種以上を組み合わせて用いることができる。
In Formula A and Formula B, R is a partial structure introduced using a diisocyanate compound containing an aliphatic hydrocarbon, an alicyclic hydrocarbon, or an aromatic hydrocarbon represented by R. Examples of the aliphatic diisocyanate compound containing an aliphatic hydrocarbon represented by R include 1,2-ethylene diisocyanate, 1,3-propylene diisocyanate, 1,4-butane diisocyanate and 1,6-hexamethylene diisocyanate. Can be mentioned.
Examples of the diisocyanate compound containing an alicyclic hydrocarbon represented by R include 1,4-cyclohexane diisocyanate and 4,4-cyclohexane diisocyanate. Further, examples of the aromatic diisocyanate compound containing an aromatic hydrocarbon represented by R include 4,4′-diphenylmethane diisocyanate and tolylene diisocyanate.
These may be used alone or in combination of two or more.
 式B中、P’で表される短鎖脂肪族炭化水素、脂環族炭化水素、又は芳香族炭化水素としては、例えば、分子量500未満のものを使用することができる。また、P’は、P’で表される短鎖脂肪族炭化水素、脂環族炭化水素、又は芳香族炭化水素を含むジオール化合物に由来する。P’で表される短鎖脂肪族炭化水素を含む脂肪族ジオール化合物としては、例えば、グリコール及びポリアルキレングリコールが挙げられ、具体的には、エチレングリコール、プロピレングリコール、トリメチレングリコール、1,4-ブタンジオール、1,3-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,7-ヘプタンジオール、1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール等が挙げられる。
 また、P’で表される脂環族炭化水素を含む脂環族ジオール化合物としては、例えば、シクロペンタン-1,2-ジオール、シクロヘキサン-1,2-ジオール、シクロヘキサン-1,3-ジオール、シクロヘキサン-1,4-ジオール、シクロヘキサン-1,4-ジメタノール等が挙げられる。
 さらに、P’で表される芳香族炭化水素を含む芳香族ジオール化合物としては、例えば、ヒドロキノン、レゾルシン、クロロヒドロキノン、ブロモヒドロキノン、メチルヒドロキノン、フェニルヒドロキノン、メトキシヒドロキノン、フェノキシヒドロキノン、4,4’-ジヒドロキシビフェニル、4,4’-ジヒドロキシジフェニルエーテル、4,4’-ジヒドロキシジフェニルサルファイド、4,4’-ジヒドロキシジフェニルスルホン、4,4’-ジヒドロキシベンゾフェノン、4,4’-ジヒドロキシジフェニルメタン、ビスフェノールA、1,1-ジ(4-ヒドロキシフェニル)シクロヘキサン、1,2-ビス(4-ヒドロキシフェノキシ)エタン、1,4-ジヒドロキシナフタリン、2,6-ジヒドロキシナフタリン等が挙げられる。
 これらは、単独で又は2種以上を組み合わせて用いることができる。
As the short-chain aliphatic hydrocarbon, alicyclic hydrocarbon or aromatic hydrocarbon represented by P ′ in the formula B, for example, those having a molecular weight of less than 500 can be used. P'is derived from a diol compound containing a short chain aliphatic hydrocarbon, alicyclic hydrocarbon, or aromatic hydrocarbon represented by P '. Examples of the aliphatic diol compound containing a short chain aliphatic hydrocarbon represented by P ′ include glycol and polyalkylene glycol, and specifically, ethylene glycol, propylene glycol, trimethylene glycol, 1,4 -Butanediol, 1,3-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol, 1,10- Decanediol and the like can be mentioned.
Examples of the alicyclic diol compound containing an alicyclic hydrocarbon represented by P ′ include cyclopentane-1,2-diol, cyclohexane-1,2-diol, cyclohexane-1,3-diol, Examples thereof include cyclohexane-1,4-diol and cyclohexane-1,4-dimethanol.
Furthermore, examples of the aromatic diol compound containing an aromatic hydrocarbon represented by P ′ include hydroquinone, resorcin, chlorohydroquinone, bromohydroquinone, methylhydroquinone, phenylhydroquinone, methoxyhydroquinone, phenoxyhydroquinone, 4,4′- Dihydroxybiphenyl, 4,4'-dihydroxydiphenyl ether, 4,4'-dihydroxydiphenyl sulfide, 4,4'-dihydroxydiphenyl sulfone, 4,4'-dihydroxybenzophenone, 4,4'-dihydroxydiphenylmethane, bisphenol A, 1, Examples thereof include 1-di (4-hydroxyphenyl) cyclohexane, 1,2-bis (4-hydroxyphenoxy) ethane, 1,4-dihydroxynaphthalene and 2,6-dihydroxynaphthalene.
These may be used alone or in combination of two or more.
 ハードセグメントを形成するポリマー(具体的にはポリウレタン)の数平均分子量は、溶融成形性の観点から、300~1500が好ましい。また、ソフトセグメントを形成するポリマーの数平均分子量としては、ポリウレタン系熱可塑性エラストマーの柔軟性及び熱安定性の観点から、500~20000が好ましく、500~5000がさらに好ましく、500~3000が特に好ましい。また、ハードセグメント(x)及びソフトセグメント(y)との質量比(x:y)は、成形性の観点から、15:85~90:10が好ましく、30:70~90:10がさらに好ましい。 The number average molecular weight of the polymer forming the hard segment (specifically, polyurethane) is preferably 300 to 1500 from the viewpoint of melt moldability. The number average molecular weight of the polymer forming the soft segment is preferably 500 to 20,000, more preferably 500 to 5,000, and particularly preferably 500 to 3,000, from the viewpoint of the flexibility and thermal stability of the polyurethane-based thermoplastic elastomer. .. The mass ratio (x: y) of the hard segment (x) and the soft segment (y) is preferably 15:85 to 90:10, more preferably 30:70 to 90:10 from the viewpoint of moldability. ..
 ポリウレタン系熱可塑性エラストマーは、ハードセグメントを形成するポリマー及びソフトセグメントを形成するポリマーを公知の方法によって共重合することで合成することができる。ポリウレタン系熱可塑性エラストマーとしては、例えば、特開平5-331256号公報に記載の熱可塑性ポリウレタンを用いることができる。
 ポリウレタン系熱可塑性エラストマーとしては、具体的には、芳香族ジオールと芳香族ジイソシアネートとからなるハードセグメントと、ポリ炭酸エステルからなるソフトセグメントとの組合せが好ましく、より具体的には、トリレンジイソシアネート(TDI)/ポリエステル系ポリオール共重合体、TDI/ポリエーテル系ポリオール共重合体、TDI/カプロラクトン系ポリオール共重合体、TDI/ポリカーボネート系ポリオール共重合体、4,4’-ジフェニルメタンジイソシアネート(MDI)/ポリエステル系ポリオール共重合体、MDI/ポリエーテル系ポリオール共重合体、MDI/カプロラクトン系ポリオール共重合体、MDI/ポリカーボネート系ポリオール共重合体、及びMDI+ヒドロキノン/ポリヘキサメチレンカーボネート共重合体からなる群より選択される少なくとも1種がより好ましく、TDI/ポリエステル系ポリオール共重合体、TDI/ポリエーテル系ポリオール共重合体、MDI/ポリエステルポリオール共重合体、MDI/ポリエーテル系ポリオール共重合体、及びMDI+ヒドロキノン/ポリヘキサメチレンカーボネート共重合体からなる群より選択される少なくとも1種がさらに好ましい。
The thermoplastic polyurethane-based elastomer can be synthesized by copolymerizing a polymer forming a hard segment and a polymer forming a soft segment by a known method. As the polyurethane-based thermoplastic elastomer, for example, the thermoplastic polyurethane described in JP-A-5-331256 can be used.
As the polyurethane-based thermoplastic elastomer, specifically, a combination of a hard segment made of an aromatic diol and an aromatic diisocyanate and a soft segment made of a polycarbonate is preferable, and more specifically, a tolylene diisocyanate ( TDI) / polyester type polyol copolymer, TDI / polyether type polyol copolymer, TDI / caprolactone type polyol copolymer, TDI / polycarbonate type polyol copolymer, 4,4′-diphenylmethane diisocyanate (MDI) / polyester -Based polyol copolymers, MDI / polyether-based polyol copolymers, MDI / caprolactone-based polyol copolymers, MDI / polycarbonate-based polyol copolymers, and MDI + hydroquinone / polyhexamethylene At least one selected from the group consisting of carbonate copolymers is more preferable, and TDI / polyester-based polyol copolymers, TDI / polyether-based polyol copolymers, MDI / polyester polyol copolymers, MDI / polyether-based copolymers. At least one selected from the group consisting of a polyol copolymer and an MDI + hydroquinone / polyhexamethylene carbonate copolymer is more preferable.
 また、ポリウレタン系熱可塑性エラストマーの市販品としては、例えば、BASF社製の「エラストラン」シリーズ(例えば、ET680、ET880、ET690、ET890等)、株式会社クラレ社製「クラミロンU」シリーズ(例えば、2000番台、3000番台、8000番台、9000番台等)、日本ミラクトラン株式会社製の「ミラクトラン」シリーズ(例えば、XN-2001、XN-2004、P390RSUP、P480RSUI、P26MRNAT、E490、E590、P890等)等を用いることができる。 Further, examples of commercially available thermoplastic polyurethane elastomers include, for example, "Elastollan" series manufactured by BASF (for example, ET680, ET880, ET690, ET890, etc.), "Kuramiron U" series manufactured by Kuraray Co., Ltd. (for example, 2000-series, 3000-series, 8000-series, 9000-series, etc., "Miractran" series (for example, XN-2001, XN-2004, P390RSUP, P480RSUI, P26MRNAT, E490, E590, P890 etc.) manufactured by Japan Miractolan Co., Ltd. Can be used.
-オレフィン系熱可塑性エラストマー-
 オレフィン系熱可塑性エラストマーとしては、例えば、少なくともポリオレフィンが結晶性で融点の高いハードセグメントを形成し、他のポリマー(例えば、ハードセグメントを形成するポリオレフィンとは異なるポリオレフィン、ポリビニル化合物等)が非晶性でガラス転移温度の低いソフトセグメントを形成している材料が挙げられる。ハードセグメントを形成するポリオレフィンとしては、例えば、ポリエチレン、ポリプロピレン、アイソタクチックポリプロピレン、ポリブテン等が挙げられる。
 オレフィン系熱可塑性エラストマーとしては、例えば、オレフィン-α-オレフィンランダム共重合体、オレフィンブロック共重合体等が挙げられ、具体的には、プロピレンブロック共重合体、エチレン-プロピレン共重合体、プロピレン-1-ヘキセン共重合体、プロピレン-4-メチル-1ペンテン共重合体、プロピレン-1-ブテン共重合体、エチレン-1-ヘキセン共重合体、エチレン-4-メチル-ペンテン共重合体、エチレン-1-ブテン共重合体、1-ブテン-1-ヘキセン共重合体、1-ブテン-4-メチル-ペンテン、エチレン-メタクリル酸共重合体、エチレン-メタクリル酸メチル共重合体、エチレン-メタクリル酸エチル共重合体、エチレン-メタクリル酸ブチル共重合体、エチレン-メチルアクリレート共重合体、エチレン-エチルアクリレート共重合体、エチレン-ブチルアクリレート共重合体、プロピレン-メタクリル酸共重合体、プロピレン-メタクリル酸メチル共重合体、プロピレン-メタクリル酸エチル共重合体、プロピレン-メタクリル酸ブチル共重合体、プロピレン-メチルアクリレート共重合体、プロピレン-エチルアクリレート共重合体、プロピレン-ブチルアクリレート共重合体、エチレン-酢酸ビニル共重合体、プロピレン-酢酸ビニル共重合体等が挙げられる。
-Olefinic thermoplastic elastomer-
As the olefin-based thermoplastic elastomer, for example, at least polyolefin forms a hard segment having a crystalline and high melting point, and another polymer (for example, a polyolefin different from the polyolefin forming the hard segment, a polyvinyl compound, etc.) is amorphous. The material forming the soft segment having a low glass transition temperature is mentioned. Examples of the polyolefin forming the hard segment include polyethylene, polypropylene, isotactic polypropylene, polybutene and the like.
Examples of the olefin-based thermoplastic elastomer include olefin-α-olefin random copolymers, olefin block copolymers, and the like. Specifically, propylene block copolymers, ethylene-propylene copolymers, propylene- 1-hexene copolymer, propylene-4-methyl-1 pentene copolymer, propylene-1-butene copolymer, ethylene-1-hexene copolymer, ethylene-4-methyl-pentene copolymer, ethylene- 1-butene copolymer, 1-butene-1-hexene copolymer, 1-butene-4-methyl-pentene, ethylene-methacrylic acid copolymer, ethylene-methyl methacrylate copolymer, ethylene-ethyl methacrylate Copolymer, ethylene-butyl methacrylate copolymer, ethylene-methyl acrylate copolymer Ethylene-ethyl acrylate copolymer, ethylene-butyl acrylate copolymer, propylene-methacrylic acid copolymer, propylene-methyl methacrylate copolymer, propylene-ethyl methacrylate copolymer, propylene-butyl methacrylate copolymer , Propylene-methyl acrylate copolymer, propylene-ethyl acrylate copolymer, propylene-butyl acrylate copolymer, ethylene-vinyl acetate copolymer, propylene-vinyl acetate copolymer and the like.
 これらの中でも、オレフィン系熱可塑性エラストマーとしては、プロピレンブロック共重合体、エチレン-プロピレン共重合体、プロピレン-1-ヘキセン共重合体、プロピレン-4-メチル-1ペンテン共重合体、プロピレン-1-ブテン共重合体、エチレン-1-ヘキセン共重合体、エチレン-4-メチル-ペンテン共重合体、エチレン-1-ブテン共重合体、エチレン-メタクリル酸共重合体、エチレン-メタクリル酸メチル共重合体、エチレン-メタクリル酸エチル共重合体、エチレン-メタクリル酸ブチル共重合体、エチレン-メチルアクリレート共重合体、エチレン-エチルアクリレート共重合体、エチレン-ブチルアクリレート共重合体、プロピレン-メタクリル酸共重合体、プロピレン-メタクリル酸メチル共重合体、プロピレン-メタクリル酸エチル共重合体、プロピレン-メタクリル酸ブチル共重合体、プロピレン-メチルアクリレート共重合体、プロピレン-エチルアクリレート共重合体、プロピレン-ブチルアクリレート共重合体、エチレン-酢酸ビニル共重合体、及びプロピレン-酢酸ビニル共重合体からなる群より選択される少なくとも1種が好ましく、エチレン-プロピレン共重合体、プロピレン-1-ブテン共重合体、エチレン-1-ブテン共重合体、エチレン-メタクリル酸メチル共重合体、エチレン-メチルアクリレート共重合体、エチレン-エチルアクリレート共重合体、及びエチレン-ブチルアクリレート共重合体からなる群より選択される少なくとも1種がさらに好ましい。
 また、エチレンとプロピレンといったように2種以上のオレフィン樹脂を組み合わせて用いてもよい。また、オレフィン系熱可塑性エラストマー中のオレフィン樹脂含有率は、50質量%以上100質量%以下が好ましい。
Among these, the olefin thermoplastic elastomers include propylene block copolymers, ethylene-propylene copolymers, propylene-1-hexene copolymers, propylene-4-methyl-1pentene copolymers, propylene-1- Butene copolymer, ethylene-1-hexene copolymer, ethylene-4-methyl-pentene copolymer, ethylene-1-butene copolymer, ethylene-methacrylic acid copolymer, ethylene-methyl methacrylate copolymer , Ethylene-ethyl methacrylate copolymer, ethylene-butyl methacrylate copolymer, ethylene-methyl acrylate copolymer, ethylene-ethyl acrylate copolymer, ethylene-butyl acrylate copolymer, propylene-methacrylic acid copolymer , Propylene-methyl methacrylate copolymer, pro Len-ethyl methacrylate copolymer, propylene-butyl methacrylate copolymer, propylene-methyl acrylate copolymer, propylene-ethyl acrylate copolymer, propylene-butyl acrylate copolymer, ethylene-vinyl acetate copolymer, And at least one selected from the group consisting of propylene-vinyl acetate copolymer, ethylene-propylene copolymer, propylene-1-butene copolymer, ethylene-1-butene copolymer, ethylene-methacrylic acid. At least one selected from the group consisting of a methyl copolymer, an ethylene-methyl acrylate copolymer, an ethylene-ethyl acrylate copolymer, and an ethylene-butyl acrylate copolymer is more preferable.
Further, two or more kinds of olefin resins such as ethylene and propylene may be used in combination. The olefin resin content in the olefin-based thermoplastic elastomer is preferably 50% by mass or more and 100% by mass or less.
 オレフィン系熱可塑性エラストマーの数平均分子量は、5000~10000000であることが好ましい。オレフィン系熱可塑性エラストマーの数平均分子量が5000~10000000であると、熱可塑性樹脂材料の機械的物性が十分であり、加工性にも優れる。同様の観点から、オレフィン系熱可塑性エラストマーの数平均分子量は、7000~1000000であることがさらに好ましく、10000~1000000が特に好ましい。これにより、熱可塑性樹脂材料の機械的物性及び加工性をさらに向上させることができる。また、ソフトセグメントを形成するポリマーの数平均分子量としては、強靱性及び低温柔軟性の観点から、200~6000が好ましい。さらに、ハードセグメント(x)及びソフトセグメント(y)との質量比(x:y)は、成形性の観点から、50:50~95:5が好ましく、50:50~90:10がさらに好ましい。
 オレフィン系熱可塑性エラストマーは、公知の方法によって共重合することで合成することができる。
The number average molecular weight of the olefin-based thermoplastic elastomer is preferably 5,000 to 10,000,000. When the number average molecular weight of the olefin-based thermoplastic elastomer is 5,000 to 10,000,000, the thermoplastic resin material has sufficient mechanical properties and excellent processability. From the same viewpoint, the number average molecular weight of the olefin-based thermoplastic elastomer is more preferably 7,000 to 1,000,000, and particularly preferably 10,000 to 1,000,000. Thereby, the mechanical properties and workability of the thermoplastic resin material can be further improved. The number average molecular weight of the polymer forming the soft segment is preferably 200 to 6000 from the viewpoint of toughness and low temperature flexibility. Further, the mass ratio (x: y) of the hard segment (x) and the soft segment (y) is preferably 50:50 to 95: 5, and more preferably 50:50 to 90:10 from the viewpoint of moldability. ..
The olefin-based thermoplastic elastomer can be synthesized by copolymerization by a known method.
 また、オレフィン系熱可塑性エラストマーとしては、熱可塑性エラストマーを酸変性してなるものを用いてもよい。
 「オレフィン系熱可塑性エラストマーを酸変性してなるもの」とは、オレフィン系熱可塑性エラストマーに、カルボン酸基、硫酸基、燐酸基等の酸性基を有する不飽和化合物を結合させることをいう。
 オレフィン系熱可塑性エラストマーに、カルボン酸基、硫酸基、燐酸基等の酸性基を有する不飽和化合物を結合させることとしては、例えば、オレフィン系熱可塑性エラストマーに、酸性基を有する不飽和化合物として、不飽和カルボン酸(一般的には、無水マレイン酸)の不飽和結合部位を結合(例えば、グラフト重合)させることが挙げられる。
 酸性基を有する不飽和化合物としては、オレフィン系熱可塑性エラストマーの劣化抑制の観点からは、弱酸基であるカルボン酸基を有する不飽和化合物が好ましく、例えば、アクリル酸、メタクリル酸、イタコン酸、クロトン酸、イソクロトン酸、マレイン酸等が挙げられる。
Moreover, as the olefin-based thermoplastic elastomer, an acid-modified thermoplastic elastomer may be used.
The "acid-modified olefin-based thermoplastic elastomer" means that an unsaturated compound having an acidic group such as a carboxylic acid group, a sulfuric acid group or a phosphoric acid group is bonded to the olefin-based thermoplastic elastomer.
To bond an unsaturated compound having an acidic group such as a carboxylic acid group, a sulfuric acid group, and a phosphoric acid group to the olefin-based thermoplastic elastomer, for example, an olefin-based thermoplastic elastomer, as an unsaturated compound having an acidic group, Examples thereof include bonding (for example, graft polymerization) of unsaturated bond sites of unsaturated carboxylic acid (generally maleic anhydride).
The unsaturated compound having an acidic group is preferably an unsaturated compound having a carboxylic acid group which is a weak acid group, from the viewpoint of suppressing deterioration of the olefinic thermoplastic elastomer, for example, acrylic acid, methacrylic acid, itaconic acid, croton. Acid, isocrotonic acid, maleic acid, etc. may be mentioned.
 オレフィン系熱可塑性エラストマーの市販品としては、例えば、三井化学株式会社製の「タフマー」シリーズ(例えば、A0550S、A1050S、A4050S、A1070S、A4070S、A35070S、A1085S、A4085S、A7090、A70090、MH7007、MH7010、XM-7070、XM-7080、BL4000、BL2481、BL3110、BL3450、P-0275、P-0375、P-0775、P-0180、P-0280、P-0480、P-0680等)、三井・デュポンポリケミカル株式会社製の「ニュクレル」シリーズ(例えば、AN4214C、AN4225C、AN42115C、N0903HC、N0908C、AN42012C、N410、N1050H、N1108C、N1110H、N1207C、N1214、AN4221C、N1525、N1560、N0200H、AN4228C、AN4213C、N035C)等、「エルバロイAC」シリーズ(例えば、1125AC、1209AC、1218AC、1609AC、1820AC、1913AC、2112AC、2116AC、2615AC、2715AC、3117AC、3427AC、3717AC等)、住友化学株式会社の「アクリフト」シリーズ、「エバテート」シリーズ等、東ソー株式会社製の「ウルトラセン」シリーズ等、プライムポリマー製の「プライムTPO」シリーズ(例えば、E-2900H、F-3900H、E-2900、F-3900、J-5900、E-2910、F-3910、J-5910、E-2710、F-3710、J-5910、E-2740、F-3740、R110MP、R110E、T310E、M142E等)等も用いることができる。 Examples of commercially available olefin-based thermoplastic elastomers include "Toughmer" series manufactured by Mitsui Chemicals, Inc. (for example, A0550S, A1050S, A4050S, A1070S, A4070S, A35070S, A1085S, A4085S, A7090, A70090, MH7007, MH7010, MH7010, XM-7070, XM-7080, BL4000, BL2481, BL3110, BL3450, P-0275, P-0375, P-0775, P-0180, P-0280, P-0480, P-0680 etc.), Mitsui DuPont Poly "Nucrel" series manufactured by Chemical Co., Ltd. (for example, AN4214C, AN4225C, AN42115C, N0903HC, N0908C, AN42012C, N410, N1050H, N11. 8C, N1110H, N1207C, N1214, AN4221C, N1525, N1560, N0200H, AN4228C, AN4213C, N035C, etc. "Elvalloy AC" series (for example, 1125AC, 1209AC, 1218AC, 1609AC, 1820AC, 1913AC, 2112AC, 2116AC, 2615AC, 2715AC, 3117AC, 3427AC, 3717AC, etc.), Sumitomo Chemical Co., Ltd.'s “Aklift” series, “Evatate” series, etc., Tosoh Corporation's “Ultrasen” series, etc., and prime polymer “Prime TPO” series (eg, E-2900H, F-3900H, E-2900, F-3900, J-5900, E-2910, F-3910, J-5910, E-27 0, F-3710, J-5910, E-2740, F-3740, R110MP, R110E, T310E, M142E, etc.) and the like can also be used.
-ポリエステル系熱可塑性エラストマー-
 ポリエステル系熱可塑性エラストマーとしては、例えば、少なくともポリエステルが結晶性で融点の高いハードセグメントを形成し、他のポリマー(例えば、ポリエステル又はポリエーテル等)が非晶性でガラス転移温度の低いソフトセグメントを形成している材料が挙げられる。
-Polyester thermoplastic elastomer-
As the polyester-based thermoplastic elastomer, for example, at least polyester forms a hard segment having a high melting point and another polymer (for example, polyester or polyether) is a soft segment having a low glass transition temperature and being amorphous. The forming material is mentioned.
 ハードセグメントを形成するポリエステルとしては、芳香族ポリエステルを用いてもよい。芳香族ポリエステルは、例えば、芳香族ジカルボン酸又はそのエステル形成性誘導体と脂肪族ジオールとから形成することができる。芳香族ポリエステルは、好ましくは、テレフタル酸及びジメチルテレフタレートの少なくとも1種と、1,4-ブタンジオールと、から誘導されるポリブチレンテレフタレートである。また、芳香族ポリエステルは、例えば、イソフタル酸、フタル酸、ナフタレン-2,6-ジカルボン酸、ナフタレン-2,7-ジカルボン酸、ジフェニル-4,4’-ジカルボン酸、ジフェノキシエタンジカルボン酸、5-スルホイソフタル酸、若しくはこれらのエステル形成性誘導体等のジカルボン酸成分と、分子量300以下のジオール(例えば、エチレングリコール、トリメチレングリコール、ペンタメチレングリコール、ヘキサメチレングリコール、ネオペンチルグリコール、デカメチレングリコール等の脂肪族ジオール;1,4-シクロヘキサンジメタノール、トリシクロデカンジメチロール等の脂環式ジオール;キシリレングリコール、ビス(p-ヒドロキシ)ジフェニル、ビス(p-ヒドロキシフェニル)プロパン、2,2-ビス[4-(2-ヒドロキシエトキシ)フェニル]プロパン、ビス[4-(2-ヒドロキシ)フェニル]スルホン、1,1-ビス[4-(2-ヒドロキシエトキシ)フェニル]シクロヘキサン、4,4’-ジヒドロキシ-p-ターフェニル、4,4’-ジヒドロキシ-p-クオーターフェニル等の芳香族ジオール;等)と、から誘導されるポリエステル、又はこれらのジカルボン酸成分及びジオール成分を2種以上併用した共重合ポリエステルであってもよい。また、3官能以上の多官能カルボン酸成分、多官能オキシ酸成分、多官能ヒドロキシ成分等を5モル%以下の範囲で共重合することも可能である。
 ハードセグメントを形成するポリエステルとしては、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリメチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート等が挙げられ、ポリブチレンテレフタレートが好ましい。
Aromatic polyester may be used as the polyester forming the hard segment. The aromatic polyester can be formed from, for example, an aromatic dicarboxylic acid or its ester-forming derivative and an aliphatic diol. The aromatic polyester is preferably polybutylene terephthalate derived from at least one of terephthalic acid and dimethyl terephthalate and 1,4-butanediol. The aromatic polyesters include, for example, isophthalic acid, phthalic acid, naphthalene-2,6-dicarboxylic acid, naphthalene-2,7-dicarboxylic acid, diphenyl-4,4'-dicarboxylic acid, diphenoxyethanedicarboxylic acid, 5 A dicarboxylic acid component such as sulfoisophthalic acid or an ester-forming derivative thereof, and a diol having a molecular weight of 300 or less (eg, ethylene glycol, trimethylene glycol, pentamethylene glycol, hexamethylene glycol, neopentyl glycol, decamethylene glycol, etc. Aliphatic diols; alicyclic diols such as 1,4-cyclohexanedimethanol and tricyclodecanedimethylol; xylylene glycol, bis (p-hydroxy) diphenyl, bis (p-hydroxyphenyl) propane, 2,2- B Sus [4- (2-hydroxyethoxy) phenyl] propane, bis [4- (2-hydroxy) phenyl] sulfone, 1,1-bis [4- (2-hydroxyethoxy) phenyl] cyclohexane, 4,4'- Aromatic diols such as dihydroxy-p-terphenyl and 4,4′-dihydroxy-p-quarterphenyl; etc.) and polyesters derived from these, or a combination of two or more of these dicarboxylic acid components and diol components It may be polymerized polyester. It is also possible to copolymerize a trifunctional or higher polyfunctional carboxylic acid component, a polyfunctional oxyacid component, a polyfunctional hydroxy component, etc. within a range of 5 mol% or less.
Examples of the polyester forming the hard segment include polyethylene terephthalate, polybutylene terephthalate, polymethylene terephthalate, polyethylene naphthalate and polybutylene naphthalate, and polybutylene terephthalate is preferable.
 また、ソフトセグメントを形成するポリマーとしては、例えば、脂肪族ポリエステル、脂肪族ポリエーテル等が挙げられる。
 脂肪族ポリエーテルとしては、ポリ(エチレンオキシド)グリコール、ポリ(プロピレンオキシド)グリコール、ポリ(テトラメチレンオキシド)グリコール、ポリ(ヘキサメチレンオキシド)グリコール、エチレンオキシドとプロピレンオキシドとの共重合体、ポリ(プロピレンオキシド)グリコールのエチレンオキシド付加重合体、エチレンオキシドとテトラヒドロフランとの共重合体等が挙げられる。
 脂肪族ポリエステルとしては、ポリ(ε-カプロラクトン)、ポリエナントラクトン、ポリカプリロラクトン、ポリブチレンアジペート、ポリエチレンアジペート等が挙げられる。
 これらの脂肪族ポリエーテル及び脂肪族ポリエステルの中でも、得られるポリエステルブロック共重合体の弾性特性の観点から、ソフトセグメントを形成するポリマーとしては、ポリ(テトラメチレンオキシド)グリコール、ポリ(プロピレンオキシド)グリコールのエチレンオキシド付加物、ポリ(ε-カプロラクトン)、ポリブチレンアジペート、ポリエチレンアジペート等が好ましい。
Examples of the polymer that forms the soft segment include aliphatic polyester and aliphatic polyether.
Examples of the aliphatic polyether include poly (ethylene oxide) glycol, poly (propylene oxide) glycol, poly (tetramethylene oxide) glycol, poly (hexamethylene oxide) glycol, a copolymer of ethylene oxide and propylene oxide, and poly (propylene oxide). ) An ethylene oxide addition polymer of glycol, a copolymer of ethylene oxide and tetrahydrofuran and the like can be mentioned.
Examples of the aliphatic polyester include poly (ε-caprolactone), polyenanthlactone, polycaprylolactone, polybutylene adipate, polyethylene adipate and the like.
Among these aliphatic polyethers and aliphatic polyesters, as the polymer forming the soft segment, poly (tetramethylene oxide) glycol and poly (propylene oxide) glycol are used from the viewpoint of the elastic properties of the obtained polyester block copolymer. Ethylene oxide adduct, poly (ε-caprolactone), polybutylene adipate, polyethylene adipate and the like are preferable.
 また、ソフトセグメントを形成するポリマーの数平均分子量は、強靱性及び低温柔軟性の観点から、300~6000が好ましい。さらに、ハードセグメント(x)とソフトセグメント(y)との質量比(x:y)は、成形性の観点から、99:1~20:80が好ましく、98:2~30:70がさらに好ましい。 The number average molecular weight of the polymer forming the soft segment is preferably 300 to 6000 from the viewpoint of toughness and low temperature flexibility. Further, the mass ratio (x: y) of the hard segment (x) and the soft segment (y) is preferably 99: 1 to 20:80, and more preferably 98: 2 to 30:70 from the viewpoint of moldability. ..
 上述のハードセグメントとソフトセグメントとの組合せとしては、例えば、上述で挙げたハードセグメントとソフトセグメントとのそれぞれの組合せを挙げることができる。これらの中でも、上述のハードセグメントとソフトセグメントとの組合せとしては、ハードセグメントがポリブチレンテレフタレートであり、ソフトセグメントが脂肪族ポリエーテルである組み合わせが好ましく、ハードセグメントがポリブチレンテレフタレートであり、ソフトセグメントがポリ(エチレンオキシド)グリコールである組み合わせがさらに好ましい。 As a combination of the above-mentioned hard segment and soft segment, for example, each combination of the above-mentioned hard segment and soft segment can be mentioned. Among these, as the combination of the hard segment and the soft segment described above, the hard segment is polybutylene terephthalate, preferably a combination in which the soft segment is an aliphatic polyether, the hard segment is polybutylene terephthalate, the soft segment Further preferred is the combination wherein is a poly (ethylene oxide) glycol.
 ポリエステル系熱可塑性エラストマーの市販品としては、例えば、東レ・デュポン株式会社製の「ハイトレル」シリーズ(例えば、3046、5557、6347、4047N、4767N等)、東洋紡株式会社製の「ペルプレン」シリーズ(例えば、P30B、P40B、P40H、P55B、P70B、P150B、P280B、E450B、P150M、S1001、S2001、S5001、S6001、S9001等)等を用いることができる。 Commercially available polyester thermoplastic elastomers include, for example, "Hytrel" series manufactured by Toray-Dupont Co., Ltd. (for example, 3046, 5557, 6347, 4047N, 4767N, etc.), "Perprene" series manufactured by Toyobo Co., Ltd. (for example, , P30B, P40B, P40H, P55B, P70B, P150B, P280B, E450B, P150M, S1001, S2001, S5001, S6001, S9001) and the like can be used.
 ポリエステル系熱可塑性エラストマーは、ハードセグメントを形成するポリマー及びソフトセグメントを形成するポリマーを公知の方法によって共重合することで合成することができる。 The polyester-based thermoplastic elastomer can be synthesized by copolymerizing a polymer forming a hard segment and a polymer forming a soft segment by a known method.
・熱可塑性樹脂
 樹脂組成物は、熱可塑性樹脂を含んでいてもよい。
 熱可塑性樹脂としては、例えば、ポリアミド系熱可塑性樹脂、ポリエステル系熱可塑性樹脂、オレフィン系熱可塑性樹脂、ポリウレタン系熱可塑性樹脂、塩化ビニル系熱可塑性樹脂、ポリスチレン系熱可塑性樹脂等を例示することができる。
 上記の中でも、熱可塑性樹脂としては、ポリアミド系熱可塑性樹脂、ポリエステル系熱可塑性樹脂及びオレフィン系熱可塑性樹脂からなる群より選択される少なくとも1種の熱可塑性樹脂であることが好ましい。熱可塑性樹脂は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
-Thermoplastic resin The resin composition may contain a thermoplastic resin.
As the thermoplastic resin, for example, polyamide-based thermoplastic resin, polyester-based thermoplastic resin, olefin-based thermoplastic resin, polyurethane-based thermoplastic resin, vinyl chloride-based thermoplastic resin, polystyrene-based thermoplastic resin, etc. may be exemplified. it can.
Among the above, the thermoplastic resin is preferably at least one thermoplastic resin selected from the group consisting of a polyamide thermoplastic resin, a polyester thermoplastic resin, and an olefin thermoplastic resin. The thermoplastic resins may be used alone or in combination of two or more.
-ポリアミド系熱可塑性樹脂-
 ポリアミド系熱可塑性樹脂としては、前述のポリアミド系熱可塑性エラストマーのハードセグメントを形成するポリアミドを挙げることができる。ポリアミド系熱可塑性樹脂としては、具体的には、ε-カプロラクタムを開環重縮合したポリアミド(アミド6)、ウンデカンラクタムを開環重縮合したポリアミド(アミド11)、ラウリルラクタムを開環重縮合したポリアミド(アミド12)、ジアミンと二塩基酸とを重縮合したポリアミド(アミド66)、メタキシレンジアミンを構成単位として有するポリアミド(アミドMX)等を例示することができる。
-Polyamide thermoplastic resin-
Examples of the polyamide-based thermoplastic resin include polyamides that form the hard segment of the above-mentioned polyamide-based thermoplastic elastomer. Specific examples of the polyamide-based thermoplastic resin include polyamide obtained by ring-opening polycondensation of ε-caprolactam (amide 6), polyamide obtained by ring-opening polycondensation of undecane lactam (amide 11), ring-opening polycondensation of lauryl lactam. Examples thereof include polyamide (amide 12), polyamide (amide 66) obtained by polycondensing diamine and dibasic acid, and polyamide (amide MX) having metaxylene diamine as a constituent unit.
 アミド6は、例えば、{CO-(CH-NH}で表すことができる。アミド11は、例えば、{CO-(CH10-NH}で表すことができる。アミド12は、例えば、{CO-(CH11-NH}で表すことができる。アミド66は、例えば、{CO(CHCONH(CHNH}で表すことができる。アミドMXは、例えば、下記構造式(A-1)で表すことができる。ここで、nは繰り返し単位数を表す。
 アミド6の市販品としては、例えば、宇部興産株式会社製の「UBEナイロン」シリーズ(例えば、1022B、1011FB等)を用いることができる。アミド11の市販品としては、例えば、アルケマ株式会社製の「Rilsan B」シリーズを用いることができる。アミド12の市販品としては、例えば、宇部興産株式会社製の「UBEナイロン」シリーズ(例えば、3024U、3020U、3014U等)を用いることができる。アミド66の市販品としては、例えば、旭化成株式会社製の「レオナ」シリーズ(例えば、1300S、1700S等)を用いることができる。アミドMXの市販品としては、例えば、三菱ガス化学株式会社製の「MXナイロン」シリーズ(例えば、S6001、S6021、S6011等)を用いることができる。
The amide 6 can be represented by, for example, {CO— (CH 2 ) 5 —NH} n . The amide 11 can be represented by, for example, {CO— (CH 2 ) 10 —NH} n . The amide 12 can be represented by, for example, {CO— (CH 2 ) 11 —NH} n . The amide 66 can be represented by, for example, {CO (CH 2 ) 4 CONH (CH 2 ) 6 NH} n . The amide MX can be represented by, for example, the following structural formula (A-1). Here, n represents the number of repeating units.
As a commercially available product of amide 6, for example, "UBE Nylon" series (for example, 1022B, 1011FB, etc.) manufactured by Ube Industries, Ltd. can be used. As a commercially available product of the amide 11, for example, “Rilsan B” series manufactured by Arkema Ltd. can be used. As a commercially available product of the amide 12, for example, "UBE Nylon" series (for example, 3024U, 3020U, 3014U) manufactured by Ube Industries, Ltd. can be used. As a commercially available product of the amide 66, for example, "Leona" series (for example, 1300S, 1700S, etc.) manufactured by Asahi Kasei Corporation can be used. As a commercially available product of the amide MX, for example, "MX Nylon" series (for example, S6001, S6021, S6011, etc.) manufactured by Mitsubishi Gas Chemical Co., Inc. can be used.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 ポリアミド系熱可塑性樹脂は、上記の構成単位のみで形成されるホモポリマーであってもよく、上記の構成単位と他のモノマーとのコポリマーであってもよい。コポリマーの場合、各ポリアミド系熱可塑性樹脂における上記構成単位の含有率は、40質量%以上であることが好ましい。 The thermoplastic polyamide-based resin may be a homopolymer formed of only the above structural unit or a copolymer of the above structural unit and another monomer. In the case of a copolymer, the content of the above structural units in each polyamide-based thermoplastic resin is preferably 40% by mass or more.
-ポリエステル系熱可塑性樹脂-
 ポリエステル系熱可塑性樹脂としては、前述のポリエステル系熱可塑性エラストマーのハードセグメントを形成するポリエステルを挙げることができる。
 ポリエステル系熱可塑性樹脂としては、具体的には、ポリ乳酸、ポリヒドロキシ-3-ブチル酪酸、ポリヒドロキシ-3-ヘキシル酪酸、ポリ(ε-カプロラクトン)、ポリエナントラクトン、ポリカプリロラクトン、ポリブチレンアジペート、ポリエチレンアジペート等の脂肪族ポリエステル、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート等の芳香族ポリエステルなどを例示することができる。これらの中でも、耐熱性及び加工性の観点から、ポリエステル系熱可塑性樹脂としては、ポリブチレンテレフタレートが好ましい。
-Polyester thermoplastic resin-
Examples of the polyester-based thermoplastic resin include polyesters that form the hard segment of the above-mentioned polyester-based thermoplastic elastomer.
Specific examples of the polyester-based thermoplastic resin include polylactic acid, polyhydroxy-3-butylbutyric acid, polyhydroxy-3-hexylbutyric acid, poly (ε-caprolactone), polyenanthlactone, polycaprylolactone, and polybutylene. Examples thereof include aliphatic polyesters such as adipate and polyethylene adipate, and aromatic polyesters such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate and polybutylene naphthalate. Among these, polybutylene terephthalate is preferable as the polyester thermoplastic resin from the viewpoint of heat resistance and processability.
 ポリエステル系熱可塑性樹脂の市販品としては、例えば、ポリプラスチック株式会社製の「ジュラネックス」シリーズ(例えば、2000、2002等)、三菱エンジニアリングスプラスチック株式会社製の「ノバデュラン」シリーズ(例えば、5010R5、5010R3-2等)、東レ株式会社製の「トレコン」シリーズ(例えば、1401X06、1401X31等)等を用いることができる。 Examples of commercially available polyester thermoplastic resins include "Duranex" series manufactured by Polyplastics Co., Ltd. (e.g., 2000, 2002) and "Novaduran" series manufactured by Mitsubishi Engineering Plastics Co., Ltd. (e.g., 5010R5, 5010R3-2 etc.), “Toraycon” series manufactured by Toray Industries, Inc. (eg 1401X06, 1401X31 etc.) and the like can be used.
-オレフィン系熱可塑性樹脂-
 オレフィン系熱可塑性樹脂としては、前述のオレフィン系熱可塑性エラストマーのハードセグメントを形成するポリオレフィンを挙げることができる。
 オレフィン系熱可塑性樹脂としては、具体的には、ポリエチレン系熱可塑性樹脂、ポリプロピレン系熱可塑性樹脂、ポリブタジエン系熱可塑性樹脂等を例示することができる。これらの中でも、耐熱性及び加工性の点から、オレフィン系熱可塑性樹脂としては、ポリプロピレン系熱可塑性樹脂が好ましい。
 ポリプロピレン系熱可塑性樹脂の具体例としては、プロピレンホモ重合体、プロピレン-α-オレフィンランダム共重合体、プロピレン-α-オレフィンブロック共重合体等が挙げられる。α-オレフィンとしては、例えば、プロピレン、1-ブテン、1-ペンテン、3-メチル-1-ブテン、1-ヘキセン、4-メチル-1-ペンテン、3-メチル-1-ペンテン、1-ヘプテン、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-オクタデセン、1-エイコセン等の炭素数3~20程度のα-オレフィン等が挙げられる。
-Olefinic thermoplastic resin-
Examples of the olefin-based thermoplastic resin include the above-mentioned polyolefins that form the hard segment of the olefin-based thermoplastic elastomer.
Specific examples of the olefin-based thermoplastic resin include polyethylene-based thermoplastic resin, polypropylene-based thermoplastic resin, and polybutadiene-based thermoplastic resin. Among these, polypropylene-based thermoplastic resins are preferable as the olefin-based thermoplastic resin from the viewpoint of heat resistance and processability.
Specific examples of the polypropylene-based thermoplastic resin include propylene homopolymer, propylene-α-olefin random copolymer, propylene-α-olefin block copolymer and the like. Examples of the α-olefin include propylene, 1-butene, 1-pentene, 3-methyl-1-butene, 1-hexene, 4-methyl-1-pentene, 3-methyl-1-pentene, 1-heptene, Examples thereof include α-olefins having about 3 to 20 carbon atoms such as 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene and 1-eicosene.
 被覆樹脂層に含まれる樹脂としては、熱可塑性エラストマーを単独で用いてもよく、2種以上の熱可塑性エラストマーを組み合わせて用いてもよく、1種以上の熱可塑性エラストマーに1種以上の熱可塑性樹脂を組み合わせて用いてもよい。 As the resin contained in the coating resin layer, a thermoplastic elastomer may be used alone, or two or more thermoplastic elastomers may be used in combination, and one or more thermoplastic elastomers may be used in combination with one or more thermoplastic elastomers. Resins may be used in combination.
 被覆樹脂層における熱可塑性エラストマーの総含有率は、被覆樹脂層全体に対して50質量%以上であることが好ましく、60質量%以上であることがより好ましく、75質量%以上であることがさらに好ましい。 The total content of the thermoplastic elastomer in the coating resin layer is preferably 50% by mass or more, more preferably 60% by mass or more, and further preferably 75% by mass or more with respect to the entire coating resin layer. preferable.
 被覆樹脂層は、熱可塑性樹脂及び熱可塑性エラストマー以外の他の成分を含んでもよい。他の成分としては、ゴム、各種充填剤(例えば、シリカ、炭酸カルシウム、クレイ等)、老化防止剤、オイル、可塑剤、発色剤、耐候剤等が挙げられる。 The coating resin layer may contain components other than the thermoplastic resin and the thermoplastic elastomer. Examples of other components include rubber, various fillers (for example, silica, calcium carbonate, clay, etc.), antioxidants, oils, plasticizers, color formers, weathering agents and the like.
(被覆樹脂層の物性等)
・厚み
 被覆樹脂層の平均厚みは、特に限定されない。耐久性に優れる点や溶着性の観点から、10μm以上1000μm以下であることが好ましく、50μm以上700μm以下であることがより好ましい。
(Physical properties of coating resin layer, etc.)
-Thickness The average thickness of the coating resin layer is not particularly limited. From the viewpoint of excellent durability and weldability, the thickness is preferably 10 μm or more and 1000 μm or less, and more preferably 50 μm or more and 700 μm or less.
 被覆樹脂層の平均厚みは、ビードワイヤー、被覆樹脂層、及び必要に応じて用いられる接着層の積層方向に沿ってビードコアを切断して得られる断面のSEM画像を任意の5箇所から取得し、得られたSEM画像もしくはビデオマイクロスコープにより得られる画像から測定される被覆樹脂層の厚みの数平均値とする。各SEM画像における被覆樹脂層の厚みは、最も厚みの小さい部分(接着層と被覆樹脂層との間の界面と、ビードコアの外縁との距離が最小となる部分)で測定される値とする。 The average thickness of the coating resin layer, the bead wire, the coating resin layer, and the SEM image of the cross section obtained by cutting the bead core along the laminating direction of the adhesive layer used as necessary is obtained from any 5 points, It is the number average value of the thickness of the coating resin layer measured from the obtained SEM image or the image obtained by a video microscope. The thickness of the coating resin layer in each SEM image is a value measured at the smallest thickness portion (the portion where the distance between the interface between the adhesive layer and the coating resin layer and the outer edge of the bead core is minimum).
・引張弾性率
 被覆樹脂層の引張弾性率は、ランフラット耐久性及び通常走行時の乗り心地性を両立させる観点から、50MPa以上1000MPa以下であることが好ましく、50MPa以上800MPa以下であることがより好ましく、50MPa以上700MPa以下であることがさらに好ましい。なお、被覆樹脂層の引張弾性率は、接着層の引張弾性率よりも大きいことが好ましい。
Tensile Elastic Modulus The tensile elastic modulus of the coating resin layer is preferably 50 MPa or more and 1000 MPa or less, and more preferably 50 MPa or more and 800 MPa or less from the viewpoint of achieving both run flat durability and riding comfort during normal traveling. It is preferably 50 MPa or more and 700 MPa or less. The tensile elastic modulus of the coating resin layer is preferably larger than the tensile elastic modulus of the adhesive layer.
 被覆樹脂層の引張弾性率は、例えば、被覆樹脂層に含まれる樹脂の種類等によって制御することができる。なお、被覆樹脂層の引張弾性率の測定は、JIS K7113:1995に準拠して行う。具体的には、例えば、株式会社島津製作所製、島津オートグラフAGS-J(5KN)を用い、引張速度を100mm/minに設定し、引張弾性率の測定を行う。なお、ビードコアに含まれる被覆樹脂層の引張弾性率を測定する場合、例えば、上記被覆樹脂層と同じ材料の測定試料を別途準備して引張弾性率を測定してもよい。 The tensile elastic modulus of the coating resin layer can be controlled by, for example, the type of resin contained in the coating resin layer. The tensile elastic modulus of the coating resin layer is measured according to JIS K7113: 1995. Specifically, for example, using Shimadzu Autograph AGS-J (5KN) manufactured by Shimadzu Corporation, the tensile speed is set to 100 mm / min, and the tensile elastic modulus is measured. When measuring the tensile elastic modulus of the coating resin layer included in the bead core, for example, a measuring sample of the same material as the coating resin layer may be separately prepared to measure the tensile elastic modulus.
 ・メルトフローレート(MFR)
 被覆樹脂層のメルトフローレート(MFR)は、上限値が16.5g/10min以下(260℃、2.16kg条件)であることが好ましく、16g/10min以下であることがより好ましく、15.4g/10min以下であることがさらに好ましい。被覆樹脂層のMFRが16.5g/10min以下であると、被覆樹脂層には優れた疲労耐久性が発揮される傾向にある。
 被覆樹脂層のMFRの下限値は、0.5g/10min以上(260℃、2.16kg条件)であることが好ましく、2g/10min以上であることがより好ましく、4g/10min以上であることがさらに好ましい。被覆樹脂層のMFRが0.5g/10min以上であると、押出成形において複雑な形状の押出にも対応した成型が可能となる。
 被覆樹脂層のMFRの上下限値は、好ましくは2g/10min以上16g/10min以下であることが好ましく、4g/10min以上15.4g/10min以下であることがより好ましい。
・ Melt flow rate (MFR)
The melt flow rate (MFR) of the coating resin layer has an upper limit value of preferably 16.5 g / 10 min or less (260 ° C., 2.16 kg condition), more preferably 16 g / 10 min or less, and 15.4 g. It is more preferably / 10 min or less. When the MFR of the coating resin layer is 16.5 g / 10 min or less, the coating resin layer tends to exhibit excellent fatigue durability.
The lower limit of the MFR of the coating resin layer is preferably 0.5 g / 10 min or more (260 ° C., 2.16 kg condition), more preferably 2 g / 10 min or more, and 4 g / 10 min or more. More preferable. When the MFR of the coating resin layer is 0.5 g / 10 min or more, it becomes possible to perform molding in a complicated shape in extrusion molding.
The upper and lower limit values of the MFR of the coating resin layer are preferably 2 g / 10 min or more and 16 g / 10 min or less, and more preferably 4 g / 10 min or more and 15.4 g / 10 min or less.
 被覆樹脂層のメルトフローレート(MFR)は、被覆樹脂層から測定用のサンプルを切り出した上で、以下の方法により測定する。測定法は、JIS-K7210-1(2014)に準ずる。具体的には、MFRはメルトインデクサー(例えば、型番2A-C、株式会社東洋製機製作所)を用いて行う。測定条件は温度260℃、荷重2.16kg、インターバル25mm、オリフィス2.09Φ×8L(mm)を用いて、MFRを求める。 The melt flow rate (MFR) of the coating resin layer is measured by the following method after cutting out a measurement sample from the coating resin layer. The measuring method is based on JIS-K7210-1 (2014). Specifically, MFR is performed using a melt indexer (for example, model number 2A-C, Toyo Seisakusho Co., Ltd.). The measurement conditions are a temperature of 260 ° C., a load of 2.16 kg, an interval of 25 mm, an orifice of 2.09Φ × 8 L (mm), and the MFR is obtained.
 被覆樹脂層のメルトフローレート(MFR)を0.5g/10min以上16.5g/10min以下とする方法としては、樹脂材料としてMFRが前記範囲内である熱可塑性エラストマーを用いること;樹脂材料全体としてMFRが前記範囲内となるように樹脂及び添加剤の種類、量等を調整すること等が挙げられる。 As a method for adjusting the melt flow rate (MFR) of the coating resin layer to 0.5 g / 10 min or more and 16.5 g / 10 min or less, use a thermoplastic elastomer having a MFR within the above range as the resin material; Examples include adjusting the types and amounts of the resin and additives so that the MFR falls within the above range.
 ・重量平均分子量(Mw)
 被覆樹脂層に含まれる樹脂の重量平均分子量Mw(ポリメタクリル酸メチル換算)は、44000以上であることが好ましく、より好ましくは45000以上であり、さらに好ましくは47000以上である。樹脂のMwが44000以上であることで、被覆樹脂層には優れた疲労耐久性が発揮される。
 一方、樹脂のMwの上限値としては、好ましくは100000以下であり、より好ましくは90000以下であり、さらに好ましくは79000以下である。樹脂のMwが100000以下であることで、押出成形において複雑な形状の押出にも対応した成型が可能となる。
 なお、被覆樹脂層に含まれる樹脂のMwの上下限値は、好ましくは44000以上100000以下であり、より好ましくは45000以上90000以下であり、さらに好ましくは47000以上79000以下である。
-Weight average molecular weight (Mw)
The resin contained in the coating resin layer has a weight average molecular weight Mw (calculated as polymethylmethacrylate) of preferably 44,000 or more, more preferably 45,000 or more, and further preferably 47,000 or more. When the Mw of the resin is 44000 or more, the coating resin layer exhibits excellent fatigue durability.
On the other hand, the upper limit of Mw of the resin is preferably 100,000 or less, more preferably 90,000 or less, and further preferably 79000 or less. When the Mw of the resin is 100,000 or less, it becomes possible to perform molding in a complicated shape in extrusion molding.
The upper and lower limit values of Mw of the resin contained in the coating resin layer are preferably 44,000 or more and 100,000 or less, more preferably 45,000 or more and 90,000 or less, and further preferably 47,000 or more and 79000 or less.
 なお、被覆樹脂層に含まれる樹脂の重量平均分子量Mwは、被覆樹脂層から測定用のサンプルを切り出した上で、以下の方法により測定する。
 重量平均分子量は、ゲル浸透クロマトグラフィー(「GPC」とも称す。)を、型番:HLC-8320GPC、株式会社東ソー社製を用いて行う。測定条件は、カラム:TSK-GEL GMHXL(株式会社東ソー社製)、展開溶媒:HFIP(ヘキサフルオロイソプロパノール、富士フイルム和光純薬株式会社製)、カラム温度:40℃、流速:1ml/分で、RI検出器を用いて、ポリメタクリル酸メチル(PMMA)換算の重量平均分子量を求める。
The weight average molecular weight Mw of the resin contained in the coating resin layer is measured by the following method after cutting out a measurement sample from the coating resin layer.
The weight average molecular weight is determined by gel permeation chromatography (also referred to as “GPC”) using model number: HLC-8320GPC, manufactured by Tosoh Corporation. The measurement conditions are: column: TSK-GEL GMHXL (manufactured by Tosoh Corporation), developing solvent: HFIP (hexafluoroisopropanol, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.), column temperature: 40 ° C., flow rate: 1 ml / min, Using a RI detector, the weight average molecular weight in terms of polymethylmethacrylate (PMMA) is determined.
[サイド補強ゴム]
 サイド補強ゴムは、ゴム組成物により形成される。
[Side reinforcement rubber]
The side reinforcing rubber is formed of a rubber composition.
・架橋密度
 サイド補強ゴムは、ランフラット耐久性を向上させる観点から、架橋密度が、5×10-4mol/ml以上10×10-4mol/ml以下であることが好ましく、6×10-4mol/ml以上9×10-4mol/ml以下であることがより好ましく、7×10-4mol/ml以上9×10-4mol/ml以下であることがさらに好ましい。
-Crosslink Density The side-reinforcing rubber preferably has a crosslink density of 5 × 10 −4 mol / ml or more and 10 × 10 −4 mol / ml or less, from the viewpoint of improving run flat durability, and 6 × 10 −. 4 more preferably mol / ml or more 9 × is 10 -4 mol / ml or less, still more preferably 7 × 10 -4 mol / ml or more 9 × 10 -4 mol / ml or less.
 前記架橋密度は、サイド補強ゴムを形成するゴム組成物に含まれるゴムの種類及び組成比の調整;加硫剤、加硫促進剤等の量及び種類の調整;などによって制御しうる。 The crosslink density can be controlled by adjusting the type and composition ratio of the rubber contained in the rubber composition forming the side-reinforcing rubber; adjusting the amounts and types of vulcanizing agents, vulcanization accelerators, etc.
 架橋密度は、Floryの理論式を用いる膨潤圧縮法(例えば、日本ゴム協会誌、第63巻、第7号、1990年、P440~448参照)により、全網目密度として測定する。 The crosslink density is measured as the total mesh density by the swelling compression method using the theoretical formula of Flory (see, for example, Journal of Japan Rubber Association, Volume 63, No. 7, 1990, P440 to 448).
 ゴム組成物は、バンバリーミキサー、ロール、インターナルミキサー等の混練機を用いて混練し、成形加工された後、加硫を行うことにより、タイヤのサイド補強ゴム層として用いられる。 The rubber composition is kneaded using a kneading machine such as a Banbury mixer, a roll, an internal mixer, etc., is molded, and is then vulcanized to be used as a side reinforcing rubber layer of a tire.
 以下、サイド補強ゴムを構成する各材料について説明する。
(ゴム)
 ゴムとしては、天然ゴム(NR)及びジエン系合成ゴムが挙げられる。
 ジエン系合成ゴムとしては、例えば、スチレン-ブタジエン共重合体(SBR)、ポリブタジエン(BR)、ポリイソプレン(IR)、スチレン-イソプレン共重合体(SIR)、ブチルゴム(IIR)、ハロゲン化ブチルゴム、エチレン-プロピレン-ジエン三元共重合体(EPDM)及びこれらの混合物が挙げられる。
 ジエン系合成ゴムは、ジエン系合成ゴムの一部又は全てが、多官能型変性剤、例えば、四塩化スズのような変性剤を用いることにより分岐構造を有するものとなったジエン系変性ゴムであることが、より好ましい。
Hereinafter, each material constituting the side reinforcing rubber will be described.
(Rubber)
Examples of the rubber include natural rubber (NR) and diene-based synthetic rubber.
Examples of the diene synthetic rubber include styrene-butadiene copolymer (SBR), polybutadiene (BR), polyisoprene (IR), styrene-isoprene copolymer (SIR), butyl rubber (IIR), halogenated butyl rubber, ethylene. -Propylene-diene terpolymer (EPDM) and mixtures thereof.
Diene synthetic rubber is a diene modified rubber in which some or all of the diene synthetic rubber has a branched structure by using a polyfunctional modifier, for example, a modifier such as tin tetrachloride. More preferably.
 ゴムとしては、共役ジエン系重合体をアミン変性したアミン変性共役ジエン系重合体を含むものが挙げられる。
 アミン変性共役ジエン系重合体の含有量は、ゴムの全量に対して、30質量%以上、特には50質量%以上であることが好ましい。
 アミン変性共役ジエン系重合体を30質量%以上含むと、得られるゴム組成物が低発熱化する傾向があるため、タイヤに適用した際に、ランフラット走行耐久性がより向上するものと考えられる。
Examples of the rubber include those containing an amine-modified conjugated diene polymer obtained by amine-modifying a conjugated diene polymer.
The content of the amine-modified conjugated diene polymer is preferably 30% by mass or more, and particularly preferably 50% by mass or more based on the total amount of the rubber.
When the content of the amine-modified conjugated diene polymer is 30% by mass or more, the obtained rubber composition tends to have low heat generation, and thus it is considered that run-flat running durability is further improved when applied to a tire. ..
 アミン変性共役ジエン系重合体としては、分子内に、変性用官能基として、プロトン性アミノ基、脱離可能基で保護されたアミノ基等のアミン系官能基を導入した共役ジエン系重合体であることが好ましい。
 アミン変性共役ジエン系重合体は、変性用官能基として、前記アミン系官能基に加えて、さらにケイ素原子を含む官能基を導入した共役ジエン系重合体であることが好ましい。ケイ素原子を含む官能基としては、ケイ素原子にヒドロカルビルオキシ基、ヒドロキシ基等が結合してなるシラン基が挙げられる。
The amine-modified conjugated diene-based polymer is a conjugated diene-based polymer in which an amine-based functional group such as a protic amino group or an amino group protected by a removable group is introduced into the molecule as a modifying functional group. Preferably.
The amine-modified conjugated diene polymer is preferably a conjugated diene polymer in which, in addition to the amine functional group, a functional group containing a silicon atom is further introduced as a modifying functional group. Examples of the functional group containing a silicon atom include a silane group formed by bonding a hydrocarbyloxy group, a hydroxy group or the like to a silicon atom.
 前記変性用官能基は、共役ジエン系重合体の重合開始末端、側鎖及び重合活性末端のいずれかに存在すればよいが、本実施形態において前記変性用官能基は、重合末端に存在することが好ましく、同一重合活性末端に存在することがより好ましい。 The modifying functional group may be present at any of the polymerization initiation terminal, the side chain and the polymerization active terminal of the conjugated diene polymer, but in the present embodiment, the modifying functional group is present at the polymerization terminal. Are preferred, and it is more preferred that they are present at the same polymerization active end.
 プロトン性アミノ基としては、一級アミノ基、二級アミノ基及びそれらの塩の中からなる群より選択される少なくとも1種が挙げられる。
 脱離可能基で保護されたアミノ基としては、N,N-ビス(トリヒドロカルビルシリル)アミノ基、N-(トリヒドロカルビルシリル)イミノ基等が挙げられる。上記の中でも、脱離可能基で保護されたアミノ基としては、充填材の分散が良好になる観点から、炭素数1~10のアルキル基を有するトリアルキルシリル基を含むヒドロカルビル基であることが好ましく、トリメチルシリル基を含むヒドロカルビル基であることがより好ましい。
 脱離可能基で保護された一級アミノ基(以下、「保護化一級アミノ基」ともいう)としては、N,N-ビス(トリメチルシリル)アミノ基等が挙げられる。
 脱離可能基で保護された二級アミノ基としては、N-(トリメチルシリル)イミノ基等が挙げられる。なお、N-(トリメチルシリル)イミノ基を含有する基としては、非環状イミン残基及び環状イミン残基のいずれであってもよい。
Examples of the protic amino group include at least one selected from the group consisting of a primary amino group, a secondary amino group and salts thereof.
Examples of the amino group protected with a removable group include N, N-bis (trihydrocarbylsilyl) amino group and N- (trihydrocarbylsilyl) imino group. Among the above, the amino group protected by the removable group is a hydrocarbyl group containing a trialkylsilyl group having an alkyl group having 1 to 10 carbon atoms from the viewpoint of improving the dispersion of the filler. A hydrocarbyl group containing a trimethylsilyl group is more preferable.
Examples of the primary amino group protected by a removable group (hereinafter, also referred to as “protected primary amino group”) include N, N-bis (trimethylsilyl) amino group and the like.
Examples of the secondary amino group protected with a removable group include N- (trimethylsilyl) imino group and the like. The group containing an N- (trimethylsilyl) imino group may be either an acyclic imine residue or a cyclic imine residue.
 アミン変性共役ジエン系重合体が一級アミノ基で変性された一級アミン変性共役ジエン系重合体である場合、共役ジエン系重合体の活性末端に、保護化一級アミン化合物を反応させて得られた保護化一級アミノ基により変性された一級アミン変性共役ジエン系重合体であることが好ましい。 When the amine-modified conjugated diene polymer is a primary amine-modified conjugated diene polymer modified with a primary amino group, protection obtained by reacting a protected primary amine compound on the active end of the conjugated diene polymer It is preferably a primary amine-modified conjugated diene-based polymer modified with a primary amino group.
 共役ジエン系重合体は、共役ジエン化合物単独重合体であってもよく、共役ジエン化合物と芳香族ビニル化合物との共重合体であってもよい。
 共役ジエン化合物としては、1,3-ブタジエン、イソプレン、1,3-ペンタジエン、2,3-ジメチル-1,3-ブタジエン、2-フェニル-1,3-ブタジエン、1,3-ヘキサジエン等が挙げられ、1,3-ブタジエンが好ましい。共役ジエン化合物は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 芳香族ビニル化合物としては、スチレン、α-メチルスチレン、1-ビニルナフタレン、3-ビニルトルエン、エチルビニルベンゼン、ジビニルベンゼン、4-シクロへキシルスチレン、2,4,6-トリメチルスチレン等が挙げられ、スチレンが好ましい。芳香族ビニル化合物は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 共役ジエン系重合体は、ポリブタジエン又はスチレン-ブタジエン共重合体であることが好ましく、ポリブタジエンであることがより好ましい。
The conjugated diene polymer may be a conjugated diene compound homopolymer or a copolymer of a conjugated diene compound and an aromatic vinyl compound.
Examples of the conjugated diene compound include 1,3-butadiene, isoprene, 1,3-pentadiene, 2,3-dimethyl-1,3-butadiene, 2-phenyl-1,3-butadiene and 1,3-hexadiene. 1,3-butadiene is preferred. The conjugated diene compounds may be used alone or in combination of two or more.
Examples of the aromatic vinyl compound include styrene, α-methylstyrene, 1-vinylnaphthalene, 3-vinyltoluene, ethylvinylbenzene, divinylbenzene, 4-cyclohexylstyrene, 2,4,6-trimethylstyrene and the like. , Styrene is preferred. The aromatic vinyl compounds may be used alone or in combination of two or more.
The conjugated diene polymer is preferably polybutadiene or styrene-butadiene copolymer, and more preferably polybutadiene.
 共役ジエン系重合体は、共役ジエン系重合体の活性末端に保護化一級アミンを好適に反応させアミン変性体を得る観点から、少なくとも10%のポリマー鎖がリビング性又は擬似リビング性を有することが好ましい。 From the viewpoint of obtaining an amine-modified product by suitably reacting a protected primary amine with the active end of the conjugated diene-based polymer, at least 10% of the polymer chains have living or pseudo-living properties. preferable.
 前記リビング性を有する重合反応としては、有機アルカリ金属化合物を開始剤として有機溶媒中でアニオン重合させる反応;有機溶媒中でランタン系列希土類元素化合物を含む触媒により配位アニオン重合させる反応;などが挙げられる。前記リビング性を有する重合反応は、共役ジエン部位のビニル結合の含有量を高くし耐熱性を向上させる観点から、アニオン重合であることが好ましい。 Examples of the living polymerization reaction include a reaction in which an organic alkali metal compound is used as an initiator for anionic polymerization in an organic solvent; a reaction in which an anionic polymerization is performed in a solvent containing a lanthanum series rare earth element compound for coordination anionic polymerization. Be done. The living-state polymerization reaction is preferably anionic polymerization from the viewpoint of increasing the content of vinyl bonds in the conjugated diene site and improving heat resistance.
 有機アルカリ金属化合物としては、n-ブチルリチウム等のヒドロカルビルリチウム;リチウムヘキサメチレンイミド、リチウムピロリジド等のリチウムアミド化合物などの有機リチウム化合物が好ましい。例えば、ヒドロカルビルリチウムを有機アルカリ金属化合物として用いる場合、重合開始末端にヒドロカルビル基を有し、他方の末端が重合活性部位である共役ジエン系重合体が得られる。リチウムアミド化合物を有機アルカリ金属化合物として用いる場合、重合開始末端に窒素含有基を有し、他方の末端が重合活性部位である共役ジエン系重合体が得られる。 The organic alkali metal compound is preferably an organic lithium compound such as hydrocarbyl lithium such as n-butyl lithium; a lithium amide compound such as lithium hexamethylene imide or lithium pyrrolidide. For example, when hydrocarbyl lithium is used as the organic alkali metal compound, a conjugated diene polymer having a hydrocarbyl group at the polymerization initiation terminal and the other terminal being a polymerization active site can be obtained. When the lithium amide compound is used as the organic alkali metal compound, a conjugated diene polymer having a nitrogen-containing group at the polymerization initiation terminal and the other terminal being a polymerization active site can be obtained.
 アミン変性共役ジエン系重合体の製造方法は、特に制限されず、特開2011-68342等の従来公知の方法を用いてよい。 The method for producing the amine-modified conjugated diene polymer is not particularly limited, and a conventionally known method such as JP2011-68342A may be used.
 アミン変性共役ジエン系重合体のムーニー粘度(ML1+4,100℃)は、10~150であることが好ましく、15~100であることがより好ましい。
 ムーニー粘度が10以上であると、耐破壊特性が得られる傾向にある。
 ムーニー粘度が150以下であると、配合剤とともに混練する等の製造工程が容易となり易い。
 アミン変性共役ジエン系重合体を含む未加硫のゴム組成物のムーニー粘度(ML1+4,130℃)は、10~150であることが好ましく、30~100であることがより好ましい。
The Mooney viscosity (ML 1 + 4 , 100 ° C.) of the amine-modified conjugated diene polymer is preferably 10 to 150, more preferably 15 to 100.
When the Mooney viscosity is 10 or more, fracture resistance tends to be obtained.
When the Mooney viscosity is 150 or less, the manufacturing process such as kneading with the compounding agent tends to be easy.
The Mooney viscosity (ML 1 + 4 , 130 ° C.) of the unvulcanized rubber composition containing the amine-modified conjugated diene polymer is preferably 10 to 150, and more preferably 30 to 100.
 アミン変性共役ジエン系重合体の重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)、すなわち、分子量分布(Mw/Mn)は、1~3であることが好ましく、1.1~2.7であることがより好ましい。 The ratio (Mw / Mn) of the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the amine-modified conjugated diene polymer, that is, the molecular weight distribution (Mw / Mn) is preferably 1 to 3, It is more preferably 1.1 to 2.7.
 アミン変性共役ジエン系重合体の数平均分子量(Mn)は、100,000~500,000であることが好ましく、150,000~300,000であることがより好ましい。 The number average molecular weight (Mn) of the amine-modified conjugated diene polymer is preferably 100,000 to 500,000, and more preferably 150,000 to 300,000.
 ゴムの含有量は、ゴム組成物の全量に対し、50質量%以上であることが好ましく、50質量%~80質量%であることがより好ましく、55質量%~70質量%であることがさらに好ましい。 The content of rubber is preferably 50% by mass or more, more preferably 50% by mass to 80% by mass, and further preferably 55% by mass to 70% by mass with respect to the total amount of the rubber composition. preferable.
(充填材)
 ゴム組成物は、ゴムと充填材とを含むことが好ましい。
 充填材としては、カーボンブラック、シリカ、下記一般式(I)で表される無機充填材等が挙げられる。
(Filling material)
The rubber composition preferably contains rubber and a filler.
Examples of the filler include carbon black, silica, an inorganic filler represented by the following general formula (I), and the like.
  nM・xSiO・zHO     (I)
 一般式(I)中、Mは、アルミニウム、マグネシウム、チタン、カルシウム及びジルコニウムからなる群より選択される少なくとも1種以上の金属、又は前記金属の酸化物、水酸化物、水和物若しくは炭酸塩を表す。
 一般式(I)中、nは1~5の整数を表す。xは0~10の整数の整数を表す。yは2~5の整数の整数を表す。zは0~10の整数の整数を表す。
nM · xSiO y · zH 2 O (I)
In the general formula (I), M is at least one metal selected from the group consisting of aluminum, magnesium, titanium, calcium and zirconium, or an oxide, hydroxide, hydrate or carbonate of the metal. Represents.
In general formula (I), n represents an integer of 1 to 5. x represents an integer of 0 to 10. y represents an integer of 2 to 5. z represents an integer of 0 to 10.
 上記の中でも、充填材としては、カーボンブラック又はシリカが好ましく、カーボンブラックがより好ましい。 Among the above, as the filler, carbon black or silica is preferable, and carbon black is more preferable.
 カーボンブラックとしては、FEF級グレード、FF級グレード、HAF級グレード、ISAF級グレード、GPF級グレード、SAF級グレード等の種々のグレードのカーボンブラックを、単独又は混合して使用することができる。
 上記の中でもカーボンブラックは、タイヤの発熱を抑制する観点から、FEF級グレードが好適である。また、シリカとしては、特に限定されないが、湿式シリカ、乾式シリカ、コロイダルシリカが好ましい。これらは、単独で、又は適宜混合して使用することができる。
As the carbon black, various grades of carbon black such as FEF grade, FF grade, HAF grade, ISAF grade, GPF grade and SAF grade can be used alone or in combination.
Among them, carbon black is preferably FEF grade from the viewpoint of suppressing heat generation of the tire. The silica is not particularly limited, but wet silica, dry silica and colloidal silica are preferable. These can be used alone or in an appropriate mixture.
 一般式(I)で表される無機充填材としては、Mが、アルミニウム金属、並びに、アルミニウムの酸化物、水酸化物、水和物及び炭酸塩からなる群より選択される少なくとも1種が好ましい。 As the inorganic filler represented by the general formula (I), M is preferably at least one selected from the group consisting of aluminum metal and aluminum oxides, hydroxides, hydrates and carbonates. ..
 一般式(I)で表される無機充填材の具体例としては、Al:γ-アルミナ、α-アルミナ等のアルミナ;Al・HO:ベーマイト、ダイアスポア等のアルミナ一水和物;ギブサイト、バイヤライト等の水酸化アルミニウム[Al(OH)];炭酸アルミニウム[Al(CO];水酸化マグネシウム[Mg(OH)];酸化マグネシウム(MgO);炭酸マグネシウム(MgCO);タルク(3MgO・4SiO・HO);アタパルジャイト(5MgO・8SiO・9HO);チタン白(TiO);チタン黒(TiO2n-1);酸化カルシウム(CaO);水酸化カルシウム[Ca(OH)];酸化アルミニウムマグネシウム(MgO・Al);クレイ(Al・2SiO);カオリン(Al・2SiO・2HO);パイロフィライト(Al・4SiO・HO);ベントナイト(Al・4SiO・2HO);AlSiO、Al・3SiO・5HO等のケイ酸アルミニウム;MgSiO、MgSiO等のケイ酸マグネシウム;Ca・SiO等のケイ酸カルシウム;Al・CaO・2SiO等のケイ酸アルミニウムカルシウム;ケイ酸マグネシウムカルシウム(CaMgSiO);炭酸カルシウム(CaCO);酸化ジルコニウム(ZrO);水酸化ジルコニウム[ZrO(OH)・nHO];炭酸ジルコニウム[Zr(CO];ゼオライト等の結晶性アルミノケイ酸塩;などが使用できる。 Specific examples of the inorganic filler represented by the general formula (I) include Al 2 O 3 : alumina such as γ-alumina and α-alumina; Al 2 O 3 .H 2 O: alumina such as boehmite and diaspore. Hydrate; Aluminum hydroxide [Al (OH) 3 ] such as gibbsite and bayerite; Aluminum carbonate [Al 2 (CO 3 ) 2 ]; Magnesium hydroxide [Mg (OH) 2 ]; Magnesium oxide (MgO); magnesium carbonate (MgCO 3); talc (3MgO · 4SiO 2 · H 2 O); attapulgite (5MgO · 8SiO 2 · 9H 2 O); titanium white (TiO 2); titanium black (TiO 2n-1); calcium oxide ( CaO); calcium hydroxide [Ca (OH) 2 ]; magnesium aluminum oxide (MgO.Al 2 O 3 ); clay (Al 2 O 3 .2SiO 2 ); Kaolin (Al 2 O 3 .2SiO 2 2H 2 O); Pyrophyllite (Al 2 O 3 .4SiO 2 .H 2 O); Bentonite (Al 2 O 3 .4SiO 2 2H) 2 O); aluminum silicates such as Al 2 SiO 5 and Al 4 3SiO 4 5H 2 O; magnesium silicates such as Mg 2 SiO 4 and MgSiO 3 ; calcium silicates such as Ca 2 SiO 4 ; Al 2 Aluminum calcium silicate such as O 3 · CaO · 2SiO 2 ; magnesium calcium silicate (CaMgSiO 4 ); calcium carbonate (CaCO 3 ); zirconium oxide (ZrO 2 ); zirconium hydroxide [ZrO (OH) 2 · nH 2 O ]; zirconium carbonate [Zr (CO 3) 2] ; crystalline aluminosilicates such as zeolite; and It can be used.
 ゴム組成物には、本実施形態の効果が損なわれない範囲で、各種添加剤、例えば、加硫剤、加硫促進剤、プロセス油、老化防止剤、スコーチ防止剤、亜鉛華、ステアリン酸等を含んでいてもよい。 In the rubber composition, various additives such as a vulcanizing agent, a vulcanization accelerator, a process oil, an anti-aging agent, an anti-scorch agent, zinc white, stearic acid, etc. are added to the extent that the effects of the present embodiment are not impaired. May be included.
 充填材の含有量は、ゴム組成物中における充填材の分散性を高めることで、タイヤの発熱とゴムの弾性率の低下を抑制し、通常走行時の乗り心地性を向上させる観点から、前記ゴム100質量%に対し75質量%以下であることが好ましく、30質量%以上70質量%以下であることがより好ましく、30質量%以上65質量%以下であることがさらに好ましい。 The content of the filler, by increasing the dispersibility of the filler in the rubber composition, to suppress the heat generation of the tire and the decrease in the elastic modulus of the rubber, from the viewpoint of improving the riding comfort during normal traveling, It is preferably 75% by mass or less, more preferably 30% by mass or more and 70% by mass or less, and further preferably 30% by mass or more and 65% by mass or less based on 100% by mass of rubber.
[カーカス]
 本実施形態において「カーカス(carcass)」とは、従来タイヤにおいてタイヤの骨格をなす部材であり、いわゆるラジアルカーカス、バイアスカーカス、セミラジアルカーカス等が含まれる。カーカスは一般に、コード、繊維等の補強材がゴム材料で被覆された構造を有する。
[Carcass]
In the present embodiment, the “carcass” is a member that forms the skeleton of a tire in a conventional tire, and includes so-called radial carcass, bias carcass, semi-radial carcass and the like. A carcass generally has a structure in which a reinforcing material such as a cord or a fiber is covered with a rubber material.
・ゴム材料
 ゴム材料は、ゴムを少なくとも含んでいればよく、本実施形態に係る効果を損なわない範囲で、添加剤等の他の成分を含んでもよい。ただし、前記ゴム材料中におけるゴムの含有量は、ゴム材料の総量に対して、50質量%以上が好ましく、90質量%以上がさらに好ましい。カーカスは、例えばゴム材料を用いて形成することができる。
-Rubber material The rubber material should just contain at least rubber, and may contain other components, such as an additive, in the range which does not impair the effect concerning this embodiment. However, the content of rubber in the rubber material is preferably 50% by mass or more, and more preferably 90% by mass or more, based on the total amount of the rubber material. The carcass can be formed using, for example, a rubber material.
 カーカスに用いるゴムとしては、特に限定はなく、従来公知のゴム配合に使用される天然ゴム及び各種合成ゴムを、単独もしくは2種以上混合して用いることができる。例えば、下記に示す様なゴム、もしくはこれらの2種以上のゴムブレンドを使用することができる。
 上記天然ゴムとしては、シートゴムでもブロックゴムでもよく、RSS#1~#5のいずれも用いることができる。
 上記合成ゴムとしては、各種ジエン系合成ゴムやジエン系共重合体ゴム及び特殊ゴムや変性ゴム等を使用できる。具体的には、例えば、ポリブタジエン(BR)、ブタジエンと芳香族ビニル化合物との共重合体(例えばSBR、NBRなど)、ブタジエンと他のジエン系化合物との共重合体等のブタジエン系重合体;ポリイソプレン(IR)、イソプレンと芳香族ビニル化合物との共重合体、イソプレンと他のジエン系化合物との共重合体等のイソプレン系重合体;クロロプレンゴム(CR);ブチルゴム(IIR);ハロゲン化ブチルゴム(X-IIR);エチレン-プロピレン系共重合体ゴム(EPM);エチレン-プロピレン-ジエン系共重合体ゴム(EPDM)及びこれらの任意のブレンド物;などが挙げられる。
The rubber used for the carcass is not particularly limited, and natural rubber and various synthetic rubbers used in conventionally known rubber compounding can be used alone or in combination of two or more. For example, a rubber as shown below, or a rubber blend of two or more of these can be used.
The natural rubber may be sheet rubber or block rubber, and any of RSS # 1 to # 5 can be used.
As the synthetic rubber, various diene-based synthetic rubbers, diene-based copolymer rubbers, special rubbers and modified rubbers can be used. Specifically, for example, a butadiene-based polymer such as polybutadiene (BR), a copolymer of butadiene and an aromatic vinyl compound (for example, SBR, NBR, etc.), a copolymer of butadiene and another diene compound, and the like; Isoprene-based polymers such as polyisoprene (IR), copolymers of isoprene and aromatic vinyl compounds, copolymers of isoprene and other diene compounds; chloroprene rubber (CR); butyl rubber (IIR); halogenated Butyl rubber (X-IIR); ethylene-propylene-based copolymer rubber (EPM); ethylene-propylene-diene-based copolymer rubber (EPDM) and any blend thereof; and the like.
 また、カーカスに用いるゴム材料は、目的に応じてゴムに添加物等の他の成分を加えてもよい。
 添加物としては、例えば、カーボンブラック等の補強材、充填剤、加硫剤、加硫促進剤、脂肪酸又はその塩、金属酸化物、プロセスオイル、老化防止剤等が挙げられ、これらを適宜配合することができる。
The rubber material used for the carcass may be added with other components such as additives to the rubber depending on the purpose.
Examples of the additive include a reinforcing material such as carbon black, a filler, a vulcanizing agent, a vulcanization accelerator, a fatty acid or a salt thereof, a metal oxide, a process oil, an antiaging agent, and the like, and these are appropriately mixed. can do.
 ゴム材料で形成されるカーカスは、未加硫のゴム材料を加熱によって加硫することで得られる。 A carcass made of rubber material is obtained by heating and vulcanizing unvulcanized rubber material.
-他の成分-
 ゴム材料は、所望に応じて、ゴム以外の他の成分を含んでもよい。他の成分としては、例えば、樹脂、各種充填剤(例えば、シリカ、炭酸カルシウム、クレイ)、老化防止剤、オイル、可塑剤、着色剤、耐候剤、補強材等が挙げられる。
-Other ingredients-
The rubber material may include other components than rubber, if desired. Examples of other components include resins, various fillers (eg, silica, calcium carbonate, clay), antiaging agents, oils, plasticizers, colorants, weathering agents, reinforcing materials, and the like.
 ゴム材料としては、通常のゴムタイヤで使用されている材料が使用でき、特に限定されるものではない。 As the rubber material, the material used in ordinary rubber tires can be used and is not particularly limited.
[ビードフィラー]
 本実施形態に係るタイヤは、ビード部において、被覆樹脂層からタイヤ径方向外側へ延びるビードフィラーを有していてもよい。また、このビードフィラーは、被覆樹脂層と一体成形された同一体の部材であってもよい。
[Bead filler]
The tire according to the present embodiment may have a bead filler that extends outward in the tire radial direction from the coating resin layer in the bead portion. Further, this bead filler may be a member integrally formed with the coating resin layer.
 ビードフィラーの材質としては、特に限定されるものではなく、樹脂又はゴム等の従来公知の弾性材料が用いられる。ビードフィラーは、弾性材料として樹脂を含むことが好ましく、例えば前述の本実施形態に係るビードコアにおける被覆樹脂層に含まれる樹脂として列挙されたものが同様に用いられる。また、その好ましい樹脂の種類、好ましい含有量、含んでもよい他の成分等も、被覆樹脂層と同様である。 The material of the bead filler is not particularly limited, and a conventionally known elastic material such as resin or rubber is used. The bead filler preferably contains a resin as an elastic material, and for example, those listed as the resin contained in the coating resin layer in the bead core according to the above-described embodiment are similarly used. Further, the kind of the preferable resin, the preferable content, other components that may be contained, and the like are the same as those of the coating resin layer.
[ビード部の形成方法]
 ここで、本実施形態に係るタイヤにおけるビード部の形成方法について、一例を挙げて説明する。具体的には、図6に示す構成のビード部を例にして形成方法を説明する。
[Bead part formation method]
Here, a method for forming a bead portion in the tire according to the present embodiment will be described with an example. Specifically, the forming method will be described by taking the bead portion having the configuration shown in FIG. 6 as an example.
 ・接着層及び第1被覆樹脂層の形成
 図6に示すビード部110におけるビードコア101は、以下のようにして形成することができる。まずビードワイヤー111の周囲を接着層112で被覆し、その後、接着層112で被覆された3本のビードワイヤー111を第1被覆樹脂層113で被覆してなるストリップ部材を形成する。さらに、このストリップ部材を巻回して、断面での形状が略長方形であるストリップ部材を3段積層することで、ビードコア101を形成する。
-Formation of Adhesive Layer and First Covering Resin Layer The bead core 101 in the bead portion 110 shown in FIG. 6 can be formed as follows. First, the periphery of the bead wire 111 is covered with the adhesive layer 112, and then the three bead wires 111 covered with the adhesive layer 112 are covered with the first coating resin layer 113 to form a strip member. Furthermore, the bead core 101 is formed by winding this strip member and stacking three strip members each having a substantially rectangular cross-section.
 なお、図6では、ビードコア101中のビードワイヤー111の数は9本であるが、これに限定されるものではなく、ビードワイヤー111の本数は1本以上であればよく、1本のみであってもよい。また、図6では、ストリップ部材が断面で3段に積層された態様を示すが、積層部材の構造は、これに限定されるものではなく、例えば1段又は2段であっても、4段以上積層されていてもよい。 In FIG. 6, the number of the bead wires 111 in the bead core 101 is 9, but the number is not limited to this, and the number of the bead wires 111 may be one or more, and only one. May be. Further, FIG. 6 shows a mode in which the strip members are stacked in three stages in cross section, but the structure of the stacked members is not limited to this, and for example, even if it is one stage or two stages, four stages are provided. The above may be laminated.
 本実施形態では、溶融状態の接着層112を形成する材料(例えば接着剤)をビードワイヤー111の外周表面に被覆し、さらに接着層112を形成する材料の表面に溶融状態の第1被覆樹脂層113を形成する材料(つまり、樹脂組成物)を被覆して、冷却により固化させることで、ストリップ部材を形成する。ストリップ部材の断面形状(つまり、ビードワイヤー111の長手方向に直交する断面の形状)は、本実施形態では略長方形であるが、これに限られず、例えば略平行四辺形等の様々な形状とすることができる。接着層112の形成及び第1被覆樹脂層113の形成は、公知の方法により行うことができ、例えば押出成形等の方法が挙げられる。そして、ビードコア101はストリップ部材を巻回して段積みすることにより形成することができ、段同士の接合は、例えば熱板溶着等の公知の方法で第1被覆樹脂層113を溶融させながらストリップ部材を巻回して、溶融した第1被覆樹脂層113を固化することにより行うことができる。あるいは、段同士を接着剤等により接着することにより接合することもできる。 In the present embodiment, the outer peripheral surface of the bead wire 111 is coated with a material that forms the adhesive layer 112 in a molten state, and the surface of the material that forms the adhesive layer 112 further has a molten first coating resin layer. The strip member is formed by coating the material forming 113 (that is, the resin composition) and solidifying it by cooling. The cross-sectional shape of the strip member (that is, the shape of the cross section orthogonal to the longitudinal direction of the bead wire 111) is a substantially rectangular shape in the present embodiment, but is not limited to this, and may be various shapes such as a substantially parallelogram. be able to. The formation of the adhesive layer 112 and the formation of the first coating resin layer 113 can be performed by known methods, and examples thereof include extrusion molding. The bead core 101 can be formed by winding and stacking strip members, and the joining of the strip members is performed by melting the first coating resin layer 113 by a known method such as hot plate welding. Can be wound around and the molten first coating resin layer 113 is solidified. Alternatively, the steps can be joined by adhering the steps with an adhesive or the like.
 ・第2被覆樹脂層の形成
 次いで、得られたビードコア101の表面に、溶融状態の第2被覆樹脂層114を形成する材料(例えば樹脂)を被覆して、冷却により固化させることで、第2被覆樹脂層114を形成する。第2被覆樹脂層114の形成は、公知の方法により行うことができ、例えば射出成形等の方法が挙げられる。
 具体的には、射出成形金型のキャビティにビードコア101を配置し、溶融状態の第2被覆樹脂層114を形成する材料をキャビティに射出する。次に、射出した材料を冷却により固化させることで、第2被覆樹脂層114を形成する。
-Formation of second coating resin layer Next, the surface of the obtained bead core 101 is coated with a material (for example, a resin) that forms the second coating resin layer 114 in a molten state, and is solidified by cooling. The coating resin layer 114 is formed. The second coating resin layer 114 can be formed by a known method, and examples thereof include injection molding.
Specifically, the bead core 101 is arranged in the cavity of the injection molding die, and the material forming the molten second coating resin layer 114 is injected into the cavity. Next, the injected material is solidified by cooling to form the second coating resin layer 114.
 ・ビードフィラーの形成
 図6に示すビード部材110は、第2被覆樹脂層114のタイヤ径方向外側に向かって、ビードフィラー103が配置された構造を有する。ビードフィラー103の形成は、公知の方法により行うことができ、例えばビードフィラー103を樹脂で形成する場合には射出成形等の方法が挙げられる。なお、ビードフィラー103が第2被覆樹脂層114と一体成形された同一体の部材である場合、ビードフィラー103及び第2被覆樹脂層114の形状に加工された射出成形金型を用いて、一度の射出により両部材を一体成形することもできる。
-Formation of bead filler The bead member 110 shown in FIG. 6 has a structure in which the bead filler 103 is arranged toward the tire radial direction outer side of the second coating resin layer 114. The bead filler 103 can be formed by a known method. For example, when the bead filler 103 is made of resin, a method such as injection molding can be used. In addition, when the bead filler 103 is a member of the same body integrally molded with the second coating resin layer 114, the bead filler 103 and the second coating resin layer 114 are processed by using an injection molding die once processed. It is also possible to integrally mold both members by injection.
 上記の通り、本開示によれば以下のランフラットタイヤが提供される。
[1] ビードワイヤー及び前記ビードワイヤーを被覆し樹脂組成物により形成される被覆樹脂層を有するビードコアと、
 タイヤサイド部に設けられゴム組成物により形成されるサイド補強ゴムと、
 を備え、
 前記樹脂組成物は熱可塑性エラストマーを含み、
 前記サイド補強ゴムの1%引張弾性率が8MPa以下であり、且つ、100%モジュラスが10MPa以上である、
 ランフラットタイヤ。
[2] 前記被覆樹脂層のメルトフローレートが0.5g/10min以上16.5g/10min以下である前記[1]に記載のランフラットタイヤ。
As described above, according to the present disclosure, the following run flat tire is provided.
[1] A bead wire and a bead core that covers the bead wire and has a coating resin layer formed of a resin composition,
A side reinforcing rubber formed on the tire side portion and formed of a rubber composition,
Equipped with
The resin composition contains a thermoplastic elastomer,
The 1% tensile elastic modulus of the side reinforcing rubber is 8 MPa or less, and the 100% modulus is 10 MPa or more.
Runflat tire.
[2] The run flat tire according to [1], wherein the melt flow rate of the coating resin layer is 0.5 g / 10 min or more and 16.5 g / 10 min or less.
[3] 前記被覆樹脂層の引張弾性率が50MPa以上1000MPa以下である前記[1]又は[2]に記載のランフラットタイヤ。 [3] The runflat tire according to [1] or [2], wherein the tensile elastic modulus of the coating resin layer is 50 MPa or more and 1000 MPa or less.
[4] 前記ゴム組成物が、ゴムと充填材とを含む、前記[1]~[3]のいずれか1項に記載のランフラットタイヤ。 [4] The runflat tire according to any one of [1] to [3], wherein the rubber composition contains rubber and a filler.
[5] 前記ゴム組成物が、前記ゴム100質量部に対し前記充填材を75質量部以下で含む、前記[4]に記載のランフラットタイヤ。 [5] The runflat tire according to [4], wherein the rubber composition contains 75 parts by mass or less of the filler with respect to 100 parts by mass of the rubber.
[6] 前記サイド補強ゴムの架橋密度が、5×10-4mol/ml以上10×10-4mol/ml以下である、前記[1]~[5]のいずれか1項に記載のランフラットタイヤ。 [6] The run according to any one of the above [1] to [5], wherein the cross-linking density of the side reinforcing rubber is 5 × 10 −4 mol / ml or more and 10 × 10 −4 mol / ml or less. Flat tires.
 以下、本開示を実施例に基づきさらに詳細に説明するが、本開示は下記実施例により限定されるものではない。以下の実施例に示す材料、使用量、割合、処理手順等は、本実施形態の趣旨を逸脱しない限り適宜変更することができる。なお、特に断りのない限り「部」は質量基準を表す。 Hereinafter, the present disclosure will be described in more detail based on examples, but the present disclosure is not limited to the following examples. Materials, usage amounts, ratios, processing procedures, and the like shown in the following examples can be appropriately changed without departing from the gist of the present embodiment. In addition, "part" represents a mass standard unless otherwise specified.
(サイド補強ゴム用ゴム組成物の準備)
 表1に示す配合処方のサイド補強ゴム用ゴム組成物を調製し、株式会社神戸製鋼製MIXTRON BB MIXERのバンバリーミキサーで混練して成形し、未加硫のサイド補強ゴムを作製する。
(Preparation of rubber composition for side reinforcing rubber)
A rubber composition for side-reinforcing rubber having the formulation shown in Table 1 is prepared, and is kneaded and molded by a Banbury mixer of MIXTRON BB MIXER manufactured by Kobe Steel, Ltd. to prepare an unvulcanized side-reinforcing rubber.
 表1に示す配合材料について詳細を下記に示す。
・合成ゴム  :下記のポリブタジエンゴム
・充填材   :カーボンブラック、旭カーボン株式会社製、N550。
・老化防止剤 :ヘキサメチレンテトラミン。
・加硫促進剤1:チウラム系化合物、大内新興化学工業株式会社製、ノクセラーTOT-N。
・加硫促進剤2:ノクセラーNS-P、大内新興化学工業株式会社製。
Details of the compounding materials shown in Table 1 are shown below.
-Synthetic rubber: the following polybutadiene rubber-filler: carbon black, N550 made by Asahi Carbon Co., Ltd.
-Antiaging agent: Hexamethylenetetramine.
-Vulcanization accelerator 1: Thiuram type compound, Nouchira TOT-N manufactured by Ouchi Shinko Chemical Co., Ltd.
-Vulcanization accelerator 2: Nocceller NS-P, manufactured by Ouchi Shinko Chemical Co., Ltd.
(合成ゴムの合成例:ポリブタジエンゴム)
 窒素置換された5Lオートクレーブに、窒素下、シクロヘキサン1.4kg、1,3-ブタジエン250g、及び2,2-ジテトラヒドロフリルプロパン0.0285mmolを含むシクロヘキサン溶液を注入し、これに2.85mmolのn-ブチルリチウム(BuLi)を加えた後、攪拌装置を備えた50℃温水浴中で4.5時間重合を行う。1,3-ブタジエンの反応転化率は、ほぼ100%である。この重合体溶液を、2,6-ジ-tert-ブチル-p-クレゾール1.3gを含むメタノール溶液に抜き取り重合を停止させた後、スチームストリッピングにより脱溶媒し、110℃のロールで乾燥して、ポリブタジエンを得る。前記ポリブタジエンは、ミクロ構造(つまりビニル結合量)が14%、重量平均分子量(Mw)が150,000、分子量分布(Mw/Mn)が1.1である。
 上記で得られた重合体溶液を、重合触媒を失活させることなく、温度50℃に保ち、一級アミノ基が保護されたN,N-ビス(トリメチルシリル)アミノプロピルメチルジエトキシシラン1129mg(つまり3.364mmol)を加えて、変性反応を15分間行う。最後に、反応後の重合体溶液に、2,6-ジ-tert-ブチル-p-クレゾールを添加する。次いで、スチームストリッピングにより脱溶媒および保護された一級アミノ基の脱保護を行い、110℃に調温された熱ロールによりゴムを乾燥し、一級アミン変性ポリブタジエンを得る。前記変性ポリブタジエンは、ミクロ構造(つまりビニル結合量)が14%、重量平均分子量(Mw)が150,000、分子量分布(Mw/Mn)が1.2、一級アミノ基含有量が4.0mmol/kgである。
(Synthetic rubber synthesis example: polybutadiene rubber)
Into a nitrogen-substituted 5 L autoclave, a cyclohexane solution containing 1.4 kg of cyclohexane, 250 g of 1,3-butadiene, and 0.0285 mmol of 2,2-ditetrahydrofurylpropane was injected under nitrogen, and 2.85 mmol of n was added thereto. After adding butyllithium (BuLi), polymerization is carried out for 4.5 hours in a 50 ° C. hot water bath equipped with a stirrer. The reaction conversion of 1,3-butadiene is almost 100%. This polymer solution was extracted into a methanol solution containing 1.3 g of 2,6-di-tert-butyl-p-cresol to stop the polymerization, and then the solvent was removed by steam stripping, followed by drying with a roll at 110 ° C. To obtain polybutadiene. The polybutadiene has a microstructure (that is, vinyl bond amount) of 14%, a weight average molecular weight (Mw) of 150,000, and a molecular weight distribution (Mw / Mn) of 1.1.
The polymer solution obtained above was maintained at a temperature of 50 ° C. without deactivating the polymerization catalyst, and 1129 mg of N, N-bis (trimethylsilyl) aminopropylmethyldiethoxysilane having a protected primary amino group (that is, 3 .364 mmol) is added and the denaturing reaction is carried out for 15 minutes. Finally, 2,6-di-tert-butyl-p-cresol is added to the polymer solution after the reaction. Then, the solvent removal and deprotection of the protected primary amino group are carried out by steam stripping, and the rubber is dried by a hot roll adjusted to 110 ° C. to obtain a primary amine-modified polybutadiene. The modified polybutadiene has a microstructure (that is, vinyl bond amount) of 14%, a weight average molecular weight (Mw) of 150,000, a molecular weight distribution (Mw / Mn) of 1.2, and a primary amino group content of 4.0 mmol /. It is kg.
[実施例1~2、比較例5~6]
(樹脂製のビード部材の作製)
 モノフィラメント(平均直径φ1.25mmのモノフィラメント、スチール製、強力:2700N、伸度7%)の表面に、接着剤として、三菱ケミカル株式会社製の無水マレイン酸変性ポリエステル系熱可塑性エラストマー「プリマロイ-AP GQ730」を加熱溶融した状態で押出機にて押し出し付着させる。なお、プリマロイ-AP GQ730は、融点が204℃であり、引張弾性率が300MPaである。なお、接着層の押出条件は接着剤の温度を240℃とする。
 次いで、接着剤が付着したビードワイヤーサンプルが3本並んで配置されるよう金型に設置し、ポリエステル系熱可塑性エラストマー(具体的には東レ・デュポン株式会社製、商品名「ハイトレル5557」)を、押出機にて押し出して接着剤の表面に付着させて被覆し冷却して、第1被覆樹脂層を形成する。なお、ポリエステル系熱可塑性エラストマーの押出条件は、樹脂の温度を240℃とする。こうして形成するビードワイヤーが3本並んだ部材を、熱風で溶着しながら巻回しする。これにより、9本のビードワイヤーがそれぞれ接着層で被覆され、さらにその周囲が第1被覆樹脂層で被覆された構造(つまり図6に示す構造)を有するビードコアを作製する。なお、隣り合うビードワイヤー間の平均距離は200μmである。
 次いで、第2被覆樹脂層及びビードフィラーが一体となった部材の形状に予め加工した金型に、前記より得たビードコアを設置し、ポリエステル系熱可塑性エラストマー(具体的には東レ・デュポン株式会社製、商品名「ハイトレル5557」)を射出成形機にて射出する。これにより、ビードコアの外周に第2被覆樹脂層及びビードフィラーが一体となった部材が形成された構造(つまり図6に示す構造)を有するビード部材を作製する。なお、射出成形時の金型温度は100℃、成形温度は240℃とする。
[Examples 1-2, Comparative Examples 5-6]
(Production of resin bead member)
On the surface of a monofilament (monofilament having an average diameter of φ1.25 mm, made of steel, strength: 2700 N, elongation 7%), as an adhesive, a maleic anhydride-modified polyester thermoplastic elastomer "Primalloy-AP GQ730" manufactured by Mitsubishi Chemical Corporation. In a state of being heated and melted, it is extruded and attached by an extruder. Note that Primalloy-AP GQ730 has a melting point of 204 ° C. and a tensile elastic modulus of 300 MPa. The extrusion condition of the adhesive layer is that the temperature of the adhesive is 240 ° C.
Next, the bead wire sample to which the adhesive is attached is placed in a mold so that three bead wire samples are arranged side by side, and a polyester-based thermoplastic elastomer (specifically, manufactured by Toray DuPont Co., Ltd., trade name "Hytrel 5557") Then, it is extruded by an extruder to be adhered to the surface of the adhesive to cover and cool it to form a first coating resin layer. The extrusion temperature of the thermoplastic polyester elastomer is that the temperature of the resin is 240 ° C. A member having three bead wires formed in this way is wound while being welded with hot air. As a result, a bead core having a structure in which the nine bead wires are coated with the adhesive layer and the periphery thereof is further coated with the first coating resin layer (that is, the structure shown in FIG. 6) is produced. The average distance between adjacent bead wires is 200 μm.
Next, the bead core obtained above is placed in a mold pre-processed into the shape of a member in which the second coating resin layer and the bead filler are integrated, and the polyester-based thermoplastic elastomer (specifically, Toray DuPont Co., Ltd. Manufactured by trade name "Hytrel 5557") is injected by an injection molding machine. As a result, a bead member having a structure in which a member in which the second coating resin layer and the bead filler are integrated is formed on the outer periphery of the bead core (that is, the structure shown in FIG. 6) is manufactured. The mold temperature during injection molding is 100 ° C, and the molding temperature is 240 ° C.
(ランフラットタイヤの作製)
 前述の実施形態に従って、未加硫のカーカス及びベルト層を作製する。ベルト層を未加硫のカーカスの外周面に設置し、ベルト層の外周に未加硫のトレッドを巻きつけ、表1~2に示すゴム組成物からなるサイド補強ゴムを、上記で作製した樹脂製のビード部材と組み合わせた生タイヤを得る。そして、得られた生タイヤを160℃で20分間加熱することで加硫し、図1に示す構造を有するタイヤを得る。
 また、前記サイド補強ゴム用ゴム組成物について、先述の測定方法により測定した1%引張弾性率、50%モジュラス、及び100%モジュラスの結果を表2に示す。
(Preparation of run flat tire)
An unvulcanized carcass and belt layer is made according to the previously described embodiments. The belt layer is provided on the outer peripheral surface of the unvulcanized carcass, the unvulcanized tread is wound around the outer periphery of the belt layer, and the side reinforcing rubber made of the rubber composition shown in Tables 1 and 2 is used as the resin prepared above. Obtain a green tire combined with a bead member made of steel. Then, the obtained raw tire is vulcanized by heating at 160 ° C. for 20 minutes to obtain a tire having the structure shown in FIG. 1.
Table 2 shows the results of 1% tensile elastic modulus, 50% modulus, and 100% modulus of the rubber composition for side-reinforcing rubber measured by the above-described measuring method.
[比較例1~4]
 実施例1における樹脂製のビード部材をゴム製のビード部材とし、且つ、表1~2に示すゴム組成物からなるサイド補強ゴムと組み合わせる仕様とする以外は、実施例1と同様の仕様でランフラットタイヤを製造する。
[Comparative Examples 1 to 4]
A run is performed in the same manner as in Example 1 except that the resin bead member in Example 1 is a rubber bead member and is combined with a side reinforcing rubber made of a rubber composition shown in Tables 1 and 2. Manufacture flat tires.
 ゴム製のビード部材は、下記に示すゴム組成物を用いた。
・天然ゴム
・充填材   :旭#70K、旭カーボン株式会社製。
・老化防止剤 :ノンフレックスRD-S、静工化学株式会社製。
・加硫促進剤1:ノクセラーH、大内新興化学工業株式会社製
・加硫促進剤2:サンセラーCM-G、三新化学工業株式会社製。
The rubber composition shown below was used for the rubber bead member.
-Natural rubber / filler: Asahi # 70K, manufactured by Asahi Carbon Co., Ltd.
-Anti-aging agent: Non-flex RD-S, manufactured by Seiko Chemical Co., Ltd.
-Vulcanization accelerator 1: Nocceller H, manufactured by Ouchi Shinko Chemical Industry Co., Ltd.-Vulcanization accelerator 2: Sunceller CM-G, manufactured by Sanshin Chemical Industry Co., Ltd.
-評価-
(通常走行時の乗り心地性)
 各例のタイヤの内圧を230kPaとしたときの縦ばね定数を計測する。
 評価は、比較例1の測定値を100とする指数表示とし、数値が小さいほど乗り心地性が高いことを表す。なお、指数で100以上であれば、乗り心地が変わらないことを表す。結果を表2に示す。
-Evaluation-
(Ride comfort during normal driving)
The longitudinal spring constant is measured when the internal pressure of each tire is 230 kPa.
The evaluation is expressed as an index with the measured value of Comparative Example 1 being 100, and the smaller the value, the higher the riding comfort. If the index is 100 or more, it means that the riding comfort does not change. The results are shown in Table 2.
(ランフラット走行耐久性)
 ISO規格に基づいた室内ドラム試験において、内圧0kPaで速度80km/hでランフラット走行させる。タイヤ故障または支持体故障により走行が不可能になるまでの走行距離を測定し、比較例1における走行距離を100としたときの指数を求める。結果を表2に示す。なお、指数が大きいほどランフラット走行性(すなわち耐久性)が良好であることを示す。
(Run-flat running durability)
In an indoor drum test based on the ISO standard, run flat running at an internal pressure of 0 kPa and a speed of 80 km / h. The traveling distance until the traveling becomes impossible due to a tire failure or a support failure is measured, and an index when the traveling distance in Comparative Example 1 is 100 is obtained. The results are shown in Table 2. It should be noted that the larger the index, the better the run-flat running property (that is, the durability).
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表1に示す各ゴム組成物A~Dは、全て合成した材料である。
 表2に示す各評価試験の結果に関して、実施例1は及び比較例1~4は実際に試験を実施して得たデータである。一方、実施例2は、シミュレーションによる予測データである。
The rubber compositions A to D shown in Table 1 are all synthetic materials.
Regarding the results of each evaluation test shown in Table 2, Example 1 and Comparative Examples 1 to 4 are data obtained by actually carrying out the test. On the other hand, Example 2 is prediction data by simulation.
 上記結果から、実施例のランフラットタイヤは、比較例のランフラットタイヤに比べ、通常走行時の乗り心地性及びランフラット走行耐久性が共に良好であることがわかる。 From the above results, it can be seen that the run-flat tire of the example has both better riding comfort during normal running and run-flat running durability than the run-flat tire of the comparative example.
 2018年11月9日に出願された日本国特許出願2018-211515号の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
The disclosure of Japanese Patent Application No. 2018-212515 filed on Nov. 9, 2018 is incorporated herein by reference in its entirety.
All publications, patent applications, and technical standards mentioned herein are to the same extent as if each individual publication, patent application, and technical standard were specifically and individually noted to be incorporated by reference, Incorporated herein by reference.
10 タイヤ(ランフラットタイヤ)
14 カーカス
22…タイヤサイド部
24 サイド補強ゴム
26 ビードコア
26A ビードワイヤー(ワイヤー)
26B 被覆樹脂
28 ビードフィラー
40 ベルト層、
42C 補強コード(コード)
101 ビードコア
103 ビードフィラー
110 ビード部
111 ビードワイヤー
112 接着層
113 第1被覆樹脂層
114 第2被覆樹脂層
10 tires (run flat tires)
14 Carcass 22 ... Tire side part 24 Side reinforcement rubber 26 Bead core 26A Bead wire (wire)
26B coating resin 28 bead filler 40 belt layer,
42C reinforcement cord (cord)
101 bead core 103 bead filler 110 bead part 111 bead wire 112 adhesive layer 113 first coating resin layer 114 second coating resin layer

Claims (6)

  1.  ビードワイヤー及び前記ビードワイヤーを被覆し樹脂組成物により形成される被覆樹脂層を有するビードコアと、
     タイヤサイド部に設けられゴム組成物により形成されるサイド補強ゴムと、
     を備え、
     前記樹脂組成物は熱可塑性エラストマーを含み、
     前記サイド補強ゴムの1%引張弾性率が8MPa以下であり、且つ、100%モジュラスが10MPa以上である、
     ランフラットタイヤ。
    A bead wire and a bead core having a coating resin layer formed by coating the bead wire with a resin composition,
    A side reinforcing rubber formed on the tire side portion and formed of a rubber composition,
    Equipped with
    The resin composition contains a thermoplastic elastomer,
    The 1% tensile elastic modulus of the side reinforcing rubber is 8 MPa or less, and the 100% modulus is 10 MPa or more.
    Runflat tire.
  2.  前記被覆樹脂層のメルトフローレートが0.5g/10min以上16.5g/10min以下である請求項1に記載のランフラットタイヤ。 The run-flat tire according to claim 1, wherein the melt flow rate of the coating resin layer is 0.5 g / 10 min or more and 16.5 g / 10 min or less.
  3.  前記被覆樹脂層の引張弾性率が50MPa以上1000MPa以下である請求項1又は請求項2に記載のランフラットタイヤ。 The run-flat tire according to claim 1 or 2, wherein the tensile elastic modulus of the coating resin layer is 50 MPa or more and 1000 MPa or less.
  4.  前記ゴム組成物が、ゴムと充填材とを含む、請求項1~請求項3のいずれか1項に記載のランフラットタイヤ。 The runflat tire according to any one of claims 1 to 3, wherein the rubber composition contains a rubber and a filler.
  5.  前記ゴム組成物が、前記ゴム100質量部に対し前記充填材を75質量部以下で含む、請求項4に記載のランフラットタイヤ。 The run-flat tire according to claim 4, wherein the rubber composition contains 75 parts by mass or less of the filler with respect to 100 parts by mass of the rubber.
  6.  前記サイド補強ゴムの架橋密度が、5×10-4mol/ml以上10×10-4mol/ml以下である、請求項1~請求項5のいずれか1項に記載のランフラットタイヤ。 The run-flat tire according to any one of claims 1 to 5, wherein the cross-linking density of the side reinforcing rubber is 5 × 10 −4 mol / ml or more and 10 × 10 −4 mol / ml or less.
PCT/JP2019/043698 2018-11-09 2019-11-07 Run flat tire WO2020096000A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020555588A JPWO2020096000A1 (en) 2018-11-09 2019-11-07 Run flat tire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-211515 2018-11-09
JP2018211515 2018-11-09

Publications (1)

Publication Number Publication Date
WO2020096000A1 true WO2020096000A1 (en) 2020-05-14

Family

ID=70611532

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/043698 WO2020096000A1 (en) 2018-11-09 2019-11-07 Run flat tire

Country Status (2)

Country Link
JP (1) JPWO2020096000A1 (en)
WO (1) WO2020096000A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53138106A (en) * 1976-10-02 1978-12-02 Toyo Tire & Rubber Co Ltd Pneumatic safety tire
WO2008010531A1 (en) * 2006-07-19 2008-01-24 Bridgestone Corporation Pneumatic tire
JP2010132168A (en) * 2008-12-05 2010-06-17 Bridgestone Corp Pneumatic tire
WO2013129525A1 (en) * 2012-02-29 2013-09-06 株式会社ブリヂストン Tire
WO2019230822A1 (en) * 2018-05-30 2019-12-05 株式会社ブリヂストン Resin metal composite member for tires, method for producing same, and tire

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53138106A (en) * 1976-10-02 1978-12-02 Toyo Tire & Rubber Co Ltd Pneumatic safety tire
WO2008010531A1 (en) * 2006-07-19 2008-01-24 Bridgestone Corporation Pneumatic tire
JP2010132168A (en) * 2008-12-05 2010-06-17 Bridgestone Corp Pneumatic tire
WO2013129525A1 (en) * 2012-02-29 2013-09-06 株式会社ブリヂストン Tire
WO2019230822A1 (en) * 2018-05-30 2019-12-05 株式会社ブリヂストン Resin metal composite member for tires, method for producing same, and tire

Also Published As

Publication number Publication date
JPWO2020096000A1 (en) 2021-09-24

Similar Documents

Publication Publication Date Title
WO2013154205A1 (en) Tire
WO2018230271A1 (en) Resin-metal composite member for tire, and tire
US20200238649A1 (en) Bead member for tire, tire, and method of producing bead member for tire
US20200262253A1 (en) Bead member for tire, tire, and method of producing bead member for tire
EP3805013A1 (en) Resin metal composite member for tires, method for producing same, and tire
WO2020096000A1 (en) Run flat tire
JPWO2018230273A1 (en) Resin-metal composite member for tire, and tire
JP7221951B2 (en) Resin-metal composite member for tire, manufacturing method thereof, and tire
JP7331316B2 (en) tire
EP3640047B1 (en) Tire
JP6049273B2 (en) tire
JP6903542B2 (en) Bead members for tires and tires
JP7020612B2 (en) Bead members for tires and tires
JP7425740B2 (en) tire
WO2020095891A1 (en) Run-flat tire
WO2020067473A1 (en) Tire
WO2019225622A1 (en) Bead member for tires, and tire
EP3640048B1 (en) Tire
JP6936688B2 (en) Bead members for tires and tires
JP2020062935A (en) Wire-resin composite member for tire, and tire
JP2020075686A (en) tire

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19882002

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020555588

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19882002

Country of ref document: EP

Kind code of ref document: A1