WO2020095752A1 - ステアリング装置 - Google Patents

ステアリング装置 Download PDF

Info

Publication number
WO2020095752A1
WO2020095752A1 PCT/JP2019/042287 JP2019042287W WO2020095752A1 WO 2020095752 A1 WO2020095752 A1 WO 2020095752A1 JP 2019042287 W JP2019042287 W JP 2019042287W WO 2020095752 A1 WO2020095752 A1 WO 2020095752A1
Authority
WO
WIPO (PCT)
Prior art keywords
steering
operation amount
signal
amount signal
control device
Prior art date
Application number
PCT/JP2019/042287
Other languages
English (en)
French (fr)
Inventor
木村 誠
泰仁 中岫
高太郎 椎野
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to CN201980073014.7A priority Critical patent/CN112955365A/zh
Priority to US17/291,336 priority patent/US20220001916A1/en
Publication of WO2020095752A1 publication Critical patent/WO2020095752A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/0481Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0421Electric motor acting on or near steering gear
    • B62D5/0424Electric motor acting on or near steering gear the axes of motor and final driven element of steering gear, e.g. rack, being parallel
    • B62D5/0427Electric motor acting on or near steering gear the axes of motor and final driven element of steering gear, e.g. rack, being parallel the axes being coaxial
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/001Mechanical components or aspects of steer-by-wire systems, not otherwise provided for in this maingroup
    • B62D5/003Backup systems, e.g. for manual steering

Definitions

  • the present invention relates to a steering device.
  • Patent Document 1 discloses a steering reaction force controller and a steering device controller that control the operation of the steering reaction force actuator and the steering actuator based on the sensor signals of the steering reaction force motor angle sensor and the rack axial force sensor. There is disclosed a steering device provided with.
  • the steering reaction force motor angle sensor and the rack shaft force sensor are connected to the steering reaction force controller.
  • the steering device controller receives each sensor signal from the steering reaction force controller via the bidirectional communication line.
  • the steering reaction force controller fails, the steering device controller cannot obtain each sensor signal, and thus there is a problem that the steering control cannot be continued.
  • One of the objects of the present invention is to provide a steering device capable of continuing steering control by the steering mechanism control device even when the steering mechanism control device cannot acquire information on the steering input mechanism via the steering input mechanism control device.
  • a steering device is provided between a steering input mechanism and a steering mechanism control device, and outputs a first steering operation amount signal output from a first steering operation amount signal output unit to the steering mechanism control device.
  • a second communication circuit that is provided between the steering input mechanism and the steering mechanism control device and that outputs the second steering operation amount signal to the steering mechanism control device without passing through the input mechanism second microprocessor. And have.
  • the steering mechanism control device cannot acquire the information of the steering input mechanism via the steering input mechanism control device, the steering control by the steering mechanism control device can be continued. Is.
  • FIG. 1 is a configuration diagram of a steering device 1 of Embodiment 1.
  • FIG. 3 is a circuit block diagram of the steering device 1 according to the first embodiment.
  • FIG. 7 is a circuit block diagram of a steering device 1A according to a second embodiment.
  • FIG. 1 is a configuration diagram of a steering device 1 according to the first embodiment.
  • the steering device 1 is a so-called steer-by-wire type steering device in which a steering wheel (steering operation input member) 6 and a steering mechanism 3 for steering front wheels (steering wheels) 14 are mechanically separated.
  • the steering device 1 includes a steering input mechanism 2, a steering mechanism 3, a steering input mechanism control device 4, and a steering mechanism control device 5.
  • the steering input mechanism 2 includes a steering wheel 6, a first steering angle sensor (first steering operation amount sensor) 7, a second steering angle sensor (second steering operation amount sensor) 8, and a first electric motor 9.
  • the steering wheel 6 rotates according to the steering operation by the driver.
  • the first steering angle sensor 7 detects a rotation amount of the steering wheel 6 and outputs a first steering operation amount signal according to the detected rotation amount.
  • the second steering angle sensor 8 detects a rotation amount of the steering wheel 6 and outputs a second steering operation amount signal according to the detected rotation amount.
  • the first steering operation amount signal and the second steering operation amount signal are analog signals according to the rotation amount of the steering wheel 6 or SENT messages based on the SENT (Single Edge Nibble Transmission) based SPC (Short PWM Code) protocol. It is an encoded digital signal.
  • the first electric motor 9 is a reaction force actuator that causes the steering wheel 6 to generate a force (steering reaction force) that increases a steering load in response to a steering operation by a driver.
  • the first electric motor 9 has a first rotor 9a, a first stator 9b, and a first motor rotation angle sensor 9c.
  • the first motor rotation angle sensor 9c detects the rotation position of the first rotor 9a and outputs a first motor rotation angle signal corresponding to the detected rotation position.
  • the first motor rotation angle sensor 9c has two motor rotation angle sensors 9c1 and 9c2 (see FIG. 2).
  • the steering mechanism 3 has a rack bar (steering member) 10, a first rack position sensor (first steering amount sensor) 11, a second rack position sensor (second steering amount sensor) 12, and a second electric motor 13.
  • the rack bar 10 is movable in the vehicle width direction and steers the front wheels 14 according to the amount of movement.
  • the first rack position sensor 11 detects the position of the rack bar 10 and outputs a first steering amount signal according to the detected position. Since the steering angle of the front wheels 14 is uniquely determined according to the position of the rack bar 10, the first steering amount signal is a signal related to the steering angle of the front wheels 14.
  • the second rack position sensor 12 detects the position of the rack bar 10 and outputs a second steering amount signal according to the detected position.
  • the second electric motor 13 is a steering actuator that generates a force for steering the front wheels 14 via the rack bar 10 based on a steering actuator drive signal from the steering mechanism control device 5.
  • the second electric motor 13 has a second rotor 13a, a second stator 13b, and a second motor rotation angle sensor 13c.
  • the second motor rotation angle sensor 13c detects the rotation position of the second rotor 13a and outputs a second motor rotation angle signal corresponding to the detected rotation position.
  • the second motor rotation angle sensor 13c has two motor rotation angle sensors 13c1 and 13c2 (see FIG. 2).
  • the steering input mechanism control device 4 and the first steering angle sensor 7 are directly connected by a communication line 15. Further, the steering input mechanism control device 4 and the second rack position sensor 12 are directly connected by a communication line 16.
  • the steering input mechanism control device 4 drives and controls the first electric motor 9 based on the first steering operation amount signal or the second steering operation amount signal, and the first steering amount signal or the second steering amount signal.
  • the steering input mechanism control device 4 receives the first steering amount signal from the steering mechanism control device 5 via the first CAN communication line (first communication circuit) 19 provided between the steering input mechanism 2 and the steering mechanism control device 5.
  • the steering input mechanism control device 4 receives the second steering operation amount signal via the second CAN communication line (third communication circuit) 20 provided between the steering input mechanism 2 and the steering mechanism control device 5. ..
  • the steering input mechanism control device 4 generates a signal related to the rotation amount of the steering wheel 6 based on the first motor rotation angle signal when the first steering angle sensor 7 and the second steering angle sensor 8 fail.
  • the drive control of the first electric motor 9 is performed based on the signal.
  • the steering mechanism control device 5 and the second steering angle sensor 8 are directly connected by a communication line (second communication circuit) 17.
  • the steering mechanism control device 5 and the first rack position sensor 11 are directly connected by a communication line 18.
  • the steering mechanism control device 5 drives and controls the second electric motor 13 based on the first steering operation amount signal or the second steering operation amount signal and the first steering amount signal or the second steering amount signal.
  • the steering mechanism control device 5 receives the first steering operation amount signal from the steering input mechanism control device 4 via the first CAN communication line 19. Further, the steering mechanism control device 5 receives the second steering amount signal from the steering input mechanism control device 4 via the second CAN communication line 20.
  • the steering mechanism control device 5 When the first rack position sensor 11 and the second rack position sensor 12 fail, the steering mechanism control device 5 generates a signal related to the steering angle of the front wheels 14 based on the second motor rotation angle signal, and the generated signal The second electric motor 13 is drive-controlled based on the above.
  • the steering input mechanism control device 4 and the steering mechanism control device 5 are supplied with electric power from the first battery 21 and the second battery 22.
  • the first electric motor 9, the first steering angle sensor 7, and the second rack position sensor 12 are supplied with electric power from the steering input mechanism control device 4.
  • the second electric motor 13, the second steering angle sensor 8 and the first rack position sensor 11 are supplied with electric power from the steering mechanism control device 5.
  • the steering input mechanism control device 4 drives and controls the second electric motor 13 based on the first steering operation amount signal, the second steering amount signal, the vehicle speed, and the like when the steering mechanism control device 5 fails.
  • the steering mechanism control device 5 drives and controls the first electric motor 9 based on the second steering operation amount signal, the first steering amount signal, the vehicle speed, and the like.
  • FIG. 2 is a circuit block diagram of the steering device 1 according to the first embodiment.
  • the first power supply 23 creates and supplies power to the first steering angle sensor 7.
  • the first power supply 23 is connected to the first battery 21.
  • the first interface 24 decodes the first steering operation amount signal received from the first steering angle sensor 7.
  • the first CAN driver 25 performs CAN communication with the first CAN driver 35 of the steering mechanism control device 5 via the first CAN communication line 19.
  • the second power supply 26 creates and supplies power to the second rack position sensor 12.
  • the second power supply 26 is connected to the second battery 22.
  • the second interface 27 decodes the second steering amount signal received from the second rack position sensor 12.
  • the second CAN driver 28 performs CAN communication with the second CAN driver 38 of the steering mechanism control device 5 via the second CAN communication line 20.
  • the first microprocessor (input mechanism first microprocessor) 29 has a first reaction force actuator control section 29a and a first steering operation amount signal output section 29b.
  • the first reaction force actuator control section 29a inputs the first steering operation amount signal from the first interface 24 and the first steering amount signal from the first CAN driver 25, and drives and controls the first electric motor 9 by the first reaction force actuator. Output drive signal.
  • the first reaction force actuator control unit 29a outputs a first steering operation amount signal output instruction signal for instructing the first steering angle sensor 7 to start outputting the first steering operation amount signal.
  • the first steering angle sensor 7 outputs the first steering operation amount signal when receiving the first steering operation amount signal output instruction signal.
  • the first steering operation amount signal output unit 29b outputs the first steering operation amount signal to the first CAN driver 25.
  • the first inverter 30 converts the DC power from the first battery 21 into AC power based on the first reaction force actuator drive signal, and supplies the AC power to the first electric motor 9.
  • the second microprocessor (input mechanism second microprocessor) 31 has a second reaction force actuator control section 31a and a second steering operation amount signal output section 31b.
  • the second reaction force actuator control section 31a receives the second steering amount signal from the second interface 27 and the second steering operation amount signal from the second CAN driver 28, and drives and controls the first electric motor 9 by the second reaction force actuator. Output drive signal.
  • the second reaction force actuator control section 31a outputs to the second rack position sensor 12 a second steering amount signal output instruction signal for instructing to start output of the second steering amount signal.
  • the second rack position sensor 12 outputs a second steering amount signal when receiving the second steering amount signal output instruction signal.
  • the second inverter 32 converts the DC power from the second battery 22 into AC power based on the second reaction force actuator drive signal and supplies the AC power to the first electric motor 9.
  • the first power supply 33 creates and supplies power to the first rack position sensor 11.
  • the first power supply 33 is connected to the first battery 21.
  • the first interface 34 decodes the first steering amount signal received from the first rack position sensor 11.
  • the first CAN driver 35 performs CAN communication with the first CAN driver 25 of the steering input mechanism control device 4 via the first CAN communication line 19.
  • the second power supply 36 creates and supplies power to the second steering angle sensor 8.
  • the second power supply 36 is connected to the second battery 22.
  • the second interface 37 decodes the second steering operation amount signal received from the second steering angle sensor 8.
  • the second CAN driver 38 performs CAN communication with the second CAN driver 28 of the steering input mechanism controller 4 via the second CAN communication line 20.
  • the first microprocessor (steering mechanism first microprocessor) 39 has a first steering actuator control section 39a and a first steering amount signal output section 39b.
  • the first steering actuator control section 39a inputs the first steering amount signal from the first interface 34 and the first steering operation amount signal from the first CAN driver 35, and drives and controls the second electric motor 13 to drive the first steering actuator drive signal. Is output.
  • the first steering actuator control section 39a outputs to the first rack position sensor 11 a first steering amount signal output instruction signal for instructing to start output of the first steering amount signal.
  • the first rack position sensor 11 outputs a first steering amount signal when receiving the first steering amount signal output instruction signal.
  • the first steering amount signal output unit 39b outputs the first steering amount signal to the first CAN driver 35.
  • the first inverter 40 converts the DC power from the first battery 21 into AC power based on the first steering actuator drive signal and supplies the AC power to the second electric motor 13.
  • the second microprocessor (steering mechanism second microprocessor) 41 has a second steering actuator control section 41a and a second steering amount signal output section 41b.
  • the second steering actuator control unit 41a inputs the second steering operation amount signal from the second interface 37 and the second steering amount signal from the second CAN driver 38, and drives and controls the second electric motor 13 Is output.
  • the second steering actuator control section 41a outputs a second steering operation amount signal output instruction signal for instructing the second steering angle sensor 8 to start output of the second steering operation amount signal.
  • the second steering angle sensor 8 receives the second steering operation amount signal output instruction signal
  • the second steering angle sensor 8 outputs the second steering operation amount signal.
  • the second inverter 42 converts the DC power from the second battery 22 into AC power based on the second steering actuator drive signal and supplies the AC power to the second electric motor 13.
  • the steering mechanism control device 5 has a signal comparison unit 47.
  • the signal comparison unit 47 controls the steering mechanism from the steering input mechanism 2 via the communication line 17, and the first steering operation amount signal transmitted from the steering input mechanism 2 to the steering mechanism control device 5 via the first CAN communication line 19. By comparing with the second steering operation amount signal transmitted to the device 5, it is determined whether the first steering operation amount signal or the second steering operation amount signal is abnormal.
  • the steering input mechanism control device 4 according to the first embodiment has two microprocessors 29 and 31. Therefore, even if the first microprocessor 29 fails, the second microprocessor 31 can drive and control the first electric motor 9, and the reaction force control can be continued. Further, the steering mechanism control device 5 has two microprocessors 39 and 41. Therefore, even if the first microprocessor 39 fails, the second microprocessor 41 can drive the second electric motor 13 and the steering control can be continued.
  • the steer-by-wire type steering device includes a steering controller that drives and controls a steering actuator that steers the steered wheels, and a reaction force controller that drives and controls a reaction force actuator that applies a steering reaction force to the steering wheel.
  • a steering controller that drives and controls a steering actuator that steers the steered wheels
  • a reaction force controller that drives and controls a reaction force actuator that applies a steering reaction force to the steering wheel.
  • information is exchanged by connecting a steering controller and a reaction force controller with a bidirectional communication line. Therefore, in the above-described related art, when a failure such as a disconnection occurs in the bidirectional communication line, the steering controller cannot acquire the steering wheel angle and cannot continue the steering control. Therefore, a backup mechanism such as a shaft or a clutch that mechanically connects the steering wheel and the steering mechanism is required, which causes a problem of increasing cost.
  • the steering device 1 is provided between the steering input mechanism 2 and the steering mechanism control device 5 and steers the first steering operation amount signal output from the first steering operation amount signal output unit 29b.
  • the first CAN communication line 19 that outputs to the mechanism control device 5, and between the steering input mechanism 2 and the steering mechanism control device 5 is provided, and the second steering operation amount signal is controlled without the first microprocessor 29.
  • the steering mechanism control device 5 since the steering device 1 of the first embodiment has the communication line 17 capable of transmitting the second steering operation amount signal to the steering mechanism control device 5 without passing through the first microprocessor 29, the steering mechanism control device 5 is Even when the first steering operation amount signal cannot be received via the first CAN communication line 19, the steering mechanism control device 5 can receive the second steering operation amount signal, and based on the second steering operation amount signal. Steering control can be continued. As a result, a backup mechanism that mechanically connects the steering wheel 6 and the steering mechanism 3 becomes unnecessary, and cost increase can be suppressed.
  • the steering device 1 is provided between the steering input mechanism 2 and the steering mechanism control device 5, and controls the second steering operation amount signal output from the second steering operation amount signal output unit 31b of the second microprocessor 31 by the steering mechanism control. It has a second CAN communication line 20 which outputs to the device 5. As a result, even if the first CAN communication line 19 fails, the steering mechanism control device 5 can receive the second steering amount signal via the second CAN communication line 20. Therefore, even when the first microprocessor 39 cannot receive the first steering amount signal, the steering control can be continued based on the second steering amount signal.
  • the first steering angle sensor 7 and the second steering angle sensor 8 detect the amount of rotation of the steering wheel 6.
  • the steering mechanism control device 5 can obtain the second steering amount signal via the communication line 17, so that the steering control according to the rotation amount of the steering wheel 6 is performed. That is, steering control according to the driver's steering intention is possible.
  • the first electric motor 9 includes a first rotor 9a, a first stator 9b, and a first motor rotation angle sensor 9c, and the first motor rotation angle sensor 9c can detect the rotation position of the first rotor 9a.
  • the steering input mechanism control device 4 generates a signal related to the rotation amount of the steering wheel 6 based on the output signal of the first motor rotation angle sensor 9c. As a result, even when both the first steering angle sensor 7 and the second steering angle sensor 8 fail, it is possible to obtain information regarding the rotation amount of the steering wheel 6 based on the output signal of the first motor rotation angle sensor 9c.
  • the second electric motor 13 includes a second rotor 13a, a second stator 13b, and a second motor rotation angle sensor 13c, and the second motor rotation angle sensor 13c can detect the rotation position of the second rotor 13a.
  • the steering mechanism control device 5 generates a signal related to the steering angle of the front wheels 14 based on the output signal of the second motor rotation angle sensor 13c. As a result, even when both the first rack position sensor 11 and the second rack position sensor 12 have failed, it is possible to obtain information regarding the steering angle of the front wheels 14 based on the output signal of the second motor rotation angle sensor 13c.
  • the second steering angle sensor 8 is supplied with electric power from the steering mechanism control device 5. As a result, even if the power supply circuit of the steering input mechanism 2 fails, the second steering angle sensor 8 is continuously supplied with the electric power from the steering mechanism control device 5, and therefore the second steering amount signal is continuously supplied. Can be output.
  • the steering mechanism control device 5 outputs a second steering operation amount signal output instruction signal for instructing the second steering angle sensor 8 to start output of the second steering operation amount signal, and the second steering angle sensor 8 When the second steering operation amount signal output instruction signal is received, the second steering operation amount signal is output to the steering mechanism control device 5.
  • the second steering angle sensor 8 can receive the second steering operation amount signal output instruction signal from the steering mechanism control device 5, so that the continuation is continued. As a result, the second steering operation amount signal can be output.
  • the signal comparison unit 47 of the steering mechanism control device 5 receives the first steering operation amount signal transmitted from the steering input mechanism 2 to the steering mechanism control device 5 via the first CAN communication line 19 and the steering input via the communication line 17. By comparing the second steering operation amount signal transmitted from the mechanism 2 to the steering mechanism control device 5, it is determined whether the first steering operation amount signal or the second steering operation amount signal is abnormal. As a result, even when the second microprocessor 41 is out of order, it is possible to make a signal abnormality determination by comparing the first steering operation amount signal and the second steering operation amount signal.
  • FIG. 3 is a circuit block diagram of the steering device 1A according to the second embodiment.
  • the second steering angle sensor 8 and the steering mechanism control device 5 are directly connected by a communication line 43.
  • the third power supply 44 creates and supplies power for the second steering angle sensor 8.
  • the third power supply 44 is connected to the first battery 21 and the second battery 22.
  • the third interface 45 decodes the second steering operation amount signal received from the second steering angle sensor 8.
  • the second motor rotation angle sensor 13c has three motor rotation angle sensors 13c1, 13c2, 12c3.
  • the steering mechanism control device 5 has a third microprocessor (steering mechanism third microprocessor) 46.
  • the third microprocessor 46 has a third steering actuator control section 46a and a third steering amount signal output section 46b.
  • the third steering actuator control unit 46a inputs the second steering operation amount signal from the third interface 45 and the second steering amount signal from the second CAN driver 38, and drives and controls the second electric motor 13 Is output.
  • the third steering actuator control section 46a outputs a second steering operation amount signal output instruction signal for instructing the second steering angle sensor 8 to start outputting the second steering operation amount signal.
  • the second steering angle sensor 8 receives the second steering operation amount signal output instruction signal
  • the second steering angle sensor 8 outputs the second steering operation amount signal.
  • the second inverter 42 converts the DC power from the first battery 21 or the second battery 22 into AC power based on the third steering actuator drive signal, and supplies the AC power to the second electric motor 13. Since the steering device 1A of the second embodiment has the third microprocessor 46, even when both the first microprocessor 39 and the second microprocessor 41 in the steering mechanism control device 5 fail, the second steering operation amount. Steering control can be continued based on the signal.
  • the steering member is not limited to the rack bar or the pitman arm, but includes a steering actuator and another link mechanism provided between the steered wheels.
  • the first and second steering amount signals are not limited to signals relating to the stroke position of the rack bar, but may be signals relating to the amount of rotation of a member that rotates in accordance with the movement of the rack bar, or other signals.
  • a signal that changes according to a change in the steering angle and that can estimate the steering angle of the steered wheels is also included.
  • the steering device is a steering device, a steering input mechanism, and includes a steering operation input member, a first steering operation amount sensor, a second steering operation amount sensor, and a reaction force actuator.
  • the steering operation input member can move according to a steering operation by a driver
  • the first steering operation amount sensor can output a first steering operation amount signal that is a signal related to the amount of movement of the steering operation input member.
  • the second steering operation amount sensor can output a second steering operation amount signal that is a signal related to the momentum of the steering operation input member
  • the reaction force actuator can output the second steering operation amount signal to the steering operation input member.
  • the steering input mechanism, a steering mechanism, a steering member, a first steering amount sensor, and a second steering amount sensor capable of generating a force that increases a steering load with respect to a steering operation by a driver.
  • a steering amount sensor and a steering actuator are included.
  • the first steering amount sensor is capable of outputting a first steering amount signal which is a signal relating to a steering angle of the steered wheel, and the second steering amount sensor is operated by the steering wheel.
  • a second steering amount signal that is a signal related to the steering angle of the steering wheel, and the steering actuator can generate a force for steering the steered wheels via the steering member based on the steering actuator drive signal.
  • a mechanism and a steering input mechanism control device including an input mechanism first microprocessor and an input mechanism second microprocessor, wherein the input mechanism first microprocessor includes a first reaction force actuator controller and a first steering mechanism.
  • the first reaction force actuator control unit includes a manipulated variable signal output unit, and the first reaction force actuator control unit drives and controls the reaction force actuator.
  • the first steering operation amount signal output unit can output the first steering amount signal to a steering mechanism control device, and the input mechanism second microprocessor includes a second reaction force actuator control unit.
  • the said steering mechanism 1st microprocessor is provided with a 1st steering actuator control part,
  • the said 1st steering actuator control part has the said 1st steering operation amount signal or the said.
  • the steering mechanism second microprocessor includes a second steering actuator control unit, and the second steering actuator control unit controls the first steering operation amount signal or the second steering operation.
  • the steering mechanism control device and the first communication circuit which output a second steering actuator drive signal for driving and controlling the steering actuator based on an operation amount signal and the first steering amount signal or the second steering amount signal.
  • the first steering operation amount signal output from the first steering operation amount signal output section which is provided between the steering input mechanism and the steering mechanism control device, and outputs the first steering operation amount signal to the steering mechanism control device.
  • a first communication circuit and a second communication circuit which are provided between the steering input mechanism and the steering mechanism control device and include the input mechanism first microprocessor. Not through the service, and outputs the second steering operation amount signal to said steering mechanism control unit, having a second communication circuit.
  • a third communication circuit is further included, the input mechanism second microprocessor includes a second steering operation amount signal output unit, and the third communication circuit includes the steering input mechanism and the steering mechanism.
  • the second steering operation amount signal output from the second steering operation amount signal output unit provided between the control devices is output to the steering mechanism control device.
  • the steering input mechanism is a steering wheel
  • the first steering operation amount sensor is a first steering angle sensor that detects a rotation amount of the steering wheel.
  • the second steering operation amount sensor is a second steering angle sensor that detects the rotation amount of the steering wheel.
  • the reaction force actuator is a first electric motor
  • the first electric motor includes a first rotor, a first stator, and a first motor rotation angle.
  • a first motor rotation angle sensor, the first motor rotation angle sensor can detect a rotation position of the first rotor, and the steering input mechanism control device includes the steering wheel based on an output signal of the first motor rotation angle sensor. Generates a signal related to the rotation amount of.
  • the steering actuator is a second electric motor
  • the second electric motor includes a second rotor, a second stator, and a second motor rotation angle sensor.
  • the second motor rotation angle sensor can detect the rotation position of the second rotor, and the steering mechanism control device controls the steering wheel based on the output signal of the second motor rotation angle sensor. Generate a signal for a corner.
  • the second steering operation amount sensor is supplied with electric power from the steering mechanism control device.
  • the steering mechanism control device instructs the second steering operation amount sensor to start output of the second steering operation amount signal. A signal output instruction signal is output, and when the second steering operation amount signal output instruction signal is received, the second steering operation amount sensor outputs the second steering operation amount signal to the steering mechanism control device. ..
  • the steering mechanism control device further includes a steering mechanism third microprocessor, the steering mechanism third microprocessor includes a third steering actuator control unit, and A third steering actuator control section drives and controls the steering actuator based on the first steering operation amount signal or the second steering operation amount signal, and the first steering amount signal or the second steering amount signal.
  • the steering actuator drive signal is output.
  • the steering mechanism control device includes a signal comparison unit, and the signal comparison unit is configured to control the steering mechanism from the steering input mechanism via the first communication circuit.
  • the present invention is not limited to the above-described embodiment, and various modifications are included.
  • the above-described embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those including all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of one embodiment can be added to the configuration of another embodiment.
  • Steering mechanism control device 6 Steering wheel (steering operation input member) 7 First steering angle sensor (first steering operation amount sensor) 8 Second steering angle sensor (Second steering operation amount sensor) 9 First electric motor (reaction force actuator) 9a First rotor 9b First stator 9c First motor rotation angle sensor 10 Rack bar (steering member) 11 First rack position sensor (first steering Quantity sensor) 12 second rack position sensor (second steering quantity sensor) 13 second electric motor (steering actuator) 13a second rotor 13b second stator 13c second motor rotation angle sensor 14 front wheel (steering wheel) 17 communication line ( Second communication circuit 19 First CAN communication line (first communication circuit) 20 Second CAN communication line (third communication circuit) 29 First microprocessor (input mechanism first micro processor) 29a 1st reaction force actuator control unit 29b 1st steering operation amount signal output unit 31 2nd microprocessor (input mechanism 2nd microprocessor) 31a 2nd reaction force actuator control

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Power Steering Mechanism (AREA)

Abstract

ステアリング装置は、操舵入力機構と操舵機構制御装置の間に設けられ、第1操舵操作量信号出力部から出力された第1操舵操作量信号を操舵機構制御装置に出力する第1CAN通信線と、操舵入力機構と操舵機構制御装置の間に設けられ、第1マイクロプロセッサを介さずに、第2操舵操作量信号を操舵機構制御装置に出力する通信線と、を有する。

Description

ステアリング装置
 本発明は、ステアリング装置に関する。
 特許文献1には、操舵反力用モータ角センサおよびラック軸力センサの各センサ信号に基づき操舵反力用アクチュエータおよび転舵用アクチュエータの作動を制御する操舵反力用コントローラおよび転舵装置用コントローラを備えたステアリング装置が開示されている。
特開2005-335587号公報
 上記従来技術において、操舵反力用モータ角センサおよびラック軸力センサは、操舵反力用コントローラと接続されている。転舵装置用コントローラは、操舵反力用コントローラから双方向通信線を介して各センサ信号を受信する。上記従来技術では、操舵反力用コントローラの故障時、転舵装置用コントローラが各センサ信号を取得できないため、操舵制御を継続できないという問題があった。
 本発明の目的の一つは、操舵機構制御装置が操舵入力機構制御装置を介して操舵入力機構の情報を取得できない場合であっても、操舵機構制御装置による操舵制御を継続可能なステアリング装置を提供することにある。
 本発明の一実施形態におけるステアリング装置は、操舵入力機構と操舵機構制御装置の間に設けられ、第1操舵操作量信号出力部から出力された第1操舵操作量信号を操舵機構制御装置に出力する第1通信回路と、操舵入力機構と操舵機構制御装置の間に設けられ、入力機構第2マイクロプロセッサを介さずに、第2操舵操作量信号を操舵機構制御装置に出力する第2通信回路と、を有する。
 よって、本発明の一実施形態にあっては、操舵機構制御装置が操舵入力機構制御装置を介して操舵入力機構の情報を取得できない場合であっても、操舵機構制御装置による操舵制御を継続可能である。
実施形態1のステアリング装置1の構成図である。 実施形態1のステアリング装置1の回路ブロック図である。 実施形態2のステアリング装置1Aの回路ブロック図である。
 〔実施形態1〕
 図1は、実施形態1のステアリング装置1の構成図である。
 ステアリング装置1は、ステアリングホイール(操舵操作入力部材)6と前輪(操舵輪)14を操舵する操舵機構3とが機械的に切り離された、いわゆるステア・バイ・ワイヤ方式のステアリング装置である。ステアリング装置1は、操舵入力機構2、操舵機構3、操舵入力機構制御装置4および操舵機構制御装置5を有する。
 操舵入力機構2は、ステアリングホイール6、第1舵角センサ(第1操舵操作量センサ)7、第2舵角センサ(第2操舵操作量センサ)8および第1電動モータ9を有する。ステアリングホイール6は、運転者の操舵操作に応じて回転する。第1舵角センサ7は、ステアリングホイール6の回転量を検出し、検出した回転量に応じた第1操舵操作量信号を出力する。第2舵角センサ8は、ステアリングホイール6の回転量を検出し、検出した回転量に応じた第2操舵操作量信号を出力する。第1操舵操作量信号および第2操舵操作量信号は、ステアリングホイール6の回転量に応じたアナログ信号か、SENT(Single Edge Nibble Transmission)ベースのSPC(Short PWM Code)プロトコルに基づいてSENTメッセージにエンコードされたデジタル信号である。第1電動モータ9は、ステアリングホイール6に対し、運転者の操舵操作に対し操舵負荷を増大させる力(操舵反力)を発生させる反力アクチュエータである。第1電動モータ9は、第1ロータ9a、第1ステータ9bおよび第1モータ回転角センサ9cを有する。第1モータ回転角センサ9cは、第1ロータ9aの回転位置を検出し、検出した回転位置に応じた第1モータ回転角信号を出力する。なお、第1モータ回転角センサ9cは、2つのモータ回転角センサ9c1,9c2を有する(図2参照)。
 操舵機構3は、ラックバー(操舵部材)10、第1ラック位置センサ(第1操舵量センサ)11、第2ラック位置センサ(第2操舵量センサ)12および第2電動モータ13を有する。ラックバー10は、車幅方向に移動可能であり、移動量に応じて前輪14を操舵する。第1ラック位置センサ11は、ラックバー10の位置を検出し、検出した位置に応じた第1操舵量信号を出力する。前輪14の操舵角は、ラックバー10の位置に応じて一意に決まるため、第1操舵量信号は、前輪14の操舵角に関する信号である。第2ラック位置センサ12は、ラックバー10の位置を検出し、検出した位置に応じた第2操舵量信号を出力する。第1操舵量信号および第2操舵量信号は、ラックバー10の位置に応じたアナログ信号が、SENT(Single Edge Nibble Transmission)ベースのSPC(Short PWM Code)プロトコルに基づいてSENTメッセージにエンコードされたデジタル信号である。第2電動モータ13は、操舵機構制御装置5からの操舵アクチュエータ駆動信号に基づき、ラックバー10を介して前輪14を操舵させる力を発生させる操舵アクチュエータである。第2電動モータ13は、第2ロータ13a、第2ステータ13bおよび第2モータ回転角センサ13cを有する。第2モータ回転角センサ13cは、第2ロータ13aの回転位置を検出し、検出した回転位置に応じた第2モータ回転角信号を出力する。なお、第2モータ回転角センサ13cは、2つのモータ回転角センサ13c1,13c2を有する(図2参照)。
 操舵入力機構制御装置4と第1舵角センサ7とは、通信線15により直接接続されている。また、操舵入力機構制御装置4と第2ラック位置センサ12とは、通信線16により直接接続されている。操舵入力機構制御装置4は、第1操舵操作量信号または第2操舵操作量信号、および第1操舵量信号または第2操舵量信号に基づいて第1電動モータ9を駆動制御する。操舵入力機構制御装置4は、操舵入力機構2と操舵機構制御装置5との間に設けられた第1CAN通信線(第1通信回路)19を介して操舵機構制御装置5から第1操舵量信号を受信する。また、操舵入力機構制御装置4は、操舵入力機構2と操舵機構制御装置5との間に設けられた第2CAN通信線(第3通信回路)20を介して第2操舵操作量信号を受信する。なお、操舵入力機構制御装置4は、第1舵角センサ7および第2舵角センサ8の失陥時、第1モータ回転角信号に基づき、ステアリングホイール6の回転量に関する信号を生成し、生成した信号に基づいて第1電動モータ9を駆動制御する。
 操舵機構制御装置5と第2舵角センサ8とは、通信線(第2通信回路)17により直接接続されている。また、操舵機構制御装置5と第1ラック位置センサ11とは、通信線18により直接接続されている。操舵機構制御装置5は、第1操舵操作量信号または第2操舵操作量信号、および第1操舵量信号または第2操舵量信号に基づいて第2電動モータ13を駆動制御する。操舵機構制御装置5は、第1CAN通信線19を介して操舵入力機構制御装置4から第1操舵操作量信号を受信する。また、操舵機構制御装置5は、第2CAN通信線20を介して操舵入力機構制御装置4から第2操舵量信号を受信する。なお、操舵機構制御装置5は、第1ラック位置センサ11および第2ラック位置センサ12の失陥時、第2モータ回転角信号に基づき、前輪14の操舵角に関する信号を生成し、生成した信号に基づいて第2電動モータ13を駆動制御する。
 操舵入力機構制御装置4および操舵機構制御装置5は、第1バッテリ21と第2バッテリ22から電力の供給を受ける。第1電動モータ9、第1舵角センサ7および第2ラック位置センサ12は、操舵入力機構制御装置4から電力の供給を受ける。第2電動モータ13、第2舵角センサ8および第1ラック位置センサ11は、操舵機構制御装置5から電力の供給を受ける。
 操舵入力機構制御装置4は、操舵機構制御装置5が故障した場合、第1操舵操作量信号、第2操舵量信号、車速等に基づいて第2電動モータ13を駆動制御する。また、操舵機構制御装置5は、操舵入力機構制御装置4が故障した場合、第2操舵操作量信号、第1操舵量信号、車速等に基づいて第1電動モータ9を駆動制御する。
 図2は、実施形態1のステアリング装置1の回路ブロック図である。
 まず、操舵入力機構制御装置4の構成を説明する。
 第1パワーサプライ23は、第1舵角センサ7の電源を作成して供給する。第1パワーサプライ23は、第1バッテリ21と接続されている。第1インターフェース24は、第1舵角センサ7から受信した第1操舵操作量信号をデコードする。第1CANドライバ25は、操舵機構制御装置5の第1CANドライバ35と第1CAN通信線19を介してCAN通信を行う。第2パワーサプライ26は、第2ラック位置センサ12の電源を作成して供給する。第2パワーサプライ26は、第2バッテリ22と接続されている。第2インターフェース27は、第2ラック位置センサ12から受信した第2操舵量信号をデコードする。第2CANドライバ28は、操舵機構制御装置5の第2CANドライバ38と第2CAN通信線20を介してCAN通信を行う。
 第1マイクロプロセッサ(入力機構第1マイクロプロセッサ)29は、第1反力アクチュエータ制御部29aおよび第1操舵操作量信号出力部29bを有する。第1反力アクチュエータ制御部29aは、第1インターフェース24から第1操舵操作量信号、第1CANドライバ25から第1操舵量信号を入力し、第1電動モータ9を駆動制御する第1反力アクチュエータ駆動信号を出力する。なお、第1反力アクチュエータ制御部29aは、第1舵角センサ7に第1操舵操作量信号の出力の開始を指示する第1操舵操作量信号出力指示信号を出力する。第1舵角センサ7は、第1操舵操作量信号出力指示信号を受信したとき、第1操舵操作量信号を出力する。第1操舵操作量信号出力部29bは、第1操舵操作量信号を第1CANドライバ25へ出力する。第1インバータ30は、第1反力アクチュエータ駆動信号に基づき第1バッテリ21からの直流電力を交流電力に変換し、第1電動モータ9へ供給する。
 第2マイクロプロセッサ(入力機構第2マイクロプロセッサ)31は、第2反力アクチュエータ制御部31aおよび第2操舵操作量信号出力部31bを有する。第2反力アクチュエータ制御部31aは、第2インターフェース27から第2操舵量信号、第2CANドライバ28から第2操舵操作量信号を入力し、第1電動モータ9を駆動制御する第2反力アクチュエータ駆動信号を出力する。なお、第2反力アクチュエータ制御部31aは、第2ラック位置センサ12に第2操舵量信号の出力の開始を指示する第2操舵量信号出力指示信号を出力する。第2ラック位置センサ12は、第2操舵量信号出力指示信号を受信したとき、第2操舵量信号を出力する。第2インバータ32は、第2反力アクチェエータ駆動信号に基づき第2バッテリ22からの直流電力を交流電力に変換し、第1電動モータ9へ供給する。
 次に、操舵機構制御装置5の構成を説明する。
 第1パワーサプライ33は、第1ラック位置センサ11の電源を作成して供給する。第1パワーサプライ33は、第1バッテリ21と接続されている。第1インターフェース34は、第1ラック位置センサ11から受信した第1操舵量信号をデコードする。第1CANドライバ35は、操舵入力機構制御装置4の第1CANドライバ25と第1CAN通信線19を介してCAN通信を行う。第2パワーサプライ36は、第2舵角センサ8の電源を作成して供給する。第2パワーサプライ36は、第2バッテリ22と接続されている。第2インターフェース37は、第2舵角センサ8から受信した第2操舵操作量信号をデコードする。第2CANドライバ38は、操舵入力機構制御装置4の第2CANドライバ28と第2CAN通信線20を介してCAN通信を行う。
 第1マイクロプロセッサ(操舵機構第1マイクロプロセッサ)39は、第1操舵アクチュエータ制御部39aおよび第1操舵量信号出力部39bを有する。第1操舵アクチュエータ制御部39aは、第1インターフェース34から第1操舵量信号、第1CANドライバ35から第1操舵操作量信号を入力し、第2電動モータ13を駆動制御する第1操舵アクチュエータ駆動信号を出力する。なお、第1操舵アクチュエータ制御部39aは、第1ラック位置センサ11に第1操舵量信号の出力の開始を指示する第1操舵量信号出力指示信号を出力する。第1ラック位置センサ11は、第1操舵量信号出力指示信号を受信したとき、第1操舵量信号を出力する。第1操舵量信号出力部39bは、第1操舵量信号を第1CANドライバ35へ出力する。第1インバータ40は、第1操舵アクチュエータ駆動信号に基づき第1バッテリ21からの直流電力を交流電力に変換し、第2電動モータ13へ供給する。
 第2マイクロプロセッサ(操舵機構第2マイクロプロセッサ)41は、第2操舵アクチュエータ制御部41a、第2操舵量信号出力部41bを有する。第2操舵アクチュエータ制御部41aは、第2インターフェース37から第2操舵操作量信号、第2CANドライバ38から第2操舵量信号を入力し、第2電動モータ13を駆動制御する第2操舵アクチュエータ駆動信号を出力する。なお、第2操舵アクチュエータ制御部41aは、第2舵角センサ8に第2操舵操作量信号の出力の開始を指示する第2操舵操作量信号出力指示信号を出力する。第2舵角センサ8は、第2操舵操作量信号出力指示信号を受信したとき、第2操舵操作量信号を出力する。第2インバータ42は、第2操舵アクチェエータ駆動信号に基づき第2バッテリ22からの直流電力を交流電力に変換し、第2電動モータ13へ供給する。
 操舵機構制御装置5は、信号比較部47を有する。信号比較部47は、第1CAN通信線19を介して操舵入力機構2から操舵機構制御装置5に送信された第1操舵操作量信号と、通信線17を介して操舵入力機構2から操舵機構制御装置5に送信された第2操舵操作量信号とを比較することにより、第1操舵操作量信号または第2操舵操作量信号の異常の有無を判断する。
 実施形態1の操舵入力機構制御装置4は、2つのマイクロプロセッサ29,31を有する。このため、第1マイクロプロセッサ29が失陥した場合であっても、第2マイクロプロセッサ31により第1電動モータ9を駆動制御でき、反力制御を継続可能である。また、操舵機構制御装置5は、2つのマイクロプロセッサ39,41を有する。このため、第1マイクロプロセッサ39が失陥した場合であっても、第2マイクロプロセッサ41により第2電動モータ13を駆動でき、操舵制御を継続可能である。
 次に、実施形態1の作用効果を説明する。
 ステア・バイ・ワイヤ方式のステアリング装置は、操舵輪を操舵する操舵アクチュエータを駆動制御する操舵コントローラと、ステアリングホイールに操舵反力を付与する反力アクチュエータを駆動制御する反力コントローラとを備える。従来のステアリング装置では、操舵コントローラと反力コントローラとの間を双方向通信線で接続し、情報交換を行っている。このため、上記従来技術では、双方向通信線に断線等の故障が発生した場合、操舵コントローラはステアリングホイールの角度を取得できず、操舵制御を継続できない。よって、ステアリングホイールと操舵機構とを機械的に連結するシャフトやクラッチ等のバックアップ機構が必要であり、コストアップを招くという問題があった。
 これに対し、実施形態1のステアリング装置1は、操舵入力機構2と操舵機構制御装置5の間に設けられ、第1操舵操作量信号出力部29bから出力された第1操舵操作量信号を操舵機構制御装置5に出力する第1CAN通信線19と、操舵入力機構2と操舵機構制御装置5の間に設けられ、第1マイクロプロセッサ29を介さずに、第2操舵操作量信号を操舵機構制御装置5に出力する通信線17と、を有する。例えば、第1CAN通信線19に異常が生じた場合、または、操舵入力機構制御装置4の電源回路に異常が生じた場合、第1操舵操作量信号を操舵機構制御装置5に送信できなくなる。このとき、実施形態1のステアリング装置1は、第1マイクロプロセッサ29を介さずに第2操舵操作量信号を操舵機構制御装置5に送信可能な通信線17を有するため、操舵機構制御装置5が第1CAN通信線19を介して第1操舵操作量信号を受信できない場合であっても、操舵機構制御装置5は、第2操舵操作量信号を受信可能であり、第2操舵操作量信号に基づき操舵制御を継続できる。この結果、ステアリングホイール6と操舵機構3とを機械的に連結するバックアップ機構が不要となり、コストアップを抑制できる。
 ステアリング装置1は、操舵入力機構2と操舵機構制御装置5の間に設けられ、第2マイクロプロセッサ31の第2操舵操作量信号出力部31bから出力された第2操舵操作量信号を操舵機構制御装置5に出力する第2CAN通信線20を有する。これにより、第1CAN通信線19が失陥した場合においても、操舵機構制御装置5は、第2CAN通信線20を介して第2操舵量信号を受信可能である。このため、第1マイクロプロセッサ39が第1操舵量信号を受信できない場合であっても、第2操舵量信号に基づき操舵制御を継続できる。
 第1舵角センサ7および第2舵角センサ8は、ステアリングホイール6の回転量を検出する。よって、操舵入力機構制御装置4が失陥した場合においても、操舵機構制御装置5は、通信線17を介して第2操舵量信号を取得できるため、ステアリングホイール6の回転量に応じた操舵制御、すなわち運転者の操舵意図に応じた操舵制御が可能である。
 第1電動モータ9は、第1ロータ9aと、第1ステータ9bと、第1モータ回転角センサ9cを含み、第1モータ回転角センサ9cは、第1ロータ9aの回転位置を検出可能であり、操舵入力機構制御装置4は、第1モータ回転角センサ9cの出力信号に基づき、ステアリングホイール6の回転量に関する信号を生成する。これにより、第1舵角センサ7および第2舵角センサ8が共に失陥した場合においても、第1モータ回転角センサ9cの出力信号に基づき、ステアリングホイール6の回転量に関する情報を取得できる。
 第2電動モータ13は、第2ロータ13aと、第2ステータ13bと、第2モータ回転角センサ13cを含み、第2モータ回転角センサ13cは、第2ロータ13aの回転位置を検出可能であり、操舵機構制御装置5は、第2モータ回転角センサ13cの出力信号に基づき、前輪14の操舵角に関する信号を生成する。これにより、第1ラック位置センサ11および第2ラック位置センサ12が共に失陥した場合においても、第2モータ回転角センサ13cの出力信号に基づき、前輪14の操舵角に関する情報を取得できる。
 第2舵角センサ8は、操舵機構制御装置5から電力の供給を受ける。これにより、操舵入力機構2の電源回路が失陥した場合であっても、第2舵角センサ8は、操舵機構制御装置5から電力の供給を受けるため、継続して第2操舵量信号を出力できる。
 操舵機構制御装置5は、第2舵角センサ8に対し、第2操舵操作量信号の出力の開始を指示する第2操舵操作量信号出力指示信号を出力し、第2舵角センサ8は、第2操舵操作量信号出力指示信号を受信したとき、操舵機構制御装置5に対し、第2操舵操作量信号を出力する。これにより、操舵入力機構2の電源回路が失陥した場合であっても、第2舵角センサ8は、操舵機構制御装置5から第2操舵操作量信号出力指示信号を受信できるため、継続して第2操舵操作量信号を出力できる。
 操舵機構制御装置5の信号比較部47は、第1CAN通信線19を介して操舵入力機構2から操舵機構制御装置5に送信された第1操舵操作量信号と、通信線17を介して操舵入力機構2から操舵機構制御装置5に送信された第2操舵操作量信号と、を比較することにより、第1操舵操作量信号または第2操舵操作量信号の異常の有無を判断する。これにより、第2マイクロプロセッサ41の故障時においても、第1操舵操作量信号と第2操舵操作量信号との比較により、信号の異常判断を実施できる。
 〔実施形態2〕
 実施形態2の基本的な構成は実施形態1と同じであるため、実施形態1と相違する部分のみ説明する。
 図3は、実施形態2のステアリング装置1Aの回路ブロック図である。
 第2舵角センサ8と操舵機構制御装置5とは、通信線43により直接接続されている。
 第3パワーサプライ44は、第2舵角センサ8の電源を作成して供給する。第3パワーサプライ44は、第1バッテリ21および第2バッテリ22と接続されている。第3インターフェース45は、第2舵角センサ8から受信した第2操舵操作量信号をデコードする。第2モータ回転角センサ13cは、3つのモータ回転角センサ13c1,13c2,12c3を有する。
 操舵機構制御装置5は、第3マイクロプロセッサ(操舵機構第3マイクロプロセッサ)46を有する。第3マイクロプロセッサ46は、第3操舵アクチュエータ制御部46aおよび第3操舵量信号出力部46bを有する。第3操舵アクチュエータ制御部46aは、第3インターフェース45から第2操舵操作量信号、第2CANドライバ38から第2操舵量信号を入力し、第2電動モータ13を駆動制御する第3操舵アクチュエータ駆動信号を出力する。なお、第3操舵アクチュエータ制御部46aは、第2舵角センサ8に第2操舵操作量信号の出力の開始を指示する第2操舵操作量信号出力指示信号を出力する。第2舵角センサ8は、第2操舵操作量信号出力指示信号を受信したとき、第2操舵操作量信号を出力する。第2インバータ42は、第3操舵アクチュエータ駆動信号に基づき第1バッテリ21または第2バッテリ22からの直流電力を交流電力に変換し、第2電動モータ13へ供給する。
 実施形態2のステアリング装置1Aは、第3マイクロプロセッサ46を有するため、操舵機構制御装置5において、第1マイクロプロセッサ39および第2マイクロプロセッサ41が共に失陥した場合においても、第2操舵操作量信号に基づき操舵制御を継続できる。
 〔他の実施形態〕
 以上、本発明を実施するための実施形態を説明したが、本発明の具体的な構成は実施形態の構成に限定されるものではなく、発明の要旨を逸脱しない範囲の設計変更等があっても本発明に含まれる。
 例えば、操舵部材は、ラックバーやピットマンアームに限らず、操舵アクチュエータおよび操舵輪間に設けられた他のリンク機構も含む。
 第1および第2操舵量信号は、例えば、ラックバーのストローク位置に関する信号に限らず、ラックバーの動きに応じて回転する部材の回転量に関する信号であってもよいし、その他、操舵輪の操舵角の変化に応じて変化する信号であって、操舵輪の操舵角が推定可能なものも含む。
 以上説明した実施形態から把握し得る技術的思想について、以下に記載する。
 ステアリング装置は、その一つの態様において、ステアリング装置であって、操舵入力機構であって、操舵操作入力部材と、第1操舵操作量センサと第2操舵操作量センサと、反力アクチュエータを含み、前記操舵操作入力部材は、運転者の操舵操作に応じた運動が可能であり、前記第1操舵操作量センサは、前記操舵操作入力部材の運動量に関する信号である第1操舵操作量信号を出力可能であり、前記第2操舵操作量センサは、前記操舵操作入力部材の運動量に関する信号である第2操舵操作量信号を出力可能であり、前記反力アクチュエータは、前記操舵操作入力部材に対し、前記運転者の操舵操作に対する操舵負荷を増大させる力を発生可能である、前記操舵入力機構と、操舵機構であって、操舵部材と、第1操舵量センサと、第2操舵量センサと、操舵アクチュエータを含み、前記第1操舵量センサは、前記操舵輪の操舵角に関する信号である第1操舵量信号を出力可能であり、前記第2操舵量センサは、前記操舵輪の操舵角に関する信号である第2操舵量信号を出力可能であり、前記操舵アクチュエータは、操舵アクチュエータ駆動信号に基づき、前記操舵部材を介して操舵輪を操舵させる力を発生可能である、前記操舵機構と、操舵入力機構制御装置であって、入力機構第1マイクロプロセッサと、入力機構第2マイクロプロセッサを含み、前記入力機構第1マイクロプロセッサは、第1反力アクチュエータ制御部と、第1操舵操作量信号出力部を含み、前記第1反力アクチュエータ制御部は、前記反力アクチュエータを駆動制御する第1反力アクチュエータ駆動信号を出力し、前記第1操舵操作量信号出力部は、前記第1操舵量信号を操舵機構制御装置に出力可能であり、前記入力機構第2マイクロプロセッサは、第2反力アクチュエータ制御部を含み、前記第2反力アクチュエータ制御部は、前記反力アクチュエータを駆動制御する第2反力アクチュエータ駆動信号を出力する、前記操舵入力機構制御装置と、前記操舵機構制御装置であって、操舵機構第1マイクロプロセッサと、操舵機構第2マイクロプロセッサを含み、前記操舵機構第1マイクロプロセッサは、第1操舵アクチュエータ制御部を備え、前記第1操舵アクチュエータ制御部は、前記第1操舵操作量信号または前記第2操舵操作量信号、および前記第1操舵量信号または前記第2操舵量信号に基づき、前記操舵アクチュエータを駆動制御する第1操舵アクチュエータ駆動信号を出力し、前記操舵機構第2マイクロプロセッサは、第2操舵アクチュエータ制御部を備え、前記第2操舵アクチュエータ制御部は、前記第1操舵操作量信号または前記第2操舵操作量信号、および前記第1操舵量信号または前記第2操舵量信号に基づき、前記操舵アクチュエータを駆動制御する第2操舵アクチュエータ駆動信号を出力する、前記操舵機構制御装置と、第1通信回路であって、前記操舵入力機構と前記操舵機構制御装置の間に設けられ、前記第1操舵操作量信号出力部から出力された前記第1操舵操作量信号を前記操舵機構制御装置に出力する、前記第1通信回路と、第2通信回路であって、前記操舵入力機構と前記操舵機構制御装置の間に設けられ、前記入力機構第1マイクロプロセッサを介さずに、前記第2操舵操作量信号を前記操舵機構制御装置に出力する、前記第2通信回路と、を有する。
 好ましくは、上記態様において、さらに第3通信回路を含み、前記入力機構第2マイクロプロセッサは、第2操舵操作量信号出力部を含み、前記第3通信回路は、前記操舵入力機構と前記操舵機構制御装置の間に設けられ、前記第2操舵操作量信号出力部から出力された前記第2操舵操作量信号を前記操舵機構制御装置に出力する。
 別の好ましい態様では、上記態様のいずれかにおいて、前記操舵入力機構は、ステアリングホイールであって、前記第1操舵操作量センサは、前記ステアリングホイールの回転量を検出する第1舵角センサであって、前記第2操舵操作量センサは、前記ステアリングホイールの回転量を検出する第2舵角センサである。
 さらに別の好ましい態様では、上記態様のいずれかにおいて、前記反力アクチュエータは、第1電動モータであって、前記第1電動モータは、第1ロータと、第1ステータと、第1モータ回転角センサを含み、前記第1モータ回転角センサは、前記第1ロータの回転位置を検出可能であり、前記操舵入力機構制御装置は、前記第1モータ回転角センサの出力信号に基づき、前記ステアリングホイールの回転量に関する信号を生成する。
 さらに別の好ましい態様では、上記態様のいずれかにおいて、前記操舵アクチュエータは、第2電動モータであって、前記第2電動モータは、第2ロータと、第2ステータと、第2モータ回転角センサを含み、前記第2モータ回転角センサは、前記第2ロータの回転位置を検出可能であり、前記操舵機構制御装置は、前記第2モータ回転角センサの出力信号に基づき、前記操舵輪の操舵角に関する信号を生成する。
 さらに別の好ましい態様では、上記態様のいずれかにおいて、前記第2操舵操作量センサは、前記操舵機構制御装置から電力の供給を受ける。
 さらに別の好ましい態様では、上記態様のいずれかにおいて、前記操舵機構制御装置は、前記第2操舵操作量センサに対し、前記第2操舵操作量信号の出力の開始を指示する第2操舵操作量信号出力指示信号を出力し、前記第2操舵操作量センサは、前記第2操舵操作量信号出力指示信号を受信したとき、前記操舵機構制御装置に対し、前記第2操舵操作量信号を出力する。
 さらに別の好ましい態様では、上記態様のいずれかにおいて、前記操舵機構制御装置は、さらに操舵機構第3マイクロプロセッサを備え、前記操舵機構第3マイクロプロセッサは、第3操舵アクチュエータ制御部を備え、前記第3操舵アクチュエータ制御部は、前記第1操舵操作量信号または前記第2操舵操作量信号、および前記第1操舵量信号または前記第2操舵量信号に基づき、前記操舵アクチュエータを駆動制御する第3操舵アクチュエータ駆動信号を出力する。
 さらに別の好ましい態様では、上記態様のいずれかにおいて、前記操舵機構制御装置は、信号比較部を備え、前記信号比較部は、前記第1通信回路を介して前記操舵入力機構から前記操舵機構制御装置に送信された前記第1操舵操作量信号と、前記第2通信回路を介して前記操舵入力機構から前記操舵機構制御装置に送信された前記第2操舵操作量信号と、を比較することにより、前記第1操舵操作量信号または前記第2操舵操作量信号の異常の有無を判断する。
 なお、本発明は上記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 本願は、2018年11月6日付出願の日本国特許出願第2018-208734号に基づく優先権を主張する。2018年11月6日付出願の日本国特許出願第2018-208734号の明細書、特許請求の範囲、図面、および要約書を含む全開示内容は、参照により本願に全体として組み込まれる。
1 ステアリング装置2 操舵入力機構3 操舵機構4 操舵入力機構制御装置5 操舵機構制御装置6 ステアリングホイール(操舵操作入力部材)7 第1舵角センサ(第1操舵操作量センサ)8 第2舵角センサ(第2操舵操作量センサ)9 第1電動モータ(反力アクチュエータ)9a 第1ロータ9b 第1ステータ9c 第1モータ回転角センサ10 ラックバー(操舵部材)11 第1ラック位置センサ(第1操舵量センサ)12 第2ラック位置センサ(第2操舵量センサ)13 第2電動モータ(操舵アクチュエータ)13a 第2ロータ13b 第2ステータ13c 第2モータ回転角センサ14 前輪(操舵輪)17 通信線(第2通信回路)19 第1CAN通信線(第1通信回路)20 第2CAN通信線(第3通信回路)29 第1マイクロプロセッサ(入力機構第1マイクロプロセッサ)29a 第1反力アクチュエータ制御部29b 第1操舵操作量信号出力部31 第2マイクロプロセッサ(入力機構第2マイクロプロセッサ)31a 第2反力アクチュエータ制御部39 第1マイクロプロセッサ(操舵機構第1マイクロプロセッサ)39a 第2操舵アクチュエータ制御部39b 第2操舵操作量信号出力部41 第2マイクロプロセッサ(操舵機構第2マイクロプロセッサ)41a 第2操舵アクチュエータ制御部46 第3マイクロプロセッサ(操舵機構第3マイクロプロセッサ)46a 第3操舵アクチュエータ制御部47 信号比較部

Claims (9)

  1.  ステアリング装置であって、
     操舵入力機構であって、操舵操作入力部材と、第1操舵操作量センサと第2操舵操作量センサと、反力アクチュエータを含み、
     前記操舵操作入力部材は、運転者の操舵操作に応じた運動が可能であり、
     前記第1操舵操作量センサは、前記操舵操作入力部材の運動量に関する信号である第1操舵操作量信号を出力可能であり、
     前記第2操舵操作量センサは、前記操舵操作入力部材の運動量に関する信号である第2操舵操作量信号を出力可能であり、
     前記反力アクチュエータは、前記操舵操作入力部材に対し、前記運転者の操舵操作に対する操舵負荷を増大させる力を発生可能である、
     前記操舵入力機構と、
     操舵機構であって、操舵部材と、第1操舵量センサと、第2操舵量センサと、操舵アクチュエータを含み、
     前記第1操舵量センサは、前記操舵輪の操舵角に関する信号である第1操舵量信号を出力可能であり、
     前記第2操舵量センサは、前記操舵輪の操舵角に関する信号である第2操舵量信号を出力可能であり、
     前記操舵アクチュエータは、操舵アクチュエータ駆動信号に基づき、前記操舵部材を介して操舵輪を操舵させる力を発生可能である、
     前記操舵機構と、
     操舵入力機構制御装置であって、入力機構第1マイクロプロセッサと、入力機構第2マイクロプロセッサを含み、
     前記入力機構第1マイクロプロセッサは、第1反力アクチュエータ制御部と、第1操舵操作量信号出力部を含み、
     前記第1反力アクチュエータ制御部は、前記反力アクチュエータを駆動制御する第1反力アクチュエータ駆動信号を出力し、
     前記第1操舵操作量信号出力部は、前記第1操舵量信号を操舵機構制御装置に出力可能であり、
     前記入力機構第2マイクロプロセッサは、第2反力アクチュエータ制御部を含み、
     前記第2反力アクチュエータ制御部は、前記反力アクチュエータを駆動制御する第2反力アクチュエータ駆動信号を出力する、
     前記操舵入力機構制御装置と、
     前記操舵機構制御装置であって、操舵機構第1マイクロプロセッサと、操舵機構第2マイクロプロセッサを含み、
     前記操舵機構第1マイクロプロセッサは、第1操舵アクチュエータ制御部を備え、
     前記第1操舵アクチュエータ制御部は、前記第1操舵操作量信号または前記第2操舵操作量信号、および前記第1操舵量信号または前記第2操舵量信号に基づき、前記操舵アクチュエータを駆動制御する第1操舵アクチュエータ駆動信号を出力し、
     前記操舵機構第2マイクロプロセッサは、第2操舵アクチュエータ制御部を備え、
     前記第2操舵アクチュエータ制御部は、前記第1操舵操作量信号または前記第2操舵操作量信号、および前記第1操舵量信号または前記第2操舵量信号に基づき、前記操舵アクチュエータを駆動制御する第2操舵アクチュエータ駆動信号を出力する、
     前記操舵機構制御装置と、
     第1通信回路であって、前記操舵入力機構と前記操舵機構制御装置の間に設けられ、前記第1操舵操作量信号出力部から出力された前記第1操舵操作量信号を前記操舵機構制御装置に出力する、
     前記第1通信回路と、
     第2通信回路であって、前記操舵入力機構と前記操舵機構制御装置の間に設けられ、前記入力機構第1マイクロプロセッサを介さずに、前記第2操舵操作量信号を前記操舵機構制御装置に出力する、
     前記第2通信回路と、
     を有するステアリング装置。
  2.  請求項1に記載のステアリング装置であって、
     さらに第3通信回路を含み、
     前記入力機構第2マイクロプロセッサは、第2操舵操作量信号出力部を含み、
     前記第3通信回路は、前記操舵入力機構と前記操舵機構制御装置の間に設けられ、前記第2操舵操作量信号出力部から出力された前記第2操舵操作量信号を前記操舵機構制御装置に出力するステアリング装置。
  3.  請求項1に記載のステアリング装置であって、
     前記操舵入力機構は、ステアリングホイールであって、
     前記第1操舵操作量センサは、前記ステアリングホイールの回転量を検出する第1舵角センサであって、
     前記第2操舵操作量センサは、前記ステアリングホイールの回転量を検出する第2舵角センサであるステアリング装置。
  4.  請求項3に記載のステアリング装置であって、
     前記反力アクチュエータは、第1電動モータであって、
     前記第1電動モータは、第1ロータと、第1ステータと、第1モータ回転角センサを含み、
     前記第1モータ回転角センサは、前記第1ロータの回転位置を検出可能であり、
     前記操舵入力機構制御装置は、前記第1モータ回転角センサの出力信号に基づき、前記ステアリングホイールの回転量に関する信号を生成するステアリング装置。
  5.  請求項3に記載のステアリング装置であって、
     前記操舵アクチュエータは、第2電動モータであって、
     前記第2電動モータは、第2ロータと、第2ステータと、第2モータ回転角センサを含み、
     前記第2モータ回転角センサは、前記第2ロータの回転位置を検出可能であり、
     前記操舵機構制御装置は、前記第2モータ回転角センサの出力信号に基づき、前記操舵輪の操舵角に関する信号を生成するステアリング装置。
  6.  請求項1に記載のステアリング装置であって、
     前記第2操舵操作量センサは、前記操舵機構制御装置から電力の供給を受けるステアリング装置。
  7.  請求項1に記載のステアリング装置であって、
     前記操舵機構制御装置は、前記第2操舵操作量センサに対し、前記第2操舵操作量信号の出力の開始を指示する第2操舵操作量信号出力指示信号を出力し、
     前記第2操舵操作量センサは、前記第2操舵操作量信号出力指示信号を受信したとき、前記操舵機構制御装置に対し、前記第2操舵操作量信号を出力するステアリング装置。
  8.  請求項1に記載のステアリング装置であって、
     前記操舵機構制御装置は、さらに操舵機構第3マイクロプロセッサを備え、
     前記操舵機構第3マイクロプロセッサは、第3操舵アクチュエータ制御部を備え、
     前記第3操舵アクチュエータ制御部は、前記第1操舵操作量信号または前記第2操舵操作量信号、および前記第1操舵量信号または前記第2操舵量信号に基づき、前記操舵アクチュエータを駆動制御する第3操舵アクチュエータ駆動信号を出力するステアリング装置。
  9.  請求項1に記載のステアリング装置であって、
     前記操舵機構制御装置は、信号比較部を備え、
     前記信号比較部は、前記第1通信回路を介して前記操舵入力機構から前記操舵機構制御装置に送信された前記第1操舵操作量信号と、前記第2通信回路を介して前記操舵入力機構から前記操舵機構制御装置に送信された前記第2操舵操作量信号と、を比較することにより、前記第1操舵操作量信号または前記第2操舵操作量信号の異常の有無を判断するステアリング装置。
PCT/JP2019/042287 2018-11-06 2019-10-29 ステアリング装置 WO2020095752A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980073014.7A CN112955365A (zh) 2018-11-06 2019-10-29 转向装置
US17/291,336 US20220001916A1 (en) 2018-11-06 2019-10-29 Steering apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-208734 2018-11-06
JP2018208734A JP7061055B2 (ja) 2018-11-06 2018-11-06 ステアリング装置

Publications (1)

Publication Number Publication Date
WO2020095752A1 true WO2020095752A1 (ja) 2020-05-14

Family

ID=70612439

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/042287 WO2020095752A1 (ja) 2018-11-06 2019-10-29 ステアリング装置

Country Status (4)

Country Link
US (1) US20220001916A1 (ja)
JP (1) JP7061055B2 (ja)
CN (1) CN112955365A (ja)
WO (1) WO2020095752A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023046272A1 (en) * 2021-09-22 2023-03-30 Thyssenkrupp Presta Ag Steer-by-wire steering system of a road vehicle with external steering wheel angle sensor

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11904960B2 (en) * 2020-04-14 2024-02-20 Hl Mando Corporation Steering system and method for controlling the same
WO2022050738A1 (ko) * 2020-09-02 2022-03-10 주식회사 만도 전자식 주차 브레이크 시스템의 제어장치
JP7435378B2 (ja) 2020-09-16 2024-02-21 日本精工株式会社 転舵装置
JP2024005499A (ja) * 2022-06-30 2024-01-17 日立Astemo株式会社 ステアリング装置およびステアリング制御装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004010024A (ja) * 2002-06-12 2004-01-15 Toyoda Mach Works Ltd 車両の操舵制御装置及び車両の操舵制御方法
JP2013028312A (ja) * 2011-07-29 2013-02-07 Ntn Corp 冗長機能付きステアバイワイヤ式操舵装置の制御装置
JP2017013542A (ja) * 2015-06-29 2017-01-19 Ntn株式会社 車両操舵用制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004010024A (ja) * 2002-06-12 2004-01-15 Toyoda Mach Works Ltd 車両の操舵制御装置及び車両の操舵制御方法
JP2013028312A (ja) * 2011-07-29 2013-02-07 Ntn Corp 冗長機能付きステアバイワイヤ式操舵装置の制御装置
JP2017013542A (ja) * 2015-06-29 2017-01-19 Ntn株式会社 車両操舵用制御装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023046272A1 (en) * 2021-09-22 2023-03-30 Thyssenkrupp Presta Ag Steer-by-wire steering system of a road vehicle with external steering wheel angle sensor

Also Published As

Publication number Publication date
CN112955365A (zh) 2021-06-11
JP2020075559A (ja) 2020-05-21
US20220001916A1 (en) 2022-01-06
JP7061055B2 (ja) 2022-04-27

Similar Documents

Publication Publication Date Title
WO2020095752A1 (ja) ステアリング装置
JP4419114B2 (ja) 車両用操舵装置
JP2018130007A5 (ja)
US11597434B2 (en) Steering control system
US11958546B2 (en) Steering control device and steering assist system including same
JP7052347B2 (ja) モータ制御装置、モータ駆動システム、及び、モータ制御方法
WO2010044243A1 (ja) モータ制御装置
JP2007069848A (ja) 車両用操舵制御装置
WO2021085228A1 (ja) モータ駆動システム
WO2021085168A1 (ja) モータ駆動システム
JP2021075182A (ja) モータ駆動システム
JP4609086B2 (ja) 車両用操舵装置
JP2003276632A (ja) 車両用操舵装置
JP4475049B2 (ja) 車両用操舵装置
JP2015003689A (ja) 車両の操舵装置
JP3897971B2 (ja) 車両用操舵装置
WO2024004772A1 (ja) ステアリング装置およびステアリング制御装置
CN107921994B (zh) 用于运行伺服转向系统的装置以及伺服转向系统
JP3876143B2 (ja) 車両用操舵装置
JP4899679B2 (ja) ステアバイワイヤシステム
JP3991643B2 (ja) 車両用操舵装置
JP2014117064A (ja) モータ制御装置
CN115943104A (zh) 转舵系统
JP2011225176A (ja) 車両用操舵装置
JP2017001562A (ja) ステアリング制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19882895

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19882895

Country of ref document: EP

Kind code of ref document: A1