WO2020095444A1 - Microscope - Google Patents

Microscope Download PDF

Info

Publication number
WO2020095444A1
WO2020095444A1 PCT/JP2018/041699 JP2018041699W WO2020095444A1 WO 2020095444 A1 WO2020095444 A1 WO 2020095444A1 JP 2018041699 W JP2018041699 W JP 2018041699W WO 2020095444 A1 WO2020095444 A1 WO 2020095444A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical system
deflection element
observation light
diaphragm
light
Prior art date
Application number
PCT/JP2018/041699
Other languages
French (fr)
Japanese (ja)
Inventor
良一 左高
正宏 水田
智裕 川崎
優基 中島
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to PCT/JP2018/041699 priority Critical patent/WO2020095444A1/en
Publication of WO2020095444A1 publication Critical patent/WO2020095444A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/18Arrangements with more than one light path, e.g. for comparing two specimens
    • G02B21/20Binocular arrangements
    • G02B21/22Stereoscopic arrangements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements

Definitions

  • the technology of the present disclosure relates to a microscope.
  • the observation optical system includes an observation optical path for the right eye and an observation optical path for the left eye of the user, and the user observes through the observation optical paths (in this case, the eyes of the patient). ) Can be viewed stereoscopically.
  • a microscope according to a first aspect of the technique of the present disclosure is provided between an objective optical system, a variable power optical system, and the objective optical system and the variable power optical system, and is generated from an object and the objective optical system.
  • a plurality of deflecting elements arranged so as to reflect the observation light transmitted through the system in directions intersecting with the direction of the optical axis of the objective optical system.
  • a microscope according to a second aspect of the technology of the present disclosure is provided with a single objective optical system, a variable power optical system, and between the objective optical system and the variable power optical system, and is generated from an object and A plurality of deflection elements arranged to reflect the observation light transmitted through the objective optical system.
  • a microscope according to a third aspect of the technique of the present disclosure includes an objective optical system, and a direction in which observation light generated from an object and transmitted through the objective optical system intersects the optical axis of the objective optical system.
  • a plurality of deflection elements that reflect at least twice along a plane.
  • FIG. 1 It is a figure which shows an example of the surgical microscope 100A1 of 1st Embodiment. It is a figure which shows an example of the top view of the surgical microscope 100A1 in this embodiment. It is a figure which shows an example of the cross section of the microscope for operation 100A1 in this embodiment. It is a figure which shows an example of a structure of the right variable magnification optical system 13R in this embodiment. It is a figure which shows an example of a concrete structure of the right side variable magnification optical system 13R in this embodiment. It is a figure which shows an example of the block diagram of the surgical microscope 100A1 in this embodiment. It is a figure which shows an example of the flowchart of the stereoscopic effect increase adjustment process which CPU52 (refer FIG.
  • FIG. 5 performs according to the stereoscopic effect increase adjustment program in this embodiment.
  • FIG. 5 shows an example of the flowchart of the stereoscopic effect reduction adjustment process which CPU52 (refer FIG. 5) performs according to the stereoscopic effect reduction adjustment program in this embodiment.
  • 7 is a graph showing a maximum diameter that is predetermined for each zoom magnification with respect to the diaphragm diameters of the left and right diaphragms in the present embodiment.
  • FIG. 6 is a diagram showing an example of a state (top view) of the surgical microscope 100A1 when moving the first right-side deflection element 22R and the first left-side deflection element 22L in the present embodiment in a direction away from the optical axis 110 of the objective lens 11. is there.
  • An example of a state (cross-sectional view) of the surgical microscope 100A1 when moving the first right-side deflection element 22R and the first left-side deflection element 22L in the present embodiment in a direction away from the optical axis 110 of the objective lens 11 is shown. It is a figure.
  • FIG. 1 It is a figure which shows an example of the top view of the surgical microscope 100B1 of 2nd Embodiment. It is a figure which shows an example of the cross section of the microscope for operation 100B1 in this embodiment.
  • FIG. 100B1 An example of a state (cross-sectional view) of the surgical microscope 100B1 when the first right-side deflection element 122R and the second right-side deflection element 123R and the first left-side deflection element 122L and the second left-side deflection element 123L in the present embodiment move FIG. It is a figure which shows an example of the top view of 100C1 of 3rd Embodiment. It is a figure showing an example of a sectional view of 100C1 of a 3rd embodiment.
  • the effective area of the light flux of the right observing light is adjusted. It is a figure which shows an example of a mode that restrict
  • the CPU is an abbreviation of “Central Processing Unit”.
  • RAM is an abbreviation for “Random Access Memory”.
  • ROM is an abbreviation for “Read Only Memory”.
  • ASIC is an abbreviation for “Application Specific Integrated Circuit”.
  • FPGA is an abbreviation for “Field-Programmable Gate Array”.
  • SSD means an abbreviation of “Solid State Drive”.
  • DVD-ROM is an abbreviation for “Digital Versatile Disc Read Only Memory”.
  • USB is an abbreviation for "Universal Serial Bus”.
  • right angle includes a corner obtained by intersecting a horizontal line and a vertical line.
  • the angle described as “right angle” does not necessarily have to be a right angle and may be displaced as long as it is within an allowable error.
  • FIG. 1 shows a surgical microscope 100A1 placed in front of a user (eg, an ophthalmologist) 150.
  • the surgical microscope 100A1 is directly or indirectly arranged on the surgical microscope main body 100AH and the surgical microscope main body 100AH, and is obtained by right-side observation light and left-side observation light described below.
  • a display device 100AD for displaying an image.
  • the surgical microscope 100A1 uses the right-side observation light and the left-side observation light included in the observation light (eg, visible light) generated from the object (observation target) to provide an eye (for example, an operation target) that is an example of the object.
  • the observation light eg, visible light
  • Right eye stereoscopic image (observation image, operative field image, display image, parallax image) having parallax.
  • the “right side” is the right side (for example, the positive direction of the X axis) when the surgical microscope 100A1 is viewed from the user 150, and 2 for generating two images for generating a parallax image.
  • One of the two observation lights is on the side of passing through the objective lens 11 (see also FIG. 2A).
  • the “right side” is a side on which one of the two illumination lights (the right illumination light and the left illumination light) travels toward the object in order to generate two images for generating a parallax image.
  • the “left side” is the left side (eg, the negative direction of the X axis) when the surgical microscope 100A1 is viewed from the user 150, and the two observation lights for generating two images for generating a parallax image.
  • the other is the side that passes through the objective lens 11 (see also FIG. 2A) and proceeds.
  • the “left side” is the side on which the other of the two illumination lights (right illumination light and left illumination light) travels toward the object in order to generate two images for generating the parallax image.
  • the “right side observation light” is one observation light for generating one of the two images for generating a parallax image
  • the “left side observation light” is the other for generating the other image. It is observation light.
  • One image is an image for one eye of the user, and the other image is an image for the other eye of the user.
  • one image is an image for the right eye of the user, and the other image includes an image for the left eye of the user.
  • one image may be an image for the left eye of the user, and the other image may be an image for the right eye of the user.
  • the “right side illumination light” is the illumination light emitted from the right side illumination light source 16R and the right side illumination optical system 17R, which will be described later, in order to illuminate the object from the right side.
  • the “left side illumination light” is the illumination light emitted from the left side illumination light source 16L and the left side illumination optical system 17L, which will be described later, to illuminate the object from the left side.
  • the display device 100AD may be a liquid crystal display or an organic EL display.
  • the display device 100AD is an example of a “display unit” of the technology of the present disclosure.
  • the vertical direction is the Z direction
  • the direction connecting the center of the user 150 and the center of the surgical microscope main body 100AH and orthogonal to the Z direction is the Y direction
  • the left and right direction of the surgical microscope 100A1 with respect to the user 150 is the Z direction.
  • the direction orthogonal to each other is defined as the X direction.
  • the vertically upward direction is the positive direction of Z
  • the vertically downward direction is the negative direction of Z.
  • the depth direction from the user 150 to the surgical microscope 100A1 is the positive Y direction
  • the front direction is the negative Y direction.
  • the right direction (eg, right direction) of the surgical microscope 100A1 is a positive direction of X
  • the left direction (eg, left direction) is a negative direction of X.
  • a direction orthogonal to the vertical direction on the horizontal plane is a horizontal direction (eg, The direction that intersects the vertical direction on the horizontal plane, the X direction and the Y direction).
  • FIG. 2A shows a top view of the surgical microscope 100A1
  • FIG. 2B shows a cross-sectional view of the surgical microscope 100A1.
  • the surgical microscope 100A1 includes a single objective lens 11.
  • the objective lens 11 is composed of only one objective lens. That is, it is composed of only one lens.
  • the single objective lens 11 may be composed of a lens (for example, a doublet) in which two or more lenses are bonded together.
  • the objective lens 11 in the present embodiment is configured by a common objective lens on which the right side observation light and the left side observation light are incident (so-called Galileo type), but may be configured by a Greenough type including two or more objective lenses. ..
  • the objective lens 11 is an example of the “objective optical system” of the technique of the present disclosure.
  • the surgical microscope 100A1 includes a right-side variable magnification optical system 13R, a right-side imaging optical system 14R, and a right-side imaging element 15R, a left-side variable magnification optical system 13L, a left-side imaging optical system 14L, and a left-side imaging element 15L. ing.
  • the right variable magnification optical system 13R, the right imaging optical system 14R, and the right imaging element 15R are arranged on the same right variable magnification imaging imaging substrate movable in the Y direction.
  • the left variable magnification optical system 13L, the left imaging optical system 14L, and the left imaging element 15L are arranged on the same left variable magnification imaging imaging substrate that is movable in the Y direction.
  • the surgical microscope 100A1 is provided between the objective lens 11 and the right-side variable magnification optical system 13R, and the right-side observation light generated from the eye, which is an example of an object, and passed through the objective lens 11 passes through the objective lens.
  • the first right-side deflection element 22R and the second right-side deflection element 23R are provided so as to be reflected and deflected in the directions respectively intersecting with the direction of the optical axis 110 of 11.
  • the right-side observation light enters the right-side imaging element 15R.
  • the first right-side deflection element 22R, the second right-side deflection element 23R, the right-side variable magnification optical system 13R, and the right-side imaging optical system 14R are arranged in this order along the traveling direction of the right-side observation light.
  • the surgical microscope 100A1 is provided between the objective lens 11 and the left-side variable power optical system 13L, and the left-side observation light generated from the eye, which is an example of an object, and transmitted through the objective lens 11 is passed through,
  • the first left deflecting element 22L and the second left deflecting element 23L are arranged so as to be reflected and deflected in the directions intersecting with the direction of the optical axis 110 of the objective lens 11.
  • the left-side observation light is incident on the left-side imaging element 15L.
  • the first left-side deflection element 22L, the second left-side deflection element 23L, the left-side variable magnification optical system 13L, and the left-side imaging optical system 14L are arranged in this order along the traveling direction of the left-side observation light.
  • the first right deflection element 22R is arranged on the first right deflection element substrate that is movable in the X direction.
  • the first left-side deflection element 22L is arranged on the first left-side deflection element substrate that is movable in the X direction.
  • the surgical microscope 100A1 includes a right side illumination light source 16R that emits right side illumination light (optical axis 16RI) that illuminates the eye, and a left side illumination light source 16L that emits left side illumination light (optical axis 16LI) that illuminates the eye. ..
  • the surgical microscope 100A1 includes a right side illumination optical system 17R that shapes the right side illumination light emitted from the right side illumination light source 16R and guides it to the second right side deflection element 23R.
  • the surgical microscope 100A1 includes a left side illumination optical system 17L that shapes the left side illumination light emitted from the left side illumination light source 16L and guides the left side illumination light to the second left side deflection element 23L.
  • the second right-side deflecting element 23R transmits the right-side illumination light emitted so as to pass through the optical path that does not include the right-side variable magnification optical system 13R and reflects the right-side observation light.
  • the second left-side deflection element 23L transmits the left-side illumination light emitted so as to pass through the optical path without the left-side variable magnification optical system 13L and reflects the left-side observation light.
  • the right side illumination light source 16R and the right side illumination optical system 17R pass the right side illumination light through a horizontal plane (for example, the XY plane) and the optical axes (optical axis 15RI) of the right side magnification optical system 13R and the right side imaging optical system 14R. They are arranged so as to pass through different optical paths (optical paths including the optical axis 16RI).
  • the left side illumination light source 16L and the left side illumination optical system 17L pass the left side illumination light through a horizontal plane (for example, the XY plane) and the optical axes (optical axis 15LI) of the left side variable magnification optical system 13L and the left side imaging optical system 14L.
  • the right side illumination light source 16R and the right side illumination optical system 17R are arranged on the right side illumination light source optical system substrate that is movable in the X direction.
  • the left side illumination light source 16L and the left side illumination optical system 17L are arranged on the left side illumination light source optical system substrate that is movable in the X direction.
  • the respective illumination lights (the right side illumination light including the optical axis 16RI and the left side illumination light including the optical axis 16LI) are the illumination light for the through illumination as the first illumination and the illumination light for the oblique illumination as the second illumination.
  • Transillumination refers to an illumination method in which light reaches the retina and the reflected light is used as a secondary light source to obtain a backlight effect (Red reflex).
  • Illumination for transillumination includes complete coaxial illumination as a first type and near coaxial illumination (for example, around 2 °) as a second type.
  • the first right-side deflection element 22R and the first left-side deflection element 22L a reflection mirror, a half mirror, a prism (eg, prism mirror), or the like that reflects received light is used.
  • the second right-side deflection element 23R and the second left-side deflection element 23L transmit the right-side illumination light and the left-side illumination light, and generate the right-side observation light (eg, reflected or emitted) from the eye as an object (optical axis).
  • 15RI and a left-side observation light (see optical axis 15LI) are used as a transflective element.
  • the transflective element for example, a half mirror, a beam splitter, a dichroic mirror, or the like is used.
  • the first right-side deflection element 22R and the first left-side deflection element 22L and the second right-side deflection element 23R and the second left-side deflection element 23L are examples of the “deflection element” of the technology of the present disclosure.
  • the first right-side deflection element 22R and the first left-side deflection element 22L are examples of the "first plurality of deflection elements" and the “first deflection element” in the technique of the present disclosure
  • the second right-side deflection element 23R and The second left-side deflection element 23L is an example of the “second plurality of deflection elements” and the “second deflection element” in the technique of the present disclosure.
  • the second right-side deflection element 23R and the second left-side deflection element 23L are examples of the “transmissive reflection element” in the technique of the present disclosure.
  • Collimator lenses are used as the right side illumination optical system 17R and the left side illumination optical system 17L.
  • Each of the first right-side deflection element 22R and the second right-side deflection element 23R emits the right-side observation light generated (e.g., reflected) from the eye and transmitted through the objective lens 11 with respect to the direction of the optical axis 110 of the objective lens 11.
  • the first right deflecting element 22R and the second right deflecting element 23R each reflect the right observation light, and the intersecting directions are different from each other, and the optical axes 110 of the objective lens 11 (in this case, It is also a direction (eg, orthogonal direction) intersecting the Z direction and the vertical direction.
  • the plurality of deflection elements configured by the first right deflection element 22R and the second right deflection element 23R direct the right observation light to a plane other than the plane including the optical axis 110 of the objective lens 11, for example, , Different directions (eg, crossing direction, orthogonal direction, etc.) along a plane including a direction intersecting the optical axis 110 of the objective lens 11 (for example, an XY plane, a horizontal plane including a horizontal direction orthogonal to the vertical direction). Reflect twice in the horizontal direction.
  • each of the first left-side deflecting element 22L and the second left-side deflecting element 23L transmits the left-side observation light generated (e.g., reflected) from the eye and transmitted through the objective lens 11 to the optical axis 110 of the objective lens 11. It is arranged so as to reflect in a direction intersecting the direction.
  • the first left-side deflection element 22L and the second left-side deflection element 23L respectively reflect the left observation light in mutually intersecting directions, and the intersecting directions are different from each other, and the optical axis 110 of the objective lens 11 (in this case, It is also a direction (eg, orthogonal direction) intersecting the Z direction and the vertical direction.
  • the plurality of deflecting elements configured by the first left deflecting element 22L and the second left deflecting element 23L direct the left observation light to a plane other than the plane including the optical axis 110 of the objective lens 11, for example, , Different directions (eg, crossing direction, orthogonal direction, etc.) along a plane including a direction intersecting the optical axis 110 of the objective lens 11 (for example, an XY plane, a horizontal plane including a horizontal direction orthogonal to the vertical direction). Reflect twice in the horizontal direction.
  • the left-side observation light and the right-side observation light included in the observation light obtained by irradiating the object with the above-mentioned illumination light are substantially parallel light when passing through the objective lens 11.
  • the objective lens 11 may be designed so that the left-side observation light and the right-side observation light do not become parallel light.
  • the right-side observation light and the left-side observation light are observation lights generated by irradiating the substantially same position (for example, the same visual field region) of the target object with the above illumination light.
  • the first right deflection element 22R and the second right deflection element 23R reflect and deflect the right observation light so that each of the reflected right observation light has a component in a direction perpendicular to the optical axis 110 of the objective lens 11.
  • the absolute value of the outer product of each right-side observation light and the optical axis 110 is not zero. That is, each right side observation light and the optical axis 110 are not parallel.
  • the first left-side deflection element 22L and the second left-side deflection element 23L reflect and deflect the left-side observation light so that the respective left-side observation light reflected has a component in a direction perpendicular to the optical axis 110 of the objective lens 11. To do.
  • the absolute value of the outer product of each left-side observation light and the optical axis 110 is not zero. That is, the left observation light and the optical axis 110 are not parallel.
  • the first right-side deflection element 22R that first reflects the right-side observation light that has passed through the objective lens 11 has an optical path different from the optical axes of the right-side variable magnification optical system 13R and the right-side imaging optical system 14R.
  • the right side illumination light emitted so as to pass through is reflected toward the objective lens 11. Therefore, the right side illumination light emitted from the right side illumination optical system 17R passes through the second right side deflection element 23R and is reflected by the first right side deflection element 22R toward the objective lens 11.
  • the first left-side deflection element 22L that first reflects the left-side observation light that has passed through the objective lens 11 is a left-side illumination that is emitted so as to follow an optical path different from the optical axes of the left-side variable magnification optical system 13L and the left-side imaging optical system 14L.
  • the light is reflected toward the objective lens 11. Therefore, the left side illumination light emitted from the left side illumination optical system 17L passes through the second left side deflection element 23L and is reflected by the first left side deflection element 22L toward the objective lens 11.
  • the first right deflection element 22R and the second right deflection element 23R, and the first left deflection element 22L and the second left deflection element 23L are arranged near the objective lens 11.
  • at least the first right-side deflection element 22R and the first left-side deflection element 22L among the plurality of deflection elements are arranged vertically above the objective lens 11.
  • the first right-side deflection element 22R and the first left-side deflection element 22L are arranged at positions where at least a part of the first right-side deflection element 22L and the first left-side deflection element 22L overlap the objective lens 11 when viewed from the optical axis 110 of the objective lens 11 (eg, Z direction).
  • the first right-side deflection element 22R reflects the right-side observation light traveling from the objective lens 11 in the Z (positive) direction at a right angle in the X (positive) direction (first direction), and then in FIG.
  • the second right deflection element 23R causes the right observation light reflected by the first right deflection element 22R to be different from the X (positive) direction (first direction) and the Z direction (eg, vertical direction) in the Y direction. Reflects at a right angle to the (positive) direction (second direction).
  • the second right-side deflection element 23R reflects and deflects the right-side observation light in a direction orthogonal to the deflection direction (eg, reflection direction) of the right-side observation light in the first right-side deflection element 22R on the plane intersecting with the vertical direction. To do.
  • the right side observation light reflected by the second right side deflection element 23R forms an image on the right side image pickup element 15R via the right side magnification optical system 13R and the right side image forming optical system 14R.
  • the first left-side deflection element 22L reflects the left-side observation light traveling from the objective lens 11 in the Z (positive) direction at a right angle in the X (negative) direction (third direction), and the second left-side deflection element 23L is The left-side observation light reflected by the first left-side deflection element 22L is directed in the Y (positive) direction (second direction) different from the X (negative) direction (third direction) and the Z direction (eg, vertical direction). Reflects at a right angle.
  • the second left-side deflection element 23L reflects and deflects the left-side observation light in a direction orthogonal to the deflection direction (eg, reflection direction) of the left-side observation light in the first left-side deflection element 22L on the plane intersecting with the vertical direction. To do.
  • the left-side observation light reflected by the second left-side deflection element 23L is imaged on the left-side imaging element 15L via the left-side variable magnification optical system 13L and the left-side imaging optical system 14L.
  • the right diaphragm 12R is arranged in the optical path between the first right deflection element 22R and the second right deflection element 23R, and the first left deflection element 22L and the second left deflection element 23L are arranged.
  • a left-side diaphragm 12L is arranged in the optical path between and.
  • the right diaphragm 12R is arranged on the right diaphragm substrate that is movable in the X direction.
  • the left diaphragm 12L is arranged on the left diaphragm substrate that is movable in the X direction.
  • the first right-side deflection element 22R and the second right-side deflection element 23R are examples of the “first plurality of deflection elements” in the technology of the present disclosure, and the first left-side deflection element 22L and the second left-side deflection element 23L are the same. It is an example of a "second plurality of deflection elements" of the disclosed technique.
  • the first right-side deflection element substrate on which the first right-side deflection element 22R is arranged (fixed) moves in the X direction
  • the illumination light and the right-side observation light are reflected by the first right-side deflection element 22R.
  • the first right-side deflection element 22R is moved so that the angle between the surface to be formed and the optical axis 110 of the objective lens 11 is kept constant.
  • the first left-side deflection element substrate on which the first left-side deflection element 22L is arranged (fixed) moves in the X direction, a surface on which the illumination light and the right-side observation light are reflected in the first left-side deflection element 22L, and the objective lens.
  • the first left-side deflection element 22L is moved so that the angle formed by the optical axis 110 of 11 is kept constant.
  • the right-side variable magnification optical system 13R, the right-side imaging optical system 14R, and the right-side imaging element 15R have the same configuration as the left-side variable magnification optical system 13L, the left-side imaging optical system 14L, and the left-side imaging element 15L.
  • the right-side variable magnification optical system 13R, the right-side imaging optical system 14R, and the right-side imaging element 15R will be described, and the left-side variable-magnification optical system 13L, the left-side imaging optical system 14L, and the left-side imaging element 15L will be omitted.
  • the objective lens 11, the diaphragm 12R, and the right-side variable magnification optical system are arranged in this order from the eye 10A (more accurately, the object plane 10A) side.
  • the system 13R and the right imaging optical system 14R are arranged.
  • the right deflection element 22R and the second right deflection element 23R are not shown.
  • a light flux (eg, observation light) generated from each point of the eye 10A is converted into a substantially parallel light flux through the objective lens 11, is magnified through the right magnification optical system 13R, and is converted into the right imaging optical system 14R. It is collected via and reaches the image plane 10B.
  • a right imaging element 15R is arranged on the image surface 10B in order to observe the image of the eye 10A formed on the image surface 10B.
  • the right variable power optical system 13R includes, in order from the eye 10A side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a third lens having a positive refractive power. It is composed of a group G3 and a fourth lens group G4 having a positive refractive power, and the second lens group G2 and the third lens group G3 are lens groups for zooming. Therefore, by fixing the first lens group G1 and the fourth lens group G4 and moving the variable power lens groups (G2, G3) along the optical axis direction, the observation magnification of the image of the eye 10A is increased. It can be changed arbitrarily. The observation magnification is determined by the ratio of the focal length of the objective lens 11 and the focal length obtained by combining the right-side variable magnification optical system 13R and the right-side imaging optical system 14R.
  • the right-side variable power optical system 13R has the four lens groups G1, G2, G3, G4 already described, as shown in FIG. 4 (see also FIG. 3).
  • the first lens group G1 includes a cemented lens of a meniscus lens 31 having a convex surface facing the object (eye) side and a biconvex lens 32, and a meniscus lens 33 having a convex surface facing the object.
  • the second lens group G2 includes a biconcave lens 34, a cemented lens of a biconvex lens 35 and a biconcave lens 36, and a meniscus lens 37 having a concave surface facing the object side.
  • the third lens group G3 includes a biconvex lens 38, and a cemented lens of a biconvex lens 39 and a meniscus lens 40 having a concave surface facing the object side.
  • the fourth lens group G4 includes a cemented lens of a meniscus lens 41 having a concave surface facing the object side and a meniscus lens 42 having a concave surface facing the object side.
  • the first lens group G1 and the fourth lens group G4 are fixed, and the second lens group G2 is moved to the image side.
  • the third lens group G3 is moved in the direction in which the focus movement due to the movement of the second lens group G2 is corrected. Note that it is preferable to increase the aperture diameter of the aperture 12R in conjunction with the magnification change of the right-side variable power optical system 13R from the low magnification end to the high magnification end.
  • Table 1 exemplifies the specifications of the right-side variable power optical system 13R and diaphragm 12R shown in FIG.
  • the surface number 1 corresponds to the diaphragm 12R
  • the surface numbers 2 to 21 correspond to the lens surface numbers sequentially added from the object side.
  • the distance from the lens surface (2) of the most object-side lens (meniscus lens 31) to the diaphragm 12R is 15 mm.
  • Fno indicates the F number
  • Fai indicates the aperture diameter of the aperture 12R.
  • the right-side variable power optical system 13R is located outside the right-side variable power optical system 13R, specifically, in the optical path between the right-side variable power optical system 13R and the objective lens 11 (first right range). It is formed so that there is a position where the effective area of the light flux of the right side observation light perpendicular to the optical axis 15RI of the observation light is minimal.
  • the position where the effective area of the light flux of the right-side observation light is minimized is the position of the pupil of the right-side variable power optical system 13R in which the right-side diaphragm 12R described later is arranged.
  • the effective area of the light flux of the right side observation light at the position where the effective area of the light flux of the right side observation light is minimized will be described.
  • the effective area of the light flux of the observation light perpendicular to the optical axis is the cross-sectional area of the light flux that reaches the image sensor (15R, 15L) in the observation light and is imaged by the plane perpendicular to the optical axis. Is.
  • the effective area of the light flux of the right-side observation light in the lens (meniscus lens 31) closest to the objective lens 11 of the right-side variable power optical system 13R is defined as a first effective area, and the surface of the objective lens 11 on the right-side variable power optical system 13R side.
  • the effective area of the light flux of the right side observation light at is the second effective area.
  • the effective area of the light flux of the right side observation light at the position where the effective area of the light flux of the right side observation light is a minimum is the third effective area smaller than the first effective area and the second effective area. More specifically, the effective area of the light flux of the right observation light perpendicular to the optical axis 15RI of the right observation light is, for example, the position on the optical axis moved from the objective lens 11 to the right variable magnification optical system 13R along the optical axis. Then, the second effective area gradually decreases. Then, the effective area of the light flux of the right observation light becomes the third effective area at the position where the effective area of the light flux of the right observation light is minimum in the optical path between the objective lens 11 and the right variable magnification optical system 13R.
  • the effective area of the light flux of the right-side observation light gradually increases from the third effective area, and becomes the first effective area in the right-side variable power optical system 13R.
  • the position on the optical axis where the effective area of the light flux of the observation light is minimum is not limited to one point.
  • the effective area of the light flux of the observation light is a constant value with a minimum value
  • those effective areas That is, each of the plurality of third effective areas
  • the minimum value of the effective area of the light flux here may be constant for a while with respect to the change of the position of the optical path.
  • the left-side variable power optical system 13L is not inside the left-side variable power optical system 13L, specifically, the optical path between the left-side variable power optical system 13L and the objective lens 11 (first left range). Then, the effective area of the light flux of the left-side observation light perpendicular to the optical axis 15LI of the left-side observation light is formed to be a minimum.
  • the respective positions where the effective area of the light flux becomes the minimum are between the right variable magnification optical system 13R and the first right deflection element 22R and the left variable magnification optical system 13L and the first variable magnification optical system 13L.
  • the right-side variable magnification optical system 13R and the left-side variable magnification optical system 13L are formed so as to be between the first left-side deflection element 22L (second right / left side range).
  • the position where the effective area of the luminous flux becomes the minimum is between the first right side deflection element 22R and the first left side deflection element 23L (
  • the right-side variable magnification optical system 13R and the left-side variable magnification optical system 13L are configured so as to be in the third right range) and between the first left deflection element 22L and the second left deflection element 23L (third left range).
  • the position where the effective area of the light flux is minimized (the position of the pupil) is located between the first right side deflection element 22R and the second right side deflection element 23R and the first left side deflection element. 22L and the second left-side deflection element 23L.
  • the effective area of the light flux is not at the position where the effective area of the light flux is minimum between the first right side deflection element 22R and the second right side deflection element 23R and between the first left side deflection element 22L and the second left side deflection element 23L.
  • the size (effective diameter) of each element eg, the first right-side deflection element 22R, the first left-side deflection element 22L, etc.
  • the size (effective diameter) of each element can be made smaller, so that the first right-side deflection element 22R and the first left-side deflection element 22L are separated from each other. It is possible to make the axial distance shorter.
  • the surgical microscope 100A1 can relatively move the first right-side deflection element 22R and the first left-side deflection element 22L to further reduce the stereoscopic effect visually recognized by the user 150. Further, since the size of each of the above-mentioned elements arranged on the upper side in the vertical direction of the objective lens 11 can be reduced, the size (eg, thickness, width) and cost of the surgical microscope 100A1 can be reduced.
  • the position where the effective area of the light flux is minimized (the position of the pupil) is made to coincide with the positions of the first right-side deflection element 22R and the first left-side deflection element 22L, respectively. It is possible to minimize the area (effective diameter) of each of the 1st left-side deflection elements 22L that reflects light.
  • an optical element such as a filter may be arranged between the right-side variable power optical system 13R and the objective lens 11, and between the left-side variable power optical system 13L and the objective lens 11. ..
  • the optical elements such as the filters arranged in this way are not included in the right-side variable power optical system 13R and the left-side variable power optical system 13L. Therefore, the optical elements such as the filters arranged in this way are not included in the right side observation optical system and the left side observation optical system.
  • the surgical microscope 100A1 is arranged between the right variable power optical system 13R and the objective lens (first right range), and limits the effective area of the light flux of the right observation light perpendicular to the optical axis 15RI of the right observation light.
  • the right diaphragm 12R is provided.
  • the surgical microscope 100A1 is arranged between the left-side variable power optical system 13L and the objective lens (first left-side range), and has an effective area of the luminous flux of the left-side observation light perpendicular to the optical axis 15LI of the left-side observation light.
  • a left-side diaphragm 12L for limiting is provided.
  • the positions of the right diaphragm 12R and the left diaphragm 12L are arranged between the right variable magnification optical system 13R and the first right deflection element 22R (second right range) or the left variable magnification optical system 13L and the first left deflection element. 22L (second left side range).
  • the positions where the right diaphragm 12R and the left diaphragm 12L are arranged in the present embodiment are between the first right deflection element 22R and the second right deflection element 23R (third right range) or the first left deflection. It is between the element 22L and the second left deflection element 23L (third left range).
  • the right diaphragm 12R and the left diaphragm 12L are arranged at the position (pupil position) where the effective area of the light flux is minimized.
  • FIG. 23 shows that the right diaphragm 12R is arranged at a position where the effective area of the light flux of the right observation light is the minimum (the position of the pupil of the right observation optical system).
  • the effective area of the light flux of the right-side observation light perpendicular to the optical axis 15RI of the right-side observation light is extremely small between the right-side variable magnification optical system 13R and the objective lens 11.
  • the left diaphragm 12L is also arranged at a position where the effective area of the above-mentioned light flux of the left observation light is minimized (the position of the pupil of the left observation optical system).
  • the right diaphragm 12R and the left diaphragm 12L are variable diaphragms. As will be described in detail later, the effective area of the light flux of the right side observation light and the left side observation light is adjusted by adjusting the right diaphragm 12R or the left diaphragm 12L based on the magnification of the right variable magnification optical system 13R or the left variable magnification optical system 13L. Is adjusted.
  • the means for limiting the effective area of the light flux of the right side observation light and the left side observation light is not limited to the right side diaphragm (variable diaphragm) 12R and the left side diaphragm (variable diaphragm) 12L.
  • the right diaphragm 12R is omitted, and the light reflection area (effective diameter) of each of the first right deflection element 22R and the second right deflection element 23R is adjusted, so that the luminous flux of the right observation light is effective. It is shown how to limit the area. As shown in FIG.
  • the effective area of the light flux can be limited.
  • the size of the entrance surface or exit surface (reflection surface, deflection surface, or refraction surface) of the first right-side deflection element 22R defines the effective area of the light flux of the right-side observation light.
  • FIG. 24 shows an example in which the right diaphragm 12R is omitted and the light reflection areas (effective diameters) of the first right deflection element 22R and the second right deflection element 23R are adjusted, but the left side is also adjusted. It is the same. That is, the left diaphragm 12L is omitted, and the light reflection area (effective diameter) of each of the first left deflection element 22L and the second left deflection element 23L is adjusted.
  • the size of the entrance surface or exit surface (reflection surface, deflection surface, or refraction surface) of the first left-side deflection element 22L defines the effective area of the light flux of the left-side observation light.
  • the region (effective diameter) that reflects light is adjusted.
  • the technique of the present disclosure is not limited to this, and may be as follows.
  • a mask light-shielding mask that absorbs light and blocks light is provided on the first right-side deflection element 22R so that the effective area of the light flux of the right-side observation light perpendicular to the optical axis of the right-side observation light becomes a predetermined area.
  • a mask that absorbs light and blocks light is provided on the first left-side deflection element 22L so that the effective area of the luminous flux of the left-side observation light perpendicular to the optical axis of the left-side observation light becomes a predetermined area.
  • FIG. 5 shows a block diagram of the surgical microscope 100A1. As shown in FIG. 5, the surgical microscope 100A1 includes a computer 50.
  • the computer 50 includes a CPU 52, a ROM 54, a RAM 56, and an input / output (I / O) port 58.
  • the CPU 52 and the input / output (I / O) port 58 are connected to each other by a bus 60.
  • the CPU 52 is an example of a control unit that controls the entire surgical microscope 100A1.
  • the ROM 54 is a memory that stores various programs and various parameters in advance.
  • the RAM 56 is a memory used as a work area or the like when executing various programs.
  • the input / output (I / O) port 58 has an input device 63 such as a keyboard, a secondary storage device 62, a right imaging element 15R, a left imaging element 15L, a display device 100AD, a stereoscopic effect increasing switch 64, and a stereoscopic effect decreasing switch. 66 is connected.
  • the stereoscopic effect increasing switch 64 moves the first right deflection element 22R and the right diaphragm 12R in a direction away from the optical axis 110 of the objective lens 11 (X (positive) direction) and selectively instructs the stop of the movement. To do.
  • the stereoscopic effect increasing switch 64 moves the first left-side deflection element 22L and the left-side diaphragm 12L in a direction (X (negative) direction) away from the optical axis 110 of the objective lens 11 and selectively instructs the stop of the movement.
  • the stereoscopic effect reducing switch 66 moves the first right deflection element 22R and the right diaphragm 12R in a direction (X (negative) direction) approaching the optical axis 110 of the objective lens 11 and selectively instructs the stop of the movement. To do.
  • the stereoscopic effect reducing switch 66 moves the first left-side deflection element 22L and the left-side diaphragm 12L in a direction (X (positive) direction) approaching from the optical axis 110 of the objective lens 11 and selectively instructs the stop of the movement.
  • a right side illumination light source 16R and a left side illumination light source 16L are connected to the input / output (I / O) port 58.
  • the input / output (I / O) port 58 is connected to the first right-side deflection element moving unit 68R, the first left-side deflection element moving unit 68L, the right-side aperture moving unit 69R, and the left-side aperture moving unit 69L.
  • a right side imaging optical device moving unit 72, a left side imaging optical device moving unit 74, a right side illumination optical system and light source moving unit 76, and a left side illumination optical system and light source moving unit 78 are connected to the input / output (I / O) port 58. Has been done.
  • a right-side variable magnification optical system lens driving unit 80 and a left-side variable magnification optical system lens driving unit 82, a right-side aperture diameter changing unit 85 and a left-side aperture diameter changing unit 87 are connected.
  • the moving parts (68R, 68L to 78), the drive parts (80, 82), and the changing parts (85, 87) are composed of a motor or the like.
  • each optical system and each light source may be moved by an individual moving unit instead of the right side illumination optical system and the light source moving unit 76.
  • the moving parts (68R, 69R, 72, 76) on the right side may be integrally configured.
  • the moving parts (68L, 69L, 74, 78) on the left side may be integrally formed.
  • the solid angle formed by the optical axes of the right-side observation light and the left-side observation light at the eye position, which is an example of the object, is continuous. At least one of the first right deflection element 22R and the first left deflection element 22L is moved so as to change.
  • the first right-side deflection element moving unit 68R and the first left-side deflection element moving unit 68L are examples of the “moving unit” in the technology of the present disclosure.
  • the right side diaphragm diameter changing unit 85 and the left side diaphragm diameter changing unit 87 are examples of the “diaphragm diameter adjusting unit” of the technology of the present disclosure.
  • the secondary storage device 62 stores a three-dimensional effect increase adjustment program and a three-dimensional effect decrease adjustment program, which will be described later, and an aperture diameter adjustment program.
  • the CPU 52 turns on the right side illumination light source 16R and the left side illumination light source 16L. Thereby, the object (eg, eye, object plane) is illuminated with the right oblique illumination light and the left oblique illumination light.
  • the object eg, eye, object plane
  • the right side observation light and the left side observation light from the eyes are focused on the right side image pickup element 15R and the left side image pickup element 15L, and the right side image signal is input from the right side image pickup element 15R and the left side image signal is input to the computer 50 from the left side image pickup element 15L.
  • the CPU 52 generates a right eye image and a left eye image based on the right side image signal and the left side image signal.
  • the CPU 52 does not always create the right-eye image based on the right-side image signal, and does not necessarily create the left-eye image based on the left-side image signal.
  • the CPU 52 may create a left-eye image based on the right-side image signal, or may create a right-eye image based on the left-side image signal.
  • the CPU 52 may create both the right-eye image and the left-eye image based on the right-side image signal, or may create both the left-eye image and the right-eye image based on the left-side image signal.
  • the CPU 52 may create each of the right-eye image and the left-eye image based on both the right-side image signal and the left-side image signal.
  • An image creating apparatus controlled by the CPU 52 may be further provided, and the image creating apparatus may generate an image for the right eye and an image for the left eye based on the right image signal and the left image signal under the control of the CPU 52. Good.
  • the CPU 52 displays the right-eye image in the right-eye display area on the screen of the display device 100AD.
  • the image for the left eye is displayed in the display area for the left eye on the screen of the display device 100AD.
  • the right-eye observation light and the left-eye observation light cause the stereoscopic right-eye image and left-eye image having a parallax of the surgery target eye (for example, the right eye) to be displayed on the screen of the display device 100AD. ..
  • the user 150 recognizes the stereoscopic image through the polarized glasses, and synthesizes the right-eye image and the left-eye image in the brain.
  • the display device 100AD displays the image for the right eye and the image for the left eye on a line-by-line basis.
  • the display device 100AD displays the image for the right eye and the image for the left eye on a line-by-line basis, and instead of stereoscopically viewing the image through the polarizing glasses, the image for the right eye and the image for the left eye are displayed.
  • the images may be alternately displayed with a time difference of 1/60 second, and stereoscopic viewing may be performed through shutter-type glasses that open and close the shutters of the right eye and the left eye in synchronization with the image.
  • a binocular viewer may be used instead of the glasses.
  • the right-eye image is displayed in the right-eye area on the screen of the display device 100AD.
  • the left-eye image is displayed in the left-eye area on the screen of the display device 100AD.
  • the right-eye image is guided to the right eye of the user 150 by the optical system in the right optical path arranged between the right-eye region of the screen of the display device 100AD and the right eye of the user 150.
  • the image for the left eye is guided to the left eye of the user 150 by the optical system in the left optical path arranged between the left eye region of the screen of the display device 100AD and the left eye of the user 150.
  • the display device 100AD is arranged on the surgical microscope main body 100AH, but the technique of the present disclosure is not limited to this.
  • the display device 100AD has an image 100AD1 in an area outside the first visual field area for the surgical microscope main body 100AH with the user 150 visually recognizing the surgical microscope from the front side. Is displayed. For example, in a state in which the user 150 is viewing from the front side of the surgical microscope, the surgical microscope body 100AH is arranged at a position that does not overlap the first visual field region.
  • the surgical microscope main body 100AH includes a second image 100AD2 displayed in the space by the display device 100AD in a state where the user 150 is viewing the front side of the surgical microscope. It is arranged in a region outside the visual field region.
  • the three-dimensional effect increasing switch 64 and the three-dimensional effect decreasing switch 66 are arranged on the floor vertically below the surgical microscope main body 100AH, and the user 150 operates the three-dimensional effect increasing switch 64 and the three-dimensional effect decreasing switch 66 with his / her own feet. (Turn on / off)
  • Each of the stereoscopic effect increasing switch 64 and the stereoscopic effect decreasing switch 66 is a foot switch.
  • the first right-side deflection element moving unit 68R moves the first right-side deflection element 22R in the X direction via the first right-side deflection element moving mechanism.
  • the right diaphragm moving unit 69R moves the right diaphragm 12R in the X direction based on the movement of the first right deflecting element 22R, specifically, in conjunction with the movement of the first right deflecting element 22R.
  • the first left-side deflection element moving unit 68L moves the first left-side deflection element 22L in the X direction via the first left-side deflection element moving mechanism.
  • the left diaphragm moving unit 69L moves the left diaphragm 12L in the X direction based on the movement of the first left deflecting element 22L, specifically, in conjunction with the movement of the first left deflecting element 22L.
  • the right imaging optical device moving unit 72 moves the right variable magnification optical system 13R, the right imaging optical system 14R, and the right imaging device 15R in the Y (positive) direction via the right imaging optical device moving mechanism.
  • the left imaging optical device moving unit 74 moves the left zoom optical system 13L, the left imaging optical system 14L, and the left imaging device 15L in the Y (positive) direction via the left imaging optical device moving mechanism.
  • the right side illumination optical system and light source moving unit 76 moves the right side illumination light source 16R and the right side illumination optical system 17R in the X direction by the right side illumination light source optical system substrate through the right side illumination light source optical system moving mechanism.
  • the left side illumination optical system and light source moving unit 78 moves the left side illumination light source 16L and the left side illumination optical system 17L in the X direction by the left side illumination light source optical system substrate via the left side illumination light source optical system moving mechanism.
  • a rack and pinion for example, can be used as each of the above moving mechanisms.
  • FIG. 6A shows a flowchart of the stereoscopic effect increasing adjustment process executed by the CPU 52 in accordance with the stereoscopic effect increasing adjusting program.
  • FIG. 6B shows a flowchart of the stereoscopic effect reduction adjusting process executed by the CPU 52 according to the stereoscopic effect reducing adjustment program.
  • FIG. 9 shows a surgical microscope 100A1 when the first right-side deflection element 22R and the first left-side deflection element 22L are moved in a direction away from the optical axis 110 of the objective lens 11 (step 84 described later). Is shown (cross-sectional view).
  • the stereoscopic effect increasing adjustment process shown in FIG. 6A starts when the stereoscopic effect increasing switch 64 is turned on, and in step 84, by the control of the CPU 52, as shown in FIG. 8 and FIG.
  • the portion 68R and the right-side diaphragm moving portion 69R are configured so that the respective substrates through the respective moving mechanisms increase the substantial angle formed by the optical axis 15RI of the right-side observation light at the position of the object, specifically, the first right side.
  • the deflecting element 22R and the right diaphragm 12R are moved in the direction away from the optical axis 110 of the objective lens 11 (X (positive) direction).
  • the first left-side deflection element moving unit 68L and the left-side aperture moving unit 69L cause the first left-side deflection element 22L and the left-side aperture 12L to move to the optical axis of the left-side observation light by each substrate through each moving mechanism.
  • the objective lens 11 is moved in a direction away from the optical axis 110 (X (negative) direction) so that the substantial angle formed by the 15LI at the position of the object becomes large.
  • the right imaging optical device moving unit 72 moves the right variable magnification optical system 13R, the right imaging optical system 14R, and the right imaging device 15R in the Y (positive) direction by the substrate via the moving mechanism.
  • the left imaging optical device moving unit 74 moves the left zoom optical system 13L, the left imaging optical system 14L, and the left imaging device 15L in the Y (positive) direction by the substrate via the moving mechanism.
  • the right side illumination optical system and light source moving unit 76 moves the right side illumination light source 16R and the right side illumination optical system 17R in the X (positive) direction by the substrate via the moving mechanism.
  • the left side illumination optical system and light source moving unit 78 moves the left side illumination light source 16L and the left side illumination optical system 17L in the X (negative) direction.
  • step 86 the CPU 52 determines whether or not the stereoscopic effect increasing switch 64 is turned off. If it is determined that the stereoscopic effect increasing switch 64 has not been turned off, the stereoscopic effect increasing adjustment processing returns to step 84. Therefore, the above-mentioned components to be moved in step 84 continue to be moved.
  • step 86 When it is determined in step 86 that the stereoscopic effect increasing switch 64 has been turned off, the CPU 52 stops each of the moving parts (68R to 78) in step 88. As a result, the movement of each of the above components to be moved in step 84 is stopped. When step 88 ends, the stereoscopic effect adjustment process ends.
  • the stereoscopic effect reduction adjusting process shown in FIG. 6B starts when the stereoscopic effect reducing switch 66 is turned on, and in step 92, the first right deflection element moving unit 68R and the right diaphragm moving unit 69R are controlled by the CPU 52. Specifically, the first right deflection element 22R and the right diaphragm 12R are optically moved by the respective substrates via the respective movement mechanisms so that the physical angle formed by the optical axis 15RI of the right observation light at the position of the object becomes small. It is moved in the direction approaching the axis (X (negative) direction).
  • the first left-side deflection element moving unit 68L and the left-side diaphragm moving unit 69L are arranged in a direction (X (positive) direction) in which the first left-side deflection element 22L and the left-side diaphragm 12L are close to the optical axis by each substrate through each moving mechanism.
  • the right imaging optical device moving unit 72 moves the right variable magnification optical system 13R, the right imaging optical system 14R, and the right imaging device 15R in the Y (negative) direction by the substrate via the moving mechanism.
  • the left imaging optical device moving unit 74 moves the left variable magnification optical system 13L, the left imaging optical system 14L, and the left imaging device 15L in the Y (negative) direction by the substrate via the moving mechanism.
  • the right side illumination optical system and light source moving unit 76 moves the right side illumination light source 16R and the right side illumination optical system 17RX (negative) by the substrate via the moving mechanism.
  • the left side illumination optical system and light source moving unit 78 moves the left side illumination light source 16L and the left side illumination optical system 17L in the X (positive) direction by the substrate via the moving mechanism.
  • step 94 the CPU 52 determines whether or not the stereoscopic effect reduction switch 66 has been turned off. When it is determined that the stereoscopic effect reducing switch 66 has not been turned off, the stereoscopic effect reducing adjustment processing returns to step 92. Therefore, the above-mentioned components to be moved in step 92 are continuously moved.
  • step 94 If it is determined in step 94 that the stereoscopic effect reduction switch 66 has been turned off, the CPU 52 stops each of the moving parts (68R to 78) in step 96. As a result, the movement of each of the above-described components to be moved in step 92 is stopped. When step 96 ends, the stereoscopic effect adjustment process ends.
  • each component on the right side and the movement of each component on the left side in steps 84 and 92 are symmetrical with respect to the optical axis 110 of the objective lens 11.
  • the right side configurations (22R, 12R, 16R, 17R) move in the X (positive) direction
  • the left side configurations (22L, 12L, 16L, 17L) move in the X (negative) direction.
  • the right configuration (13R, 14R, 15R) and the left configuration (13L, 14L, 15L) move in the Y direction.
  • step 84 FIG. 6A
  • step 92 FIG. 6B
  • step 84 the first right deflection element 22R and the right diaphragm 12R, and the first left deflection element 22L and the left diaphragm 12L are continuously moved
  • Right zoom optical system 13R, right imaging optical system 14R, and right imaging element 15R left zoom optical system 13L, left imaging optical system 14L, left imaging element 15L, right illumination light source 16R, and right illumination
  • the optical system 17R, the left side illumination light source 16L, and the left side illumination optical system 17L are continuously moved.
  • the optical path length of the illumination light is the optical path length from the light source (16R, 16L) to the right imaging element 15R or the left imaging element 15L via the eye.
  • the optical path length of the observation light is the optical path length from the eye to the right imaging element 15R or the left imaging element 15L.
  • the optical path length of the illumination is the optical path length from each light source (16R, 16L) to the eye, or a part of the optical path length.
  • the optical path length of the observation light is, for example, the optical path length from the eye to the right image pickup element 15R or the left image pickup element 15L, or a part of the optical path length.
  • the first right-side deflection element 22R is moved so that the angle of the first right-side deflection element 22R with respect to the XY plane is kept constant. More specifically, the first right-side deflection element 22R maintains a constant angle between the surface of the first right-side deflection element 22R that reflects the illumination light and the right-side observation light and the optical axis 110 of the objective lens 11. So that it will be moved. This is because, as described above, the substrate on which the first right-side deflection element 22R is arranged (fixed) is configured to move in the X direction so that the angle formed is kept constant.
  • the angles of incidence of the illumination light and the right-side observation light on the first right-side deflection element 22R are kept constant.
  • the first left-side deflection element 22L is moved so that the angle of the first left-side deflection element 22L with respect to the XY plane is kept constant. More specifically, the first left-side deflection element 22L maintains a constant angle between the surface of the first left-side deflection element 22L that reflects the illumination light and the left-side observation light and the optical axis 110 of the objective lens 11. So that it will be moved.
  • the substrate on which the first left-side deflection element 22L is arranged (fixed) is configured to move in the X direction so that the angle formed is kept constant. Therefore, the incident angles of the illumination light and the left-side observation light on the first left-side deflection element 22L are maintained constant.
  • the surface of the first right deflection element 22R forms the right observation light
  • the surface of the first left deflection element 22L forms the left observation light. In this way, since the angle formed between the surfaces of the first right-side deflection element 22R and the first left-side deflection element 22L and the optical axis 110 of the objective lens 11 is kept constant, the center of the image of each observation light is kept.
  • the centers of the image pickup elements (15R, 15L) are not displaced, that is, the positions (deflection positions) used on the above-mentioned surfaces of the first right deflection element 22R and the first left deflection element 22L do not change.
  • An unnecessary moving mechanism for compensation can be eliminated, and the effective diameter (size) of the deflecting elements (22R, 22L) can be reduced.
  • step 84 and step 92 when the first right-side deflection element 22R and the first left-side deflection element 22L are moved in the X direction, the right-side illumination light source 16R and the right-side illumination optical system 17R, the left-side illumination light source 16L and the left-side illumination optical system. 17L and are moved in the X direction.
  • the angle formed by the optical axis (15RI, 15LI) of the left and right observation light and the optical axis (16RI, 16LI) of the illumination light at the eye position is kept constant.
  • the right diaphragm 12R and the left diaphragm 12L are variable diaphragms.
  • the right-side variable power optical system lens drive section 80 can move at least one of the lens groups G1, G2, G3, and G4 of the right-side variable power optical system 13R in the Z direction to change the magnification.
  • the left-side variable power optical system lens driving unit 82 can also perform variable power by moving at least one of the lens groups G1, G2, G3, and G4 of the left-side variable optical system 13L in the Z direction.
  • the aperture diameter adjusting process adjusts the aperture diameter according to the magnification change so that the left observation light and the right observation light are imaged on the left image sensor 15L and the right image sensor 15R in proper amounts. To do.
  • FIG. 7A shows a graph showing the maximum diameters of the left and right diaphragms which are predetermined for each zoom magnification. If the aperture diameter is increased to exceed the maximum diameter at each zoom magnification, the left side observation light and the right side observation light, which are not intended in the design of the observation optical system, enter the observation optical system. When the image is formed on the right imaging element 15R, the occurrence of aberration may increase.
  • the secondary storage device 62 stores the relationship between each zoom magnification and the maximum value of the aperture diameter predetermined for each zoom magnification, as shown in FIG. 7A. As shown in FIG. 7A, in the relationship, the maximum value of the aperture diameter increases as the zoom magnification increases.
  • FIG. 7B shows an example of a flowchart of the aperture diameter adjustment processing executed by the CPU 52 according to the aperture diameter adjustment program.
  • the aperture diameter adjustment process starts when a magnification is input via the input device 63.
  • the CPU 52 moves in the Z direction at least one of the lens groups G1, G2, G3, and G4 of the right-side variable magnification optical system 13R and the left-side variable magnification optical system 13L. Then, the right-side variable magnification optical system lens driving unit 80 and the left-side variable magnification optical system lens driving unit 82 are controlled to change the magnification so that the input magnification is obtained.
  • step 102 the CPU 52 takes in the maximum value of the aperture diameter corresponding to the input magnification from the above relationship stored in the secondary storage device 62.
  • step 103 the CPU 52 determines whether the current aperture diameter is larger than the maximum diameter captured in step 102.
  • the CPU 52 sets the control amounts (corresponding to the current diaphragm diameter) of the right diaphragm diameter changing unit 85 and the left diaphragm diameter changing unit 87 to the secondary storage device 62. I remember.
  • step 103 the control amounts (corresponding to the current diaphragm diameter) of the right diaphragm diameter changing section 85 and the left diaphragm diameter changing section 87 are read from the secondary storage device 62, and the read right diaphragm diameter changing section 85 and left diaphragm diameter changing are read. It is determined whether the control amount of the portion 87 (corresponding to the current aperture diameter) is larger than the maximum diameter captured in step 102.
  • the aperture diameter adjustment process ends.
  • the CPU 52 determines at least one of the lens groups G1, G2, G3, and G4 of the right-side variable power optical system 13R and the left-side variable power optical system 13L.
  • the right side aperture diameter changing unit 85 and the left side aperture diameter changing unit 87 are controlled so that the aperture diameters of the right side aperture stop 12R and the left side aperture stop 12L are changed in association with the magnification change by the movement in the Z direction.
  • the CPU 52 controls the right diaphragm diameter changing unit 85 and the left diaphragm diameter changing unit 87 so that the respective diaphragm diameters increase in association with the magnification changing from the low magnification end to the high magnification end. To do.
  • the CPU 52 controls the right diaphragm diameter changing unit 85 and the left diaphragm diameter changing unit 87 so that each diaphragm diameter is equal to or smaller than a predetermined maximum diameter.
  • the CPU 52 fetches Ab as the maximum value of the aperture diameter from the above relationship stored in the secondary storage device 62 (step 102). If the current aperture diameter is Aa smaller than Ab, the negative determination is made in step 103, and the aperture diameter adjustment processing ends.
  • the current aperture diameter Ab is larger than the maximum value Aa for Ma (step 103 is positive).
  • the aperture diameters of the right-side aperture 12R and the left-side aperture 12L are controlled to the maximum value Aa. Therefore, the aperture diameters of the right-side aperture 12R and the left-side aperture 12L can be controlled to the maximum value according to the magnification.
  • Each aperture diameter can be adjusted based on the magnification.
  • the maximum value of the aperture diameter increases as the zoom magnification increases. Therefore, it is possible to increase the aperture diameter of each of the right diaphragm 12R and the left diaphragm 12L in association with the zooming from the low magnification end to the high magnification end.
  • the foot switch may be provided with an up button and a down button for increasing the magnification, and the magnification may be continuously increased / decreased while the up button / down button is continuously pressed.
  • the maximum diameter may be set one by one. It should be noted that the adjustment of the diaphragm diameter may be performed so that the right diaphragm 12R and the left diaphragm 12L are bilaterally symmetrical, without interlocking with the magnification change.
  • the microscope In a conventional microscope, if a monitor that displays an image obtained by the microscope is placed in front of the user, the microscope is relatively large, so the microscope obstructs the line of sight of the user, so the monitor is placed in front of the user. I could't. This is particularly useful when the user often operates in a sitting position, such as during eye surgery.
  • the microscope of the present embodiment the microscope is relatively small, and even if the monitor is arranged in front of the user, the microscope does not obstruct the user's line of sight, so that the monitor can be arranged in front of the user. ..
  • the illumination light and the observation light are deflected by the deflecting element a plurality of times in the horizontal direction on the objective lens.
  • the surgical microscope of Patent Document 1 is not configured so that the user can easily see the display or the like on which the observation target is displayed during the operation.
  • the first right-side deflection element 22R and the second right-side deflection element 23R have a plane (for example, XY) including the direction in which the right-side observation light intersects the optical axis 110 of the objective lens 11. It reflects twice along the plane.
  • the first left-side deflection element 22L and the second left-side deflection element 23L are provided twice with the left-side observation light along a plane (for example, an XY plane) including a direction intersecting the optical axis 110 of the objective lens 11. reflect. Therefore, the surgical microscope 100A1 can be made relatively thin.
  • the first embodiment it is possible to prevent the user's view from being obstructed so that the user can easily see the display or the like on which the observation target is displayed during the operation.
  • the right side illumination light from the right side illumination light source 16R is transmitted through the right side illumination optical system 17R, the second right side deflection element 23R, the first right side deflection element 22R, and the objective lens 11 to illuminate the eye.
  • the left side illumination light from the left side illumination light source 16L is transmitted through the left side illumination optical system 17L, the second left side deflection element 23L, the first left side deflection element 22L, and the objective lens 11 to illuminate the eye. Therefore, the surgical microscope 100A1 of the first embodiment can be made thin and flare can be reduced.
  • the optical axis 15RI of the right side observation light and the optical axis 15LI of the left side observation light are moved by the movement of the first right side deflection element 22R and the first left side deflection element 22L.
  • the solid angle formed at the position is continuously increased or decreased by a predetermined angle.
  • the surgical microscope 100A1 has a first body angle, a second body angle, and a second body angle which are different from each other in the body angle during the operation (during operation (in use) of the surgery microscope 100A1).
  • At least one of the first right-side deflecting element 22R and the first left-side deflecting element 22L is made to correspond to the first right-side deflecting element moving unit 68R and the first left-side deflecting element so as to continuously change to the substantial angle of 3. It is continuously moved by at least one of the moving parts 68L. Therefore, it is possible to increase or decrease the stereoscopic effect of the user 150 viewing the right-eye image and the left-eye image displayed on the display device 100AD by each of the right-side observation light and the left-side observation light.
  • the first right-side deflection element moving unit 68R of the present embodiment includes the first right-side deflection element 22R in the optical path between the object and the right-side observation optical system (right-side variable magnification optical system 13R and right-side imaging optical system 14R). Or the first left-side deflection element moving unit 68L moves the first left-side deflection element 22L in the optical path between the object and the left-side observation optical system (the left-side variable magnification optical system 13L and the left-side imaging optical system 14L). To move.
  • the first right-side deflection element moving unit 68R or the first left-side deflection element moving unit 68L includes an optical path between the objective lens 11 and the observation optical system (right-side observation optical system, left-side observation optical system), an object and the objective lens. 11 or an optical path of observation light (right-side observation light, left-side observation light) through the first right-side deflection element 22R or the first left-side deflection element 22L in the parallax direction (eg, the direction in which the user wants to make parallax, the eye, It is moved in a predetermined direction corresponding to the width direction).
  • the user 150 can continuously adjust the stereoscopic effect while visually observing an image (eg, parallax image) during surgery.
  • an image eg, parallax image
  • the stereoscopic effect becomes excessive, and conversely There may be a shortage. This is because stereoscopic vision due to convergence is affected not only by the distance between the axes of the left and right observation optical paths of the microscope, image magnification and depth of field, but also by the size of the monitor, the viewing distance of the monitor, individual differences in stereoscopic vision, etc. This is because it will change.
  • the required amount of protrusion of the solid is finely adjusted depending on the size of the 3D monitor, the viewing distance of the monitor, the individual difference in stereoscopic vision, the surgical scene, and the like. Is required.
  • the user 150 selectively operates the three-dimensional effect increasing switch 64 and the three-dimensional effect decreasing switch 66 during surgery to change the above-mentioned body angle continuously (or stepwise). It is possible to optimally adjust the stereoscopic effect of the displayed image. In this way, the user 150 can individually and easily adjust the stereoscopic effect according to the environment, the scene of surgery, and the like.
  • the body angle described above changes smoothly due to the deflection element, the moving unit, or the like, including a smooth change or a stepwise change.
  • the position of the pupil of each observation optical system is set between the first right deflection element 22R and the second right deflection element 23R and between the first left deflection element 22L and the second left deflection element 23L. Place each in between.
  • the respective lights of the first right-side deflection element 22R and the first left-side deflection element 22L are The reflective area (effective diameter) can be made relatively small. Therefore, the sizes of the first right-side deflection element 22R and the first left-side deflection element 22L can be made as small as possible.
  • the first right-side deflection element 22R and the first right-side deflection element 22R are arranged to reduce the stereoscopic effect. It is possible to prevent the first right deflection element 22R and the first left deflection element 22L from interfering with each other when the left deflection element 22L is brought close to each other.
  • the right-side variable magnification optical system 13R and the left-side variable magnification optical system 13L may be moved so that the stereoscopic angle changes.
  • the surgical microscope in the present embodiment adjusts the stereoscopic effect by using the first right-side deflection element 22R and the first left-side deflection element 22L
  • the stereoscopic effect is the first right-side deflection element 22R and the first left-side deflection element. It depends on the axial distance from the element 22L.
  • the first right-side deflection element 22R and the first left-side deflection element 22L make the effective diameter for reflecting light smaller than the lens diameter of the observation optical system (for example, the left and right variable magnification optical systems 13R and 13L).
  • the inter-axis distance between the first right-side deflection element 22R and the first left-side deflection element 22L is determined by the position where the optical axis 15RI of the right-side observation light is first deflected in the first right-side deflection element 22R and the first left-side deflection element 22L. It includes the distance in the parallax direction (eg, the X direction when viewed in the Y direction) from the position where the optical axis 15LI of the left-side observation light is first deflected.
  • the axial distance between the first right-side deflection element 22R and the first left-side deflection element 22L is the center of the effective diameter on which the right-side observation light is incident on the first right-side deflection element 22R and the left-side observation on the first left-side deflection element 22L. It includes the distance in the parallax direction (eg, the X direction when viewed in the Y direction) from the center of the effective diameter on which light is incident.
  • the above-mentioned inter-axis distance has a deflection surface (eg, a reflection surface) on which the right observation light is deflected by the first right deflection element 22R.
  • a deflection surface eg, a reflection surface
  • the parallax direction for example, the X direction when viewed in the Y direction
  • the optical axis of the right side observation light and the optical axis of the left side observation light on the deflection surface on which the left side observation light is deflected by the first left deflection element 22L including.
  • FIG. 10 shows a top view of the surgical microscope 100B1 according to the second embodiment.
  • FIG. 11 shows a sectional view of the surgical microscope 100B1.
  • the configuration of the surgical microscope 100B1 according to the second embodiment is substantially the same as that of the surgical microscope 100A1 according to the first embodiment (FIGS. 2A and 2B), so mainly different portions will be described.
  • the surgical microscope 100B1 includes a right-side variable magnification optical system 13R, a right-side imaging optical system 14R, and a right-side imaging element 15R, a left-side variable magnification optical system 13L, a left-side imaging optical system 14L, and a left-side imaging element 15L. I have it.
  • the surgical microscope 100B1 includes a right side illumination light source 16R, a right side illumination optical system 17R, a left side illumination light source 16L, and a left side illumination optical system 17L. Note that these elements (13R to 17L) are omitted in FIGS. 10 and 11.
  • the surgical microscope 100B1 has the following elements in place of the first right-side deflection element 22R, the second right-side deflection element 23R, the first left-side deflection element 22L, and the second left-side deflection element 23L. That is, the surgical microscope 100B1 includes the first right-side deflection element 122R, the second right-side deflection element 123R, the third right-side deflection element 124R, the first left-side deflection element 122L, the second left-side deflection element 123L, and the third left-side deflection. And an element 124L.
  • the first right-side deflection element 122R, the second right-side deflection element 123R, and the third right-side deflection element 124R, the first left-side deflection element 122L, the second left-side deflection element 123L, and the third left-side deflection element 124L are disclosed in this disclosure. It is an example of a "deflection element" of the technology.
  • the first right-side deflection element 122R, the second right-side deflection element 123R, and the third right-side deflection element 124R are examples of the “first plurality of deflection elements” in the technology of the present disclosure
  • the first left-side deflection element 122L and the The second left-side deflection element 123L and the third left-side deflection element 124L are examples of the “second plurality of deflection elements” in the technology of the present disclosure
  • the third right-side deflection element 124R and the third left-side deflection element 124L are examples of the “transmissive reflection element” in the technology of the present disclosure.
  • the right diaphragm 12R is disposed, for example, between the second right deflecting element 123R and the third right deflecting element 124R, and the left diaphragm 12L is, for example, the second diaphragm. It is arranged between the left side deflection element 123L and the third left side deflection element 124L.
  • the right side illumination light from the right side illumination light source 16R is shaped by the right side illumination optical system 17R, transmitted through the third right side deflection element 124R, reflected by the second right side deflection element 123R and the first right side deflection element 122R, and the objective lens 11 To illuminate the eye.
  • the left side illumination light from the left side illumination light source 16L is shaped by the left side illumination optical system 17L, passes through the third left side deflection element 124L, is reflected by the second left side deflection element 123L and the first left side deflection element 122L, and the objective lens 11 To illuminate the eye.
  • the first right deflection element 122R reflects the right observation light from the objective lens 11 in the Y (positive) direction
  • the second right deflection element 123R converts the right observation light reflected by the first right deflection element 122R into X ( Reflect in the positive direction.
  • the third right-side deflection element 124R reflects the right-side observation light reflected by the second right-side deflection element 123R in the Y (positive) direction.
  • the right side observation light reflected by the third right side deflection element 124R reaches the right side variable magnification optical system 13R.
  • the first left side deflection element 122L reflects the left side observation light from the objective lens 11 in the Y (positive) direction
  • the second left side deflection element 123L converts the left side observation light reflected by the first left side deflection element 122L into X ( Reflect in the negative direction.
  • the third left-side deflection element 124L reflects the left-side observation light reflected by the second left-side deflection element 123L in the Y (positive) direction.
  • the left-side observation light reflected by the third left-side deflecting element 124L reaches the left-side variable magnification optical system 13L.
  • the first right-side deflection element 122R, the second right-side deflection element 123R, the first left-side deflection element 122L, and the second left-side deflection element 123L are, for example, a reflection mirror, a half mirror, or a prism mirror that reflects received light. Is used.
  • the third right-side deflection element 124R and the third left-side deflection element 124L for example, a half mirror, a beam splitter, a dichroic mirror or the like is used.
  • FIG. 12 shows a state (top view) of the surgical microscope 100B1 when the first right deflection element 122R and the second right deflection element 123R and the first left deflection element 122L and the second left deflection element 123L move.
  • FIG. 13 a state of the surgical microscope 100B1 when the first right deflection element 122R and the second right deflection element 123R and the first left deflection element 122L and the second left deflection element 123L move (cross section). Figure) is shown.
  • the first right-side deflection element 122R, the second right-side deflection element 123R, and the right-side diaphragm 12R are arranged in each moving part.
  • Each moving unit corresponds the parallax direction to the first right-side deflection element 122R, the second right-side deflection element 123R, and the right-side diaphragm 12R through each moving unit by each moving mechanism (for example, rack and pinion). It is moved in a predetermined direction (for example, the X direction with respect to the optical axis 110 of the objective lens 11).
  • the first left-side deflection element 122L, the second left-side deflection element 123L, and the left-side diaphragm 12L are arranged in each moving part.
  • Each moving unit corresponds the parallax direction of the first left-side deflecting element 122L, the second left-side deflecting element 123L, and the left-side diaphragm 12L via each moving unit by each moving mechanism (for example, rack and pinion). It is moved in a predetermined direction (for example, the X direction with respect to the optical axis 110 of the objective lens 11).
  • the moving parts (68R, 68L) are omitted in the second embodiment.
  • the right diaphragm moving unit 69R and the left diaphragm moving unit 69L move the right diaphragm 12R and the left diaphragm 12L, respectively.
  • the moving parts of the first right-side deflection element 122R and the second right-side deflection element 123R and the first left-side deflection element 122L and the second left-side deflection element 123L are examples of the “moving part” of the technology of the present disclosure.
  • the second embodiment also has the same effect as the first embodiment.
  • the microscope is relatively downsized by deflecting the illumination light and the observation light by the deflecting element a plurality of times in the horizontal direction on the objective lens, it is possible to arrange a monitor in front of the user. it can.
  • the illumination light and the right-side observation light move along the XY plane in the optical path in the range of the right-side illumination light source 16R, the first right-side deflection element 122R, and the right-side variable magnification optical system 13R.
  • the surgical microscope 100B1 can be made relatively thin.
  • the configuration of 100C1 of the third embodiment is substantially the same as that of the surgical microscope 100B1 of the second embodiment, so mainly different portions will be described.
  • FIG. 14 shows a top view of the 100C1 of the third embodiment
  • FIG. 15 shows a cross-sectional view of the 100C1 of the third embodiment.
  • a first right side deflection element 122R is integrated with the first left-side deflection element 122L to form a common first right-side deflection element 122RL.
  • the first right-side and left-side deflection elements 122RL pass through the objective lens 11 among the above-mentioned plurality of deflection elements (first plurality of deflection elements and second plurality of deflection elements).
  • the deflecting element first reflects and deflects the observation light (right-side observation light, left-side observation light). That is, the first right-side deflection element 122R, the first right-side deflection element 122R, the second right-side deflection element 123R, and the third right-side deflection element 124R that first reflect the right-side observation light that has passed through the objective lens 11; Among the left-side deflection element 122L, the second left-side deflection element 123L, and the third left-side deflection element 124L, there are a first left-side deflection element 122L and a first left-side deflection element 122L that first reflect the left-side observation light that has passed through the objective lens 11.
  • a common first right and left deflection element 122RL In this case, as will be described later, the right side observation light reflected by the common first right and left deflecting element 122RL is first arranged between the common first right and left deflecting element 122RL and the right variable power optical system 13R.
  • the second right-side deflecting element 123R that reflects and deflects the light to the left, the common first right-side and left-side deflecting element 122RL, and the left-side variable-magnification optical system 13L are arranged and are reflected by the common first right-side and left-side deflecting element 122RL.
  • the second left-side deflection element 123L that first reflects and deflects the left-side observation light is moved by each moving unit.
  • the first right and left deflection elements 122RL are examples of the “common deflection element” in the technique of the present disclosure.
  • the second right-side deflection element 123R is an example of the “deflection element that first reflects the right-side observation light” in the technology of the present disclosure, and the second left-side deflection element 123 is the “left-side observation light first in the technology of the present disclosure”. It is an example of a “deflecting deflecting element”.
  • FIG. 16 is a microscope for operation when the second right-side deflection element 123R and the second left-side deflection element 123L move in a direction intersecting the optical axis 110 of the objective lens 11 (eg, orthogonal direction, X direction, etc.).
  • a state (cross-sectional view) of 100C1 is shown, and in FIG. 17, the second right-side deflection element 23R and the second left-side deflection element 23L of the surgical microscope 100C1 when moving with respect to the optical axis 110 of the objective lens 11 are shown.
  • the situation cross-sectional view
  • the moving part (68R) of the second right side deflection element 123R includes the second right side deflection that first reflects the right side observation light reflected by the common first right side and left side deflection element 122RL.
  • the element 123R, and the moving part (68L) of the second left-side deflection element 123L includes a second left-side deflection element 123L that first reflects the left-side observation light reflected by the common first right-side and left-side deflection element 122RL,
  • the objective lens 11 is moved in the parallax direction with respect to the optical axis 110 via each moving mechanism.
  • the moving parts (68R, 68L) are omitted in the third embodiment.
  • the right diaphragm moving unit 69R and the left diaphragm moving unit 69L move the right diaphragm 12R and the left diaphragm 12L, respectively.
  • the moving parts of the second right-side deflection element 123R and the second left-side deflection element 123L are examples of the “moving part” in the technology of the present disclosure.
  • the third embodiment also has the same effect as that of the first embodiment.
  • the microscope is relatively downsized by deflecting the illumination light and the observation light by the deflecting element a plurality of times in the horizontal direction on the objective lens, it is possible to arrange a monitor in front of the user. it can.
  • the illumination light and the right observation light move along the XY plane in the optical path in the range of the right illumination light source 16R, the first right eye and left deflection element 122RL, and the right variable magnification optical system 13R. ..
  • the illumination light and the left observation light move along the XY plane in the optical path in the range of the left illumination light source 16L, the first right eye and left deflection element 122RL, and the left variable magnification optical system 13L.
  • the thickness of the surgical microscope 100B1 in the direction orthogonal to the XY plane can be made relatively thin.
  • the configuration of the surgical microscope 100A2 of the fourth embodiment is substantially the same as the configuration of the surgical microscope 100A1 of the first embodiment, so mainly different portions will be described.
  • FIG. 18 shows a cross-sectional view of the surgical microscope 100A2 according to the fourth embodiment.
  • the surface of the eye is illuminated, and the right side observation light and the left side observation light from the eye surface are respectively captured by the right side imaging element 15R and the left side imaging element 15L. Image on.
  • the surgical microscope 100A2 includes the front lens 132 that is manually or automatically arranged in the immediate vicinity of the eye.
  • the front lens 132 includes a non-contact type and a contact type that is directly placed on the eye.
  • the front lens 132 may be a convex lens or a concave lens.
  • the convex lens front lens 132 will be described below as an example.
  • the right side illumination light and the left side illumination light exceed the focal point (object plane), become substantially parallel light by the front lens 132, and form an image on the fundus by the eye 130.
  • the right side observation light and the left side observation light from the fundus of the eye 130 reach the first right side deflection element 22R and the first left side deflection element 22L via the front lens 132.
  • the right side observation light and the left side observation light from the fundus of the eye 130 reach the first right side deflection element 22R and the first left side deflection element 22L via the front lens 132.
  • the fourth embodiment has the same effect as that of the first embodiment, but further the front lens 132 allows observation of a wide range of the fundus.
  • the front lens 132 is provided, the right side illumination light and the left side illumination light exceed the focal point (object plane), become parallel light by the front lens 132, and form an image on the fundus by the eye 130. .. Therefore, the surgical microscope 100A2 of the fourth embodiment is long in the Z direction, but is thin, so the thin effect is more significant in the fourth embodiment.
  • the surgical microscopes 100B1 and 100C1 may also be provided with the front lens 132 as in the surgical microscope 100A2 of the fourth embodiment.
  • the configuration of the surgical microscope 100A3 of the fifth embodiment is substantially the same as that of the surgical microscope 100A2 of the fourth embodiment, so mainly different portions will be described.
  • FIG. 19 shows a sectional view of the surgical microscope 100A3 of the fifth embodiment.
  • the surgical microscope 100A3 includes a fiber 140 that illuminates the inside of the eye.
  • the fifth embodiment has the same effects as the fourth embodiment, but further has the effect that the fiber 140 can directly illuminate the inside of the eye in addition to transillumination and oblique illumination.
  • the fiber 140 is provided similarly to the surgical microscope 100A3 of the fifth embodiment. It may be provided.
  • the configuration of the surgical microscope 100A4 of the sixth embodiment is substantially the same as the configuration of the surgical microscope 100A1 of the first embodiment, so mainly different portions will be described.
  • FIG. 20 shows a sectional view of the surgical microscope 100A4 of the sixth embodiment.
  • the right side illumination light from the right side illumination light source 16R passes through the second right side deflection element 23R, the first right side deflection element 22R, and the objective lens 11. Reach the eye.
  • the left side illumination light from the left side illumination light source 16L reaches the eye via the second left side deflection element 23L, the first left side deflection element 22L, and the objective lens 11.
  • the right side illumination light from the right side illumination light source 16R and the left side illumination light from the left side illumination light source 16L are the right side and left side illumination light sources.
  • the light is reflected by a beam splitter 125 provided between the objective lens 11 and the eye via the optical system 17, and reaches the eye.
  • the configuration of the surgical microscope 100A5 of the seventh embodiment is substantially the same as that of the surgical microscope 100A1 of the first embodiment, so mainly different portions will be described.
  • FIG. 21 shows a surgical microscope 100A5 according to the seventh embodiment.
  • the first right-side deflection element 22R of the surgical microscope 100A5 reflects and deflects the right-side observation light from the eye through the objective lens 11 in the X (positive) direction.
  • the second right-side deflection element 23R1 reflects and deflects the right-side observation light reflected by the first right-side deflection element 22R so as to have respective components in the Z (positive) direction and the X (positive or negative) direction, It is incident on the right-side variable power optical system 13R.
  • the first left-side deflection element 22L of the surgical microscope 100A5 reflects and deflects the left-side observation light from the eye via the objective lens 11 in the X (negative) direction.
  • the second left-side deflection element 23L1 reflects and deflects the left-side observation light reflected by the first left-side deflection element 22L so as to have respective components in the Z (positive) direction and the X (positive or negative) direction, It is incident on the left-side variable power optical system 13L.
  • the second right-side deflection element 23R1 reflects the right-side observation light so as to have respective components in the Z (positive) direction and the X (positive or negative) direction
  • the second left-side deflection element 23L1 observes the left side.
  • Light is reflected such that it has components in the Z (positive) direction and the X (positive or negative) direction. Therefore, the surgical microscope 100A5 can be thinned by the amount of each component in the X (positive or negative) direction.
  • the first right-side deflection element 22R may reflect the right-side observation light from the eye through the objective lens 11 so as to have respective components in the X (positive) direction and the Z (negative) direction.
  • the first left-side deflection element 22L may reflect left-side observation light from the eye through the objective lens 11 so as to have respective components in the X (positive) direction and the Z (negative) direction.
  • the first right-side deflection element 22R reflects the right-side observation light
  • the first left-side deflection element 22L reflects the left-side observation light so as to have a component in the Z (negative) direction. ) Direction component, the thickness can be reduced.
  • the configuration of the surgical microscope 100A6 according to the eighth embodiment is substantially the same as that of the surgical microscope 100A1 according to the first embodiment, and therefore mainly different portions will be described.
  • FIG. 22 shows a top view of the surgical microscope 100A6 according to the eighth embodiment.
  • a surgical microscope 100A6 is provided with right-side elements (22R to 13R) and is movable on a right-side movable substrate 160R that is two-dimensionally movable in the XY plane, and left-side elements (22L to 13L). And a left-side moving substrate 160L that is movable in two dimensions of the XY plane.
  • an X (positive) direction moving switch instead of the stereoscopic effect increasing switch 64 and the stereoscopic effect decreasing switch 66, an X (positive) direction moving switch, an X (negative) direction moving switch, a Y (positive) direction moving switch, and a Y ( It has a four-way switch, which is a (negative) direction movement switch.
  • the right moving board moving unit moves the right moving board 160R two-dimensionally in the XY plane by a moving mechanism (for example, a rack and pinion) according to an operation of any of the four-direction switches.
  • the left-side moving board moving unit moves the left-side moving board 160L in two dimensions on the XY plane by a moving mechanism (for example, rack and pinion).
  • the display device 100AD is arranged on the surgical microscope main body 100AH (see FIG. 1).
  • the technology of the present disclosure is not limited to this.
  • the display device 100AD has an image 100AD1 in an area outside the first visual field area for the surgical microscope main body 100AH with the user 150 visually recognizing the surgical microscope from the front side. Is displayed. For example, in a state in which the user 150 is viewing from the front side of the surgical microscope, the surgical microscope body 100AH is arranged at a position that does not overlap the first visual field region.
  • the surgical microscope main body 100AH has a second visual field region for the image 100AD2 displayed by the display device 100AD in a state where the user 150 is viewing the front side of the surgical microscope. It is placed in an area outside Further, the surgical microscope according to the present embodiment may be configured to receive fluorescence, phosphorescence, or infrared light generated from an object as observation light depending on the application.
  • control processing is realized by a software configuration using a computer
  • the technology of the present disclosure is not limited to this.
  • the control process may be executed only by a hardware configuration such as FPGA or ASIC.
  • the control processing may be executed by a combination of software configuration and hardware configuration.

Abstract

The present invention provides a microscope that is thinner than a microscope made by conventional techniques. The microscope is provided with an objective optical system, a variable-power optical system, and a plurality of deflection elements provided between the objective optical system and the variable-power optical system and reflecting the observation light emitted from an object and transmitted through the objective optical system in directions each intersecting with the optical axis of the objective optical system.

Description

顕微鏡microscope
 本開示の技術は、顕微鏡に関する。 The technology of the present disclosure relates to a microscope.
 手術において、ユーザが観察対象(例、患部)を拡大して視認できるように、該観察対象をディスプレイに表示させる手術顕微鏡が知られている。例えば、特許文献1の手術用顕微鏡では、観察光学系がユーザの右眼用の観察光路と左眼用の観察光路とを備え、ユーザは、それら観察光路を通じて観察対象(この場合、患者の眼)を立体視できる。 In surgery, there is known a surgical microscope that displays an observation target (eg, an affected part) on a display so that the user can magnify and visually observe the observation target (eg, affected part). For example, in the surgical microscope of Patent Document 1, the observation optical system includes an observation optical path for the right eye and an observation optical path for the left eye of the user, and the user observes through the observation optical paths (in this case, the eyes of the patient). ) Can be viewed stereoscopically.
 このような、手術顕微鏡では、ユーザが術中において観察対象が表示されたディスプレイ等を見やすいように、ユーザの視界を遮らないことが求められている。特に、眼科手術においては、ユーザが座位状態で手術を行うことが多いため、座位状態においてユーザの視界を遮らない手術顕微鏡が求められる。 In such a surgical microscope, it is required that the user's field of view is not obstructed so that the user can easily see the display on which the observation target is displayed during the operation. In particular, in ophthalmic surgery, since a user often performs surgery in a sitting position, a surgical microscope that does not block the user's view in the sitting position is required.
特開2018-18039号公報JP, 2018-18039, A
 本開示の技術の第1の態様の顕微鏡は、対物光学系と、変倍光学系と、前記対物光学系と前記変倍光学系との間に設けられ、対象物から生じて且つ前記対物光学系を透過した観察光を、前記対物光学系の光軸の方向に対して各々交差する方向に反射するように配置された複数の偏向素子と、を備える。 A microscope according to a first aspect of the technique of the present disclosure is provided between an objective optical system, a variable power optical system, and the objective optical system and the variable power optical system, and is generated from an object and the objective optical system. A plurality of deflecting elements arranged so as to reflect the observation light transmitted through the system in directions intersecting with the direction of the optical axis of the objective optical system.
 本開示の技術の第2の態様の顕微鏡は、単一の対物光学系と、変倍光学系と、前記対物光学系と前記変倍光学系との間に設けられ、対象物から生じて且つ前記対物光学系を透過した観察光を反射するように配置された複数の偏向素子と、を備える。 A microscope according to a second aspect of the technology of the present disclosure is provided with a single objective optical system, a variable power optical system, and between the objective optical system and the variable power optical system, and is generated from an object and A plurality of deflection elements arranged to reflect the observation light transmitted through the objective optical system.
 本開示の技術の第3の態様の顕微鏡は、対物光学系と、対象物から生じて且つ前記対物光学系を透過した観察光を、前記対物光学系の光軸に対して交差する方向を含む平面に沿って、少なくとも2回反射する複数の偏向素子と、を備える。 A microscope according to a third aspect of the technique of the present disclosure includes an objective optical system, and a direction in which observation light generated from an object and transmitted through the objective optical system intersects the optical axis of the objective optical system. A plurality of deflection elements that reflect at least twice along a plane.
第1の実施の形態の手術用顕微鏡100A1の一例を示す図である。It is a figure which shows an example of the surgical microscope 100A1 of 1st Embodiment. 本実施形態における手術用顕微鏡100A1の上面図の一例を示す図である。It is a figure which shows an example of the top view of the surgical microscope 100A1 in this embodiment. 本実施形態における手術用顕微鏡100A1の断面図の一例を示す図である。It is a figure which shows an example of the cross section of the microscope for operation 100A1 in this embodiment. 本実施形態における右側変倍光学系13Rの構成の一例を示す図である。It is a figure which shows an example of a structure of the right variable magnification optical system 13R in this embodiment. 本実施形態における右側変倍光学系13Rの具体的な構成の一例を示す図である。It is a figure which shows an example of a concrete structure of the right side variable magnification optical system 13R in this embodiment. 本実施形態における手術用顕微鏡100A1のブロック図の一例を示す図である。It is a figure which shows an example of the block diagram of the surgical microscope 100A1 in this embodiment. 本実施形態における立体感増加調整プログラムに従ってCPU52(図5参照)が実行する立体感増加調整処理のフローチャートの一例を示す図である。It is a figure which shows an example of the flowchart of the stereoscopic effect increase adjustment process which CPU52 (refer FIG. 5) performs according to the stereoscopic effect increase adjustment program in this embodiment. 本実施形態における立体感減少調整プログラムに従ってCPU52(図5参照)が実行する立体感減少調整処理のフローチャートの一例を示す図である。It is a figure which shows an example of the flowchart of the stereoscopic effect reduction adjustment process which CPU52 (refer FIG. 5) performs according to the stereoscopic effect reduction adjustment program in this embodiment. 本実施形態における左右の各絞りの絞り径についてズーム倍率ごとに予め定められた最大径を示すグラフである。7 is a graph showing a maximum diameter that is predetermined for each zoom magnification with respect to the diaphragm diameters of the left and right diaphragms in the present embodiment. 本実施形態における絞り径調整プログラムに従ってCPU52(図5参照)が実行する、観察光学系の倍率に基づいて左右の絞り径を調整する絞り径調整処理のフローチャートの一例を示す図である。It is a figure which shows an example of the flowchart of the diaphragm diameter adjustment process which adjusts the diaphragm diameter on either side based on the magnification of an observation optical system which CPU52 (refer FIG. 5) performs according to the diaphragm diameter adjustment program in this embodiment. 本実施形態における第1右側偏向素子22R及び第1左側偏向素子22Lを、対物レンズ11の光軸110から離れる方向に移動させる時の手術用顕微鏡100A1の様子(上面図)の一例を示す図である。FIG. 6 is a diagram showing an example of a state (top view) of the surgical microscope 100A1 when moving the first right-side deflection element 22R and the first left-side deflection element 22L in the present embodiment in a direction away from the optical axis 110 of the objective lens 11. is there. 本実施形態における第1右側偏向素子22R及び第1左側偏向素子22Lを、対物レンズ11の光軸110に対して離れる方向に移動させる時の手術用顕微鏡100A1の様子(断面図)の一例を示す図である。An example of a state (cross-sectional view) of the surgical microscope 100A1 when moving the first right-side deflection element 22R and the first left-side deflection element 22L in the present embodiment in a direction away from the optical axis 110 of the objective lens 11 is shown. It is a figure. 第2の実施の形態の手術用顕微鏡100B1の上面図の一例を示す図である。It is a figure which shows an example of the top view of the surgical microscope 100B1 of 2nd Embodiment. 本実施形態における手術用顕微鏡100B1の断面図の一例を示す図である。It is a figure which shows an example of the cross section of the microscope for operation 100B1 in this embodiment. 本実施形態における第1右側偏向素子122R及び第2右側偏向素子123Rと、第1左側偏向素子122L及び第2左側偏向素子123Lとが移動する時の手術用顕微鏡100B1の様子(上面図)の一例を示す図である。An example (top view) of the operation microscope 100B1 when the first right deflection element 122R and the second right deflection element 123R and the first left deflection element 122L and the second left deflection element 123L in the present embodiment move FIG. 本実施形態における第1右側偏向素子122R及び第2右側偏向素子123Rと、第1左側偏向素子122L及び第2左側偏向素子123Lとが移動する時の手術用顕微鏡100B1の様子(断面図)の一例を示す図である。An example of a state (cross-sectional view) of the surgical microscope 100B1 when the first right-side deflection element 122R and the second right-side deflection element 123R and the first left-side deflection element 122L and the second left-side deflection element 123L in the present embodiment move FIG. 第3の実施の形態の100C1の上面図の一例を示す図である。It is a figure which shows an example of the top view of 100C1 of 3rd Embodiment. 第3の実施の形態の100C1の断面図の一例を示す図である。It is a figure showing an example of a sectional view of 100C1 of a 3rd embodiment. 本実施形態における第2右側偏向素子123R及び第2左側偏向素子123Lが、対物レンズ11の光軸110に対して移動する時の手術用顕微鏡100C1の様子(断面図)の一例を示す図である。It is a figure which shows an example of a mode (cross section) of the surgical microscope 100C1 when the 2nd right side deflection element 123R and the 2nd left side deflection element 123L in this embodiment move with respect to the optical axis 110 of the objective lens 11. .. 本実施形態における第2右側偏向素子123R及び第2左側偏向素子123Lが、対物レンズ11の光軸110に対して移動する時の手術用顕微鏡100C1の様子(断面図)の一例を示す図である。It is a figure which shows an example of a mode (cross section) of the surgical microscope 100C1 when the 2nd right side deflection element 123R and the 2nd left side deflection element 123L in this embodiment move with respect to the optical axis 110 of the objective lens 11. .. 第4の実施の形態の手術用顕微鏡100A2の断面図の一例を示す図である。It is a figure which shows an example of the cross section of 100 G of surgical microscopes of 4th Embodiment. 第5の実施の形態の手術用顕微鏡100A3の断面図の一例を示す図である。It is a figure which shows an example of the cross section of 100 G of surgical microscopes of 5th Embodiment. 第6の実施の形態の手術用顕微鏡100A4の断面図の一例を示す図である。It is a figure which shows an example of the cross section of the microscope for operation 100A4 of 6th Embodiment. 第7の実施の形態の手術用顕微鏡100A5の一例を示す図である。It is a figure which shows an example of the surgical microscope 100A5 of 7th Embodiment. 第8の実施の形態の手術用顕微鏡100A6の上面図の一例を示す図である。It is a figure which shows an example of the top view of the surgical microscope 100A6 of 8th Embodiment. 本実施形態における右側絞り12R及び左側絞り12Lが瞳の位置に配置されている様子の一例を示す図である。It is a figure which shows an example of a mode that the right diaphragm 12R and the left diaphragm 12L in this embodiment are arrange | positioned at the position of the pupil. 本実施形態における右側絞り12Rを省略し、第1右側偏向素子22Rと第2右側偏向素子23Rの各々の光を反射する領域(有効径)を調整することにより、右側観察光の光束の有効面積を制限する様子の一例を示す図である。By omitting the right diaphragm 12R in the present embodiment and adjusting the light reflecting regions (effective diameters) of the first right deflecting element 22R and the second right deflecting element 23R, the effective area of the light flux of the right observing light is adjusted. It is a figure which shows an example of a mode that restrict | limits. 本実施形態における表示装置100ADと手術用顕微鏡本体100AHとの第1の関係の一例を示す図である。It is a figure which shows an example of the 1st relationship of the display apparatus 100AD and the microscope body 100AH for surgery in this embodiment. 本実施形態における表示装置100ADと手術用顕微鏡本体100AHとの第2の関係の一例を示す図である。It is a figure which shows an example of the 2nd relationship between the display apparatus 100AD and the microscope body 100AH for surgery in this embodiment.
 以下、図面を参照して本開示の技術の実施の形態を説明する。
 先ず、本実施形態において以下の説明で使用される用語の意味について説明する。
 また、以下の説明において、CPUとは、“Central Processing Unit”の略称を指す。また、以下の説明において、RAMとは、“Random Access Memory”の略称を指す。また、以下の説明において、ROMとは、“Read Only Memory”の略称を指す。
 また、以下の説明において、ASICとは、“Application Specific Integrated Circuit”の略称を指す。また、以下の説明において、FPGAとは、“Field-Programmable Gate Array”の略称を指す。また、以下の説明において、SSDとは、“Solid State Drive”の略称を指す。また、以下の説明において、DVD-ROMとは、“Digital Versatile Disc Read Only Memory”の略称を指す。また、以下の説明において、USBとは、“Universal Serial Bus”の略称を指す。
Hereinafter, embodiments of the technology of the present disclosure will be described with reference to the drawings.
First, the meaning of terms used in the following description in the present embodiment will be described.
Further, in the following description, the CPU is an abbreviation of “Central Processing Unit”. In the following description, RAM is an abbreviation for “Random Access Memory”. Further, in the following description, the ROM is an abbreviation for “Read Only Memory”.
Further, in the following description, ASIC is an abbreviation for “Application Specific Integrated Circuit”. In the following description, FPGA is an abbreviation for “Field-Programmable Gate Array”. In the following description, SSD means an abbreviation of “Solid State Drive”. Further, in the following description, the DVD-ROM is an abbreviation for “Digital Versatile Disc Read Only Memory”. In the following description, USB is an abbreviation for "Universal Serial Bus".
 また、以下の説明において、「直角」とは、水平線と鉛直線とが交差して得られる角を含む。なお、以下の説明において、「直角」と記載されている角は、必ずしも直角でなくてもよく、許容される誤差内であれば、ずれていてもよい。 Also, in the following description, “right angle” includes a corner obtained by intersecting a horizontal line and a vertical line. In the following description, the angle described as “right angle” does not necessarily have to be a right angle and may be displaced as long as it is within an allowable error.
[第1の実施の形態] [First Embodiment]
 図1には、ユーザ(例えば、眼科医師)150の前に配置された手術用顕微鏡100A1が示されている。図1に示すように、手術用顕微鏡100A1は、手術用顕微鏡本体100AHと、手術用顕微鏡本体100AHの上に直接的又は間接的に配置され、後述する右側観察光及び左側観察光により得られる各画像を表示する表示装置100ADと、を備えている。本実施形態の手術用顕微鏡100A1は、対象物(観察対象)から生じる観察光(例、可視光)に含まれる右側観察光及び左側観察光により、対象物の一例である手術対象の眼(例えば、右眼)の視差のある立体視の画像(観察画像、術野画像、表示画像、視差画像)が得られる。
 ここで、「右側」は、ユーザ150から手術用顕微鏡100A1を見て右側(例、X軸の正の向き)であり、また、視差画像を生成するための2つの画像を生成するための2つの観察光の一方が対物レンズ11(図2Aも参照)を透過して進む側である。また、「右側」は、視差画像を生成するための2つの画像を生成するために、2つの照明光(右側照明光、左側照明光)の一方が対象物に向かって進む側である。
 「左側」は、ユーザ150から手術用顕微鏡100A1を見て左側(例、X軸の負の向き)であり、また、視差画像を生成するための2つの画像を生成するための2つの観察光の他方が対物レンズ11(図2Aも参照)を透過して進む側である。また、「左側」は、視差画像を生成するための2つの画像を生成するために、2つの照明光(右側照明光、左側照明光)の他方が対象物に向かって進む側である。
 「右側観察光」は、視差画像を生成するための2つの画像の一方の画像を生成するための一方の観察光であり、「左側観察光」は、他方の画像を生成するための他方の観察光である。一方の画像は、ユーザの一方の眼用の画像であり、他方の画像は、ユーザの他方の眼用の画像である。例えば、一方の画像は、ユーザの右眼用の画像であり、他方の画像は、ユーザの左眼用の画像を含む。また、一方の画像は、ユーザの左眼用の画像であり、他方の画像は、ユーザの右眼用の画像であってもよい。
 また、「右側照明光」は、対象物を右側から照明するために、後述の右側照明光源16R及び右側照明光学系17Rから射出される照明光である。「左側照明光」は、対象物を左側から照明するために、後述の左側照明光源16L及び左側照明光学系17Lから射出される照明光である。
FIG. 1 shows a surgical microscope 100A1 placed in front of a user (eg, an ophthalmologist) 150. As shown in FIG. 1, the surgical microscope 100A1 is directly or indirectly arranged on the surgical microscope main body 100AH and the surgical microscope main body 100AH, and is obtained by right-side observation light and left-side observation light described below. And a display device 100AD for displaying an image. The surgical microscope 100A1 according to the present embodiment uses the right-side observation light and the left-side observation light included in the observation light (eg, visible light) generated from the object (observation target) to provide an eye (for example, an operation target) that is an example of the object. , Right eye) stereoscopic image (observation image, operative field image, display image, parallax image) having parallax.
Here, the “right side” is the right side (for example, the positive direction of the X axis) when the surgical microscope 100A1 is viewed from the user 150, and 2 for generating two images for generating a parallax image. One of the two observation lights is on the side of passing through the objective lens 11 (see also FIG. 2A). Further, the “right side” is a side on which one of the two illumination lights (the right illumination light and the left illumination light) travels toward the object in order to generate two images for generating a parallax image.
The “left side” is the left side (eg, the negative direction of the X axis) when the surgical microscope 100A1 is viewed from the user 150, and the two observation lights for generating two images for generating a parallax image. The other is the side that passes through the objective lens 11 (see also FIG. 2A) and proceeds. The “left side” is the side on which the other of the two illumination lights (right illumination light and left illumination light) travels toward the object in order to generate two images for generating the parallax image.
The “right side observation light” is one observation light for generating one of the two images for generating a parallax image, and the “left side observation light” is the other for generating the other image. It is observation light. One image is an image for one eye of the user, and the other image is an image for the other eye of the user. For example, one image is an image for the right eye of the user, and the other image includes an image for the left eye of the user. Further, one image may be an image for the left eye of the user, and the other image may be an image for the right eye of the user.
The “right side illumination light” is the illumination light emitted from the right side illumination light source 16R and the right side illumination optical system 17R, which will be described later, in order to illuminate the object from the right side. The “left side illumination light” is the illumination light emitted from the left side illumination light source 16L and the left side illumination optical system 17L, which will be described later, to illuminate the object from the left side.
 表示装置100ADとしては、液晶ディスプレイ又は有機ELディスプレイが挙げられる。表示装置100ADは、本開示の技術の「表示部」の一例である。 The display device 100AD may be a liquid crystal display or an organic EL display. The display device 100AD is an example of a “display unit” of the technology of the present disclosure.
 鉛直方向をZ方向、ユーザ150の中心と手術用顕微鏡本体100AHの中心と、を結ぶ方向でZ方向に直交する方向をY方向、ユーザ150を基準に手術用顕微鏡100A1の左右方向でZ方向に直交する方向をX方向とする。鉛直上方向をZの正の方向とし、鉛直下方向をZの負の方向とする。ユーザ150から手術用顕微鏡100A1に対する奥行き方向をYの正の方向とし、手前方向をYの負の方向とする。ユーザ150を基準に手術用顕微鏡100A1の右方向(例、右側の方向)をXの正の方向とし、左方向(例、左側の方向)をXの負の方向とする。なお、本実施形態において、鉛直方向(例、図2AのZ方向)に直交するX方向及びY方向を含む面を水平面とした場合、その水平面において鉛直方向と直交する方向を水平方向(例、水平面において鉛直方向と交差する方向、X方向及びY方向)とする。 The vertical direction is the Z direction, the direction connecting the center of the user 150 and the center of the surgical microscope main body 100AH and orthogonal to the Z direction is the Y direction, and the left and right direction of the surgical microscope 100A1 with respect to the user 150 is the Z direction. The direction orthogonal to each other is defined as the X direction. The vertically upward direction is the positive direction of Z, and the vertically downward direction is the negative direction of Z. The depth direction from the user 150 to the surgical microscope 100A1 is the positive Y direction, and the front direction is the negative Y direction. Based on the user 150, the right direction (eg, right direction) of the surgical microscope 100A1 is a positive direction of X, and the left direction (eg, left direction) is a negative direction of X. In the present embodiment, when a plane including an X direction and a Y direction orthogonal to a vertical direction (eg, Z direction in FIG. 2A) is a horizontal plane, a direction orthogonal to the vertical direction on the horizontal plane is a horizontal direction (eg, The direction that intersects the vertical direction on the horizontal plane, the X direction and the Y direction).
 図2Aには、手術用顕微鏡100A1の上面図が示され、図2Bには、手術用顕微鏡100A1の断面図が示されている。 2A shows a top view of the surgical microscope 100A1, and FIG. 2B shows a cross-sectional view of the surgical microscope 100A1.
 図2A及び図2Bに示すように、手術用顕微鏡100A1は、単一の対物レンズ11を備えている。対物レンズ11は、ただ1つの対物レンズにより構成されている。即ち、1つのみのレンズにより構成されている。なお、2枚以上のレンズを貼りあわせたレンズ(例、ダブレット)で単一の対物レンズ11を構成するようにしてもよい。本実施形態における対物レンズ11は、右側観察光及び左側観察光が入射する共通の対物レンズで構成される(いわゆるガリレオ型)が、2つ以上の対物レンズを備えるグリノー型で構成されてもよい。 対物レンズ11は、本開示の技術の「対物光学系」の一例である。 As shown in FIGS. 2A and 2B, the surgical microscope 100A1 includes a single objective lens 11. The objective lens 11 is composed of only one objective lens. That is, it is composed of only one lens. It should be noted that the single objective lens 11 may be composed of a lens (for example, a doublet) in which two or more lenses are bonded together. The objective lens 11 in the present embodiment is configured by a common objective lens on which the right side observation light and the left side observation light are incident (so-called Galileo type), but may be configured by a Greenough type including two or more objective lenses. .. The objective lens 11 is an example of the “objective optical system” of the technique of the present disclosure.
 手術用顕微鏡100A1は、右側変倍光学系13R、右側結像光学系14R、及び右側撮像素子15Rと、左側変倍光学系13L、左側結像光学系14L、及び左側撮像素子15Lと、を備えている。なお、右側変倍光学系13R、右側結像光学系14R、及び右側撮像素子15Rは、Y方向に移動可能な同一の右側変倍結像撮像用基板に配置されている。左側変倍光学系13L、左側結像光学系14L、及び左側撮像素子15Lは、Y方向に移動可能な同一の左側変倍結像撮像用基板に配置されている。
 手術用顕微鏡100A1は、対物レンズ11と右側変倍光学系13Rとの間に設けられ、対象物の一例である眼から生じて且つ対物レンズ11を透過して通過した右側観察光を、対物レンズ11の光軸110の方向に対して各々交差する方向に反射して偏向するように配置され第1右側偏向素子22R及び第2右側偏向素子23Rを備えている。このように、手術用顕微鏡100A1の第1右側偏向素子22R、第2右側偏向素子23R、右側変倍光学系13R、及び右側結像光学系14Rは、右側観察光が右側撮像素子15Rに入射する光路において、右側観察光の進行方向に沿って第1右側偏向素子22R、第2右側偏向素子23R、右側変倍光学系13R、及び右側結像光学系14Rの順に配置されている。また、手術用顕微鏡100A1は、対物レンズ11と左側変倍光学系13Lとの間に設けられ、対象物の一例である眼から生じて且つ対物レンズ11を透過して通過した左側観察光を、対物レンズ11の光軸110の方向に対して各々交差する方向に反射して偏向するように配置された第1左側偏向素子22L及び第2左側偏向素子23Lを備えている。このように、手術用顕微鏡100A1の第1左側偏向素子22L、第2左側偏向素子23L、左側変倍光学系13L、及び左側結像光学系14Lは、左側観察光が左側撮像素子15Lに入射する光路において、左側観察光の進行方向に沿って第1左側偏向素子22L、第2左側偏向素子23L、左側変倍光学系13L、及び左側結像光学系14Lの順に配置されている。
 第1右側偏向素子22Rは、X方向に移動可能な第1右側偏向素子用基板に配置されている。第1左側偏向素子22Lは、X方向に移動可能な第1左側偏向素子用基板に配置されている。
 手術用顕微鏡100A1は、眼を照明する右側照明光(光軸16RI)を発する右側照明光源16Rと、眼を照明する左側照明光(光軸16LI)を発する左側照明光源16Lと、を備えている。手術用顕微鏡100A1は、右側照明光源16Rから発せられた右側照明光を、整形して、第2右側偏向素子23Rに導く右側照明光学系17Rを備えている。手術用顕微鏡100A1は、左側照明光源16Lから発せられた左側照明光を、整形して、第2左側偏向素子23Lに導く左側照明光学系17Lを備えている。
 第2右側偏向素子23Rは、右側変倍光学系13Rを外した光路を通るように発せられた右側照明光を透過し且つ右側観察光を反射する。第2左側偏向素子23Lは、左側変倍光学系13Lを外した光路を通るように発せられた左側照明光を透過し且つ左側観察光を反射する。
The surgical microscope 100A1 includes a right-side variable magnification optical system 13R, a right-side imaging optical system 14R, and a right-side imaging element 15R, a left-side variable magnification optical system 13L, a left-side imaging optical system 14L, and a left-side imaging element 15L. ing. The right variable magnification optical system 13R, the right imaging optical system 14R, and the right imaging element 15R are arranged on the same right variable magnification imaging imaging substrate movable in the Y direction. The left variable magnification optical system 13L, the left imaging optical system 14L, and the left imaging element 15L are arranged on the same left variable magnification imaging imaging substrate that is movable in the Y direction.
The surgical microscope 100A1 is provided between the objective lens 11 and the right-side variable magnification optical system 13R, and the right-side observation light generated from the eye, which is an example of an object, and passed through the objective lens 11 passes through the objective lens. The first right-side deflection element 22R and the second right-side deflection element 23R are provided so as to be reflected and deflected in the directions respectively intersecting with the direction of the optical axis 110 of 11. As described above, in the first right-side deflection element 22R, the second right-side deflection element 23R, the right-side variable magnification optical system 13R, and the right-side imaging optical system 14R of the surgical microscope 100A1, the right-side observation light enters the right-side imaging element 15R. In the optical path, the first right-side deflection element 22R, the second right-side deflection element 23R, the right-side variable magnification optical system 13R, and the right-side imaging optical system 14R are arranged in this order along the traveling direction of the right-side observation light. Further, the surgical microscope 100A1 is provided between the objective lens 11 and the left-side variable power optical system 13L, and the left-side observation light generated from the eye, which is an example of an object, and transmitted through the objective lens 11 is passed through, The first left deflecting element 22L and the second left deflecting element 23L are arranged so as to be reflected and deflected in the directions intersecting with the direction of the optical axis 110 of the objective lens 11. As described above, in the first left-side deflection element 22L, the second left-side deflection element 23L, the left-side variable magnification optical system 13L, and the left-side imaging optical system 14L of the surgical microscope 100A1, the left-side observation light is incident on the left-side imaging element 15L. In the optical path, the first left-side deflection element 22L, the second left-side deflection element 23L, the left-side variable magnification optical system 13L, and the left-side imaging optical system 14L are arranged in this order along the traveling direction of the left-side observation light.
The first right deflection element 22R is arranged on the first right deflection element substrate that is movable in the X direction. The first left-side deflection element 22L is arranged on the first left-side deflection element substrate that is movable in the X direction.
The surgical microscope 100A1 includes a right side illumination light source 16R that emits right side illumination light (optical axis 16RI) that illuminates the eye, and a left side illumination light source 16L that emits left side illumination light (optical axis 16LI) that illuminates the eye. .. The surgical microscope 100A1 includes a right side illumination optical system 17R that shapes the right side illumination light emitted from the right side illumination light source 16R and guides it to the second right side deflection element 23R. The surgical microscope 100A1 includes a left side illumination optical system 17L that shapes the left side illumination light emitted from the left side illumination light source 16L and guides the left side illumination light to the second left side deflection element 23L.
The second right-side deflecting element 23R transmits the right-side illumination light emitted so as to pass through the optical path that does not include the right-side variable magnification optical system 13R and reflects the right-side observation light. The second left-side deflection element 23L transmits the left-side illumination light emitted so as to pass through the optical path without the left-side variable magnification optical system 13L and reflects the left-side observation light.
 右側照明光源16R及び右側照明光学系17Rは、右側照明光が、水平面(例えば、XY平面)を通ると共に、右側変倍光学系13R及び右側結像光学系14Rの光軸(光軸15RI)と異なる光路(光軸16RIを含む光路)を通るように、配置されている。左側照明光源16L及び左側照明光学系17Lは、左側照明光が、水平面(例えば、XY平面)を通ると共に、左側変倍光学系13L及び左側結像光学系14Lの光軸(光軸15LI)と異なる光路(光軸16LIを含む光路)を通るように、配置されている。
 右側照明光源16R及び右側照明光学系17Rは、X方向に移動可能な右側照明光源光学系用基板に配置されている。左側照明光源16L及び左側照明光学系17Lは、X方向に移動可能な左側照明光源光学系用基板に配置されている。なお、各照明光(光軸16RIを含む右側照明光、光軸16LIを含む左側照明光)は、第1の照明として徹照明用の照明光と、第2の照明として斜照明用の照明光とがそれぞれある。徹照とは、網膜に光を到達させ、その反射光を二次光源として、バックライト効果(Red reflex)を得る照明方法をいう。例えば、水晶体を明るくするための照明方法である。徹照のための照明には、第1の種類として、完全同軸照明と、第2の種類として、近同軸照明(例えば、2°前後)とがある。
The right side illumination light source 16R and the right side illumination optical system 17R pass the right side illumination light through a horizontal plane (for example, the XY plane) and the optical axes (optical axis 15RI) of the right side magnification optical system 13R and the right side imaging optical system 14R. They are arranged so as to pass through different optical paths (optical paths including the optical axis 16RI). The left side illumination light source 16L and the left side illumination optical system 17L pass the left side illumination light through a horizontal plane (for example, the XY plane) and the optical axes (optical axis 15LI) of the left side variable magnification optical system 13L and the left side imaging optical system 14L. They are arranged so as to pass through different optical paths (optical paths including the optical axis 16LI).
The right side illumination light source 16R and the right side illumination optical system 17R are arranged on the right side illumination light source optical system substrate that is movable in the X direction. The left side illumination light source 16L and the left side illumination optical system 17L are arranged on the left side illumination light source optical system substrate that is movable in the X direction. The respective illumination lights (the right side illumination light including the optical axis 16RI and the left side illumination light including the optical axis 16LI) are the illumination light for the through illumination as the first illumination and the illumination light for the oblique illumination as the second illumination. There are Transillumination refers to an illumination method in which light reaches the retina and the reflected light is used as a secondary light source to obtain a backlight effect (Red reflex). For example, it is an illumination method for brightening the crystalline lens. Illumination for transillumination includes complete coaxial illumination as a first type and near coaxial illumination (for example, around 2 °) as a second type.
 第1右側偏向素子22R及び第1左側偏向素子22Lとしては、受けた光を反射する反射ミラー、ハーフミラー、又は、プリズム(例、プリズムミラー)等が用いられる。第2右側偏向素子23R及び第2左側偏向素子23Lとしては、右側照明光及び左側照明光を透過し、対象物としての眼から生じた(例、反射した、出射した)右側観察光(光軸15RI参照)及び左側観察光(光軸15LI参照)を反射する透過反射素子が用いられる。透過反射素子としては、例えば、ハーフミラー、ビームスプリッタ又は、ダイクロイックミラー等が用いられる。
 第1右側偏向素子22R及び第1左側偏向素子22Lと第2右側偏向素子23R及び第2左側偏向素子23Lとは、本開示の技術の「偏向素子」の一例である。また、第1右側偏向素子22R及び第1左側偏向素子22Lは、本開示の技術の「第1の複数の偏向素子」、「第1偏向素子」の一例であり、第2右側偏向素子23R及び第2左側偏向素子23Lは、本開示の技術の「第2の複数の偏向素子」、「第2偏向素子」の一例である。更に、第2右側偏向素子23R及び第2左側偏向素子23Lは、本開示の技術の「透過反射素子」の一例である。
As the first right-side deflection element 22R and the first left-side deflection element 22L, a reflection mirror, a half mirror, a prism (eg, prism mirror), or the like that reflects received light is used. The second right-side deflection element 23R and the second left-side deflection element 23L transmit the right-side illumination light and the left-side illumination light, and generate the right-side observation light (eg, reflected or emitted) from the eye as an object (optical axis). 15RI) and a left-side observation light (see optical axis 15LI) are used as a transflective element. As the transflective element, for example, a half mirror, a beam splitter, a dichroic mirror, or the like is used.
The first right-side deflection element 22R and the first left-side deflection element 22L and the second right-side deflection element 23R and the second left-side deflection element 23L are examples of the “deflection element” of the technology of the present disclosure. The first right-side deflection element 22R and the first left-side deflection element 22L are examples of the "first plurality of deflection elements" and the "first deflection element" in the technique of the present disclosure, and the second right-side deflection element 23R and The second left-side deflection element 23L is an example of the “second plurality of deflection elements” and the “second deflection element” in the technique of the present disclosure. Further, the second right-side deflection element 23R and the second left-side deflection element 23L are examples of the “transmissive reflection element” in the technique of the present disclosure.
 右側照明光学系17R及び左側照明光学系17Lとしては、コリメータレンズが用いられる。 Collimator lenses are used as the right side illumination optical system 17R and the left side illumination optical system 17L.
 第1右側偏向素子22R及び第2右側偏向素子23Rの各々は、眼から生じて(例、反射し)且つ対物レンズ11を透過した右側観察光を、対物レンズ11の光軸110の方向に対して交差する方向に反射するように配置されている。第1右側偏向素子22R及び第2右側偏向素子23Rの各々により右側観察光を反射する方向は互いに交差し、当該交差する方向は、互いに異なる方向であり対物レンズ11の光軸110(この場合、Z方向、鉛直方向)に交差する方向(例、直交方向)でもある。 Each of the first right-side deflection element 22R and the second right-side deflection element 23R emits the right-side observation light generated (e.g., reflected) from the eye and transmitted through the objective lens 11 with respect to the direction of the optical axis 110 of the objective lens 11. Are arranged so as to reflect in a direction intersecting with each other. The first right deflecting element 22R and the second right deflecting element 23R each reflect the right observation light, and the intersecting directions are different from each other, and the optical axes 110 of the objective lens 11 (in this case, It is also a direction (eg, orthogonal direction) intersecting the Z direction and the vertical direction.
 第1右側偏向素子22R及び第2右側偏向素子23Rで構成される複数の偏向素子(右側の偏向素子群)は、右側観察光を、対物レンズ11の光軸110を含む平面以外の平面、例えば、対物レンズ11の光軸110に対して交差する方向を含む平面(例えば、XY平面、鉛直方向に直交する水平方向を含む水平面)に沿って、互いに異なる方向(例、交差方向、直交方向、水平方向)に2回反射する。 The plurality of deflection elements (right deflection element group) configured by the first right deflection element 22R and the second right deflection element 23R direct the right observation light to a plane other than the plane including the optical axis 110 of the objective lens 11, for example, , Different directions (eg, crossing direction, orthogonal direction, etc.) along a plane including a direction intersecting the optical axis 110 of the objective lens 11 (for example, an XY plane, a horizontal plane including a horizontal direction orthogonal to the vertical direction). Reflect twice in the horizontal direction.
 同様に、第1左側偏向素子22L及び第2左側偏向素子23Lの各々は、眼から生じて(例、反射し)且つ対物レンズ11を透過した左側観察光を、対物レンズ11の光軸110の方向に対して交差する方向に反射するように配置されている。第1左側偏向素子22L及び第2左側偏向素子23Lの各々により左側観察光を反射する方向は互いに交差し、当該交差する方向は、互いに異なる方向であり対物レンズ11の光軸110(この場合、Z方向、鉛直方向)に交差する方向(例、直交方向)でもある。 Similarly, each of the first left-side deflecting element 22L and the second left-side deflecting element 23L transmits the left-side observation light generated (e.g., reflected) from the eye and transmitted through the objective lens 11 to the optical axis 110 of the objective lens 11. It is arranged so as to reflect in a direction intersecting the direction. The first left-side deflection element 22L and the second left-side deflection element 23L respectively reflect the left observation light in mutually intersecting directions, and the intersecting directions are different from each other, and the optical axis 110 of the objective lens 11 (in this case, It is also a direction (eg, orthogonal direction) intersecting the Z direction and the vertical direction.
 第1左側偏向素子22L及び第2左側偏向素子23Lで構成される複数の偏向素子(左側の偏向素子群)は、左側観察光を、対物レンズ11の光軸110を含む平面以外の平面、例えば、対物レンズ11の光軸110に対して交差する方向を含む平面(例えば、XY平面、鉛直方向に直交する水平方向を含む水平面)に沿って、互いに異なる方向(例、交差方向、直交方向、水平方向)に2回反射する。 The plurality of deflecting elements (left deflecting element group) configured by the first left deflecting element 22L and the second left deflecting element 23L direct the left observation light to a plane other than the plane including the optical axis 110 of the objective lens 11, for example, , Different directions (eg, crossing direction, orthogonal direction, etc.) along a plane including a direction intersecting the optical axis 110 of the objective lens 11 (for example, an XY plane, a horizontal plane including a horizontal direction orthogonal to the vertical direction). Reflect twice in the horizontal direction.
 上記照明光を対象物に照射することにより得られる観察光に含まれる左側観察光及び右側観察光は、対物レンズ11を透過すると略平行光となっている。ただし、左側観察光及び右側観察光が平行光にならないように対物レンズ11を設計してもよい。なお、例えば、右側観察光及び左側観察光は、対象物のほぼ同じ位置(例、同じ視野領域)に対して上記の照明光を照射して生じる観察光である。 The left-side observation light and the right-side observation light included in the observation light obtained by irradiating the object with the above-mentioned illumination light are substantially parallel light when passing through the objective lens 11. However, the objective lens 11 may be designed so that the left-side observation light and the right-side observation light do not become parallel light. Note that, for example, the right-side observation light and the left-side observation light are observation lights generated by irradiating the substantially same position (for example, the same visual field region) of the target object with the above illumination light.
 第1右側偏向素子22R及び第2右側偏向素子23Rは、反射した各右側観察光が対物レンズ11の光軸110に垂直な方向の成分を持つように、右側観察光を反射して偏向する。各右側観察光と光軸110との外積の絶対値が0でない。つまり、各右側観察光と光軸110とは平行ではない。 The first right deflection element 22R and the second right deflection element 23R reflect and deflect the right observation light so that each of the reflected right observation light has a component in a direction perpendicular to the optical axis 110 of the objective lens 11. The absolute value of the outer product of each right-side observation light and the optical axis 110 is not zero. That is, each right side observation light and the optical axis 110 are not parallel.
 また、第1左側偏向素子22L及び第2左側偏向素子23Lは、反射した各左側観察光が対物レンズ11の光軸110に垂直な方向の成分を持つように、左側観察光を反射して偏向する。各左側観察光と光軸110との外積の絶対値が0でない。つまり、各左側観察光と光軸110は平行ではない。 The first left-side deflection element 22L and the second left-side deflection element 23L reflect and deflect the left-side observation light so that the respective left-side observation light reflected has a component in a direction perpendicular to the optical axis 110 of the objective lens 11. To do. The absolute value of the outer product of each left-side observation light and the optical axis 110 is not zero. That is, the left observation light and the optical axis 110 are not parallel.
 図2Aに示すように、対物レンズ11を透過した右側観察光を最初に反射する第1右側偏向素子22Rは、右側変倍光学系13R、及び右側結像光学系14Rの光軸と異なる光路を通るように発せられた右側照明光を対物レンズ11に向かって反射する。したがって、右側照明光学系17Rから出射された右側照明光は、第2右側偏向素子23Rを透過して、第1右側偏向素子22Rによって対物レンズ11に向かって反射される。 As shown in FIG. 2A, the first right-side deflection element 22R that first reflects the right-side observation light that has passed through the objective lens 11 has an optical path different from the optical axes of the right-side variable magnification optical system 13R and the right-side imaging optical system 14R. The right side illumination light emitted so as to pass through is reflected toward the objective lens 11. Therefore, the right side illumination light emitted from the right side illumination optical system 17R passes through the second right side deflection element 23R and is reflected by the first right side deflection element 22R toward the objective lens 11.
 対物レンズ11を透過した左側観察光を最初に反射する第1左側偏向素子22Lは、左側変倍光学系13L及び左側結像光学系14Lの光軸と異なる光路を通るように発せられた左側照明光を対物レンズ11に向かって反射する。したがって、左側照明光学系17Lから出射された左側照明光は、第2左側偏向素子23Lを透過して、第1左側偏向素子22Lによって対物レンズ11に向かって反射される。 The first left-side deflection element 22L that first reflects the left-side observation light that has passed through the objective lens 11 is a left-side illumination that is emitted so as to follow an optical path different from the optical axes of the left-side variable magnification optical system 13L and the left-side imaging optical system 14L. The light is reflected toward the objective lens 11. Therefore, the left side illumination light emitted from the left side illumination optical system 17L passes through the second left side deflection element 23L and is reflected by the first left side deflection element 22L toward the objective lens 11.
 第1右側偏向素子22R及び第2右側偏向素子23Rと、第1左側偏向素子22L及び第2左側偏向素子23Lとは、対物レンズ11の近傍に配置される。例えば、図2Bに示すように、複数の偏向素子のうち少なくとも第1右側偏向素子22R及び第1左側偏向素子22Lは、対物レンズ11の鉛直上方に配置されている。例えば、第1右側偏向素子22R及び第1左側偏向素子22Lは、対物レンズ11の光軸110の方向視(例、Z方向)において少なくとも一部が対物レンズ11と重なる位置に配置されている。 The first right deflection element 22R and the second right deflection element 23R, and the first left deflection element 22L and the second left deflection element 23L are arranged near the objective lens 11. For example, as shown in FIG. 2B, at least the first right-side deflection element 22R and the first left-side deflection element 22L among the plurality of deflection elements are arranged vertically above the objective lens 11. For example, the first right-side deflection element 22R and the first left-side deflection element 22L are arranged at positions where at least a part of the first right-side deflection element 22L and the first left-side deflection element 22L overlap the objective lens 11 when viewed from the optical axis 110 of the objective lens 11 (eg, Z direction).
 ここで、一例として、上記した偏向素子が観察光を反射して偏向する角度について説明する。図2Bに示すように、第1右側偏向素子22Rは、対物レンズ11からZ(正)方向に進む右側観察光をX(正)方向(第1の方向)に直角に反射し、図2Aに示すように、第2右側偏向素子23Rは、第1右側偏向素子22Rで反射された右側観察光を、X(正)方向(第1の方向)及びZ方向(例、鉛直方向)と異なるY(正)方向(第2の方向)に直角に反射する。例えば、第2右側偏向素子23Rは、鉛直方向に交差する面において、第1右側偏向素子22Rにおける右側観察光の偏向方向(例、反射方向)に直交する方向に右側観察光を反射して偏向する。 Here, as an example, the angle at which the above-described deflecting element reflects and deflects the observation light will be described. As shown in FIG. 2B, the first right-side deflection element 22R reflects the right-side observation light traveling from the objective lens 11 in the Z (positive) direction at a right angle in the X (positive) direction (first direction), and then in FIG. As shown, the second right deflection element 23R causes the right observation light reflected by the first right deflection element 22R to be different from the X (positive) direction (first direction) and the Z direction (eg, vertical direction) in the Y direction. Reflects at a right angle to the (positive) direction (second direction). For example, the second right-side deflection element 23R reflects and deflects the right-side observation light in a direction orthogonal to the deflection direction (eg, reflection direction) of the right-side observation light in the first right-side deflection element 22R on the plane intersecting with the vertical direction. To do.
 そして、第2右側偏向素子23Rで反射された右側観察光は、右側変倍光学系13R及び右側結像光学系14Rを介して右側撮像素子15Rに結像する。 Then, the right side observation light reflected by the second right side deflection element 23R forms an image on the right side image pickup element 15R via the right side magnification optical system 13R and the right side image forming optical system 14R.
 また、第1左側偏向素子22Lは、対物レンズ11からZ(正)方向に進む左側観察光をX(負)方向(第3の方向)に直角に反射し、第2左側偏向素子23Lは、第1左側偏向素子22Lで反射された左側観察光を、X(負)方向(第3の方向)及びZ方向(例、鉛直方向)とは異なるY(正)方向(第2の方向)に直角に反射する。例えば、第2左側偏向素子23Lは、鉛直方向に交差する面において、第1左側偏向素子22Lにおける左側観察光の偏向方向(例、反射方向)に直交する方向に左側観察光を反射して偏向する。 The first left-side deflection element 22L reflects the left-side observation light traveling from the objective lens 11 in the Z (positive) direction at a right angle in the X (negative) direction (third direction), and the second left-side deflection element 23L is The left-side observation light reflected by the first left-side deflection element 22L is directed in the Y (positive) direction (second direction) different from the X (negative) direction (third direction) and the Z direction (eg, vertical direction). Reflects at a right angle. For example, the second left-side deflection element 23L reflects and deflects the left-side observation light in a direction orthogonal to the deflection direction (eg, reflection direction) of the left-side observation light in the first left-side deflection element 22L on the plane intersecting with the vertical direction. To do.
 そして、第2左側偏向素子23Lで反射した左側観察光は、左側変倍光学系13L及び左側結像光学系14Lを介して左側撮像素子15Lに結像する。 Then, the left-side observation light reflected by the second left-side deflection element 23L is imaged on the left-side imaging element 15L via the left-side variable magnification optical system 13L and the left-side imaging optical system 14L.
 なお、詳細には後述するが、第1右側偏向素子22Rと第2右側偏向素子23Rとの間の光路には、右側絞り12Rが配置され、第1左側偏向素子22Lと第2左側偏向素子23Lとの間の光路には、左側絞り12Lが配置されている。右側絞り12Rは、X方向に移動可能な右側絞り用基板に配置されている。左側絞り12Lは、X方向に移動可能な左側絞り用基板に配置されている。 As will be described later in detail, the right diaphragm 12R is arranged in the optical path between the first right deflection element 22R and the second right deflection element 23R, and the first left deflection element 22L and the second left deflection element 23L are arranged. A left-side diaphragm 12L is arranged in the optical path between and. The right diaphragm 12R is arranged on the right diaphragm substrate that is movable in the X direction. The left diaphragm 12L is arranged on the left diaphragm substrate that is movable in the X direction.
 第1右側偏向素子22R及び第2右側偏向素子23Rは、本開示の技術の「第1の複数の偏向素子」の一例であり、第1左側偏向素子22L及び第2左側偏向素子23Lは、本開示の技術の「第2の複数の偏向素子」の一例である。 The first right-side deflection element 22R and the second right-side deflection element 23R are examples of the “first plurality of deflection elements” in the technology of the present disclosure, and the first left-side deflection element 22L and the second left-side deflection element 23L are the same. It is an example of a "second plurality of deflection elements" of the disclosed technique.
 また、後述する通り、第1右側偏向素子22Rが配置(固定)されている第1右側偏向素子用基板がX方向に移動する場合、第1右側偏向素子22Rにおいて照明光及び右側観察光が反射する面と、対物レンズ11の光軸110と、のなす角度が一定に保たれるように、第1右側偏向素子22Rが移動される。
 第1左側偏向素子22Lが配置(固定)されている第1左側偏向素子用基板がX方向に移動する場合、第1左側偏向素子22Lにおいて照明光及び右側観察光が反射する面と、対物レンズ11の光軸110と、のなす角度が一定に保たれるように、第1左側偏向素子22Lが移動される。
As will be described later, when the first right-side deflection element substrate on which the first right-side deflection element 22R is arranged (fixed) moves in the X direction, the illumination light and the right-side observation light are reflected by the first right-side deflection element 22R. The first right-side deflection element 22R is moved so that the angle between the surface to be formed and the optical axis 110 of the objective lens 11 is kept constant.
When the first left-side deflection element substrate on which the first left-side deflection element 22L is arranged (fixed) moves in the X direction, a surface on which the illumination light and the right-side observation light are reflected in the first left-side deflection element 22L, and the objective lens. The first left-side deflection element 22L is moved so that the angle formed by the optical axis 110 of 11 is kept constant.
 次に、右側変倍光学系13R、右側結像光学系14R、及び右側撮像素子15Rと、左側変倍光学系13L、左側結像光学系14L、及び左側撮像素子15Lと、を説明する。右側変倍光学系13R、右側結像光学系14R、及び右側撮像素子15Rと、左側変倍光学系13L、左側結像光学系14L、及び左側撮像素子15Lと、は同様の構成である。よって、右側変倍光学系13R、右側結像光学系14R、及び右側撮像素子15Rを説明し、左側変倍光学系13L、左側結像光学系14L、及び左側撮像素子15Lの説明を省略する。 Next, the right-side variable magnification optical system 13R, the right-side imaging optical system 14R, and the right-side imaging element 15R, the left-side variable magnification optical system 13L, the left-side imaging optical system 14L, and the left-side imaging element 15L will be described. The right-side variable magnification optical system 13R, the right-side imaging optical system 14R, and the right-side imaging element 15R have the same configuration as the left-side variable magnification optical system 13L, the left-side imaging optical system 14L, and the left-side imaging element 15L. Therefore, the right-side variable magnification optical system 13R, the right-side imaging optical system 14R, and the right-side imaging element 15R will be described, and the left-side variable-magnification optical system 13L, the left-side imaging optical system 14L, and the left-side imaging element 15L will be omitted.
 図3に示すように、第1の実施の形態の手術用顕微鏡100A1では、眼10A(より正確には、物体面10A)の側から順に、対物レンズ11と、絞り12Rと、右側変倍光学系13Rと、右側結像光学系14Rとが配置されている。図3では、右側偏向素子22R及び第2右側偏向素子23Rの図示が省略されている。 As shown in FIG. 3, in the surgical microscope 100A1 of the first embodiment, the objective lens 11, the diaphragm 12R, and the right-side variable magnification optical system are arranged in this order from the eye 10A (more accurately, the object plane 10A) side. The system 13R and the right imaging optical system 14R are arranged. In FIG. 3, the right deflection element 22R and the second right deflection element 23R are not shown.
 眼10Aの各点から発生した光束(例、観察光)は、対物レンズ11を介して略平行光束に変換され、右側変倍光学系13Rを介して変倍され、右側結像光学系14Rを介して集光されて、像面10Bに到達する。 A light flux (eg, observation light) generated from each point of the eye 10A is converted into a substantially parallel light flux through the objective lens 11, is magnified through the right magnification optical system 13R, and is converted into the right imaging optical system 14R. It is collected via and reaches the image plane 10B.
 像面10Bに形成された眼10Aの像を観察するため、像面10Bに右側撮像素子15Rが配置されている。 A right imaging element 15R is arranged on the image surface 10B in order to observe the image of the eye 10A formed on the image surface 10B.
 右側変倍光学系13Rは、眼10Aの側から順に、正の屈折力を持つ第1レンズ群G1と、負の屈折力を持つ第2レンズ群G2と、正の屈折力を持つ第3レンズ群G3と、正の屈折力を持つ第4レンズ群G4とで構成され、第2レンズ群G2と第3レンズ群G3とが変倍用のレンズ群である。このため、第1レンズ群G1と第4レンズ群G4とを固定し、変倍用のレンズ群(G2、G3)を光軸方向に沿って移動させることにより、眼10Aの像の観察倍率を任意に変更することができる。観察倍率は、対物レンズ11の焦点距離と、右側変倍光学系13Rと右側結像光学系14Rとを組み合わせた焦点距離と、の比によって決まる。 The right variable power optical system 13R includes, in order from the eye 10A side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a third lens having a positive refractive power. It is composed of a group G3 and a fourth lens group G4 having a positive refractive power, and the second lens group G2 and the third lens group G3 are lens groups for zooming. Therefore, by fixing the first lens group G1 and the fourth lens group G4 and moving the variable power lens groups (G2, G3) along the optical axis direction, the observation magnification of the image of the eye 10A is increased. It can be changed arbitrarily. The observation magnification is determined by the ratio of the focal length of the objective lens 11 and the focal length obtained by combining the right-side variable magnification optical system 13R and the right-side imaging optical system 14R.
 次に、上記した第1の実施の形態の手術用顕微鏡100A1のうち、右側変倍光学系13Rの構成の一例について説明する。 Next, an example of the configuration of the right-side variable power optical system 13R in the surgical microscope 100A1 of the above-described first embodiment will be described.
 右側変倍光学系13Rは、図4に示すように、既に説明した4つのレンズ群G1、G2、G3、G4を有する(図3も参照)。さらに、第1レンズ群G1は、物体(眼)側に凸面を向けたメニスカスレンズ31と両凸レンズ32との接合レンズ、および、物体に凸面を向けたメニスカスレンズ33を備える。第2レンズ群G2は、両凹レンズ34、両凸レンズ35と両凹レンズ36との接合レンズ、および、物体側に凹面を向けたメニスカスレンズ37を備える。第3レンズ群G3は、両凸レンズ38、および、両凸レンズ39と物体側に凹面を向けたメニスカスレンズ40との接合レンズを備える。第4レンズ群G4は、物体側に凹面を向けたメニスカスレンズ41と物体側に凹面を向けたメニスカスレンズ42との接合レンズを備える。 The right-side variable power optical system 13R has the four lens groups G1, G2, G3, G4 already described, as shown in FIG. 4 (see also FIG. 3). Further, the first lens group G1 includes a cemented lens of a meniscus lens 31 having a convex surface facing the object (eye) side and a biconvex lens 32, and a meniscus lens 33 having a convex surface facing the object. The second lens group G2 includes a biconcave lens 34, a cemented lens of a biconvex lens 35 and a biconcave lens 36, and a meniscus lens 37 having a concave surface facing the object side. The third lens group G3 includes a biconvex lens 38, and a cemented lens of a biconvex lens 39 and a meniscus lens 40 having a concave surface facing the object side. The fourth lens group G4 includes a cemented lens of a meniscus lens 41 having a concave surface facing the object side and a meniscus lens 42 having a concave surface facing the object side.
 図3の右側変倍光学系13Rにおいて、低倍端から高倍端に変倍する際には、第1レンズ群G1および第4レンズ群G4を固定して、第2レンズ群G2を像側に移動させると共に、第2レンズ群G2の移動による焦点移動を補正する方向に第3レンズ群G3を移動させることになる。なお、右側変倍光学系13Rの低倍端から高倍端への変倍に連動して、絞り12Rの絞り径を大きくすることが好ましい。 In the right-side variable power optical system 13R in FIG. 3, when zooming from the low magnification end to the high magnification end, the first lens group G1 and the fourth lens group G4 are fixed, and the second lens group G2 is moved to the image side. At the same time as the movement, the third lens group G3 is moved in the direction in which the focus movement due to the movement of the second lens group G2 is corrected. Note that it is preferable to increase the aperture diameter of the aperture 12R in conjunction with the magnification change of the right-side variable power optical system 13R from the low magnification end to the high magnification end.
 図4に示す右側変倍光学系13Rと絞り12Rの諸元値を表1に例示する。 Table 1 exemplifies the specifications of the right-side variable power optical system 13R and diaphragm 12R shown in FIG.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-I000002
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-I000002
 表1において、面番号1は絞り12Rに対応し、面番号2から21は物体側から順に付したレンズ面の番号に対応する。最も物体側のレンズ(メニスカスレンズ31)のレンズ面(2)から絞り12Rまでの距離は15mmである。fは物体面から絞り12Rまでの距離d0'=∞としたときのレンズ全系の焦点距離を示す。FnoはFナンバー、Faiは絞り12Rの絞り径を示す。 In Table 1, the surface number 1 corresponds to the diaphragm 12R, and the surface numbers 2 to 21 correspond to the lens surface numbers sequentially added from the object side. The distance from the lens surface (2) of the most object-side lens (meniscus lens 31) to the diaphragm 12R is 15 mm. f indicates the focal length of the entire lens system when the distance d0 ′ = ∞ from the object surface to the diaphragm 12R. Fno indicates the F number, and Fai indicates the aperture diameter of the aperture 12R.
 右側変倍光学系13Rは、右側変倍光学系13Rの中ではなく外、具体的には、右側変倍光学系13Rと対物レンズ11との間(第1の右側範囲)の光路で、右側観察光の光軸15RIに垂直な右側観察光の光束の有効面積が極小となる位置が存在するように、形成されている。右側観察光の光束の有効面積が極小となる位置は、後述する右側絞り12Rが配置され、右側変倍光学系13Rの瞳の位置である。
 ここで、右側観察光の光束の有効面積が極小となる位置での右側観察光の光束の有効面積について説明する。
 光軸に垂直な観察光の光束の有効面積は、観察光の中で撮像素子(15R、15L)まで到達して結像される光が、光軸に垂直な平面によって切り取られる光束の断面積である。
 右側変倍光学系13Rの最も対物レンズ11側のレンズ(メニスカスレンズ31)における右側観察光の光束の有効面積を、第1の有効面積とし、対物レンズ11の右側変倍光学系13R側の面における右側観察光の光束の有効面積を、第2の有効面積とする。右側観察光の光束の有効面積が極小となる位置での右側観察光の光束の有効面積は、第1の有効面積及び第2の有効面積よりも小さい第3の有効面積である。
 より詳細に説明すると、右側観察光の光軸15RIに垂直な右側観察光の光束の有効面積は、例えば、光軸における位置が対物レンズ11から右側変倍光学系13Rへ光軸に沿って移動すると、第2の有効面積から徐々に小さくなる。そして、右側観察光の光束の有効面積は、対物レンズ11と右側変倍光学系13Rとの間の光路において、右側観察光の光束の有効面積が極小となる位置では第3の有効面積となる。そこから位置が更に進むと、右側観察光の光束の有効面積は、第3の有効面積から徐々に大きくなり、右側変倍光学系13Rにおいて、第1の有効面積となる。
 なお、上記観察光の光束の有効面積が極小となる光軸上の位置は1点とは限らない。例えば、光軸における位置が対物レンズ11から右側変倍光学系13Rへ光軸に沿って移動した際に、観察光の光束の有効面積が極小のまま一定値であれば、それらの有効面積(つまり、複数の第3の有効面積)がそれぞれ極小の位置である。
 ここでいう光束の有効面積の極小の値は、光路の位置の変化に対して値がしばらく一定になっていてもよい。
The right-side variable power optical system 13R is located outside the right-side variable power optical system 13R, specifically, in the optical path between the right-side variable power optical system 13R and the objective lens 11 (first right range). It is formed so that there is a position where the effective area of the light flux of the right side observation light perpendicular to the optical axis 15RI of the observation light is minimal. The position where the effective area of the light flux of the right-side observation light is minimized is the position of the pupil of the right-side variable power optical system 13R in which the right-side diaphragm 12R described later is arranged.
Here, the effective area of the light flux of the right side observation light at the position where the effective area of the light flux of the right side observation light is minimized will be described.
The effective area of the light flux of the observation light perpendicular to the optical axis is the cross-sectional area of the light flux that reaches the image sensor (15R, 15L) in the observation light and is imaged by the plane perpendicular to the optical axis. Is.
The effective area of the light flux of the right-side observation light in the lens (meniscus lens 31) closest to the objective lens 11 of the right-side variable power optical system 13R is defined as a first effective area, and the surface of the objective lens 11 on the right-side variable power optical system 13R side. The effective area of the light flux of the right side observation light at is the second effective area. The effective area of the light flux of the right side observation light at the position where the effective area of the light flux of the right side observation light is a minimum is the third effective area smaller than the first effective area and the second effective area.
More specifically, the effective area of the light flux of the right observation light perpendicular to the optical axis 15RI of the right observation light is, for example, the position on the optical axis moved from the objective lens 11 to the right variable magnification optical system 13R along the optical axis. Then, the second effective area gradually decreases. Then, the effective area of the light flux of the right observation light becomes the third effective area at the position where the effective area of the light flux of the right observation light is minimum in the optical path between the objective lens 11 and the right variable magnification optical system 13R. .. When the position further advances from that position, the effective area of the light flux of the right-side observation light gradually increases from the third effective area, and becomes the first effective area in the right-side variable power optical system 13R.
The position on the optical axis where the effective area of the light flux of the observation light is minimum is not limited to one point. For example, when the position on the optical axis moves from the objective lens 11 to the right-side variable magnification optical system 13R along the optical axis, and the effective area of the light flux of the observation light is a constant value with a minimum value, those effective areas ( That is, each of the plurality of third effective areas) is a minimum position.
The minimum value of the effective area of the light flux here may be constant for a while with respect to the change of the position of the optical path.
 同様に、左側変倍光学系13Lは、左側変倍光学系13Lの中ではなく外、具体的には、左側変倍光学系13Lと対物レンズ11との間(第1の左側範囲)の光路で、左側観察光の光軸15LIに垂直な左側観察光の光束の有効面積が極小となるように、形成されている。 Similarly, the left-side variable power optical system 13L is not inside the left-side variable power optical system 13L, specifically, the optical path between the left-side variable power optical system 13L and the objective lens 11 (first left range). Then, the effective area of the light flux of the left-side observation light perpendicular to the optical axis 15LI of the left-side observation light is formed to be a minimum.
 更に、光束の有効面積が極小となる各位置(左右の観察光学系の瞳の位置)は、右側変倍光学系13Rと第1右側偏向素子22Rとの間及び左側変倍光学系13Lと第1左側偏向素子22Lとの間(第2の右側・左側範囲)となるように、右側変倍光学系13R及び左側変倍光学系13Lが形成されている。 Further, the respective positions where the effective area of the light flux becomes the minimum (the positions of the pupils of the left and right observation optical systems) are between the right variable magnification optical system 13R and the first right deflection element 22R and the left variable magnification optical system 13L and the first variable magnification optical system 13L. The right-side variable magnification optical system 13R and the left-side variable magnification optical system 13L are formed so as to be between the first left-side deflection element 22L (second right / left side range).
 第1の実施の形態では、上記光束の有効面積が極小となる位置(第3の有効面積の位置、瞳の位置)は、第1右側偏向素子22Rと第1左側偏向素子23Lとの間(第3の右側範囲)及び第1左側偏向素子22Lと第2左側偏向素子23Lとの間(第3の左側範囲)となるように、右側変倍光学系13R及び左側変倍光学系13Lが構成されている。 In the first embodiment, the position where the effective area of the luminous flux becomes the minimum (the position of the third effective area, the position of the pupil) is between the first right side deflection element 22R and the first left side deflection element 23L ( The right-side variable magnification optical system 13R and the left-side variable magnification optical system 13L are configured so as to be in the third right range) and between the first left deflection element 22L and the second left deflection element 23L (third left range). Has been done.
 このように第1の実施の形態では、上記光束の有効面積が極小となる位置(瞳の位置)を、第1右側偏向素子22Rと第2右側偏向素子23Rとの間及び第1左側偏向素子22Lと第2左側偏向素子23Lとの間に位置させる。これにより、第1右側偏向素子22Rと第2右側偏向素子23Rとの間及び第1左側偏向素子22Lと第2左側偏向素子23Lとの間に光束の有効面積が極小となる位置にない時と比べて、第1右側偏向素子22R、第2右側偏向素子23R、第1左側偏向素子22L、及び第2左側偏向素子23Lの各々の光を反射する領域(有効径)を比較的小さくすることができる。これによって、各素子(例、第1右側偏向素子22R、第1左側偏向素子22Lなど)のサイズ(有効径)をより小さくできるため、第1右側偏向素子22Rと第1左側偏向素子22Lとの軸間距離をより短くすることが可能である。手術用顕微鏡100A1は、第1右側偏向素子22Rと第1左側偏向素子22Lとを相対移動させて、ユーザ150が視認する立体感をより小さくすることができる。また、対物レンズ11の鉛直方向の上側に配置された上記各素子のサイズを小さくできるので、手術用顕微鏡100A1の大きさ(例、厚さ、幅)やコストも削減できる。 As described above, in the first embodiment, the position where the effective area of the light flux is minimized (the position of the pupil) is located between the first right side deflection element 22R and the second right side deflection element 23R and the first left side deflection element. 22L and the second left-side deflection element 23L. As a result, when the effective area of the light flux is not at the position where the effective area of the light flux is minimum between the first right side deflection element 22R and the second right side deflection element 23R and between the first left side deflection element 22L and the second left side deflection element 23L. In comparison, it is possible to make the light reflection regions (effective diameters) of the first right deflection element 22R, the second right deflection element 23R, the first left deflection element 22L, and the second left deflection element 23L relatively small. it can. As a result, the size (effective diameter) of each element (eg, the first right-side deflection element 22R, the first left-side deflection element 22L, etc.) can be made smaller, so that the first right-side deflection element 22R and the first left-side deflection element 22L are separated from each other. It is possible to make the axial distance shorter. The surgical microscope 100A1 can relatively move the first right-side deflection element 22R and the first left-side deflection element 22L to further reduce the stereoscopic effect visually recognized by the user 150. Further, since the size of each of the above-mentioned elements arranged on the upper side in the vertical direction of the objective lens 11 can be reduced, the size (eg, thickness, width) and cost of the surgical microscope 100A1 can be reduced.
 なお、上記光束の有効面積が極小となる位置(瞳の位置)を、第1右側偏向素子22R及び第1左側偏向素子22Lの各々の位置と一致させることにより、第1右側偏向素子22R及び第1左側偏向素子22Lの各々の光を反射する領域(有効径)を最も小さくすることができる。 The position where the effective area of the light flux is minimized (the position of the pupil) is made to coincide with the positions of the first right-side deflection element 22R and the first left-side deflection element 22L, respectively. It is possible to minimize the area (effective diameter) of each of the 1st left-side deflection elements 22L that reflects light.
 手術用顕微鏡100A1は、右側変倍光学系13Rと対物レンズ11との間、また、左側変倍光学系13Lと対物レンズ11との間に、例えば、フィルター等の光学素子を配置してもよい。なお、このように配置されたフィルター等の光学素子は、右側変倍光学系13R及び左側変倍光学系13Lには、含まれない。よって、このように配置されたフィルター等の光学素子は、右側観察光学系及び左側観察光学系には、含まれない。 In the surgical microscope 100A1, for example, an optical element such as a filter may be arranged between the right-side variable power optical system 13R and the objective lens 11, and between the left-side variable power optical system 13L and the objective lens 11. .. The optical elements such as the filters arranged in this way are not included in the right-side variable power optical system 13R and the left-side variable power optical system 13L. Therefore, the optical elements such as the filters arranged in this way are not included in the right side observation optical system and the left side observation optical system.
 手術用顕微鏡100A1は、右側変倍光学系13Rと対物レンズとの間(第1の右側範囲)に配置され、右側観察光の光軸15RIに垂直な右側観察光の光束の有効面積を制限する右側絞り12Rを備える。また、手術用顕微鏡100A1は、左側変倍光学系13Lと対物レンズとの間(第1の左側範囲)に配置され、左側観察光の光軸15LIに垂直な左側観察光の光束の有効面積を制限する左側絞り12Lを備えている。 The surgical microscope 100A1 is arranged between the right variable power optical system 13R and the objective lens (first right range), and limits the effective area of the light flux of the right observation light perpendicular to the optical axis 15RI of the right observation light. The right diaphragm 12R is provided. Further, the surgical microscope 100A1 is arranged between the left-side variable power optical system 13L and the objective lens (first left-side range), and has an effective area of the luminous flux of the left-side observation light perpendicular to the optical axis 15LI of the left-side observation light. A left-side diaphragm 12L for limiting is provided.
 右側絞り12R及び左側絞り12Lが配置される位置は、右側変倍光学系13Rと第1右側偏向素子22Rとの間(第2の右側範囲)又は左側変倍光学系13Lと第1左側偏向素子22Lとの間(第2の左側範囲)である。 The positions of the right diaphragm 12R and the left diaphragm 12L are arranged between the right variable magnification optical system 13R and the first right deflection element 22R (second right range) or the left variable magnification optical system 13L and the first left deflection element. 22L (second left side range).
 本実施形態における右側絞り12R及び左側絞り12Lが配置される位置は、更に詳しくは、第1右側偏向素子22Rと第2右側偏向素子23Rとの間(第3の右側範囲)又は第1左側偏向素子22Lと第2左側偏向素子23Lとの間(第3の左側範囲)である。 More specifically, the positions where the right diaphragm 12R and the left diaphragm 12L are arranged in the present embodiment are between the first right deflection element 22R and the second right deflection element 23R (third right range) or the first left deflection. It is between the element 22L and the second left deflection element 23L (third left range).
 一例として、第1の実施の形態では、右側絞り12R及び左側絞り12Lは、上記光束の有効面積が極小となる位置(瞳の位置)に配置されている。 As an example, in the first embodiment, the right diaphragm 12R and the left diaphragm 12L are arranged at the position (pupil position) where the effective area of the light flux is minimized.
 図23には、右側絞り12Rが、右側観察光の上記光束の有効面積が極小となる位置(右側観察光学系の瞳の位置)に配置されている様子が示されている。図23に示すように、右側変倍光学系13Rと対物レンズ11との間で、右側観察光の光軸15RIに垂直な右側観察光の光束の有効面積が極小となっている。この点、左側絞り12Lも左側観察光の上記光束の有効面積が極小となる位置(左側観察光学系の瞳の位置)に配置されている。 FIG. 23 shows that the right diaphragm 12R is arranged at a position where the effective area of the light flux of the right observation light is the minimum (the position of the pupil of the right observation optical system). As shown in FIG. 23, the effective area of the light flux of the right-side observation light perpendicular to the optical axis 15RI of the right-side observation light is extremely small between the right-side variable magnification optical system 13R and the objective lens 11. In this regard, the left diaphragm 12L is also arranged at a position where the effective area of the above-mentioned light flux of the left observation light is minimized (the position of the pupil of the left observation optical system).
 右側絞り12R及び左側絞り12Lは、可変絞りである。詳細には後述するが、右側変倍光学系13R又は左側変倍光学系13Lの倍率に基づいて右側絞り12R又は左側絞り12Lが調整されることにより右側観察光及び左側観察光の光束の有効面積が調整される。 The right diaphragm 12R and the left diaphragm 12L are variable diaphragms. As will be described in detail later, the effective area of the light flux of the right side observation light and the left side observation light is adjusted by adjusting the right diaphragm 12R or the left diaphragm 12L based on the magnification of the right variable magnification optical system 13R or the left variable magnification optical system 13L. Is adjusted.
 なお、右側観察光及び左側観察光の光束の有効面積を制限する手段は、右側絞り(可変絞り)12R及び左側絞り(可変絞り)12Lに限定されない。図24には、右側絞り12Rを省略し、第1右側偏向素子22Rと第2右側偏向素子23Rの各々の光を反射する領域(有効径)を調整することにより、右側観察光の光束の有効面積を制限する様子が示されている。図24に示すように、右側絞り12Rがなくとも、第1右側偏向素子22Rと第2右側偏向素子23Rとの各々の光を反射する領域(有効径)を調整することにより、右側観察光の光束の有効面積を制限することができる。例えば、第1右側偏向素子22Rの入射面又は射出面(反射面、偏向面、屈折面)の大きさが、右側観察光の光束の有効面積を規定している。 The means for limiting the effective area of the light flux of the right side observation light and the left side observation light is not limited to the right side diaphragm (variable diaphragm) 12R and the left side diaphragm (variable diaphragm) 12L. In FIG. 24, the right diaphragm 12R is omitted, and the light reflection area (effective diameter) of each of the first right deflection element 22R and the second right deflection element 23R is adjusted, so that the luminous flux of the right observation light is effective. It is shown how to limit the area. As shown in FIG. 24, even if the right diaphragm 12R is not provided, it is possible to adjust the region (effective diameter) of each of the first right deflecting element 22R and the second right deflecting element 23R that reflects light, to adjust the right observation light. The effective area of the light flux can be limited. For example, the size of the entrance surface or exit surface (reflection surface, deflection surface, or refraction surface) of the first right-side deflection element 22R defines the effective area of the light flux of the right-side observation light.
 図24には、右側絞り12Rを省略し、第1右側偏向素子22Rと第2右側偏向素子23Rの各々の光を反射する領域(有効径)を調整する例が示されているが、左側も同様である。即ち、左側絞り12Lを省略し、第1左側偏向素子22Lと第2左側偏向素子23Lの各々の光を反射する領域(有効径)を調整する。例えば、第1左側偏向素子22Lの入射面又は射出面(反射面、偏向面、屈折面)の大きさが、左側観察光の光束の有効面積を規定している。 FIG. 24 shows an example in which the right diaphragm 12R is omitted and the light reflection areas (effective diameters) of the first right deflection element 22R and the second right deflection element 23R are adjusted, but the left side is also adjusted. It is the same. That is, the left diaphragm 12L is omitted, and the light reflection area (effective diameter) of each of the first left deflection element 22L and the second left deflection element 23L is adjusted. For example, the size of the entrance surface or exit surface (reflection surface, deflection surface, or refraction surface) of the first left-side deflection element 22L defines the effective area of the light flux of the left-side observation light.
 図24に示す例では、第1右側偏向素子22Rと第2右側偏向素子23Rとの各々の大きさ(面積)を調整することにより、光を反射する領域(有効径)を調整している。本開示の技術は、これに限定されず、次のようにしてもよい。第1右側偏向素子22Rに、右側観察光の光軸に垂直な右側観察光の光束の有効面積が所定の面積になるように、光を吸収して遮光するマスク(遮光マスク)を設置する。同様に、第1左側偏向素子22Lに、左側観察光の光軸に垂直な左側観察光の光束の有効面積が所定の面積になるように、光を吸収して遮光するマスクを設置する。 In the example shown in FIG. 24, by adjusting the size (area) of each of the first right-side deflection element 22R and the second right-side deflection element 23R, the region (effective diameter) that reflects light is adjusted. The technique of the present disclosure is not limited to this, and may be as follows. A mask (light-shielding mask) that absorbs light and blocks light is provided on the first right-side deflection element 22R so that the effective area of the light flux of the right-side observation light perpendicular to the optical axis of the right-side observation light becomes a predetermined area. Similarly, a mask that absorbs light and blocks light is provided on the first left-side deflection element 22L so that the effective area of the luminous flux of the left-side observation light perpendicular to the optical axis of the left-side observation light becomes a predetermined area.
 上記で説明した各瞳の位置及び各絞りの位置、また、絞りに代えて偏向素子の有効径を調整する点は、他の実施の形態及び変形例に対しても適用可能である。 The positions of the pupils and the positions of the diaphragms described above and the point of adjusting the effective diameter of the deflecting element instead of the diaphragms can be applied to other embodiments and modifications.
 次に、本実施形態における手術用顕微鏡100A1の動作について説明する。次に、本実施形態における手術用顕微鏡100A1の動作について説明する。図5には、手術用顕微鏡100A1のブロック図が示されている。図5に示すように、手術用顕微鏡100A1は、コンピュータ50を備えている。 Next, the operation of the surgical microscope 100A1 according to the present embodiment will be described. Next, the operation of the surgical microscope 100A1 according to the present embodiment will be described. FIG. 5 shows a block diagram of the surgical microscope 100A1. As shown in FIG. 5, the surgical microscope 100A1 includes a computer 50.
 コンピュータ50は、CPU52、ROM54、RAM56、入出力(I/O)ポート58を備えている。CPU52から入出力(I/O)ポート58はバス60により相互に接続されている。 The computer 50 includes a CPU 52, a ROM 54, a RAM 56, and an input / output (I / O) port 58. The CPU 52 and the input / output (I / O) port 58 are connected to each other by a bus 60.
 CPU52は、手術用顕微鏡100A1の全体を制御する制御部の一例である。ROM54は、各種プログラム及び各種パラメータ等を予め記憶したメモリである。RAM56は、各種プログラムの実行時のワークエリア等として用いられるメモリである。 The CPU 52 is an example of a control unit that controls the entire surgical microscope 100A1. The ROM 54 is a memory that stores various programs and various parameters in advance. The RAM 56 is a memory used as a work area or the like when executing various programs.
 入出力(I/O)ポート58には、キーボード等の入力装置63、2次記憶装置62、右側撮像素子15R、左側撮像素子15L、表示装置100AD、立体感増加スイッチ64、及び立体感減少スイッチ66が接続されている。
 立体感増加スイッチ64は、第1右側偏向素子22R、及び右側絞り12Rを対物レンズ11の光軸110から離れる方向(X(正)方向)に移動させること及び当該移動の停止を選択的に指示する。立体感増加スイッチ64は、第1左側偏向素子22L、及び左側絞り12Lを対物レンズ11の光軸110から離れる方向(X(負)方向)に移動させること及び当該移動の停止を選択的に指示する。
 立体感減少スイッチ66は、第1右側偏向素子22R、及び右側絞り12Rを対物レンズ11の光軸110に近づく方向(X(負)方向)に移動させること及び当該移動の停止を選択的に指示する。立体感減少スイッチ66は、第1左側偏向素子22L、及び左側絞り12Lを対物レンズ11の光軸110から近づく方向(X(正)方向)に移動させること及び当該移動の停止を選択的に指示する。
 入出力(I/O)ポート58には、右側照明光源16R及び左側照明光源16Lが接続されている。
 入出力(I/O)ポート58には、第1右側偏向素子移動部68R、第1左側偏向素子移動部68L、右側絞り移動部69R、及び左側絞り移動部69Lが接続されている。
 入出力(I/O)ポート58には、右側撮像光学装置移動部72、左側撮像光学装置移動部74、右側照明光学系及び光源移動部76、及び左側照明光学系及び光源移動部78が接続されている。
The input / output (I / O) port 58 has an input device 63 such as a keyboard, a secondary storage device 62, a right imaging element 15R, a left imaging element 15L, a display device 100AD, a stereoscopic effect increasing switch 64, and a stereoscopic effect decreasing switch. 66 is connected.
The stereoscopic effect increasing switch 64 moves the first right deflection element 22R and the right diaphragm 12R in a direction away from the optical axis 110 of the objective lens 11 (X (positive) direction) and selectively instructs the stop of the movement. To do. The stereoscopic effect increasing switch 64 moves the first left-side deflection element 22L and the left-side diaphragm 12L in a direction (X (negative) direction) away from the optical axis 110 of the objective lens 11 and selectively instructs the stop of the movement. To do.
The stereoscopic effect reducing switch 66 moves the first right deflection element 22R and the right diaphragm 12R in a direction (X (negative) direction) approaching the optical axis 110 of the objective lens 11 and selectively instructs the stop of the movement. To do. The stereoscopic effect reducing switch 66 moves the first left-side deflection element 22L and the left-side diaphragm 12L in a direction (X (positive) direction) approaching from the optical axis 110 of the objective lens 11 and selectively instructs the stop of the movement. To do.
A right side illumination light source 16R and a left side illumination light source 16L are connected to the input / output (I / O) port 58.
The input / output (I / O) port 58 is connected to the first right-side deflection element moving unit 68R, the first left-side deflection element moving unit 68L, the right-side aperture moving unit 69R, and the left-side aperture moving unit 69L.
A right side imaging optical device moving unit 72, a left side imaging optical device moving unit 74, a right side illumination optical system and light source moving unit 76, and a left side illumination optical system and light source moving unit 78 are connected to the input / output (I / O) port 58. Has been done.
 入出力(I/O)ポート58には、右側変倍光学系レンズ駆動部80及び左側変倍光学系レンズ駆動部82と、右側絞り径変更部85及び左側絞り径変更部87とが接続されている。
 なお、これらの移動部(68R、68Lから78)及び駆動部(80、82)、及び変更部(85、87)は、モータ等によって構成されている。
To the input / output (I / O) port 58, a right-side variable magnification optical system lens driving unit 80 and a left-side variable magnification optical system lens driving unit 82, a right-side aperture diameter changing unit 85 and a left-side aperture diameter changing unit 87 are connected. ing.
The moving parts (68R, 68L to 78), the drive parts (80, 82), and the changing parts (85, 87) are composed of a motor or the like.
 右側撮像光学装置移動部72に代えて個別に、右側変倍光学系移動部、右側結像光学系移動部、及び右側撮像素子移動部を備えるようにしてもよい。左側撮像光学装置移動部74に代えて個別に、左側変倍光学系移動部、左側結像光学系移動部、及び左側撮像素子移動部を備えるようにしてもよい。
 本実施形態における手術用顕微鏡は、右側照明光学系及び光源移動部76に代えて、各光学系及び各光源を個別の移動部によって移動させるようにしてもよい。
Instead of the right imaging optical device moving unit 72, a right magnification varying optical system moving unit, a right imaging optical system moving unit, and a right imaging element moving unit may be provided separately. Instead of the left-side imaging optical device moving unit 74, a left-side variable magnification optical system moving unit, a left-side imaging optical system moving unit, and a left-side imaging element moving unit may be separately provided.
In the surgical microscope according to this embodiment, each optical system and each light source may be moved by an individual moving unit instead of the right side illumination optical system and the light source moving unit 76.
 右側に関する移動部(68R、69R、72、76)は一体で構成してもよい。左側に関する各移動部(68L、69L、74、78)は一体で構成してもよい。 -The moving parts (68R, 69R, 72, 76) on the right side may be integrally configured. The moving parts (68L, 69L, 74, 78) on the left side may be integrally formed.
 第1右側偏向素子移動部68R及び第1左側偏向素子移動部68Lは、右側観察光の光軸および左側観察光の光軸が対象物の一例である眼の位置でなす実体角が連続的に変化するように、第1右側偏向素子22Rと第1左側偏向素子22Lの少なくとも1つを移動させる。 第1右側偏向素子移動部68R及び第1左側偏向素子移動部68Lは、本開示の技術の「移動部」の一例である。右側絞り径変更部85及び左側絞り径変更部87は、本開示の技術の「絞り径調整部」の一例である。 In the first right-side deflection element moving unit 68R and the first left-side deflection element moving unit 68L, the solid angle formed by the optical axes of the right-side observation light and the left-side observation light at the eye position, which is an example of the object, is continuous. At least one of the first right deflection element 22R and the first left deflection element 22L is moved so as to change. The first right-side deflection element moving unit 68R and the first left-side deflection element moving unit 68L are examples of the “moving unit” in the technology of the present disclosure. The right side diaphragm diameter changing unit 85 and the left side diaphragm diameter changing unit 87 are examples of the “diaphragm diameter adjusting unit” of the technology of the present disclosure.
 2次記憶装置62は、後述する立体感増加調整プログラム及び立体感減少調整プログラムと、絞り径調整プログラムとが記憶されている。 The secondary storage device 62 stores a three-dimensional effect increase adjustment program and a three-dimensional effect decrease adjustment program, which will be described later, and an aperture diameter adjustment program.
 CPU52は、右側照明光源16R及び左側照明光源16Lを点灯させる。これにより、右側斜照明光及び左側斜照明光により対象物(例、眼、物体面)を照明する。 The CPU 52 turns on the right side illumination light source 16R and the left side illumination light source 16L. Thereby, the object (eg, eye, object plane) is illuminated with the right oblique illumination light and the left oblique illumination light.
 眼からの右側観察光及び左側観察光は、右側撮像素子15R及び左側撮像素子15Lに結像し、右側撮像素子15Rから右側画像信号が、左側撮像素子15Lから左側画像信号がコンピュータ50に入力される。 The right side observation light and the left side observation light from the eyes are focused on the right side image pickup element 15R and the left side image pickup element 15L, and the right side image signal is input from the right side image pickup element 15R and the left side image signal is input to the computer 50 from the left side image pickup element 15L. It
 CPU52は、右側画像信号及び左側画像信号に基づいて右眼用画像及び左眼用画像を生成する。CPU52は、必ずしも、右側画像信号に基づいて右眼用画像を作り、また、左側画像信号に基づいて左眼用画像を作るとは限らない。例えば、CPU52は、右側画像信号に基づいて左眼用画像を作り、また、左側画像信号に基づいて右眼用画像を作ったりしてもよい。CPU52は、右側画像信号に基づいて右眼用画像及び左眼用画像の双方を作ったり、左側画像信号に基づいて左眼用画像及び右眼用画像の双方を作ったりしてもよい。CPU52は、右側画像信号及び左側画像信号の双方に基づいて、右眼用画像及び左眼用画像の各々を作成してもよい。
 なお、CPU52により制御される画像作成装置を更に備え、CPU52の制御に従って、画像作成装置が、右側画像信号及び左側画像信号に基づいて右眼用画像及び左眼用画像を生成するようにしてもよい。
The CPU 52 generates a right eye image and a left eye image based on the right side image signal and the left side image signal. The CPU 52 does not always create the right-eye image based on the right-side image signal, and does not necessarily create the left-eye image based on the left-side image signal. For example, the CPU 52 may create a left-eye image based on the right-side image signal, or may create a right-eye image based on the left-side image signal. The CPU 52 may create both the right-eye image and the left-eye image based on the right-side image signal, or may create both the left-eye image and the right-eye image based on the left-side image signal. The CPU 52 may create each of the right-eye image and the left-eye image based on both the right-side image signal and the left-side image signal.
An image creating apparatus controlled by the CPU 52 may be further provided, and the image creating apparatus may generate an image for the right eye and an image for the left eye based on the right image signal and the left image signal under the control of the CPU 52. Good.
 CPU52は、表示装置100ADの画面の右眼用表示領域に、右眼用画像を表示させる。表示装置100ADの画面の左眼用表示領域に、左眼用画像を表示させる。上記のように、右側観察光及び左側観察光により、手術対象の眼(例えば、右眼)の視差のある立体視の右眼用画像及び左眼用画像が表示装置100ADの画面に表示される。ユーザ150は、偏光眼鏡を介して立体視の画像を認識し、脳内で、右眼用画像及び左眼用画像を合成する。表示装置100ADは、ラインバイラインで右眼用画像及び左眼用画像を表示する。また、表示装置100ADは、ラインバイラインで右眼用画像及び左眼用画像を表示し、その映像を偏光眼鏡を介して立体視することに代えて、右眼用画像及び左眼用画像を、例えば、1/60秒の時間差で交互に表示し、その映像に同期して右眼及び左眼のシャッターを開閉するシャッター方式の眼鏡を介して立体視するようにしてもよい。更に、眼鏡に代えて、双眼ビューワを用いてもよい。具体的には、表示装置100ADの画面の右眼用領域に、右眼用画像を表示させる。表示装置100ADの画面の左眼用領域に、左眼用画像を表示させる。表示装置100ADの画面の右眼用領域とユーザ150の右眼との間に配置する右光路中の光学系により、右眼用画像をユーザ150の右眼に導く。同様に、表示装置100ADの画面の左眼用領域とユーザ150の左眼との間に配置する左光路中の光学系により、左眼用画像をユーザ150の左眼に導く。 The CPU 52 displays the right-eye image in the right-eye display area on the screen of the display device 100AD. The image for the left eye is displayed in the display area for the left eye on the screen of the display device 100AD. As described above, the right-eye observation light and the left-eye observation light cause the stereoscopic right-eye image and left-eye image having a parallax of the surgery target eye (for example, the right eye) to be displayed on the screen of the display device 100AD. .. The user 150 recognizes the stereoscopic image through the polarized glasses, and synthesizes the right-eye image and the left-eye image in the brain. The display device 100AD displays the image for the right eye and the image for the left eye on a line-by-line basis. Further, the display device 100AD displays the image for the right eye and the image for the left eye on a line-by-line basis, and instead of stereoscopically viewing the image through the polarizing glasses, the image for the right eye and the image for the left eye are displayed. For example, the images may be alternately displayed with a time difference of 1/60 second, and stereoscopic viewing may be performed through shutter-type glasses that open and close the shutters of the right eye and the left eye in synchronization with the image. Further, a binocular viewer may be used instead of the glasses. Specifically, the right-eye image is displayed in the right-eye area on the screen of the display device 100AD. The left-eye image is displayed in the left-eye area on the screen of the display device 100AD. The right-eye image is guided to the right eye of the user 150 by the optical system in the right optical path arranged between the right-eye region of the screen of the display device 100AD and the right eye of the user 150. Similarly, the image for the left eye is guided to the left eye of the user 150 by the optical system in the left optical path arranged between the left eye region of the screen of the display device 100AD and the left eye of the user 150.
 表示装置100ADは、手術用顕微鏡本体100AHの上に配置されているが、本開示の技術は、これに限定されない。 The display device 100AD is arranged on the surgical microscope main body 100AH, but the technique of the present disclosure is not limited to this.
 図25に示すように、表示装置100ADは、ユーザ150が手術用顕微鏡の正面側から視認している状態での手術用顕微鏡本体100AHを対象とした第1の視野領域から外れた領域に画像100AD1を表示する。例えば、ユーザ150が手術用顕微鏡の正面側から視認している状態において、手術用顕微鏡本体100AHは、上記第1の視野領域に重ならない位置に配置されている。 As shown in FIG. 25, the display device 100AD has an image 100AD1 in an area outside the first visual field area for the surgical microscope main body 100AH with the user 150 visually recognizing the surgical microscope from the front side. Is displayed. For example, in a state in which the user 150 is viewing from the front side of the surgical microscope, the surgical microscope body 100AH is arranged at a position that does not overlap the first visual field region.
 また、図26に示すように、手術用顕微鏡本体100AHは、ユーザ150が手術用顕微鏡の正面側から視認している状態での表示装置100ADが空間に表示する画像100AD2を対象とした第2の視野領域から外れた領域に配置される。 In addition, as shown in FIG. 26, the surgical microscope main body 100AH includes a second image 100AD2 displayed in the space by the display device 100AD in a state where the user 150 is viewing the front side of the surgical microscope. It is arranged in a region outside the visual field region.
 立体感増加スイッチ64及び立体感減少スイッチ66は、手術用顕微鏡本体100AHの鉛直下の床の上に配置し、ユーザ150が自身の足で、立体感増加スイッチ64及び立体感減少スイッチ66を操作(オン・オフ)する。立体感増加スイッチ64及び立体感減少スイッチ66の各々は、フットスイッチである。 The three-dimensional effect increasing switch 64 and the three-dimensional effect decreasing switch 66 are arranged on the floor vertically below the surgical microscope main body 100AH, and the user 150 operates the three-dimensional effect increasing switch 64 and the three-dimensional effect decreasing switch 66 with his / her own feet. (Turn on / off) Each of the stereoscopic effect increasing switch 64 and the stereoscopic effect decreasing switch 66 is a foot switch.
 第1右側偏向素子移動部68Rは、第1右側偏向素子用移動機構を介して、第1右側偏向素子22RをX方向に移動させる。その際、右側絞り移動部69Rは、第1右側偏向素子22Rの移動に基づいて、具体的には、第1右側偏向素子22Rの移動に連動して、右側絞り12RをX方向に移動させる。
 第1左側偏向素子移動部68Lは、第1左側偏向素子用移動機構を介して、第1左側偏向素子22LをX方向に移動させる。その際、左側絞り移動部69Lは、第1左側偏向素子22Lの移動に基づいて、具体的には、第1左側偏向素子22Lの移動に連動して、左側絞り12LをX方向に移動させる。
The first right-side deflection element moving unit 68R moves the first right-side deflection element 22R in the X direction via the first right-side deflection element moving mechanism. At that time, the right diaphragm moving unit 69R moves the right diaphragm 12R in the X direction based on the movement of the first right deflecting element 22R, specifically, in conjunction with the movement of the first right deflecting element 22R.
The first left-side deflection element moving unit 68L moves the first left-side deflection element 22L in the X direction via the first left-side deflection element moving mechanism. At that time, the left diaphragm moving unit 69L moves the left diaphragm 12L in the X direction based on the movement of the first left deflecting element 22L, specifically, in conjunction with the movement of the first left deflecting element 22L.
 右側撮像光学装置移動部72は、右側撮像光学装置用移動機構を介して、右側変倍光学系13R、右側結像光学系14R、及び右側撮像素子15RをY(正)方向に移動させる。左側撮像光学装置移動部74は、左側撮像光学装置用移動機構を介して、左側変倍光学系13L、左側結像光学系14L、及び左側撮像素子15LをY(正)方向に移動させる。 The right imaging optical device moving unit 72 moves the right variable magnification optical system 13R, the right imaging optical system 14R, and the right imaging device 15R in the Y (positive) direction via the right imaging optical device moving mechanism. The left imaging optical device moving unit 74 moves the left zoom optical system 13L, the left imaging optical system 14L, and the left imaging device 15L in the Y (positive) direction via the left imaging optical device moving mechanism.
 右側照明光学系及び光源移動部76は、右側照明光源光学系用移動機構を介して、右側照明光源光学系用基板により右側照明光源16R及び右側照明光学系17RをX方向に移動させる。左側照明光学系及び光源移動部78は、左側照明光源光学系用移動機構を介して、左側照明光源光学系用基板により左側照明光源16L及び左側照明光学系17LをX方向に移動させる。 The right side illumination optical system and light source moving unit 76 moves the right side illumination light source 16R and the right side illumination optical system 17R in the X direction by the right side illumination light source optical system substrate through the right side illumination light source optical system moving mechanism. The left side illumination optical system and light source moving unit 78 moves the left side illumination light source 16L and the left side illumination optical system 17L in the X direction by the left side illumination light source optical system substrate via the left side illumination light source optical system moving mechanism.
 なお、上記各移動機構としては、例えば、ラックアンドピニオンを用いることができる。 A rack and pinion, for example, can be used as each of the above moving mechanisms.
 図6Aには、立体感増加調整プログラムに従ってCPU52が実行する立体感増加調整処理のフローチャートが示されている。図6Bには、立体感減少調整プログラムに従ってCPU52が実行する立体感減少調整処理のフローチャートが示されている。図9には、第1右側偏向素子22R及び第1左側偏向素子第1左側偏向素子22Lを、対物レンズ11の光軸110から離れる方向に移動させる時(後述するステップ84)の手術用顕微鏡100A1の様子(断面図)が示されている。 FIG. 6A shows a flowchart of the stereoscopic effect increasing adjustment process executed by the CPU 52 in accordance with the stereoscopic effect increasing adjusting program. FIG. 6B shows a flowchart of the stereoscopic effect reduction adjusting process executed by the CPU 52 according to the stereoscopic effect reducing adjustment program. FIG. 9 shows a surgical microscope 100A1 when the first right-side deflection element 22R and the first left-side deflection element 22L are moved in a direction away from the optical axis 110 of the objective lens 11 (step 84 described later). Is shown (cross-sectional view).
 図6Aに示す立体感増加調整処理は、立体感増加スイッチ64がオンされたときにスタートし、ステップ84で、CPU52の制御により、図8及び図9に示すように、第1右側偏向素子移動部68R及び右側絞り移動部69Rは、各移動機構を介して各基板により、右側観察光の光軸15RIが対象物の位置でなす実体角が大きくなるように、具体的には、第1右側偏向素子22R、及び右側絞り12Rを対物レンズ11の光軸110から離れる方向(X(正)方向)に移動させる。CPU52の制御により、第1左側偏向素子移動部68L及び左側絞り移動部69Lは、各移動機構を介して各基板により、第1左側偏向素子22L、及び左側絞り12Lを、左側観察光の光軸15LIが対象物の位置でなす実体角が大きくなるように、具体的には、対物レンズ11の光軸110から離れる方向(X(負)方向)に移動させる。右側撮像光学装置移動部72は、上記移動機構を介して上記基板により右側変倍光学系13R、右側結像光学系14R、及び右側撮像素子15RをY(正)方向に移動させる。CPU52の制御により、左側撮像光学装置移動部74は、上記移動機構を介して上記基板により左側変倍光学系13L、左側結像光学系14L、及び左側撮像素子15LをY(正)方向に移動させる。右側照明光学系及び光源移動部76は、上記移動機構を介して上記基板により右側照明光源16R、及び右側照明光学系17RをX(正)方向に移動させる。左側照明光学系及び光源移動部78は、左側照明光源16L、及び左側照明光学系17LをX(負)の方向に移動させる。 The stereoscopic effect increasing adjustment process shown in FIG. 6A starts when the stereoscopic effect increasing switch 64 is turned on, and in step 84, by the control of the CPU 52, as shown in FIG. 8 and FIG. The portion 68R and the right-side diaphragm moving portion 69R are configured so that the respective substrates through the respective moving mechanisms increase the substantial angle formed by the optical axis 15RI of the right-side observation light at the position of the object, specifically, the first right side. The deflecting element 22R and the right diaphragm 12R are moved in the direction away from the optical axis 110 of the objective lens 11 (X (positive) direction). Under the control of the CPU 52, the first left-side deflection element moving unit 68L and the left-side aperture moving unit 69L cause the first left-side deflection element 22L and the left-side aperture 12L to move to the optical axis of the left-side observation light by each substrate through each moving mechanism. Specifically, the objective lens 11 is moved in a direction away from the optical axis 110 (X (negative) direction) so that the substantial angle formed by the 15LI at the position of the object becomes large. The right imaging optical device moving unit 72 moves the right variable magnification optical system 13R, the right imaging optical system 14R, and the right imaging device 15R in the Y (positive) direction by the substrate via the moving mechanism. Under the control of the CPU 52, the left imaging optical device moving unit 74 moves the left zoom optical system 13L, the left imaging optical system 14L, and the left imaging device 15L in the Y (positive) direction by the substrate via the moving mechanism. Let The right side illumination optical system and light source moving unit 76 moves the right side illumination light source 16R and the right side illumination optical system 17R in the X (positive) direction by the substrate via the moving mechanism. The left side illumination optical system and light source moving unit 78 moves the left side illumination light source 16L and the left side illumination optical system 17L in the X (negative) direction.
 これにより、右側観察光の光軸15RI及び左側観察光の光軸15LIが対象物の位置でなす実体角を大きくすることができる。よって、右側観察光及び左側観察光の各々により表示装置100ADに表示された右眼用画像と左眼用画像を見たユーザ150の立体感を増すことができる。 This makes it possible to increase the substantial angle formed by the optical axis 15RI of the right observation light and the optical axis 15LI of the left observation light at the position of the object. Therefore, it is possible to increase the stereoscopic effect of the user 150 viewing the right-eye image and the left-eye image displayed on the display device 100AD by each of the right-side observation light and the left-side observation light.
 ステップ86で、CPU52は、立体感増加スイッチ64がオフされたか否かを判断する。立体感増加スイッチ64がオフされなかったと判断された場合には、立体感増加調整処理は、ステップ84に戻る。よって、ステップ84で移動される対象の上記各構成が移動され続ける。 At step 86, the CPU 52 determines whether or not the stereoscopic effect increasing switch 64 is turned off. If it is determined that the stereoscopic effect increasing switch 64 has not been turned off, the stereoscopic effect increasing adjustment processing returns to step 84. Therefore, the above-mentioned components to be moved in step 84 continue to be moved.
 ステップ86で、立体感増加スイッチ64がオフされたと判断された場合には、ステップ88で、CPU52は、上記各移動部(68Rから78)を停止する。これにより、ステップ84で移動される対象の上記各構成の移動が停止する。ステップ88が終了すると立体感調整処理は終了する。 When it is determined in step 86 that the stereoscopic effect increasing switch 64 has been turned off, the CPU 52 stops each of the moving parts (68R to 78) in step 88. As a result, the movement of each of the above components to be moved in step 84 is stopped. When step 88 ends, the stereoscopic effect adjustment process ends.
 図6Bに示す立体感減少調整処理は、立体感減少スイッチ66がオンされたときにスタートし、ステップ92で、CPU52の制御により、第1右側偏向素子移動部68R及び右側絞り移動部69Rは、各移動機構を介して各基板により、右側観察光の光軸15RIが対象物の位置でなす実体角が小さくなるように、具体的には、第1右側偏向素子22R、及び右側絞り12Rを光軸に近づく方向(X(負)方向)に移動させる。第1左側偏向素子移動部68L及び左側絞り移動部69Lは、各移動機構を介して各基板により、第1左側偏向素子22L、及び左側絞り12Lを光軸に近づく方向(X(正)方向)に移動させる。CPU52の制御により、右側撮像光学装置移動部72は、上記移動機構を介して上記基板により右側変倍光学系13R、右側結像光学系14R、及び右側撮像素子15RをY(負)方向に移動させる。左側撮像光学装置移動部74は、上記移動機構を介して上記基板により左側変倍光学系13L、左側結像光学系14L、及び左側撮像素子15LをY(負)方向に移動させる。CPU52の制御により、右側照明光学系及び光源移動部76は、上記移動機構を介して上記基板により右側照明光源16R、及び右側照明光学系17RX(負)方向に移動させる。CPU52の制御により、左側照明光学系及び光源移動部78は、上記移動機構を介して上記基板により左側照明光源16L、及び左側照明光学系17LをX(正)方向に移動にさせる。 The stereoscopic effect reduction adjusting process shown in FIG. 6B starts when the stereoscopic effect reducing switch 66 is turned on, and in step 92, the first right deflection element moving unit 68R and the right diaphragm moving unit 69R are controlled by the CPU 52. Specifically, the first right deflection element 22R and the right diaphragm 12R are optically moved by the respective substrates via the respective movement mechanisms so that the physical angle formed by the optical axis 15RI of the right observation light at the position of the object becomes small. It is moved in the direction approaching the axis (X (negative) direction). The first left-side deflection element moving unit 68L and the left-side diaphragm moving unit 69L are arranged in a direction (X (positive) direction) in which the first left-side deflection element 22L and the left-side diaphragm 12L are close to the optical axis by each substrate through each moving mechanism. Move to. Under the control of the CPU 52, the right imaging optical device moving unit 72 moves the right variable magnification optical system 13R, the right imaging optical system 14R, and the right imaging device 15R in the Y (negative) direction by the substrate via the moving mechanism. Let The left imaging optical device moving unit 74 moves the left variable magnification optical system 13L, the left imaging optical system 14L, and the left imaging device 15L in the Y (negative) direction by the substrate via the moving mechanism. Under the control of the CPU 52, the right side illumination optical system and light source moving unit 76 moves the right side illumination light source 16R and the right side illumination optical system 17RX (negative) by the substrate via the moving mechanism. Under the control of the CPU 52, the left side illumination optical system and light source moving unit 78 moves the left side illumination light source 16L and the left side illumination optical system 17L in the X (positive) direction by the substrate via the moving mechanism.
 これにより、右側観察光の光軸15RI及び左側観察光の光軸15LIが対象物の位置でなす実体角を小さくすることができる。よって、右側観察光及び左側観察光の各々により表示装置100ADに表示された右眼用画像と左眼用画像を見たユーザ150の立体感を減らすことができる。 This makes it possible to reduce the substantial angle formed by the optical axis 15RI of the right side observation light and the optical axis 15LI of the left side observation light at the position of the object. Therefore, it is possible to reduce the stereoscopic effect of the user 150 viewing the right-eye image and the left-eye image displayed on the display device 100AD by each of the right-side observation light and the left-side observation light.
 ステップ94で、CPU52は、立体感減少スイッチ66がオフされたか否かを判断する。立体感減少スイッチ66がオフされなかったと判断された場合には、立体感減少調整処理はステップ92に戻る。よって、ステップ92で移動される対象の上記各構成が移動され続ける。 At step 94, the CPU 52 determines whether or not the stereoscopic effect reduction switch 66 has been turned off. When it is determined that the stereoscopic effect reducing switch 66 has not been turned off, the stereoscopic effect reducing adjustment processing returns to step 92. Therefore, the above-mentioned components to be moved in step 92 are continuously moved.
 ステップ94で、立体感減少スイッチ66がオフされたと判断された場合には、ステップ96で、CPU52は、上記各移動部(68Rから78)を停止する。これにより、ステップ92で移動される対象の上記各構成の移動が停止する。ステップ96が終了すると立体感調整処理は終了する。 If it is determined in step 94 that the stereoscopic effect reduction switch 66 has been turned off, the CPU 52 stops each of the moving parts (68R to 78) in step 96. As a result, the movement of each of the above-described components to be moved in step 92 is stopped. When step 96 ends, the stereoscopic effect adjustment process ends.
 ステップ84及びステップ92における右側の各構成の移動と、左側の各構成の移動とは、対物レンズ11の光軸110を基準に、左右対称の移動である。例えば、上記のように、右側の各構成(22R、12R、16R、17R)は、X(正)方向に移動し、左側の各構成(22L、12L、16L、17L)は、X(負)方向に移動に移動する。右側の構成(13R、14R、15R)及び左側の構成(13L、14L、15L)は、Y方向に移動する。
 ステップ84(図6A)及びステップ92(図6B)で、上記各構成が移動する距離は同じである。即ち、ステップ84(図6A)及びステップ92(図6B)で、第1右側偏向素子22R、及び右側絞り12Rと、第1左側偏向素子22L、及び左側絞り12Lとを移動させ続けることに伴い、右側変倍光学系13R、右側結像光学系14R、及び右側撮像素子15Rと、左側変倍光学系13L、左側結像光学系14L、及び左側撮像素子15Lと、右側照明光源16R、及び右側照明光学系17Rと、左側照明光源16L、及び左側照明光学系17Lとを移動させ続ける。これは、各光源(16R、16L)からの左右の各照明光及び左右の観察光の光路長が、第1右側偏向素子22R、及び右側絞り12Rと、第1左側偏向素子22L、及び左側絞り12Lとを移動させることに伴い、変わらないようにするためである。
 照明光の光路長は、光源(16R、16L)から眼を介して右側撮像素子15R、又は、左側撮像素子15Lまでの光路長である。観察光の光路長は、眼から右側撮像素子15R、又は、左側撮像素子15Lまでの光路長である。
 照明の光路長は、各光源(16R、16L)から眼までの光路長、又はその一部の光路長である。観察光の光路長は、一例として、眼から右側撮像素子15R又は左側撮像素子15Lまでの光路長、又はその一部の光路長である。
 このように左右の光の光路長が変わらないので、上記各構成の移動中、左右の観察光が、右側撮像素子15R及び左側撮像素子15Lにおいて結像する際に、収差が悪くならないまま結像し続けるようにすることができる。
The movement of each component on the right side and the movement of each component on the left side in steps 84 and 92 are symmetrical with respect to the optical axis 110 of the objective lens 11. For example, as described above, the right side configurations (22R, 12R, 16R, 17R) move in the X (positive) direction, and the left side configurations (22L, 12L, 16L, 17L) move in the X (negative) direction. Move to move in the direction. The right configuration (13R, 14R, 15R) and the left configuration (13L, 14L, 15L) move in the Y direction.
In step 84 (FIG. 6A) and step 92 (FIG. 6B), the distance traveled by each of the above components is the same. That is, in step 84 (FIG. 6A) and step 92 (FIG. 6B), the first right deflection element 22R and the right diaphragm 12R, and the first left deflection element 22L and the left diaphragm 12L are continuously moved, Right zoom optical system 13R, right imaging optical system 14R, and right imaging element 15R, left zoom optical system 13L, left imaging optical system 14L, left imaging element 15L, right illumination light source 16R, and right illumination The optical system 17R, the left side illumination light source 16L, and the left side illumination optical system 17L are continuously moved. This is because the left and right illumination lights from the respective light sources (16R, 16L) and the left and right observation light have optical path lengths of the first right deflection element 22R and the right diaphragm 12R, the first left deflection element 22L, and the left diaphragm. This is because it does not change as the 12L is moved.
The optical path length of the illumination light is the optical path length from the light source (16R, 16L) to the right imaging element 15R or the left imaging element 15L via the eye. The optical path length of the observation light is the optical path length from the eye to the right imaging element 15R or the left imaging element 15L.
The optical path length of the illumination is the optical path length from each light source (16R, 16L) to the eye, or a part of the optical path length. The optical path length of the observation light is, for example, the optical path length from the eye to the right image pickup element 15R or the left image pickup element 15L, or a part of the optical path length.
In this way, since the optical path lengths of the left and right lights do not change, when the left and right observation lights are imaged on the right side image pickup device 15R and the left side image pickup device 15L during the movement of the above-mentioned respective configurations, the image formation is performed without the aberration being deteriorated. You can keep going.
 また、ステップ84及びステップ92では、第1右側偏向素子22Rは、第1右側偏向素子22RのX-Y平面に対する角度が一定に保たれるように、移動される。より詳細には、第1右側偏向素子22Rは、第1右側偏向素子22Rの照明光及び右側観察光を反射する面と、対物レンズ11の光軸110と、のなす角度が一定に保たれるように、移動される。上記のように、第1右側偏向素子22Rが配置(固定)されている基板が、当該なす角度が一定に保たれるように、X方向に移動するように構成されているからである。よって、各照明光及び右側観察光の各々の第1右側偏向素子22Rへの入射角度が一定のまま維持される。同様に、ステップ84及びステップ92では、第1左側偏向素子22Lは、第1左側偏向素子22LのX-Y平面に対する角度が一定に保たれるように、移動される。より詳細には、第1左側偏向素子22Lは、第1左側偏向素子22Lの照明光及び左側観察光を反射する面と、対物レンズ11の光軸110と、のなす角度が一定に保たれるように、移動される。上記のように、第1左側偏向素子22Lが配置(固定)されている基板が、当該なす角度が一定に保たれるように、X方向に移動するように構成されているからである。よって、各照明光及び左側観察光の各々の第1左側偏向素子22Lへの入射角度が一定のまま維持される。
 第1右側偏向素子22Rの面は、右側観察光を形成し、第1左側偏向素子22Lの面は、左側観察光を形成する。
 このように第1右側偏向素子22R及び第1左側偏向素子22Lの各々の上記面と、対物レンズ11の光軸110と、のなす角度が一定に保たれるので、各観察光の像の中心と撮像素子(15R、15L)の中心がずれなくなり、即ち、第1右側偏向素子22R及び第1左側偏向素子22Lの各々の上記面上の使われる位置(偏向位置)が変わらないので、ずれを補償するための不要な移動機構を排除することができ、さらに偏向素子(22R、22L)の有効径(サイズ)を小さくすることができる。
Further, in steps 84 and 92, the first right-side deflection element 22R is moved so that the angle of the first right-side deflection element 22R with respect to the XY plane is kept constant. More specifically, the first right-side deflection element 22R maintains a constant angle between the surface of the first right-side deflection element 22R that reflects the illumination light and the right-side observation light and the optical axis 110 of the objective lens 11. So that it will be moved. This is because, as described above, the substrate on which the first right-side deflection element 22R is arranged (fixed) is configured to move in the X direction so that the angle formed is kept constant. Therefore, the angles of incidence of the illumination light and the right-side observation light on the first right-side deflection element 22R are kept constant. Similarly, in steps 84 and 92, the first left-side deflection element 22L is moved so that the angle of the first left-side deflection element 22L with respect to the XY plane is kept constant. More specifically, the first left-side deflection element 22L maintains a constant angle between the surface of the first left-side deflection element 22L that reflects the illumination light and the left-side observation light and the optical axis 110 of the objective lens 11. So that it will be moved. This is because, as described above, the substrate on which the first left-side deflection element 22L is arranged (fixed) is configured to move in the X direction so that the angle formed is kept constant. Therefore, the incident angles of the illumination light and the left-side observation light on the first left-side deflection element 22L are maintained constant.
The surface of the first right deflection element 22R forms the right observation light, and the surface of the first left deflection element 22L forms the left observation light.
In this way, since the angle formed between the surfaces of the first right-side deflection element 22R and the first left-side deflection element 22L and the optical axis 110 of the objective lens 11 is kept constant, the center of the image of each observation light is kept. And the centers of the image pickup elements (15R, 15L) are not displaced, that is, the positions (deflection positions) used on the above-mentioned surfaces of the first right deflection element 22R and the first left deflection element 22L do not change. An unnecessary moving mechanism for compensation can be eliminated, and the effective diameter (size) of the deflecting elements (22R, 22L) can be reduced.
 また、ステップ84及びステップ92では、第1右側偏向素子22R及び第1左側偏向素子22LのX方向の移動の際、右側照明光源16R及び右側照明光学系17Rと左側照明光源16L及び左側照明光学系17LとをXの方向に移動させる。左右の観察光の光軸(15RI、15LI)と、照明光の光軸(16RI、16LI)と、が眼の位置でなす角度が一定に保たれる。 Further, in step 84 and step 92, when the first right-side deflection element 22R and the first left-side deflection element 22L are moved in the X direction, the right-side illumination light source 16R and the right-side illumination optical system 17R, the left-side illumination light source 16L and the left-side illumination optical system. 17L and are moved in the X direction. The angle formed by the optical axis (15RI, 15LI) of the left and right observation light and the optical axis (16RI, 16LI) of the illumination light at the eye position is kept constant.
 次に、第1の実施の形態における変倍に応じた絞り径を調整する絞り径調整処理を説明する。
 上記のように、右側絞り12R及び左側絞り12Lは、可変絞りである。右側変倍光学系レンズ駆動部80は、右側変倍光学系13Rのレンズ群G1、G2、G3、G4の少なくとも1をZ方向に移動させて、変倍をすることができる。左側変倍光学系レンズ駆動部82も同様に、左側変倍光学系13Lのレンズ群G1、G2、G3、G4の少なくとも1をZ方向に移動させて、変倍をすることができる。
 上記変倍により、左側撮像素子15Lと右側撮像素子15Rとに入射し結像する左側観察光と右側観察光との光量が変動する。よって、左側観察光と右側観察光との光量が適正な量で左側撮像素子15Lと右側撮像素子15Rとに結像されるように、絞り径調整処理で、変倍に応じた絞り径を調整する。
Next, the aperture diameter adjusting process for adjusting the aperture diameter according to the magnification change in the first embodiment will be described.
As described above, the right diaphragm 12R and the left diaphragm 12L are variable diaphragms. The right-side variable power optical system lens drive section 80 can move at least one of the lens groups G1, G2, G3, and G4 of the right-side variable power optical system 13R in the Z direction to change the magnification. Similarly, the left-side variable power optical system lens driving unit 82 can also perform variable power by moving at least one of the lens groups G1, G2, G3, and G4 of the left-side variable optical system 13L in the Z direction.
Due to the above-mentioned magnification change, the light amounts of the left-side observation light and the right-side observation light that are incident on the left-side image sensor 15L and the right-side image sensor 15R to form an image change. Therefore, the aperture diameter adjusting process adjusts the aperture diameter according to the magnification change so that the left observation light and the right observation light are imaged on the left image sensor 15L and the right image sensor 15R in proper amounts. To do.
 図7Aには、左右の各絞りの絞り径についてズーム倍率ごとに予め定められた最大径を示すグラフが示されている。各ズーム倍率で当該最大径を超えて絞り径を大きくすると、観察光学系の設計上意図していない左側観察光と右側観察光とが観察光学系に入ってきてしまうため、左側撮像素子15Lと右側撮像素子15Rとに結像する際に収差の発生が大きくなってしまう可能性がある。2次記憶装置62には、図7Aに示す、各ズーム倍率と、ズーム倍率ごとに予め定められた絞り径の最大値との関係が記憶されている。図7Aに示すように、当該関係は、ズーム倍率が大きくなるに従って絞り径の最大値も大きくなっている。 FIG. 7A shows a graph showing the maximum diameters of the left and right diaphragms which are predetermined for each zoom magnification. If the aperture diameter is increased to exceed the maximum diameter at each zoom magnification, the left side observation light and the right side observation light, which are not intended in the design of the observation optical system, enter the observation optical system. When the image is formed on the right imaging element 15R, the occurrence of aberration may increase. The secondary storage device 62 stores the relationship between each zoom magnification and the maximum value of the aperture diameter predetermined for each zoom magnification, as shown in FIG. 7A. As shown in FIG. 7A, in the relationship, the maximum value of the aperture diameter increases as the zoom magnification increases.
 図7Bには、絞り径調整プログラムに従ってCPU52が実行する絞り径調整処理のフローチャートの一例が示されている。 FIG. 7B shows an example of a flowchart of the aperture diameter adjustment processing executed by the CPU 52 according to the aperture diameter adjustment program.
 絞り径調整処理は、入力装置63を介して倍率が入力されたときにスタートする。入力装置63を介して倍率が入力されると、CPU52は、右側変倍光学系13R及び左側変倍光学系13Lの各々のレンズ群G1、G2、G3、G4の少なくとも1つZ方向に移動して、入力された倍率になるように、右側変倍光学系レンズ駆動部80及び左側変倍光学系レンズ駆動部82を変倍制御する。 ㆍ The aperture diameter adjustment process starts when a magnification is input via the input device 63. When the magnification is input through the input device 63, the CPU 52 moves in the Z direction at least one of the lens groups G1, G2, G3, and G4 of the right-side variable magnification optical system 13R and the left-side variable magnification optical system 13L. Then, the right-side variable magnification optical system lens driving unit 80 and the left-side variable magnification optical system lens driving unit 82 are controlled to change the magnification so that the input magnification is obtained.
 このような変倍制御と共に、絞り径調整処理が実行される。ステップ102で、CPU52は、入力された倍率に対応する絞り径の最大値を、2次記憶装置62に記憶された上記関係から取り込む。ステップ103で、CPU52は、現在の絞り径が、ステップ102で取り込んだ最大径より大きいか否かを判断する。右側絞り12R及び左側絞り12Lの各々の絞り径を変更する場合、CPU52は、右側絞り径変更部85及び左側絞り径変更部87の制御量(現在の絞り径に対応)を2次記憶装置62に記憶している。ステップ103では、右側絞り径変更部85及び左側絞り径変更部87の制御量(現在の絞り径に対応)を2次記憶装置62から読み出し、読み出した右側絞り径変更部85及び左側絞り径変更部87の制御量(現在の絞り径に対応)がステップ102で取り込んだ最大径より大きいか否かを判断する。 ▽ Along with such variable magnification control, aperture diameter adjustment processing is executed. In step 102, the CPU 52 takes in the maximum value of the aperture diameter corresponding to the input magnification from the above relationship stored in the secondary storage device 62. In step 103, the CPU 52 determines whether the current aperture diameter is larger than the maximum diameter captured in step 102. When changing the respective aperture diameters of the right diaphragm 12R and the left diaphragm 12L, the CPU 52 sets the control amounts (corresponding to the current diaphragm diameter) of the right diaphragm diameter changing unit 85 and the left diaphragm diameter changing unit 87 to the secondary storage device 62. I remember. In step 103, the control amounts (corresponding to the current diaphragm diameter) of the right diaphragm diameter changing section 85 and the left diaphragm diameter changing section 87 are read from the secondary storage device 62, and the read right diaphragm diameter changing section 85 and left diaphragm diameter changing are read. It is determined whether the control amount of the portion 87 (corresponding to the current aperture diameter) is larger than the maximum diameter captured in step 102.
 現在の絞り径が最大径より大きいと判断されなかった場合、左側観察光と右側観察光との光量が多すぎるわけではないので、絞り径調整処理は終了する。 If it is not determined that the current aperture diameter is larger than the maximum diameter, the amount of left-side observation light and right-side observation light is not too large, so the aperture diameter adjustment process ends.
 現在の絞り径が最大径より大きいと判断された場合、ステップ104で、CPU52は、右側変倍光学系13R及び左側変倍光学系13Lの各々のレンズ群G1、G2、G3、G4の少なくとも1つZ方向への移動による変倍に連動して、右側絞り12R及び左側絞り12Lの各々の絞り径が変更されるように、右側絞り径変更部85及び左側絞り径変更部87を制御する。具体的には、CPU52は、倍率が低倍端から高倍端へ変倍するのに連動して、各絞り径が大きくなるように、右側絞り径変更部85及び左側絞り径変更部87を制御する。この場合、CPU52は、各絞り径が予め定められた最大径以下となるように、右側絞り径変更部85及び左側絞り径変更部87を制御する。 When it is determined that the current aperture diameter is larger than the maximum diameter, in step 104, the CPU 52 determines at least one of the lens groups G1, G2, G3, and G4 of the right-side variable power optical system 13R and the left-side variable power optical system 13L. The right side aperture diameter changing unit 85 and the left side aperture diameter changing unit 87 are controlled so that the aperture diameters of the right side aperture stop 12R and the left side aperture stop 12L are changed in association with the magnification change by the movement in the Z direction. Specifically, the CPU 52 controls the right diaphragm diameter changing unit 85 and the left diaphragm diameter changing unit 87 so that the respective diaphragm diameters increase in association with the magnification changing from the low magnification end to the high magnification end. To do. In this case, the CPU 52 controls the right diaphragm diameter changing unit 85 and the left diaphragm diameter changing unit 87 so that each diaphragm diameter is equal to or smaller than a predetermined maximum diameter.
 例えば、入力された倍率がMbであった場合、CPU52は、2次記憶装置62に記憶された上記関係から、絞り径の最大値としてAbを取り込む(ステップ102)。現在の絞り径がAbより小さいAaの場合には、ステップ103が否定判定となり、絞り径調整処理は終了する。現在の絞り径がAbであり、倍率としてMaが入力された場合、現在の絞り径Abは、Maに対する最大値Aaより大きい(ステップ103が肯定判定)。ステップ104で、右側絞り12R及び左側絞り12Lの各々の絞り径が最大値Aaに制御される。
 よって、右側絞り12R及び左側絞り12Lの各々の絞り径を、倍率に応じた最大値に制御できる。倍率に基づいて各絞り径を調整することができる。
 図7Aに示す上記関係は、ズーム倍率が大きくなるに従って絞り径の最大値が大きくなっている。従って、低倍端から高倍端に変倍するのに連動して、右側絞り12R及び左側絞り12Lの各々の絞り径を大きくすることができる。
For example, when the input magnification is Mb, the CPU 52 fetches Ab as the maximum value of the aperture diameter from the above relationship stored in the secondary storage device 62 (step 102). If the current aperture diameter is Aa smaller than Ab, the negative determination is made in step 103, and the aperture diameter adjustment processing ends. When the current aperture diameter is Ab and Ma is input as the magnification, the current aperture diameter Ab is larger than the maximum value Aa for Ma (step 103 is positive). In step 104, the aperture diameters of the right-side aperture 12R and the left-side aperture 12L are controlled to the maximum value Aa.
Therefore, the aperture diameters of the right-side aperture 12R and the left-side aperture 12L can be controlled to the maximum value according to the magnification. Each aperture diameter can be adjusted based on the magnification.
In the above relationship shown in FIG. 7A, the maximum value of the aperture diameter increases as the zoom magnification increases. Therefore, it is possible to increase the aperture diameter of each of the right diaphragm 12R and the left diaphragm 12L in association with the zooming from the low magnification end to the high magnification end.
 なお、フットスイッチに倍率を上げる上昇ボタンと下降ボタンを用意し、上昇ボタン/下降ボタンが押され続けている間、倍率が上がり/下がり続けるようにしてもよい。そして、最大径を超えた場合は、逐一最大径に、設定するようにしてもよい。
 なお、絞り径の調整は、変倍に連動せず、右側絞り12R及び左側絞り12Lの各々絞り径が左右対称になるように、行うようにしてもよい。
The foot switch may be provided with an up button and a down button for increasing the magnification, and the magnification may be continuously increased / decreased while the up button / down button is continuously pressed. When the maximum diameter is exceeded, the maximum diameter may be set one by one.
It should be noted that the adjustment of the diaphragm diameter may be performed so that the right diaphragm 12R and the left diaphragm 12L are bilaterally symmetrical, without interlocking with the magnification change.
 図7に示す上記関係を記憶する点、及び図8に示す絞り径調整処理は、他の実施の形態及び変形例も同様である。 The point of storing the above relationship shown in FIG. 7 and the aperture diameter adjustment processing shown in FIG. 8 are the same in other embodiments and modifications.
 従来の顕微鏡では、ユーザの正面に、顕微鏡で得られた画像を表示するモニタを配置すると、顕微鏡が比較的大型であるので、顕微鏡がユーザの視線を邪魔するので、ユーザの正面にモニタを配置することはできなかった。これは、特に、眼科手術時のように、ユーザが座位状態で手術することが多い場合には有用である。
 これに対し、本実施の形態の顕微鏡では、顕微鏡を比較的小型化し、ユーザの正面にモニタを配置しても顕微鏡がユーザの視線を邪魔しないので、ユーザの正面にモニタを配することができる。顕微鏡を比較的小型化するため、上記のように本実施の形態では、対物レンズ上で水平方向に複数回、偏向素子によって照明光および観察光を偏向させている。
In a conventional microscope, if a monitor that displays an image obtained by the microscope is placed in front of the user, the microscope is relatively large, so the microscope obstructs the line of sight of the user, so the monitor is placed in front of the user. I couldn't. This is particularly useful when the user often operates in a sitting position, such as during eye surgery.
On the other hand, in the microscope of the present embodiment, the microscope is relatively small, and even if the monitor is arranged in front of the user, the microscope does not obstruct the user's line of sight, so that the monitor can be arranged in front of the user. .. In order to make the microscope relatively small, as described above, in the present embodiment, the illumination light and the observation light are deflected by the deflecting element a plurality of times in the horizontal direction on the objective lens.
 上記のように特許文献1の手術用顕微鏡は、ユーザが術中において観察対象が表示されたディスプレイ等を見やすいように構成されていなかった。
 しかし、第1の実施の形態では、第1右側偏向素子22R及び第2右側偏向素子23Rは、右側観察光を、対物レンズ11の光軸110に対して交差する方向を含む平面(例えば、XY平面)に沿って、2回反射する。また、第1左側偏向素子22L及び第2左側偏向素子23Lは、左側観察光を、対物レンズ11の光軸110に対して交差する方向を含む平面(例えば、XY平面)に沿って、2回反射する。よって、手術用顕微鏡100A1を比較的に薄くすることができる。
As described above, the surgical microscope of Patent Document 1 is not configured so that the user can easily see the display or the like on which the observation target is displayed during the operation.
However, in the first embodiment, the first right-side deflection element 22R and the second right-side deflection element 23R have a plane (for example, XY) including the direction in which the right-side observation light intersects the optical axis 110 of the objective lens 11. It reflects twice along the plane. In addition, the first left-side deflection element 22L and the second left-side deflection element 23L are provided twice with the left-side observation light along a plane (for example, an XY plane) including a direction intersecting the optical axis 110 of the objective lens 11. reflect. Therefore, the surgical microscope 100A1 can be made relatively thin.
 このように、第1の実施の形態では、ユーザが術中において観察対象が表示されたディスプレイ等を見やすいように、ユーザの視界を遮らないようにすることができる。 As described above, in the first embodiment, it is possible to prevent the user's view from being obstructed so that the user can easily see the display or the like on which the observation target is displayed during the operation.
 また、本実施形態において、右側照明光源16Rからの右側照明光は、右側照明光学系17R、第2右側偏向素子23R、第1右側偏向素子22R、及び対物レンズ11を透過して、眼を照明する。左側照明光源16Lからの左側照明光は、左側照明光学系17L、第2左側偏向素子23L、第1左側偏向素子22L、及び対物レンズ11を透過して眼を照明する。よって、第1の実施の形態の手術用顕微鏡100A1は、薄くできると共にフレアを少なくすることができる。 In the present embodiment, the right side illumination light from the right side illumination light source 16R is transmitted through the right side illumination optical system 17R, the second right side deflection element 23R, the first right side deflection element 22R, and the objective lens 11 to illuminate the eye. To do. The left side illumination light from the left side illumination light source 16L is transmitted through the left side illumination optical system 17L, the second left side deflection element 23L, the first left side deflection element 22L, and the objective lens 11 to illuminate the eye. Therefore, the surgical microscope 100A1 of the first embodiment can be made thin and flare can be reduced.
 第1の実施の形態では、手術用顕微鏡100A1は、第1右側偏向素子22Rの移動及び第1左側偏向素子22Lの移動によって右側観察光の光軸15RI及び左側観察光の光軸15LIが対象物の位置でなす実体角を所定の角度ごとに連続的に大きくしたり小さくしたりする。例えば、手術用顕微鏡100A1は、手術中(手術用顕微鏡100A1の稼働中(使用中))において上記対象物の位置でなす実体角が互いに異なる第1の実体角、第2の実体角、及び第3の実体角に連続的に変化するように、第1右側偏向素子22Rと第1左側偏向素子22Lとの少なくとも一方の素子を、対応する第1右側偏向素子移動部68Rと第1左側偏向素子移動部68Lとの少なくとも一方の移動部によって連続的に移動させる。よって、右側観察光及び左側観察光の各々により表示装置100ADに表示された右眼用画像と左眼用画像とを見たユーザ150の立体感を増したり減らしたりすることができる。 In the first embodiment, in the surgical microscope 100A1, the optical axis 15RI of the right side observation light and the optical axis 15LI of the left side observation light are moved by the movement of the first right side deflection element 22R and the first left side deflection element 22L. The solid angle formed at the position is continuously increased or decreased by a predetermined angle. For example, the surgical microscope 100A1 has a first body angle, a second body angle, and a second body angle which are different from each other in the body angle during the operation (during operation (in use) of the surgery microscope 100A1). At least one of the first right-side deflecting element 22R and the first left-side deflecting element 22L is made to correspond to the first right-side deflecting element moving unit 68R and the first left-side deflecting element so as to continuously change to the substantial angle of 3. It is continuously moved by at least one of the moving parts 68L. Therefore, it is possible to increase or decrease the stereoscopic effect of the user 150 viewing the right-eye image and the left-eye image displayed on the display device 100AD by each of the right-side observation light and the left-side observation light.
 また、本実施形態の第1右側偏向素子移動部68Rは、対象物と右側観察光学系(右側変倍光学系13R及び右側結像光学系14R)との間の光路において第1右側偏向素子22Rを移動させ、又は、第1左側偏向素子移動部68Lは、対象物と左側観察光学系(左側変倍光学系13L及び左側結像光学系14L)との間の光路において第1左側偏向素子22Lを移動させる。例えば、第1右側偏向素子移動部68R又は第1左側偏向素子移動部68Lは、対物レンズ11と観察光学系(右側観察光学系、左側観察光学系)との間の光路、対象物と対物レンズ11との間の光路、又は観察光(右側観察光、左側観察光)の光路において第1右側偏向素子22R又は第1左側偏向素子22Lを視差方向(例、ユーザが視差をつけたい方向、眼幅方向)に対応した所定方向に移動させる。 Further, the first right-side deflection element moving unit 68R of the present embodiment includes the first right-side deflection element 22R in the optical path between the object and the right-side observation optical system (right-side variable magnification optical system 13R and right-side imaging optical system 14R). Or the first left-side deflection element moving unit 68L moves the first left-side deflection element 22L in the optical path between the object and the left-side observation optical system (the left-side variable magnification optical system 13L and the left-side imaging optical system 14L). To move. For example, the first right-side deflection element moving unit 68R or the first left-side deflection element moving unit 68L includes an optical path between the objective lens 11 and the observation optical system (right-side observation optical system, left-side observation optical system), an object and the objective lens. 11 or an optical path of observation light (right-side observation light, left-side observation light) through the first right-side deflection element 22R or the first left-side deflection element 22L in the parallax direction (eg, the direction in which the user wants to make parallax, the eye, It is moved in a predetermined direction corresponding to the width direction).
 第1の実施の形態は、手術中において画像(例、視差画像)を視認しながら、ユーザ150が立体感を連続的に調整することができる。例えば、観察物を立体視させる手術用実体顕微鏡の左右像をカメラで撮影して3Dモニタ(ビューワー)などに表示して見ると、通常の接眼で見るより立体感が過剰につきすぎたり、逆に不足したりする場合がある。これは、輻輳による立体視が顕微鏡の左右観察光路の軸間距離、像倍率、被写界深度だけでなく、モニタの大きさ、モニタの視距離、立体視における個人差などにも影響を受けて変化してしまうためである。
 このような場合、手術用顕微鏡では、3Dモニタの大きさ、モニタの視距離、立体視における個人差、及び手術のシーンなどによって、必要とされる立体の飛び出し量(立体角)の微妙な調整が必要となる。
 本実施の形態では、ユーザ150は、手術中において立体感増加スイッチ64や立体感減少スイッチ66を選択的に操作して、上記の実体角を連続的に(もしくは段階的に)変化させることによって表示される画像の立体感を最適に調整することができる。このように、ユーザ150は、環境や手術のシーン等に合わせて立体感を個別にかつ簡単に調整することができる。なお、本実施形態において、上記の実体角は、上記の偏向素子や移動部などによって、円滑に変化すること、又は段階的に変化することを含む連続的に変化する。
In the first embodiment, the user 150 can continuously adjust the stereoscopic effect while visually observing an image (eg, parallax image) during surgery. For example, if the left and right images of a stereoscopic microscope for surgery that makes an object to be observed stereoscopically photographed by a camera and displayed on a 3D monitor (viewer), the stereoscopic effect becomes excessive, and conversely There may be a shortage. This is because stereoscopic vision due to convergence is affected not only by the distance between the axes of the left and right observation optical paths of the microscope, image magnification and depth of field, but also by the size of the monitor, the viewing distance of the monitor, individual differences in stereoscopic vision, etc. This is because it will change.
In such a case, in the surgical microscope, the required amount of protrusion of the solid (solid angle) is finely adjusted depending on the size of the 3D monitor, the viewing distance of the monitor, the individual difference in stereoscopic vision, the surgical scene, and the like. Is required.
In the present embodiment, the user 150 selectively operates the three-dimensional effect increasing switch 64 and the three-dimensional effect decreasing switch 66 during surgery to change the above-mentioned body angle continuously (or stepwise). It is possible to optimally adjust the stereoscopic effect of the displayed image. In this way, the user 150 can individually and easily adjust the stereoscopic effect according to the environment, the scene of surgery, and the like. In addition, in the present embodiment, the body angle described above changes smoothly due to the deflection element, the moving unit, or the like, including a smooth change or a stepwise change.
 第1の実施の形態では、各観察光学系の瞳の位置を、第1右側偏向素子22Rと第2右側偏向素子23Rとの間及び第1左側偏向素子22Lと第2左側偏向素子23Lとの間に各々位置させる。このように、瞳の位置を考慮して第1右側偏向素子22R及び第1左側偏向素子22Lを光路に配置させることによって、第1右側偏向素子22R及び第1左側偏向素子22Lの各々の光を反射する領域(有効径)を比較的小さくすることができる。したがって、第1右側偏向素子22R及び第1左側偏向素子22Lのサイズをできるだけ小さくすることができるため、本実施形態の手術顕微鏡では、立体感を減少するために第1右側偏向素子22Rと第1左側偏向素子22Lとを互いに接近させる際に、第1右側偏向素子22Rと第1左側偏向素子22Lとが干渉することを防止することができる。
 例えば、表示される対象物の画像の立体感を増やしたり減らしたりする場合、右側変倍光学系13Rと左側変倍光学系13Lとを実体角が変わるように移動させればよいが、該立体感を減少させる場合、それら変倍光学系のレンズ径による干渉の影響を考えると、該立体感を大きく減少させることは難しい。しかしながら、本実施形態における手術用顕微鏡は、第1右側偏向素子22Rと第1左側偏向素子22Lとを用いて立体感を調整するため、該立体感は第1右側偏向素子22Rと第1左側偏向素子22Lとの軸間距離に依存する。上記した通り、第1右側偏向素子22Rと第1左側偏向素子22Lとは、光を反射する有効径を観察光学系(例、左右側の変倍光学系13R、13L)のレンズ径より小さくすることができるため、第1右側偏向素子22Rと第1左側偏向素子22Lとの軸間距離を狭めることによって実体角を小さくでき立体感を大きく減少させることができる。第1右側偏向素子22Rと第1左側偏向素子22Lとの軸間距離は、第1右側偏向素子22Rにおいて右側観察光の光軸15RIが最初に偏向される位置と、第1左側偏向素子22Lにおいて左側観察光の光軸15LIが最初に偏向される位置との視差方向(例、Y方向視でのX方向)における距離を含む。なお、第1右側偏向素子22Rと第1左側偏向素子22Lとの軸間距離は、第1右側偏向素子22Rにおいて右側観察光が入射する有効径の中心と、第1左側偏向素子22Lにおいて左側観察光が入射する有効径の中心との視差方向(例、Y方向視でのX方向)における距離を含む。また、例えば、対物レンズ11を透過した観察光がほぼ平行光として射出される場合、上記の軸間距離は、第1右側偏向素子22Rにおいて右側観察光が偏向される偏向面(例、反射面)における右側観察光の光軸と、第1左側偏向素子22Lにおいて左側観察光が偏向される偏向面における左側観察光の光軸との視差方向(例、Y方向視でのX方向)における距離を含む。
In the first embodiment, the position of the pupil of each observation optical system is set between the first right deflection element 22R and the second right deflection element 23R and between the first left deflection element 22L and the second left deflection element 23L. Place each in between. In this way, by disposing the first right-side deflection element 22R and the first left-side deflection element 22L in the optical path in consideration of the position of the pupil, the respective lights of the first right-side deflection element 22R and the first left-side deflection element 22L are The reflective area (effective diameter) can be made relatively small. Therefore, the sizes of the first right-side deflection element 22R and the first left-side deflection element 22L can be made as small as possible. Therefore, in the surgical microscope of the present embodiment, the first right-side deflection element 22R and the first right-side deflection element 22R are arranged to reduce the stereoscopic effect. It is possible to prevent the first right deflection element 22R and the first left deflection element 22L from interfering with each other when the left deflection element 22L is brought close to each other.
For example, in order to increase or decrease the stereoscopic effect of the image of the displayed object, the right-side variable magnification optical system 13R and the left-side variable magnification optical system 13L may be moved so that the stereoscopic angle changes. When reducing the feeling, it is difficult to greatly reduce the stereoscopic effect, considering the influence of interference due to the lens diameters of the variable power optical systems. However, since the surgical microscope in the present embodiment adjusts the stereoscopic effect by using the first right-side deflection element 22R and the first left-side deflection element 22L, the stereoscopic effect is the first right-side deflection element 22R and the first left-side deflection element. It depends on the axial distance from the element 22L. As described above, the first right-side deflection element 22R and the first left-side deflection element 22L make the effective diameter for reflecting light smaller than the lens diameter of the observation optical system (for example, the left and right variable magnification optical systems 13R and 13L). Therefore, by reducing the axial distance between the first right-side deflection element 22R and the first left-side deflection element 22L, the substantial angle can be reduced and the stereoscopic effect can be greatly reduced. The inter-axis distance between the first right-side deflection element 22R and the first left-side deflection element 22L is determined by the position where the optical axis 15RI of the right-side observation light is first deflected in the first right-side deflection element 22R and the first left-side deflection element 22L. It includes the distance in the parallax direction (eg, the X direction when viewed in the Y direction) from the position where the optical axis 15LI of the left-side observation light is first deflected. The axial distance between the first right-side deflection element 22R and the first left-side deflection element 22L is the center of the effective diameter on which the right-side observation light is incident on the first right-side deflection element 22R and the left-side observation on the first left-side deflection element 22L. It includes the distance in the parallax direction (eg, the X direction when viewed in the Y direction) from the center of the effective diameter on which light is incident. In addition, for example, when the observation light that has passed through the objective lens 11 is emitted as substantially parallel light, the above-mentioned inter-axis distance has a deflection surface (eg, a reflection surface) on which the right observation light is deflected by the first right deflection element 22R. ) In the parallax direction (for example, the X direction when viewed in the Y direction) between the optical axis of the right side observation light and the optical axis of the left side observation light on the deflection surface on which the left side observation light is deflected by the first left deflection element 22L. including.
 上記各効果は、他の実施の形態も同様である。 -Each effect described above is the same in other embodiments.
[第2の実施の形態] [Second Embodiment]
 次に、本開示の技術の第2の実施の形態を説明する。 Next, a second embodiment of the technology of the present disclosure will be described.
 図10には、第2の実施の形態の手術用顕微鏡100B1の上面図が示されている。図11には、手術用顕微鏡100B1の断面図が示されている。 FIG. 10 shows a top view of the surgical microscope 100B1 according to the second embodiment. FIG. 11 shows a sectional view of the surgical microscope 100B1.
 第2の実施の形態の手術用顕微鏡100B1の構成は、第1の実施の形態の手術用顕微鏡100A1(図2A、図2B)と略同様であるので、主として異なる部分を説明する。例えば、手術用顕微鏡100B1は、右側変倍光学系13R、右側結像光学系14R、及び右側撮像素子15Rと、左側変倍光学系13L、左側結像光学系14L、及び左側撮像素子15Lとを備えている。また、手術用顕微鏡100B1は、右側照明光源16R、右側照明光学系17R、左側照明光源16L、及び左側照明光学系17Lを備えている。なお、図10及び図11では、これらの要素(13Rから17L)は省略されている。 The configuration of the surgical microscope 100B1 according to the second embodiment is substantially the same as that of the surgical microscope 100A1 according to the first embodiment (FIGS. 2A and 2B), so mainly different portions will be described. For example, the surgical microscope 100B1 includes a right-side variable magnification optical system 13R, a right-side imaging optical system 14R, and a right-side imaging element 15R, a left-side variable magnification optical system 13L, a left-side imaging optical system 14L, and a left-side imaging element 15L. I have it. The surgical microscope 100B1 includes a right side illumination light source 16R, a right side illumination optical system 17R, a left side illumination light source 16L, and a left side illumination optical system 17L. Note that these elements (13R to 17L) are omitted in FIGS. 10 and 11.
 手術用顕微鏡100B1は、第1右側偏向素子22R、第2右側偏向素子23R、第1左側偏向素子22L、及び第2左側偏向素子23Lに代えて、次の素子を有する。即ち、手術用顕微鏡100B1は、第1右側偏向素子122R、第2右側偏向素子123R、及び第3右側偏向素子124Rと、第1左側偏向素子122L、第2左側偏向素子123L、及び第3左側偏向素子124Lと、を備えている。
 第1右側偏向素子122R、第2右側偏向素子123R、及び第3右側偏向素子124Rと、第1左側偏向素子122L、第2左側偏向素子123L、及び第3左側偏向素子124Lとは、本開示の技術の「偏向素子」の一例である。
 第1右側偏向素子122R、第2右側偏向素子123R、及び第3右側偏向素子124Rは、本開示の技術の「第1の複数の偏向素子」の一例であり、第1左側偏向素子122L、第2左側偏向素子123L、及び第3左側偏向素子124Lは、本開示の技術の「第2の複数の偏向素子」の一例である。
 第3右側偏向素子124R及び第3左側偏向素子124Lは、本開示の技術の「透過反射素子」の一例である。
 図10及び図11では図示を省略しているが、右側絞り12Rは、例えば、第2右側偏向素子123Rと第3右側偏向素子124Rとの間に配置され、左側絞り12Lは、例えば、第2左側偏向素子123Lと第3左側偏向素子124Lとの間に配置されている。
The surgical microscope 100B1 has the following elements in place of the first right-side deflection element 22R, the second right-side deflection element 23R, the first left-side deflection element 22L, and the second left-side deflection element 23L. That is, the surgical microscope 100B1 includes the first right-side deflection element 122R, the second right-side deflection element 123R, the third right-side deflection element 124R, the first left-side deflection element 122L, the second left-side deflection element 123L, and the third left-side deflection. And an element 124L.
The first right-side deflection element 122R, the second right-side deflection element 123R, and the third right-side deflection element 124R, the first left-side deflection element 122L, the second left-side deflection element 123L, and the third left-side deflection element 124L are disclosed in this disclosure. It is an example of a "deflection element" of the technology.
The first right-side deflection element 122R, the second right-side deflection element 123R, and the third right-side deflection element 124R are examples of the “first plurality of deflection elements” in the technology of the present disclosure, and the first left-side deflection element 122L and the The second left-side deflection element 123L and the third left-side deflection element 124L are examples of the “second plurality of deflection elements” in the technology of the present disclosure.
The third right-side deflection element 124R and the third left-side deflection element 124L are examples of the “transmissive reflection element” in the technology of the present disclosure.
Although not shown in FIGS. 10 and 11, the right diaphragm 12R is disposed, for example, between the second right deflecting element 123R and the third right deflecting element 124R, and the left diaphragm 12L is, for example, the second diaphragm. It is arranged between the left side deflection element 123L and the third left side deflection element 124L.
 右側照明光源16Rからの右側照明光は、右側照明光学系17Rにより整形され、第3右側偏向素子124Rを透過し、第2右側偏向素子123R及び第1右側偏向素子122Rで反射し、対物レンズ11を透過して、眼を照明する。 The right side illumination light from the right side illumination light source 16R is shaped by the right side illumination optical system 17R, transmitted through the third right side deflection element 124R, reflected by the second right side deflection element 123R and the first right side deflection element 122R, and the objective lens 11 To illuminate the eye.
 左側照明光源16Lからの左側照明光は、左側照明光学系17Lにより整形され、第3左側偏向素子124Lを透過し、第2左側偏向素子123L及び第1左側偏向素子122Lで反射し、対物レンズ11を透過して眼を照明する。 The left side illumination light from the left side illumination light source 16L is shaped by the left side illumination optical system 17L, passes through the third left side deflection element 124L, is reflected by the second left side deflection element 123L and the first left side deflection element 122L, and the objective lens 11 To illuminate the eye.
 第1右側偏向素子122Rは、対物レンズ11からの右側観察光をY(正)方向に反射し、第2右側偏向素子123Rは、第1右側偏向素子122Rで反射した右側観察光を、X(正)方向に反射する。第3右側偏向素子124Rは、第2右側偏向素子123Rで反射した右側観察光を、Y(正)方向に反射する。第3右側偏向素子124Rで反射した右側観察光は、右側変倍光学系13Rに到達する。 The first right deflection element 122R reflects the right observation light from the objective lens 11 in the Y (positive) direction, and the second right deflection element 123R converts the right observation light reflected by the first right deflection element 122R into X ( Reflect in the positive direction. The third right-side deflection element 124R reflects the right-side observation light reflected by the second right-side deflection element 123R in the Y (positive) direction. The right side observation light reflected by the third right side deflection element 124R reaches the right side variable magnification optical system 13R.
 第1左側偏向素子122Lは、対物レンズ11からの左側観察光をY(正)方向に反射し、第2左側偏向素子123Lは、第1左側偏向素子122Lで反射した左側観察光を、X(負)方向に反射する。第3左側偏向素子124Lは、第2左側偏向素子123Lで反射した左側観察光を、Y(正)方向に反射する。第3左側偏向素子124Lで反射した左側観察光は、左側変倍光学系13Lに到達する。 The first left side deflection element 122L reflects the left side observation light from the objective lens 11 in the Y (positive) direction, and the second left side deflection element 123L converts the left side observation light reflected by the first left side deflection element 122L into X ( Reflect in the negative direction. The third left-side deflection element 124L reflects the left-side observation light reflected by the second left-side deflection element 123L in the Y (positive) direction. The left-side observation light reflected by the third left-side deflecting element 124L reaches the left-side variable magnification optical system 13L.
 第1右側偏向素子122R、第2右側偏向素子123R、第1左側偏向素子122L、及び第2左側偏向素子123Lとしては、例えば、受けた光を反射する反射ミラー、ハーフミラー、又は、プリズムミラー等が用いられる。 The first right-side deflection element 122R, the second right-side deflection element 123R, the first left-side deflection element 122L, and the second left-side deflection element 123L are, for example, a reflection mirror, a half mirror, or a prism mirror that reflects received light. Is used.
 第3右側偏向素子124R及び第3左側偏向素子124Lとしては、例えばハーフミラー、ビームスプリッタ又は、ダイクロイックミラー等が用いられる。 As the third right-side deflection element 124R and the third left-side deflection element 124L, for example, a half mirror, a beam splitter, a dichroic mirror or the like is used.
 図12には、第1右側偏向素子122R及び第2右側偏向素子123Rと、第1左側偏向素子122L及び第2左側偏向素子123Lとが移動するときの手術用顕微鏡100B1の様子(上面図)が示され、図13には、第1右側偏向素子122R及び第2右側偏向素子123Rと、第1左側偏向素子122L及び第2左側偏向素子123Lとが移動するときの手術用顕微鏡100B1の様子(断面図)が示されている。 FIG. 12 shows a state (top view) of the surgical microscope 100B1 when the first right deflection element 122R and the second right deflection element 123R and the first left deflection element 122L and the second left deflection element 123L move. As shown in FIG. 13, a state of the surgical microscope 100B1 when the first right deflection element 122R and the second right deflection element 123R and the first left deflection element 122L and the second left deflection element 123L move (cross section). Figure) is shown.
 第1右側偏向素子122R、第2右側偏向素子123R、及び右側絞り12Rは、各々の移動部に配置されている。各々の移動部は、各移動機構(例えば、ラックアンドピニオン)により、各移動部を介して、第1右側偏向素子122R、第2右側偏向素子123R、及び右側絞り12Rを、視差方向に対応した所定方向(例、対物レンズ11の光軸110に対してX方向)に移動させる。 The first right-side deflection element 122R, the second right-side deflection element 123R, and the right-side diaphragm 12R are arranged in each moving part. Each moving unit corresponds the parallax direction to the first right-side deflection element 122R, the second right-side deflection element 123R, and the right-side diaphragm 12R through each moving unit by each moving mechanism (for example, rack and pinion). It is moved in a predetermined direction (for example, the X direction with respect to the optical axis 110 of the objective lens 11).
 第1左側偏向素子122L、第2左側偏向素子123L、及び左側絞り12Lは、各々の移動部に配置されている。各々の移動部は、各移動機構(例えば、ラックアンドピニオン)により、各移動部を介して、第1左側偏向素子122L、第2左側偏向素子123L、及び左側絞り12Lを、視差方向に対応した所定方向(例、対物レンズ11の光軸110に対してX方向)に移動させる。 The first left-side deflection element 122L, the second left-side deflection element 123L, and the left-side diaphragm 12L are arranged in each moving part. Each moving unit corresponds the parallax direction of the first left-side deflecting element 122L, the second left-side deflecting element 123L, and the left-side diaphragm 12L via each moving unit by each moving mechanism (for example, rack and pinion). It is moved in a predetermined direction (for example, the X direction with respect to the optical axis 110 of the objective lens 11).
 なお、第2の実施の形態では、移動部(68R、68L)は省略されている。右側絞り移動部69R及び左側絞り移動部69Lはそれぞれ、右側絞り12R及び左側絞り12Lを移動させる。 The moving parts (68R, 68L) are omitted in the second embodiment. The right diaphragm moving unit 69R and the left diaphragm moving unit 69L move the right diaphragm 12R and the left diaphragm 12L, respectively.
 第1右側偏向素子122R及び第2右側偏向素子123Rと第1左側偏向素子122L及び第2左側偏向素子123Lとの各移動部は、本開示の技術の「移動部」の一例である。 The moving parts of the first right-side deflection element 122R and the second right-side deflection element 123R and the first left-side deflection element 122L and the second left-side deflection element 123L are examples of the “moving part” of the technology of the present disclosure.
 第2の実施の形態も第1の実施の形態と同様の効果を有する。
 例えば、上記のように、対物レンズ上で水平方向に複数回、偏向素子によって照明光および観察光を偏向させることにより顕微鏡を比較的小型化しているので、ユーザの正面にモニタを配することができる。
 また、上記のように、照明光及び右側観察光は、右側照明光源16R、第1右側偏向素子122R、及び右側変倍光学系13Rの範囲の光路において、XY平面に沿って移動する。このように、照明光及び左側観察光は、左側照明光源16L、第1左側偏向素子122L、及び左側変倍光学系13Lの範囲の光路において、XY平面に沿って移動する。手術用顕微鏡100B1を比較的に薄くすることができる。
The second embodiment also has the same effect as the first embodiment.
For example, as described above, since the microscope is relatively downsized by deflecting the illumination light and the observation light by the deflecting element a plurality of times in the horizontal direction on the objective lens, it is possible to arrange a monitor in front of the user. it can.
Further, as described above, the illumination light and the right-side observation light move along the XY plane in the optical path in the range of the right-side illumination light source 16R, the first right-side deflection element 122R, and the right-side variable magnification optical system 13R. In this way, the illumination light and the left-side observation light move along the XY plane in the optical path in the range of the left-side illumination light source 16L, the first left-side deflection element 122L, and the left-side variable magnification optical system 13L. The surgical microscope 100B1 can be made relatively thin.
[第3の実施の形態] [Third Embodiment]
 次に、本開示の技術の第3の実施の形態を説明する。第3の実施の形態の100C1の構成は、第2の実施の形態の手術用顕微鏡100B1と略同様であるので、主として異なる部分を説明する。 Next, a third embodiment of the technology of the present disclosure will be described. The configuration of 100C1 of the third embodiment is substantially the same as that of the surgical microscope 100B1 of the second embodiment, so mainly different portions will be described.
 図14には、第3の実施の形態の100C1の上面図が示され、図15には、第3の実施の形態の100C1の断面図が示されている。 FIG. 14 shows a top view of the 100C1 of the third embodiment, and FIG. 15 shows a cross-sectional view of the 100C1 of the third embodiment.
 第3の実施の形態の100C1では、第2の実施の形態の手術用顕微鏡100B1の第1右側偏向素子122Rと第1左側偏向素子122Lとが配置される代わりに、第1右側偏向素子122Rと第1左側偏向素子122Lとが一体化された共通の第1右側及び左側偏向素子122RLで構成されている。図14、15に示す通り、第1右側及び左側偏向素子122RLは、上記した複数の偏向素子(第1の複数の偏向素子及び第2の複数の偏向素子)のうち、対物レンズ11を透過した観察光(右側観察光、左側観察光)を最初に反射して偏向する偏向素子である。即ち、第1右側偏向素子122R、第2右側偏向素子123R、及び第3右側偏向素子124Rの内の対物レンズ11を透過した右側観察光を最初に反射する第1右側偏向素子122Rと、第1左側偏向素子122L、第2左側偏向素子123L、及び第3左側偏向素子124Lの内の対物レンズ11を透過した左側観察光を最初に反射する第1左側偏向素子122L第1左側偏向素子122Lとが、共通の第1右側及び左側偏向素子122RLで構成されている。
 この場合、後述するように、共通の第1右側及び左側偏向素子122RLと右側変倍光学系13Rとの間に配置され共通の第1右側及び左側偏向素子122RLにより反射された右側観察光を最初に反射して偏向する第2右側偏向素子123Rと、共通の第1右側及び左側偏向素子122RLと左側変倍光学系13Lとの間に配置され共通の第1右側及び左側偏向素子122RLにより反射された左側観察光を最初に反射して偏向する第2左側偏向素子123Lとが各移動部により移動される。
 第1右側及び左側偏向素子122RLは、本開示の技術の「共通の偏向素子」の一例である。第2右側偏向素子123Rは、本開示の技術の「右側観察光を最初に反射する偏向素子」の一例であり、第2左側偏向素子123は、本開示の技術の「左側観察光を最初に反射する偏向素子」の一例である。
In 100C1 of the third embodiment, instead of disposing the first right side deflection element 122R and the first left side deflection element 122L of the surgical microscope 100B1 of the second embodiment, a first right side deflection element 122R The first left-side deflection element 122RL is integrated with the first left-side deflection element 122L to form a common first right-side deflection element 122RL. As shown in FIGS. 14 and 15, the first right-side and left-side deflection elements 122RL pass through the objective lens 11 among the above-mentioned plurality of deflection elements (first plurality of deflection elements and second plurality of deflection elements). The deflecting element first reflects and deflects the observation light (right-side observation light, left-side observation light). That is, the first right-side deflection element 122R, the first right-side deflection element 122R, the second right-side deflection element 123R, and the third right-side deflection element 124R that first reflect the right-side observation light that has passed through the objective lens 11; Among the left-side deflection element 122L, the second left-side deflection element 123L, and the third left-side deflection element 124L, there are a first left-side deflection element 122L and a first left-side deflection element 122L that first reflect the left-side observation light that has passed through the objective lens 11. , A common first right and left deflection element 122RL.
In this case, as will be described later, the right side observation light reflected by the common first right and left deflecting element 122RL is first arranged between the common first right and left deflecting element 122RL and the right variable power optical system 13R. The second right-side deflecting element 123R that reflects and deflects the light to the left, the common first right-side and left-side deflecting element 122RL, and the left-side variable-magnification optical system 13L are arranged and are reflected by the common first right-side and left-side deflecting element 122RL. The second left-side deflection element 123L that first reflects and deflects the left-side observation light is moved by each moving unit.
The first right and left deflection elements 122RL are examples of the “common deflection element” in the technique of the present disclosure. The second right-side deflection element 123R is an example of the “deflection element that first reflects the right-side observation light” in the technology of the present disclosure, and the second left-side deflection element 123 is the “left-side observation light first in the technology of the present disclosure”. It is an example of a “deflecting deflecting element”.
 図16は、第2右側偏向素子123R及び第2左側偏向素子123Lが、対物レンズ11の光軸110に対して交差する方向(例、直交方向、X方向など)に移動する時の手術用顕微鏡100C1の様子(断面図)が示され、図17には、第2右側偏向素子23R及び第2左側偏向素子23Lが、対物レンズ11の光軸110に対して移動する時の手術用顕微鏡100C1の様子(断面図)が示されている。 FIG. 16 is a microscope for operation when the second right-side deflection element 123R and the second left-side deflection element 123L move in a direction intersecting the optical axis 110 of the objective lens 11 (eg, orthogonal direction, X direction, etc.). A state (cross-sectional view) of 100C1 is shown, and in FIG. 17, the second right-side deflection element 23R and the second left-side deflection element 23L of the surgical microscope 100C1 when moving with respect to the optical axis 110 of the objective lens 11 are shown. The situation (cross-sectional view) is shown.
 第3の実施の形態の100C1では、第2右側偏向素子123Rの移動部(68R)は、共通の第1右側及び左側偏向素子122RLにより反射された右側観察光を最初に反射する第2右側偏向素子123Rを、また、第2左側偏向素子123Lの移動部(68L)は、共通の第1右側及び左側偏向素子122RLにより反射された左側観察光を最初に反射する第2左側偏向素子123Lを、各々の移動機構を介して対物レンズ11の光軸110に対して視差方向に移動させる。 In the 100C1 of the third embodiment, the moving part (68R) of the second right side deflection element 123R includes the second right side deflection that first reflects the right side observation light reflected by the common first right side and left side deflection element 122RL. The element 123R, and the moving part (68L) of the second left-side deflection element 123L includes a second left-side deflection element 123L that first reflects the left-side observation light reflected by the common first right-side and left-side deflection element 122RL, The objective lens 11 is moved in the parallax direction with respect to the optical axis 110 via each moving mechanism.
 なお、第3の実施の形態では、移動部(68R、68L)は省略されている。右側絞り移動部69R及び左側絞り移動部69Lはそれぞれ、右側絞り12R及び左側絞り12Lを移動させる。 The moving parts (68R, 68L) are omitted in the third embodiment. The right diaphragm moving unit 69R and the left diaphragm moving unit 69L move the right diaphragm 12R and the left diaphragm 12L, respectively.
 第2右側偏向素子123Rと第2左側偏向素子123Lとの各移動部は、本開示の技術の「移動部」の一例である。 The moving parts of the second right-side deflection element 123R and the second left-side deflection element 123L are examples of the “moving part” in the technology of the present disclosure.
 第3の実施の形態も第1の実施の形態と同様の効果を有する。
 例えば、上記のように、対物レンズ上で水平方向に複数回、偏向素子によって照明光および観察光を偏向させることにより顕微鏡を比較的小型化しているので、ユーザの正面にモニタを配することができる。
 また、上記のように、照明光及び右側観察光は、右側照明光源16R、第1右眼及び左側偏向素子122RL、及び右側変倍光学系13Rの範囲の光路において、XY平面に沿って移動する。このように、照明光及び左側観察光は、左側照明光源16L、第1右眼及び左側偏向素子122RL、及び左側変倍光学系13Lの範囲の光路において、XY平面に沿って移動する。手術用顕微鏡100B1におけるXY平面に直交する方向の厚みを比較的に薄くすることができる。
The third embodiment also has the same effect as that of the first embodiment.
For example, as described above, since the microscope is relatively downsized by deflecting the illumination light and the observation light by the deflecting element a plurality of times in the horizontal direction on the objective lens, it is possible to arrange a monitor in front of the user. it can.
In addition, as described above, the illumination light and the right observation light move along the XY plane in the optical path in the range of the right illumination light source 16R, the first right eye and left deflection element 122RL, and the right variable magnification optical system 13R. .. In this way, the illumination light and the left observation light move along the XY plane in the optical path in the range of the left illumination light source 16L, the first right eye and left deflection element 122RL, and the left variable magnification optical system 13L. The thickness of the surgical microscope 100B1 in the direction orthogonal to the XY plane can be made relatively thin.
[第4の実施の形態] [Fourth Embodiment]
 次に、本開示の技術の第4の実施の形態を説明する。第4の実施の形態の手術用顕微鏡100A2の構成は、第1の実施の形態の手術用顕微鏡100A1と略同様の構成であるので、主として異なる部分を説明する。 Next, a fourth embodiment of the technology of the present disclosure will be described. The configuration of the surgical microscope 100A2 of the fourth embodiment is substantially the same as the configuration of the surgical microscope 100A1 of the first embodiment, so mainly different portions will be described.
 図18は、第4の実施の形態の手術用顕微鏡100A2の断面図が示されている。 FIG. 18 shows a cross-sectional view of the surgical microscope 100A2 according to the fourth embodiment.
 第1の実施の形態の手術用顕微鏡100A1(図2A、図2B)では、眼の表面を照明し、眼の表面からの右側観察光及び左側観察光はそれぞれ右側撮像素子15R及び左側撮像素子15Lに結像する。 In the surgical microscope 100A1 (FIGS. 2A and 2B) of the first embodiment, the surface of the eye is illuminated, and the right side observation light and the left side observation light from the eye surface are respectively captured by the right side imaging element 15R and the left side imaging element 15L. Image on.
 これに対し、第4の実施の形態の手術用顕微鏡100A2は、眼の直近に、手動又は自動で配置される前置レンズ132を備える。前置レンズ132は、非接触タイプと、眼の上に直接設置するコンタクトタイプとがある。前置レンズ132は、凸レンズでも凹レンズでもよい。以下、凸レンズの前置レンズ132を例にとり説明する。
 右側照明光及び左側照明光は、焦点(物体面)を超え、前置レンズ132により、略平行光となり、眼130により眼底に結像する。眼130の眼底からの右側観察光及び左側観察光は、前置レンズ132を介して第1右側偏向素子22R及び第1左側偏向素子第1左側偏向素子22Lに到達する。眼130の眼底からの右側観察光及び左側観察光は、前置レンズ132を介して第1右側偏向素子22R及び第1左側偏向素子22Lに到達する。
On the other hand, the surgical microscope 100A2 according to the fourth embodiment includes the front lens 132 that is manually or automatically arranged in the immediate vicinity of the eye. The front lens 132 includes a non-contact type and a contact type that is directly placed on the eye. The front lens 132 may be a convex lens or a concave lens. The convex lens front lens 132 will be described below as an example.
The right side illumination light and the left side illumination light exceed the focal point (object plane), become substantially parallel light by the front lens 132, and form an image on the fundus by the eye 130. The right side observation light and the left side observation light from the fundus of the eye 130 reach the first right side deflection element 22R and the first left side deflection element 22L via the front lens 132. The right side observation light and the left side observation light from the fundus of the eye 130 reach the first right side deflection element 22R and the first left side deflection element 22L via the front lens 132.
 第4の実施の形態は第1の実施の形態と同様の効果を有するが、更に、前置レンズ132により、眼底の広い範囲を観察することができる。 The fourth embodiment has the same effect as that of the first embodiment, but further the front lens 132 allows observation of a wide range of the fundus.
 第4の実施の形態では、前置レンズ132を備え、右側照明光及び左側照明光は、焦点(物体面)を超え、前置レンズ132により、平行光となり、眼130により眼底に結像する。よって、第4の実施の形態の手術用顕微鏡100A2は、Z方向に長くなるが、薄型であるので、薄型の効果は、第4の実施の形態ではより意義がある。 In the fourth embodiment, the front lens 132 is provided, the right side illumination light and the left side illumination light exceed the focal point (object plane), become parallel light by the front lens 132, and form an image on the fundus by the eye 130. .. Therefore, the surgical microscope 100A2 of the fourth embodiment is long in the Z direction, but is thin, so the thin effect is more significant in the fourth embodiment.
 第2の実施の形態の手術用顕微鏡100B1(図10、図11)の変形例として、また、第3の実施の形態の手術用顕微鏡100C1(図14、図15)の変形例として、それぞれの手術用顕微鏡100B1、100C1でも第4の実施の形態の手術用顕微鏡100A2と同様に前置レンズ132を備えるようにしてもよい。 As a modified example of the surgical microscope 100B1 (FIG. 10, FIG. 11) of the second embodiment and as a modified example of the surgical microscope 100C1 (FIG. 14, FIG. 15) of the third embodiment, respectively. The surgical microscopes 100B1 and 100C1 may also be provided with the front lens 132 as in the surgical microscope 100A2 of the fourth embodiment.
[第5の実施の形態] [Fifth Embodiment]
 次に、本開示の技術の第5の実施の形態を説明する。第5の実施の形態の手術用顕微鏡100A3の構成は、第4の実施の形態の手術用顕微鏡100A2と略同様の構成であるので、主として異なる部分を説明する。 Next, a fifth embodiment of the technology of the present disclosure will be described. The configuration of the surgical microscope 100A3 of the fifth embodiment is substantially the same as that of the surgical microscope 100A2 of the fourth embodiment, so mainly different portions will be described.
 図19には、第5の実施の形態の手術用顕微鏡100A3の断面図が示されている。手術用顕微鏡100A3は、眼内を照明するファイバ140を備えている。 FIG. 19 shows a sectional view of the surgical microscope 100A3 of the fifth embodiment. The surgical microscope 100A3 includes a fiber 140 that illuminates the inside of the eye.
 第5の実施の形態は第4の実施の形態と同様の効果を有するが、更に、徹照及び斜照明に加えて、ファイバ140により、眼内を直接照明することができるという効果を有する。 The fifth embodiment has the same effects as the fourth embodiment, but further has the effect that the fiber 140 can directly illuminate the inside of the eye in addition to transillumination and oblique illumination.
 第2の実施の形態の手術用顕微鏡100B1の変形例、また、第3の実施の形態の手術用顕微鏡100C1の変形例でも、第5の実施の形態の手術用顕微鏡100A3と同様にファイバ140を備えるようにしてもよい。
[第6の実施の形態]
In the modified example of the surgical microscope 100B1 of the second embodiment, and also in the modified example of the surgical microscope 100C1 of the third embodiment, the fiber 140 is provided similarly to the surgical microscope 100A3 of the fifth embodiment. It may be provided.
[Sixth Embodiment]
 次に、本開示の技術の第6の実施の形態を説明する。第6の実施の形態の手術用顕微鏡100A4の構成は、第1の実施の形態の手術用顕微鏡100A1と略同様の構成であるので、主として異なる部分を説明する。 Next, a sixth embodiment of the technology of the present disclosure will be described. The configuration of the surgical microscope 100A4 of the sixth embodiment is substantially the same as the configuration of the surgical microscope 100A1 of the first embodiment, so mainly different portions will be described.
 図20には、第6の実施の形態の手術用顕微鏡100A4の断面図が示されている。 FIG. 20 shows a sectional view of the surgical microscope 100A4 of the sixth embodiment.
 第1の実施の形態では、図2A及び図2Bに示すように、右側照明光源16Rからの右側照明光は、第2右側偏向素子23R、第1右側偏向素子22R、及び対物レンズ11を介して眼に到達する。左側照明光源16Lからの左側照明光は、第2左側偏向素子23L、第1左側偏向素子22L、及び対物レンズ11を介して眼に到達する。 In the first embodiment, as shown in FIGS. 2A and 2B, the right side illumination light from the right side illumination light source 16R passes through the second right side deflection element 23R, the first right side deflection element 22R, and the objective lens 11. Reach the eye. The left side illumination light from the left side illumination light source 16L reaches the eye via the second left side deflection element 23L, the first left side deflection element 22L, and the objective lens 11.
 これに対し、第6の実施の形態の手術用顕微鏡100A4では、図20に示すように、右側照明光源16Rからの右側照明光及び左側照明光源16Lからの左側照明光は、右側及び左側照明光源光学系17を介して、対物レンズ11と眼との間に設けられたビームスプリッタ125で反射し、眼に到達するようにしている。 On the other hand, in the surgical microscope 100A4 of the sixth embodiment, as shown in FIG. 20, the right side illumination light from the right side illumination light source 16R and the left side illumination light from the left side illumination light source 16L are the right side and left side illumination light sources. The light is reflected by a beam splitter 125 provided between the objective lens 11 and the eye via the optical system 17, and reaches the eye.
[第7の実施の形態] [Seventh Embodiment]
 次に、本開示の技術の第7の実施の形態を説明する。第7の実施の形態の手術用顕微鏡100A5の構成は、第1の実施の形態の手術用顕微鏡100A1と略同様の構成であるので、主として異なる部分を説明する。 Next, a seventh embodiment of the technology of the present disclosure will be described. The configuration of the surgical microscope 100A5 of the seventh embodiment is substantially the same as that of the surgical microscope 100A1 of the first embodiment, so mainly different portions will be described.
 図21には、第7の実施の形態の手術用顕微鏡100A5が示されている。 FIG. 21 shows a surgical microscope 100A5 according to the seventh embodiment.
 手術用顕微鏡100A5の第1右側偏向素子22Rは、対物レンズ11を介した眼からの右側観察光を、X(正)方向に反射して偏向する。第2右側偏向素子23R1は、第1右側偏向素子22Rで反射した右側観察光を、Z(正)方向及びX(正又は負)方向の各々の成分を有するように、反射して偏向し、右側変倍光学系13Rに入射させる。 The first right-side deflection element 22R of the surgical microscope 100A5 reflects and deflects the right-side observation light from the eye through the objective lens 11 in the X (positive) direction. The second right-side deflection element 23R1 reflects and deflects the right-side observation light reflected by the first right-side deflection element 22R so as to have respective components in the Z (positive) direction and the X (positive or negative) direction, It is incident on the right-side variable power optical system 13R.
 手術用顕微鏡100A5の第1左側偏向素子22Lは、対物レンズ11を介した眼からの左側観察光を、X(負)方向に反射して偏向する。第2左側偏向素子23L1は、第1左側偏向素子22Lで反射した左側観察光を、Z(正)方向及びX(正又は負)方向の各々の成分を有するように、反射して偏向し、左側変倍光学系13Lに入射させる。 The first left-side deflection element 22L of the surgical microscope 100A5 reflects and deflects the left-side observation light from the eye via the objective lens 11 in the X (negative) direction. The second left-side deflection element 23L1 reflects and deflects the left-side observation light reflected by the first left-side deflection element 22L so as to have respective components in the Z (positive) direction and the X (positive or negative) direction, It is incident on the left-side variable power optical system 13L.
 このように、第2右側偏向素子23R1は右側観察光を、Z(正)方向及びX(正又は負)方向の各々の成分を有するように、反射し、第2左側偏向素子23L1は左側観察光を、Z(正)方向及びX(正又は負)方向の各々の成分を有するように、反射する。よって、手術用顕微鏡100A5を、X(正又は負)方向の各々の成分を有する分、薄くすることができる。 In this way, the second right-side deflection element 23R1 reflects the right-side observation light so as to have respective components in the Z (positive) direction and the X (positive or negative) direction, and the second left-side deflection element 23L1 observes the left side. Light is reflected such that it has components in the Z (positive) direction and the X (positive or negative) direction. Therefore, the surgical microscope 100A5 can be thinned by the amount of each component in the X (positive or negative) direction.
 第1右側偏向素子22Rは、対物レンズ11を介した眼からの右側観察光を、X(正)方向及びZ(負)方向の各々の成分を有するように反射するようにしてもよい。第1左側偏向素子22Lは、対物レンズ11を介した眼からの左側観察光を、X(正)方向及びZ(負)方向の各々の成分を有するように反射するようにしてもよい。 The first right-side deflection element 22R may reflect the right-side observation light from the eye through the objective lens 11 so as to have respective components in the X (positive) direction and the Z (negative) direction. The first left-side deflection element 22L may reflect left-side observation light from the eye through the objective lens 11 so as to have respective components in the X (positive) direction and the Z (negative) direction.
 第1右側偏向素子22Rは右側観察光を、また、第1左側偏向素子22Lは左側観察光を、Z(負)方向の成分を有するように反射するので、手術用顕微鏡100A5を、Z(負)方向の成分を有する分、薄くすることができる。 The first right-side deflection element 22R reflects the right-side observation light, and the first left-side deflection element 22L reflects the left-side observation light so as to have a component in the Z (negative) direction. ) Direction component, the thickness can be reduced.
[第8の実施の形態] [Eighth Embodiment]
 次に、本開示の技術の第8の実施の形態を説明する。第8の実施の形態の手術用顕微鏡100A6の構成は、第1の実施の形態の手術用顕微鏡100A1と略同様の構成であるので、主として異なる部分を説明する。 Next, an eighth embodiment of the technology of the present disclosure will be described. The configuration of the surgical microscope 100A6 according to the eighth embodiment is substantially the same as that of the surgical microscope 100A1 according to the first embodiment, and therefore mainly different portions will be described.
 図22には、第8の実施の形態の手術用顕微鏡100A6の上面図が示されている。 FIG. 22 shows a top view of the surgical microscope 100A6 according to the eighth embodiment.
 図22に示すように、手術用顕微鏡100A6は、右側の各素子(22Rから13R)が設けられ且つXY平面の2次元に移動可能な右側移動基板160Rと、左側の各素子(22Lから13L)が設けられ且つXY平面の2次元に移動可能な左側移動基板160Lと、を備えている。 As shown in FIG. 22, a surgical microscope 100A6 is provided with right-side elements (22R to 13R) and is movable on a right-side movable substrate 160R that is two-dimensionally movable in the XY plane, and left-side elements (22L to 13L). And a left-side moving substrate 160L that is movable in two dimensions of the XY plane.
 手術用顕微鏡100A6は、立体感増加スイッチ64及び立体感減少スイッチ66に代えて、図示しないX(正)方向移動スイッチ、X(負)方向移動スイッチ、Y(正)方向移動スイッチ、及びY(負)方向移動スイッチの4方向スイッチを備えている。 In the surgical microscope 100A6, instead of the stereoscopic effect increasing switch 64 and the stereoscopic effect decreasing switch 66, an X (positive) direction moving switch, an X (negative) direction moving switch, a Y (positive) direction moving switch, and a Y ( It has a four-way switch, which is a (negative) direction movement switch.
 4方向スイッチの何れかの操作に応じて、右側移動基板移動部は、移動機構(例えば、ラックアンドピニオン)により、右側移動基板160Rを、XY平面の2次元に移動させる。4方向スイッチの何れかの操作に応じて、左側移動基板移動部は、移動機構(例えば、ラックアンドピニオン)により、左側移動基板160LをXY平面の2次元に移動させる。 The right moving board moving unit moves the right moving board 160R two-dimensionally in the XY plane by a moving mechanism (for example, a rack and pinion) according to an operation of any of the four-direction switches. In response to an operation of any of the four-direction switches, the left-side moving board moving unit moves the left-side moving board 160L in two dimensions on the XY plane by a moving mechanism (for example, rack and pinion).
[変形例] [Modification]
 第1の実施の形態から第8の実施の形態では、表示装置100ADは、手術用顕微鏡本体100AHの上に配置されている(図1参照)。 In the first to eighth embodiments, the display device 100AD is arranged on the surgical microscope main body 100AH (see FIG. 1).
 本開示の技術は、これに限定されない。 The technology of the present disclosure is not limited to this.
 図25に示すように、表示装置100ADは、ユーザ150が手術用顕微鏡の正面側から視認している状態での手術用顕微鏡本体100AHを対象とした第1の視野領域から外れた領域に画像100AD1を表示する。例えば、ユーザ150が手術用顕微鏡の正面側から視認している状態において、手術用顕微鏡本体100AHは、上記第1の視野領域に重ならない位置に配置されている。 As shown in FIG. 25, the display device 100AD has an image 100AD1 in an area outside the first visual field area for the surgical microscope main body 100AH with the user 150 visually recognizing the surgical microscope from the front side. Is displayed. For example, in a state in which the user 150 is viewing from the front side of the surgical microscope, the surgical microscope body 100AH is arranged at a position that does not overlap the first visual field region.
 また、図26に示すように、手術用顕微鏡本体100AHは、ユーザ150が手術用顕微鏡の正面側から視認している状態での表示装置100ADが表示する画像100AD2を対象とした第2の視野領域から外れた領域に配置される。
 また、本実施形態に記載の手術顕微鏡は、用途に応じて、対象物から生じる蛍光、りん光、又は赤外光を観察光として受光する構成にしてもよい。
Further, as shown in FIG. 26, the surgical microscope main body 100AH has a second visual field region for the image 100AD2 displayed by the display device 100AD in a state where the user 150 is viewing the front side of the surgical microscope. It is placed in an area outside
Further, the surgical microscope according to the present embodiment may be configured to receive fluorescence, phosphorescence, or infrared light generated from an object as observation light depending on the application.
 第1の実施の形態及び第12の実施の形態では、コンピュータを利用したソフトウェア構成により制御処理が実現される形態例を示したが、本開示の技術はこれに限定されるものではない。例えば、コンピュータを利用したソフトウェア構成に代えて、FPGA又はASIC等のハードウェア構成のみによって、制御処理が実行されるようにしてもよい。制御処理がソフトウェア構成とハードウェア構成との組み合わせた構成によって実行されるようにしてもよい。 In the first embodiment and the twelfth embodiment, an example in which control processing is realized by a software configuration using a computer is shown, but the technology of the present disclosure is not limited to this. For example, instead of the software configuration using a computer, the control process may be executed only by a hardware configuration such as FPGA or ASIC. The control processing may be executed by a combination of software configuration and hardware configuration.
 本明細書に記載された全ての文献、特許出願及び技術規格は、個々の文献、特許出願及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。 All documents, patent applications and technical standards mentioned in this specification are to the same extent as if each individual document, patent application and technical standard was specifically and individually noted to be incorporated by reference. Incorporated by reference in the book.
11   対物レンズ
13L 左側変倍光学系
13R 右側変倍光学系
22R 第1右側偏向素子
22L 第1左側偏向素子
23R 第2右側偏向素子
23L 第2左側偏向素子
68L 第1左側偏向素子移動部
68R 第1右側偏向素子移動部
85 右側絞り径変更部
87 左側絞り径変更部
100AD 表示装置
122RL 第1右眼及び左側偏向素子
11 Objective Lens 13L Left Side Variable Optical System 13R Right Side Variable Optical System 22R First Right Side Deflection Element 22L First Left Side Deflection Element 23R Second Right Side Deflection Element 23L Second Left Side Deflection Element 68L First Left Side Deflection Element Moving Section 68R First Right deflection element moving unit 85 Right diaphragm diameter changing unit 87 Left diaphragm diameter changing unit 100AD Display device 122RL First right eye and left deflection element

Claims (23)

  1.  対物光学系と、
     変倍光学系と、
     前記対物光学系と前記変倍光学系との間に設けられ、対象物から生じて且つ前記対物光学系を透過した観察光を、前記対物光学系の光軸の方向に対して各々交差する方向に反射するように配置された複数の偏向素子と、
     を備える顕微鏡。
    Objective optics,
    Variable power optics,
    A direction which is provided between the objective optical system and the variable power optical system and which intersects the observation light generated from the object and transmitted through the objective optical system with the direction of the optical axis of the objective optical system. A plurality of deflection elements arranged so as to reflect
    A microscope equipped with.
  2.  単一の対物光学系と、
     変倍光学系と、
     前記対物光学系と前記変倍光学系との間に設けられ、対象物から生じて且つ前記対物光学系を透過した観察光を反射するように配置された複数の偏向素子と、
     を備える顕微鏡。
    A single objective optics,
    Variable power optics,
    A plurality of deflecting elements provided between the objective optical system and the variable power optical system and arranged so as to reflect observation light generated from an object and transmitted through the objective optical system;
    A microscope equipped with.
  3.  対物光学系と、
     対象物から生じて且つ前記対物光学系を透過した観察光を、前記対物光学系の光軸に対して交差する方向を含む平面に沿って、少なくとも2回反射する複数の偏向素子と、
     を備える顕微鏡。
    Objective optics,
    A plurality of deflecting elements for reflecting the observation light generated from the object and transmitted through the objective optical system at least twice along a plane including a direction intersecting the optical axis of the objective optical system;
    A microscope equipped with.
  4.  変倍光学系を備え、
     前記複数の偏向素子の各々は、前記対物光学系と前記変倍光学系との間に設けられた、
     請求項3に記載の顕微鏡。
    Equipped with variable power optics,
    Each of the plurality of deflection elements is provided between the objective optical system and the variable power optical system,
    The microscope according to claim 3.
  5.  前記平面は、鉛直方向に直交する方向を含む面である、請求項3又は請求項4に記載の顕微鏡。 The microscope according to claim 3 or 4, wherein the plane is a surface including a direction orthogonal to the vertical direction.
  6.  前記複数の偏向素子は、前記観察光を前記対物光学系の光軸に対して交差する第1方向に偏向する第1偏向素子と、前記第1偏向素子により偏向された前記観察光を前記光軸の方向および前記第1方向とは異なる方向に偏向する第2偏向素子とを備える、
     請求項1から請求項5の何れか1項に記載の顕微鏡。
    The plurality of deflection elements includes a first deflection element that deflects the observation light in a first direction intersecting the optical axis of the objective optical system, and the observation light that is deflected by the first deflection element as the light. A second deflecting element that deflects in a direction different from the axial direction and the first direction,
    The microscope according to any one of claims 1 to 5.
  7.  前記第2偏向素子は、鉛直方向に交差する面において、前記第1偏向素子における前記観察光の偏向方向に直交する方向に偏向する、
     請求項6に記載の顕微鏡。
    The second deflecting element deflects in a direction orthogonal to the deflecting direction of the observation light in the first deflecting element on a plane intersecting with the vertical direction.
    The microscope according to claim 6.
  8.  前記複数の偏向素子の各々は、反射した各観察光が前記対物光学系の光軸に垂直な方向の成分を持つように、前記観察光を反射する、
     請求項1から請求項7の何れか1項に記載の顕微鏡。
    Each of the plurality of deflecting elements reflects the observation light so that each reflection observation light has a component in a direction perpendicular to the optical axis of the objective optical system,
    The microscope according to any one of claims 1 to 7.
  9.  前記複数の偏向素子は、
     右側観察光を形成する第1の複数の偏向素子と、
     左側観察光を形成する第2の複数の偏向素子と、
     を含み、
     前記右側観察光の光軸および前記左側観察光の光軸が前記対象物の位置でなす実体角が連続的に変化するように、前記第1の複数の偏向素子の内の少なくとも1つの偏向素子と、前記第2の複数の偏向素子の内の少なくとも1つの偏向素子と、の少なくとも1つを移動させる移動部を更に備える、
     請求項1から請求項8の何れか1項に記載の顕微鏡。
    The plurality of deflection elements are
    A first plurality of deflecting elements for forming right side observation light;
    A second plurality of deflecting elements for forming left side observation light;
    Including,
    At least one deflecting element of the first plurality of deflecting elements so that the physical angle formed by the optical axis of the right side observation light and the optical axis of the left side observation light at the position of the object continuously changes. And a moving unit that moves at least one of the second plurality of deflecting elements and at least one deflecting element.
    The microscope according to any one of claims 1 to 8.
  10.  前記第1の複数の偏向素子において前記対物光学系を透過した前記観察光を最初に反射する偏向素子と、前記第2の複数の偏向素子において前記対物光学系を透過した前記観察光を最初に反射する偏向素子とが共通の偏向素子であり、
     前記移動部は、前記共通の偏向素子と変倍光学系との間に配置され前記共通の偏向素子により反射された前記右側観察光を反射する前記第1の複数の偏向素子における偏向素子と、前記共通の偏向素子と前記変倍光学系との間に配置され前記共通の偏向素子により反射された前記左側観察光を反射する前記第2の複数の偏向素子における偏向素子とを移動させる、
     請求項9に記載の顕微鏡。
    The deflection element that first reflects the observation light that has passed through the objective optical system in the first plurality of deflection elements and the observation light that has transmitted through the objective optical system in the second plurality of deflection elements first The deflecting element that reflects is a common deflecting element,
    The moving unit is disposed between the common deflecting element and the variable power optical system, and the deflecting element in the first plurality of deflecting elements that reflects the right-side observation light reflected by the common deflecting element; Moving the deflecting elements in the second plurality of deflecting elements that are arranged between the common deflecting element and the variable power optical system and that reflect the left-side observation light reflected by the common deflecting element,
    The microscope according to claim 9.
  11.  前記変倍光学系は、前記変倍光学系と前記対物光学系との間に、前記観察光の光軸に垂直な前記観察光の光束の有効面積が、前記変倍光学系の前記対物光学系に最も近い位置における有効面積および前記対物光学系の前記変倍光学系に最も近い位置における有効面積よりも小さい極小となる位置が存在するように、形成されている、 
     請求項1、請求項2、及び請求項4の何れか1項に記載の顕微鏡。
    In the variable power optical system, the effective area of the luminous flux of the observation light perpendicular to the optical axis of the observation light is between the variable power optical system and the objective optical system. It is formed so that there is an effective area at a position closest to the system and a minimum position smaller than the effective area at a position closest to the variable power optical system of the objective optical system.
    The microscope according to any one of claims 1, 2, and 4.
  12.  前記観察光の光軸に垂直な前記観察光の光束の有効面積が極小となる位置は、前記変倍光学系の瞳の位置である、
     請求項11に記載の顕微鏡。
    The position where the effective area of the luminous flux of the observation light perpendicular to the optical axis of the observation light is the minimum is the position of the pupil of the variable power optical system.
    The microscope according to claim 11.
  13.  前記変倍光学系と前記対物光学系との間に配置され、前記観察光の光軸に垂直な前記観察光の光束の有効面積を制限する絞りを更に備える、
     請求項1、請求項2、及び請求項4の何れか1項に記載の顕微鏡。
    Further comprising a diaphragm which is arranged between the variable power optical system and the objective optical system and which limits the effective area of the luminous flux of the observation light perpendicular to the optical axis of the observation light.
    The microscope according to any one of claims 1, 2, and 4.
  14.  前記絞りは、可変絞りであり、
     前記変倍光学系の倍率に基づいて前記絞りが調整されることにより、前記観察光における前記有効面積が調整される、
     請求項13に記載の顕微鏡。
    The diaphragm is a variable diaphragm,
    By adjusting the diaphragm based on the magnification of the variable power optical system, the effective area of the observation light is adjusted,
    The microscope according to claim 13.
  15.  前記変倍光学系の倍率が低倍端から高倍端に変倍するのに連動して、前記絞りの絞り径が大きくなるように、前記絞りを制御する絞り径調整部を更に備える、
     請求項14に記載の顕微鏡。
    Further, in conjunction with changing the magnification of the variable power optical system from the low magnification end to the high magnification end, the diaphragm diameter of the diaphragm is increased so that the diaphragm diameter is further adjusted.
    The microscope according to claim 14.
  16.  前記絞り径調整部は、前記絞りの絞り径がズーム倍率ごとに予め定められた最大径以下となるように、前記絞りを調整する、
     請求項15に記載の顕微鏡。
    The diaphragm diameter adjusting unit adjusts the diaphragm so that the diaphragm diameter of the diaphragm is equal to or smaller than a maximum diameter predetermined for each zoom magnification,
    The microscope according to claim 15.
  17.  前記複数の偏向素子の少なくとも1つの大きさが、前記観察光の光軸に垂直な前記観察光の光束の有効面積が所定の面積になるように定められている、
     請求項1から請求項12の何れか1項に記載の顕微鏡。
    At least one size of the plurality of deflecting elements is determined so that the effective area of the luminous flux of the observation light perpendicular to the optical axis of the observation light becomes a predetermined area.
    The microscope according to any one of claims 1 to 12.
  18.  前記複数の偏向素子の少なくとも1つに、前記観察光の光軸に垂直な前記観察光の光束の有効面積が所定の面積になるように、光を遮光するマスクが設置されている、
     請求項1から請求項12の何れか1項に記載の顕微鏡。
    At least one of the plurality of deflecting elements is provided with a mask that shields light so that the effective area of the luminous flux of the observation light perpendicular to the optical axis of the observation light becomes a predetermined area.
    The microscope according to any one of claims 1 to 12.
  19.  前記複数の偏向素子の少なくとも1つは、前記対物光学系の近傍に配置されている、
     請求項1から請求項18の何れか1項に記載の顕微鏡。
    At least one of the plurality of deflection elements is arranged in the vicinity of the objective optical system,
    The microscope according to any one of claims 1 to 18.
  20.  前記観察光により得られる画像を表示する表示部を更に備え、
     前記表示部は、ユーザが前記顕微鏡の正面側から視認している状態での前記顕微鏡の本体を対象とした第1の視野領域から外れた領域に前記画像を表示し、
     または、
     前記顕微鏡の本体は、ユーザが前記顕微鏡の正面側から視認している状態での前記画像を対象とした第2の視野領域から外れた領域に配置される、
     請求項1から請求項19の何れか1項に記載の顕微鏡。
    Further comprising a display unit for displaying an image obtained by the observation light,
    The display unit displays the image in an area deviating from the first visual field area for the main body of the microscope in a state where the user is visually recognizing it from the front side of the microscope,
    Or
    The main body of the microscope is arranged in a region deviating from a second visual field region in which the user views the image from the front side of the microscope.
    The microscope according to any one of claims 1 to 19.
  21.  前記複数の偏向素子の内の少なくとも前記対物光学系を透過した観察光を最初に反射する偏向素子は、前記変倍光学系を外した光路を通るように発せられた照明光を前記対象物に反射する、
     請求項1、請求項2、請求項4、及び請求項11から請求項15の何れか1項に記載の顕微鏡。
    Of the plurality of deflection elements, a deflection element that first reflects the observation light that has passed through at least the objective optical system is a deflection element that emits illumination light that is emitted so as to pass through an optical path that excludes the variable power optical system to the object. reflect,
    The microscope according to claim 1, claim 2, claim 4, or any one of claims 11 to 15.
  22.  前記複数の偏向素子には、透過反射素子を含み、
     前記透過反射素子は、前記変倍光学系を外した光路を通るように発せられた照明光を透過し且つ前記観察光を反射する、
     請求項1、請求項2、請求項4、及び請求項11から請求項15、請求項21の何れか1項に記載の顕微鏡。
    The plurality of deflection elements includes a transmissive reflection element,
    The transflective element transmits the illumination light emitted so as to pass through the optical path that has removed the variable power optical system and reflects the observation light.
    The microscope according to claim 1, claim 2, claim 4, and any one of claims 11 to 15 and claim 21.
  23.  前記対物光学系と対象物との間に設けられたビームスプリッタを更に備え、
     前記ビームスプリッタは、前記変倍光学系を外した光路を通るように発せられた照明光を前記対象物に反射する、
     請求項1、請求項2、請求項4、及び請求項11から請求項15、請求項21、請求項22の何れか1項に記載の顕微鏡。
    Further comprising a beam splitter provided between the objective optical system and the object,
    The beam splitter reflects the illumination light emitted so as to pass through the optical path excluding the variable power optical system to the object,
    The microscope according to claim 1, claim 2, claim 4, and claims 11 to 15, claim 21, or claim 22.
PCT/JP2018/041699 2018-11-09 2018-11-09 Microscope WO2020095444A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/041699 WO2020095444A1 (en) 2018-11-09 2018-11-09 Microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/041699 WO2020095444A1 (en) 2018-11-09 2018-11-09 Microscope

Publications (1)

Publication Number Publication Date
WO2020095444A1 true WO2020095444A1 (en) 2020-05-14

Family

ID=70611963

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/041699 WO2020095444A1 (en) 2018-11-09 2018-11-09 Microscope

Country Status (1)

Country Link
WO (1) WO2020095444A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU213152U1 (en) * 2022-04-26 2022-08-31 федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский университет ИТМО" (Университет ИТМО) Dual channel microscope

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6161118A (en) * 1984-09-01 1986-03-28 Canon Inc Stereoscopic microscope
JPS6161114A (en) * 1984-09-01 1986-03-28 Canon Inc Stereoscopic microscope
JPH04324410A (en) * 1991-04-25 1992-11-13 Sony Corp Stereoscopic microscope
JP2001108912A (en) * 1999-10-01 2001-04-20 Olympus Optical Co Ltd Stereoscopic microscope
JP2001324678A (en) * 2000-03-08 2001-11-22 Nikon Corp Optical path deviation detecting device and confocal microscope
JP2006178440A (en) * 2004-11-29 2006-07-06 Nikon Corp Zoom microscope
WO2009131243A1 (en) * 2008-04-23 2009-10-29 株式会社ニコン Stereoscopic microscope

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6161118A (en) * 1984-09-01 1986-03-28 Canon Inc Stereoscopic microscope
JPS6161114A (en) * 1984-09-01 1986-03-28 Canon Inc Stereoscopic microscope
JPH04324410A (en) * 1991-04-25 1992-11-13 Sony Corp Stereoscopic microscope
JP2001108912A (en) * 1999-10-01 2001-04-20 Olympus Optical Co Ltd Stereoscopic microscope
JP2001324678A (en) * 2000-03-08 2001-11-22 Nikon Corp Optical path deviation detecting device and confocal microscope
JP2006178440A (en) * 2004-11-29 2006-07-06 Nikon Corp Zoom microscope
WO2009131243A1 (en) * 2008-04-23 2009-10-29 株式会社ニコン Stereoscopic microscope

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU213152U1 (en) * 2022-04-26 2022-08-31 федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский университет ИТМО" (Университет ИТМО) Dual channel microscope

Similar Documents

Publication Publication Date Title
US7777941B2 (en) Greenough-type stereomicroscope
JP5066349B2 (en) Stereo microscope
US9910257B2 (en) Stereoscopic microscope
US7167304B2 (en) Binocular stereoscopic observation apparatus, electronic image stereomicroscope, electronic image stereoscopic observation apparatus, and electronic image observation apparatus
EP1763258A2 (en) Medical stereo observation system
JP4991211B2 (en) Stereo microscope
US8934169B2 (en) Dual objective 3-D stereomicroscope
DE102009012897B4 (en) Stereo microscope
JP2014145968A (en) Surgical microscope system
KR101478270B1 (en) Variable 3-dimensional stereomicroscope assembly
WO2020095445A1 (en) Microscope
US20170105620A1 (en) Stereo-optic surgical contact lens
WO2020095444A1 (en) Microscope
JP2012047797A (en) Stereo microscope
WO2020095443A1 (en) Microscope
JP2021121829A (en) Surgical microscope and ophthalmic system
JPS6217722A (en) Single objective stereoscopic vision binocular microscope
JP3577107B2 (en) Stereo microscope
JP3355779B2 (en) Optical system for HMD
JP2012141470A (en) Imaging optical system and microscope device
JP5184752B2 (en) Stereo microscope
US20210059515A1 (en) Image display device, image display system, image display method, image processing program storage medium
WO2020161905A1 (en) Microscope, control device for microscope, and program
JP3479123B2 (en) Multiple image stereoscopic device
JP2002040364A (en) Optical system for stereoscopic vision observation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18939479

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18939479

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP