JPS6217722A - Single objective stereoscopic vision binocular microscope - Google Patents

Single objective stereoscopic vision binocular microscope

Info

Publication number
JPS6217722A
JPS6217722A JP17719386A JP17719386A JPS6217722A JP S6217722 A JPS6217722 A JP S6217722A JP 17719386 A JP17719386 A JP 17719386A JP 17719386 A JP17719386 A JP 17719386A JP S6217722 A JPS6217722 A JP S6217722A
Authority
JP
Japan
Prior art keywords
prism
objective lens
lens
sample
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17719386A
Other languages
Japanese (ja)
Inventor
Itaru Endo
遠藤 到
Yasuo Inoue
康夫 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP17719386A priority Critical patent/JPS6217722A/en
Publication of JPS6217722A publication Critical patent/JPS6217722A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To observe satisfactorily a stereoscopic image by interlocking a luminous flux split element to a variable power operation of an objective lens, and moving it to the vicinity of a projecting position of an exit pupil of the objective lens to be used. CONSTITUTION:In case an objective lens 4 is inserted into an optical path, a luminous flux split prism 6 is positioned in the vicinity of a projecting position A of an exit pupil of the objective lens 4, and light which is emitted from a light source 1 illuminates a sample through a condenser lens 5. Subsequently, its light is made incident on a reflecting surface 6a of the luminous flux split prism 6 which has reached the position A through the objective lens 4 and a relay lens 5, but in the light which has illuminated a sample 3, a right eye vision system luminous flux R of the ample 3 is reflected by a total reflecting surface 6a' of the reflecting surface 6a, and thereafter, forms an image through a prism 7', an image forming lens 8', and a prism 9', and an observation is executed through an eyepiece 10'. Also, in the light which has illuminated the sample 3, a left eye vision system luminous flux L of the sample 3 transmits through a total transmission surface 6a'' of the reflecting surface 6a, and thereafter, forms an image through a prism 7, an image forming lens 8, and a prism 9, and an observation is executed through an eyepiece 10.

Description

【発明の詳細な説明】 本発明は、低倍から高倍まで種々の対物レンズにより良
好に立体像を観察し得る単対物双眼立体視w4微鏡に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a single-objective binocular stereoscopic W4 microscope that enables good observation of stereoscopic images using various objective lenses from low to high magnification.

一般に単対物双眼顕微鏡は、低倍から高倍まで種々の対
物レンズに交換し得るようになっているが、これらの対
物レンズは、収差補正上の理由から射出瞳の位置が各レ
ンズにより少しづつ異なってしまう。このため対物レン
ズの射出瞳を二分割して対応する左右の接眼系に導いて
立体像を観察する方式の単対物双眼立体視顕微鏡の場合
には、光束を二分割する位置を適当な倍率の対物レンズ
の射出瞳位置又はこれと共役な位置に合わせて立体像の
観察を行っていた。しかしながら、使用する対物レンズ
の射出瞳位置又はこれと共役な位置が光束を二分割する
位置から大きく離れていると、観察像の立体視効果が低
下してしまうという問題があった。
In general, single-objective binocular microscopes can be replaced with a variety of objective lenses ranging from low to high magnification, but the exit pupil position of these objective lenses is slightly different for each lens for aberration correction reasons. I end up. For this reason, in the case of a single-objective binocular stereoscopic microscope in which the exit pupil of the objective lens is divided into two and guided to the corresponding left and right eyepiece systems to observe a three-dimensional image, the position where the light beam is divided into two is set at an appropriate magnification. Three-dimensional images have been observed in accordance with the exit pupil position of the objective lens or a position conjugate thereto. However, if the exit pupil position of the objective lens used or a position conjugate thereto is far away from the position where the light beam is divided into two, there is a problem in that the stereoscopic effect of the observed image deteriorates.

本発明は、以下の点に鑑み、低倍から高倍まで種々の対
物レンズにより良好に立体像を観察し得る単対物双眼立
体視顕微鏡を提供せんとするものであるが、以下図面に
示した実施例によりこれを説明すれば、1は光源、2は
コンデンサレンズ、3は試料、4.4′は異なる倍率の
対物レンズで選択的に光路内に挿入され得るように構成
されている。5はリレーレンズで、対物レンズ4.4′
の射出瞳を各々位置A、Bに投影する。6は使用する対
物レンズ4又は4゛に従ってその射出瞳の投影位置近傍
に位置するよう光軸に沿って移動可能に配設された光束
分割プリズムで、第2図のように構成されており、その
反射面6aは第1図にて光軸の左側の部分5a’が全反
射面にまた右側の部分6a″が全透過面に形成されてい
る。7゜7′はリレープリズム、8.8′は結像レンズ
、9.9′は眼幅調整プリズム、10.to’は接対物
レンズ4が光路中に挿入されている場合、第1図に示さ
れているように光束分割プリズム6は対物レンズ4の射
出瞳の投影位置Aの近傍に位置せしめられており、光源
1から出た光はコンデンサレンズ2を介して試料3を照
明し、試料3を照明した光は対物レンズ4及びリレーレ
ンズ5を介して位置Aに達した光束分割プリズム6の反
射面6aに入射するが、試料3を照明した光のうち試料
3の右眼視系光束Rは反射面6aの全反射面6a′で反
射した後右眼視光学系へ導かれる、即ちプリズム7′、
結像レンズ8′、プリズム9゛を通って結像し、接眼レ
ンズ10’を介して観察が行われる。また試料3を照明
した光のうら試料3の左眼視系光束りは反射面6aの全
透過面6a″を透過した後左眼視光学系へ導かれる、即
ちプリズム7、結像レンズ8.プリズム9を通って結像
し、接眼レンズ10を介して観察が行われる。かくして
、試料3から左斜上方へ透過した光束、即ち光束りは観
察者の左眼により射出瞳11のように観察され、試料3
から右斜上方へ透過した光束、即ち光束Rは観察者の右
眼により射出瞳11′のように観察され、試料の立体像
が観察され得る。
In view of the following points, the present invention aims to provide a single-objective binocular stereoscopic microscope capable of observing stereoscopic images favorably using various objective lenses from low to high magnification. To explain this by way of example, 1 is a light source, 2 is a condenser lens, 3 is a sample, and 4.4' is an objective lens with different magnifications, which can be selectively inserted into the optical path. 5 is a relay lens, objective lens 4.4'
The exit pupils of are projected onto positions A and B, respectively. Reference numeral 6 denotes a beam splitting prism which is movably arranged along the optical axis so as to be located near the projection position of the exit pupil depending on the objective lens 4 or 4 used, and is configured as shown in FIG. The reflecting surface 6a has a part 5a' on the left side of the optical axis as a total reflection surface in FIG. 1, and a part 6a'' on the right side as a total transmission surface. 7°7' is a relay prism; ' is an imaging lens, 9.9' is an interpupillary distance adjusting prism, and 10.to' is a beam splitting prism 6 when the direct objective lens 4 is inserted in the optical path, as shown in FIG. It is located near the projection position A of the exit pupil of the objective lens 4, and the light emitted from the light source 1 illuminates the sample 3 via the condenser lens 2, and the light that illuminated the sample 3 is transmitted to the objective lens 4 and the relay. It is incident on the reflective surface 6a of the beam splitting prism 6 that has reached position A via the lens 5, but among the light that illuminated the sample 3, the right eye visual system light beam R of the sample 3 is reflected by the total reflection surface 6a' of the reflective surface 6a. After being reflected by the prism 7', it is guided to the right eye viewing optical system, i.e., the prism 7'.
An image is formed through an imaging lens 8' and a prism 9', and is observed through an eyepiece 10'. Further, the left-eye visual system light flux of the sample 3, which is behind the light that illuminated the sample 3, passes through the total transmission surface 6a'' of the reflective surface 6a and is then guided to the left-eye visual system, that is, the prism 7, the imaging lens 8. An image is formed through the prism 9 and observed through the eyepiece 10.In this way, the light flux transmitted from the sample 3 to the left diagonally upward direction, that is, the light flux, is observed by the observer's left eye as the exit pupil 11. and sample 3
The light flux transmitted diagonally upward to the right, that is, the light flux R, is observed by the observer's right eye like an exit pupil 11', and a three-dimensional image of the sample can be observed.

ここで、対物レンズ4から異なる倍率の対物レンズ4′
に切換えて対物レンズ4゛を光路中に挿入すると、この
対物レンズの切換操作に対応して好ましくは図示しない
周知の構成の連動手段により光束分割プリズム6は対物
レンズ4′の射出瞳の投影位置Bの近傍に光軸に沿って
移動せしめられ(点線図示位置)、光′tA1から出た
光はコンデンサレンズ2を介して試料3を照明し、試料
3を照明した光は対物レンズ4゛及びリレーレンズ5を
介して位置Bに達し光束分割プリズム6の反射面6aに
入射し、対物レンズ4の場合と同様に光束Rが右限視光
学系にまた光束りが左眼視光学系へ導かれるので、対物
レンズ4′の場合にも対物レンズ4によると同等の良好
な立体像が観察され得る。
Here, from the objective lens 4, an objective lens 4' with a different magnification is used.
When the objective lens 4' is inserted into the optical path, the beam splitting prism 6 is moved to the projection position of the exit pupil of the objective lens 4', preferably by means of a well-known interlocking means (not shown) in response to the switching operation of the objective lens. The light emitted from the light 'tA1 illuminates the sample 3 through the condenser lens 2, and the light that illuminates the sample 3 is transmitted to the objective lens 4' and It reaches position B via the relay lens 5 and enters the reflecting surface 6a of the beam splitting prism 6, and similarly to the case of the objective lens 4, the beam R is guided to the right-limited viewing optical system and the beam R is guided to the left-eye viewing optical system. Therefore, even when using the objective lens 4', a good stereoscopic image equivalent to that using the objective lens 4 can be observed.

第3図は本発明の第二の実施例を示しており、12は6
0°プリズムと二つのリレープリズムがら成る光束分割
プリズムで、対物レンズ4又は4′の射出瞳の投影位f
iA又はBにその60”プリズムの頂角が位置するよう
に光軸に沿って移動可能に配設されている。従ってこの
実施例の場合も、倍率の異なる対物レンズ4.4″に対
応してその射出瞳の投影位置近傍に光束分割プリズム1
2が移動せしめられ、何れの対物レンズ4.4′によっ
ても同等の良好な立体像が観察され得る。
FIG. 3 shows a second embodiment of the invention, where 12 is 6
A beam splitting prism consisting of a 0° prism and two relay prisms, the projection position f of the exit pupil of the objective lens 4 or 4'
The prism is movably disposed along the optical axis so that the apex angle of the 60" prism is located at iA or B. Therefore, in the case of this embodiment as well, it is compatible with objective lenses of 4.4" having different magnifications. A beam splitting prism 1 is placed near the projection position of the exit pupil.
2 is moved, and an equally good three-dimensional image can be observed using either objective lens 4.4'.

以上述べたように本発明によれば、使用する倍率の異な
る対物レンズに対応してその射出瞳の投影位置近傍に光
束分割プリズムを光軸に沿って移動せしめるようにした
から、簡単な構成により低倍から高倍まで種々の対物レ
ンズにより常に良好な立体像が観察され得るという効果
がある。
As described above, according to the present invention, the beam splitting prism is moved along the optical axis near the projection position of the exit pupil corresponding to the objective lenses with different magnifications used, so that the structure is simple. This has the effect that good stereoscopic images can always be observed using various objective lenses from low to high magnifications.

尚、以上の説明では二つの倍率の異なる対物レンズを切
換使用する場合について述べたが、三つ以上の倍率の異
なる対物レンズを使用するようにした単対物双眼立体視
顕微鏡に本発明を適用することも可能であり、ズームレ
ンズ系で観察倍率を変化させる顕微鏡においても可能で
ある。また光束を分割するために光束分割プリズムでは
なくて他の光束分割要素を使用してもよいことはいうま
でもない。
Although the above explanation deals with the case where two objective lenses with different magnifications are used selectively, the present invention is applied to a single-objective binocular stereoscopic microscope in which three or more objective lenses with different magnifications are used. This is also possible with a microscope that uses a zoom lens system to change the observation magnification. It goes without saying that other light beam splitting elements may be used instead of the light beam splitting prism to split the light beam.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による単対物双眼立体視顕微鏡の一実施
例の構成図、第2図は第1図の実施例で使用する光束分
割プリズムの斜視図、第3図は本発明の第二の実施例を
示す構成図である。 ■・・・・光源、2・・・・コンデンサレンズ、3・0
.。 試料、4.4′・・・・対物レンズ、5・・・・リレー
レンズ、6,12・・・・光束分割プリズム、7.7′
・・・・リレープリズム、8.8″・・、・結像レンズ
、9.9′・・・・眼幅調整プリズム、10.、 10
 ’、。 ・・接眼レンズ、11.11’・・・・射出瞳。 11、   .11’ ■      0
FIG. 1 is a configuration diagram of an embodiment of a single-objective binocular stereoscopic microscope according to the present invention, FIG. 2 is a perspective view of a beam splitting prism used in the embodiment of FIG. 1, and FIG. FIG. ■...Light source, 2...Condenser lens, 3.0
.. . Sample, 4.4'...Objective lens, 5...Relay lens, 6,12...Light beam splitting prism, 7.7'
... Relay prism, 8.8" ... Imaging lens, 9.9' ... Interpupillary distance adjustment prism, 10., 10
',. ...Eyepiece, 11.11'...Exit pupil. 11. 11' ■ 0

Claims (1)

【特許請求の範囲】[Claims] 対物レンズの射出瞳の投影位置近傍に配設された光束分
割要素により試料からの光束を光軸の両側に二分割して
夫々対応する左右の接眼系へ導くようにした単対物双眼
立体視顕微鏡において、該光束分割要素を対物レンズの
変倍操作に連動して、使用する対物レンズの射出瞳の投
影位置近傍へ移動せしめるようにしたことを特徴とする
単対物双眼立体視顕微鏡。
A single-objective binocular stereoscopic microscope that uses a beam splitting element placed near the projection position of the exit pupil of the objective lens to split the beam from the sample into two on both sides of the optical axis and guide them to the corresponding left and right eyepieces. A single-objective binocular stereoscopic microscope, characterized in that the beam splitting element is moved near the projection position of the exit pupil of the objective lens used in conjunction with the magnification changing operation of the objective lens.
JP17719386A 1986-07-28 1986-07-28 Single objective stereoscopic vision binocular microscope Pending JPS6217722A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17719386A JPS6217722A (en) 1986-07-28 1986-07-28 Single objective stereoscopic vision binocular microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17719386A JPS6217722A (en) 1986-07-28 1986-07-28 Single objective stereoscopic vision binocular microscope

Publications (1)

Publication Number Publication Date
JPS6217722A true JPS6217722A (en) 1987-01-26

Family

ID=16026803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17719386A Pending JPS6217722A (en) 1986-07-28 1986-07-28 Single objective stereoscopic vision binocular microscope

Country Status (1)

Country Link
JP (1) JPS6217722A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS646123A (en) * 1986-10-21 1989-01-10 Kashima Sekyu Kk Production of carbon fiber
EP0795142A1 (en) * 1993-12-08 1997-09-17 Edge Scientific Instrument Corporation Improvements in microscope illumination and stereo viewing
ES2147523A1 (en) * 1998-10-02 2000-09-01 Estevez Fernando Diaz Hyperestereoscopic vision system
JP2002148523A (en) * 2000-11-07 2002-05-22 Nikon Corp Binocular microscope and optical path splitter for this binocular microscope
JP2002287036A (en) * 2001-03-23 2002-10-03 Olympus Optical Co Ltd Inverted microscope

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS646123A (en) * 1986-10-21 1989-01-10 Kashima Sekyu Kk Production of carbon fiber
EP0795142A1 (en) * 1993-12-08 1997-09-17 Edge Scientific Instrument Corporation Improvements in microscope illumination and stereo viewing
EP0795142A4 (en) * 1993-12-08 1998-06-03 Edge Scient Instr Corp Improvements in microscope illumination and stereo viewing
ES2147523A1 (en) * 1998-10-02 2000-09-01 Estevez Fernando Diaz Hyperestereoscopic vision system
JP2002148523A (en) * 2000-11-07 2002-05-22 Nikon Corp Binocular microscope and optical path splitter for this binocular microscope
JP2002287036A (en) * 2001-03-23 2002-10-03 Olympus Optical Co Ltd Inverted microscope

Similar Documents

Publication Publication Date Title
US4601550A (en) Stereo-microscope with a common objective lens system
US5282085A (en) Stereoscopic microscope including a field-magnifying lens in front of the objective lens
US4657357A (en) Illumination system for single objective lens binocular microscope
JP3548916B2 (en) Stereo microscope
US4634241A (en) Stereoscopic microscope
US4704012A (en) Stereoscopic microscope
US5701197A (en) Slit lamp microscope provided with a confocal scanning mechanism
JP3689124B2 (en) Stereo microscope
US7085045B2 (en) Stereoscopic microscope
JPS6217722A (en) Single objective stereoscopic vision binocular microscope
US3877779A (en) Dual magnification microscope
US4783160A (en) Stereoscopic microscope
JPS56144410A (en) Binocular microscope permitting simultaneous observation by plural persons
JPS63167318A (en) Stereoscopic microscope
WO2020095445A1 (en) Microscope
JP4302199B2 (en) Stereo microscope that can be observed by multiple people
JP3479123B2 (en) Multiple image stereoscopic device
JP2583465B2 (en) Stereo microscope
WO2020095444A1 (en) Microscope
JPS6343443Y2 (en)
JPS61226723A (en) Stereomicroscope
JPH046005Y2 (en)
WO2020095443A1 (en) Microscope
JP2002328308A (en) Microscope
JPH10319324A (en) Pupil distance adjustable binocular microscope