WO2020095445A1 - Microscope - Google Patents

Microscope Download PDF

Info

Publication number
WO2020095445A1
WO2020095445A1 PCT/JP2018/041700 JP2018041700W WO2020095445A1 WO 2020095445 A1 WO2020095445 A1 WO 2020095445A1 JP 2018041700 W JP2018041700 W JP 2018041700W WO 2020095445 A1 WO2020095445 A1 WO 2020095445A1
Authority
WO
WIPO (PCT)
Prior art keywords
deflection element
light
observation
illumination light
optical system
Prior art date
Application number
PCT/JP2018/041700
Other languages
French (fr)
Japanese (ja)
Inventor
良一 左高
正宏 水田
智裕 川崎
上田 武彦
浩紀 石川
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to PCT/JP2018/041700 priority Critical patent/WO2020095445A1/en
Publication of WO2020095445A1 publication Critical patent/WO2020095445A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/18Arrangements with more than one light path, e.g. for comparing two specimens
    • G02B21/20Binocular arrangements
    • G02B21/22Stereoscopic arrangements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements

Definitions

  • the technology of the present disclosure relates to a microscope.
  • the observation optical system includes an observation optical path for the right eye and an observation optical path for the left eye of the user, and the user observes through the observation optical paths (in this case, the eyes of the patient). ) Can be viewed stereoscopically.
  • the microscope according to the first aspect of the technology of the present disclosure includes an objective lens, a right observation optical system that forms right observation light included in observation light from an object on a right imaging element, and observation light from the object.
  • a left-side observation optical system that forms the left-side observation light included in the left-side imaging device on the left-side imaging device, and is provided between the objective lens and the right-side observation optical system, and reflects the right-side illumination light that illuminates the object
  • a right-side deflection element that deflects the right-side observation light generated from the object to the right-side observation optical system, and is provided between the objective lens and the left-side observation optical system, and reflects left-side illumination light that illuminates the object.
  • a left-side deflection element that deflects the left-side observation light generated from the object to the left-side observation optical system, wherein the right-side deflection element directs the right-side observation light in the direction of the optical axis of the objective lens.
  • the left deflection element the left telescopic beam is arranged to deflect in a direction intersecting the direction of the optical axis of the objective lens.
  • a microscope includes an objective lens, a right-side observation optical system that forms right-side observation light included in observation light from an object on a right-side imaging element, and observation light from the object.
  • a left-side observation optical system that forms the left-side observation light included in the left-side imaging device on the left-side imaging device, and is provided between the objective lens and the right-side observation optical system, and reflects the right-side illumination light that illuminates the object
  • a right side transmission element that transmits the right side observation light generated from the object to the right side observation optical system, and is provided between the objective lens and the left side observation optical system, and reflects left side illumination light that illuminates the object.
  • a left-side transmission element that transmits the left-side observation light generated from the object to the left-side observation optical system.
  • the optical axes 16LI and 16RI of the left and right oblique illumination according to the present embodiment are centered on the points where the optical axes 15LI and 15RI of the left and right observation light on the surfaces of the first right-side deflection element 25R and the first left-side deflection element 25L are located, respectively.
  • the optical axes 16LI and 16RI of the oblique illumination directed from the first right side deflection element 25R and the first left side deflection element 25L to the eye change the direction of the oblique illumination but change the observation light on the left and right. It is an example of a diagram showing that the same angle is formed at the eye position with respect to the optical axis (15LI, 15RI).
  • FIG. 1 It is an example of a diagram showing that the optical axes 16LI and 16RI of the left and right oblique illuminations of the present embodiment pass through the left and right first deflection elements 26L and 26R, respectively.
  • FIG. 5 shows an example of the flowchart of the stereoscopic effect reduction adjustment process which CPU52 (refer FIG. 5) performs according to the stereoscopic effect reduction adjustment program of this Embodiment.
  • 6 is an example of a graph showing a maximum diameter predetermined for each zoom magnification with respect to the diaphragm diameters of the left and right diaphragms of the present embodiment.
  • FIG. 6 is a diagram showing an example of a flowchart of an aperture diameter adjustment process for adjusting the left and right aperture diameters based on the magnification of the observation optical system, which is executed by the CPU 52 (see FIG.
  • FIG. 5 An example of a state (cross-sectional view) of the surgical microscope 100A1 when moving the first right-side deflection element 25R (first left-side deflection element 25L) of the present embodiment in a direction away from the optical axis 110 of the objective lens 11 is shown. It is a figure. Another aspect (cross-sectional view) of the surgical microscope 100A1 when moving the first right-side deflection element 25R (and the first left-side deflection element 25L) of the present embodiment in the direction away from the optical axis 110 of the objective lens 11 is shown. It is a figure which shows an example.
  • the CPU is an abbreviation of “Central Processing Unit”.
  • RAM is an abbreviation for “Random Access Memory”.
  • ROM is an abbreviation for “Read Only Memory”.
  • ASIC is an abbreviation for “Application Specific Integrated Circuit”.
  • FPGA is an abbreviation for “Field-Programmable Gate Array”.
  • SSD means an abbreviation of “Solid State Drive”.
  • DVD-ROM is an abbreviation for “Digital Versatile Disc Read Only Memory”.
  • USB is an abbreviation for "Universal Serial Bus”.
  • right angle refers to an angle obtained by intersecting a horizontal line and a vertical line.
  • the angle described as “right angle” does not necessarily have to be a right angle and may be displaced as long as it is within an allowable error.
  • FIG. 1 shows a surgical microscope 100A1 placed in front of a user (eg, an ophthalmologist) 150.
  • the surgical microscope 100A1 is directly or indirectly arranged on the surgical microscope main body 100AH and the surgical microscope main body 100AH, and is obtained by right-side observation light and left-side observation light described below.
  • a display device 100AD for displaying an image.
  • a stereoscopic image with a parallax of the eye due to the right-side observation light and the left-side observation light included in the observation light (eg, visible light) generated from the surgical target eye (for example, right eye) that is the target object (observation target) Observation images, operative field images, display images, parallax images) are obtained.
  • the “right side” is the right side (for example, the positive direction of the X axis) when the surgical microscope 100A1 is viewed from the user 150, and 2 for generating two images for generating a parallax image.
  • One of the two observation lights is on the side of passing through the objective lens 11 (see also FIG. 2A).
  • the “right side” is a side on which one of the two illumination lights (the right illumination light and the left illumination light) travels toward the object in order to generate two images for generating a parallax image.
  • the “left side” is the left side (eg, the negative direction of the X axis) when the surgical microscope 100A1 is viewed from the user, and the two observation lights for generating two images for generating a parallax image.
  • the other is the side that passes through the objective lens 11 (see also FIG. 2A) and proceeds.
  • the “left side” is the side on which the other of the two illumination lights (right illumination light and left illumination light) travels toward the object in order to generate two images for generating the parallax image.
  • the “right side observation light” is one observation light for generating one of the two images for generating a parallax image
  • the “left side observation light” is the other for generating the other image. It is observation light.
  • One image is an image for one eye of the user, and the other image is an image for the other eye of the user.
  • one image is an image for the right eye of the user, and the other image includes an image for the left eye of the user.
  • one image may be an image for the left eye of the user, and the other image may be an image for the right eye of the user.
  • the “right side illumination light” is the illumination light emitted from the right side illumination light source optical system 1618R described later to illuminate the object from the right side.
  • the “left side illumination light” is an illumination light emitted from a left side illumination light source optical system 1618L described later in order to illuminate the object from the left side.
  • the display device 100AD may be a liquid crystal display, an organic EL display, or the like.
  • the display device 100AD is an example of a “display unit” of the technology of the present disclosure.
  • the vertical direction is the Z direction
  • the direction connecting the center of the user 150 and the center of the surgical microscope main body 100AH and orthogonal to the Z direction is the Y direction
  • the left and right direction of the surgical microscope 100A1 with respect to the user 150 is the Z direction.
  • the direction orthogonal to each other is defined as the X direction.
  • the vertically upward direction is the positive direction of Z
  • the vertically downward direction is the negative direction of Z.
  • the depth direction from the user 150 to the surgical microscope 100A1 is the positive Y direction
  • the front direction is the negative Y direction.
  • the right direction (eg, right direction) of the surgical microscope 100A1 is a positive direction of X
  • the left direction (eg, left direction) is a negative direction of X.
  • a direction orthogonal to the vertical direction on the horizontal plane is a horizontal direction (eg, The direction that intersects the vertical direction on the horizontal plane, the X direction and the Y direction).
  • FIG. 2A shows a sectional view of the surgical microscope 100A1.
  • the surgical microscope 100A1 includes a single objective lens 11, a right-side variable magnification optical system 13R, a right-side imaging optical system 14R, a right-side imaging element 15R, a left-side variable-magnification optical system 13L, and a left-side imaging optical system.
  • the system 14L and the left imaging element 15L are provided.
  • the single objective lens 11 may be configured by a lens (for example, a doublet) in which two or more lenses are bonded together.
  • the right-side variable magnification optical system 13R and the right-side imaging optical system 14R form the right-side observation light included in the observation light from the eye on the right-side image sensor 15R.
  • the left-side variable magnification optical system 13L and the left-side imaging optical system 14L form the right-side observation light included in the observation light from the eye on the left-side imaging element 15L.
  • the right-side variable magnification optical system 13R, the right-side imaging optical system 14R, and the right-side imaging device 15R are arranged on the same right-side imaging optical device substrate that is movable in the X direction, and is referred to as right-side imaging optical device 131415R.
  • the left-side variable magnification optical system 13L, the left-side imaging optical system 14L, and the left-side imaging element 15L are arranged on the same substrate for the left-side imaging optical device that is movable in the X direction, and are referred to as the left-side imaging optical device 131415L.
  • the objective lens 11 in the present embodiment is configured by a common objective lens on which the right-side observation light and the left-side observation light are incident (a so-called Galileo type), but may be configured by a Greenough type including two or more objective lenses. ..
  • the right variable magnification optical system 13R and the right imaging optical system 14R are examples of the “right observation optical system” of the technique of the present disclosure.
  • the left-side variable power optical system 13L and the left-side imaging optical system 14L are examples of the “left-side observation optical system” in the technique of the present disclosure.
  • the surgical microscope 100A1 includes a right oblique illumination light source 16R for oblique illumination and a right oblique illumination optical that shapes the right oblique illumination light (16RI is attached to its optical axis) emitted by the right oblique illumination light source 16R. And a system 21R.
  • the right oblique illumination light source 16R and the right oblique illumination optical system 21R configure a right oblique illumination light source oblique illumination optical system 1621R.
  • the surgical microscope 100A1 shapes the right perfect coaxial illumination light source 18R for transillumination and the right perfect coaxial illumination light (18RI is attached to the optical axis) emitted by the right perfect coaxial illumination light source 18R. And a right complete coaxial illumination optical system 23R.
  • the right perfect coaxial illumination light source 18R and the right perfect coaxial illumination optical system 23R constitute a right perfect coaxial illumination light source perfect coaxial illumination optical system 1823R.
  • Complete coaxial illumination optical system 1823R (right oblique illumination light source 16R to right complete coaxial illumination optical system 23R) is the same rightward illumination light source optical that is movable in the X direction.
  • the right side illumination light source optical system 1618R is disposed on the system substrate.
  • the right side illumination light source optical system 1618R generates illumination light that illuminates the eye from the right side.
  • the right oblique illumination light source 16R and the right complete coaxial illumination light source 18R are arranged so that the emitted right side illumination (oblique illumination and complete coaxial illumination) light does not pass through the right variable magnification optical system 13R and the right imaging optical system 14R. ing.
  • the surgical microscope 100A1 includes a left oblique illumination light source 16L for oblique illumination and a left oblique illumination light (16LI is attached to the optical axis) emitted by the left oblique illumination light source 16L. And an illumination optical system 21L.
  • the left oblique illumination light source 16L and the left oblique illumination optical system 21L constitute a left oblique illumination light source oblique illumination optical system 1621L.
  • the surgical microscope 100A1 shapes the left perfect coaxial illumination light source 18L for transillumination and the left perfect coaxial illumination light (18LI is attached to the optical axis) emitted by the left perfect coaxial illumination light source 18L. And a complete coaxial illumination optical system 23L.
  • the left perfect coaxial illumination light source 18L and the left perfect coaxial illumination optical system 23L constitute a left perfect coaxial illumination light source perfect coaxial illumination optical system 1823L.
  • the oblique illumination optical system 1621L and the left complete coaxial illumination light source are the same leftward illumination light source optical that is movable in the X direction. It is arranged on the system substrate and is called a left side illumination light source optical system 1618L.
  • the left side oblique illumination light source 16L and the left side complete coaxial illumination light source 18L are arranged so that the emitted left side illumination (oblique illumination and perfect coaxial illumination) light does not pass through the left side variable magnification optical system 13L and the left side imaging optical system 14L. ing.
  • the right side illumination light source optical system 1618R is an example of the “right side illumination optical system” of the technology of the present disclosure.
  • the left side illumination light source optical system 1618L is an example of the “left side illumination optical system” of the technology of the present disclosure.
  • the lighting includes a first lighting and a second lighting.
  • the first illumination is illumination for transillumination
  • the second illumination is oblique illumination.
  • Transillumination refers to an illumination method in which light reaches the retina and the reflected light is used as a secondary light source to obtain a backlight effect (Red reflex). For example, it is an illumination method for brightening the crystalline lens.
  • the first type of transillumination illumination is perfect coaxial illumination, and the second type is near coaxial illumination.
  • the optical axes 18RI and 18LI of transillumination illumination light are coaxial with the optical axes 15RI and 15LI of observation light.
  • the optical axis of transillumination illumination light is set to, for example, about 2 ° with respect to the optical axes 15RI and 15LI of observation light.
  • the surgical microscope 100A1 may switch between perfect coaxial illumination and near coaxial illumination, or may perform each illumination simultaneously.
  • the opacity of the crystalline lens can be seen clearly. Therefore, it is an essential function during cataract surgery.
  • oblique illumination refers to an illumination method in which the angle of the optical axis of the illumination light of oblique illumination (oblique illumination light) with respect to the optical axis of the observation light (15RI, 15LI) is larger than that of near-coaxial illumination.
  • the illumination light is obliquely incident on the object (in this case, the eye to be operated on)
  • the shadow due to the unevenness of the eye is emphasized, so that a stereoscopic effect can be obtained.
  • each illumination is divided by branching the light from the light source.
  • Light may be generated.
  • the number of light sources may be one, two or three.
  • the light from one light source is branched and guided to each optical axis (16RI, 18RI, 16LI, 18LI) by a light guide, so that one light source is converted to each light source (16R). , 18R, 16L, 18L).
  • the optical axes 18RI and 18LI of the illumination light of the perfect coaxial illumination are different from the optical axes 15RI and 15LI of the observation light with respect to the optical axes 18RI and 18LI of the illumination light of the perfect coaxial illumination at the position of the object and the observation light. It is located within the range of the first predetermined angle on the plane including the optical axes 15RI and 15LI.
  • the range of the first predetermined angle is, for example, 0 ° or more and 2 ° or less.
  • the optical axes 16RI and 16LI of the illumination light of the oblique illumination are the optical axes 15RI and 15LI of the observation light and the optical axes 16RI and 16LI of the illumination light of the oblique illumination at the position of the object and the optical axes 15RI and 15LI of the observation light.
  • the angle with respect to the optical axis (15RI, 15LI) of the observation light is larger than the angles of the optical axes 18RI, 18LI of the illumination light of perfect coaxial illumination. large.
  • the range of the second predetermined angle is, for example, 2 ° or more and 8 ° or less.
  • the surgical microscope 100A1 includes the objective lens 11 and the right-side observation optical system (eg, right-side variable magnification optical system 13R) in the observation optical path (right-side observation optical path) between the object and the right-side imaging optical device 131415R, and the right side.
  • the illumination optical path (right illumination optical path) between the illumination light source optical system 1618R and the object, between the right-side perfect coaxial illumination light source perfect coaxial illumination optical system 1823R (or the right oblique illumination light source oblique illumination optical system 1621R) and the objective lens 11.
  • the first right-side deflection element 25R provided in the.
  • the first right-side deflection element 25R reflects the right-side oblique illumination light and the right-side perfect coaxial illumination light that illuminate the eye toward the objective lens 11.
  • the first right-side deflection element 25R takes a right-side image of at least a part (eg, right-side observation light) of the observation light which is generated from the eye (eg, reflected and emitted) and transmitted through the objective lens 11.
  • deflecting eg, reflecting
  • right side observation light (15RI is attached to its optical axis) is formed.
  • the first right deflection element 25R deflects at least a part of the observation light reflected from the eye and transmitted through the objective lens 11 to the right imaging optical device 131415R as the right observation light.
  • the first right-side deflection element 25R deflects the right-side observation light of the right-side observation light and the left-side observation light, which are the observation light, to the right-side imaging optical device 131415R.
  • the right side illumination light path described above is the first right side illumination light path between the right side perfect coaxial illumination light source perfect coaxial illumination optical system 1823R and the object and the right side oblique illumination light source oblique illumination optical system 1621R and the object. Of the second right side illumination optical path.
  • the first right deflection element 25R may transmit the right perfect coaxial illumination light and reflect the right observation light.
  • the second right-side deflection element moving unit 70R outputs the right-side observation light optical axis 15RI and the right-side perfect coaxial illumination light during the movement.
  • the second right deflection element 26R is moved so that the angle formed by the optical axis 18RI and the eye position is kept constant.
  • the right observation optical path and the right illumination optical path are the optical paths that pass through the first right deflection element 25R, respectively, and the first right deflection element 25R is arranged in the right observation optical path and the right illumination optical path.
  • the first right-side deflection element 25R is arranged at least in the right-side observation optical path and the first right-side illumination optical path described above.
  • the optical axis 16RI of the right oblique illumination light and the optical axis 18RI of the right perfect coaxial illumination light are bent at a right angle in the first right deflection element 25R.
  • the optical axis 15RI of the right side observation light is bent at a right angle in the first right side deflection element 25R.
  • the surgical microscope 100A1 includes, between the objective lens 11 and the left observation optical system (for example, the left variable magnification optical system 13L) in the observation optical path (the left observation optical path) between the object and the left imaging optical device 131415L, Further, in the illumination optical path (left illumination optical path) between the right illumination light source optical system 1618R and the object, the left complete coaxial illumination light source perfect coaxial illumination optical system 1823L (or left oblique illumination light source oblique illumination optical system 1621L) and the objective lens 11. And a first left-side deflection element 25L provided between the two.
  • the left observation optical system for example, the left variable magnification optical system 13L
  • the left complete coaxial illumination light source perfect coaxial illumination optical system 1823L or left oblique illumination light source oblique illumination optical system 1621L
  • a first left-side deflection element 25L provided between the two.
  • the first left-side deflection element 25L reflects the left oblique illumination light that illuminates the eye and the left complete coaxial illumination light toward the objective lens 11.
  • the first left-side deflection element 25L uses at least part of the observation light (eg, left-side observation light) generated from the eye (reflected and emitted) and transmitted through the objective lens 11 as left-side imaging optics.
  • the observation light eg, left-side observation light
  • the observation light generated from the eye (reflected and emitted) and transmitted through the objective lens 11 as left-side imaging optics.
  • the first left-side deflection element 25L deflects at least a part of the observation light reflected from the eye and transmitted through the objective lens 11 to the left-side imaging optical device 131415L as the left-side observation light.
  • the first left-side deflection element 25L deflects the left-side observation light out of the right-side observation light and the left-side observation light, which are the observation lights, to the left-side imaging optical device 131415L.
  • the above-mentioned left side illumination light path is the first left side illumination light path between the left side complete coaxial illumination light source perfect coaxial illumination optical system 1823L and the object, and between the left side oblique illumination light source oblique illumination optical system 1621L and the object.
  • the first left-side deflection element 25L may transmit the left-side perfect coaxial illumination light and reflect the left-side observation light (see FIG. 23).
  • the second left-side deflection element moving unit 70L moves the left-side observation light optical axis 15LI and the left-side perfect coaxial illumination light during the movement.
  • the second left-side deflection element 26L is moved so that the angle formed by the optical axis 18LI and the eye position is kept constant.
  • the left observation optical path and the left illumination optical path are optical paths that pass through the first left deflection element 25L, respectively, and the first left deflection element 25L is arranged in the left observation optical path and the left illumination optical path.
  • the first left-side deflecting element 25L is arranged at least in the above-mentioned left-side observation optical path and first left-side illumination optical path.
  • the optical axis 16LI of the left oblique illumination light and the optical axis 18LI of the left perfect coaxial illumination light are bent at a right angle in the first left deflection element 25L.
  • the optical axis 15LI of the left side observation light is bent at a right angle in the first left side deflection element 25L.
  • the left-side observation light and the right-side observation light included in the observation light obtained by irradiating the object with the above-mentioned illumination light are substantially parallel light when passing through the objective lens 11.
  • the objective lens 11 may be designed so that the left-side observation light and the right-side observation light do not become parallel light.
  • the right-side observation light and the left-side observation light are observation lights generated by irradiating the substantially same position (for example, the same visual field region) of the target object with the above illumination light.
  • the surgical microscope 100A1 includes a second right-side deflection element 26R that transmits the right-side perfect coaxial illumination light and reflects the right-side observation light toward the right-side variable magnification optical system 13R.
  • the right oblique illumination light reaches the first right deflection element 25R without passing through the second right deflection element 26R because the second right deflection element 26R has a relatively small size.
  • the surgical microscope 100A1 has a size in which the right oblique illumination light passes through the second right deflection element 26R and reaches the first right deflection element 25R through the second right deflection element 26R.
  • the optical axis 15RI of the right side observation light is bent at a right angle in the second right side deflection element 26R. More specifically, the direction of the optical axis 15RI of the right side observation light traveling from the second right side deflection element 26R to the right side imaging optical device 131415R is the Z direction (positive), while the direction from the first right side deflection element 25R to The direction of the optical axis 15RI of the right side observation light toward the 2nd right side deflection element 26R is the X direction (positive).
  • the respective devices (13R, 14R, 15R) of the right imaging optical device 131415R may be arranged in the Y direction (positive or negative).
  • the second right deflection element 26R may bend the optical axis 15RI of the right observation light in the Y direction (positive or negative) so that the right observation light reaches the right imaging optical device 131415R.
  • the surgical microscope 100A1 includes a second left-side deflection element 26L that transmits the left-side perfect coaxial illumination light and reflects the left-side observation light toward the left-side variable magnification optical system 13L.
  • the left oblique illumination light reaches the first left deflection element 25L without passing through the second left deflection element 26L because the size of the second left deflection element 26L is relatively small.
  • the surgical microscope 100A1 has such a size that the second left-side deflection element 26L transmits the left oblique illumination light to the first left-side deflection element 25L after passing through the second left-side deflection element 26L.
  • the optical axis 15LI of the left side observation light is bent at a right angle in the second left side deflection element 26L. More specifically, while the optical axis 15LI of the left-side observation light traveling from the second left-side deflection element 26L to the left-side imaging optical device 131415L is the Z direction (positive), the direction from the first left-side deflection element 25L The direction of the optical axis 15LI of the left-side observation light toward the left-side deflection element 26L is the X direction (negative).
  • the second right deflection element 26R is arranged in the right observation optical path including the optical axis 15RI of the right observation light and the right illumination optical path of the right complete coaxial illumination light including the optical axis 18RI of the right complete coaxial illumination light.
  • the second right deflection element 26R is movable on the right observation optical path and the right illumination optical path of the right perfect coaxial illumination light.
  • the second right deflection element 26R is arranged between the right variable magnification optical system 13R and the right imaging optical system 14R and the first right deflection element 25R, and between the right illumination light source optical system 1618R and the first right deflection element 25R. To be done.
  • the second right-side deflection element 26R may be arranged between the first right-side deflection element 25R and the objective lens 11 or between the objective lens 11 and the eye.
  • the second left-side deflection element 26L is arranged in the left-side observation optical path including the optical axis 15LI of the left-side observation light and the left-side illumination optical path of the left-side complete coaxial illumination light including the optical axis 18LI of the left-side complete coaxial illumination light.
  • the second left-side deflection element 26L is movable on the left-side observation optical path and the left-side illumination optical path of the left-side perfect coaxial illumination light.
  • the second left-side deflection element 26L is arranged between the left-side variable magnification optical system 13L and the left-side imaging optical system 14L and the first left-side deflection element 25L, and between the left-side illumination light source optical system 1618L and the first left-side deflection element 25L. To be done.
  • the second left-side deflection element 26L may be arranged between the first left-side deflection element 25L and the objective lens 11 or between the objective lens 11 and the eye.
  • the respective devices (13L, 14L, 15L) of the left imaging optical device 131415L may be arranged in the Y direction (positive or negative).
  • the second left-side deflection element 26L may bend the optical axis 15LI of the left-side observation light in the Y direction (positive or negative) so that the left-side observation light reaches the left-side imaging optical device 131415L.
  • first right-side deflection element 25R and the first left-side deflection element 25L a reflection mirror, a half mirror, a prism (for example, a prism mirror) or the like that reflects received light is used.
  • second right deflection element 26R a transmissive reflection element that transmits the right perfect coaxial illumination light and reflects the right observation light is used.
  • second left-side deflection element 26L a transflective element that transmits the left-side perfect coaxial illumination light and reflects the left-side observation light is used.
  • the transflective element for example, a half mirror, a beam splitter, a dichroic mirror, or the like is used.
  • the first right-side deflection element 25R and the first left-side deflection element 25L reflect and deflect the illumination light and the observation light in a predetermined direction (eg, a deflection direction, a reflection direction).
  • a predetermined direction eg, a deflection direction, a reflection direction.
  • the first right-side deflection element 25R and the first left-side deflection element 25L deflect the right-side observation light and the left-side observation light in different directions from each other or in the right direction when viewed from the optical axis 110 of the objective lens 11.
  • the observation light and the left observation light may be reflected and deflected in directions away from each other and in different directions.
  • the first right-side deflection element 25R reflects and deflects the right-side observation light so that it has a component perpendicular to the optical axis 110 of the objective lens 11, and the first left-side deflection element 25L includes the objective lens 11.
  • the left observation light is reflected and deflected in a direction different from the deflection direction (eg, the reflection direction) of the right observation light in the first right deflection element 25R so as to have a component perpendicular to the optical axis 110.
  • the deflection direction eg, the reflection direction
  • the first right-side deflection element 25R reflects and deflects the right-side observation light in a direction orthogonal to the vertical direction
  • the first left-side deflection element 25L reflects the left-side observation light in a direction orthogonal to the vertical direction. It may be configured to deflect.
  • the first right-side deflection element 25R and the first left-side deflection element 25L include a plane including the direction in which the right-side observation light and the left-side observation light intersect the optical axis 110 of the objective lens 11 (eg, the optical axis 110).
  • the first right-side deflection element 25R is an example of the “right-side deflection element” in the technique of the present disclosure.
  • the first left-side deflection element 25L is an example of the “left-side deflection element” in the technique of the present disclosure.
  • the second right deflection element 26R is an example of the “right transmission / reflection element” in the technique of the present disclosure.
  • the second left-side deflection element 26L is an example of the “left-side transmissive reflection element” in the technology of the present disclosure.
  • a collimator lens is used as the right oblique illumination optical system 21R, the right perfect coaxial illumination optical system 23R, the left oblique illumination optical system 21L, and the left perfect coaxial illumination optical system 23L.
  • the right oblique illumination optical system 21R and the right perfect coaxial illumination optical system 23R, and the left oblique illumination optical system 21L and the left perfect coaxial illumination optical system 23L may include diaphragms that limit the luminous flux of each illumination light.
  • the surgical microscope 100A1 may have a configuration in which the right oblique illumination optical system 21R and the right complete coaxial illumination optical system 23R, the left oblique illumination optical system 21L, and the left complete coaxial illumination optical system 23L are omitted.
  • the first right-side deflection element 25R and the first left-side deflection element 25L are the optical paths of the observation light or the illumination light described above, and are arranged near the objective lens 11. As shown in the drawing and described later, the first right-side deflection element 25R and the first left-side deflection element 25L include a first right-side deflection element moving unit 68R and a first left-side deflection element which will be described later in order to change a substantial angle described later.
  • a predetermined direction (moving direction, X direction, Y direction in the drawings described later) corresponding to the parallax direction viewed from the user 150 by the moving unit 68L (see FIG. 5) (eg, direction in which the user wants to make parallax, eye direction) , Or in the Z direction).
  • the right-side variable magnification optical system 13R, the right-side imaging optical system 14R, and the right-side imaging element 15R have the same configuration as the left-side variable magnification optical system 13L, the left-side imaging optical system 14L, and the left-side imaging element 15L.
  • the right-side variable magnification optical system 13R, the right-side imaging optical system 14R, and the right-side imaging element 15R will be described, and the left-side variable-magnification optical system 13L, the left-side imaging optical system 14L, and the left-side imaging element 15L will be omitted.
  • the optical axis 16RI of the right oblique illumination light and the optical axis 18RI of the right complete coaxial illumination light are parallel to the X direction between the right oblique illumination light source 16R and the right perfect coaxial illumination light source 18R to the first right deflection element 25R. Yes, it may be displaced by a predetermined distance in the Z direction, or may be displaced by a certain distance in the Y direction as shown in FIG. 2B.
  • the optical axis 16LI of the left oblique illumination light and the optical axis 18LI of the left complete coaxial illumination light are parallel to the X direction, like the optical axis 16RI of the right oblique illumination and the optical axis 18RI of the right perfect coaxial illumination light. Yes, it may be displaced by a predetermined distance in the Z direction, or may be displaced by a certain distance in the Y direction as shown in FIG. 2B.
  • the point where the optical axis 18RI of the right perfect coaxial illumination light and the point where the optical axis 16RI of the right oblique illumination light is located on the surface of the first right deflecting element 25R are at the same position in the X direction. However, as shown in FIG. 2C, they may be displaced in the X direction. In this respect, the point where the optical axis 18LI of the left perfect coaxial illumination light is located and the optical axis 16LI of the left oblique illumination light is also the same position in the X direction, as shown in FIG. It may be shifted to.
  • the optical axes 16LI and 16RI of the left and right oblique illumination are located at the optical axes 15LI and 15RI of the left and right observation light on the surfaces of the first right deflection element 25R and the first left deflection element 25L, respectively.
  • the optical axes 16LI and 16RI of the oblique illumination from the first left deflection element 25L and the first right deflection element 25R to the eye are the eye positions and the oblique illumination is
  • the illumination direction changes, but the angle becomes the same.
  • oblique illumination can be performed from any direction at the position of the eye, in which case the optical axis of oblique illumination is applied to the eye at the same angle with respect to the optical axis of the observation light. Become.
  • the objective lens 11, the diaphragm 12R, and the right-side variable magnification optical system are arranged in this order from the eye 10A (more accurately, the object plane 10A) side.
  • the system 13R and the right imaging optical system 14R are arranged.
  • the first right deflection element 25R and the second right deflection element 26R are not shown.
  • the light flux (observation light) generated from each point of the eye 10A is converted into a substantially parallel light flux through the objective lens 11, is magnified through the right magnification optical system 13R, and is transformed through the right imaging optical system 14R. It is condensed and reaches the image plane 10B.
  • a right imaging element 15R is arranged on the image surface 10B in order to observe the image of the eye 10A formed on the image surface 10B.
  • the right variable power optical system 13R includes, in order from the eye 10A side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a third lens having a positive refractive power. It is composed of a group G3 and a fourth lens group G4 having a positive refractive power, and the second lens group G2 and the third lens group G3 are lens groups for zooming. Therefore, by fixing the first lens group G1 and the fourth lens group G4 and moving the variable power lens groups (G2, G3) along the optical axis direction, the observation magnification of the image of the eye 10A is increased. It can be changed arbitrarily. The observation magnification is determined by the ratio of the focal length of the objective lens 11 and the focal length obtained by combining the right-side variable magnification optical system 13R and the right-side imaging optical system 14R.
  • the right-side variable power optical system 13R has the four lens groups G1, G2, G3, G4 already described, as shown in FIG. 4 (see also FIG. 3).
  • the first lens group G1 includes a cemented lens of a meniscus lens 31 having a convex surface facing the object (eye) side and a biconvex lens 32, and a meniscus lens 33 having a convex surface facing the object.
  • the second lens group G2 includes a biconcave lens 34, a cemented lens of a biconvex lens 35 and a biconcave lens 36, and a meniscus lens 37 having a concave surface facing the object side.
  • the third lens group G3 includes a biconvex lens 38 and a cemented lens of a biconvex lens 39 and a meniscus lens 40 having a concave surface facing the object side.
  • the fourth lens group G4 includes a cemented lens of a meniscus lens 41 having a concave surface facing the object side and a meniscus lens 42 having a concave surface facing the object side.
  • the first lens group G1 and the fourth lens group G4 are fixed, and the second lens group G2 is moved to the image side.
  • the third lens group G3 is moved in the direction in which the focus movement due to the movement of the second lens group G2 is corrected. Note that it is preferable to increase the aperture diameter of the aperture 12R in conjunction with the magnification change of the right-side variable power optical system 13R from the low magnification end to the high magnification end.
  • Table 1 exemplifies the specifications of the right-side variable power optical system 13R and diaphragm 12R shown in FIG.
  • the surface number 1 corresponds to the diaphragm 12R
  • the surface numbers 2 to 21 correspond to the lens surface numbers sequentially added from the object side.
  • the distance from the lens surface (2) of the most object-side lens (meniscus lens 31) to the diaphragm 12R is 15 mm.
  • Fno indicates the F number
  • Fai indicates the aperture diameter of the aperture 12R.
  • the right-side variable power optical system 13R is located outside the right-side variable power optical system 13R, specifically, in the optical path between the right-side variable power optical system 13R and the objective lens 11 (first right range). It is formed so that there is a position where the effective area of the light flux of the right side observation light perpendicular to the optical axis 15RI of the observation light is minimal.
  • the position where the effective area of the light flux of the right-side observation light is minimized is the position of the pupil of the right-side variable power optical system 13R in which the right-side diaphragm 12R described later is arranged.
  • the effective area of the light flux of the right side observation light at the position where the effective area of the light flux of the right side observation light is minimized will be described.
  • the effective area of the light flux of the observation light perpendicular to the optical axis is the cross-sectional area of the light flux that reaches the image sensor (15R, 15L) in the observation light and is imaged by the plane perpendicular to the optical axis. Is.
  • the effective area of the light flux of the right-side observation light in the lens (meniscus lens 31) closest to the objective lens 11 of the right-side variable power optical system 13R is defined as a first effective area, and the surface of the objective lens 11 on the right-side variable power optical system 13R side.
  • the effective area of the light flux of the right side observation light at is the second effective area.
  • the effective area of the light flux of the right side observation light at the position where the effective area of the light flux of the right side observation light is a minimum is the third effective area smaller than the first effective area and the second effective area. More specifically, the effective area of the light flux of the right observation light perpendicular to the optical axis 15RI of the right observation light is, for example, the position on the optical axis moved from the objective lens 11 to the right variable magnification optical system 13R along the optical axis. Then, the second effective area gradually decreases. Then, the effective area of the light flux of the right observation light becomes the third effective area at the position where the effective area of the light flux of the right observation light is minimum in the optical path between the objective lens 11 and the right variable magnification optical system 13R.
  • the effective area of the light flux of the right-side observation light gradually increases from the third effective area, and becomes the first effective area in the right-side variable power optical system 13R.
  • the position on the optical axis where the effective area of the light flux of the observation light is minimum is not limited to one point.
  • the effective area of the light flux of the observation light is a constant value with a minimum value
  • those effective areas That is, each of the plurality of third effective areas
  • the minimum value of the effective area of the light flux here may be constant for a while with respect to the change of the position of the optical path.
  • the left-side variable power optical system 13L is not inside the left-side variable power optical system 13L, specifically, the optical path between the left-side variable power optical system 13L and the objective lens 11 (first left range). Then, the effective area of the light flux of the left-side observation light perpendicular to the optical axis 15LI of the left-side observation light is formed to be a minimum.
  • the respective positions where the effective area of the light flux becomes the minimum are located between the right variable magnification optical system 13R and the first right deflection element 25R and the left variable magnification optical system 13L and the first variable magnification optical system 13L.
  • the right-side variable magnification optical system 13R and the left-side variable magnification optical system 13L are formed so as to be located between the first left-side deflection element 25L (second right-side / left-side range).
  • the position where the effective area of the light flux is the minimum is between the first right deflection element 25R and the second right deflection element 26R (
  • the right variable power optical system 13R and the left variable power optical system 13L are configured so as to be in the third right range) and between the first left deflection element 25L and the second left deflection element 26L (third left range). Has been done.
  • the position where the effective area of the light flux is minimized (the position of the pupil) is located between the first right deflection element 25R and the second right deflection element 26R and the first left deflection element. It is located between 25L and the second left deflection element 26L.
  • the light reflection area (effective diameter) of each of the first right deflection element 25R, the second right deflection element 26R, the first left deflection element 25L, and the second left deflection element 26L can be made relatively small. it can.
  • the size (effective diameter) of each element eg, the first right-side deflection element 25R, the first left-side deflection element 25L, etc.
  • the axial distance can be made shorter.
  • the surgical microscope 100A1 can relatively move the first right-side deflection element 25R and the first left-side deflection element 25L to further reduce the stereoscopic effect visually recognized by the user 150. Further, since the size of each of the above-mentioned elements arranged on the upper side in the vertical direction of the objective lens 11 can be reduced, the size (eg, thickness, width) and cost of the surgical microscope 100A1 can be reduced.
  • the position where the effective area of the luminous flux becomes the minimum (the position of the pupil) is made to coincide with the respective positions of the first right side deflection element 25R and the first left side deflection element 25L, so that the first right side deflection element 25R and the first right side deflection element 25R It is possible to minimize the area (effective diameter) of each of the 1st left-side deflection elements 25L that reflects light.
  • An optical element such as a filter may be arranged between the right-side variable power optical system 13R and the objective lens 11 and between the left-side variable power optical system 13L and the objective lens 11.
  • the optical elements such as the filters arranged in this way are not included in the right-side variable power optical system 13R and the left-side variable power optical system 13L. Therefore, the optical elements such as the filters arranged in this way are not included in the right side observation optical system and the left side observation optical system.
  • the surgical microscope 100A1 is arranged between the right variable power optical system 13R and the objective lens (first right range), and limits the effective area of the light flux of the right observation light perpendicular to the optical axis 15RI of the right observation light.
  • the right diaphragm 12R is provided.
  • the surgical microscope 100A1 is arranged between the left-side variable power optical system 13L and the objective lens (first left-side range), and has an effective area of the luminous flux of the left-side observation light perpendicular to the optical axis 15LI of the left-side observation light.
  • a left-side diaphragm 12L for limiting is provided.
  • the positions where the right diaphragm 12R and the left diaphragm 12L are arranged are between the right variable magnification optical system 13R and the first right deflection element 25R (second right range) or the left variable magnification optical system 13L and the first left deflection element. It is between 25 L (the second left side range).
  • the positions where the right diaphragm 12R and the left diaphragm 12L are arranged in the present embodiment are between the first right deflection element 25R and the second right deflection element 26R (third right range) or the first left deflection. It is between the element 25L and the second left deflection element 26L (third left range).
  • the right diaphragm 12R and the left diaphragm 12L are arranged at the position (pupil position) where the effective area of the light flux is minimized.
  • FIG. 15 shows that the right diaphragm 12R is arranged at a position where the effective area of the light flux of the right observation light is the minimum (the position of the pupil of the right observation optical system).
  • the effective area of the light flux of the right-side observation light perpendicular to the optical axis 15RI of the right-side observation light is minimized between the right-side variable power optical system 13R and the objective lens 11.
  • the left diaphragm 12L is also arranged at a position where the effective area of the above-mentioned light flux of the left observation light is minimized (the position of the pupil of the left observation optical system).
  • the right diaphragm 12R and the left diaphragm 12L are variable diaphragms. As will be described in detail later, the effective area of the light flux of the right side observation light and the left side observation light is adjusted by adjusting the right diaphragm 12R or the left diaphragm 12L based on the magnification of the right variable magnification optical system 13R or the left variable magnification optical system 13L. Is adjusted.
  • the first right deflection element 25R is arranged on the first right deflection element substrate that is movable in the X direction.
  • the first left-side deflection element 25L is arranged on the first left-side deflection element substrate that is movable in the X direction.
  • the first left-side deflection element substrate on which the first left-side deflection element 25L is arranged (fixed) moves in the X direction, a surface that reflects each illumination light and the left-side observation light of the first left-side deflection element 25L,
  • the first left-side deflection element 25L is moved so that the angle formed by the optical axis 110 of the objective lens 11 is kept constant.
  • the angle formed by each of the above is 45 °.
  • the right diaphragm 12R is arranged on the right diaphragm substrate that is movable in the X direction.
  • the left diaphragm 12L is arranged on the left diaphragm substrate that is movable in the X direction.
  • the second right deflection element 26R is arranged on the second right deflection element substrate that is movable in the X direction.
  • the second left-side deflection element 26L is arranged on the second left-side deflection element substrate that is movable in the X direction.
  • the means for limiting the effective area of the light flux of the right side observation light and the left side observation light is not limited to the right side diaphragm (variable diaphragm) 12R and the left side diaphragm (variable diaphragm) 12L.
  • the right diaphragm 12R is omitted, and the light reflection area (effective diameter) of each of the first right deflection element 25R and the second right deflection element 26R is adjusted, so that the luminous flux of the right observation light becomes effective. It is shown how to limit the area. As shown in FIG.
  • the right diaphragm 12R is not provided, it is possible to adjust the light reflection area (effective diameter) of each of the first right deflection element 25R and the second right deflection element 26R by adjusting the right observation light.
  • the effective area of the light flux can be limited.
  • the size of the entrance surface or exit surface (reflection surface, deflection surface, refraction surface) of the first right-side deflection element 25R defines the effective area of the light flux of the right-side observation light.
  • FIG. 16 shows an example in which the right diaphragm 12R is omitted and the light reflection area (effective diameter) of each of the first right deflection element 25R and the second right deflection element 26R is adjusted. It is the same. That is, the left diaphragm 12L is omitted, and the light reflection area (effective diameter) of each of the first left deflection element 25L and the second left deflection element 26L is adjusted.
  • the size of the entrance surface or exit surface (reflection surface, deflection surface, or refraction surface) of the first left-side deflection element 25L defines the effective area of the light flux of the left-side observation light.
  • the area (effective diameter) that reflects light is adjusted by adjusting the size (area) of each of the first right-side deflection element 25R and the second right-side deflection element 26R.
  • the technique of the present disclosure is not limited to this, and may be as follows.
  • a mask (light-shielding mask) that absorbs light and blocks light is provided on the first right-side deflection element 25R so that the effective area of the light flux of the right-side observation light perpendicular to the optical axis of the right-side observation light becomes a predetermined area.
  • a mask that absorbs light and blocks light is provided on the first left-side deflection element 25L so that the effective area of the light flux of the left-side observation light perpendicular to the optical axis of the left-side observation light becomes a predetermined area.
  • FIG. 5 shows a block diagram of the surgical microscope 100A1.
  • the surgical microscope 100A1 includes a computer 50.
  • the computer 50 includes a CPU 52, a ROM 54, a RAM 56, and an input / output (I / O) port 58.
  • the CPU 52 and the input / output (I / O) port 58 are connected to each other by a bus 60.
  • the CPU 52 controls the entire surgical microscope 100A1 and is an example of a “control unit”.
  • the ROM 54 is a memory that stores various programs and various parameters in advance.
  • the RAM 56 is a memory used as a work area or the like when executing various programs.
  • the input / output (I / O) port 58 has an input device 63 such as a keyboard, a secondary storage device 62, a right imaging element 15R, a left imaging element 15L, a display device 100AD, a stereoscopic effect increasing switch 64, and a stereoscopic effect decreasing switch. 66 is connected.
  • the stereoscopic effect increase switch 64 selectively moves the first right-side deflection element 25R in a direction (X (positive) direction) away from the optical axis 110 of the objective lens 11 and stops the movement.
  • the stereoscopic effect increasing switch 64 selectively moves the first left-side deflecting element 25L in a direction away from the optical axis 110 of the objective lens 11 (X (negative) direction) and stops the movement.
  • the stereoscopic effect reducing switch 66 moves the first right-side deflection element 25R in a direction (X (negative) direction) approaching the optical axis 110 of the objective lens 11 and selectively instructs to stop the movement.
  • the stereoscopic effect reducing switch 66 moves the first left-side deflecting element 25L in a direction (X (positive) direction) closer to the optical axis 110 of the objective lens 11 and selectively instructs to stop the movement.
  • the CPU 52 moves at least one of the first right-side deflection element 25R and the first left-side deflection element 25L to change the three-dimensional effect increase switch 64 and the three-dimensional effect.
  • the first right-side deflection element moving unit 68R and the first right-side deflection element moving unit 68R and the first left-side deflection element 25R are moved so as to stop the movement of the moving elements.
  • the left deflection element moving unit 68L is controlled.
  • a right oblique illumination light source 16R, a left oblique illumination light source 16L, a right complete coaxial illumination light source 18R, and a left complete coaxial illumination light source 18L are connected to the input / output (I / O) port 58.
  • the input / output (I / O) port 58 has a first right-side deflection element moving unit 68R, a first left-side deflection element moving unit 68L, a right-side aperture moving unit 69R, a left-side aperture moving unit 69L, and a second right-side deflection element moving unit 70R. , And the second left-side deflection element moving unit 70L are connected.
  • a right side imaging optical device moving unit 72, a left side imaging optical device moving unit 74, a right side illumination optical system and light source moving unit 76, and a left side illumination optical system and light source moving unit 78 are connected to the input / output (I / O) port 58. Has been done.
  • a right-side variable magnification optical system lens driving unit 80 and a left-side variable magnification optical system lens driving unit 82, a right-side aperture diameter changing unit 85 and a left-side aperture diameter changing unit 87 are connected. ing.
  • Each moving unit (68R to 77R, 68L to 77L), each driving unit (80, 82), and each changing unit (85, 87) are composed of, for example, a motor.
  • the surgical microscope of the present embodiment may be individually provided with a right-side variable power optical system moving unit, a right-side imaging optical system moving unit, and a right-side image sensor moving unit instead of the right-side imaging optical device moving unit 72. Good.
  • the surgical microscope of the present embodiment may individually include a left-side variable power optical system moving unit, a left-side imaging optical system moving unit, and a left-side image sensor moving unit instead of the left-side imaging optical device moving unit 74. Good.
  • the right oblique illumination light source moving unit, the right oblique illumination optical system moving unit, the right complete coaxial illumination light source moving unit, and A right perfect coaxial illumination optical system moving unit may be provided.
  • the left side illumination optical system and the light source moving unit 78 instead of the left oblique illumination light source moving unit, the left oblique illumination optical system moving unit, the left complete coaxial illumination light source moving unit, and the left complete A coaxial illumination optical system moving unit may be provided.
  • the moving parts (68R to 70R, 72, 76) on the right side may be integrally configured.
  • the moving parts (68L to 70L, 74, 78) on the left side may be integrally configured.
  • the first right-side deflection element moving unit 68R and the first left-side deflection element moving unit 68L are examples of the “moving unit” in the technology of the present disclosure.
  • the right side diaphragm moving unit 69R is an example of the “right side diaphragm moving unit” of the technology of the present disclosure
  • the left side diaphragm moving unit 69L is an example of the “left side diaphragm moving unit” of the technology of the present disclosure.
  • the right side diaphragm diameter changing unit 85 is an example of a “right side diaphragm diameter adjusting unit” in the technology of the present disclosure.
  • the left side diaphragm diameter changing unit 87 is an example of a “left side diaphragm diameter adjusting unit” of the technology of the present disclosure.
  • the secondary storage device 62 stores a three-dimensional effect increase adjustment program and a three-dimensional effect decrease adjustment program, which will be described later, and an aperture diameter adjustment program.
  • the CPU 52 turns on the right oblique illumination light source 16R, the left oblique illumination light source 16L, the right complete coaxial illumination light source 18R, and the left complete coaxial illumination light source 18L.
  • the object eg, eye, object plane
  • the right oblique illumination light, the left oblique illumination light, the right complete coaxial illumination light, and the left complete coaxial illumination light is illuminated with the right oblique illumination light, the left oblique illumination light, the right complete coaxial illumination light, and the left complete coaxial illumination light.
  • the right side observation light and the left side observation light from the eyes are focused on the right side image pickup element 15R and the left side image pickup element 15L, and the right side image signal is input from the right side image pickup element 15R and the left side image signal is input to the computer 50 from the left side image pickup element 15L.
  • the CPU 52 generates a right eye image and a left eye image based on the right side image signal and the left side image signal.
  • the CPU 52 does not always create the right-eye image based on the right-side image signal, and does not necessarily create the left-eye image based on the left-side image signal.
  • the CPU 52 may create a left-eye image based on the right-side image signal, or may create a right-eye image based on the left-side image signal.
  • the CPU 52 may create both the right-eye image and the left-eye image based on the right-side image signal, or may create both the left-eye image and the right-eye image based on the left-side image signal.
  • the CPU 52 may create each of the right-eye image and the left-eye image based on both the right-side image signal and the left-side image signal.
  • An image creating apparatus controlled by the CPU 52 may be further provided, and the image creating apparatus may generate an image for the right eye and an image for the left eye based on the right image signal and the left image signal under the control of the CPU 52. Good.
  • the CPU 52 displays the right-eye image in the right-eye display area on the screen of the display device 100AD.
  • the image for the left eye is displayed in the display area for the left eye on the screen of the display device 100AD.
  • the right-eye observation light and the left-eye observation light cause the stereoscopic right-eye image and left-eye image having a parallax of the surgery target eye (for example, the right eye) to be displayed on the screen of the display device 100AD. ..
  • the user 150 recognizes the stereoscopic image through the polarized glasses, and synthesizes the right-eye image and the left-eye image in the brain.
  • the display device 100AD displays the image for the right eye and the image for the left eye on a line-by-line basis.
  • the display device 100AD displays the image for the right eye and the image for the left eye on a line-by-line basis, and instead of stereoscopically viewing the image through the polarizing glasses, the image for the right eye and the image for the left eye are displayed.
  • the images may be alternately displayed with a time difference of 1/60 second, and stereoscopic viewing may be performed through shutter-type glasses that open and close the shutters of the right eye and the left eye in synchronization with the image.
  • a binocular viewer may be used instead of the glasses.
  • the right-eye image is displayed in the right-eye area on the screen of the display device 100AD.
  • the left-eye image is displayed in the left-eye area on the screen of the display device 100AD.
  • the right-eye image is guided to the right eye of the user 150 by the optical system in the right optical path arranged between the right-eye region of the screen of the display device 100AD and the right eye of the user 150.
  • the image for the left eye is guided to the left eye of the user 150 by the optical system in the left optical path arranged between the left eye region of the screen of the display device 100AD and the left eye of the user 150.
  • the display device 100AD is directly or indirectly arranged on the surgical microscope body 100AH, but the technique of the present disclosure is not limited to this.
  • the display device 100AD displays an image 100AD1 in an area outside the first visual field area for the surgical microscope main body 100AH with the user 150 visually recognizing it from the front side of the surgical microscope. Is displayed. For example, in a state in which the user 150 is viewing from the front side of the surgical microscope, the surgical microscope body 100AH is arranged at a position that does not overlap the first visual field region.
  • the surgical microscope main body 100AH has a second targeting the image 100AD2 displayed in the space by the display device 100AD when the user 150 is viewing the front side of the surgical microscope. It is arranged in a region outside the visual field region.
  • the three-dimensional effect increasing switch 64 and the three-dimensional effect decreasing switch 66 are arranged on the floor vertically below the surgical microscope main body 100AH, and the user 150 operates the three-dimensional effect increasing switch 64 and the three-dimensional effect decreasing switch 66 with his / her own feet. (Turn on / off)
  • Each of the stereoscopic effect increasing switch 64 and the stereoscopic effect decreasing switch 66 is a foot switch.
  • the first right-side deflection element moving unit 68R moves the first right-side deflection element 25R in the X direction via the first right-side deflection element moving mechanism.
  • the right diaphragm moving unit 69R moves the right diaphragm 12R in the X direction based on the movement of the first right deflecting element 25R, specifically, in conjunction with the movement of the first right deflecting element 25R.
  • the second right deflection element moving unit 70R moves the second right deflection element 26R in the X direction.
  • the first left-side deflection element moving unit 68L moves the first left-side deflection element 25L in the X direction via the first left-side deflection element moving mechanism.
  • the left diaphragm moving unit 69L moves the left diaphragm 12L in the X direction based on the movement of the first left deflection element 25L, specifically, in conjunction with the movement of the first left deflection element 25L.
  • the second left-side deflection element moving unit 70L moves the second left-side deflection element 26L in the X direction.
  • the first right-side deflection element moving unit 68R and the first left-side deflection element moving unit 68L are configured so that the real angle formed by the optical axis 15RI of the right-side observation light and the optical axis 15LI of the left-side observation light at the eye position is continuously changed.
  • At least one of the first right side deflection element 25R and the first left side deflection element 25L is moved.
  • the first right deflection element moving unit 68R moves the first right deflection element 25R in the optical path between the eye and the right variable magnification optical system 13R and the right imaging optical system 14R.
  • the first left-side deflection element moving unit 68L moves the first left-side deflection element 25L in the optical path between the eye and the left-side variable magnification optical system 13L and the left-side imaging optical system 14L.
  • the right-side imaging optical device moving unit 72 keeps the right-side imaging light so that the optical path length of the right-side observation light is maintained during the movement.
  • Move device 131415R When the first left-side deflection element moving unit 68L moves the first left-side deflection element 25L, the left-side imaging optical device movement unit 74 maintains the optical path length of the left-side observation light during the movement, so that the left-side imaging optical device movement unit 74 maintains the optical path length.
  • Move device 131415L The right imaging optical device moving unit 72 moves the right imaging optical device 131415R in the X direction via the right imaging optical device moving mechanism.
  • the left imaging optical device moving unit 74 moves the left imaging optical device 131415L in the X direction via the left imaging optical device moving mechanism.
  • the second right-side deflection element moving unit 70R When the first right-side deflection element moving unit 68R moves the first right-side deflection element 25R, the second right-side deflection element moving unit 70R outputs the right-side observation light optical axis 15RI and the right-side perfect coaxial illumination light during the movement.
  • the second right deflection element 26R is moved so that the angle formed by the optical axis 18RI and the eye position is kept constant. Note that, when the first right-side deflection element moving unit 68R moves the first right-side deflection element 25R, the right-side illumination optical system and light source moving unit 76 and the optical axis 15RI of the right-side observation light and the right-side perfect coaxial during the movement.
  • the right side illumination light source optical system 1618R may be moved so that the angle formed by the optical axis 18RI of the illumination light and the position of the eye is kept constant.
  • the first left-side deflection element moving unit 68L moves the first left-side deflection element 25L
  • the second left-side deflection element moving unit 70L moves the left-side observation light optical axis 15LI and the left-side perfect coaxial illumination light during the movement.
  • the second left-side deflection element 26L is moved so that the angle formed by the optical axis 18LI and the eye position is kept constant.
  • the left-illumination optical system and light-source movement section 76 is coaxial with the optical axis 15LI of the left-side observation light and the left-side observation light during the movement.
  • the left side illumination light source optical system 1618L may be moved so that the angle formed by the optical axis 18LI of the illumination light and the position of the eye is kept constant.
  • the right side illumination optical system and light source moving unit 76 moves the right side illumination light source optical system 1618R in the X direction by the right side illumination light source optical system substrate via the right side illumination light source optical system moving mechanism.
  • the left side illumination optical system and light source moving unit 78 moves the left side illumination light source optical system 1618L in the X direction by the left side illumination light source optical system substrate via the left side illumination light source optical system moving mechanism.
  • a rack and pinion for example, can be used as each of the above moving mechanisms.
  • FIG. 6A shows a flowchart of the stereoscopic effect increasing adjustment process executed by the CPU 52 in accordance with the stereoscopic effect increasing adjusting program.
  • FIG. 6B shows a flowchart of the stereoscopic effect reduction adjusting process executed by the CPU 52 according to the stereoscopic effect reducing adjustment program.
  • FIG. 9 shows a state (cross-sectional view) of the surgical microscope 100A1 when the first right-side deflection element 25R and the first left-side deflection element 25L are moved in a direction away from the optical axis 110 of the objective lens 11 (step 84 described later). )It is shown.
  • the stereoscopic effect increasing adjustment process shown in FIG. 6A starts when the stereoscopic effect increasing switch 64 is turned on, and in step 84, as shown in FIG. 9, the first right-side deflection element moving unit 68R is controlled by the control of the CPU 52. , The first right deflection element substrate via the first right deflection element moving mechanism so that the substantial angle formed by the optical axis 15RI of the right observation light at the position of the object is increased. The right deflection element 25R is moved in a direction away from the optical axis 110 of the objective lens 11 (X (positive) direction).
  • the right diaphragm moving unit 69R based on the movement of the first right deflecting element 25R, specifically, the right diaphragm 12R so as to keep the distance between the first right deflecting element 25R and the right diaphragm 12R constant.
  • the first left-side deflection element moving unit 68L causes the first left-side deflection element substrate to move the first left-side deflection element 25L through the first left-side deflection element moving mechanism so that the optical axis 15LI of the left-side observation light is moved.
  • the objective lens 11 is moved in a direction away from the optical axis 110 (X (negative) direction) so that the substantial angle formed at the position of the object becomes large.
  • the left diaphragm moving unit 69L and the first left deflecting element 25L specifically, the left diaphragm 12L is moved so as to keep the distance between the first left deflecting element 25L and the left diaphragm 12L constant. Move in the X (negative) direction.
  • the second right-side deflection element moving unit 70R moves the second right-side deflection element in the X (positive) direction
  • the second left-side deflection element moving unit 70L moves the second left-side deflection element to X (negative). Move in the direction.
  • the right imaging optical device moving unit 72 controls the right imaging optical device substrate via the right imaging optical device moving mechanism under the control of the CPU 52.
  • the right imaging optical device 131415R is moved in the X (positive) direction.
  • the left imaging optical device moving unit 74 moves the left imaging optical device 131415L in the X (negative) direction by the left imaging optical device substrate via the left imaging optical device moving mechanism.
  • the right-side illumination optical system and the light source moving unit 76 includes the right-side illumination light source.
  • the right side illumination light source optical system 1618R is moved in the X (positive) direction by the right side illumination light source optical system substrate via the optical system moving mechanism.
  • the left side illumination optical system and light source moving unit 78 moves the left side illumination light source optical system 1618L in the X (negative) direction.
  • FIG. 9 shows only the movement of the right side configurations (25R, 12R, 26R, 131415R, 1618R), the left side configurations (25L, 12L, 26L, 131415L, 1618L) are also the same. Be moved to.
  • the CPU 52 determines whether or not the stereoscopic effect increasing switch 64 is turned off. If it is determined that the stereoscopic effect increasing switch 64 has not been turned off, the stereoscopic effect increasing adjustment processing returns to step 84. Therefore, the above-mentioned components (25R, 12R, 26R, 131415R, 1618R, 25L, 12L, 26L, 131415L, 1618L) are continuously moved.
  • step 86 When it is determined in step 86 that the stereoscopic effect increasing switch 64 has been turned off, the CPU 52 stops each of the moving parts (68R to 78) in step 88. As a result, the movement of each of the configurations (25R, 12R, 26R, 131415R, 1618R, 25L, 12L, 26L, 131415L, 1618L) is stopped.
  • step 88 ends, the stereoscopic effect adjustment process ends.
  • the stereoscopic effect reducing adjustment process shown in FIG. 6B starts when the stereoscopic effect decreasing switch 66 is turned on, and in step 92, the first right-side deflection element moving unit 68R controls the first right-side deflection element for control by the CPU 52.
  • the first right-side deflection element 25R is specifically configured to be an objective lens by the first right-side deflection element substrate via the moving mechanism so that the physical angle formed by the optical axis 15RI of the right-side observation light at the position of the object becomes small. 11 is moved in a direction approaching from the optical axis 110 (X (negative) direction).
  • the right diaphragm moving unit 69R based on the movement of the first right deflecting element 25R, specifically, the right diaphragm 12R so as to keep the distance between the first right deflecting element 25R and the right diaphragm 12R constant.
  • the first left-side deflection element moving unit 68L causes the first left-side deflection element substrate to move the first left-side deflection element 25L through the first left-side deflection element moving mechanism so that the optical axis 15LI of the left-side observation light is moved.
  • the objective lens 11 is moved in a direction closer to the optical axis 110 (X (positive) direction) so that the substantial angle formed at the position of the object becomes smaller.
  • the left diaphragm moving unit 69L based on the movement of the first left deflecting element 25L, specifically, the left diaphragm 12L so as to keep the distance between the first left deflecting element 25L and the left diaphragm 12L constant.
  • X (positive) direction In the X (positive) direction.
  • the CPU 52 determines whether or not the stereoscopic effect reduction switch 66 has been turned off. When it is determined that the stereoscopic effect reducing switch 66 has not been turned off, the stereoscopic effect reducing adjustment processing returns to step 92. Therefore, the above-mentioned components (25R, 12R, 26R, 131415R, 1618R, 25L, 12L, 26L, 131415L, 1618L) are continuously moved.
  • step 94 If it is determined in step 94 that the stereoscopic effect reduction switch 66 has been turned off, the CPU 52 stops each of the moving parts (68R to 78) in step 96. As a result, the movement of each of the configurations (25R, 12R, 26R, 131415R, 1618R, 25L, 12L, 26L, 131415L, 1618L) is stopped.
  • step 96 ends, the stereoscopic effect adjustment process ends.
  • the movement of each of the components on the right side (25R, 12R, 26R, 131415R, 1618R) and the movement of each of the components on the left side (25L, 12L, 26L, 131415L, 1618L) in step 84 and step 92 are performed by the light of the objective lens 11.
  • the movement is symmetrical with respect to the axis 110.
  • the right side configurations (25R, 12R, 26R, 1618R) move in the X (positive) direction
  • the left side configurations (25L, 12L, 26L, 1618L) move in the X (negative) direction. Move to move in the direction.
  • step 84 The right configuration (131415R) and the left configuration (131415L) move in the Z direction (positive).
  • steps 84 FIG. 6A
  • step 92 the distances traveled by the respective configurations (25R, 12R, 26R, 131415R, 1618R, 25L, 12L, 26L, 131415L, 1618L) are the same. That is, in step 84 (FIG. 6A) and step 92 (FIG.
  • the right-side imaging optical device 131415R, the left-side imaging optical device 131415L, the right-side illumination light source optical system 1618R, and the left-side illumination light source optical system 1618L are continuously moved. This is so that the optical path lengths of the left and right illumination lights and the left and right observation lights do not change as the first right deflection element 25R and the first left deflection element 25L are moved.
  • the optical path length of the illumination is the optical path length from each light source (16R, 18R, 16L, 18L) to the eye, or the optical path length of a part thereof.
  • the optical path length of the observation light is, for example, the optical path length from the eye to the imaging optical device (131415R, 131415L) or a part of the optical path length. In this way, since the optical path lengths of the left and right lights do not change, the left and right observation lights are moved to the right while the above-mentioned configurations (25R, 12R, 26R, 131415R, 1618R, 25L, 12L, 26L, 131415L, 1618L) are being moved.
  • the image pickup device 15R and the left image pickup device 15L the image formation can be continued without the aberration being deteriorated.
  • the first right-side deflection element 25R is moved so that the angle of the first right-side deflection element 25R with respect to the XY plane is kept constant. More specifically, the first right-side deflection element 25R maintains a constant angle between the surface of the first right-side deflection element 25R that reflects the illumination light and the right-side observation light and the optical axis 110 of the objective lens 11. Moved as you would. As described above, the first right-side deflection element substrate on which the first right-side deflection element 25R is arranged (fixed) is configured to move in the X direction so that the angle formed is kept constant. Because there is.
  • the first right-side deflection element 25R bends the optical axis of each right-side illumination light and the optical axis of right-side observation light at right angles. Therefore, when the first right deflection element 25R is moved, even if the right illumination light source optical system 1618R and the right imaging optical device 131415R are not moved, the optical axis of each right illumination light and the optical axis of the right observation light are respectively changed. The position on the surface of the first right deflection element 25R that intersects with the first right deflection element 25R and the incident angles of those lights are maintained constant.
  • the first left-side deflection element 25L is moved so that the angle of the first left-side deflection element 25L with respect to the XY plane is kept constant. More specifically, the first left-side deflection element 25L maintains a constant angle between the surface of the first left-side deflection element 25L that reflects the illumination light and the left-side observation light and the optical axis 110 of the objective lens 11. Moved as you would. As described above, the first left-side deflection element substrate on which the first left-side deflection element 25L is arranged (fixed) is configured to move in the X direction so that the angle formed is kept constant. Because there is.
  • the first left-side deflection element 25L bends the optical axis of each left-side illumination light and the optical axis of left-side observation light at right angles. Therefore, when the first left-side deflection element 25L is moved, even if the left-side illumination light source optical system 1618L and the left-side imaging optical device 131415L are not moved, the optical axis of each left-side illumination light and the optical axis of the left-side observation light are respectively changed. The position on the surface of the first left-side deflection element 25L that intersects with the first left-side deflection element 25L and the incident angles of those lights are maintained constant.
  • the surface of the first right deflection element 25R reflects or transmits the right observation light to form the right observation light
  • the surface of the first left deflection element 25L reflects or transmits the left observation light to form the left observation light. To do.
  • the image of each observation light is The center and the center of the image sensor (15R, 15L) are not displaced, that is, the positions of the first right-side deflection element 25R and the first left-side deflection element 25L used on the above-mentioned surfaces do not change, so that the compensation is performed. It is possible to eliminate an unnecessary moving mechanism for this and further reduce the effective diameter (size) of the deflecting elements (25R, 25L).
  • steps 84 and 92 when the first right deflection element 25R and the first left deflection element 25L are moved in the X direction, the right illumination light source optical system 1618R and the left illumination light source optical system 1618L are moved in the X direction. ..
  • the angles formed by the optical axes (15RI, 15LI) of the left and right observation lights and the optical axes of the illumination light (16RI, 16LI, 18RI, 18LI) at the eye positions are kept constant.
  • the right diaphragm 12R and the left diaphragm 12L are variable diaphragms.
  • the right-side variable power optical system lens drive section 80 can move at least one of the lens groups G1, G2, G3, and G4 of the right-side variable power optical system 13R in the Z direction to change the magnification.
  • the left-side variable power optical system lens driving unit 82 can also perform variable power by moving at least one of the lens groups G1, G2, G3, and G4 of the left-side variable optical system 13L in the Z direction.
  • the aperture diameter adjusting process adjusts the aperture diameter according to the magnification change so that the left observation light and the right observation light are imaged on the left image sensor 15L and the right image sensor 15R in proper amounts. To do.
  • FIG. 7 shows a graph showing the maximum diameters of the left and right diaphragms which are predetermined for each zoom magnification. If the aperture diameter is increased to exceed the maximum diameter at each zoom magnification, the left side observation light and the right side observation light, which are not intended in the design of the observation optical system, enter the observation optical system. When the image is formed on the right imaging element 15R, the occurrence of aberration may increase.
  • the secondary storage device 62 stores the relationship between each zoom magnification and the maximum value of the aperture diameter predetermined for each zoom magnification, as shown in FIG. 7. As shown in FIG. 7, in the relationship, the maximum value of the aperture diameter increases as the zoom magnification increases.
  • FIG. 8 shows an example of a flowchart of the aperture diameter adjustment processing executed by the CPU 52 according to the aperture diameter adjustment program.
  • the aperture diameter adjustment process starts when a magnification is input via the input device 63.
  • the CPU 52 moves in the Z direction at least one of the lens groups G1, G2, G3, and G4 of the right-side variable magnification optical system 13R and the left-side variable magnification optical system 13L. Then, the right-side variable magnification optical system lens driving unit 80 and the left-side variable magnification optical system lens driving unit 82 are controlled to change the magnification so that the input magnification is obtained.
  • step 102 the CPU 52 takes in the maximum value of the aperture diameter corresponding to the input magnification from the above relationship stored in the secondary storage device 62.
  • step 103 the CPU 52 determines whether the current aperture diameter is larger than the maximum diameter captured in step 102.
  • the CPU 52 sets the control amounts (corresponding to the current diaphragm diameter) of the right diaphragm diameter changing unit 85 and the left diaphragm diameter changing unit 87 to the secondary storage device 62. I remember.
  • step 103 the control amounts (corresponding to the current diaphragm diameter) of the right diaphragm diameter changing section 85 and the left diaphragm diameter changing section 87 are read from the secondary storage device 62, and the read right diaphragm diameter changing section 85 and left diaphragm diameter changing are read. It is determined whether the control amount of the portion 87 (corresponding to the current aperture diameter) is larger than the maximum diameter captured in step 102.
  • the aperture diameter adjustment process ends.
  • the CPU 52 determines at least one of the lens groups G1, G2, G3, and G4 of the right-side variable power optical system 13R and the left-side variable power optical system 13L.
  • the right side aperture diameter changing unit 85 and the left side aperture diameter changing unit 87 are controlled so that the aperture diameters of the right side aperture stop 12R and the left side aperture stop 12L are changed in association with the magnification change by the movement in the Z direction.
  • the CPU 52 controls the right diaphragm diameter changing unit 85 and the left diaphragm diameter changing unit 87 so that the respective diaphragm diameters increase in association with the magnification changing from the low magnification end to the high magnification end. To do.
  • the CPU 52 controls the right diaphragm diameter changing unit 85 and the left diaphragm diameter changing unit 87 so that each diaphragm diameter is equal to or smaller than a predetermined maximum diameter.
  • the CPU 52 fetches Ab as the maximum value of the aperture diameter from the above relationship stored in the secondary storage device 62 (step 102). If the current aperture diameter is Aa smaller than Ab, the negative determination is made in step 103, and the aperture diameter adjustment processing ends.
  • the current aperture diameter Ab is larger than the maximum value Aa for Ma (step 103 is positive).
  • the aperture diameters of the right-side aperture 12R and the left-side aperture 12L are controlled to the maximum value Aa. Therefore, the aperture diameters of the right-side aperture 12R and the left-side aperture 12L can be controlled to the maximum value according to the magnification.
  • Each aperture diameter can be adjusted based on the magnification.
  • the maximum value of the aperture diameter increases as the zoom magnification increases. Therefore, it is possible to increase the aperture diameter of each of the right diaphragm 12R and the left diaphragm 12L in association with the zooming from the low magnification end to the high magnification end.
  • the foot switch may be provided with an up button and a down button for increasing the magnification, and the magnification may be continuously increased / decreased while the up button / down button is continuously pressed.
  • the maximum diameter may be set one by one. It should be noted that the adjustment of the diaphragm diameter may be performed so that the right diaphragm 12R and the left diaphragm 12L are bilaterally symmetrical, without interlocking with the magnification change.
  • the microscope In a conventional microscope, if a monitor that displays an image obtained by the microscope is placed in front of the user, the microscope is relatively large, so the microscope obstructs the line of sight of the user, so the monitor is placed in front of the user. I could't.
  • the microscope of the present embodiment the microscope is relatively small, and even if the monitor is placed in front of the user, the microscope does not obstruct the line of sight of the user, so that the monitor can be placed in front of the user. .. This is particularly useful when the user often operates in a sitting position, such as during eye surgery.
  • the light path for transillumination eg, the first right side illumination light path, the first left side illumination light path
  • the observation optical path eg, right observation optical path, left observation optical path
  • pupils of the right-side variable power optical system 13R and the left-side variable power optical system 13L are provided.
  • the first right-side deflection element 25R and the first left-side deflection element 25L are the common first right-side deflection element and the common first left-side deflection element, and are viewed from the direction of the optical axis 110 of the objective lens 11 (example , Z direction), at least a part of which is arranged so as to overlap the objective lens 11.
  • the optical axis 15RI of the right side observation light and the optical axis 15LI of the left side observation light are moved by the movement of the first right side deflection element 25R and the first left side deflection element 25L.
  • the solid angle formed at the position is continuously increased or decreased by a predetermined angle.
  • the surgical microscope 100A1 has a first body angle, a second body angle, and a second body angle that are different from each other in the body angle during the operation (during operation (in use) of the surgery microscope 100A1).
  • At least one of the first right-side deflecting element 25R and the first left-side deflecting element 25L is connected to the corresponding first right-side deflecting element moving unit 68R and the first left-side deflecting element so as to be continuously changed to the substantial angle of 3. It is continuously moved by at least one of the moving parts 68L. Therefore, it is possible to increase or decrease the stereoscopic effect of the user 150 viewing the right-eye image and the left-eye image displayed on the display device 100AD by each of the right-side observation light and the left-side observation light.
  • the first right-side deflection element moving unit 68R of the present embodiment includes the first right-side deflection element 25R in the optical path between the object and the right-side observation optical system (right-side variable magnification optical system 13R and right-side imaging optical system 14R). Or the first left-side deflection element moving unit 68L moves the first left-side deflection element 25L in the optical path between the object and the left-side observation optical system (the left-side variable magnification optical system 13L and the left-side imaging optical system 14L). To move.
  • the first right-side deflection element moving unit 68R or the first left-side deflection element moving unit 68L includes an optical path between the objective lens 11 and the observation optical system (right-side observation optical system, left-side observation optical system), an object and the objective lens.
  • the first right-side deflection element 25R or the first left-side deflection element 25L is moved in a predetermined direction corresponding to the parallax direction in the optical path between the first and the second optical path 11 or the optical path of the observation light (right-side observation light, left-side observation light).
  • the user 150 can continuously adjust the stereoscopic effect while visually observing an image (eg, parallax image) during surgery.
  • an image eg, parallax image
  • the stereoscopic effect becomes excessive, and conversely There may be a shortage. This is because stereoscopic vision due to convergence is affected not only by the distance between the axes of the left and right observation optical paths of the microscope, image magnification and depth of field, but also by the size of the monitor, the viewing distance of the monitor, individual differences in stereoscopic vision, etc. This is because it will change.
  • the required amount of protrusion of the solid is finely adjusted depending on the size of the 3D monitor, the viewing distance of the monitor, the individual difference in stereoscopic vision, the surgical scene, and the like. Is required.
  • the user 150 selectively operates the three-dimensional effect increasing switch 64 and the three-dimensional effect decreasing switch 66 during surgery to change the above-mentioned body angle continuously (or stepwise). It is possible to optimally adjust the stereoscopic effect of the displayed image. In this way, the user 150 can individually and easily adjust the stereoscopic effect according to the environment, the scene of surgery, and the like.
  • the body angle includes a smooth change or a stepwise change due to the first right-side deflection element and the first left-side deflection element, the corresponding moving parts, and the like. It changes continuously.
  • the position of the pupil of each observation optical system is set between the first right deflection element 25R and the second right deflection element 26R and between the first left deflection element 25L and the second left deflection element 26L. Place each in between.
  • the respective lights of the first right-side deflection element 25R and the first left-side deflection element 25L are The reflective area (effective diameter) can be made relatively small.
  • the surgical microscope of the present embodiment has the first right-side deflection element 25R and the first right-side deflection element 25R in order to reduce the stereoscopic effect. It is possible to prevent the first right side deflection element 25R and the first left side deflection element 25L from interfering with each other when the left side deflection element 25L is brought close to each other. For example, in order to increase or decrease the stereoscopic effect of the image of the displayed object, the right-side variable magnification optical system 13R and the left-side variable magnification optical system 13L may be moved so that the stereoscopic angle changes.
  • the surgical microscope in the present embodiment adjusts the stereoscopic effect using the first right-side deflection element 25R and the first left-side deflection element 25L
  • the stereoscopic effect is the first right-side deflection element 25R and the first left-side deflection element. It depends on the axial distance from the element 25L.
  • the first right-side deflection element 25R and the first left-side deflection element 25L make the effective diameter for reflecting light smaller than the lens diameter of the observation optical system (for example, the left and right variable magnification optical systems 13R and 13L).
  • the axial distance between the first right-side deflection element 25R and the first left-side deflection element 25L is determined by the position where the optical axis 15RI of the right-side observation light is first deflected in the first right-side deflection element 25R and the first left-side deflection element 25L. It includes the distance in the parallax direction (eg, the X direction when viewed in the Y direction) from the position where the optical axis 15LI of the left-side observation light is first deflected.
  • the axial distance between the first right-side deflection element 25R and the first left-side deflection element 25L is the center of the effective diameter on which the right-side observation light is incident on the first right-side deflection element 25R and the left-side observation on the first left-side deflection element 25L. It includes the distance in the parallax direction (eg, the X direction when viewed in the Y direction) from the center of the effective diameter on which light is incident.
  • the above-mentioned inter-axis distance has a deflection surface (eg, a reflection surface) on which the right observation light is deflected by the first right deflection element 25R. )
  • a deflection surface eg, a reflection surface
  • the parallax direction eg, the X direction when viewed in the Y direction
  • the optical axis of the right side observation light and the optical axis of the left side observation light on the deflection surface on which the left side observation light is deflected by the first left side deflection element 25L including.
  • a modified example of the first embodiment will be described.
  • the configuration of the first modified example of the first embodiment is substantially the same as that of the first embodiment, so only the different portions will be mainly described.
  • the second right-side deflection element 26R and the second left-side deflection element 26L are fixed so as not to move.
  • the second right-side deflection element moving unit 70R and the second left-side deflection element moving unit 70L are omitted.
  • the right imaging optical device moving unit 72 moves the right imaging optical device 131415R in the Z direction.
  • the left imaging optical device moving unit 74 moves the left imaging optical device 131415L in the Z direction.
  • the operation of the first modification of the first embodiment is substantially the same as that of the first embodiment, so only the different parts will be mainly described.
  • step 84 as shown in FIG. 9, the second right-side deflection element 26R and the right-sided imaging optical device 131415R, the second left-sided deflection element 26L, and the left-sided imaging optical device moving unit 74 are respectively arranged. , X (positive) direction and X (negative) direction.
  • step 84 as shown in FIG. 10, the second right-side deflection element 26R and the second left-side deflection element 26L are not moved, and the right-side imaging optical device moving unit 72 and the left-side imaging are performed.
  • the optical device moving unit 74 moves the right imaging optical device 131415R and the left imaging optical device 131415L in the Z (positive) direction, respectively.
  • the distance by which the right imaging optical device 131415R is moved in the Z (positive) direction corresponds to the distance by which the first right deflection element 25R and the right diaphragm 12R are moved. This is for maintaining the optical path lengths of the illumination light and the observation light. The same applies to the distance that the left imaging optical device 131415L is moved in the Z (positive) direction.
  • step 92 the second right-side deflection element 26R and the right-sided imaging optical device 131415R and the second left-sided deflection element 26L and the left-sided imaging optical device moving unit 74 are respectively set in the X (negative) direction. Move in the X (positive) direction.
  • step 92 the second right side deflection element 26R and the second left side deflection element 26L are not moved, and the right side imaging optical device moving unit 72 and the left side imaging optical device moving unit 74 are respectively moved.
  • the right imaging optical device 131415R and the left imaging optical device 131415L are moved in the Z (negative) direction.
  • the distance for moving the right imaging optical device 131415R in the Z (negative) direction corresponds to the distance for moving the first right deflection element 25R and the right diaphragm 12R. This is for maintaining the optical path lengths of the illumination light and the observation light. The same applies to the distance that the left imaging optical device 131415L is moved in the Z (positive) direction.
  • a second modification of the first embodiment will be described.
  • the configuration and operation of the second modified example of the first embodiment are substantially the same as those of the first embodiment, so only different parts will be described.
  • the first embodiment when the stereoscopic effect increasing switch 64 or the stereoscopic effect decreasing switch 66 is turned on, the first right deflecting element 25R and the right diaphragm 12R, the first left deflecting element 25L and the left diaphragm 12L, the right imaging optics.
  • the device 131415R, the left imaging optical device 131415L, the right illumination light source optical system 1618R, and the left illumination light source optical system 1618L are moved.
  • a stereoscopic effect increasing switch 64 and a stereoscopic effect decreasing switch 66 are provided for each of the left and right, and the stereoscopic effect of only the right side or the left side is adjusted according to each switch.
  • a right stereoscopic effect increasing switch, a right stereoscopic effect decreasing switch, a left stereoscopic effect increasing switch, and a left stereoscopic effect decreasing switch are provided.
  • the right stereoscopic effect increasing switch is turned on, only the first right deflection element 25R, the right diaphragm 12R, the right imaging optical device 131415R, and the right illumination light source optical system 1618R are moved so that the substantial angle becomes large. ..
  • the left stereoscopic effect reduction switch when the left stereoscopic effect reduction switch is turned on, only the first left deflection element 25L and the left diaphragm 12L, the left imaging optical device 131415L, and the left illumination light source optical system 1618L are reduced in body angle, Moving.
  • the configuration of the third modification of the first embodiment is substantially the same as that of the first embodiment, so only different parts will be described.
  • the position where the right diaphragm 12R is arranged is the optical path between the first right deflecting element 25R and the second right deflecting element 26R, and the left diaphragm 12L is The position to be arranged is the optical path between the first left side deflection element 25L and the second left side deflection element 26L.
  • the position where the right diaphragm 12R1 is arranged is between the right variable magnification optical system 13R and the second right deflection element 26R. It is an optical path.
  • the position where the left diaphragm is arranged is also the optical path between the left variable magnification optical system 13L and the second left deflecting element 26L corresponding to the right diaphragm 12R1.
  • the position where the right diaphragm 12R2 is arranged is the surface of the second right deflecting element 26R facing the first right deflecting element 25R.
  • the left diaphragm is also the surface of the second left deflecting element 26L facing the first left deflecting element 25L, corresponding to the right diaphragm 12R2.
  • it is an incident surface on which the left-side observation light of the second left-side deflection element 26L is incident, a reflection surface on which the left-side observation light is reflected, and an exit surface of the left-side perfect coaxial illumination light on the second left-side deflection element 26L.
  • each of the left and right diaphragms functions as a mask having an opening and a light shield.
  • the position where the right diaphragm 12R3 is arranged is the surface of the first right deflecting element 25R on the side facing the second right deflecting element 26R. Specifically, they are the incident surface and the reflecting surface of the first right-side deflecting element 25R on which the right-side observation light enters, and the incident surface and the reflecting surface of the right-side perfect coaxial illumination light on the first right-side deflecting element 25R.
  • the position where the left diaphragm is arranged is also the surface of the first left deflecting element 25L facing the second left deflecting element 26L, corresponding to the right diaphragm 12R3. Specifically, they are the incident surface and the reflection surface of the first left-side deflection element 25L on which the left-side observation light is incident, and the left-side perfect coaxial illumination light incident surface and the reflection surface of the first left-side deflection element 25L. In this case, each of the left and right diaphragms functions as a mask having an opening and a light shield.
  • the position where the right diaphragm 12R4 is arranged is the optical path between the first right deflection element 25R and the objective lens 11.
  • the position where the left diaphragm is arranged is also the optical path between the first left deflecting element 25L and the objective lens 11, corresponding to the right diaphragm 12R4.
  • the positions of the right-side diaphragm and the left-side diaphragm are not the respective positions of the first aspect to the fourth aspect, but any of them.
  • the right diaphragms (12R, 12R1, 12R4) are moved together with the movement of the first right deflection element 25R and the first left deflection element 25L.
  • the left diaphragm is also moved in the same manner.
  • the configuration of the fourth modification of the first embodiment is substantially the same as that of the first embodiment, so only different parts will be described.
  • the fourth modification of the first embodiment is an example of switching between perfect coaxial illumination and near coaxial illumination.
  • the following moving unit is provided instead of the right side illumination optical system and light source moving unit 76 and the left side illumination optical system and light source moving unit 78.
  • the right complete coaxial illumination light source complete coaxial illumination optical system 1823R is moved to the Z direction by the right complete coaxial illumination light source complete coaxial illumination optical system moving unit.
  • Prepare The fourth modification of the first embodiment includes a left perfect coaxial illumination light source perfect coaxial illumination optical system moving unit that moves the left perfect coaxial illumination light source perfect coaxial illumination optical system 1823L in the Z direction.
  • the right complete coaxial illumination light source complete coaxial illumination optical system moving unit causes the right complete coaxial illumination under the control of the CPU 52.
  • the right perfect coaxial illumination light source perfect coaxial illumination optical system 1823R is switched from perfect coaxial illumination to near coaxial illumination.
  • the left perfect coaxial illumination light source perfect coaxial illumination optical system moving unit moves the left perfect coaxial illumination light source perfect coaxial illumination optical system 1823L in the Z (positive or negative) direction to complete the left perfect coaxial illumination light source perfect coaxial illumination.
  • the optical system 1823L is switched from full coaxial illumination to near coaxial illumination.
  • the right complete coaxial illumination light source complete coaxial illumination optical system moving unit is controlled by the CPU 52 to the right complete coaxial illumination light source complete coaxial.
  • the right-side perfect coaxial illumination light source complete coaxial illumination optical system 1823R is switched from near-coaxial illumination to complete-coaxial illumination.
  • the left complete coaxial illumination light source complete coaxial illumination optical system moving unit returns the left complete coaxial illumination light source complete coaxial illumination optical system 1823L to the position shown in FIG. Switch the 1823L from near-coaxial illumination to full-coaxial illumination.
  • the right complete coaxial illumination light source complete coaxial illumination optical system moving unit moves the right complete coaxial illumination light source complete coaxial illumination optical system 1823R in the Z direction ( Even if the left complete coaxial illumination light source complete coaxial illumination optical system moving unit keeps moving the left complete coaxial illumination light source complete coaxial illumination optical system 1823L in the Z direction (positive or negative). Good.
  • the right complete coaxial illumination light source complete coaxial illumination optical system 1823R and the left complete coaxial illumination light source complete coaxial illumination optical system 1823L are positioned as shown in FIG. 2A. Returned to.
  • the right complete coaxial illumination light source complete coaxial illumination optical system 1823R and the left complete coaxial illumination light source complete coaxial illumination optical system 1823L are moved in the Z direction. Is not limited to this.
  • the moving direction of the right complete coaxial illumination light source complete coaxial illumination optical system 1823R and the left complete coaxial illumination light source complete coaxial illumination optical system 1823L may be the Y direction, or may be the direction having components in both the Z direction and the Y direction. Specifically, it may be a cross-sectional direction perpendicular to the X axis.
  • oblique illumination may be performed at 6 ° or the like according to the distance.
  • the right oblique illumination optical axis 16RI and the right perfect coaxial illumination optical axis 18RI may overlap.
  • the configuration of the fifth modification of the first embodiment is substantially the same as that of the first embodiment, so only different parts will be described.
  • the right imaging optical device 131415R and the left imaging optical device 131415L are arranged on the Z (positive) direction side of the objective lens 11.
  • the right imaging optical device 131415R and the left imaging optical device 131415L are arranged on the Y (positive or negative) direction side of the objective lens 11.
  • the second right deflection element 26R reflects the right observation light in the Y (positive or negative) direction toward the right variable magnification optical system 13R.
  • the second left-side deflection element 26L reflects the left-side observation light in the Y (positive or negative) direction toward the left-side variable power optical system 13L.
  • the configuration of the surgical microscope 100A2 according to the second embodiment is substantially the same as that of the surgical microscope 100A1 according to the first embodiment (FIG. 2), so mainly different portions will be described.
  • FIG. 17 shows a sectional view of the surgical microscope 100A2 of the second embodiment.
  • the surface of the eye is illuminated, and the right side observation light (see optical axis 15RI) and the left side observation light (see optical axis 15LI) from the eye surface are respectively obtained.
  • An image is formed on the right imaging element 15R and the left imaging element 15L.
  • the surgical microscope 100A2 includes the front lens 132 that is manually or automatically arranged in the immediate vicinity of the eye.
  • the front lens 132 includes a non-contact type and a contact type that is directly placed on the eye.
  • the front lens 132 may be a convex lens or a concave lens.
  • the convex lens front lens 132 will be described below as an example.
  • Each illumination light (see optical axes 16RI, 16LI, 18RI, 18LI) exceeds the focal point (object plane), becomes substantially parallel light by the front lens 132, and forms an image on the fundus by the eye 130.
  • the right side observation light and the left side observation light from the fundus of the eye 130 reach the first right side deflection element 25R and the first left side deflection element 25L via the front lens 132.
  • the second embodiment has the same effect as that of the first embodiment, but further the front lens 132 allows observation of a wide range of the fundus.
  • the first right-side deflection element 25R and the first left-side deflection element 25L which are shared by the transillumination optical path and the observation optical path are provided directly above the objective lens, and the first right-side deflection element 25R is provided.
  • the pupils of the right-side variable magnification optical system 13R and the left-side variable magnification optical system 13L are provided in the vicinity of the first left-side deflection element 25L. This allows the microscope to be relatively small and the monitor to be placed in front of the user.
  • the configuration of the surgical microscope of the third embodiment is substantially the same as that of the surgical microscope 100A2 of the second embodiment, and therefore the different portions will be mainly described.
  • FIG. 18 shows a sectional view of the surgical microscope 100A3 according to the third embodiment.
  • the surgical microscope 100A3 includes a fiber 140 that illuminates the inside of the eye.
  • the third embodiment has the same effect as the second embodiment, but further has the effect that the fiber 140 can directly illuminate the inside of the eye in addition to the transillumination and oblique illumination.
  • the configuration of the surgical microscope according to the fourth embodiment is substantially the same as that of the surgical microscope 100A1 according to the first embodiment, and therefore only different portions will be mainly described.
  • FIG. 19 shows a sectional view of the surgical microscope 100A4 of the fourth embodiment.
  • FIG. 20 shows a state (cross-sectional view) of the surgical microscope 100A4 at the time of adjusting the stereoscopic effect (step 84).
  • the surgical microscope 100A4 includes a first right-side deflection element 25R1 and a right-side oblique illumination light deflection element instead of the first right-side deflection element 25R and the first left-side deflection element 25L in the first embodiment.
  • 25R2 a first left-side deflection element 25L1 and a left oblique illumination light deflection element 25L2.
  • the first right-side deflection element 25R1 is an example of the “right-side deflection element” of the technology of the present disclosure
  • the first left-side deflection element 25L1 is an example of the “left-side deflection element” of the technology of the present disclosure
  • the right oblique illumination light deflection element 25R2 is an example of the “right reflection deflection element” of the technology of the present disclosure
  • the left oblique illumination light deflection element 25L2 is an example of the “left reflection deflection element” of the technology of the present disclosure.
  • the right oblique illumination light deflection element 25R2 reflects the right oblique illumination light (see the optical axis 16RI) toward the objective lens 11.
  • the first right-side deflection element 25R1 also reflects the right-side perfect coaxial illumination light (see optical axis 18RI) that has passed through the second right-side deflection element 26R toward the objective lens 11.
  • the first right-side deflection element 25R1 transmits at least a part (see optical axis 15RI) of the observation light, which is the reflected light reflected from the eye and transmitted through the objective lens 11, via the second right-side deflection element 26R to the right-side imaging optical device. By deflecting to the optical path of 131415R, right side observation light is formed.
  • the left oblique illumination light deflection element 25L2 reflects the left oblique illumination light (see optical axis 16LI) toward the objective lens 11. Further, the first left-side deflection element 25L1 reflects the left perfect coaxial illumination light (see optical axis 18LI) that has passed through the second left-side deflection element 26L toward the objective lens 11. The first left-side deflection element 25L1 transmits at least a part (see optical axis 15LI) of the observation light, which is the reflected light reflected from the eye and transmitted through the objective lens 11, via the second left-side deflection element 26L to the left-side imaging optical device. The left observation light is formed by deflecting it to the optical path of 131415L.
  • step 84 the second right deflection element 26R is fixed, and the first right deflection element 25R1, the right oblique illumination light deflection element 25R2, and the right diaphragm 12R are moved in the X (positive) direction. It Further, the right side illumination light source optical system 1618R is moved in the X (positive) direction, and the right side imaging optical device 131415R is moved in the Z (positive) direction. Similarly, in step 84, the second left deflection element 26L is fixed, and the first left deflection element 25L1, the left oblique illumination light deflection element 25L2, and the left diaphragm 12L are moved in the X (negative) direction.
  • the left side illumination light source optical system 1618L is moved in the X (negative) direction, and the left side imaging optical device 131415L is moved in the Z (positive) direction.
  • the first right deflection element 25R1, the right oblique illumination light deflection element 25R2, and the right diaphragm 12R are moved in the X (negative) direction.
  • the right side illumination light source optical system 1618R is moved in the X (negative) direction, and the right side imaging optical device 131415R is moved in the Z (negative) direction.
  • step 92 the first left-side deflection element 25L1, the left-side oblique illumination light deflection element 25L2, and the left-side diaphragm 12L are moved in the X (positive) direction. Further, the left side illumination light source optical system 1618L is moved in the X (positive) direction, and the left side imaging optical device 131415L is moved in the Z (negative) direction.
  • the first right-side deflection element moving unit 68R moves the first right-side deflection element 25R1
  • the first left-side deflection element moving unit 68L moves the first left-side deflection element 25L1.
  • the second right-side deflection element moving unit 70R moves the right-side oblique illumination light deflection element 25R2
  • the second left-side deflection element moving unit 70L moves the left-side oblique illumination light deflection element 25L2.
  • step 84 the second right deflection element 26R is moved in the X (positive) direction, and the right imaging optical device 131415R is also moved in the X (positive) direction.
  • step 84 the second left-side deflection element 26L may be moved in the X (negative) direction, and the left-side imaging optical device 131415L may be moved in the X (negative) direction.
  • step 92 the second right deflection element 26R may be moved in the X (negative) direction, and the right imaging optical device 131415R may also be moved in the X (negative) direction.
  • the second left-side deflection element 26L may be moved in the X (positive) direction, and the left-side imaging optical device 131415L may be moved in the X (positive) direction.
  • the first right deflection element 25R1 functions as a common deflection element for the right perfect coaxial illumination light (see optical axis 18RI) and the right observation light (see optical axis 15RI).
  • the first left-side deflection element 25L1 functions as a common deflection element for the left perfect coaxial illumination light (see optical axis 18LI) and the left observation light (see optical axis 15LI).
  • the first right-side deflection element 25R1 and the first left-side deflection element 25L1 reflect right-side observation light and left-side observation light by reflecting the reflected light reflected from the eye and transmitted through the objective lens 11.
  • the second right deflection element 26R and the second left deflection element 26L reflect the right observation light and the left observation light toward the right imaging optical device 131415R and the left imaging optical device 131415L. Therefore, the degree of freedom in the optical design of the routes (eg, optical paths) of the right side observation light and the left side observation light is large.
  • the surface of the eye is illuminated, and the right side observation light and the left side observation light from the eye surface are imaged on the right side imaging element 15R and the left side imaging element 15L, respectively. To do.
  • the surgical microscope 100A5 of the first modified example includes the front lens 132 (see FIG. 17).
  • the form of the first modified example has the same effect as that of the fourth embodiment and the effect that a wide range of the fundus can be observed by the front lens 132.
  • the configuration of the surgical microscope of the second modified example is substantially the same as the configuration of the surgical microscope 100A3 of the third embodiment, so mainly different portions will be described.
  • the second modification includes a fiber 140 (see FIG. 18) that illuminates the inside of the eye.
  • the second modification has the same effect as that of the fourth embodiment, but further has an effect that the inside of the eye can be directly illuminated by the fiber 140 in addition to the transillumination and oblique illumination.
  • FIG. 21 shows a sectional view of the surgical microscope 100B according to the fifth embodiment.
  • FIG. 22 shows a state (cross-sectional view) of the surgical microscope 100B at the time of adjusting the stereoscopic effect.
  • the surgical microscope 100B includes a first right-side deflection element 125R1 and a right-side oblique illumination light deflection element instead of the first right-side deflection element 25R and the first left-side deflection element 25L in the first embodiment. 125R2, the first left-side deflection element 125L1 and the left oblique illumination light deflection element 125L2.
  • the first right-side deflection element 125R1 is an example of the “right-side deflection element” of the technology of the present disclosure
  • the first left-side deflection element 125L1 is an example of the “left-side deflection element” of the technology of the present disclosure
  • the right oblique illumination light deflection element 125R2 is an example of the “right reflection deflection element” of the technology of the present disclosure
  • the left oblique illumination light deflection element 125L2 is an example of the “left reflection deflection element” of the technology of the present disclosure.
  • the right oblique illumination light deflection element 125R2 reflects the right oblique illumination light toward the objective lens 11.
  • the first right deflection element 125R1 reflects the right perfect coaxial illumination light that has passed through the second right deflection element 26R toward the objective lens 11.
  • the first right-side deflection element 125R1 deflects at least a part of the observation light, which is the reflected light reflected from the eye and transmitted through the objective lens 11, to the optical path of the right-side imaging optical device 131415R via the second right-side deflection element 26R. As a result, the right observation light is formed.
  • the left oblique illumination light deflection element 125L2 reflects the left oblique illumination light toward the objective lens 11.
  • the first left-side deflection element 125L1 reflects the left perfect coaxial illumination light that has passed through the second left-side deflection element 26L toward the objective lens 11.
  • the first left-side deflection element 125L1 deflects at least a part of the observation light, which is reflected light reflected from the eye and transmitted through the objective lens 11, to the optical path of the left-side imaging optical device 131415L via the second left-side deflection element 26L. As a result, left-side observation light is formed.
  • step 84 the second right deflection element 26R is fixed, and the first right deflection element 125R1, the right oblique illumination light deflection element 125R2, and the right diaphragm 12R are moved in the X (positive) direction. It The right side illumination light source optical system 1618R is moved in the X (positive) direction. The right imaging optical device 131415R is moved in the Z (positive) direction.
  • step 84 the second left-side deflection element 26L is fixed, and the first left-side deflection element 125L1, the left-side oblique illumination light deflection element 125L2, and the left-side diaphragm 12L are moved in the X (negative) direction.
  • the left side illumination light source optical system 1618L is moved in the X (negative) direction.
  • the left imaging optical device 131415L is moved in the Z (positive) direction.
  • the first right deflection element 125R1, the right oblique illumination light deflection element 125R2, and the right diaphragm 12R are moved in the X (negative) direction.
  • the right side illumination light source optical system 1618R is moved in the X (negative) direction.
  • the right imaging optical device 131415R is moved in the Z (negative) direction.
  • the first left-side deflection element 125L1, the left oblique illumination light deflection element 125L2, and the left-side diaphragm 12L are moved in the X (positive) direction.
  • the left side illumination light source optical system 1618L is moved in the X (positive) direction.
  • the left imaging optical device 131415L is moved in the Z (negative) direction.
  • the first right-side deflection element moving unit 68R moves the first right-side deflection element 125R1 and the first left-side deflection element moving unit 68L moves the first left-side deflection element 125L1.
  • the second right-side deflection element moving unit 70R moves the right-side oblique illumination light deflection element 125R2, and the second left-side deflection element moving unit 70L moves the left-side oblique illumination light deflection element 125L2.
  • step 84 the second right deflection element 26R is moved in the X (positive) direction, and the right imaging optical device 131415R is also moved in the X (positive) direction.
  • step 84 the second left-side deflection element 26L may be moved in the X (negative) direction, and the left-side imaging optical device 131415L may be moved in the X (negative) direction.
  • step 92 the second right deflection element 26R may be moved in the X (negative) direction, and the right imaging optical device 131415R may also be moved in the X (negative) direction.
  • the second left-side deflection element 26L may be moved in the X (positive) direction, and the left-side imaging optical device 131415L may be moved in the X (positive) direction.
  • the fifth embodiment has the same effect as the fourth embodiment.
  • step 84 the right oblique illumination light deflection element 125R2 and the right oblique illumination light source oblique illumination optical system 1621R are fixed, and the first right deflection element 125R1, the right diaphragm 12R, the right complete coaxial illumination light source complete coaxial.
  • the illumination optical system 1823R is moved in the X (positive) direction.
  • the right imaging optical device 131415R is moved in the Z (positive) direction.
  • step 84 the left oblique illumination light deflection element 125L2 and the left oblique illumination light source oblique illumination optical system 1621L are fixed, and the first left deflection element 125L1, the left diaphragm 12L, the left complete coaxial illumination light source complete coaxial illumination optical system 1823L Moved in the (negative) direction.
  • the left imaging optical device 131415L is moved in the Z (positive) direction.
  • step 92 the right oblique illumination light deflection element 125R2 and the right oblique illumination light source oblique illumination optical system 1621R are fixed, and the first right deflection element 125R1, the right diaphragm 12R, the right complete coaxial illumination light source complete coaxial illumination optical system 1823R are set to X. Moved in the (negative) direction. The right imaging optical device 131415R is moved in the Z (negative and positive) direction.
  • step 92 the left oblique illumination light deflection element 125L2 and the left oblique illumination light source oblique illumination optical system 1621L are fixed, and the first left deflection element 125L1, the left diaphragm 12L, the left complete coaxial illumination light source complete coaxial illumination optical system 1823L It is moved in the (positive) direction.
  • the left imaging optical device 131415L is moved in the Z (negative) direction.
  • the second modified example includes a front lens 132 (see FIG. 17).
  • the third modified example includes a fiber 140.
  • the configuration of the surgical microscope according to the sixth embodiment is substantially the same as that of the surgical microscope 100A1 according to the first embodiment, so mainly different portions will be described.
  • FIG. 23 shows a sectional view of the surgical microscope 100C according to the sixth embodiment.
  • the surgical microscope 100C includes a first right-side deflection element 125R and a first left-side deflection element 125L.
  • the first right-side deflection element 125R is an example of the “right-side deflection element” of the technology of the present disclosure
  • the first left-side deflection element 125L is an example of the “left-side deflection element” of the technology of the present disclosure.
  • the right oblique illumination light source 16R and the right oblique illumination optical system 21R are arranged so that the right oblique illumination light emitted from the right oblique illumination light source 16R is emitted in the Z (negative) direction and directly reaches the objective lens 11. ing.
  • the right perfect coaxial illumination light source 18R and the right perfect coaxial illumination optical system 23R are arranged so that the right perfect coaxial illumination light emitted by the right perfect coaxial illumination light source 18R passes through the first right deflection element 125R and reaches the objective lens 11. Has been placed.
  • the left oblique illumination light source 16L and the left oblique illumination optical system 21L are arranged so that the left oblique illumination light emitted from the left oblique illumination light source 16L is emitted in the Z (negative) direction and directly reaches the objective lens 11. ing.
  • the left perfect coaxial illumination light source 18L and the left perfect coaxial illumination optical system 23L allow the left perfect coaxial illumination light emitted by the left perfect coaxial illumination light source 18L to pass through the first left deflecting element 125L and reach the objective lens 11. Has been placed.
  • step 84 the second right deflecting element 26R is fixed, and the first right deflecting element 125R and the right diaphragm 12R are moved in the X (positive) direction.
  • the right side illumination light source optical system 1618R is moved in the X (positive) direction.
  • the right imaging optical device 131415R is moved in the Z (positive) direction.
  • the second left deflection element 26L is fixed, and the first left deflection element 125L and the left diaphragm 12L are moved in the X (negative) direction.
  • the left side illumination light source optical system 1618L is moved in the X (negative) direction.
  • the left imaging optical device 131415L is moved in the Z (positive) direction.
  • step 92 the first right-side deflection element 125R and the right-side diaphragm 12R are moved in the X (negative) direction.
  • the right side illumination light source optical system 1618R is moved in the X (negative) direction.
  • the right imaging optical device 131415R is moved in the Z (negative) direction.
  • the first left-side deflection element 125L and the left-side diaphragm 12L are moved in the X (positive) direction.
  • the left side illumination light source optical system 1618L is moved in the X (positive) direction.
  • the left imaging optical device 131415L is moved in the Z (negative) direction.
  • the sixth embodiment has the same effects as the first embodiment.
  • the sixth embodiment may include the front lens 132 (see FIG. 17) or the fiber 140 (see FIG. 18).
  • the configuration of the surgical microscope of the seventh embodiment is substantially the same as that of the surgical microscope 100B of the fifth embodiment, so mainly different parts will be described.
  • FIG. 24 shows a sectional view of the surgical microscope 100D of the seventh embodiment.
  • the surgical microscope 100D of the seventh embodiment is the same as the first right deflection element 125R1 and the first left deflection element 125L1 of the surgical microscope 100B (see FIG. 21) of the fifth embodiment. Instead of, the right side transmissive reflection element 125R11 and the left side transmissive reflection element 125L11 are provided.
  • the second right-side deflection element 26R and the second left-side deflection element 26L of the surgical microscope 100B according to the fifth embodiment are omitted.
  • Right-side perfect coaxial illumination light directly reaches the right-side transflective element 125R11, and the right-side transmissive reflective element 125R11 reflects the right-side perfect coaxial illumination light toward the objective lens 11 and transmits the reflected light from the eye.
  • the right observation light which is the reflected light from the eye that has passed through the right transmissive reflection element 125R11, enters the right variable magnification optical system 13R.
  • the right diaphragm 12R is arranged between the right transmissive reflection element 125R11 and the right variable magnification optical system 13R.
  • the left perfect coaxial illumination light directly reaches the left transflective element 125L11, and the left transflective element 125L11 reflects the left perfect coaxial illumination light toward the objective lens 11 and transmits the reflected light from the eye.
  • the left observation light which is the reflected light from the eye that has passed through the left transmissive reflection element 125L11, enters the left variable power optical system 13L.
  • the left diaphragm 12L is arranged between the left transmissive reflection element 125L11 and the left variable power optical system 13L.
  • the right oblique illumination light deflection element 125R2 reflects the right oblique illumination light toward the objective lens 11.
  • the left oblique illumination light deflection element 125L2 reflects the left oblique illumination light toward the objective lens 11.
  • the right side transmissive reflection element 125R11 is an example of the “right side transmissive element” in the technology of the present disclosure.
  • the left transmissive reflective element 125L11 is an example of a “left transmissive element” in the technology of the present disclosure.
  • the right oblique illumination light deflection element 125R2 is an example of the “right reflection deflection element” in the technique of the present disclosure.
  • the left oblique illumination light deflection element 125L2 is an example of the “left side reflection deflection element” in the technique of the present disclosure.
  • Each element on the right side is arranged on the same first moving board, and each element on the left side is arranged on the same second moving board.
  • the first moving substrate is moved via the moving mechanism, and the second moving substrate is moved via the moving mechanism.
  • the seventh embodiment has the same effects as the fifth embodiment.
  • the seventh embodiment may include the front lens 132 (see FIG. 17) or the fiber 140 (see FIG. 18).
  • control processing is realized by a software configuration using a computer
  • the technology of the present disclosure is not limited to this.
  • the control process may be executed only by a hardware configuration such as FPGA or ASIC.
  • the control processing may be executed by a combination of software configuration and hardware configuration.
  • the surgical microscope according to the present embodiment may be configured to receive fluorescence, phosphorescence, or infrared light generated from an object as observation light depending on the application.
  • Each illumination light is provided between the objective lens and the variable power optical system and reflects each illumination light toward the object through the objective lens, and is reflected from the object and transmitted through the objective lens.
  • each of the right-side deflection element and the left-side deflection element reflects the illumination light toward the object through the objective lens, and reflects the illumination light from the object and transmitted through the objective lens.
  • the illumination light path and the observation light path are shared, and each of the right-side deflection element and the left-side deflection element reflects the reflected light reflected from the object and transmitted through the objective lens. Can contribute.

Abstract

The present invention increases design flexibility of a microscope. This microscope is provided with: an objective lens; a right observation optical system that focuses right observation light included in observation light from an object onto a right imaging element; a left observation optical system that focuses left observation light included in the observation light from the object onto a left imaging element; a right deflection element that is provided between the objective lens and the right observation optical system, reflects right illumination light illuminating the object, and deflects the right observation light generated from the object to the right observation optical system; and a left deflection element that is provided between the objective lens and the left observation optical system, reflects left illumination light illuminating the object, and deflects the left observation light generated from the object to the left observation optical system. The right deflection element is disposed so as to deflect the right observation light in a direction crossing the direction of the optical axis of the objective lens, and the left deflection element is disposed so as to deflect the left observation light in a direction crossing the direction of the optical axis of the objective lens.

Description

顕微鏡microscope
 本開示の技術は、顕微鏡に関する。 The technology of the present disclosure relates to a microscope.
 手術において、ユーザが観察対象(例、患部)を拡大して視認できるように、該観察対象をディスプレイに表示させる手術顕微鏡が知られている。例えば、特許文献1の手術用顕微鏡では、観察光学系がユーザの右眼用の観察光路と左眼用の観察光路とを備え、ユーザは、それら観察光路を通じて観察対象(この場合、患者の眼)を立体視できる。 In surgery, there is known a surgical microscope that displays an observation target (eg, an affected part) on a display so that the user can magnify and visually observe the observation target (eg, affected part). For example, in the surgical microscope of Patent Document 1, the observation optical system includes an observation optical path for the right eye and an observation optical path for the left eye of the user, and the user observes through the observation optical paths (in this case, the eyes of the patient). ) Can be viewed stereoscopically.
 このような、手術顕微鏡では、ユーザが術中において観察対象が表示されたディスプレイ等を見やすいように、ユーザの視界を遮らないことが求められている。特に、眼科手術においては、ユーザが座位状態で手術を行うことが多いため、座位状態においてユーザの視界を遮らない手術顕微鏡が求められる。 In such a surgical microscope, it is required that the user's field of view is not obstructed so that the user can easily see the display on which the observation target is displayed during the operation. In particular, in ophthalmic surgery, since a user often performs surgery in a sitting position, a surgical microscope that does not block the user's view in the sitting position is required.
特開2018-18039号公報JP, 2018-18039, A
 本開示の技術の第1の態様の顕微鏡は、対物レンズと、対象物からの観察光に含まれる右側観察光を右側撮像素子に結像する右側観察光学系と、前記対象物からの観察光に含まれる左側観察光を左側撮像素子に結像する左側観察光学系と、前記対物レンズと前記右側観察光学系との間に設けられ、前記対象物を照明する右側照明光を反射すると共に、前記対象物から生じる前記右側観察光を前記右側観察光学系へ偏向する右側偏向素子と、前記対物レンズと前記左側観察光学系との間に設けられ、前記対象物を照明する左側照明光を反射すると共に、前記対象物から生じる前記左側観察光を前記左側観察光学系へ偏向する左側偏向素子と、を備え、前記右側偏向素子は、前記右側観察光を、前記対物レンズの光軸の方向に対して交差する方向に偏向するように配置され、前記左側偏向素子は、前記左側観察光を、前記対物レンズの光軸の方向に対して交差する方向に偏向するように配置されている。 The microscope according to the first aspect of the technology of the present disclosure includes an objective lens, a right observation optical system that forms right observation light included in observation light from an object on a right imaging element, and observation light from the object. A left-side observation optical system that forms the left-side observation light included in the left-side imaging device on the left-side imaging device, and is provided between the objective lens and the right-side observation optical system, and reflects the right-side illumination light that illuminates the object, A right-side deflection element that deflects the right-side observation light generated from the object to the right-side observation optical system, and is provided between the objective lens and the left-side observation optical system, and reflects left-side illumination light that illuminates the object. And a left-side deflection element that deflects the left-side observation light generated from the object to the left-side observation optical system, wherein the right-side deflection element directs the right-side observation light in the direction of the optical axis of the objective lens. Those who intersect with Are arranged to deflect, the left deflection element, the left telescopic beam is arranged to deflect in a direction intersecting the direction of the optical axis of the objective lens.
 本開示の技術の第2の態様の顕微鏡は、対物レンズと、対象物からの観察光に含まれる右側観察光を右側撮像素子に結像する右側観察光学系と、前記対象物からの観察光に含まれる左側観察光を左側撮像素子に結像する左側観察光学系と、前記対物レンズと前記右側観察光学系との間に設けられ、前記対象物を照明する右側照明光を反射すると共に、前記対象物から生じる前記右側観察光を前記右側観察光学系へ透過する右側透過素子と、前記対物レンズと前記左側観察光学系との間に設けられ、前記対象物を照明する左側照明光を反射すると共に、前記対象物から生じる前記左側観察光を前記左側観察光学系へ透過する左側透過素子と、を備える。 A microscope according to a second aspect of the technology of the present disclosure includes an objective lens, a right-side observation optical system that forms right-side observation light included in observation light from an object on a right-side imaging element, and observation light from the object. A left-side observation optical system that forms the left-side observation light included in the left-side imaging device on the left-side imaging device, and is provided between the objective lens and the right-side observation optical system, and reflects the right-side illumination light that illuminates the object, A right side transmission element that transmits the right side observation light generated from the object to the right side observation optical system, and is provided between the objective lens and the left side observation optical system, and reflects left side illumination light that illuminates the object. And a left-side transmission element that transmits the left-side observation light generated from the object to the left-side observation optical system.
第1の実施の形態の手術用顕微鏡100A1の一例を示す図である。It is a figure which shows an example of the surgical microscope 100A1 of 1st Embodiment. 本実施の形態の手術用顕微鏡100A1の断面図の一例を示す図である。It is a figure which shows an example of the cross section of the microscope for operation 100A1 of this Embodiment. 本実施の形態の左右の斜照明の光軸16LI、16RIが、左右の完全同軸照明光の光軸18LI、18RIに対し、Y方向にずれていることを示す、Z方向から見下ろした手術用顕微鏡100A1の上面図の一例である。The surgical microscope looking down from the Z direction showing that the optical axes 16LI and 16RI of the left and right oblique illuminations of the present embodiment are displaced in the Y direction from the optical axes 18LI and 18RI of the left and right perfect coaxial illumination light. It is an example of a top view of 100A1. 本実施の形態の左右の斜照明の光軸16LI、16RIがそれぞれ、第1右側偏向素子25R及び第1左側偏向素子25Lの面における左右の観察光の光軸15LI、15RIが位置する点を中心した円の円周上に位置すると、第1右側偏向素子25R及び第1左側偏向素子25Lから眼に向かう斜照明の光軸16LI、16RIは、斜照明の方向は変わるが、左右の観察光の光軸(15LI、15RI)に対して、眼の位置で同じ角度になることを示した図の一例である。The optical axes 16LI and 16RI of the left and right oblique illumination according to the present embodiment are centered on the points where the optical axes 15LI and 15RI of the left and right observation light on the surfaces of the first right-side deflection element 25R and the first left-side deflection element 25L are located, respectively. When located on the circumference of the circle, the optical axes 16LI and 16RI of the oblique illumination directed from the first right side deflection element 25R and the first left side deflection element 25L to the eye change the direction of the oblique illumination but change the observation light on the left and right. It is an example of a diagram showing that the same angle is formed at the eye position with respect to the optical axis (15LI, 15RI). 本実施の形態の左右の斜照明の光軸16LI、16RIがそれぞれ左右の第1偏向素子26L、26Rを透過することを示す図の一例である。It is an example of a diagram showing that the optical axes 16LI and 16RI of the left and right oblique illuminations of the present embodiment pass through the left and right first deflection elements 26L and 26R, respectively. 本実施の形態の右側変倍光学系13Rの構成の一例を示す図である。It is a figure which shows an example of a structure of the right variable magnification optical system 13R of this Embodiment. 本実施の形態の右側変倍光学系13Rの具体的な構成の一例を示す図である。It is a figure which shows an example of the specific structure of the right side variable magnification optical system 13R of this Embodiment. 本実施の形態の手術用顕微鏡100A1のブロック図の一例を示す図である。It is a figure which shows an example of the block diagram of the surgical microscope 100A1 of this Embodiment. 本実施の形態の立体感増加調整プログラムに従ってCPU52(図5参照)が実行する立体感増加調整処理のフローチャートの一例を示す図である。It is a figure which shows an example of the flowchart of the stereoscopic effect increase adjustment process which CPU52 (refer FIG. 5) performs according to the stereoscopic effect increase adjustment program of this Embodiment. 本実施の形態の立体感減少調整プログラムに従ってCPU52(図5参照)が実行する立体感減少調整処理のフローチャートの一例を示す図である。It is a figure which shows an example of the flowchart of the stereoscopic effect reduction adjustment process which CPU52 (refer FIG. 5) performs according to the stereoscopic effect reduction adjustment program of this Embodiment. 本実施の形態の左右の各絞りの絞り径についてズーム倍率ごとに予め定められた最大径を示すグラフの一例である。6 is an example of a graph showing a maximum diameter predetermined for each zoom magnification with respect to the diaphragm diameters of the left and right diaphragms of the present embodiment. 本実施の形態の絞り径調整プログラムに従ってCPU52(図5参照)が実行する、観察光学系の倍率に基づいて左右の絞り径を調整する絞り径調整処理のフローチャートの一例を示す図である。FIG. 6 is a diagram showing an example of a flowchart of an aperture diameter adjustment process for adjusting the left and right aperture diameters based on the magnification of the observation optical system, which is executed by the CPU 52 (see FIG. 5) according to the aperture diameter adjustment program of the present embodiment. 本実施の形態の第1右側偏向素子25R(第1左側偏向素子25L)を、対物レンズ11の光軸110から離れる方向に移動させる時の手術用顕微鏡100A1の様子(断面図)の一例を示す図である。An example of a state (cross-sectional view) of the surgical microscope 100A1 when moving the first right-side deflection element 25R (first left-side deflection element 25L) of the present embodiment in a direction away from the optical axis 110 of the objective lens 11 is shown. It is a figure. 本実施の形態の第1右側偏向素子25R(及び第1左側偏向素子25L)を、対物レンズ11の光軸110から離れる方向に移動させる時の手術用顕微鏡100A1の他の様子(断面図)の一例を示す図である。Another aspect (cross-sectional view) of the surgical microscope 100A1 when moving the first right-side deflection element 25R (and the first left-side deflection element 25L) of the present embodiment in the direction away from the optical axis 110 of the objective lens 11 is shown. It is a figure which shows an example. 本実施の形態の右側絞り12Rを配置する位置の5つの例を1つの図面において示す図である。It is a figure which shows five examples of the position which arrange | positions the right diaphragm 12R of this Embodiment in one drawing. 本実施の形態の第1右側偏向素子25Rを対物レンズ11の光軸110から離れる方向に移動させる時、5つの例の中の3つの例の各々の右側絞りも移動させることを示す図の一例である。An example of a diagram showing that when the first right deflection element 25R of the present embodiment is moved in the direction away from the optical axis 110 of the objective lens 11, the right diaphragm of each of the three examples among the five examples is also moved. Is. 本実施の形態の表示装置100ADと手術用顕微鏡本体100AHとの第1の関係の一例を示す図である。It is a figure which shows an example of the 1st relationship of the display apparatus 100AD of this Embodiment and the microscope body 100AH for surgery. 本実施の形態の表示装置100ADと手術用顕微鏡本体100AHとの第2の関係の一例を示す図である。It is a figure which shows an example of the 2nd relationship of the display apparatus 100AD of this Embodiment, and the microscope body 100AH for surgery. 本実施の形態の右側絞り12Rが、右側観察光の光束の有効面積が極小となる位置に配置されている様子の一例を示す図である。It is a figure which shows an example of a mode that the right diaphragm 12R of this Embodiment is arrange | positioned in the position where the effective area of the light beam of the right side observation light becomes minimum. 本実施の形態の右側絞り12Rを省略し、第1右側偏向素子25Rと第2右側偏向素子26Rの各々の、光を反射する領域(有効径)を調整することにより、右側観察光の光束の有効面積を制限する様子の一例を示す図である。By omitting the right diaphragm 12R of the present embodiment and adjusting the light reflecting area (effective diameter) of each of the first right deflecting element 25R and the second right deflecting element 26R, It is a figure which shows an example of a mode that an effective area is limited. 第2の実施の形態の手術用顕微鏡100A2の断面図の一例を示す図である。It is a figure which shows an example of the cross section of the microscope for operation 100A2 of 2nd Embodiment. 第3の実施の形態の手術用顕微鏡100A3の断面図の一例を示す図である。It is a figure which shows an example of the cross section of the microscope for operation 100A3 of 3rd Embodiment. 第4の実施の形態の手術用顕微鏡100A4の断面図の一例を示す図である。It is a figure which shows an example of the cross section of the microscope for operation 100A4 of 4th Embodiment. 本実施の形態の立体感調整の際の手術用顕微鏡100A4の様子(断面図)の一例を示す図である。It is a figure which shows an example of a mode (cross section) of the surgical microscope 100A4 at the time of three-dimensional adjustment of this Embodiment. 第5の実施の形態の手術用顕微鏡100Bの断面図の一例を示す図である。It is a figure which shows an example of the cross section of the microscope for operation 100B of 5th Embodiment. 本実施の形態の立体感調整の際の手術用顕微鏡100Bの様子(断面図)の一例を示す図である。It is a figure which shows an example of a mode (cross section) of the surgical microscope 100B at the time of three-dimensional adjustment of this Embodiment. 第6の実施の形態の手術用顕微鏡100Cの断面図の一例を示す図である。It is a figure which shows an example of the cross section of 100 C of surgical microscopes of 6th Embodiment. 第7の実施の形態の手術用顕微鏡100Dの断面図の一例を示す図である。It is a figure which shows an example of the cross section of the microscope for operation 100D of 7th Embodiment.
 以下、図面を参照して本開示の技術の実施の形態を説明する。
 先ず、本実施形態において以下の説明で使用される用語の意味について説明する。
 また、以下の説明において、CPUとは、“Central Processing Unit”の略称を指す。また、以下の説明において、RAMとは、“Random Access Memory”の略称を指す。また、以下の説明において、ROMとは、“Read Only Memory”の略称を指す。
 また、以下の説明において、ASICとは、“Application Specific Integrated Circuit”の略称を指す。また、以下の説明において、FPGAとは、“Field-Programmable Gate Array”の略称を指す。また、以下の説明において、SSDとは、“Solid State Drive”の略称を指す。また、以下の説明において、DVD-ROMとは、“Digital Versatile Disc Read Only Memory”の略称を指す。また、以下の説明において、USBとは、“Universal Serial Bus”の略称を指す。
Hereinafter, embodiments of the technology of the present disclosure will be described with reference to the drawings.
First, the meaning of terms used in the following description in the present embodiment will be described.
Further, in the following description, the CPU is an abbreviation of “Central Processing Unit”. In the following description, RAM is an abbreviation for “Random Access Memory”. Further, in the following description, the ROM is an abbreviation for “Read Only Memory”.
Further, in the following description, ASIC is an abbreviation for “Application Specific Integrated Circuit”. In the following description, FPGA is an abbreviation for “Field-Programmable Gate Array”. In the following description, SSD means an abbreviation of “Solid State Drive”. Further, in the following description, the DVD-ROM is an abbreviation for “Digital Versatile Disc Read Only Memory”. In the following description, USB is an abbreviation for "Universal Serial Bus".
 また、以下の説明において、「直角」とは、水平線と鉛直線とが交差して得られる角を指す。なお、以下の説明において、「直角」と記載されている角は、必ずしも直角でなくてもよく、許容される誤差内であれば、ずれていてもよい。 Also, in the following description, “right angle” refers to an angle obtained by intersecting a horizontal line and a vertical line. In the following description, the angle described as “right angle” does not necessarily have to be a right angle and may be displaced as long as it is within an allowable error.
[第1の実施の形態] [First Embodiment]
 図1には、ユーザ(例えば、眼科医師)150の前に配置された手術用顕微鏡100A1が示されている。図1に示すように、手術用顕微鏡100A1は、手術用顕微鏡本体100AHと、手術用顕微鏡本体100AHの上に直接的又は間接的に配置され、後述する右側観察光及び左側観察光により得られる各画像を表示する表示装置100ADと、を備えている。対象物(観察対象)である手術対象の眼(例えば、右眼)から生じる観察光(例、可視光)に含まれる右側観察光及び左側観察光により、眼の視差のある立体視の画像(観察画像、術野画像、表示画像、視差画像)が得られる。
 ここで、「右側」は、ユーザ150から手術用顕微鏡100A1を見て右側(例、X軸の正の向き)であり、また、視差画像を生成するための2つの画像を生成するための2つの観察光の一方が対物レンズ11(図2Aも参照)を透過して進む側である。また、「右側」は、視差画像を生成するための2つの画像を生成するために、2つの照明光(右側照明光、左側照明光)の一方が対象物に向かって進む側である。
 「左側」は、ユーザから手術用顕微鏡100A1を見て左側(例、X軸の負の向き)であり、また、視差画像を生成するための2つの画像を生成するための2つの観察光の他方が対物レンズ11(図2Aも参照)を透過して進む側である。また、「左側」は、視差画像を生成するための2つの画像を生成するために、2つの照明光(右側照明光、左側照明光)の他方が対象物に向かって進む側である。
 「右側観察光」は、視差画像を生成するための2つの画像の一方の画像を生成するための一方の観察光であり、「左側観察光」は、他方の画像を生成するための他方の観察光である。一方の画像は、ユーザの一方の眼用の画像であり、他方の画像は、ユーザの他方の眼用の画像である。例えば、一方の画像は、ユーザの右眼用の画像であり、他方の画像は、ユーザの左眼用の画像を含む。また、一方の画像は、ユーザの左眼用の画像であり、他方の画像は、ユーザの右眼用の画像であってもよい。
 また、「右側照明光」は、対象物を右側から照明するために、後述の右側照明光源光学系1618Rから射出される照明光である。「左側照明光」は、対象物を左側から照明するために、後述の左側照明光源光学系1618Lから射出される照明光である。
FIG. 1 shows a surgical microscope 100A1 placed in front of a user (eg, an ophthalmologist) 150. As shown in FIG. 1, the surgical microscope 100A1 is directly or indirectly arranged on the surgical microscope main body 100AH and the surgical microscope main body 100AH, and is obtained by right-side observation light and left-side observation light described below. And a display device 100AD for displaying an image. A stereoscopic image with a parallax of the eye due to the right-side observation light and the left-side observation light included in the observation light (eg, visible light) generated from the surgical target eye (for example, right eye) that is the target object (observation target) Observation images, operative field images, display images, parallax images) are obtained.
Here, the “right side” is the right side (for example, the positive direction of the X axis) when the surgical microscope 100A1 is viewed from the user 150, and 2 for generating two images for generating a parallax image. One of the two observation lights is on the side of passing through the objective lens 11 (see also FIG. 2A). Further, the “right side” is a side on which one of the two illumination lights (the right illumination light and the left illumination light) travels toward the object in order to generate two images for generating a parallax image.
The “left side” is the left side (eg, the negative direction of the X axis) when the surgical microscope 100A1 is viewed from the user, and the two observation lights for generating two images for generating a parallax image. The other is the side that passes through the objective lens 11 (see also FIG. 2A) and proceeds. The “left side” is the side on which the other of the two illumination lights (right illumination light and left illumination light) travels toward the object in order to generate two images for generating the parallax image.
The “right side observation light” is one observation light for generating one of the two images for generating a parallax image, and the “left side observation light” is the other for generating the other image. It is observation light. One image is an image for one eye of the user, and the other image is an image for the other eye of the user. For example, one image is an image for the right eye of the user, and the other image includes an image for the left eye of the user. Further, one image may be an image for the left eye of the user, and the other image may be an image for the right eye of the user.
The “right side illumination light” is the illumination light emitted from the right side illumination light source optical system 1618R described later to illuminate the object from the right side. The “left side illumination light” is an illumination light emitted from a left side illumination light source optical system 1618L described later in order to illuminate the object from the left side.
 表示装置100ADとしては、液晶ディスプレイ又は有機ELディスプレイ等が挙げられる。表示装置100ADは、本開示の技術の「表示部」の一例である。 The display device 100AD may be a liquid crystal display, an organic EL display, or the like. The display device 100AD is an example of a “display unit” of the technology of the present disclosure.
 鉛直方向をZ方向、ユーザ150の中心と手術用顕微鏡本体100AHの中心と、を結ぶ方向でZ方向に直交する方向をY方向、ユーザ150を基準に手術用顕微鏡100A1の左右方向でZ方向に直交する方向をX方向とする。鉛直上方向をZの正の方向とし、鉛直下方向をZの負の方向とする。ユーザ150から手術用顕微鏡100A1に対する奥行き方向をYの正の方向とし、手前方向をYの負の方向とする。ユーザ150を基準に手術用顕微鏡100A1の右方向(例、右側の方向)をXの正の方向とし、左方向(例、左側の方向)をXの負の方向とする。なお、本実施形態において、鉛直方向(例、図2AのZ方向)に直交するX方向及びY方向を含む面を水平面とした場合、その水平面において鉛直方向と直交する方向を水平方向(例、水平面において鉛直方向と交差する方向、X方向及びY方向)とする。 The vertical direction is the Z direction, the direction connecting the center of the user 150 and the center of the surgical microscope main body 100AH and orthogonal to the Z direction is the Y direction, and the left and right direction of the surgical microscope 100A1 with respect to the user 150 is the Z direction. The direction orthogonal to each other is defined as the X direction. The vertically upward direction is the positive direction of Z, and the vertically downward direction is the negative direction of Z. The depth direction from the user 150 to the surgical microscope 100A1 is the positive Y direction, and the front direction is the negative Y direction. Based on the user 150, the right direction (eg, right direction) of the surgical microscope 100A1 is a positive direction of X, and the left direction (eg, left direction) is a negative direction of X. In the present embodiment, when a plane including an X direction and a Y direction orthogonal to a vertical direction (eg, Z direction in FIG. 2A) is a horizontal plane, a direction orthogonal to the vertical direction on the horizontal plane is a horizontal direction (eg, The direction that intersects the vertical direction on the horizontal plane, the X direction and the Y direction).
 図2Aには、手術用顕微鏡100A1の断面図が示されている。図2Aに示すように、手術用顕微鏡100A1は、単一の対物レンズ11、右側変倍光学系13R、右側結像光学系14R、右側撮像素子15R、左側変倍光学系13L、左側結像光学系14L、及び左側撮像素子15Lを備えている。なお、2枚以上のレンズを貼り合わせたレンズ(例、ダブレット)で単一の対物レンズ11を構成するようにしてもよい。
 右側変倍光学系13R及び右側結像光学系14Rは、眼からの観察光に含まれる右側観察光を右側撮像素子15Rに結像する。左側変倍光学系13L及び左側結像光学系14Lは、眼からの観察光に含まれる右側観察光を左側撮像素子15Lに結像する。
 なお、右側変倍光学系13R、右側結像光学系14R、及び右側撮像素子15Rは、X方向に移動可能な同一の右側撮像光学装置用基板に配置されており、右側撮像光学装置131415Rという。左側変倍光学系13L、左側結像光学系14L、及び左側撮像素子15Lは、X方向に移動可能な同一の左側撮像光学装置用基板に配置されており、左側撮像光学装置131415Lという。本実施形態における対物レンズ11は、右側観察光及び左側観察光が入射する共通の対物レンズで構成される(いわゆるガリレオ型)が、2つ以上の対物レンズを備えるグリノー型で構成されてもよい。
 右側変倍光学系13R及び右側結像光学系14Rは、本開示の技術の「右側観察光学系」の一例である。左側変倍光学系13L及び左側結像光学系14Lは本開示の技術の「左側観察光学系」の一例である。
FIG. 2A shows a sectional view of the surgical microscope 100A1. As shown in FIG. 2A, the surgical microscope 100A1 includes a single objective lens 11, a right-side variable magnification optical system 13R, a right-side imaging optical system 14R, a right-side imaging element 15R, a left-side variable-magnification optical system 13L, and a left-side imaging optical system. The system 14L and the left imaging element 15L are provided. It should be noted that the single objective lens 11 may be configured by a lens (for example, a doublet) in which two or more lenses are bonded together.
The right-side variable magnification optical system 13R and the right-side imaging optical system 14R form the right-side observation light included in the observation light from the eye on the right-side image sensor 15R. The left-side variable magnification optical system 13L and the left-side imaging optical system 14L form the right-side observation light included in the observation light from the eye on the left-side imaging element 15L.
The right-side variable magnification optical system 13R, the right-side imaging optical system 14R, and the right-side imaging device 15R are arranged on the same right-side imaging optical device substrate that is movable in the X direction, and is referred to as right-side imaging optical device 131415R. The left-side variable magnification optical system 13L, the left-side imaging optical system 14L, and the left-side imaging element 15L are arranged on the same substrate for the left-side imaging optical device that is movable in the X direction, and are referred to as the left-side imaging optical device 131415L. The objective lens 11 in the present embodiment is configured by a common objective lens on which the right-side observation light and the left-side observation light are incident (a so-called Galileo type), but may be configured by a Greenough type including two or more objective lenses. ..
The right variable magnification optical system 13R and the right imaging optical system 14R are examples of the “right observation optical system” of the technique of the present disclosure. The left-side variable power optical system 13L and the left-side imaging optical system 14L are examples of the “left-side observation optical system” in the technique of the present disclosure.
 手術用顕微鏡100A1は、斜照明のための右側斜照明光源16Rと、右側斜照明光源16Rにより発せられた右側斜照明光(その光軸に16RIが付されている)を整形する右側斜照明光学系21Rと、を備えている。右側斜照明光源16Rと右側斜照明光学系21Rとにより、右側斜照明光源斜照明光学系1621Rが構成される。 The surgical microscope 100A1 includes a right oblique illumination light source 16R for oblique illumination and a right oblique illumination optical that shapes the right oblique illumination light (16RI is attached to its optical axis) emitted by the right oblique illumination light source 16R. And a system 21R. The right oblique illumination light source 16R and the right oblique illumination optical system 21R configure a right oblique illumination light source oblique illumination optical system 1621R.
 また、手術用顕微鏡100A1は、徹照のための右側完全同軸照明光源18Rと、右側完全同軸照明光源18Rにより発せられた右側完全同軸照明光(その光軸に18RIが付されている)を整形する右側完全同軸照明光学系23Rと、を備えている。右側完全同軸照明光源18Rと右側完全同軸照明光学系23Rとにより、右側完全同軸照明光源完全同軸照明光学系1823Rが構成される。 In addition, the surgical microscope 100A1 shapes the right perfect coaxial illumination light source 18R for transillumination and the right perfect coaxial illumination light (18RI is attached to the optical axis) emitted by the right perfect coaxial illumination light source 18R. And a right complete coaxial illumination optical system 23R. The right perfect coaxial illumination light source 18R and the right perfect coaxial illumination optical system 23R constitute a right perfect coaxial illumination light source perfect coaxial illumination optical system 1823R.
 右側斜照明光源斜照明光学系1621R及び右側完全同軸照明光源完全同軸照明光学系1823R(右側斜照明光源16Rから右側完全同軸照明光学系23R)は、X方向に移動可能な同一の右側照明光源光学系用基板に配置されており、右側照明光源光学系1618Rという。右側照明光源光学系1618Rは、眼を右側から照明する照明光を生成する。 Right oblique illumination light source Oblique illumination optical system 1621R and right complete coaxial illumination light source Complete coaxial illumination optical system 1823R (right oblique illumination light source 16R to right complete coaxial illumination optical system 23R) is the same rightward illumination light source optical that is movable in the X direction. The right side illumination light source optical system 1618R is disposed on the system substrate. The right side illumination light source optical system 1618R generates illumination light that illuminates the eye from the right side.
 右側斜照明光源16R及び右側完全同軸照明光源18Rは、出射する右側照明(斜照明及び完全同軸照明)光が、右側変倍光学系13R及び右側結像光学系14Rを通らないように、配置されている。 The right oblique illumination light source 16R and the right complete coaxial illumination light source 18R are arranged so that the emitted right side illumination (oblique illumination and complete coaxial illumination) light does not pass through the right variable magnification optical system 13R and the right imaging optical system 14R. ing.
 更に、手術用顕微鏡100A1は、斜照明のための左側斜照明光源16Lと、左側斜照明光源16Lにより発せられた左側斜照明光(その光軸に16LIが付されている)を整形する左側斜照明光学系21Lと、を備えている。左側斜照明光源16Lと左側斜照明光学系21Lとにより、左側斜照明光源斜照明光学系1621Lが構成される。 Further, the surgical microscope 100A1 includes a left oblique illumination light source 16L for oblique illumination and a left oblique illumination light (16LI is attached to the optical axis) emitted by the left oblique illumination light source 16L. And an illumination optical system 21L. The left oblique illumination light source 16L and the left oblique illumination optical system 21L constitute a left oblique illumination light source oblique illumination optical system 1621L.
 手術用顕微鏡100A1は、徹照のための左側完全同軸照明光源18Lと、左側完全同軸照明光源18Lにより発せられた左側完全同軸照明光(その光軸に18LIが付されている)を整形する左側完全同軸照明光学系23Lと、を備えている。左側完全同軸照明光源18Lと左側完全同軸照明光学系23Lとにより、左側完全同軸照明光源完全同軸照明光学系1823Lが構成される。 The surgical microscope 100A1 shapes the left perfect coaxial illumination light source 18L for transillumination and the left perfect coaxial illumination light (18LI is attached to the optical axis) emitted by the left perfect coaxial illumination light source 18L. And a complete coaxial illumination optical system 23L. The left perfect coaxial illumination light source 18L and the left perfect coaxial illumination optical system 23L constitute a left perfect coaxial illumination light source perfect coaxial illumination optical system 1823L.
 左側斜照明光源斜照明光学系1621L及び左側完全同軸照明光源完全同軸照明光学系1823L(左側斜照明光源16Lから左側完全同軸照明光学系23L)は、X方向に移動可能な同一の左側照明光源光学系用基板に配置されており、左側照明光源光学系1618Lという。 Left oblique illumination light source The oblique illumination optical system 1621L and the left complete coaxial illumination light source The complete coaxial illumination optical system 1823L (the left oblique illumination light source 16L to the left complete coaxial illumination optical system 23L) are the same leftward illumination light source optical that is movable in the X direction. It is arranged on the system substrate and is called a left side illumination light source optical system 1618L.
 左側斜照明光源16L及び左側完全同軸照明光源18Lは、出射する左側照明(斜照明及び完全同軸照明)光が、左側変倍光学系13L及び左側結像光学系14Lを通らないように、配置されている。 The left side oblique illumination light source 16L and the left side complete coaxial illumination light source 18L are arranged so that the emitted left side illumination (oblique illumination and perfect coaxial illumination) light does not pass through the left side variable magnification optical system 13L and the left side imaging optical system 14L. ing.
 右側照明光源光学系1618Rは、本開示の技術の「右側照明光学系」の一例である。 左側照明光源光学系1618Lは、本開示の技術の「左側照明光学系」の一例である。 The right side illumination light source optical system 1618R is an example of the “right side illumination optical system” of the technology of the present disclosure. The left side illumination light source optical system 1618L is an example of the “left side illumination optical system” of the technology of the present disclosure.
 次に、各照明光(光軸16RIから18LI)について説明する。照明には、第1の照明と第2の照明とがある。第1の照明は、徹照用の照明であり、第2の照明は、斜照明である。 Next, each illumination light (optical axis 16RI to 18LI) will be described. The lighting includes a first lighting and a second lighting. The first illumination is illumination for transillumination, and the second illumination is oblique illumination.
 徹照とは、網膜に光を到達させ、その反射光を二次光源として、バックライト効果(Red reflex)を得る照明方法をいう。例えば、水晶体を明るくするための照明方法である。徹照のための照明には、第1の種類として、完全同軸照明と、第2の種類として、近同軸照明とがある。 Transillumination refers to an illumination method in which light reaches the retina and the reflected light is used as a secondary light source to obtain a backlight effect (Red reflex). For example, it is an illumination method for brightening the crystalline lens. The first type of transillumination illumination is perfect coaxial illumination, and the second type is near coaxial illumination.
 完全同軸照明では、徹照の照明光(完全同軸照明光)の光軸18RI、18LIを観察光の光軸15RI、15LIと同軸にしている。 In perfect coaxial illumination, the optical axes 18RI and 18LI of transillumination illumination light (perfect coaxial illumination light) are coaxial with the optical axes 15RI and 15LI of observation light.
 また、近同軸照明では、徹照の照明光(近同軸照明光)の光軸を観察光の光軸15RI、15LIに対して、例えば、2°前後にする。 For near-coaxial illumination, the optical axis of transillumination illumination light (near-coaxial illumination light) is set to, for example, about 2 ° with respect to the optical axes 15RI and 15LI of observation light.
 なお、詳細には後述するが、手術用顕微鏡100A1は、完全同軸照明と近同軸照明とを切り換えたり、各照明を同時に行ったりしてもよい。 As will be described in detail later, the surgical microscope 100A1 may switch between perfect coaxial illumination and near coaxial illumination, or may perform each illumination simultaneously.
 徹照により、水晶体の混濁の様子が良好に見える。このため、白内障手術時に不可欠な機能となっている。 By transillumination, the opacity of the crystalline lens can be seen clearly. Therefore, it is an essential function during cataract surgery.
 また、斜照明とは、観察光の光軸(15RI、15LI)に対して斜照明の照明光(斜照明光)の光軸の角度を、近同軸照明よりも大きく取った照明方法をいう。照明光が対象物(この場合、手術対象の眼)に対して斜めに入射する事で、眼の凹凸による陰影が強調されるため、立体感が得られる。 Also, oblique illumination refers to an illumination method in which the angle of the optical axis of the illumination light of oblique illumination (oblique illumination light) with respect to the optical axis of the observation light (15RI, 15LI) is larger than that of near-coaxial illumination. When the illumination light is obliquely incident on the object (in this case, the eye to be operated on), the shadow due to the unevenness of the eye is emphasized, so that a stereoscopic effect can be obtained.
 第1の実施の形態のように、各照明光(光軸16RIから18LI)のために、異なる光源(16Rから18L)を有することに代えて、光源からの光を分岐することにより、各照明光を発生するようにしてもよい。この場合、光源は、1つでも2つでも3つでもよい。例えば、各照明光を発生するため、1つの光源からの光を分岐し、ライトガイドにより、各光軸(16RI、18RI、16LI、18LI)に導くことにより、1つの光源を、各光源(16R、18R、16L、18L)として、兼用してもよい。 Instead of having a different light source (16R to 18L) for each illumination light (optical axis 16RI to 18LI) as in the first embodiment, each illumination is divided by branching the light from the light source. Light may be generated. In this case, the number of light sources may be one, two or three. For example, in order to generate each illumination light, the light from one light source is branched and guided to each optical axis (16RI, 18RI, 16LI, 18LI) by a light guide, so that one light source is converted to each light source (16R). , 18R, 16L, 18L).
 このように、完全同軸照明の照明光の光軸18RI、18LIは、観察光の光軸15RI、15LIに対し、対象物の位置における完全同軸照明の照明光の光軸18RI、18LI及び観察光の光軸15RI、15LIを含む面において、第1の所定角度の範囲内に位置する。第1の所定角度の範囲は、例えば、0°以上2°以下である。 As described above, the optical axes 18RI and 18LI of the illumination light of the perfect coaxial illumination are different from the optical axes 15RI and 15LI of the observation light with respect to the optical axes 18RI and 18LI of the illumination light of the perfect coaxial illumination at the position of the object and the observation light. It is located within the range of the first predetermined angle on the plane including the optical axes 15RI and 15LI. The range of the first predetermined angle is, for example, 0 ° or more and 2 ° or less.
 斜照明の照明光の光軸16RI、16LIは、観察光の光軸15RI、15LIに対し、対象物の位置における斜照明の照明光の光軸16RI、16LI及び観察光の光軸15RI、15LIを含む面において、第2の所定角度の範囲内に位置し、当該平面において、観察光の光軸(15RI、15LI)に対する角度が、完全同軸照明の照明光の光軸18RI、18LIの角度よりも大きい。第2の所定角度の範囲は、例えば、2°以上8°以下である。 The optical axes 16RI and 16LI of the illumination light of the oblique illumination are the optical axes 15RI and 15LI of the observation light and the optical axes 16RI and 16LI of the illumination light of the oblique illumination at the position of the object and the optical axes 15RI and 15LI of the observation light. In the plane including, it is located within the range of the second predetermined angle, and in the plane, the angle with respect to the optical axis (15RI, 15LI) of the observation light is larger than the angles of the optical axes 18RI, 18LI of the illumination light of perfect coaxial illumination. large. The range of the second predetermined angle is, for example, 2 ° or more and 8 ° or less.
 手術用顕微鏡100A1は、対象物と右側撮像光学装置131415Rとの間の観察光路(右側観察光路)において対物レンズ11と右側観察光学系(例、右側変倍光学系13R)との間、かつ右側照明光源光学系1618Rと対象物との間の照明光路(右側照明光路)において右側完全同軸照明光源完全同軸照明光学系1823R(又は右側斜照明光源斜照明光学系1621R)と対物レンズ11との間に設けられた第1右側偏向素子25Rを備えている。このような構成により、第1右側偏向素子25Rは、眼を照明する右側斜照明光及び右側完全同軸照明光を、対物レンズ11に向かって反射する。第1右側偏向素子25Rは、眼から生じて(例、反射して、出射して)且つ対物レンズ11を透過して通過した観察光の少なくとも一部(例、右側観察光)を、右側撮像光学装置131415Rの光路へ偏向する(例、反射する)ことにより、右側観察光(その光軸に15RIが付されている)を形成する。即ち、第1右側偏向素子25Rは、眼から反射し且つ対物レンズ11を透過した観察光の少なくとも一部を、右側観察光として、右側撮像光学装置131415Rに偏向する。例えば、第1右側偏向素子25Rは、上記観察光である右側観察光と左側観察光とのうち右側観察光を右側撮像光学装置131415Rに偏向する。なお、上記した右側照明光路は、右側完全同軸照明光源完全同軸照明光学系1823Rと対象物との間の第1の右側照明光路と、右側斜照明光源斜照明光学系1621Rと対象物との間の第2の右側照明光路とに分けられる。
 なお、第1右側偏向素子25Rは、右側完全同軸照明光を透過して右側観察光を反射するようにしてもよい。第2右側偏向素子移動部70Rは、第1右側偏向素子移動部68Rにより第1右側偏向素子25Rが移動する場合、当該移動の間、右側観察光の光軸15RIと、右側完全同軸照明光の光軸18RIと、が眼の位置でなす角度が一定に保たれるように、第2右側偏向素子26Rを移動させる。また、上記した通り、右側観察光路と右側照明光路とは第1右側偏向素子25Rをそれぞれ通過する光路であり、第1右側偏向素子25Rは右側観察光路及び右側照明光路に配置されている。例えば、第1右側偏向素子25Rは、少なくとも上記の右側観察光路及び第1の右側照明光路に配置される。
 右側斜照明光の光軸16RI及び右側完全同軸照明光の光軸18RIは、第1右側偏向素子25Rにおいて、直角に屈曲される。右側観察光の光軸15RIは、第1右側偏向素子25Rにおいて、直角に屈曲される。
The surgical microscope 100A1 includes the objective lens 11 and the right-side observation optical system (eg, right-side variable magnification optical system 13R) in the observation optical path (right-side observation optical path) between the object and the right-side imaging optical device 131415R, and the right side. In the illumination optical path (right illumination optical path) between the illumination light source optical system 1618R and the object, between the right-side perfect coaxial illumination light source perfect coaxial illumination optical system 1823R (or the right oblique illumination light source oblique illumination optical system 1621R) and the objective lens 11. The first right-side deflection element 25R provided in the. With such a configuration, the first right-side deflection element 25R reflects the right-side oblique illumination light and the right-side perfect coaxial illumination light that illuminate the eye toward the objective lens 11. The first right-side deflection element 25R takes a right-side image of at least a part (eg, right-side observation light) of the observation light which is generated from the eye (eg, reflected and emitted) and transmitted through the objective lens 11. By deflecting (eg, reflecting) to the optical path of the optical device 131415R, right side observation light (15RI is attached to its optical axis) is formed. That is, the first right deflection element 25R deflects at least a part of the observation light reflected from the eye and transmitted through the objective lens 11 to the right imaging optical device 131415R as the right observation light. For example, the first right-side deflection element 25R deflects the right-side observation light of the right-side observation light and the left-side observation light, which are the observation light, to the right-side imaging optical device 131415R. The right side illumination light path described above is the first right side illumination light path between the right side perfect coaxial illumination light source perfect coaxial illumination optical system 1823R and the object and the right side oblique illumination light source oblique illumination optical system 1621R and the object. Of the second right side illumination optical path.
The first right deflection element 25R may transmit the right perfect coaxial illumination light and reflect the right observation light. When the first right-side deflection element moving unit 68R moves the first right-side deflection element 25R, the second right-side deflection element moving unit 70R outputs the right-side observation light optical axis 15RI and the right-side perfect coaxial illumination light during the movement. The second right deflection element 26R is moved so that the angle formed by the optical axis 18RI and the eye position is kept constant. As described above, the right observation optical path and the right illumination optical path are the optical paths that pass through the first right deflection element 25R, respectively, and the first right deflection element 25R is arranged in the right observation optical path and the right illumination optical path. For example, the first right-side deflection element 25R is arranged at least in the right-side observation optical path and the first right-side illumination optical path described above.
The optical axis 16RI of the right oblique illumination light and the optical axis 18RI of the right perfect coaxial illumination light are bent at a right angle in the first right deflection element 25R. The optical axis 15RI of the right side observation light is bent at a right angle in the first right side deflection element 25R.
 また、手術用顕微鏡100A1は、対象物と左側撮像光学装置131415Lとの間の観察光路(左側観察光路)において対物レンズ11と左側観察光学系(例、左側変倍光学系13L)との間、かつ右側照明光源光学系1618Rと対象物との間の照明光路(左側照明光路)において左側完全同軸照明光源完全同軸照明光学系1823L(又は左側斜照明光源斜照明光学系1621L)と対物レンズ11との間に設けられた第1左側偏向素子25Lを備えている。このような構成により、第1左側偏向素子25Lは、眼を照明する左側斜照明光、及び左側完全同軸照明光を、対物レンズ11に向かって反射する。第1左側偏向素子25Lは、眼から生じて(例、反射して、出射して)且つ対物レンズ11を透過して通過した観察光の少なくとも一部(例、左側観察光)を左側撮像光学装置131415Lの光路へ偏向する(例、反射する)ことにより、左側観察光(その光軸に15LIが付されている)を形成する。即ち、第1左側偏向素子25Lは、眼から反射し且つ対物レンズ11を透過した観察光の少なくとも一部を、左側観察光として、左側撮像光学装置131415Lに偏向する。例えば、第1左側偏向素子25Lは、上記観察光である右側観察光と左側観察光とのうち左側観察光を左側撮像光学装置131415Lに偏向する。なお、上記した左側照明光路は、左側完全同軸照明光源完全同軸照明光学系1823Lと対象物との間の第1の左側照明光路と、左側斜照明光源斜照明光学系1621Lと対象物との間の第2の左側照明光路とに分けられる。
 なお、詳細には後述するが、第1左側偏向素子25Lは、左側完全同軸照明光を透過して左側観察光を反射する場合もある(図23参照)。第2左側偏向素子移動部70Lは、第1左側偏向素子移動部68Lにより第1左側偏向素子25Lが移動する場合、当該移動の間、左側観察光の光軸15LIと、左側完全同軸照明光の光軸18LIと、が眼の位置でなす角度が一定に保たれるように、第2左側偏向素子26Lを移動させる。また、上記した通り、左側観察光路と左側照明光路とは第1左側偏向素子25Lをそれぞれ通過する光路であり、第1左側偏向素子25Lは左側観察光路及び左側照明光路に配置されている。例えば、第1左側偏向素子25Lは、少なくとも上記の左側観察光路及び第1の左側照明光路に配置される。
 左側斜照明光の光軸16LI、及び左側完全同軸照明光の光軸18LIは、第1左側偏向素子25Lにおいて、直角に屈曲される。左側観察光の光軸15LIは、第1左側偏向素子25Lにおいて、直角に屈曲される。
In addition, the surgical microscope 100A1 includes, between the objective lens 11 and the left observation optical system (for example, the left variable magnification optical system 13L) in the observation optical path (the left observation optical path) between the object and the left imaging optical device 131415L, Further, in the illumination optical path (left illumination optical path) between the right illumination light source optical system 1618R and the object, the left complete coaxial illumination light source perfect coaxial illumination optical system 1823L (or left oblique illumination light source oblique illumination optical system 1621L) and the objective lens 11. And a first left-side deflection element 25L provided between the two. With such a configuration, the first left-side deflection element 25L reflects the left oblique illumination light that illuminates the eye and the left complete coaxial illumination light toward the objective lens 11. The first left-side deflection element 25L uses at least part of the observation light (eg, left-side observation light) generated from the eye (reflected and emitted) and transmitted through the objective lens 11 as left-side imaging optics. By deflecting (eg, reflecting) to the optical path of the device 131415L, left-side observation light (with 15LI attached to its optical axis) is formed. That is, the first left-side deflection element 25L deflects at least a part of the observation light reflected from the eye and transmitted through the objective lens 11 to the left-side imaging optical device 131415L as the left-side observation light. For example, the first left-side deflection element 25L deflects the left-side observation light out of the right-side observation light and the left-side observation light, which are the observation lights, to the left-side imaging optical device 131415L. The above-mentioned left side illumination light path is the first left side illumination light path between the left side complete coaxial illumination light source perfect coaxial illumination optical system 1823L and the object, and between the left side oblique illumination light source oblique illumination optical system 1621L and the object. Of the second left side illumination light path.
As will be described later in detail, the first left-side deflection element 25L may transmit the left-side perfect coaxial illumination light and reflect the left-side observation light (see FIG. 23). When the first left-side deflection element moving unit 68L moves the first left-side deflection element 25L, the second left-side deflection element moving unit 70L moves the left-side observation light optical axis 15LI and the left-side perfect coaxial illumination light during the movement. The second left-side deflection element 26L is moved so that the angle formed by the optical axis 18LI and the eye position is kept constant. As described above, the left observation optical path and the left illumination optical path are optical paths that pass through the first left deflection element 25L, respectively, and the first left deflection element 25L is arranged in the left observation optical path and the left illumination optical path. For example, the first left-side deflecting element 25L is arranged at least in the above-mentioned left-side observation optical path and first left-side illumination optical path.
The optical axis 16LI of the left oblique illumination light and the optical axis 18LI of the left perfect coaxial illumination light are bent at a right angle in the first left deflection element 25L. The optical axis 15LI of the left side observation light is bent at a right angle in the first left side deflection element 25L.
  上記照明光を対象物に照射することにより得られる観察光に含まれる左側観察光及び右側観察光は、対物レンズ11を透過すると略平行光となっている。ただし、左側観察光及び右側観察光が平行光にならないように対物レンズ11を設計してもよい。なお、例えば、右側観察光及び左側観察光は、対象物のほぼ同じ位置(例、同じ視野領域)に対して上記の照明光を照射して生じる観察光である。 The left-side observation light and the right-side observation light included in the observation light obtained by irradiating the object with the above-mentioned illumination light are substantially parallel light when passing through the objective lens 11. However, the objective lens 11 may be designed so that the left-side observation light and the right-side observation light do not become parallel light. Note that, for example, the right-side observation light and the left-side observation light are observation lights generated by irradiating the substantially same position (for example, the same visual field region) of the target object with the above illumination light.
 手術用顕微鏡100A1は、右側完全同軸照明光を透過すると共に、右側観察光を、右側変倍光学系13Rに向かって反射する第2右側偏向素子26Rを備えている。右側斜照明光は、第2右側偏向素子26Rの大きさが比較的小さく、第2右側偏向素子26Rを介さずに第1右側偏向素子25Rに到達する。なお、図2Dに示すように、手術用顕微鏡100A1は、第2右側偏向素子26Rを、右側斜照明光が、第2右側偏向素子26Rを透過して第1右側偏向素子25Rに到達する大きさにしてもよい。
 右側観察光の光軸15RIは、第2右側偏向素子26Rにおいて直角に屈曲される。より具体的には、第2右側偏向素子26Rから右側撮像光学装置131415Rに向かう右側観察光の光軸15RIの方向は、Z方向(正)であるのに対し、第1右側偏向素子25Rから第2右側偏向素子26Rに向かう右側観察光の光軸15RIの方向は、X方向(正)である。
The surgical microscope 100A1 includes a second right-side deflection element 26R that transmits the right-side perfect coaxial illumination light and reflects the right-side observation light toward the right-side variable magnification optical system 13R. The right oblique illumination light reaches the first right deflection element 25R without passing through the second right deflection element 26R because the second right deflection element 26R has a relatively small size. As shown in FIG. 2D, the surgical microscope 100A1 has a size in which the right oblique illumination light passes through the second right deflection element 26R and reaches the first right deflection element 25R through the second right deflection element 26R. You can
The optical axis 15RI of the right side observation light is bent at a right angle in the second right side deflection element 26R. More specifically, the direction of the optical axis 15RI of the right side observation light traveling from the second right side deflection element 26R to the right side imaging optical device 131415R is the Z direction (positive), while the direction from the first right side deflection element 25R to The direction of the optical axis 15RI of the right side observation light toward the 2nd right side deflection element 26R is the X direction (positive).
 なお、右側撮像光学装置131415Rの各装置(13R、14R、15R)を、Y方向(正又は負)に配置するようにしてもよい。また、第2右側偏向素子26Rは、右側観察光の光軸15RIを、Y方向(正又は負)に屈曲させ、右側観察光が右側撮像光学装置131415Rに到達するようにしてもよい。 The respective devices (13R, 14R, 15R) of the right imaging optical device 131415R may be arranged in the Y direction (positive or negative). The second right deflection element 26R may bend the optical axis 15RI of the right observation light in the Y direction (positive or negative) so that the right observation light reaches the right imaging optical device 131415R.
 手術用顕微鏡100A1は、左側完全同軸照明光を透過すると共に、左側観察光を、左側変倍光学系13Lに向かって反射する第2左側偏向素子26Lを備えている。左側斜照明光は、第2左側偏向素子26Lの大きさが比較的小さく、第2左側偏向素子26Lを介さずに第1左側偏向素子25Lに到達する。なお、図2Dに示すように、手術用顕微鏡100A1は、第2左側偏向素子26Lを、左側斜照明光を、第2左側偏向素子26Lを透過して第1左側偏向素子25Lに到達する大きさにしてもよい。
 左側観察光の光軸15LIは、第2左側偏向素子26Lにおいて直角に屈曲される。より具体的には、第2左側偏向素子26Lから左側撮像光学装置131415Lに向かう左側観察光の光軸15LIの方向は、Z方向(正)であるのに対し、第1左側偏向素子25Lから第2左側偏向素子26Lに向かう左側観察光の光軸15LIの方向は、X方向(負)である。
 第2右側偏向素子26Rは、右側観察光の光軸15RIを含む右側観察光路及び右側完全同軸照明光の光軸18RIを含む右側完全同軸照明光の右側照明光路に配置される。第2右側偏向素子26Rは、右側観察光路及び右側完全同軸照明光の右側照明光路上を移動可能である。
 第2右側偏向素子26Rは、右側変倍光学系13R及び右側結像光学系14Rと第1右側偏向素子25Rとの間、右側照明光源光学系1618Rと第1右側偏向素子25Rとの間に配置される。
 なお、第2右側偏向素子26Rを、第1右側偏向素子25Rと対物レンズ11との間、又は、対物レンズ11と眼との間に配置してもよい。
 第2左側偏向素子26Lは、左側観察光の光軸15LIを含む左側観察光路及び左側完全同軸照明光の光軸18LIを含む左側完全同軸照明光の左側照明光路に配置される。第2左側偏向素子26Lは、左側観察光路及び左側完全同軸照明光の左側照明光路上を移動可能である。
 第2左側偏向素子26Lは、左側変倍光学系13L及び左側結像光学系14Lと第1左側偏向素子25Lとの間、左側照明光源光学系1618Lと第1左側偏向素子25Lとの間に配置される。
 なお、第2左側偏向素子26Lは、第1左側偏向素子25Lと対物レンズ11との間、又は、 対物レンズ11と眼との間に配置してもよい。
The surgical microscope 100A1 includes a second left-side deflection element 26L that transmits the left-side perfect coaxial illumination light and reflects the left-side observation light toward the left-side variable magnification optical system 13L. The left oblique illumination light reaches the first left deflection element 25L without passing through the second left deflection element 26L because the size of the second left deflection element 26L is relatively small. As shown in FIG. 2D, the surgical microscope 100A1 has such a size that the second left-side deflection element 26L transmits the left oblique illumination light to the first left-side deflection element 25L after passing through the second left-side deflection element 26L. You can
The optical axis 15LI of the left side observation light is bent at a right angle in the second left side deflection element 26L. More specifically, while the optical axis 15LI of the left-side observation light traveling from the second left-side deflection element 26L to the left-side imaging optical device 131415L is the Z direction (positive), the direction from the first left-side deflection element 25L The direction of the optical axis 15LI of the left-side observation light toward the left-side deflection element 26L is the X direction (negative).
The second right deflection element 26R is arranged in the right observation optical path including the optical axis 15RI of the right observation light and the right illumination optical path of the right complete coaxial illumination light including the optical axis 18RI of the right complete coaxial illumination light. The second right deflection element 26R is movable on the right observation optical path and the right illumination optical path of the right perfect coaxial illumination light.
The second right deflection element 26R is arranged between the right variable magnification optical system 13R and the right imaging optical system 14R and the first right deflection element 25R, and between the right illumination light source optical system 1618R and the first right deflection element 25R. To be done.
The second right-side deflection element 26R may be arranged between the first right-side deflection element 25R and the objective lens 11 or between the objective lens 11 and the eye.
The second left-side deflection element 26L is arranged in the left-side observation optical path including the optical axis 15LI of the left-side observation light and the left-side illumination optical path of the left-side complete coaxial illumination light including the optical axis 18LI of the left-side complete coaxial illumination light. The second left-side deflection element 26L is movable on the left-side observation optical path and the left-side illumination optical path of the left-side perfect coaxial illumination light.
The second left-side deflection element 26L is arranged between the left-side variable magnification optical system 13L and the left-side imaging optical system 14L and the first left-side deflection element 25L, and between the left-side illumination light source optical system 1618L and the first left-side deflection element 25L. To be done.
The second left-side deflection element 26L may be arranged between the first left-side deflection element 25L and the objective lens 11 or between the objective lens 11 and the eye.
 なお、左側撮像光学装置131415Lの各装置(13L、14L、15L)を、Y方向(正又は負)に配置するようにしてもよい。また、第2左側偏向素子26Lは、左側観察光の光軸15LIを、Y方向(正又は負)に屈曲させ、左側観察光が左側撮像光学装置131415Lに到達するようにしてもよい。 The respective devices (13L, 14L, 15L) of the left imaging optical device 131415L may be arranged in the Y direction (positive or negative). The second left-side deflection element 26L may bend the optical axis 15LI of the left-side observation light in the Y direction (positive or negative) so that the left-side observation light reaches the left-side imaging optical device 131415L.
 第1右側偏向素子25R及び第1左側偏向素子25Lとしては、受けた光を反射する反射ミラー、ハーフミラー、又は、プリズム(例、プリズムミラー)等が用いられる。第2右側偏向素子26Rとしては、右側完全同軸照明光を透過し、右側観察光を反射する透過反射素子が用いられる。第2左側偏向素子26Lとしては、左側完全同軸照明光を透過し、左側観察光を反射する透過反射素子が用いられる。透過反射素子としては、例えば、ハーフミラー、ビームスプリッタ又は、ダイクロイックミラー等が用いられる。
 上記の通り、第1右側偏向素子25R及び第1左側偏向素子25Lは、上記照明光及び上記観察光を所定の方向(例、偏向方向、反射方向)に反射して偏向する。第1右側偏向素子25R及び第1左側偏向素子25Lにおける上記偏向について一例を説明する。例えば、第1右側偏向素子25R及び第1左側偏向素子25Lは、右側観察光と左側観察光と互いに近づく方向と異なる方向に偏向する、又は、対物レンズ11の光軸110の方向視において、右側観察光及び左側観察光を互いに離れる方向でかつ異なる方向に反射して偏向するように構成してもよい。また、例えば、第1右側偏向素子25Rは、対物レンズ11の光軸110に垂直な成分を持つように、右側観察光を反射して偏向し、第1左側偏向素子25Lは、対物レンズ11の光軸110に垂直な成分を持つように、第1右側偏向素子25Rにおける右側観察光の偏向方向(例、反射方向)とは異なる方向に左側観察光を反射して偏向するように構成してもよい。さらに、一例として、第1右側偏向素子25Rは右側観察光を鉛直方向に直交する方向に反射して偏向し、第1左側偏向素子25Lは左側観察光を鉛直方向に直交する方向に反射して偏向するように構成してもよい。また、例えば、第1右側偏向素子25R及び第1左側偏向素子25Lは、右側観察光及び左側観察光を、対物レンズ11の光軸110に対して交差する方向を含む平面(例、光軸110に直交する面、鉛直方向に直交する水平面、右側観察光が偏向される方向を含む面)に沿って互いに異なる方向に、反射して偏向するように構成してもよい。
 第1右側偏向素子25Rは、本開示の技術の「右側偏向素子」の一例である。第1左側偏向素子25Lは、本開示の技術の「左側偏向素子」の一例である。
 第2右側偏向素子26Rは、本開示の技術の「右側透過反射素子」の一例である。第2左側偏向素子26Lは、本開示の技術の「左側透過反射素子」の一例である。
As the first right-side deflection element 25R and the first left-side deflection element 25L, a reflection mirror, a half mirror, a prism (for example, a prism mirror) or the like that reflects received light is used. As the second right deflection element 26R, a transmissive reflection element that transmits the right perfect coaxial illumination light and reflects the right observation light is used. As the second left-side deflection element 26L, a transflective element that transmits the left-side perfect coaxial illumination light and reflects the left-side observation light is used. As the transflective element, for example, a half mirror, a beam splitter, a dichroic mirror, or the like is used.
As described above, the first right-side deflection element 25R and the first left-side deflection element 25L reflect and deflect the illumination light and the observation light in a predetermined direction (eg, a deflection direction, a reflection direction). An example of the deflection in the first right side deflection element 25R and the first left side deflection element 25L will be described. For example, the first right-side deflection element 25R and the first left-side deflection element 25L deflect the right-side observation light and the left-side observation light in different directions from each other or in the right direction when viewed from the optical axis 110 of the objective lens 11. The observation light and the left observation light may be reflected and deflected in directions away from each other and in different directions. Further, for example, the first right-side deflection element 25R reflects and deflects the right-side observation light so that it has a component perpendicular to the optical axis 110 of the objective lens 11, and the first left-side deflection element 25L includes the objective lens 11. The left observation light is reflected and deflected in a direction different from the deflection direction (eg, the reflection direction) of the right observation light in the first right deflection element 25R so as to have a component perpendicular to the optical axis 110. Good. Furthermore, as an example, the first right-side deflection element 25R reflects and deflects the right-side observation light in a direction orthogonal to the vertical direction, and the first left-side deflection element 25L reflects the left-side observation light in a direction orthogonal to the vertical direction. It may be configured to deflect. Further, for example, the first right-side deflection element 25R and the first left-side deflection element 25L include a plane including the direction in which the right-side observation light and the left-side observation light intersect the optical axis 110 of the objective lens 11 (eg, the optical axis 110). May be configured so as to be reflected and deflected in different directions along a plane orthogonal to, a horizontal plane orthogonal to the vertical direction, and a plane including a direction in which the right observation light is deflected.
The first right-side deflection element 25R is an example of the “right-side deflection element” in the technique of the present disclosure. The first left-side deflection element 25L is an example of the “left-side deflection element” in the technique of the present disclosure.
The second right deflection element 26R is an example of the “right transmission / reflection element” in the technique of the present disclosure. The second left-side deflection element 26L is an example of the “left-side transmissive reflection element” in the technology of the present disclosure.
 右側斜照明光学系21R、及び右側完全同軸照明光学系23Rと、左側斜照明光学系21L、及び左側完全同軸照明光学系23Lとしては、例えば、コリメータレンズが用いられる。また、右側斜照明光学系21R、及び右側完全同軸照明光学系23Rと、左側斜照明光学系21L、及び左側完全同軸照明光学系23Lとは、各照明光の光束を制限する絞りを含むようにしてもよい。
 なお、手術用顕微鏡100A1は、右側斜照明光学系21R、及び右側完全同軸照明光学系23Rと、左側斜照明光学系21L、及び左側完全同軸照明光学系23Lとを省略した構成でもよい。
For example, a collimator lens is used as the right oblique illumination optical system 21R, the right perfect coaxial illumination optical system 23R, the left oblique illumination optical system 21L, and the left perfect coaxial illumination optical system 23L. Further, the right oblique illumination optical system 21R and the right perfect coaxial illumination optical system 23R, and the left oblique illumination optical system 21L and the left perfect coaxial illumination optical system 23L may include diaphragms that limit the luminous flux of each illumination light. Good.
The surgical microscope 100A1 may have a configuration in which the right oblique illumination optical system 21R and the right complete coaxial illumination optical system 23R, the left oblique illumination optical system 21L, and the left complete coaxial illumination optical system 23L are omitted.
 第1右側偏向素子25R及び第1左側偏向素子25Lは、上記した観察光の光路又は照明光の光路であって、対物レンズ11の近傍に配置される。図で示す及び後述するように、第1右側偏向素子25R及び第1左側偏向素子25Lは、後述の実体角を変更するために、後述する第1右側偏向素子移動部68R及び第1左側偏向素子移動部68L(図5参照)によってユーザ150から見た視差方向(例、ユーザが視差をつけたい方向、眼幅方向)に対応した所定方向(移動方向、後述の図中のX方向、Y方向、又はZ方向)にそれぞれ移動可能である。 The first right-side deflection element 25R and the first left-side deflection element 25L are the optical paths of the observation light or the illumination light described above, and are arranged near the objective lens 11. As shown in the drawing and described later, the first right-side deflection element 25R and the first left-side deflection element 25L include a first right-side deflection element moving unit 68R and a first left-side deflection element which will be described later in order to change a substantial angle described later. A predetermined direction (moving direction, X direction, Y direction in the drawings described later) corresponding to the parallax direction viewed from the user 150 by the moving unit 68L (see FIG. 5) (eg, direction in which the user wants to make parallax, eye direction) , Or in the Z direction).
 次に、右側変倍光学系13R、右側結像光学系14R、及び右側撮像素子15Rと、左側変倍光学系13L、左側結像光学系14L、及び左側撮像素子15Lと、を説明する。右側変倍光学系13R、右側結像光学系14R、及び右側撮像素子15Rと、左側変倍光学系13L、左側結像光学系14L、及び左側撮像素子15Lと、は同様の構成である。よって、右側変倍光学系13R、右側結像光学系14R、及び右側撮像素子15Rを説明し、左側変倍光学系13L、左側結像光学系14L、及び左側撮像素子15Lの説明を省略する。 Next, the right-side variable magnification optical system 13R, the right-side imaging optical system 14R, and the right-side imaging element 15R, the left-side variable magnification optical system 13L, the left-side imaging optical system 14L, and the left-side imaging element 15L will be described. The right-side variable magnification optical system 13R, the right-side imaging optical system 14R, and the right-side imaging element 15R have the same configuration as the left-side variable magnification optical system 13L, the left-side imaging optical system 14L, and the left-side imaging element 15L. Therefore, the right-side variable magnification optical system 13R, the right-side imaging optical system 14R, and the right-side imaging element 15R will be described, and the left-side variable-magnification optical system 13L, the left-side imaging optical system 14L, and the left-side imaging element 15L will be omitted.
 右側斜照明光の光軸16RIと右側完全同軸照明光の光軸18RIとは、右側斜照明光源16R及び右側完全同軸照明光源18Rから第1右側偏向素子25Rまでの間では、X方向に平行であり、Z方向に所定距離ずれていたり、また、図2Bに示すように、Y方向に一定距離ずれていたりしてもよい。この点、左側斜照明光の光軸16LIと左側完全同軸照明光の光軸18LIとは、右側斜照明の光軸16RIと右側完全同軸照明光の光軸18RIと同様に、X方向に平行であり、Z方向に所定距離ずれていたり、また、図2Bに示すように、Y方向に一定距離ずれていたりしてもよい。 The optical axis 16RI of the right oblique illumination light and the optical axis 18RI of the right complete coaxial illumination light are parallel to the X direction between the right oblique illumination light source 16R and the right perfect coaxial illumination light source 18R to the first right deflection element 25R. Yes, it may be displaced by a predetermined distance in the Z direction, or may be displaced by a certain distance in the Y direction as shown in FIG. 2B. In this respect, the optical axis 16LI of the left oblique illumination light and the optical axis 18LI of the left complete coaxial illumination light are parallel to the X direction, like the optical axis 16RI of the right oblique illumination and the optical axis 18RI of the right perfect coaxial illumination light. Yes, it may be displaced by a predetermined distance in the Z direction, or may be displaced by a certain distance in the Y direction as shown in FIG. 2B.
 第1右側偏向素子25Rの面における右側完全同軸照明光の光軸18RIが位置する点と右側斜照明光の光軸16RIが位置する点とは、図2Bに示すようにX方向に同一の位置であるが、図2Cに示すように、X方向にずれていてもよい。この点、左側完全同軸照明光の光軸18LIが位置する点と、左側斜照明光の光軸16LIも同様に、X方向に同一の位置であっても、図2Cに示すように、X方向にずれていてもよい。 As shown in FIG. 2B, the point where the optical axis 18RI of the right perfect coaxial illumination light and the point where the optical axis 16RI of the right oblique illumination light is located on the surface of the first right deflecting element 25R are at the same position in the X direction. However, as shown in FIG. 2C, they may be displaced in the X direction. In this respect, the point where the optical axis 18LI of the left perfect coaxial illumination light is located and the optical axis 16LI of the left oblique illumination light is also the same position in the X direction, as shown in FIG. It may be shifted to.
 図2Cに示すように、左右の斜照明の光軸16LI、16RIがそれぞれ、第1右側偏向素子25R及び第1左側偏向素子25Lの面における左右の観察光の光軸15LI、15RIが位置する点を中心にした円CL、CRの円周上に位置すると、第1左側偏向素子25L及び第1右側偏向素子25Rから眼に向かう斜照明の光軸16LI、16RIは、眼の位置で、斜照明が、左右の観察光の光軸(15LI、15RI)に対して、照明される方向は変わるが、角度は同じになる。図2Cのように、斜照明は眼の位置において任意の方向から照明することが可能であり、その際、観察光の光軸に対する斜照明の光軸は同じ角度で眼に照射されることになる。 As shown in FIG. 2C, the optical axes 16LI and 16RI of the left and right oblique illumination are located at the optical axes 15LI and 15RI of the left and right observation light on the surfaces of the first right deflection element 25R and the first left deflection element 25L, respectively. When located on the circumference of the circles CL and CR centering on the center, the optical axes 16LI and 16RI of the oblique illumination from the first left deflection element 25L and the first right deflection element 25R to the eye are the eye positions and the oblique illumination is However, with respect to the optical axes (15LI, 15RI) of the left and right observation lights, the illumination direction changes, but the angle becomes the same. As shown in FIG. 2C, oblique illumination can be performed from any direction at the position of the eye, in which case the optical axis of oblique illumination is applied to the eye at the same angle with respect to the optical axis of the observation light. Become.
 図3に示すように、第1の実施の形態の手術用顕微鏡100A1では、眼10A(より正確には、物体面10A)の側から順に、対物レンズ11と、絞り12Rと、右側変倍光学系13Rと、右側結像光学系14Rとが配置されている。図3では、第1右側偏向素子25R及び第2右側偏向素子26Rの図示が省略されている。 As shown in FIG. 3, in the surgical microscope 100A1 of the first embodiment, the objective lens 11, the diaphragm 12R, and the right-side variable magnification optical system are arranged in this order from the eye 10A (more accurately, the object plane 10A) side. The system 13R and the right imaging optical system 14R are arranged. In FIG. 3, the first right deflection element 25R and the second right deflection element 26R are not shown.
 眼10Aの各点から発生した光束(観察光)は、対物レンズ11を介して略平行光束に変換され、右側変倍光学系13Rを介して変倍され、右側結像光学系14Rを介して集光されて、像面10Bに到達する。 The light flux (observation light) generated from each point of the eye 10A is converted into a substantially parallel light flux through the objective lens 11, is magnified through the right magnification optical system 13R, and is transformed through the right imaging optical system 14R. It is condensed and reaches the image plane 10B.
 像面10Bに形成された眼10Aの像を観察するため、像面10Bに右側撮像素子15Rが配置されている。 A right imaging element 15R is arranged on the image surface 10B in order to observe the image of the eye 10A formed on the image surface 10B.
 右側変倍光学系13Rは、眼10Aの側から順に、正の屈折力を持つ第1レンズ群G1と、負の屈折力を持つ第2レンズ群G2と、正の屈折力を持つ第3レンズ群G3と、正の屈折力を持つ第4レンズ群G4とで構成され、第2レンズ群G2と第3レンズ群G3とが変倍用のレンズ群である。このため、第1レンズ群G1と第4レンズ群G4とを固定し、変倍用のレンズ群(G2、G3)を光軸方向に沿って移動させることにより、眼10Aの像の観察倍率を任意に変更することができる。観察倍率は、対物レンズ11の焦点距離と、右側変倍光学系13Rと右側結像光学系14Rとを組み合わせた焦点距離と、の比によって決まる。 The right variable power optical system 13R includes, in order from the eye 10A side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a third lens having a positive refractive power. It is composed of a group G3 and a fourth lens group G4 having a positive refractive power, and the second lens group G2 and the third lens group G3 are lens groups for zooming. Therefore, by fixing the first lens group G1 and the fourth lens group G4 and moving the variable power lens groups (G2, G3) along the optical axis direction, the observation magnification of the image of the eye 10A is increased. It can be changed arbitrarily. The observation magnification is determined by the ratio of the focal length of the objective lens 11 and the focal length obtained by combining the right-side variable magnification optical system 13R and the right-side imaging optical system 14R.
 次に、上記した第1の実施の形態の手術用顕微鏡100A1のうち、対物レンズ11と右側変倍光学系13Rと右側結像光学系14Rとの構成について説明する。 Next, the configuration of the objective lens 11, the right-side variable magnification optical system 13R, and the right-side imaging optical system 14R in the surgical microscope 100A1 of the above-described first embodiment will be described.
 右側変倍光学系13Rは、図4に示すように、既に説明した4つのレンズ群G1、G2、G3、G4を有する(図3も参照)。さらに、第1レンズ群G1は、物体(眼)側に凸面を向けたメニスカスレンズ31と両凸レンズ32との接合レンズ、及び、物体に凸面を向けたメニスカスレンズ33を備える。第2レンズ群G2は、両凹レンズ34、両凸レンズ35と両凹レンズ36との接合レンズ、及び、物体側に凹面を向けたメニスカスレンズ37を備える。第3レンズ群G3は、両凸レンズ38、及び、両凸レンズ39と物体側に凹面を向けたメニスカスレンズ40との接合レンズを備える。第4レンズ群G4は、物体側に凹面を向けたメニスカスレンズ41と物体側に凹面を向けたメニスカスレンズ42との接合レンズを備える。 The right-side variable power optical system 13R has the four lens groups G1, G2, G3, G4 already described, as shown in FIG. 4 (see also FIG. 3). Further, the first lens group G1 includes a cemented lens of a meniscus lens 31 having a convex surface facing the object (eye) side and a biconvex lens 32, and a meniscus lens 33 having a convex surface facing the object. The second lens group G2 includes a biconcave lens 34, a cemented lens of a biconvex lens 35 and a biconcave lens 36, and a meniscus lens 37 having a concave surface facing the object side. The third lens group G3 includes a biconvex lens 38 and a cemented lens of a biconvex lens 39 and a meniscus lens 40 having a concave surface facing the object side. The fourth lens group G4 includes a cemented lens of a meniscus lens 41 having a concave surface facing the object side and a meniscus lens 42 having a concave surface facing the object side.
 図3の右側変倍光学系13Rにおいて、低倍端から高倍端に変倍する際には、第1レンズ群G1及び第4レンズ群G4を固定して、第2レンズ群G2を像側に移動させると共に、第2レンズ群G2の移動による焦点移動を補正する方向に第3レンズ群G3を移動させることになる。なお、右側変倍光学系13Rの低倍端から高倍端への変倍に連動して、絞り12Rの絞り径を大きくすることが好ましい。 In the right-side variable power optical system 13R in FIG. 3, when zooming from the low magnification end to the high magnification end, the first lens group G1 and the fourth lens group G4 are fixed, and the second lens group G2 is moved to the image side. At the same time as the movement, the third lens group G3 is moved in the direction in which the focus movement due to the movement of the second lens group G2 is corrected. Note that it is preferable to increase the aperture diameter of the aperture 12R in conjunction with the magnification change of the right-side variable power optical system 13R from the low magnification end to the high magnification end.
 図4に示す右側変倍光学系13Rと絞り12Rの諸元値を表1に例示する。 Table 1 exemplifies the specifications of the right-side variable power optical system 13R and diaphragm 12R shown in FIG.
Figure JPOXMLDOC01-appb-T000001

Figure JPOXMLDOC01-appb-I000002
Figure JPOXMLDOC01-appb-T000001

Figure JPOXMLDOC01-appb-I000002
 表1において、面番号1は絞り12Rに対応し、面番号2から21は物体側から順に付したレンズ面の番号に対応する。最も物体側のレンズ(メニスカスレンズ31)のレンズ面(2)から絞り12Rまでの距離は15mmである。fは物体面から絞り12Rまでの距離d0'=∞としたときのレンズ全系の焦点距離を示す。FnoはFナンバー、Faiは絞り12Rの絞り径を示す。 In Table 1, the surface number 1 corresponds to the diaphragm 12R, and the surface numbers 2 to 21 correspond to the lens surface numbers sequentially added from the object side. The distance from the lens surface (2) of the most object-side lens (meniscus lens 31) to the diaphragm 12R is 15 mm. f indicates the focal length of the entire lens system when the distance d0 ′ = ∞ from the object surface to the diaphragm 12R. Fno indicates the F number, and Fai indicates the aperture diameter of the aperture 12R.
 右側変倍光学系13Rは、右側変倍光学系13Rの中ではなく外、具体的には、右側変倍光学系13Rと対物レンズ11との間(第1の右側範囲)の光路で、右側観察光の光軸15RIに垂直な右側観察光の光束の有効面積が極小となる位置が存在するように、形成されている。右側観察光の光束の有効面積が極小となる位置は、後述する右側絞り12Rが配置され、右側変倍光学系13Rの瞳の位置である。
 ここで、右側観察光の光束の有効面積が極小となる位置での右側観察光の光束の有効面積について説明する。
 光軸に垂直な観察光の光束の有効面積は、観察光の中で撮像素子(15R、15L)まで到達して結像される光が、光軸に垂直な平面によって切り取られる光束の断面積である。
 右側変倍光学系13Rの最も対物レンズ11側のレンズ(メニスカスレンズ31)における右側観察光の光束の有効面積を、第1の有効面積とし、対物レンズ11の右側変倍光学系13R側の面における右側観察光の光束の有効面積を、第2の有効面積とする。右側観察光の光束の有効面積が極小となる位置での右側観察光の光束の有効面積は、第1の有効面積及び第2の有効面積よりも小さい第3の有効面積である。
 より詳細に説明すると、右側観察光の光軸15RIに垂直な右側観察光の光束の有効面積は、例えば、光軸における位置が対物レンズ11から右側変倍光学系13Rへ光軸に沿って移動すると、第2の有効面積から徐々に小さくなる。そして、右側観察光の光束の有効面積は、対物レンズ11と右側変倍光学系13Rとの間の光路において、右側観察光の光束の有効面積が極小となる位置では第3の有効面積となる。そこから位置が更に進むと、右側観察光の光束の有効面積は、第3の有効面積から徐々に大きくなり、右側変倍光学系13Rにおいて、第1の有効面積となる。
 なお、上記観察光の光束の有効面積が極小となる光軸上の位置は1点とは限らない。例えば、光軸における位置が対物レンズ11から右側変倍光学系13Rへ光軸に沿って移動した際に、観察光の光束の有効面積が極小のまま一定値であれば、それらの有効面積(つまり、複数の第3の有効面積)がそれぞれ極小の位置である。
 ここでいう光束の有効面積の極小の値は、光路の位置の変化に対して値がしばらく一定になっていてもよい。
The right-side variable power optical system 13R is located outside the right-side variable power optical system 13R, specifically, in the optical path between the right-side variable power optical system 13R and the objective lens 11 (first right range). It is formed so that there is a position where the effective area of the light flux of the right side observation light perpendicular to the optical axis 15RI of the observation light is minimal. The position where the effective area of the light flux of the right-side observation light is minimized is the position of the pupil of the right-side variable power optical system 13R in which the right-side diaphragm 12R described later is arranged.
Here, the effective area of the light flux of the right side observation light at the position where the effective area of the light flux of the right side observation light is minimized will be described.
The effective area of the light flux of the observation light perpendicular to the optical axis is the cross-sectional area of the light flux that reaches the image sensor (15R, 15L) in the observation light and is imaged by the plane perpendicular to the optical axis. Is.
The effective area of the light flux of the right-side observation light in the lens (meniscus lens 31) closest to the objective lens 11 of the right-side variable power optical system 13R is defined as a first effective area, and the surface of the objective lens 11 on the right-side variable power optical system 13R side. The effective area of the light flux of the right side observation light at is the second effective area. The effective area of the light flux of the right side observation light at the position where the effective area of the light flux of the right side observation light is a minimum is the third effective area smaller than the first effective area and the second effective area.
More specifically, the effective area of the light flux of the right observation light perpendicular to the optical axis 15RI of the right observation light is, for example, the position on the optical axis moved from the objective lens 11 to the right variable magnification optical system 13R along the optical axis. Then, the second effective area gradually decreases. Then, the effective area of the light flux of the right observation light becomes the third effective area at the position where the effective area of the light flux of the right observation light is minimum in the optical path between the objective lens 11 and the right variable magnification optical system 13R. .. When the position further advances from that position, the effective area of the light flux of the right-side observation light gradually increases from the third effective area, and becomes the first effective area in the right-side variable power optical system 13R.
The position on the optical axis where the effective area of the light flux of the observation light is minimum is not limited to one point. For example, when the position on the optical axis moves from the objective lens 11 to the right-side variable magnification optical system 13R along the optical axis, and the effective area of the light flux of the observation light is a constant value with a minimum value, those effective areas ( That is, each of the plurality of third effective areas) is a minimum position.
The minimum value of the effective area of the light flux here may be constant for a while with respect to the change of the position of the optical path.
 同様に、左側変倍光学系13Lは、左側変倍光学系13Lの中ではなく外、具体的には、左側変倍光学系13Lと対物レンズ11との間(第1の左側範囲)の光路で、左側観察光の光軸15LIに垂直な左側観察光の光束の有効面積が極小となるように、形成されている。 Similarly, the left-side variable power optical system 13L is not inside the left-side variable power optical system 13L, specifically, the optical path between the left-side variable power optical system 13L and the objective lens 11 (first left range). Then, the effective area of the light flux of the left-side observation light perpendicular to the optical axis 15LI of the left-side observation light is formed to be a minimum.
 更に、光束の有効面積が極小となる各位置(左右の観察光学系の瞳の位置)は、右側変倍光学系13Rと第1右側偏向素子25Rとの間及び左側変倍光学系13Lと第1左側偏向素子25Lとの間(第2の右側・左側範囲)となるように、右側変倍光学系13R及び左側変倍光学系13Lが形成されている。 Further, the respective positions where the effective area of the light flux becomes the minimum (the positions of the pupils of the left and right observation optical systems) are located between the right variable magnification optical system 13R and the first right deflection element 25R and the left variable magnification optical system 13L and the first variable magnification optical system 13L. The right-side variable magnification optical system 13R and the left-side variable magnification optical system 13L are formed so as to be located between the first left-side deflection element 25L (second right-side / left-side range).
 第1の実施の形態では、上記光束の有効面積が極小となる位置(第3の有効面積の位置、瞳の位置)は、第1右側偏向素子25Rと第2右側偏向素子26Rとの間(第3の右側範囲)及び第1左側偏向素子25Lと第2左側偏向素子26Lとの間(第3の左側範囲)となるように、右側変倍光学系13R及び左側変倍光学系13Lが構成されている。 In the first embodiment, the position where the effective area of the light flux is the minimum (the position of the third effective area, the position of the pupil) is between the first right deflection element 25R and the second right deflection element 26R ( The right variable power optical system 13R and the left variable power optical system 13L are configured so as to be in the third right range) and between the first left deflection element 25L and the second left deflection element 26L (third left range). Has been done.
 このように第1の実施の形態では、上記光束の有効面積が極小となる位置(瞳の位置)を、第1右側偏向素子25Rと第2右側偏向素子26Rとの間及び第1左側偏向素子25Lと第2左側偏向素子26Lとの間に位置させる。これにより、第1右側偏向素子25Rと第2右側偏向素子26Rとの間及び第1左側偏向素子25Lと第2左側偏向素子26Lとの間に光束の有効面積が極小となる位置にない時と比べて、第1右側偏向素子25R、第2右側偏向素子26R、第1左側偏向素子25L、及び第2左側偏向素子26Lの各々の光を反射する領域(有効径)を比較的小さくすることができる。これによって、各素子(例、第1右側偏向素子25R、第1左側偏向素子25Lなど)のサイズ(有効径)をより小さくできるため、第1右側偏向素子25Rと第1左側偏向素子25Lとの軸間距離をより短くすることが可能である。手術用顕微鏡100A1は、第1右側偏向素子25Rと第1左側偏向素子25Lとを相対移動させて、ユーザ150が視認する立体感をより小さくすることができる。また、対物レンズ11の鉛直方向の上側に配置された上記各素子のサイズを小さくできるので、手術用顕微鏡100A1の大きさ(例、厚さ、幅)やコストも削減できる。 As described above, in the first embodiment, the position where the effective area of the light flux is minimized (the position of the pupil) is located between the first right deflection element 25R and the second right deflection element 26R and the first left deflection element. It is located between 25L and the second left deflection element 26L. As a result, when the effective area of the light flux is not at the position where the effective area of the light flux is minimum between the first right side deflection element 25R and the second right side deflection element 26R and between the first left side deflection element 25L and the second left side deflection element 26L. In comparison, the light reflection area (effective diameter) of each of the first right deflection element 25R, the second right deflection element 26R, the first left deflection element 25L, and the second left deflection element 26L can be made relatively small. it can. As a result, the size (effective diameter) of each element (eg, the first right-side deflection element 25R, the first left-side deflection element 25L, etc.) can be made smaller, so that the first right-side deflection element 25R and the first left-side deflection element 25L are separated from each other. It is possible to make the axial distance shorter. The surgical microscope 100A1 can relatively move the first right-side deflection element 25R and the first left-side deflection element 25L to further reduce the stereoscopic effect visually recognized by the user 150. Further, since the size of each of the above-mentioned elements arranged on the upper side in the vertical direction of the objective lens 11 can be reduced, the size (eg, thickness, width) and cost of the surgical microscope 100A1 can be reduced.
 なお、上記光束の有効面積が極小となる位置(瞳の位置)を、第1右側偏向素子25R及び第1左側偏向素子25Lの各々の位置と一致させることにより、第1右側偏向素子25R及び第1左側偏向素子25Lの各々の光を反射する領域(有効径)を最も小さくすることができる。 The position where the effective area of the luminous flux becomes the minimum (the position of the pupil) is made to coincide with the respective positions of the first right side deflection element 25R and the first left side deflection element 25L, so that the first right side deflection element 25R and the first right side deflection element 25R It is possible to minimize the area (effective diameter) of each of the 1st left-side deflection elements 25L that reflects light.
 右側変倍光学系13Rと対物レンズ11との間、また、左側変倍光学系13Lと対物レンズ11との間に、例えば、フィルター等の光学素子を配置してもよい。なお、このように配置されたフィルター等の光学素子は、右側変倍光学系13R及び左側変倍光学系13Lには、含まれない。よって、このように配置されたフィルター等の光学素子は、右側観察光学系及び左側観察光学系には、含まれない。 An optical element such as a filter may be arranged between the right-side variable power optical system 13R and the objective lens 11 and between the left-side variable power optical system 13L and the objective lens 11. The optical elements such as the filters arranged in this way are not included in the right-side variable power optical system 13R and the left-side variable power optical system 13L. Therefore, the optical elements such as the filters arranged in this way are not included in the right side observation optical system and the left side observation optical system.
 手術用顕微鏡100A1は、右側変倍光学系13Rと対物レンズとの間(第1の右側範囲)に配置され、右側観察光の光軸15RIに垂直な右側観察光の光束の有効面積を制限する右側絞り12Rを備える。また、手術用顕微鏡100A1は、左側変倍光学系13Lと対物レンズとの間(第1の左側範囲)に配置され、左側観察光の光軸15LIに垂直な左側観察光の光束の有効面積を制限する左側絞り12Lを備えている。 The surgical microscope 100A1 is arranged between the right variable power optical system 13R and the objective lens (first right range), and limits the effective area of the light flux of the right observation light perpendicular to the optical axis 15RI of the right observation light. The right diaphragm 12R is provided. Further, the surgical microscope 100A1 is arranged between the left-side variable power optical system 13L and the objective lens (first left-side range), and has an effective area of the luminous flux of the left-side observation light perpendicular to the optical axis 15LI of the left-side observation light. A left-side diaphragm 12L for limiting is provided.
 右側絞り12R及び左側絞り12Lが配置される位置は、右側変倍光学系13Rと第1右側偏向素子25Rとの間(第2の右側範囲)又は左側変倍光学系13Lと第1左側偏向素子25Lとの間(第2の左側範囲)である。 The positions where the right diaphragm 12R and the left diaphragm 12L are arranged are between the right variable magnification optical system 13R and the first right deflection element 25R (second right range) or the left variable magnification optical system 13L and the first left deflection element. It is between 25 L (the second left side range).
 本実施形態における右側絞り12R及び左側絞り12Lが配置される位置は、更に詳しくは、第1右側偏向素子25Rと第2右側偏向素子26Rとの間(第3の右側範囲)又は第1左側偏向素子25Lと第2左側偏向素子26Lとの間(第3の左側範囲)である。 More specifically, the positions where the right diaphragm 12R and the left diaphragm 12L are arranged in the present embodiment are between the first right deflection element 25R and the second right deflection element 26R (third right range) or the first left deflection. It is between the element 25L and the second left deflection element 26L (third left range).
 一例として、第1の実施の形態では、右側絞り12R及び左側絞り12Lは、上記光束の有効面積が極小となる位置(瞳の位置)に配置されている。 As an example, in the first embodiment, the right diaphragm 12R and the left diaphragm 12L are arranged at the position (pupil position) where the effective area of the light flux is minimized.
 図15には、右側絞り12Rが、右側観察光の上記光束の有効面積が極小となる位置(右側観察光学系の瞳の位置)に配置されている様子が示されている。図15に示すように、右側変倍光学系13Rと対物レンズ11との間で、右側観察光の光軸15RIに垂直な右側観察光の光束の有効面積が極小となっている。この点、左側絞り12Lも左側観察光の上記光束の有効面積が極小となる位置(左側観察光学系の瞳の位置)に配置されている。 FIG. 15 shows that the right diaphragm 12R is arranged at a position where the effective area of the light flux of the right observation light is the minimum (the position of the pupil of the right observation optical system). As shown in FIG. 15, the effective area of the light flux of the right-side observation light perpendicular to the optical axis 15RI of the right-side observation light is minimized between the right-side variable power optical system 13R and the objective lens 11. In this regard, the left diaphragm 12L is also arranged at a position where the effective area of the above-mentioned light flux of the left observation light is minimized (the position of the pupil of the left observation optical system).
 右側絞り12R及び左側絞り12Lは、可変絞りである。詳細には後述するが、右側変倍光学系13R又は左側変倍光学系13Lの倍率に基づいて右側絞り12R又は左側絞り12Lが調整されることにより右側観察光及び左側観察光の光束の有効面積が調整される。 The right diaphragm 12R and the left diaphragm 12L are variable diaphragms. As will be described in detail later, the effective area of the light flux of the right side observation light and the left side observation light is adjusted by adjusting the right diaphragm 12R or the left diaphragm 12L based on the magnification of the right variable magnification optical system 13R or the left variable magnification optical system 13L. Is adjusted.
 ここで、第1右側偏向素子25Rは、X方向に移動可能な第1右側偏向素子用基板に配置されている。第1左側偏向素子25Lは、X方向に移動可能な第1左側偏向素子用基板に配置されている。第1右側偏向素子25Rが配置(固定)されている当該第1右側偏向素子用基板がX方向に移動する場合、第1右側偏向素子25Rの各照明光及び右側観察光を反射する面と、対物レンズ11の光軸110と、のなす角度が一定に保たれるように、第1右側偏向素子25Rが移動される。第1左側偏向素子25Lが配置(固定)されている当該第1左側偏向素子用基板がX方向に移動する場合、第1左側偏向素子25Lの各照明光及び左側観察光を反射する面と、対物レンズ11の光軸110と、のなす角度が一定に保たれるように、第1左側偏向素子25Lが移動される。なお、上記各なす角度は、45°である。 Here, the first right deflection element 25R is arranged on the first right deflection element substrate that is movable in the X direction. The first left-side deflection element 25L is arranged on the first left-side deflection element substrate that is movable in the X direction. When the first right-side deflection element substrate on which the first right-side deflection element 25R is arranged (fixed) moves in the X direction, a surface that reflects each illumination light and right-side observation light of the first right-side deflection element 25R, The first right deflection element 25R is moved so that the angle formed by the optical axis 110 of the objective lens 11 is kept constant. When the first left-side deflection element substrate on which the first left-side deflection element 25L is arranged (fixed) moves in the X direction, a surface that reflects each illumination light and the left-side observation light of the first left-side deflection element 25L, The first left-side deflection element 25L is moved so that the angle formed by the optical axis 110 of the objective lens 11 is kept constant. The angle formed by each of the above is 45 °.
 また、右側絞り12Rは、X方向に移動可能な右側絞り用基板に配置されている。左側絞り12Lは、X方向に移動可能な左側絞り用基板に配置されている。 The right diaphragm 12R is arranged on the right diaphragm substrate that is movable in the X direction. The left diaphragm 12L is arranged on the left diaphragm substrate that is movable in the X direction.
 更に、第2右側偏向素子26Rは、X方向に移動可能な第2右側偏向素子用基板に配置されている。第2左側偏向素子26Lは、X方向に移動可能な第2左側偏向素子用基板に配置されている。 Further, the second right deflection element 26R is arranged on the second right deflection element substrate that is movable in the X direction. The second left-side deflection element 26L is arranged on the second left-side deflection element substrate that is movable in the X direction.
 なお、右側観察光及び左側観察光の光束の有効面積を制限する手段は、右側絞り(可変絞り)12R及び左側絞り(可変絞り)12Lに限定されない。図16には、右側絞り12Rを省略し、第1右側偏向素子25Rと第2右側偏向素子26Rの各々の光を反射する領域(有効径)を調整することにより、右側観察光の光束の有効面積を制限する様子が示されている。図16に示すように、右側絞り12Rがなくとも、第1右側偏向素子25Rと第2右側偏向素子26Rとの各々の光を反射する領域(有効径)を調整することにより、右側観察光の光束の有効面積を制限することができる。例えば、第1右側偏向素子25Rの入射面又は射出面(反射面、偏向面、屈折面)の大きさが、右側観察光の光束の有効面積を規定している。 The means for limiting the effective area of the light flux of the right side observation light and the left side observation light is not limited to the right side diaphragm (variable diaphragm) 12R and the left side diaphragm (variable diaphragm) 12L. In FIG. 16, the right diaphragm 12R is omitted, and the light reflection area (effective diameter) of each of the first right deflection element 25R and the second right deflection element 26R is adjusted, so that the luminous flux of the right observation light becomes effective. It is shown how to limit the area. As shown in FIG. 16, even if the right diaphragm 12R is not provided, it is possible to adjust the light reflection area (effective diameter) of each of the first right deflection element 25R and the second right deflection element 26R by adjusting the right observation light. The effective area of the light flux can be limited. For example, the size of the entrance surface or exit surface (reflection surface, deflection surface, refraction surface) of the first right-side deflection element 25R defines the effective area of the light flux of the right-side observation light.
 図16には、右側絞り12Rを省略し、第1右側偏向素子25Rと第2右側偏向素子26Rの各々の光を反射する領域(有効径)を調整する例が示されているが、左側も同様である。即ち、左側絞り12Lを省略し、第1左側偏向素子25Lと第2左側偏向素子26Lの各々の光を反射する領域(有効径)を調整する。例えば、第1左側偏向素子25Lの入射面又は射出面(反射面、偏向面、屈折面)の大きさが、左側観察光の光束の有効面積を規定している。 FIG. 16 shows an example in which the right diaphragm 12R is omitted and the light reflection area (effective diameter) of each of the first right deflection element 25R and the second right deflection element 26R is adjusted. It is the same. That is, the left diaphragm 12L is omitted, and the light reflection area (effective diameter) of each of the first left deflection element 25L and the second left deflection element 26L is adjusted. For example, the size of the entrance surface or exit surface (reflection surface, deflection surface, or refraction surface) of the first left-side deflection element 25L defines the effective area of the light flux of the left-side observation light.
 図16に示す例では、第1右側偏向素子25Rと第2右側偏向素子26Rとの各々の大きさ(面積)を調整することにより、光を反射する領域(有効径)を調整している。本開示の技術は、これに限定されず、次のようにしてもよい。第1右側偏向素子25Rに、右側観察光の光軸に垂直な右側観察光の光束の有効面積が所定の面積になるように、光を吸収して遮光するマスク(遮光マスク)を設置する。同様に、第1左側偏向素子25Lに、左側観察光の光軸に垂直な左側観察光の光束の有効面積が所定の面積になるように、光を吸収して遮光するマスクを設置する。 In the example shown in FIG. 16, the area (effective diameter) that reflects light is adjusted by adjusting the size (area) of each of the first right-side deflection element 25R and the second right-side deflection element 26R. The technique of the present disclosure is not limited to this, and may be as follows. A mask (light-shielding mask) that absorbs light and blocks light is provided on the first right-side deflection element 25R so that the effective area of the light flux of the right-side observation light perpendicular to the optical axis of the right-side observation light becomes a predetermined area. Similarly, a mask that absorbs light and blocks light is provided on the first left-side deflection element 25L so that the effective area of the light flux of the left-side observation light perpendicular to the optical axis of the left-side observation light becomes a predetermined area.
 上記で説明した各瞳の位置及び各絞りの位置、また、絞りに代えて偏向素子の有効径を調整する点は、他の実施の形態及び変形例に対しても適用可能である。 The positions of the pupils and the positions of the diaphragms described above and the point of adjusting the effective diameter of the deflecting element instead of the diaphragms can be applied to other embodiments and modifications.
 次に、本実施形態における手術用顕微鏡100A1の動作について説明する。図5には、手術用顕微鏡100A1のブロック図が示されている。図5に示すように、手術用顕微鏡100A1は、コンピュータ50を備えている。 Next, the operation of the surgical microscope 100A1 according to the present embodiment will be described. FIG. 5 shows a block diagram of the surgical microscope 100A1. As shown in FIG. 5, the surgical microscope 100A1 includes a computer 50.
 コンピュータ50は、CPU52、ROM54、RAM56、入出力(I/O)ポート58を備えている。CPU52から入出力(I/O)ポート58はバス60により相互に接続されている。 The computer 50 includes a CPU 52, a ROM 54, a RAM 56, and an input / output (I / O) port 58. The CPU 52 and the input / output (I / O) port 58 are connected to each other by a bus 60.
 CPU52は、手術用顕微鏡100A1の全体を制御し、「制御部」の一例である。ROM54は、各種プログラム及び各種パラメータ等を予め記憶したメモリである。RAM56は、各種プログラムの実行時のワークエリア等として用いられるメモリである。 The CPU 52 controls the entire surgical microscope 100A1 and is an example of a “control unit”. The ROM 54 is a memory that stores various programs and various parameters in advance. The RAM 56 is a memory used as a work area or the like when executing various programs.
 入出力(I/O)ポート58には、キーボード等の入力装置63、2次記憶装置62、右側撮像素子15R、左側撮像素子15L、表示装置100AD、立体感増加スイッチ64、及び立体感減少スイッチ66が接続されている。
 立体感増加スイッチ64は、第1右側偏向素子25Rを対物レンズ11の光軸110から離れる方向(X(正)方向)に移動させること及び当該移動の停止を選択的に指示する。立体感増加スイッチ64は、第1左側偏向素子25Lを対物レンズ11の光軸110から離れる方向(X(負)方向)に移動させること及び当該移動の停止を選択的に指示する。
 立体感減少スイッチ66は、第1右側偏向素子25Rを対物レンズ11の光軸110に近づく方向(X(負)方向)に移動させること及び当該移動の停止を選択的に指示する。立体感減少スイッチ66は、第1左側偏向素子25Lを対物レンズ11の光軸110から近づく方向(X(正)方向)に移動させること及び当該移動の停止を選択的に指示する。
 CPU52は、立体感増加スイッチ64及び立体感減少スイッチ66により移動が指示された場合、第1右側偏向素子25R及び第1左側偏向素子25Lの少なくとも一方を移動し、立体感増加スイッチ64及び立体感減少スイッチ66により移動の停止が指示された場合、第1右側偏向素子25R及び第1左側偏向素子25Lの移動している素子の移動が停止するように、第1右側偏向素子移動部68R及び第1左側偏向素子移動部68Lを制御する。
 入出力(I/O)ポート58には、右側斜照明光源16R、左側斜照明光源16L、右側完全同軸照明光源18R、及び左側完全同軸照明光源18Lが接続されている。
The input / output (I / O) port 58 has an input device 63 such as a keyboard, a secondary storage device 62, a right imaging element 15R, a left imaging element 15L, a display device 100AD, a stereoscopic effect increasing switch 64, and a stereoscopic effect decreasing switch. 66 is connected.
The stereoscopic effect increase switch 64 selectively moves the first right-side deflection element 25R in a direction (X (positive) direction) away from the optical axis 110 of the objective lens 11 and stops the movement. The stereoscopic effect increasing switch 64 selectively moves the first left-side deflecting element 25L in a direction away from the optical axis 110 of the objective lens 11 (X (negative) direction) and stops the movement.
The stereoscopic effect reducing switch 66 moves the first right-side deflection element 25R in a direction (X (negative) direction) approaching the optical axis 110 of the objective lens 11 and selectively instructs to stop the movement. The stereoscopic effect reducing switch 66 moves the first left-side deflecting element 25L in a direction (X (positive) direction) closer to the optical axis 110 of the objective lens 11 and selectively instructs to stop the movement.
When movement is instructed by the three-dimensional effect increase switch 64 and the three-dimensional effect decrease switch 66, the CPU 52 moves at least one of the first right-side deflection element 25R and the first left-side deflection element 25L to change the three-dimensional effect increase switch 64 and the three-dimensional effect. When the stop switch 66 instructs to stop the movement, the first right-side deflection element moving unit 68R and the first right-side deflection element moving unit 68R and the first left-side deflection element 25R are moved so as to stop the movement of the moving elements. 1 The left deflection element moving unit 68L is controlled.
A right oblique illumination light source 16R, a left oblique illumination light source 16L, a right complete coaxial illumination light source 18R, and a left complete coaxial illumination light source 18L are connected to the input / output (I / O) port 58.
 入出力(I/O)ポート58には、第1右側偏向素子移動部68R、第1左側偏向素子移動部68L、右側絞り移動部69R、左側絞り移動部69L、第2右側偏向素子移動部70R、及び第2左側偏向素子移動部70Lが接続されている。
 入出力(I/O)ポート58には、右側撮像光学装置移動部72、左側撮像光学装置移動部74、右側照明光学系及び光源移動部76、及び左側照明光学系及び光源移動部78が接続されている。
The input / output (I / O) port 58 has a first right-side deflection element moving unit 68R, a first left-side deflection element moving unit 68L, a right-side aperture moving unit 69R, a left-side aperture moving unit 69L, and a second right-side deflection element moving unit 70R. , And the second left-side deflection element moving unit 70L are connected.
A right side imaging optical device moving unit 72, a left side imaging optical device moving unit 74, a right side illumination optical system and light source moving unit 76, and a left side illumination optical system and light source moving unit 78 are connected to the input / output (I / O) port 58. Has been done.
 入出力(I/O)ポート58には、右側変倍光学系レンズ駆動部80及び左側変倍光学系レンズ駆動部82と、右側絞り径変更部85及び左側絞り径変更部87とが接続されている。 To the input / output (I / O) port 58, a right-side variable magnification optical system lens driving unit 80 and a left-side variable magnification optical system lens driving unit 82, a right-side aperture diameter changing unit 85 and a left-side aperture diameter changing unit 87 are connected. ing.
 各移動部(68Rから77R、68Lから77L)、各駆動部(80、82)、及び各変更部(85、87)は、例えば、モータにより構成される。 Each moving unit (68R to 77R, 68L to 77L), each driving unit (80, 82), and each changing unit (85, 87) are composed of, for example, a motor.
 本実施形態の手術用顕微鏡は、右側撮像光学装置移動部72に代えて個別に、右側変倍光学系移動部、右側結像光学系移動部、及び右側撮像素子移動部を備えるようにしてもよい。本実施形態の手術用顕微鏡は、左側撮像光学装置移動部74に代えて個別に、左側変倍光学系移動部、左側結像光学系移動部、及び左側撮像素子移動部を備えるようにしてもよい。
 また、本実施形態の手術用顕微鏡は、右側照明光学系及び光源移動部76に代えて個別に、右側斜照明光源移動部、右側斜照明光学系移動部、右側完全同軸照明光源移動部、及び右側完全同軸照明光学系移動部を備えるようにしてもよい。本実施形態の手術用顕微鏡は、左側照明光学系及び光源移動部78に代えて個別に、左側斜照明光源移動部、左側斜照明光学系移動部、左側完全同軸照明光源移動部、及び左側完全同軸照明光学系移動部を備えるようにしてもよい。
The surgical microscope of the present embodiment may be individually provided with a right-side variable power optical system moving unit, a right-side imaging optical system moving unit, and a right-side image sensor moving unit instead of the right-side imaging optical device moving unit 72. Good. The surgical microscope of the present embodiment may individually include a left-side variable power optical system moving unit, a left-side imaging optical system moving unit, and a left-side image sensor moving unit instead of the left-side imaging optical device moving unit 74. Good.
Further, in the surgical microscope of the present embodiment, instead of the right illumination optical system and the light source moving unit 76, the right oblique illumination light source moving unit, the right oblique illumination optical system moving unit, the right complete coaxial illumination light source moving unit, and A right perfect coaxial illumination optical system moving unit may be provided. In the surgical microscope of this embodiment, instead of the left side illumination optical system and the light source moving unit 78, the left oblique illumination light source moving unit, the left oblique illumination optical system moving unit, the left complete coaxial illumination light source moving unit, and the left complete A coaxial illumination optical system moving unit may be provided.
 右側に関する移動部(68Rから70R、72、76)は一体で構成してもよい。左側に関する各移動部(68Lから70L、74、78)は一体で構成してもよい。 -The moving parts (68R to 70R, 72, 76) on the right side may be integrally configured. The moving parts (68L to 70L, 74, 78) on the left side may be integrally configured.
 第1右側偏向素子移動部68R及び第1左側偏向素子移動部68Lは、本開示の技術の「移動部」の一例である。
 右側絞り移動部69Rは、本開示の技術の「右側絞り移動部」の一例であり、左側絞り移動部69Lは、本開示の技術の「左側絞り移動部」の一例である。
 右側絞り径変更部85は、本開示の技術の「右側絞り径調整部」の一例である。左側絞り径変更部87は、本開示の技術の「左側絞り径調整部」の一例である。
The first right-side deflection element moving unit 68R and the first left-side deflection element moving unit 68L are examples of the “moving unit” in the technology of the present disclosure.
The right side diaphragm moving unit 69R is an example of the “right side diaphragm moving unit” of the technology of the present disclosure, and the left side diaphragm moving unit 69L is an example of the “left side diaphragm moving unit” of the technology of the present disclosure.
The right side diaphragm diameter changing unit 85 is an example of a “right side diaphragm diameter adjusting unit” in the technology of the present disclosure. The left side diaphragm diameter changing unit 87 is an example of a “left side diaphragm diameter adjusting unit” of the technology of the present disclosure.
 2次記憶装置62は、後述する立体感増加調整プログラム及び立体感減少調整プログラムと、絞り径調整プログラムとが記憶されている。 The secondary storage device 62 stores a three-dimensional effect increase adjustment program and a three-dimensional effect decrease adjustment program, which will be described later, and an aperture diameter adjustment program.
 CPU52は、右側斜照明光源16R、左側斜照明光源16L、右側完全同軸照明光源18R、及び左側完全同軸照明光源18Lを点灯させる。これにより、右側斜照明光、左側斜照明光、右側完全同軸照明光、及び左側完全同軸照明光により対象物(例、眼、物体面)を照明する。 The CPU 52 turns on the right oblique illumination light source 16R, the left oblique illumination light source 16L, the right complete coaxial illumination light source 18R, and the left complete coaxial illumination light source 18L. As a result, the object (eg, eye, object plane) is illuminated with the right oblique illumination light, the left oblique illumination light, the right complete coaxial illumination light, and the left complete coaxial illumination light.
 眼からの右側観察光及び左側観察光は、右側撮像素子15R及び左側撮像素子15Lに結像し、右側撮像素子15Rから右側画像信号が、左側撮像素子15Lから左側画像信号がコンピュータ50に入力される。 The right side observation light and the left side observation light from the eyes are focused on the right side image pickup element 15R and the left side image pickup element 15L, and the right side image signal is input from the right side image pickup element 15R and the left side image signal is input to the computer 50 from the left side image pickup element 15L. It
 CPU52は、右側画像信号及び左側画像信号に基づいて右眼用画像及び左眼用画像を生成する。CPU52は、必ずしも、右側画像信号に基づいて右眼用画像を作り、また、左側画像信号に基づいて左眼用画像を作るとは限らない。例えば、CPU52は、右側画像信号に基づいて左眼用画像を作り、また、左側画像信号に基づいて右眼用画像を作ったりしてもよい。CPU52は、右側画像信号に基づいて右眼用画像及び左眼用画像の双方を作ったり、左側画像信号に基づいて左眼用画像及び右眼用画像の双方を作ったりしてもよい。CPU52は、右側画像信号及び左側画像信号の双方に基づいて、右眼用画像及び左眼用画像の各々を作成してもよい。
 なお、CPU52により制御される画像作成装置を更に備え、CPU52の制御に従って、画像作成装置が、右側画像信号及び左側画像信号に基づいて右眼用画像及び左眼用画像を生成するようにしてもよい。
The CPU 52 generates a right eye image and a left eye image based on the right side image signal and the left side image signal. The CPU 52 does not always create the right-eye image based on the right-side image signal, and does not necessarily create the left-eye image based on the left-side image signal. For example, the CPU 52 may create a left-eye image based on the right-side image signal, or may create a right-eye image based on the left-side image signal. The CPU 52 may create both the right-eye image and the left-eye image based on the right-side image signal, or may create both the left-eye image and the right-eye image based on the left-side image signal. The CPU 52 may create each of the right-eye image and the left-eye image based on both the right-side image signal and the left-side image signal.
An image creating apparatus controlled by the CPU 52 may be further provided, and the image creating apparatus may generate an image for the right eye and an image for the left eye based on the right image signal and the left image signal under the control of the CPU 52. Good.
 CPU52は、表示装置100ADの画面の右眼用表示領域に、右眼用画像を表示させる。表示装置100ADの画面の左眼用表示領域に、左眼用画像を表示させる。上記のように、右側観察光及び左側観察光により、手術対象の眼(例えば、右眼)の視差のある立体視の右眼用画像及び左眼用画像が表示装置100ADの画面に表示される。ユーザ150は、偏光眼鏡を介して立体視の画像を認識し、脳内で、右眼用画像及び左眼用画像を合成する。表示装置100ADは、ラインバイラインで右眼用画像及び左眼用画像を表示する。また、表示装置100ADは、ラインバイラインで右眼用画像及び左眼用画像を表示し、その映像を偏光眼鏡を介して立体視することに代えて、右眼用画像及び左眼用画像を、例えば、1/60秒の時間差で交互に表示し、その映像に同期して右眼及び左眼のシャッターを開閉するシャッター方式の眼鏡を介して立体視するようにしてもよい。更に、眼鏡に代えて、双眼ビューワを用いてもよい。具体的には、表示装置100ADの画面の右眼用領域に、右眼用画像を表示させる。表示装置100ADの画面の左眼用領域に、左眼用画像を表示させる。表示装置100ADの画面の右眼用領域とユーザ150の右眼との間に配置する右光路中の光学系により、右眼用画像をユーザ150の右眼に導く。同様に、表示装置100ADの画面の左眼用領域とユーザ150の左眼との間に配置する左光路中の光学系により、左眼用画像をユーザ150の左眼に導く。 The CPU 52 displays the right-eye image in the right-eye display area on the screen of the display device 100AD. The image for the left eye is displayed in the display area for the left eye on the screen of the display device 100AD. As described above, the right-eye observation light and the left-eye observation light cause the stereoscopic right-eye image and left-eye image having a parallax of the surgery target eye (for example, the right eye) to be displayed on the screen of the display device 100AD. .. The user 150 recognizes the stereoscopic image through the polarized glasses, and synthesizes the right-eye image and the left-eye image in the brain. The display device 100AD displays the image for the right eye and the image for the left eye on a line-by-line basis. Further, the display device 100AD displays the image for the right eye and the image for the left eye on a line-by-line basis, and instead of stereoscopically viewing the image through the polarizing glasses, the image for the right eye and the image for the left eye are displayed. For example, the images may be alternately displayed with a time difference of 1/60 second, and stereoscopic viewing may be performed through shutter-type glasses that open and close the shutters of the right eye and the left eye in synchronization with the image. Further, a binocular viewer may be used instead of the glasses. Specifically, the right-eye image is displayed in the right-eye area on the screen of the display device 100AD. The left-eye image is displayed in the left-eye area on the screen of the display device 100AD. The right-eye image is guided to the right eye of the user 150 by the optical system in the right optical path arranged between the right-eye region of the screen of the display device 100AD and the right eye of the user 150. Similarly, the image for the left eye is guided to the left eye of the user 150 by the optical system in the left optical path arranged between the left eye region of the screen of the display device 100AD and the left eye of the user 150.
 表示装置100ADは、手術用顕微鏡本体100AHの上に直接又は間接的に配置されているが、本開示の技術は、これに限定されない。 The display device 100AD is directly or indirectly arranged on the surgical microscope body 100AH, but the technique of the present disclosure is not limited to this.
 図13に示すように、表示装置100ADは、ユーザ150が手術用顕微鏡の正面側から視認している状態での手術用顕微鏡本体100AHを対象とした第1の視野領域から外れた領域に画像100AD1を表示する。例えば、ユーザ150が手術用顕微鏡の正面側から視認している状態において、手術用顕微鏡本体100AHは、上記第1の視野領域に重ならない位置に配置されている。 As shown in FIG. 13, the display device 100AD displays an image 100AD1 in an area outside the first visual field area for the surgical microscope main body 100AH with the user 150 visually recognizing it from the front side of the surgical microscope. Is displayed. For example, in a state in which the user 150 is viewing from the front side of the surgical microscope, the surgical microscope body 100AH is arranged at a position that does not overlap the first visual field region.
 また、図14に示すように、手術用顕微鏡本体100AHは、ユーザ150が手術用顕微鏡の正面側から視認している状態での表示装置100ADが空間に表示する画像100AD2を対象とした第2の視野領域から外れた領域に配置される。 In addition, as shown in FIG. 14, the surgical microscope main body 100AH has a second targeting the image 100AD2 displayed in the space by the display device 100AD when the user 150 is viewing the front side of the surgical microscope. It is arranged in a region outside the visual field region.
 立体感増加スイッチ64及び立体感減少スイッチ66は、手術用顕微鏡本体100AHの鉛直下の床の上に配置し、ユーザ150が自身の足で、立体感増加スイッチ64及び立体感減少スイッチ66を操作(オン・オフ)する。立体感増加スイッチ64及び立体感減少スイッチ66の各々は、フットスイッチである。 The three-dimensional effect increasing switch 64 and the three-dimensional effect decreasing switch 66 are arranged on the floor vertically below the surgical microscope main body 100AH, and the user 150 operates the three-dimensional effect increasing switch 64 and the three-dimensional effect decreasing switch 66 with his / her own feet. (Turn on / off) Each of the stereoscopic effect increasing switch 64 and the stereoscopic effect decreasing switch 66 is a foot switch.
 第1右側偏向素子移動部68Rは、第1右側偏向素子用移動機構を介して、第1右側偏向素子25RをX方向に移動する。その際、右側絞り移動部69Rは、第1右側偏向素子25Rの移動に基づいて、具体的には、第1右側偏向素子25Rの移動に連動して、右側絞り12RをX方向に移動する。第2右側偏向素子移動部70Rは、第2右側偏向素子26RをX方向に移動する。
 第1左側偏向素子移動部68Lは、第1左側偏向素子用移動機構を介して、第1左側偏向素子25LをX方向に移動する。その際、左側絞り移動部69Lは、第1左側偏向素子25Lの移動に基づいて、具体的には、第1左側偏向素子25Lの移動に連動して、左側絞り12LをX方向に移動する。第2左側偏向素子移動部70Lは、第2左側偏向素子26LをX方向に移動する。
 第1右側偏向素子移動部68R及び第1左側偏向素子移動部68Lは、右側観察光の光軸15RI及び左側観察光の光軸15LIが眼の位置でなす実体角が連続的に変化するように、第1右側偏向素子25R及び第1左側偏向素子25Lの少なくとも一方を移動させる。
 第1右側偏向素子移動部68Rは、眼と右側変倍光学系13R及び右側結像光学系14Rとの間の光路において第1右側偏向素子25Rを移動させる。第1左側偏向素子移動部68Lは、眼と左側変倍光学系13L及び左側結像光学系14Lとの間の光路において第1左側偏向素子25Lを移動させる。
The first right-side deflection element moving unit 68R moves the first right-side deflection element 25R in the X direction via the first right-side deflection element moving mechanism. At that time, the right diaphragm moving unit 69R moves the right diaphragm 12R in the X direction based on the movement of the first right deflecting element 25R, specifically, in conjunction with the movement of the first right deflecting element 25R. The second right deflection element moving unit 70R moves the second right deflection element 26R in the X direction.
The first left-side deflection element moving unit 68L moves the first left-side deflection element 25L in the X direction via the first left-side deflection element moving mechanism. At that time, the left diaphragm moving unit 69L moves the left diaphragm 12L in the X direction based on the movement of the first left deflection element 25L, specifically, in conjunction with the movement of the first left deflection element 25L. The second left-side deflection element moving unit 70L moves the second left-side deflection element 26L in the X direction.
The first right-side deflection element moving unit 68R and the first left-side deflection element moving unit 68L are configured so that the real angle formed by the optical axis 15RI of the right-side observation light and the optical axis 15LI of the left-side observation light at the eye position is continuously changed. , At least one of the first right side deflection element 25R and the first left side deflection element 25L is moved.
The first right deflection element moving unit 68R moves the first right deflection element 25R in the optical path between the eye and the right variable magnification optical system 13R and the right imaging optical system 14R. The first left-side deflection element moving unit 68L moves the first left-side deflection element 25L in the optical path between the eye and the left-side variable magnification optical system 13L and the left-side imaging optical system 14L.
 右側撮像光学装置移動部72は、第1右側偏向素子移動部68Rにより第1右側偏向素子25Rが移動する場合、当該移動の間、右側観察光の光路長が保たれるように、右側撮像光学装置131415Rを移動させる。左側撮像光学装置移動部74は、第1左側偏向素子移動部68Lにより第1左側偏向素子25Lが移動する場合、当該移動の間、左側観察光の光路長が保たれるように、左側撮像光学装置131415Lを移動させる。
 右側撮像光学装置移動部72は、右側撮像光学装置用移動機構を介して、右側撮像光学装置131415RをX方向に移動する。左側撮像光学装置移動部74は、左側撮像光学装置用移動機構を介して、左側撮像光学装置131415LをX方向に移動する。
When the first right-side deflection element moving unit 68R moves the first right-side deflection element 25R, the right-side imaging optical device moving unit 72 keeps the right-side imaging light so that the optical path length of the right-side observation light is maintained during the movement. Move device 131415R. When the first left-side deflection element moving unit 68L moves the first left-side deflection element 25L, the left-side imaging optical device movement unit 74 maintains the optical path length of the left-side observation light during the movement, so that the left-side imaging optical device movement unit 74 maintains the optical path length. Move device 131415L.
The right imaging optical device moving unit 72 moves the right imaging optical device 131415R in the X direction via the right imaging optical device moving mechanism. The left imaging optical device moving unit 74 moves the left imaging optical device 131415L in the X direction via the left imaging optical device moving mechanism.
 第2右側偏向素子移動部70Rは、第1右側偏向素子移動部68Rにより第1右側偏向素子25Rが移動する場合、当該移動の間、右側観察光の光軸15RIと、右側完全同軸照明光の光軸18RIと、が眼の位置でなす角度が一定に保たれるように、第2右側偏向素子26Rを移動させる。
 なお、右側照明光学系及び光源移動部76は、第1右側偏向素子移動部68Rにより第1右側偏向素子25Rが移動する場合、当該移動の間、右側観察光の光軸15RIと、右側完全同軸照明光の光軸18RIと、が眼の位置でなす角度が一定に保たれるように、右側照明光源光学系1618Rを移動させるようにしてもよい。
 第2左側偏向素子移動部70Lは、第1左側偏向素子移動部68Lにより第1左側偏向素子25Lが移動する場合、当該移動の間、左側観察光の光軸15LIと、左側完全同軸照明光の光軸18LIと、が眼の位置でなす角度が一定に保たれるように、第2左側偏向素子26Lを移動させる。
 なお、左照明光学系及び光源移動部76は、第1左側偏向素子移動部68Lにより第1左側偏向素子25Lが移動する場合、当該移動の間、左側観察光の光軸15LIと、左側完全同軸照明光の光軸18LIと、が眼の位置でなす角度が一定に保たれるように、左側照明光源光学系1618Lを移動させるようにしてもよい。
 右側照明光学系及び光源移動部76は、右側照明光源光学系用移動機構を介して、右側照明光源光学系用基板により右側照明光源光学系1618RをX方向に移動する。左側照明光学系及び光源移動部78は、左側照明光源光学系用移動機構を介して、左側照明光源光学系用基板により左側照明光源光学系1618LをX方向に移動する。
When the first right-side deflection element moving unit 68R moves the first right-side deflection element 25R, the second right-side deflection element moving unit 70R outputs the right-side observation light optical axis 15RI and the right-side perfect coaxial illumination light during the movement. The second right deflection element 26R is moved so that the angle formed by the optical axis 18RI and the eye position is kept constant.
Note that, when the first right-side deflection element moving unit 68R moves the first right-side deflection element 25R, the right-side illumination optical system and light source moving unit 76 and the optical axis 15RI of the right-side observation light and the right-side perfect coaxial during the movement. The right side illumination light source optical system 1618R may be moved so that the angle formed by the optical axis 18RI of the illumination light and the position of the eye is kept constant.
When the first left-side deflection element moving unit 68L moves the first left-side deflection element 25L, the second left-side deflection element moving unit 70L moves the left-side observation light optical axis 15LI and the left-side perfect coaxial illumination light during the movement. The second left-side deflection element 26L is moved so that the angle formed by the optical axis 18LI and the eye position is kept constant.
In addition, when the first left-side deflection element 25L is moved by the first left-side deflection element movement section 68L, the left-illumination optical system and light-source movement section 76 is coaxial with the optical axis 15LI of the left-side observation light and the left-side observation light during the movement. The left side illumination light source optical system 1618L may be moved so that the angle formed by the optical axis 18LI of the illumination light and the position of the eye is kept constant.
The right side illumination optical system and light source moving unit 76 moves the right side illumination light source optical system 1618R in the X direction by the right side illumination light source optical system substrate via the right side illumination light source optical system moving mechanism. The left side illumination optical system and light source moving unit 78 moves the left side illumination light source optical system 1618L in the X direction by the left side illumination light source optical system substrate via the left side illumination light source optical system moving mechanism.
 なお、上記各移動機構としては、例えば、ラックアンドピニオンを用いることができる。 A rack and pinion, for example, can be used as each of the above moving mechanisms.
 図6Aには、立体感増加調整プログラムに従ってCPU52が実行する立体感増加調整処理のフローチャートが示されている。図6Bには、立体感減少調整プログラムに従ってCPU52が実行する立体感減少調整処理のフローチャートが示されている。図9には、第1右側偏向素子25R及び第1左側偏向素子25Lを、対物レンズ11の光軸110から離れる方向に移動させる時(後述するステップ84)の手術用顕微鏡100A1の様子(断面図)が示されている。 FIG. 6A shows a flowchart of the stereoscopic effect increasing adjustment process executed by the CPU 52 in accordance with the stereoscopic effect increasing adjusting program. FIG. 6B shows a flowchart of the stereoscopic effect reduction adjusting process executed by the CPU 52 according to the stereoscopic effect reducing adjustment program. FIG. 9 shows a state (cross-sectional view) of the surgical microscope 100A1 when the first right-side deflection element 25R and the first left-side deflection element 25L are moved in a direction away from the optical axis 110 of the objective lens 11 (step 84 described later). )It is shown.
 図6Aに示す立体感増加調整処理は、立体感増加スイッチ64がオンされたときにスタートし、ステップ84で、CPU52の制御により、図9に示すように、第1右側偏向素子移動部68Rは、第1右側偏向素子用移動機構を介して第1右側偏向素子用基板により、右側観察光の光軸15RIが対象物の位置でなす実体角が大きくなるように、具体的には、第1右側偏向素子25Rを対物レンズ11の光軸110から離れる方向(X(正)方向)に移動させる。その際、右側絞り移動部69Rは、第1右側偏向素子25Rの移動に基づいて、具体的には、第1右側偏向素子25Rと右側絞り12Rとの距離を一定に保つように、右側絞り12RをX(正)方向に移動する。CPU52の制御により、第1左側偏向素子移動部68Lは、第1左側偏向素子用移動機構を介して第1左側偏向素子用基板により第1左側偏向素子25Lを、左側観察光の光軸15LIが対象物の位置でなす実体角が大きくなるように、具体的には、対物レンズ11の光軸110から離れる方向(X(負)方向)に移動させる。その際、左側絞り移動部69L、第1左側偏向素子25Lの移動に基づいて、具体的には、第1左側偏向素子25Lと左側絞り12Lとの距離を一定に保つように、左側絞り12LをX(負)方向に移動する。 The stereoscopic effect increasing adjustment process shown in FIG. 6A starts when the stereoscopic effect increasing switch 64 is turned on, and in step 84, as shown in FIG. 9, the first right-side deflection element moving unit 68R is controlled by the control of the CPU 52. , The first right deflection element substrate via the first right deflection element moving mechanism so that the substantial angle formed by the optical axis 15RI of the right observation light at the position of the object is increased. The right deflection element 25R is moved in a direction away from the optical axis 110 of the objective lens 11 (X (positive) direction). At that time, the right diaphragm moving unit 69R, based on the movement of the first right deflecting element 25R, specifically, the right diaphragm 12R so as to keep the distance between the first right deflecting element 25R and the right diaphragm 12R constant. In the X (positive) direction. Under the control of the CPU 52, the first left-side deflection element moving unit 68L causes the first left-side deflection element substrate to move the first left-side deflection element 25L through the first left-side deflection element moving mechanism so that the optical axis 15LI of the left-side observation light is moved. Specifically, the objective lens 11 is moved in a direction away from the optical axis 110 (X (negative) direction) so that the substantial angle formed at the position of the object becomes large. At that time, based on the movement of the left diaphragm moving unit 69L and the first left deflecting element 25L, specifically, the left diaphragm 12L is moved so as to keep the distance between the first left deflecting element 25L and the left diaphragm 12L constant. Move in the X (negative) direction.
 CPU52の制御により、第2右側偏向素子移動部70Rは、第2右側偏向素子をX(正)方向に移動させ、第2左側偏向素子移動部70Lは、第2左側偏向素子をX(負)方向に移動させる。 Under the control of the CPU 52, the second right-side deflection element moving unit 70R moves the second right-side deflection element in the X (positive) direction, and the second left-side deflection element moving unit 70L moves the second left-side deflection element to X (negative). Move in the direction.
 対象物から撮像素子までの観察光の光路長を一定に保つために、CPU52の制御により、右側撮像光学装置移動部72は、右側撮像光学装置用移動機構を介して右側撮像光学装置用基板により右側撮像光学装置131415RをX(正)方向に移動させる。同様に、CPU52の制御により、左側撮像光学装置移動部74は、左側撮像光学装置用移動機構を介して左側撮像光学装置用基板により左側撮像光学装置131415LをX(負)方向に移動させる。
 第1右側偏向素子25R及び第1左側偏向素子25Lが移動する場合、光源から対象物までの照明光の光路長を一定に保つために、右側照明光学系及び光源移動部76は、右側照明光源光学系用移動機構を介して右側照明光源光学系用基板により右側照明光源光学系1618RをX(正)方向に移動させる。左側照明光学系及び光源移動部78は、左側照明光源光学系1618LをX(負)の方向に移動させる。
 なお、図9では、右側の各構成(25R、12R、26R、131415R、1618R)の移動の様子のみが示されているが、左側の各構成(25L、12L、26L、131415L、1618L)も同様に移動される。
In order to keep the optical path length of the observation light from the object to the image sensor constant, the right imaging optical device moving unit 72 controls the right imaging optical device substrate via the right imaging optical device moving mechanism under the control of the CPU 52. The right imaging optical device 131415R is moved in the X (positive) direction. Similarly, under the control of the CPU 52, the left imaging optical device moving unit 74 moves the left imaging optical device 131415L in the X (negative) direction by the left imaging optical device substrate via the left imaging optical device moving mechanism.
When the first right-side deflection element 25R and the first left-side deflection element 25L move, in order to keep the optical path length of the illumination light from the light source to the object constant, the right-side illumination optical system and the light source moving unit 76 includes the right-side illumination light source. The right side illumination light source optical system 1618R is moved in the X (positive) direction by the right side illumination light source optical system substrate via the optical system moving mechanism. The left side illumination optical system and light source moving unit 78 moves the left side illumination light source optical system 1618L in the X (negative) direction.
Although FIG. 9 shows only the movement of the right side configurations (25R, 12R, 26R, 131415R, 1618R), the left side configurations (25L, 12L, 26L, 131415L, 1618L) are also the same. Be moved to.
 これにより、右側観察光の光軸15RI及び左側観察光の光軸15LIが対象物の位置でなす実体角を大きくすることができる。よって、右側観察光及び左側観察光の各々により表示装置100ADに表示された右眼用画像と左眼用画像を見たユーザ150の立体感を増すことができる。 This makes it possible to increase the substantial angle formed by the optical axis 15RI of the right observation light and the optical axis 15LI of the left observation light at the position of the object. Therefore, it is possible to increase the stereoscopic effect of the user 150 viewing the right-eye image and the left-eye image displayed on the display device 100AD by each of the right-side observation light and the left-side observation light.
 ステップ86で、CPU52は、立体感増加スイッチ64がオフされたか否かを判断する。立体感増加スイッチ64がオフされなかったと判断された場合には、立体感増加調整処理は、ステップ84に戻る。よって、上記各構成(25R、12R、26R、131415R、1618R、25L、12L、26L、131415L、1618L)が移動され続ける。 At step 86, the CPU 52 determines whether or not the stereoscopic effect increasing switch 64 is turned off. If it is determined that the stereoscopic effect increasing switch 64 has not been turned off, the stereoscopic effect increasing adjustment processing returns to step 84. Therefore, the above-mentioned components (25R, 12R, 26R, 131415R, 1618R, 25L, 12L, 26L, 131415L, 1618L) are continuously moved.
 ステップ86で、立体感増加スイッチ64がオフされたと判断された場合には、ステップ88で、CPU52は、上記各移動部(68Rから78)を停止する。これにより、上記各構成(25R、12R、26R、131415R、1618R、25L、12L、26L、131415L、1618L)の移動が停止する。ステップ88が終了すると立体感調整処理は終了する。 When it is determined in step 86 that the stereoscopic effect increasing switch 64 has been turned off, the CPU 52 stops each of the moving parts (68R to 78) in step 88. As a result, the movement of each of the configurations (25R, 12R, 26R, 131415R, 1618R, 25L, 12L, 26L, 131415L, 1618L) is stopped. When step 88 ends, the stereoscopic effect adjustment process ends.
 図6Bに示す立体感減少調整処理は、立体感減少スイッチ66がオンされたときにスタートし、ステップ92で、CPU52の制御により、第1右側偏向素子移動部68Rは、第1右側偏向素子用移動機構を介して第1右側偏向素子用基板により、右側観察光の光軸15RIが対象物の位置でなす実体角が小さくなるように、具体的には、第1右側偏向素子25Rを対物レンズ11の光軸110から近づく方向(X(負)方向)に移動させる。その際、右側絞り移動部69Rは、第1右側偏向素子25Rの移動に基づいて、具体的には、第1右側偏向素子25Rと右側絞り12Rとの距離を一定に保つように、右側絞り12RをX(負)方向に移動する。CPU52の制御により、第1左側偏向素子移動部68Lは、第1左側偏向素子用移動機構を介して第1左側偏向素子用基板により第1左側偏向素子25Lを、左側観察光の光軸15LIが対象物の位置でなす実体角が小さくなるように、具体的には、対物レンズ11の光軸110から近づく方向(X(正)方向)に移動させる。その際、左側絞り移動部69Lは、第1左側偏向素子25Lの移動に基づいて、具体的には、第1左側偏向素子25Lと左側絞り12Lとの距離を一定に保つように、左側絞り12LをX(正)方向に移動する。 The stereoscopic effect reducing adjustment process shown in FIG. 6B starts when the stereoscopic effect decreasing switch 66 is turned on, and in step 92, the first right-side deflection element moving unit 68R controls the first right-side deflection element for control by the CPU 52. The first right-side deflection element 25R is specifically configured to be an objective lens by the first right-side deflection element substrate via the moving mechanism so that the physical angle formed by the optical axis 15RI of the right-side observation light at the position of the object becomes small. 11 is moved in a direction approaching from the optical axis 110 (X (negative) direction). At that time, the right diaphragm moving unit 69R, based on the movement of the first right deflecting element 25R, specifically, the right diaphragm 12R so as to keep the distance between the first right deflecting element 25R and the right diaphragm 12R constant. In the X (negative) direction. Under the control of the CPU 52, the first left-side deflection element moving unit 68L causes the first left-side deflection element substrate to move the first left-side deflection element 25L through the first left-side deflection element moving mechanism so that the optical axis 15LI of the left-side observation light is moved. Specifically, the objective lens 11 is moved in a direction closer to the optical axis 110 (X (positive) direction) so that the substantial angle formed at the position of the object becomes smaller. At that time, the left diaphragm moving unit 69L, based on the movement of the first left deflecting element 25L, specifically, the left diaphragm 12L so as to keep the distance between the first left deflecting element 25L and the left diaphragm 12L constant. In the X (positive) direction.
 これにより、右側観察光の光軸15RI及び左側観察光の光軸15LIが対象物の位置でなす実体角を小さくすることができる。よって、右側観察光及び左側観察光の各々により表示装置100ADに表示された右眼用画像と左眼用画像を見たユーザ150の立体感を減らすことができる。 This makes it possible to reduce the substantial angle formed by the optical axis 15RI of the right side observation light and the optical axis 15LI of the left side observation light at the position of the object. Therefore, it is possible to reduce the stereoscopic effect of the user 150 viewing the right-eye image and the left-eye image displayed on the display device 100AD by each of the right-side observation light and the left-side observation light.
 ステップ94で、CPU52は、立体感減少スイッチ66がオフされたか否かを判断する。立体感減少スイッチ66がオフされなかったと判断された場合には、立体感減少調整処理はステップ92に戻る。よって、上記各構成(25R、12R、26R、131415R、1618R、25L、12L、26L、131415L、1618L)が移動され続ける。 At step 94, the CPU 52 determines whether or not the stereoscopic effect reduction switch 66 has been turned off. When it is determined that the stereoscopic effect reducing switch 66 has not been turned off, the stereoscopic effect reducing adjustment processing returns to step 92. Therefore, the above-mentioned components (25R, 12R, 26R, 131415R, 1618R, 25L, 12L, 26L, 131415L, 1618L) are continuously moved.
 ステップ94で、立体感減少スイッチ66がオフされたと判断された場合には、ステップ96で、CPU52は、上記各移動部(68Rから78)を停止する。これにより、上記各構成(25R、12R、26R、131415R、1618R、25L、12L、26L、131415L、1618L)の移動が停止する。ステップ96が終了すると立体感調整処理は終了する。 If it is determined in step 94 that the stereoscopic effect reduction switch 66 has been turned off, the CPU 52 stops each of the moving parts (68R to 78) in step 96. As a result, the movement of each of the configurations (25R, 12R, 26R, 131415R, 1618R, 25L, 12L, 26L, 131415L, 1618L) is stopped. When step 96 ends, the stereoscopic effect adjustment process ends.
 ステップ84及びステップ92における右側の各構成(25R、12R、26R、131415R、1618R)の移動と、左側の各構成(25L、12L、26L、131415L、1618L)の移動とは、対物レンズ11の光軸110を基準に、左右対称の移動である。例えば、上記のように、右側の各構成(25R、12R、26R、1618R)は、X(正)方向に移動し、左側の各構成(25L、12L、26L、1618L)は、X(負)方向に移動に移動する。右側の構成(131415R)及び左側の構成(131415L)は、Z方向(正)に移動する。
 ステップ84(図6A)及びステップ92(図6B)で、上記各構成(25R、12R、26R、131415R、1618R、25L、12L、26L、131415L、1618L)が移動する距離は同じである。即ち、ステップ84(図6A)及びステップ92(図6B)で、第1右側偏向素子25R、右側絞り12R、及び第2右側偏向素子26Rと、第1左側偏向素子25L、左側絞り12L、及び第2左側偏向素子26Lとを移動させ続けることに伴い、右側撮像光学装置131415R、左側撮像光学装置131415L、右側照明光源光学系1618R、及び左側照明光源光学系1618Lを移動させ続ける。これは、左右の各照明光及び左右の各観察光の光路長が、第1右側偏向素子25R及び第1左側偏向素子25Lを移動させることに伴い、変わらないようにするためである。
 例えば、照明の光路長は、各光源(16R、18R、16L、18L)から眼までの光路長、又はその一部の光路長である。観察光の光路長は、一例として、眼から撮像光学装置(131415R、131415L)までの光路長、又はその一部の光路長である。
 このように左右の光の光路長が変わらないので、上記各構成(25R、12R、26R、131415R、1618R、25L、12L、26L、131415L、1618L)の移動中に、左右の観察光が、右側撮像素子15R及び左側撮像素子15Lにおいて結像する際に、収差が悪くならないまま結像し続けるようにすることができる。
The movement of each of the components on the right side (25R, 12R, 26R, 131415R, 1618R) and the movement of each of the components on the left side (25L, 12L, 26L, 131415L, 1618L) in step 84 and step 92 are performed by the light of the objective lens 11. The movement is symmetrical with respect to the axis 110. For example, as described above, the right side configurations (25R, 12R, 26R, 1618R) move in the X (positive) direction, and the left side configurations (25L, 12L, 26L, 1618L) move in the X (negative) direction. Move to move in the direction. The right configuration (131415R) and the left configuration (131415L) move in the Z direction (positive).
In steps 84 (FIG. 6A) and step 92 (FIG. 6B), the distances traveled by the respective configurations (25R, 12R, 26R, 131415R, 1618R, 25L, 12L, 26L, 131415L, 1618L) are the same. That is, in step 84 (FIG. 6A) and step 92 (FIG. 6B), the first right deflection element 25R, the right diaphragm 12R, the second right deflection element 26R, the first left deflection element 25L, the left diaphragm 12L, and the 2 As the left-side deflection element 26L is continuously moved, the right-side imaging optical device 131415R, the left-side imaging optical device 131415L, the right-side illumination light source optical system 1618R, and the left-side illumination light source optical system 1618L are continuously moved. This is so that the optical path lengths of the left and right illumination lights and the left and right observation lights do not change as the first right deflection element 25R and the first left deflection element 25L are moved.
For example, the optical path length of the illumination is the optical path length from each light source (16R, 18R, 16L, 18L) to the eye, or the optical path length of a part thereof. The optical path length of the observation light is, for example, the optical path length from the eye to the imaging optical device (131415R, 131415L) or a part of the optical path length.
In this way, since the optical path lengths of the left and right lights do not change, the left and right observation lights are moved to the right while the above-mentioned configurations (25R, 12R, 26R, 131415R, 1618R, 25L, 12L, 26L, 131415L, 1618L) are being moved. When the image is formed on the image pickup device 15R and the left image pickup device 15L, the image formation can be continued without the aberration being deteriorated.
 また、ステップ84及びステップ92では、第1右側偏向素子25Rは、第1右側偏向素子25RのX-Y平面に対する角度が一定に保たれるように、移動される。より詳細には、第1右側偏向素子25Rは、第1右側偏向素子25Rの各照明光及び右側観察光を反射する面と、対物レンズ11の光軸110と、のなす角度が一定に保たれるように、移動される。上記のように、第1右側偏向素子25Rが配置(固定)されている第1右側偏向素子用基板が、当該なす角度が一定に保たれるように、X方向に移動するように構成されているからである。さらに、第1右側偏向素子25Rは各右側照明光の光軸と右側観察光の光軸を直角に屈曲させている。よって、第1右側偏向素子25Rを移動させた際に、右側照明光源光学系1618R及び右側撮像光学装置131415Rを移動させなくとも、各右側照明光の光軸及び右側観察光の光軸の各々が第1右側偏向素子25Rと交わる第1右側偏向素子25Rの面上の位置とそれらの光の入射角度とが一定のまま維持される。 In step 84 and step 92, the first right-side deflection element 25R is moved so that the angle of the first right-side deflection element 25R with respect to the XY plane is kept constant. More specifically, the first right-side deflection element 25R maintains a constant angle between the surface of the first right-side deflection element 25R that reflects the illumination light and the right-side observation light and the optical axis 110 of the objective lens 11. Moved as you would. As described above, the first right-side deflection element substrate on which the first right-side deflection element 25R is arranged (fixed) is configured to move in the X direction so that the angle formed is kept constant. Because there is. Further, the first right-side deflection element 25R bends the optical axis of each right-side illumination light and the optical axis of right-side observation light at right angles. Therefore, when the first right deflection element 25R is moved, even if the right illumination light source optical system 1618R and the right imaging optical device 131415R are not moved, the optical axis of each right illumination light and the optical axis of the right observation light are respectively changed. The position on the surface of the first right deflection element 25R that intersects with the first right deflection element 25R and the incident angles of those lights are maintained constant.
 同様に、ステップ84及びステップ92では、第1左側偏向素子25Lは、第1左側偏向素子25LのX-Y平面に対する角度が一定に保たれるように、移動される。より詳細には、第1左側偏向素子25Lは、第1左側偏向素子25Lの各照明光及び左側観察光を反射する面と、対物レンズ11の光軸110と、のなす角度が一定に保たれるように、移動される。上記のように、第1左側偏向素子25Lが配置(固定)されている第1左側偏向素子用基板が、当該なす角度が一定に保たれるように、X方向に移動するように構成されているからである。さらに、第1左側偏向素子25Lは各左側照明光の光軸と左側観察光の光軸を直角に屈曲させている。よって、第1左側偏向素子25Lを移動させた際に、左側照明光源光学系1618L及び左側撮像光学装置131415Lを移動させなくとも、各左側照明光の光軸及び左側観察光の光軸の各々が第1左側偏向素子25Lと交わる第1左側偏向素子25Lの面上の位置とそれらの光の入射角度とが一定のまま維持される。 Similarly, in steps 84 and 92, the first left-side deflection element 25L is moved so that the angle of the first left-side deflection element 25L with respect to the XY plane is kept constant. More specifically, the first left-side deflection element 25L maintains a constant angle between the surface of the first left-side deflection element 25L that reflects the illumination light and the left-side observation light and the optical axis 110 of the objective lens 11. Moved as you would. As described above, the first left-side deflection element substrate on which the first left-side deflection element 25L is arranged (fixed) is configured to move in the X direction so that the angle formed is kept constant. Because there is. Further, the first left-side deflection element 25L bends the optical axis of each left-side illumination light and the optical axis of left-side observation light at right angles. Therefore, when the first left-side deflection element 25L is moved, even if the left-side illumination light source optical system 1618L and the left-side imaging optical device 131415L are not moved, the optical axis of each left-side illumination light and the optical axis of the left-side observation light are respectively changed. The position on the surface of the first left-side deflection element 25L that intersects with the first left-side deflection element 25L and the incident angles of those lights are maintained constant.
 第1右側偏向素子25Rの面は、右側観察光を反射又は透過して右側観察光を形成し、第1左側偏向素子25Lの面は、左側観察光を反射又は透過して左側観察光を形成する。 The surface of the first right deflection element 25R reflects or transmits the right observation light to form the right observation light, and the surface of the first left deflection element 25L reflects or transmits the left observation light to form the left observation light. To do.
 このように第1右側偏向素子25R及び第1左側偏向素子25Lの各々の上記面と、対物レンズ11の光軸110と、のなす角度が直角のまま保たれるので、各観察光の像の中心と撮像素子(15R、15L)の中心とがずれなくなり、即ち、第1右側偏向素子25R及び第1左側偏向素子25Lの各々の上記面上の使われる位置が変わらないので、ずれを補償するための不要な移動機構を排除することができ、さらに偏向素子(25R、25L)の有効径(サイズ)を小さくすることができる。 In this way, since the angle formed between each of the surfaces of the first right-side deflection element 25R and the first left-side deflection element 25L and the optical axis 110 of the objective lens 11 is maintained at a right angle, the image of each observation light is The center and the center of the image sensor (15R, 15L) are not displaced, that is, the positions of the first right-side deflection element 25R and the first left-side deflection element 25L used on the above-mentioned surfaces do not change, so that the compensation is performed. It is possible to eliminate an unnecessary moving mechanism for this and further reduce the effective diameter (size) of the deflecting elements (25R, 25L).
 また、ステップ84及びステップ92では、第1右側偏向素子25R及び第1左側偏向素子25LのX方向の移動の際、右側照明光源光学系1618R及び左側照明光源光学系1618LをXの方向に移動させる。左右の観察光の光軸(15RI、15LI)と、照明光の光軸(16RI、16LI、18RI、18LI)と、が眼の位置でなす角度が一定に保たれる。 Further, in steps 84 and 92, when the first right deflection element 25R and the first left deflection element 25L are moved in the X direction, the right illumination light source optical system 1618R and the left illumination light source optical system 1618L are moved in the X direction. .. The angles formed by the optical axes (15RI, 15LI) of the left and right observation lights and the optical axes of the illumination light (16RI, 16LI, 18RI, 18LI) at the eye positions are kept constant.
 次に、第1の実施の形態における変倍に応じた絞り径を調整する絞り径調整処理を説明する。
 上記のように、右側絞り12R及び左側絞り12Lは、可変絞りである。右側変倍光学系レンズ駆動部80は、右側変倍光学系13Rのレンズ群G1、G2、G3、G4の少なくとも1をZ方向に移動させて、変倍をすることができる。左側変倍光学系レンズ駆動部82も同様に、左側変倍光学系13Lのレンズ群G1、G2、G3、G4の少なくとも1をZ方向に移動させて、変倍をすることができる。
 上記変倍により、左側撮像素子15Lと右側撮像素子15Rとに入射し結像する左側観察光と右側観察光との光量が変動する。よって、左側観察光と右側観察光との光量が適正な量で左側撮像素子15Lと右側撮像素子15Rとに結像されるように、絞り径調整処理で、変倍に応じた絞り径を調整する。
Next, the aperture diameter adjusting process for adjusting the aperture diameter according to the magnification change in the first embodiment will be described.
As described above, the right diaphragm 12R and the left diaphragm 12L are variable diaphragms. The right-side variable power optical system lens drive section 80 can move at least one of the lens groups G1, G2, G3, and G4 of the right-side variable power optical system 13R in the Z direction to change the magnification. Similarly, the left-side variable power optical system lens driving unit 82 can also perform variable power by moving at least one of the lens groups G1, G2, G3, and G4 of the left-side variable optical system 13L in the Z direction.
Due to the above-mentioned magnification change, the light amounts of the left-side observation light and the right-side observation light that are incident on the left-side image sensor 15L and the right-side image sensor 15R to form an image change. Therefore, the aperture diameter adjusting process adjusts the aperture diameter according to the magnification change so that the left observation light and the right observation light are imaged on the left image sensor 15L and the right image sensor 15R in proper amounts. To do.
 図7には、左右の各絞りの絞り径についてズーム倍率ごとに予め定められた最大径を示すグラフが示されている。各ズーム倍率で当該最大径を超えて絞り径を大きくすると、観察光学系の設計上意図していない左側観察光と右側観察光とが観察光学系に入ってきてしまうため、左側撮像素子15Lと右側撮像素子15Rとに結像する際に収差の発生が大きくなってしまう可能性がある。2次記憶装置62には、図7に示す、各ズーム倍率と、ズーム倍率ごとに予め定められた絞り径の最大値との関係が記憶されている。図7に示すように、当該関係は、ズーム倍率が大きくなるに従って絞り径の最大値も大きくなっている。 FIG. 7 shows a graph showing the maximum diameters of the left and right diaphragms which are predetermined for each zoom magnification. If the aperture diameter is increased to exceed the maximum diameter at each zoom magnification, the left side observation light and the right side observation light, which are not intended in the design of the observation optical system, enter the observation optical system. When the image is formed on the right imaging element 15R, the occurrence of aberration may increase. The secondary storage device 62 stores the relationship between each zoom magnification and the maximum value of the aperture diameter predetermined for each zoom magnification, as shown in FIG. 7. As shown in FIG. 7, in the relationship, the maximum value of the aperture diameter increases as the zoom magnification increases.
 図8には、絞り径調整プログラムに従ってCPU52が実行する絞り径調整処理のフローチャートの一例が示されている。 FIG. 8 shows an example of a flowchart of the aperture diameter adjustment processing executed by the CPU 52 according to the aperture diameter adjustment program.
 絞り径調整処理は、入力装置63を介して倍率が入力されたときにスタートする。入力装置63を介して倍率が入力されると、CPU52は、右側変倍光学系13R及び左側変倍光学系13Lの各々のレンズ群G1、G2、G3、G4の少なくとも1つZ方向に移動して、入力された倍率になるように、右側変倍光学系レンズ駆動部80及び左側変倍光学系レンズ駆動部82を変倍制御する。 ㆍ The aperture diameter adjustment process starts when a magnification is input via the input device 63. When the magnification is input through the input device 63, the CPU 52 moves in the Z direction at least one of the lens groups G1, G2, G3, and G4 of the right-side variable magnification optical system 13R and the left-side variable magnification optical system 13L. Then, the right-side variable magnification optical system lens driving unit 80 and the left-side variable magnification optical system lens driving unit 82 are controlled to change the magnification so that the input magnification is obtained.
 このような変倍制御と共に、絞り径調整処理が実行される。ステップ102で、CPU52は、入力された倍率に対応する絞り径の最大値を、2次記憶装置62に記憶された上記関係から取り込む。ステップ103で、CPU52は、現在の絞り径が、ステップ102で取り込んだ最大径より大きいか否かを判断する。右側絞り12R及び左側絞り12Lの各々の絞り径を変更する場合、CPU52は、右側絞り径変更部85及び左側絞り径変更部87の制御量(現在の絞り径に対応)を2次記憶装置62に記憶している。ステップ103では、右側絞り径変更部85及び左側絞り径変更部87の制御量(現在の絞り径に対応)を2次記憶装置62から読み出し、読み出した右側絞り径変更部85及び左側絞り径変更部87の制御量(現在の絞り径に対応)がステップ102で取り込んだ最大径より大きいか否かを判断する。 ▽ Along with such variable magnification control, aperture diameter adjustment processing is executed. In step 102, the CPU 52 takes in the maximum value of the aperture diameter corresponding to the input magnification from the above relationship stored in the secondary storage device 62. In step 103, the CPU 52 determines whether the current aperture diameter is larger than the maximum diameter captured in step 102. When changing the respective aperture diameters of the right diaphragm 12R and the left diaphragm 12L, the CPU 52 sets the control amounts (corresponding to the current diaphragm diameter) of the right diaphragm diameter changing unit 85 and the left diaphragm diameter changing unit 87 to the secondary storage device 62. I remember. In step 103, the control amounts (corresponding to the current diaphragm diameter) of the right diaphragm diameter changing section 85 and the left diaphragm diameter changing section 87 are read from the secondary storage device 62, and the read right diaphragm diameter changing section 85 and left diaphragm diameter changing are read. It is determined whether the control amount of the portion 87 (corresponding to the current aperture diameter) is larger than the maximum diameter captured in step 102.
 現在の絞り径が最大径より大きいと判断されなかった場合、左側観察光と右側観察光との光量が多すぎるわけではないので、絞り径調整処理は終了する。 If it is not determined that the current aperture diameter is larger than the maximum diameter, the amount of left-side observation light and right-side observation light is not too large, so the aperture diameter adjustment process ends.
 現在の絞り径が最大径より大きいと判断された場合、ステップ104で、CPU52は、右側変倍光学系13R及び左側変倍光学系13Lの各々のレンズ群G1、G2、G3、G4の少なくとも1つZ方向への移動による変倍に連動して、右側絞り12R及び左側絞り12Lの各々の絞り径が変更されるように、右側絞り径変更部85及び左側絞り径変更部87を制御する。具体的には、CPU52は、倍率が低倍端から高倍端へ変倍するのに連動して、各絞り径が大きくなるように、右側絞り径変更部85及び左側絞り径変更部87を制御する。この場合、CPU52は、各絞り径が予め定められた最大径以下となるように、右側絞り径変更部85及び左側絞り径変更部87を制御する。 When it is determined that the current aperture diameter is larger than the maximum diameter, in step 104, the CPU 52 determines at least one of the lens groups G1, G2, G3, and G4 of the right-side variable power optical system 13R and the left-side variable power optical system 13L. The right side aperture diameter changing unit 85 and the left side aperture diameter changing unit 87 are controlled so that the aperture diameters of the right side aperture stop 12R and the left side aperture stop 12L are changed in association with the magnification change by the movement in the Z direction. Specifically, the CPU 52 controls the right diaphragm diameter changing unit 85 and the left diaphragm diameter changing unit 87 so that the respective diaphragm diameters increase in association with the magnification changing from the low magnification end to the high magnification end. To do. In this case, the CPU 52 controls the right diaphragm diameter changing unit 85 and the left diaphragm diameter changing unit 87 so that each diaphragm diameter is equal to or smaller than a predetermined maximum diameter.
 例えば、入力された倍率がMbであった場合、CPU52は、2次記憶装置62に記憶された上記関係から、絞り径の最大値としてAbを取り込む(ステップ102)。現在の絞り径がAbより小さいAaの場合には、ステップ103が否定判定となり、絞り径調整処理は終了する。現在の絞り径がAbであり、倍率としてMaが入力された場合、現在の絞り径Abは、Maに対する最大値Aaより大きい(ステップ103が肯定判定)。ステップ104で、右側絞り12R及び左側絞り12Lの各々の絞り径が最大値Aaに制御される。
 よって、右側絞り12R及び左側絞り12Lの各々の絞り径を、倍率に応じた最大値に制御できる。倍率に基づいて各絞り径を調整することができる。
 図7に示す上記関係は、ズーム倍率が大きくなるに従って絞り径の最大値が大きくなっている。従って、低倍端から高倍端に変倍するのに連動して、右側絞り12R及び左側絞り12Lの各々の絞り径を大きくすることができる。
For example, when the input magnification is Mb, the CPU 52 fetches Ab as the maximum value of the aperture diameter from the above relationship stored in the secondary storage device 62 (step 102). If the current aperture diameter is Aa smaller than Ab, the negative determination is made in step 103, and the aperture diameter adjustment processing ends. When the current aperture diameter is Ab and Ma is input as the magnification, the current aperture diameter Ab is larger than the maximum value Aa for Ma (step 103 is positive). In step 104, the aperture diameters of the right-side aperture 12R and the left-side aperture 12L are controlled to the maximum value Aa.
Therefore, the aperture diameters of the right-side aperture 12R and the left-side aperture 12L can be controlled to the maximum value according to the magnification. Each aperture diameter can be adjusted based on the magnification.
In the above relationship shown in FIG. 7, the maximum value of the aperture diameter increases as the zoom magnification increases. Therefore, it is possible to increase the aperture diameter of each of the right diaphragm 12R and the left diaphragm 12L in association with the zooming from the low magnification end to the high magnification end.
 なお、フットスイッチに倍率を上げる上昇ボタンと下降ボタンを用意し、上昇ボタン/下降ボタンが押され続けている間、倍率が上がり/下がり続けるようにしてもよい。そして、最大径を超えた場合は、逐一最大径に、設定するようにしてもよい。
 なお、絞り径の調整は、変倍に連動せず、右側絞り12R及び左側絞り12Lの各々絞り径が左右対称になるように、行うようにしてもよい。
The foot switch may be provided with an up button and a down button for increasing the magnification, and the magnification may be continuously increased / decreased while the up button / down button is continuously pressed. When the maximum diameter is exceeded, the maximum diameter may be set one by one.
It should be noted that the adjustment of the diaphragm diameter may be performed so that the right diaphragm 12R and the left diaphragm 12L are bilaterally symmetrical, without interlocking with the magnification change.
 図7に示す上記関係を記憶する点、及び図8に示す絞り径調整処理は、他の実施の形態及び変形例も同様である。 The point of storing the above relationship shown in FIG. 7 and the aperture diameter adjustment processing shown in FIG. 8 are the same in other embodiments and modifications.
 従来の顕微鏡では、ユーザの正面に、顕微鏡で得られた画像を表示するモニタを配置すると、顕微鏡が比較的大型であるので、顕微鏡がユーザの視線を邪魔するので、ユーザの正面にモニタを配置することはできなかった。
 これに対し、本実施の形態の顕微鏡では、顕微鏡を比較的小型化し、ユーザの正面にモニタを配置しても顕微鏡がユーザの視線を邪魔しないので、ユーザの正面にモニタを配置することができる。これは、特に、眼科手術時のように、ユーザが座位状態で手術することが多い場合には有用である。顕微鏡を比較的小型化するため、上記のように本実施の形態では、対物レンズの直上(例、鉛直上方)に徹照の光路(例、第1の右側照明光路、第1の左側照明光路)と観察光路(例、右側観察光路、左側観察光路)とが共用する第1右側偏向素子25R及び第1左側偏向素子25Lを設け、第1右側偏向素子25R及び第1左側偏向素子25Lの近辺に、右側変倍光学系13R及び左側変倍光学系13Lの瞳を設けている。このような場合、第1右側偏向素子25R及び第1左側偏向素子25Lは、共通の第1右側偏向素子及び共通の第1左側偏向素子であり、対物レンズ11の光軸110の方向視(例、Z方向)において少なくとも一部が対物レンズ11と重なる位置に配置されている。
In a conventional microscope, if a monitor that displays an image obtained by the microscope is placed in front of the user, the microscope is relatively large, so the microscope obstructs the line of sight of the user, so the monitor is placed in front of the user. I couldn't.
On the other hand, in the microscope of the present embodiment, the microscope is relatively small, and even if the monitor is placed in front of the user, the microscope does not obstruct the line of sight of the user, so that the monitor can be placed in front of the user. .. This is particularly useful when the user often operates in a sitting position, such as during eye surgery. In order to make the microscope relatively small, as described above, in the present embodiment, the light path for transillumination (eg, the first right side illumination light path, the first left side illumination light path) is provided directly above the objective lens (eg, vertically above). ) And the observation optical path (eg, right observation optical path, left observation optical path) are shared by a first right deflection element 25R and a first left deflection element 25L, and the first right deflection element 25R and the first left deflection element 25L are provided in the vicinity thereof. In addition, pupils of the right-side variable power optical system 13R and the left-side variable power optical system 13L are provided. In such a case, the first right-side deflection element 25R and the first left-side deflection element 25L are the common first right-side deflection element and the common first left-side deflection element, and are viewed from the direction of the optical axis 110 of the objective lens 11 (example , Z direction), at least a part of which is arranged so as to overlap the objective lens 11.
 第1の実施の形態では、手術用顕微鏡100A1は、第1右側偏向素子25Rの移動及び第1左側偏向素子25Lの移動によって右側観察光の光軸15RI及び左側観察光の光軸15LIが対象物の位置でなす実体角を所定の角度ごとに連続的に大きくしたり小さくしたりする。例えば、手術用顕微鏡100A1は、手術中(手術用顕微鏡100A1の稼働中(使用中))において上記対象物の位置でなす実体角が互いに異なる第1の実体角、第2の実体角、及び第3の実体角に連続的に変化するように、第1右側偏向素子25Rと第1左側偏向素子25Lとの少なくとも一方の素子を、対応する第1右側偏向素子移動部68Rと第1左側偏向素子移動部68Lとの少なくとも一方の移動部によって連続的に移動させる。よって、右側観察光及び左側観察光の各々により表示装置100ADに表示された右眼用画像と左眼用画像とを見たユーザ150の立体感を増したり減らしたりすることができる。 In the first embodiment, in the surgical microscope 100A1, the optical axis 15RI of the right side observation light and the optical axis 15LI of the left side observation light are moved by the movement of the first right side deflection element 25R and the first left side deflection element 25L. The solid angle formed at the position is continuously increased or decreased by a predetermined angle. For example, the surgical microscope 100A1 has a first body angle, a second body angle, and a second body angle that are different from each other in the body angle during the operation (during operation (in use) of the surgery microscope 100A1). At least one of the first right-side deflecting element 25R and the first left-side deflecting element 25L is connected to the corresponding first right-side deflecting element moving unit 68R and the first left-side deflecting element so as to be continuously changed to the substantial angle of 3. It is continuously moved by at least one of the moving parts 68L. Therefore, it is possible to increase or decrease the stereoscopic effect of the user 150 viewing the right-eye image and the left-eye image displayed on the display device 100AD by each of the right-side observation light and the left-side observation light.
 また、本実施形態の第1右側偏向素子移動部68Rは、対象物と右側観察光学系(右側変倍光学系13R及び右側結像光学系14R)との間の光路において第1右側偏向素子25Rを移動させ、又は、第1左側偏向素子移動部68Lは、対象物と左側観察光学系(左側変倍光学系13L及び左側結像光学系14L)との間の光路において第1左側偏向素子25Lを移動させる。例えば、第1右側偏向素子移動部68R又は第1左側偏向素子移動部68Lは、対物レンズ11と観察光学系(右側観察光学系、左側観察光学系)との間の光路、対象物と対物レンズ11との間の光路、又は観察光(右側観察光、左側観察光)の光路において第1右側偏向素子25R又は第1左側偏向素子25Lを視差方向に対応した所定方向に移動させる。 Further, the first right-side deflection element moving unit 68R of the present embodiment includes the first right-side deflection element 25R in the optical path between the object and the right-side observation optical system (right-side variable magnification optical system 13R and right-side imaging optical system 14R). Or the first left-side deflection element moving unit 68L moves the first left-side deflection element 25L in the optical path between the object and the left-side observation optical system (the left-side variable magnification optical system 13L and the left-side imaging optical system 14L). To move. For example, the first right-side deflection element moving unit 68R or the first left-side deflection element moving unit 68L includes an optical path between the objective lens 11 and the observation optical system (right-side observation optical system, left-side observation optical system), an object and the objective lens. The first right-side deflection element 25R or the first left-side deflection element 25L is moved in a predetermined direction corresponding to the parallax direction in the optical path between the first and the second optical path 11 or the optical path of the observation light (right-side observation light, left-side observation light).
 第1の実施の形態は、手術中において画像(例、視差画像)を視認しながら、ユーザ150が立体感を連続的に調整することができる。例えば、観察物を立体視させる手術用実体顕微鏡の左右像をカメラで撮影して3Dモニタ(ビューワー)などに表示して見ると、通常の接眼で見るより立体感が過剰につきすぎたり、逆に不足したりする場合がある。これは、輻輳による立体視が顕微鏡の左右観察光路の軸間距離、像倍率、被写界深度だけでなく、モニタの大きさ、モニタの視距離、立体視における個人差などにも影響を受けて変化してしまうためである。
 このような場合、手術用顕微鏡では、3Dモニタの大きさ、モニタの視距離、立体視における個人差、及び手術のシーンなどによって、必要とされる立体の飛び出し量(立体角)の微妙な調整が必要となる。
 本実施の形態では、ユーザ150は、手術中において立体感増加スイッチ64や立体感減少スイッチ66を選択的に操作して、上記の実体角を連続的に(もしくは段階的に)変化させることによって表示される画像の立体感を最適に調整することができる。このように、ユーザ150は、環境や手術のシーン等に合わせて立体感を個別にかつ簡単に調整することができる。なお、本実施形態において、上記の実体角は、上記の第1右側偏向素子及び第1左側偏向素子や対応する各移動部などによって、円滑に変化すること、又は段階的に変化することを含む連続的に変化する。
In the first embodiment, the user 150 can continuously adjust the stereoscopic effect while visually observing an image (eg, parallax image) during surgery. For example, if the left and right images of a stereoscopic microscope for surgery that makes an object to be observed stereoscopically photographed by a camera and displayed on a 3D monitor (viewer), the stereoscopic effect becomes excessive, and conversely There may be a shortage. This is because stereoscopic vision due to convergence is affected not only by the distance between the axes of the left and right observation optical paths of the microscope, image magnification and depth of field, but also by the size of the monitor, the viewing distance of the monitor, individual differences in stereoscopic vision, etc. This is because it will change.
In such a case, in the surgical microscope, the required amount of protrusion of the solid (solid angle) is finely adjusted depending on the size of the 3D monitor, the viewing distance of the monitor, the individual difference in stereoscopic vision, the surgical scene, and the like. Is required.
In the present embodiment, the user 150 selectively operates the three-dimensional effect increasing switch 64 and the three-dimensional effect decreasing switch 66 during surgery to change the above-mentioned body angle continuously (or stepwise). It is possible to optimally adjust the stereoscopic effect of the displayed image. In this way, the user 150 can individually and easily adjust the stereoscopic effect according to the environment, the scene of surgery, and the like. It should be noted that in the present embodiment, the body angle includes a smooth change or a stepwise change due to the first right-side deflection element and the first left-side deflection element, the corresponding moving parts, and the like. It changes continuously.
 第1の実施の形態では、各観察光学系の瞳の位置を、第1右側偏向素子25Rと第2右側偏向素子26Rとの間及び第1左側偏向素子25Lと第2左側偏向素子26Lとの間に各々位置させる。このように、瞳の位置を考慮して第1右側偏向素子25R及び第1左側偏向素子25Lを光路に配置させることによって、第1右側偏向素子25R及び第1左側偏向素子25Lの各々の光を反射する領域(有効径)を比較的小さくすることができる。したがって、第1右側偏向素子25R及び第1左側偏向素子25Lのサイズをできるだけ小さくすることができるため、本実施形態の手術顕微鏡では、立体感を減少するために第1右側偏向素子25Rと第1左側偏向素子25Lとを互いに接近させる際に、第1右側偏向素子25Rと第1左側偏向素子25Lとが干渉することを防止することができる。
例えば、表示される対象物の画像の立体感を増やしたり減らしたりする場合、右側変倍光学系13Rと左側変倍光学系13Lとを実体角が変わるように移動させればよいが、該立体感を減少させる場合、それら変倍光学系のレンズ径による干渉の影響を考えると、該立体感を大きく減少させることは難しい。しかしながら、本実施形態における手術用顕微鏡は、第1右側偏向素子25Rと第1左側偏向素子25Lとを用いて立体感を調整するため、該立体感は第1右側偏向素子25Rと第1左側偏向素子25Lとの軸間距離に依存する。上記した通り、第1右側偏向素子25Rと第1左側偏向素子25Lとは、光を反射する有効径を観察光学系(例、左右側の変倍光学系13R、13L)のレンズ径より小さくすることができるため、第1右側偏向素子25Rと第1左側偏向素子25Lとの軸間距離を狭めることによって実体角を小さくでき立体感を大きく減少させることができる。第1右側偏向素子25Rと第1左側偏向素子25Lとの軸間距離は、第1右側偏向素子25Rにおいて右側観察光の光軸15RIが最初に偏向される位置と、第1左側偏向素子25Lにおいて左側観察光の光軸15LIが最初に偏向される位置との視差方向(例、Y方向視でのX方向)における距離を含む。なお、第1右側偏向素子25Rと第1左側偏向素子25Lとの軸間距離は、第1右側偏向素子25Rにおいて右側観察光が入射する有効径の中心、と第1左側偏向素子25Lにおいて左側観察光が入射する有効径の中心との視差方向(例、Y方向視でのX方向)における距離を含む。また、例えば、対物レンズ11を透過した観察光がほぼ平行光として射出される場合、上記の軸間距離は、第1右側偏向素子25Rにおいて右側観察光が偏向される偏向面(例、反射面)における右側観察光の光軸と、第1左側偏向素子25Lにおいて左側観察光が偏向される偏向面における左側観察光の光軸との視差方向(例、Y方向視でのX方向)における距離を含む。
In the first embodiment, the position of the pupil of each observation optical system is set between the first right deflection element 25R and the second right deflection element 26R and between the first left deflection element 25L and the second left deflection element 26L. Place each in between. In this way, by arranging the first right-side deflection element 25R and the first left-side deflection element 25L in the optical path in consideration of the position of the pupil, the respective lights of the first right-side deflection element 25R and the first left-side deflection element 25L are The reflective area (effective diameter) can be made relatively small. Therefore, since the sizes of the first right-side deflection element 25R and the first left-side deflection element 25L can be made as small as possible, the surgical microscope of the present embodiment has the first right-side deflection element 25R and the first right-side deflection element 25R in order to reduce the stereoscopic effect. It is possible to prevent the first right side deflection element 25R and the first left side deflection element 25L from interfering with each other when the left side deflection element 25L is brought close to each other.
For example, in order to increase or decrease the stereoscopic effect of the image of the displayed object, the right-side variable magnification optical system 13R and the left-side variable magnification optical system 13L may be moved so that the stereoscopic angle changes. When reducing the feeling, it is difficult to greatly reduce the stereoscopic effect, considering the influence of interference due to the lens diameters of the variable power optical systems. However, since the surgical microscope in the present embodiment adjusts the stereoscopic effect using the first right-side deflection element 25R and the first left-side deflection element 25L, the stereoscopic effect is the first right-side deflection element 25R and the first left-side deflection element. It depends on the axial distance from the element 25L. As described above, the first right-side deflection element 25R and the first left-side deflection element 25L make the effective diameter for reflecting light smaller than the lens diameter of the observation optical system (for example, the left and right variable magnification optical systems 13R and 13L). Therefore, by reducing the axial distance between the first right-side deflection element 25R and the first left-side deflection element 25L, the real angle can be reduced and the stereoscopic effect can be greatly reduced. The axial distance between the first right-side deflection element 25R and the first left-side deflection element 25L is determined by the position where the optical axis 15RI of the right-side observation light is first deflected in the first right-side deflection element 25R and the first left-side deflection element 25L. It includes the distance in the parallax direction (eg, the X direction when viewed in the Y direction) from the position where the optical axis 15LI of the left-side observation light is first deflected. The axial distance between the first right-side deflection element 25R and the first left-side deflection element 25L is the center of the effective diameter on which the right-side observation light is incident on the first right-side deflection element 25R and the left-side observation on the first left-side deflection element 25L. It includes the distance in the parallax direction (eg, the X direction when viewed in the Y direction) from the center of the effective diameter on which light is incident. In addition, for example, when the observation light that has passed through the objective lens 11 is emitted as substantially parallel light, the above-mentioned inter-axis distance has a deflection surface (eg, a reflection surface) on which the right observation light is deflected by the first right deflection element 25R. ) In the parallax direction (eg, the X direction when viewed in the Y direction) between the optical axis of the right side observation light and the optical axis of the left side observation light on the deflection surface on which the left side observation light is deflected by the first left side deflection element 25L. including.
 上記各効果は、他の実施の形態も同様である。 -Each effect described above is the same in other embodiments.
[第1の実施の形態の変形例]
 次に、第1の実施の形態の変形例を説明する。
(第1の実施の形態の第1の変形例)
 第1の実施の形態の第1の変形例を説明する。第1の実施の形態の第1の変形例の構成は第1の実施の形態と略同様であるので、主として異なる部分のみを説明する。
 第1の実施の形態の第1の変形例では、第2右側偏向素子26R及び第2左側偏向素子26Lは、移動できないように固定されている。第1の実施の形態の第1の変形例では、第2右側偏向素子移動部70R及び第2左側偏向素子移動部70Lは省略されている。右側撮像光学装置移動部72は、右側撮像光学装置131415RをZ方向に移動する。左側撮像光学装置移動部74は、左側撮像光学装置131415LをZ方向に移動する。
[Modification of First Embodiment]
Next, a modified example of the first embodiment will be described.
(First Modification of First Embodiment)
A first modified example of the first embodiment will be described. The configuration of the first modified example of the first embodiment is substantially the same as that of the first embodiment, so only the different portions will be mainly described.
In the first modification of the first embodiment, the second right-side deflection element 26R and the second left-side deflection element 26L are fixed so as not to move. In the first modification of the first embodiment, the second right-side deflection element moving unit 70R and the second left-side deflection element moving unit 70L are omitted. The right imaging optical device moving unit 72 moves the right imaging optical device 131415R in the Z direction. The left imaging optical device moving unit 74 moves the left imaging optical device 131415L in the Z direction.
 第1の実施の形態の第1の変形例の作用は第1の実施の形態と略同様であるので、主として異なる部分のみを説明する。 The operation of the first modification of the first embodiment is substantially the same as that of the first embodiment, so only the different parts will be mainly described.
 第1の実施の形態では、ステップ84では、図9に示すように、第2右側偏向素子26R及び右側撮像光学装置131415Rと、第2左側偏向素子26L及び左側撮像光学装置移動部74とをそれぞれ、X(正)方向とX(負)方向とに移動させる。
 これに対し、第1の変形例では、ステップ84では、図10に示すように、第2右側偏向素子26R及び第2左側偏向素子26Lは移動させず、右側撮像光学装置移動部72及び左側撮像光学装置移動部74はそれぞれ、右側撮像光学装置131415R及び左側撮像光学装置131415LをZ(正)方向に移動させる。なお、右側撮像光学装置131415RをZ(正)方向に移動させる距離は、第1右側偏向素子25R及び右側絞り12Rを移動させる距離に対応する。照明光及び観察光の各々の上記光路長を維持するためである。なお、左側撮像光学装置131415LをZ(正)方向に移動させる距離も同様である。
In the first embodiment, in step 84, as shown in FIG. 9, the second right-side deflection element 26R and the right-sided imaging optical device 131415R, the second left-sided deflection element 26L, and the left-sided imaging optical device moving unit 74 are respectively arranged. , X (positive) direction and X (negative) direction.
On the other hand, in the first modification, in step 84, as shown in FIG. 10, the second right-side deflection element 26R and the second left-side deflection element 26L are not moved, and the right-side imaging optical device moving unit 72 and the left-side imaging are performed. The optical device moving unit 74 moves the right imaging optical device 131415R and the left imaging optical device 131415L in the Z (positive) direction, respectively. The distance by which the right imaging optical device 131415R is moved in the Z (positive) direction corresponds to the distance by which the first right deflection element 25R and the right diaphragm 12R are moved. This is for maintaining the optical path lengths of the illumination light and the observation light. The same applies to the distance that the left imaging optical device 131415L is moved in the Z (positive) direction.
 第1の実施の形態では、ステップ92では、第2右側偏向素子26R及び右側撮像光学装置131415Rと、第2左側偏向素子26L及び左側撮像光学装置移動部74とをそれぞれ、X(負)方向とX(正)方向とに移動させる。
 これに対し、第1の変形例では、ステップ92では、第2右側偏向素子26R及び第2左側偏向素子26Lは移動させず、右側撮像光学装置移動部72及び左側撮像光学装置移動部74はそれぞれ、右側撮像光学装置131415R及び左側撮像光学装置131415LをZ(負)方向に移動させる。なお、右側撮像光学装置131415RをZ(負)方向に移動させる距離は、第1右側偏向素子25R及び右側絞り12Rを移動させる距離に対応する。照明光及び観察光の各々の上記光路長を維持するためである。なお、左側撮像光学装置131415LをZ(正)方向に移動させる距離も同様である。
In the first embodiment, in step 92, the second right-side deflection element 26R and the right-sided imaging optical device 131415R and the second left-sided deflection element 26L and the left-sided imaging optical device moving unit 74 are respectively set in the X (negative) direction. Move in the X (positive) direction.
On the other hand, in the first modified example, in step 92, the second right side deflection element 26R and the second left side deflection element 26L are not moved, and the right side imaging optical device moving unit 72 and the left side imaging optical device moving unit 74 are respectively moved. , The right imaging optical device 131415R and the left imaging optical device 131415L are moved in the Z (negative) direction. The distance for moving the right imaging optical device 131415R in the Z (negative) direction corresponds to the distance for moving the first right deflection element 25R and the right diaphragm 12R. This is for maintaining the optical path lengths of the illumination light and the observation light. The same applies to the distance that the left imaging optical device 131415L is moved in the Z (positive) direction.
(第1の実施の形態の第2の変形例)
 第1の実施の形態の第2の変形例を説明する。第1の実施の形態の第2の変形例の構成及び作用は第1の実施の形態と略同様であるので、異なる部分のみを説明する。
 第1の実施の形態では、立体感増加スイッチ64又は立体感減少スイッチ66がオンされた場合、第1右側偏向素子25R及び右側絞り12R、第1左側偏向素子25L及び左側絞り12L、右側撮像光学装置131415R、左側撮像光学装置131415L、右側照明光源光学系1618R、左側照明光源光学系1618Lを移動している。第2の変形例では、例えば、立体感増加スイッチ64及び立体感減少スイッチ66を、左右用の各々用に設け、各スイッチに応じて右側又は左側のみの立体感を調整する。具体的には、右側立体感増加スイッチ、右側立体感減少スイッチ、左側立体感増加スイッチ、及び左側立体感減少スイッチを設ける。例えば、右側立体感増加スイッチがオンされた場合、第1右側偏向素子25R及び右側絞り12R、右側撮像光学装置131415R、及び右側照明光源光学系1618Rのみを、実体角が大きくなるように、移動する。また、例えば、左側立体感減少スイッチがオンされた場合、第1左側偏向素子25L及び左側絞り12L、左側撮像光学装置131415L、及び左側照明光源光学系1618Lのみを、実体角が小さくなるように、移動する。
(Second Modification of First Embodiment)
A second modification of the first embodiment will be described. The configuration and operation of the second modified example of the first embodiment are substantially the same as those of the first embodiment, so only different parts will be described.
In the first embodiment, when the stereoscopic effect increasing switch 64 or the stereoscopic effect decreasing switch 66 is turned on, the first right deflecting element 25R and the right diaphragm 12R, the first left deflecting element 25L and the left diaphragm 12L, the right imaging optics. The device 131415R, the left imaging optical device 131415L, the right illumination light source optical system 1618R, and the left illumination light source optical system 1618L are moved. In the second modification, for example, a stereoscopic effect increasing switch 64 and a stereoscopic effect decreasing switch 66 are provided for each of the left and right, and the stereoscopic effect of only the right side or the left side is adjusted according to each switch. Specifically, a right stereoscopic effect increasing switch, a right stereoscopic effect decreasing switch, a left stereoscopic effect increasing switch, and a left stereoscopic effect decreasing switch are provided. For example, when the right stereoscopic effect increasing switch is turned on, only the first right deflection element 25R, the right diaphragm 12R, the right imaging optical device 131415R, and the right illumination light source optical system 1618R are moved so that the substantial angle becomes large. .. Further, for example, when the left stereoscopic effect reduction switch is turned on, only the first left deflection element 25L and the left diaphragm 12L, the left imaging optical device 131415L, and the left illumination light source optical system 1618L are reduced in body angle, Moving.
(第1の実施の形態の第3の変形例)
 次に、第1の実施の形態の第3の変形例を説明する。第1の実施の形態の第3の変形例の構成は第1の実施の形態と略同様であるので、異なる部分のみを説明する。
 第1の実施の形態では、図2Aに示すように、右側絞り12Rが配置される位置は、第1右側偏向素子25Rと第2右側偏向素子26Rとの間の光路であり、左側絞り12Lが配置される位置は、第1左側偏向素子25Lと第2左側偏向素子26Lとの間の光路である。
(Third Modification of First Embodiment)
Next, a third modified example of the first embodiment will be described. The configuration of the third modification of the first embodiment is substantially the same as that of the first embodiment, so only different parts will be described.
In the first embodiment, as shown in FIG. 2A, the position where the right diaphragm 12R is arranged is the optical path between the first right deflecting element 25R and the second right deflecting element 26R, and the left diaphragm 12L is The position to be arranged is the optical path between the first left side deflection element 25L and the second left side deflection element 26L.
 これに対し、第3の変形例の第1の態様では、図11に示すように、右側絞り12R1が配置される位置は、右側変倍光学系13Rと第2右側偏向素子26Rとの間の光路である。左側絞りが配置される位置も、右側絞り12R1に対応して、左側変倍光学系13Lと第2左側偏向素子26Lとの間の光路である。
 第3の変形例の第2の態様では、右側絞り12R2が配置される位置は、第2右側偏向素子26Rの第1右側偏向素子25Rに向かう側の面である。具体的には、第2右側偏向素子26Rの右側観察光が入射する入射面、当該右側観察光が反射する反射面、第2右側偏向素子26Rにおける右側の完全同軸照明光の射出面である。左側絞りが配置される位置も、右側絞り12R2に対応して、第2左側偏向素子26Lの第1左側偏向素子25Lに向かう側の面である。具体的には、第2左側偏向素子26Lの左側観察光が入射する入射面、当該左側観察光が反射する反射面、第2左側偏向素子26Lにおける左側の完全同軸照明光の射出面である。
この場合、左右の各絞りは、開口部と遮光部とを有するマスクとして機能する。
 
 第3の変形例の第3の態様では、右側絞り12R3が配置される位置は、第1右側偏向素子25Rの第2右側偏向素子26Rに向かう側の面である。具体的には、第1右側偏向素子25Rの右側観察光が入射する入射面及び反射面、第1右側偏向素子25Rにおける右側の完全同軸照明光の入射面及び反射面である。左側絞りが配置される位置も、右側絞り12R3に対応して、第1左側偏向素子25Lの第2左側偏向素子26Lに向かう側の面である。具体的には、第1左側偏向素子25Lの左側観察光が入射する入射面及び反射面、第1左側偏向素子25Lにおける左側の完全同軸照明光の入射面及び反射面である。この場合、左右の各絞りは、開口部と遮光部とを有するマスクとして機能する。
 第3の変形例の第4の態様では、右側絞り12R4が配置される位置は、第1右側偏向素子25Rと対物レンズ11との間の光路である。左側絞りが配置される位置も、右側絞り12R4に対応して、第1左側偏向素子25Lと対物レンズ11との間の光路である。
 なお、右側絞り及び左側絞りの配置位置は、第1の態様から第4の態様の各位置ではなく、それらの何れかの位置である。
 ステップ84では、図12に示すように、右側絞り(12R、12R1、12R4)は、第1右側偏向素子25R及び第1左側偏向素子25Lの移動と共に、移動される。なお、左側絞りも同様に移動される。
On the other hand, in the first aspect of the third modification, as shown in FIG. 11, the position where the right diaphragm 12R1 is arranged is between the right variable magnification optical system 13R and the second right deflection element 26R. It is an optical path. The position where the left diaphragm is arranged is also the optical path between the left variable magnification optical system 13L and the second left deflecting element 26L corresponding to the right diaphragm 12R1.
In the second aspect of the third modification, the position where the right diaphragm 12R2 is arranged is the surface of the second right deflecting element 26R facing the first right deflecting element 25R. Specifically, they are an incident surface on which the right side observation light of the second right deflection element 26R is incident, a reflection surface on which the right side observation light is reflected, and an emission surface of the right perfect coaxial illumination light on the second right deflection element 26R. The position where the left diaphragm is arranged is also the surface of the second left deflecting element 26L facing the first left deflecting element 25L, corresponding to the right diaphragm 12R2. Specifically, it is an incident surface on which the left-side observation light of the second left-side deflection element 26L is incident, a reflection surface on which the left-side observation light is reflected, and an exit surface of the left-side perfect coaxial illumination light on the second left-side deflection element 26L.
In this case, each of the left and right diaphragms functions as a mask having an opening and a light shield.

In the third aspect of the third modification, the position where the right diaphragm 12R3 is arranged is the surface of the first right deflecting element 25R on the side facing the second right deflecting element 26R. Specifically, they are the incident surface and the reflecting surface of the first right-side deflecting element 25R on which the right-side observation light enters, and the incident surface and the reflecting surface of the right-side perfect coaxial illumination light on the first right-side deflecting element 25R. The position where the left diaphragm is arranged is also the surface of the first left deflecting element 25L facing the second left deflecting element 26L, corresponding to the right diaphragm 12R3. Specifically, they are the incident surface and the reflection surface of the first left-side deflection element 25L on which the left-side observation light is incident, and the left-side perfect coaxial illumination light incident surface and the reflection surface of the first left-side deflection element 25L. In this case, each of the left and right diaphragms functions as a mask having an opening and a light shield.
In the fourth aspect of the third modified example, the position where the right diaphragm 12R4 is arranged is the optical path between the first right deflection element 25R and the objective lens 11. The position where the left diaphragm is arranged is also the optical path between the first left deflecting element 25L and the objective lens 11, corresponding to the right diaphragm 12R4.
The positions of the right-side diaphragm and the left-side diaphragm are not the respective positions of the first aspect to the fourth aspect, but any of them.
In step 84, as shown in FIG. 12, the right diaphragms (12R, 12R1, 12R4) are moved together with the movement of the first right deflection element 25R and the first left deflection element 25L. The left diaphragm is also moved in the same manner.
(第1の実施の形態の第4の変形例)
 次に、第1の実施の形態の第4の変形例を説明する。第1の実施の形態の第4の変形例の構成は第1の実施の形態と略同様であるので、異なる部分のみを説明する。
 第1の実施の形態の第4の変形例は、完全同軸照明と近同軸照明とを切り換える例である。
(Fourth Modification of First Embodiment)
Next, a fourth modification of the first embodiment will be described. The configuration of the fourth modification of the first embodiment is substantially the same as that of the first embodiment, so only different parts will be described.
The fourth modification of the first embodiment is an example of switching between perfect coaxial illumination and near coaxial illumination.
 第1の実施の形態の第4の変形例では、右側照明光学系及び光源移動部76及び左側照明光学系及び光源移動部78に代えて、次の移動部を備えている。具体的には、第1の実施の形態の第4の変形例は、右側完全同軸照明光源完全同軸照明光学系1823Rを、Z方向に移動させる右側完全同軸照明光源完全同軸照明光学系移動部を備える。第1の実施の形態の第4の変形例は、左側完全同軸照明光源完全同軸照明光学系1823Lを、Z方向に移動させる左側完全同軸照明光源完全同軸照明光学系移動部を備える。 In the fourth modification of the first embodiment, the following moving unit is provided instead of the right side illumination optical system and light source moving unit 76 and the left side illumination optical system and light source moving unit 78. Specifically, in the fourth modification of the first embodiment, the right complete coaxial illumination light source complete coaxial illumination optical system 1823R is moved to the Z direction by the right complete coaxial illumination light source complete coaxial illumination optical system moving unit. Prepare The fourth modification of the first embodiment includes a left perfect coaxial illumination light source perfect coaxial illumination optical system moving unit that moves the left perfect coaxial illumination light source perfect coaxial illumination optical system 1823L in the Z direction.
 具体的には、入力装置63により、完全同軸照明から近同軸照明に切り換える切り換え指示信号が入力された場合、CPU52の制御により右側完全同軸照明光源完全同軸照明光学系移動部は、右側完全同軸照明光源完全同軸照明光学系1823RをZ(正又は負)方向に、所定距離だけ移動させることにより、右側完全同軸照明光源完全同軸照明光学系1823Rを、完全同軸照明から近同軸照明に切り換える。同様に、左側完全同軸照明光源完全同軸照明光学系移動部は、左側完全同軸照明光源完全同軸照明光学系1823LをZ(正又は負)方向に移動させることにより、左側完全同軸照明光源完全同軸照明光学系1823Lを、完全同軸照明から近同軸照明に切り換える。 Specifically, when a switching instruction signal for switching from full coaxial illumination to near coaxial illumination is input from the input device 63, the right complete coaxial illumination light source complete coaxial illumination optical system moving unit causes the right complete coaxial illumination under the control of the CPU 52. By moving the light source perfect coaxial illumination optical system 1823R in the Z (positive or negative) direction by a predetermined distance, the right perfect coaxial illumination light source perfect coaxial illumination optical system 1823R is switched from perfect coaxial illumination to near coaxial illumination. Similarly, the left perfect coaxial illumination light source perfect coaxial illumination optical system moving unit moves the left perfect coaxial illumination light source perfect coaxial illumination optical system 1823L in the Z (positive or negative) direction to complete the left perfect coaxial illumination light source perfect coaxial illumination. The optical system 1823L is switched from full coaxial illumination to near coaxial illumination.
 また、入力装置63により、近同軸照明から完全同軸照明に切り換える切り換え指示信号が入力された場合、CPU52の制御により右側完全同軸照明光源完全同軸照明光学系移動部は、右側完全同軸照明光源完全同軸照明光学系1823Rを、図2Aに示す位置に戻すことにより、右側完全同軸照明光源完全同軸照明光学系1823Rを、近同軸照明から完全同軸照明に切り換える。同様に、左側完全同軸照明光源完全同軸照明光学系移動部は、左側完全同軸照明光源完全同軸照明光学系1823Lを、図2Aに示す位置に戻すことにより、左側完全同軸照明光源完全同軸照明光学系1823Lを、近同軸照明から完全同軸照明に切り換える。 Further, when a switching instruction signal for switching from near-coaxial illumination to full-coaxial illumination is input from the input device 63, the right complete coaxial illumination light source complete coaxial illumination optical system moving unit is controlled by the CPU 52 to the right complete coaxial illumination light source complete coaxial. By returning the illumination optical system 1823R to the position shown in FIG. 2A, the right-side perfect coaxial illumination light source complete coaxial illumination optical system 1823R is switched from near-coaxial illumination to complete-coaxial illumination. Similarly, the left complete coaxial illumination light source complete coaxial illumination optical system moving unit returns the left complete coaxial illumination light source complete coaxial illumination optical system 1823L to the position shown in FIG. Switch the 1823L from near-coaxial illumination to full-coaxial illumination.
 また、完全同軸照明から近同軸照明への切り換え指示信号が入力されている間、右側完全同軸照明光源完全同軸照明光学系移動部は、右側完全同軸照明光源完全同軸照明光学系1823RをZ方向(正又は負)に移動し続け、左側完全同軸照明光源完全同軸照明光学系移動部は、左側完全同軸照明光源完全同軸照明光学系1823LをZ方向(正又は負)に移動し続けるようにしてもよい。近同軸照明から完全同軸照明への切り換え指示信号が入力された場合には、右側完全同軸照明光源完全同軸照明光学系1823R及び左側完全同軸照明光源完全同軸照明光学系1823Lは、図2Aに示す位置に戻される。 Further, while the switching instruction signal for switching from the perfect coaxial illumination to the near coaxial illumination is being input, the right complete coaxial illumination light source complete coaxial illumination optical system moving unit moves the right complete coaxial illumination light source complete coaxial illumination optical system 1823R in the Z direction ( Even if the left complete coaxial illumination light source complete coaxial illumination optical system moving unit keeps moving the left complete coaxial illumination light source complete coaxial illumination optical system 1823L in the Z direction (positive or negative). Good. When a switching instruction signal for switching from near coaxial illumination to full coaxial illumination is input, the right complete coaxial illumination light source complete coaxial illumination optical system 1823R and the left complete coaxial illumination light source complete coaxial illumination optical system 1823L are positioned as shown in FIG. 2A. Returned to.
 ところで、第4の変形例では、右側完全同軸照明光源完全同軸照明光学系1823R及び左側完全同軸照明光源完全同軸照明光学系1823Lは、Z方向に移動されるようにしているが、本開示の技術はこれに限定されない。右側完全同軸照明光源完全同軸照明光学系1823R及び左側完全同軸照明光源完全同軸照明光学系1823Lの移動方向は、Y方向でもよく、Z方向及びY方向の双方に成分をもつ方向でもよい。具体的には、X軸に垂直な断面方向でもよい。上記光学系(1823R及び1823LをX軸に垂直な断面方向に動かせば、完全同軸=0°だったものを、左右の観察光の光軸に対して、例えば、2°の角度に、左右の照明光の角度を変えることになる。つまり、例えば、右側について説明すると、X方向から見た時に、右観察光の光軸15RIから照明光軸が半径r離れていたとすると、そのrが照明角度に変換されるので、一致している(即ち、r=0)場合、完全同軸、離れているとその距離に従って例えば2°等の近同軸照明にする。 By the way, in the fourth modified example, the right complete coaxial illumination light source complete coaxial illumination optical system 1823R and the left complete coaxial illumination light source complete coaxial illumination optical system 1823L are moved in the Z direction. Is not limited to this. The moving direction of the right complete coaxial illumination light source complete coaxial illumination optical system 1823R and the left complete coaxial illumination light source complete coaxial illumination optical system 1823L may be the Y direction, or may be the direction having components in both the Z direction and the Y direction. Specifically, it may be a cross-sectional direction perpendicular to the X axis. If the above optical system (1823R and 1823L is moved in the cross-sectional direction perpendicular to the X-axis, what is perfect coaxial = 0 ° is changed to, for example, an angle of 2 ° with respect to the optical axis of the left and right observation light. That is, the angle of the illumination light is changed, that is, for example, when the right side is described, when the illumination optical axis is away from the optical axis 15RI of the right observation light by a radius r when viewed from the X direction, the r is the illumination angle. Therefore, when they match (that is, r = 0), they are completely coaxial, and when they are distant, they are near-coaxial illumination such as 2 ° according to the distance.
 第1の実施の形態の第4の変形例は、完全同軸照明から近同軸照明に、及び、近同軸照明から完全同軸照明に切り換えることができる。 In the fourth modification of the first embodiment, it is possible to switch from perfect coaxial illumination to near coaxial illumination, and from near coaxial illumination to perfect coaxial illumination.
 更に、完全同軸照明から、近同軸照明を超えて、斜照明にしてもよい。即ち、右観察光の光軸15RIから照明光軸が半径r離れていたとすると、その距離に従って例えば6°等の斜照明にしてもよい。Y軸から見た断面で、右斜照明の光軸16RIと右完全同軸照明の光軸18RIは重なっていてもよい。 Furthermore, you may change from perfect coaxial lighting to near-coaxial lighting to oblique lighting. That is, assuming that the illumination optical axis is away from the optical axis 15RI of the right observation light by the radius r, oblique illumination may be performed at 6 ° or the like according to the distance. In the cross section viewed from the Y axis, the right oblique illumination optical axis 16RI and the right perfect coaxial illumination optical axis 18RI may overlap.
(第1の実施の形態の第5の変形例)
 次に、第1の実施の形態の第5の変形例を説明する。第1の実施の形態の第5の変形例の構成は第1の実施の形態と略同様であるので、異なる部分のみを説明する。
 第1の実施の形態では、図2Aに示すように、右側撮像光学装置131415R及び左側撮像光学装置131415Lを、対物レンズ11のZ(正)方向側に配置している。
 これに対し、第5の変形例では、右側撮像光学装置131415R及び左側撮像光学装置131415Lを、対物レンズ11のY(正又は負)方向側に配置する。第2右側偏向素子26Rは、右側観察光を、右側変倍光学系13Rに向かってY(正又は負)方向に反射する。第2左側偏向素子26Lは、左側観察光を、左側変倍光学系13Lに向かってY(正又は負)方向に反射する。
(Fifth Modification of First Embodiment)
Next, a fifth modification of the first embodiment will be described. The configuration of the fifth modification of the first embodiment is substantially the same as that of the first embodiment, so only different parts will be described.
In the first embodiment, as shown in FIG. 2A, the right imaging optical device 131415R and the left imaging optical device 131415L are arranged on the Z (positive) direction side of the objective lens 11.
On the other hand, in the fifth modification, the right imaging optical device 131415R and the left imaging optical device 131415L are arranged on the Y (positive or negative) direction side of the objective lens 11. The second right deflection element 26R reflects the right observation light in the Y (positive or negative) direction toward the right variable magnification optical system 13R. The second left-side deflection element 26L reflects the left-side observation light in the Y (positive or negative) direction toward the left-side variable power optical system 13L.
[第2の実施の形態] [Second Embodiment]
 次に、本開示の技術の第2の実施の形態を説明する。 Next, a second embodiment of the technology of the present disclosure will be described.
 第2の実施の形態の手術用顕微鏡100A2の構成は、第1の実施の形態の手術用顕微鏡100A1(図2)と略同様であるので、主として異なる部分を説明する。 The configuration of the surgical microscope 100A2 according to the second embodiment is substantially the same as that of the surgical microscope 100A1 according to the first embodiment (FIG. 2), so mainly different portions will be described.
 図17には、第2の実施の形態の手術用顕微鏡100A2の断面図が示されている。 FIG. 17 shows a sectional view of the surgical microscope 100A2 of the second embodiment.
 第1の実施の形態の手術用顕微鏡100A1(図2A)では、眼の表面を照明し、眼の表面からの右側観察光(光軸15RI参照)及び左側観察光(光軸15LI参照)はそれぞれ右側撮像素子15R及び左側撮像素子15Lに結像する。 In the surgical microscope 100A1 (FIG. 2A) of the first embodiment, the surface of the eye is illuminated, and the right side observation light (see optical axis 15RI) and the left side observation light (see optical axis 15LI) from the eye surface are respectively obtained. An image is formed on the right imaging element 15R and the left imaging element 15L.
 これに対し、第2の実施の形態の手術用顕微鏡100A2は、眼の直近に、手動又は自動で配置される前置レンズ132を備える。前置レンズ132は、非接触タイプと、眼の上に直接設置するコンタクトタイプとがある。前置レンズ132は、凸レンズでも凹レンズでもよい。以下、凸レンズの前置レンズ132を例にとり説明する。
 各照明光(光軸16RI、16LI、18RI、18LI参照)は、焦点(物体面)を超え、前置レンズ132により、略平行光となり、眼130により眼底に結像する。眼130の眼底からの右側観察光及び左側観察光は、前置レンズ132を介して第1右側偏向素子25R及び第1左側偏向素子25Lに到達する。
On the other hand, the surgical microscope 100A2 according to the second embodiment includes the front lens 132 that is manually or automatically arranged in the immediate vicinity of the eye. The front lens 132 includes a non-contact type and a contact type that is directly placed on the eye. The front lens 132 may be a convex lens or a concave lens. The convex lens front lens 132 will be described below as an example.
Each illumination light (see optical axes 16RI, 16LI, 18RI, 18LI) exceeds the focal point (object plane), becomes substantially parallel light by the front lens 132, and forms an image on the fundus by the eye 130. The right side observation light and the left side observation light from the fundus of the eye 130 reach the first right side deflection element 25R and the first left side deflection element 25L via the front lens 132.
 第2の実施の形態は第1の実施の形態と同様の効果を有するが、更に、前置レンズ132により、眼底の広い範囲を観察することができる。
 上記のように、本実施の形態の顕微鏡では、対物レンズ直上に徹照の光路と観察光路とが共用する第1右側偏向素子25R及び第1左側偏向素子25Lを設け、第1右側偏向素子25R及び第1左側偏向素子25Lの近辺に、右側変倍光学系13R及び左側変倍光学系13Lの瞳を設けている。これにより、顕微鏡を比較的小型化し、ユーザの正面にモニタを配置することができる。
The second embodiment has the same effect as that of the first embodiment, but further the front lens 132 allows observation of a wide range of the fundus.
As described above, in the microscope of the present embodiment, the first right-side deflection element 25R and the first left-side deflection element 25L which are shared by the transillumination optical path and the observation optical path are provided directly above the objective lens, and the first right-side deflection element 25R is provided. The pupils of the right-side variable magnification optical system 13R and the left-side variable magnification optical system 13L are provided in the vicinity of the first left-side deflection element 25L. This allows the microscope to be relatively small and the monitor to be placed in front of the user.
[第3の実施の形態] [Third Embodiment]
 次に、本開示の技術の第3の実施の形態を説明する。第3の実施の形態の手術用顕微鏡の構成は、第2の実施の形態の手術用顕微鏡100A2と略同様の構成であるので、主として異なる部分を説明する。 Next, a third embodiment of the technology of the present disclosure will be described. The configuration of the surgical microscope of the third embodiment is substantially the same as that of the surgical microscope 100A2 of the second embodiment, and therefore the different portions will be mainly described.
 図18には、第3の実施の形態の手術用顕微鏡100A3の断面図が示されている。手術用顕微鏡100A3は、眼内を照明するファイバ140を備えている。 FIG. 18 shows a sectional view of the surgical microscope 100A3 according to the third embodiment. The surgical microscope 100A3 includes a fiber 140 that illuminates the inside of the eye.
 第3の実施の形態は第2の実施の形態と同様の効果を有するが、更に、徹照及び斜照明に加えて、ファイバ140により、眼内を直接照明することができるという効果を有する。 The third embodiment has the same effect as the second embodiment, but further has the effect that the fiber 140 can directly illuminate the inside of the eye in addition to the transillumination and oblique illumination.
[第4の実施の形態] [Fourth Embodiment]
 次に、本開示の技術の第4の実施の形態を説明する。 Next, a fourth embodiment of the technology of the present disclosure will be described.
 第4の実施の形態の手術用顕微鏡の構成は、第1の実施の形態の手術用顕微鏡100A1と略同様であるので、主として異なる部分のみを説明する。 The configuration of the surgical microscope according to the fourth embodiment is substantially the same as that of the surgical microscope 100A1 according to the first embodiment, and therefore only different portions will be mainly described.
 図19には、第4の実施の形態の手術用顕微鏡100A4の断面図が示されている。図20は、立体感調整(ステップ84)の際の手術用顕微鏡100A4の様子(断面図)を示す。 FIG. 19 shows a sectional view of the surgical microscope 100A4 of the fourth embodiment. FIG. 20 shows a state (cross-sectional view) of the surgical microscope 100A4 at the time of adjusting the stereoscopic effect (step 84).
 図19に示すように、手術用顕微鏡100A4は、第1の実施の形態における第1右側偏向素子25R及び第1左側偏向素子25Lに代えて、第1右側偏向素子25R1及び右側斜照明光偏向素子25R2と、第1左側偏向素子25L1及び左側斜照明光偏向素子25L2とを備えている。 As shown in FIG. 19, the surgical microscope 100A4 includes a first right-side deflection element 25R1 and a right-side oblique illumination light deflection element instead of the first right-side deflection element 25R and the first left-side deflection element 25L in the first embodiment. 25R2, a first left-side deflection element 25L1 and a left oblique illumination light deflection element 25L2.
 第1右側偏向素子25R1は、本開示の技術の「右側偏向素子」の一例であり、第1左側偏向素子25L1は、本開示の技術の「左側偏向素子」の一例である。
 右側斜照明光偏向素子25R2は、本開示の技術の「右側反射偏向素子」の一例であり、左側斜照明光偏向素子25L2は、本開示の技術の「左側反射偏向素子」の一例である。
The first right-side deflection element 25R1 is an example of the “right-side deflection element” of the technology of the present disclosure, and the first left-side deflection element 25L1 is an example of the “left-side deflection element” of the technology of the present disclosure.
The right oblique illumination light deflection element 25R2 is an example of the “right reflection deflection element” of the technology of the present disclosure, and the left oblique illumination light deflection element 25L2 is an example of the “left reflection deflection element” of the technology of the present disclosure.
 右側斜照明光偏向素子25R2は、右側斜照明光(光軸16RI参照)を、対物レンズ11に向かって反射する。また、第1右側偏向素子25R1は、第2右側偏向素子26Rを透過した右側完全同軸照明光(光軸18RI参照)を対物レンズ11に向かって反射する。
 第1右側偏向素子25R1は、眼から反射し対物レンズ11を透過した反射光である観察光の少なくとも一部(光軸15RI参照)を、第2右側偏向素子26Rを介して、右側撮像光学装置131415Rの光路へ偏向することにより、右側観察光を形成する。
The right oblique illumination light deflection element 25R2 reflects the right oblique illumination light (see the optical axis 16RI) toward the objective lens 11. The first right-side deflection element 25R1 also reflects the right-side perfect coaxial illumination light (see optical axis 18RI) that has passed through the second right-side deflection element 26R toward the objective lens 11.
The first right-side deflection element 25R1 transmits at least a part (see optical axis 15RI) of the observation light, which is the reflected light reflected from the eye and transmitted through the objective lens 11, via the second right-side deflection element 26R to the right-side imaging optical device. By deflecting to the optical path of 131415R, right side observation light is formed.
 左側斜照明光偏向素子25L2は、左側斜照明光(光軸16LI参照)を、対物レンズ11に向かって反射する。また、第1左側偏向素子25L1は、第2左側偏向素子26Lを透過した左側完全同軸照明光(光軸18LI参照)を対物レンズ11に向かって反射する。
 第1左側偏向素子25L1は、眼から反射し対物レンズ11を透過した反射光である観察光の少なくとも一部(光軸15LI参照)を、第2左側偏向素子26Lを介して、左側撮像光学装置131415Lの光路へ偏向することにより、左側観察光を形成する。
The left oblique illumination light deflection element 25L2 reflects the left oblique illumination light (see optical axis 16LI) toward the objective lens 11. Further, the first left-side deflection element 25L1 reflects the left perfect coaxial illumination light (see optical axis 18LI) that has passed through the second left-side deflection element 26L toward the objective lens 11.
The first left-side deflection element 25L1 transmits at least a part (see optical axis 15LI) of the observation light, which is the reflected light reflected from the eye and transmitted through the objective lens 11, via the second left-side deflection element 26L to the left-side imaging optical device. The left observation light is formed by deflecting it to the optical path of 131415L.
 図20に示すように、ステップ84では、第2右側偏向素子26Rは固定され、第1右側偏向素子25R1、右側斜照明光偏向素子25R2、及び右側絞り12Rが、X(正)方向に移動される。さらに、右側照明光源光学系1618RがX(正)方向に移動され、右側撮像光学装置131415RがZ(正)方向に移動される。
 同様に、ステップ84では、第2左側偏向素子26Lは固定され、第1左側偏向素子25L1、左側斜照明光偏向素子25L2、及び左側絞り12Lが、X(負)方向に移動される。さらに、左側照明光源光学系1618LがX(負)方向に移動され、左側撮像光学装置131415LがZ(正)方向に移動される。
 そして、ステップ92では、第1右側偏向素子25R1、右側斜照明光偏向素子25R2、及び右側絞り12Rが、X(負)方向に移動される。さらに、右側照明光源光学系1618RがX(負)方向に移動され、右側撮像光学装置131415RがZ(負)方向に移動される。
 同様に、ステップ92では、第1左側偏向素子25L1、左側斜照明光偏向素子25L2、左側絞り12Lが、X(正)方向に移動される。さらに、左側照明光源光学系1618LがX(正)方向に移動され、左側撮像光学装置131415LがZ(負)方向に移動される。
As shown in FIG. 20, in step 84, the second right deflection element 26R is fixed, and the first right deflection element 25R1, the right oblique illumination light deflection element 25R2, and the right diaphragm 12R are moved in the X (positive) direction. It Further, the right side illumination light source optical system 1618R is moved in the X (positive) direction, and the right side imaging optical device 131415R is moved in the Z (positive) direction.
Similarly, in step 84, the second left deflection element 26L is fixed, and the first left deflection element 25L1, the left oblique illumination light deflection element 25L2, and the left diaphragm 12L are moved in the X (negative) direction. Further, the left side illumination light source optical system 1618L is moved in the X (negative) direction, and the left side imaging optical device 131415L is moved in the Z (positive) direction.
Then, in step 92, the first right deflection element 25R1, the right oblique illumination light deflection element 25R2, and the right diaphragm 12R are moved in the X (negative) direction. Further, the right side illumination light source optical system 1618R is moved in the X (negative) direction, and the right side imaging optical device 131415R is moved in the Z (negative) direction.
Similarly, in step 92, the first left-side deflection element 25L1, the left-side oblique illumination light deflection element 25L2, and the left-side diaphragm 12L are moved in the X (positive) direction. Further, the left side illumination light source optical system 1618L is moved in the X (positive) direction, and the left side imaging optical device 131415L is moved in the Z (negative) direction.
 なお、第4の実施の形態では、第1右側偏向素子移動部68Rは、第1右側偏向素子25R1を移動させ、第1左側偏向素子移動部68Lは、第1左側偏向素子25L1を移動させる。第4の実施の形態では、第2右側偏向素子移動部70Rは、右側斜照明光偏向素子25R2を移動させ、第2左側偏向素子移動部70Lは、左側斜照明光偏向素子25L2を移動させる。 Note that, in the fourth embodiment, the first right-side deflection element moving unit 68R moves the first right-side deflection element 25R1, and the first left-side deflection element moving unit 68L moves the first left-side deflection element 25L1. In the fourth embodiment, the second right-side deflection element moving unit 70R moves the right-side oblique illumination light deflection element 25R2, and the second left-side deflection element moving unit 70L moves the left-side oblique illumination light deflection element 25L2.
 なお、図20に示す例とは異なり、ステップ84では、第2右側偏向素子26RをX(正)方向に移動され、右側撮像光学装置131415Rも、X(正)方向に移動されるようにしてもよい。ステップ84では、第2左側偏向素子26Lを、X(負)方向に移動され、左側撮像光学装置131415Lが、X(負)方向に移動されるようにしてもよい。
 ステップ92では、第2右側偏向素子26RをX(負)方向に移動され、右側撮像光学装置131415Rも、X(負)方向に移動されるようにしてもよい。ステップ92では、第2左側偏向素子26Lを、X(正)方向に移動され、左側撮像光学装置131415Lが、X(正)方向に移動されるようにしてもよい。
Note that, unlike the example shown in FIG. 20, in step 84, the second right deflection element 26R is moved in the X (positive) direction, and the right imaging optical device 131415R is also moved in the X (positive) direction. Good. In step 84, the second left-side deflection element 26L may be moved in the X (negative) direction, and the left-side imaging optical device 131415L may be moved in the X (negative) direction.
In step 92, the second right deflection element 26R may be moved in the X (negative) direction, and the right imaging optical device 131415R may also be moved in the X (negative) direction. In step 92, the second left-side deflection element 26L may be moved in the X (positive) direction, and the left-side imaging optical device 131415L may be moved in the X (positive) direction.
 第4の実施の形態では、第1右側偏向素子25R1は、右側完全同軸照明光(光軸18RI参照)と右側観察光(光軸15RI参照)とのための共用の偏向素子として機能する。第1左側偏向素子25L1は、左側完全同軸照明光(光軸18LI参照)と左側観察光(光軸15LI参照)とのための共用の偏向素子として機能する。
 第4の実施の形態では、第1右側偏向素子25R1及び第1左側偏向素子25L1は、眼から反射し且つ対物レンズ11を透過した反射光を反射することにより、右側観察光及び左側観察光を形成する。第2右側偏向素子26R及び第2左側偏向素子26Lは、右側観察光及び左側観察光を、右側撮像光学装置131415R及び左側撮像光学装置131415Lに向かって反射する。よって、右側観察光及び左側観察光のルート(例、光路)の光学設計の自由度が大きい。
In the fourth embodiment, the first right deflection element 25R1 functions as a common deflection element for the right perfect coaxial illumination light (see optical axis 18RI) and the right observation light (see optical axis 15RI). The first left-side deflection element 25L1 functions as a common deflection element for the left perfect coaxial illumination light (see optical axis 18LI) and the left observation light (see optical axis 15LI).
In the fourth embodiment, the first right-side deflection element 25R1 and the first left-side deflection element 25L1 reflect right-side observation light and left-side observation light by reflecting the reflected light reflected from the eye and transmitted through the objective lens 11. Form. The second right deflection element 26R and the second left deflection element 26L reflect the right observation light and the left observation light toward the right imaging optical device 131415R and the left imaging optical device 131415L. Therefore, the degree of freedom in the optical design of the routes (eg, optical paths) of the right side observation light and the left side observation light is large.
[第4の実施の形態の変形例] [Modification of Fourth Embodiment]
 次に、本開示の技術の第4の実施の形態の変形例を説明する。 Next, a modified example of the fourth embodiment of the technology of the present disclosure will be described.
(第1の変形例)
 第1の変形例の手術用顕微鏡の構成は、第4の実施の形態の手術用顕微鏡100A4(図19)と略同様であるので、主として異なる部分を説明する。
(First modification)
The configuration of the surgical microscope of the first modified example is substantially the same as that of the surgical microscope 100A4 (FIG. 19) of the fourth embodiment, so mainly different parts will be described.
 第4の実施の形態の手術用顕微鏡100A4(図19)では、眼の表面を照明し、眼の表面からの右側観察光及び左側観察光はそれぞれ右側撮像素子15R及び左側撮像素子15Lに結像する。 In the surgical microscope 100A4 (FIG. 19) of the fourth embodiment, the surface of the eye is illuminated, and the right side observation light and the left side observation light from the eye surface are imaged on the right side imaging element 15R and the left side imaging element 15L, respectively. To do.
 これに対し、第1の変形例の手術用顕微鏡100A5は、前置レンズ132(図17参照)を備える。
 第1の変形例の形態は第4の実施の形態と同様の効果、及び、前置レンズ132により、眼底の広い範囲を観察することができるという効果を有する。
On the other hand, the surgical microscope 100A5 of the first modified example includes the front lens 132 (see FIG. 17).
The form of the first modified example has the same effect as that of the fourth embodiment and the effect that a wide range of the fundus can be observed by the front lens 132.
(第2の変形例) (Second modified example)
 次に、本開示の技術の第2の変形例を説明する。第2の変形例の手術用顕微鏡の構成は、第3の実施の形態の手術用顕微鏡100A3と略同様の構成であるので、主として異なる部分を説明する。
 第2の変形例は、眼内を照明するファイバ140(図18参照)を備えている。
Next, a second modified example of the technique of the present disclosure will be described. The configuration of the surgical microscope of the second modified example is substantially the same as the configuration of the surgical microscope 100A3 of the third embodiment, so mainly different portions will be described.
The second modification includes a fiber 140 (see FIG. 18) that illuminates the inside of the eye.
 第2の変形例は、第4の実施の形態と同様の効果を有するが、更に、徹照及び斜照明に加えて、ファイバ140により、眼内を直接照明することができるという効果を有する。 The second modification has the same effect as that of the fourth embodiment, but further has an effect that the inside of the eye can be directly illuminated by the fiber 140 in addition to the transillumination and oblique illumination.
[第5の実施の形態] [Fifth Embodiment]
 次に、本開示の技術の第5の実施の形態を説明する。 Next, a fifth embodiment of the technology of the present disclosure will be described.
 第5の実施の形態の手術用顕微鏡の構成は、第4の実施の形態の手術用顕微鏡100A4と略同様であるので、主として異なる部分のみを説明する。 Since the configuration of the surgical microscope of the fifth embodiment is substantially the same as that of the surgical microscope 100A4 of the fourth embodiment, only the different parts will be mainly described.
 図21には、第5の実施の形態の手術用顕微鏡100Bの断面図が示されている。図22には、立体感調整の際の手術用顕微鏡100Bの様子(断面図)が示されている。
 図21に示すように、手術用顕微鏡100Bは、第1の実施の形態における第1右側偏向素子25R及び第1左側偏向素子25Lに代えて、第1右側偏向素子125R1及び右側斜照明光偏向素子125R2と、第1左側偏向素子125L1及び左側斜照明光偏向素子125L2とを備えている。
FIG. 21 shows a sectional view of the surgical microscope 100B according to the fifth embodiment. FIG. 22 shows a state (cross-sectional view) of the surgical microscope 100B at the time of adjusting the stereoscopic effect.
As shown in FIG. 21, the surgical microscope 100B includes a first right-side deflection element 125R1 and a right-side oblique illumination light deflection element instead of the first right-side deflection element 25R and the first left-side deflection element 25L in the first embodiment. 125R2, the first left-side deflection element 125L1 and the left oblique illumination light deflection element 125L2.
 第1右側偏向素子125R1は、本開示の技術の「右側偏向素子」の一例であり、第1左側偏向素子125L1は、本開示の技術の「左側偏向素子」の一例である。右側斜照明光偏向素子125R2は、本開示の技術の「右側反射偏向素子」の一例であり、左側斜照明光偏向素子125L2は、本開示の技術の「左側反射偏向素子」の一例である。 The first right-side deflection element 125R1 is an example of the “right-side deflection element” of the technology of the present disclosure, and the first left-side deflection element 125L1 is an example of the “left-side deflection element” of the technology of the present disclosure. The right oblique illumination light deflection element 125R2 is an example of the “right reflection deflection element” of the technology of the present disclosure, and the left oblique illumination light deflection element 125L2 is an example of the “left reflection deflection element” of the technology of the present disclosure.
 右側斜照明光偏向素子125R2は、右側斜照明光を、対物レンズ11に向かって反射する。第1右側偏向素子125R1は、第2右側偏向素子26Rを透過した右側完全同軸照明光を対物レンズ11に向かって反射する。
 第1右側偏向素子125R1は、眼から反射し対物レンズ11を透過した反射光である観察光の少なくとも一部を、第2右側偏向素子26Rを介して、右側撮像光学装置131415Rの光路へ偏向することにより、右側観察光を形成する。
The right oblique illumination light deflection element 125R2 reflects the right oblique illumination light toward the objective lens 11. The first right deflection element 125R1 reflects the right perfect coaxial illumination light that has passed through the second right deflection element 26R toward the objective lens 11.
The first right-side deflection element 125R1 deflects at least a part of the observation light, which is the reflected light reflected from the eye and transmitted through the objective lens 11, to the optical path of the right-side imaging optical device 131415R via the second right-side deflection element 26R. As a result, the right observation light is formed.
 左側斜照明光偏向素子125L2は、左側斜照明光を、対物レンズ11に向かって反射する。第1左側偏向素子125L1は、第2左側偏向素子26Lを透過した左側完全同軸照明光を対物レンズ11に向かって反射する。
 第1左側偏向素子125L1は、眼から反射し対物レンズ11を透過した反射光である観察光の少なくとも一部を、第2左側偏向素子26Lを介して、左側撮像光学装置131415Lの光路へ偏向することにより、左側観察光を形成する。
The left oblique illumination light deflection element 125L2 reflects the left oblique illumination light toward the objective lens 11. The first left-side deflection element 125L1 reflects the left perfect coaxial illumination light that has passed through the second left-side deflection element 26L toward the objective lens 11.
The first left-side deflection element 125L1 deflects at least a part of the observation light, which is reflected light reflected from the eye and transmitted through the objective lens 11, to the optical path of the left-side imaging optical device 131415L via the second left-side deflection element 26L. As a result, left-side observation light is formed.
 図22に示すように、ステップ84では、第2右側偏向素子26Rは固定され、第1右側偏向素子125R1、右側斜照明光偏向素子125R2、及び右側絞り12Rが、X(正)方向に移動される。右側照明光源光学系1618Rが、X(正)方向に移動される。右側撮像光学装置131415Rが、Z(正)方向に移動される。
 ステップ84では、第2左側偏向素子26Lは固定され、第1左側偏向素子125L1、左側斜照明光偏向素子125L2、及び左側絞り12Lが、X(負)方向に移動される。左側照明光源光学系1618Lが、X(負)方向に移動される。左側撮像光学装置131415Lが、Z(正)方向に移動される。
 ステップ92では、第1右側偏向素子125R1、右側斜照明光偏向素子125R2、及び右側絞り12Rが、X(負)方向に移動される。右側照明光源光学系1618Rが、X(負)方向に移動される。右側撮像光学装置131415Rが、Z(負)方向に移動される。
 ステップ92では、第1左側偏向素子125L1、左側斜照明光偏向素子125L2、左側絞り12Lが、X(正)方向に移動される。左側照明光源光学系1618Lが、X(正)方向に移動される。左側撮像光学装置131415Lが、Z(負)方向に移動される。
As shown in FIG. 22, in step 84, the second right deflection element 26R is fixed, and the first right deflection element 125R1, the right oblique illumination light deflection element 125R2, and the right diaphragm 12R are moved in the X (positive) direction. It The right side illumination light source optical system 1618R is moved in the X (positive) direction. The right imaging optical device 131415R is moved in the Z (positive) direction.
In step 84, the second left-side deflection element 26L is fixed, and the first left-side deflection element 125L1, the left-side oblique illumination light deflection element 125L2, and the left-side diaphragm 12L are moved in the X (negative) direction. The left side illumination light source optical system 1618L is moved in the X (negative) direction. The left imaging optical device 131415L is moved in the Z (positive) direction.
In step 92, the first right deflection element 125R1, the right oblique illumination light deflection element 125R2, and the right diaphragm 12R are moved in the X (negative) direction. The right side illumination light source optical system 1618R is moved in the X (negative) direction. The right imaging optical device 131415R is moved in the Z (negative) direction.
In step 92, the first left-side deflection element 125L1, the left oblique illumination light deflection element 125L2, and the left-side diaphragm 12L are moved in the X (positive) direction. The left side illumination light source optical system 1618L is moved in the X (positive) direction. The left imaging optical device 131415L is moved in the Z (negative) direction.
 なお、第5の実施の形態では、第1右側偏向素子移動部68Rは、第1右側偏向素子125R1を移動させ、第1左側偏向素子移動部68Lは、第1左側偏向素子125L1を移動させる。また、第5の実施の形態では、第2右側偏向素子移動部70Rは、右側斜照明光偏向素子125R2を移動させ、第2左側偏向素子移動部70Lは、左側斜照明光偏向素子125L2を移動させる。 In the fifth embodiment, the first right-side deflection element moving unit 68R moves the first right-side deflection element 125R1 and the first left-side deflection element moving unit 68L moves the first left-side deflection element 125L1. In the fifth embodiment, the second right-side deflection element moving unit 70R moves the right-side oblique illumination light deflection element 125R2, and the second left-side deflection element moving unit 70L moves the left-side oblique illumination light deflection element 125L2. Let
 なお、図22に示す例とは異なり、ステップ84では、第2右側偏向素子26RをX(正)方向に移動され、右側撮像光学装置131415Rも、X(正)方向に移動されるようにしてもよい。同様に、ステップ84では、第2左側偏向素子26Lを、X(負)方向に移動され、左側撮像光学装置131415Lが、X(負)方向に移動されるようにしてもよい。
 さらに、ステップ92では、第2右側偏向素子26RをX(負)方向に移動され、右側撮像光学装置131415Rも、X(負)方向に移動されるようにしてもよい。ステップ92では、第2左側偏向素子26Lを、X(正)方向に移動され、左側撮像光学装置131415Lが、X(正)方向に移動されるようにしてもよい。
Note that, unlike the example shown in FIG. 22, in step 84, the second right deflection element 26R is moved in the X (positive) direction, and the right imaging optical device 131415R is also moved in the X (positive) direction. Good. Similarly, in step 84, the second left-side deflection element 26L may be moved in the X (negative) direction, and the left-side imaging optical device 131415L may be moved in the X (negative) direction.
Further, in step 92, the second right deflection element 26R may be moved in the X (negative) direction, and the right imaging optical device 131415R may also be moved in the X (negative) direction. In step 92, the second left-side deflection element 26L may be moved in the X (positive) direction, and the left-side imaging optical device 131415L may be moved in the X (positive) direction.
 第5の実施の形態は第4の実施の形態と同様の効果を有する。 The fifth embodiment has the same effect as the fourth embodiment.
[第5の実施の形態の変形例] [Modification of Fifth Embodiment]
 次に、本開示の技術の第5の実施の形態の変形例を説明する。 Next, a modified example of the fifth embodiment of the technology of the present disclosure will be described.
(第1の変形例)
 第1の変形例は、ステップ84では、右側斜照明光偏向素子125R2及び右側斜照明光源斜照明光学系1621Rを固定し、第1右側偏向素子125R1、右側絞り12R、右側完全同軸照明光源完全同軸照明光学系1823Rが、X(正)方向に移動される。右側撮像光学装置131415Rが、Z(正)方向に移動される。
 ステップ84では、左側斜照明光偏向素子125L2及び左側斜照明光源斜照明光学系1621Lを固定し、第1左側偏向素子125L1、左側絞り12L、左側完全同軸照明光源完全同軸照明光学系1823Lが、X(負)方向に移動される。左側撮像光学装置131415Lが、Z(正)方向に移動される。
 ステップ92では、右側斜照明光偏向素子125R2及び右側斜照明光源斜照明光学系1621Rを固定し、第1右側偏向素子125R1、右側絞り12R、右側完全同軸照明光源完全同軸照明光学系1823Rが、X(負)方向に移動される。右側撮像光学装置131415Rが、Z(負正)方向に移動される。
 ステップ92では、左側斜照明光偏向素子125L2及び左側斜照明光源斜照明光学系1621Lを固定し、第1左側偏向素子125L1、左側絞り12L、左側完全同軸照明光源完全同軸照明光学系1823Lが、X(正)方向に移動される。左側撮像光学装置131415Lが、Z(負)方向に移動される。
(First modification)
In the first modification, in step 84, the right oblique illumination light deflection element 125R2 and the right oblique illumination light source oblique illumination optical system 1621R are fixed, and the first right deflection element 125R1, the right diaphragm 12R, the right complete coaxial illumination light source complete coaxial. The illumination optical system 1823R is moved in the X (positive) direction. The right imaging optical device 131415R is moved in the Z (positive) direction.
In step 84, the left oblique illumination light deflection element 125L2 and the left oblique illumination light source oblique illumination optical system 1621L are fixed, and the first left deflection element 125L1, the left diaphragm 12L, the left complete coaxial illumination light source complete coaxial illumination optical system 1823L Moved in the (negative) direction. The left imaging optical device 131415L is moved in the Z (positive) direction.
In step 92, the right oblique illumination light deflection element 125R2 and the right oblique illumination light source oblique illumination optical system 1621R are fixed, and the first right deflection element 125R1, the right diaphragm 12R, the right complete coaxial illumination light source complete coaxial illumination optical system 1823R are set to X. Moved in the (negative) direction. The right imaging optical device 131415R is moved in the Z (negative and positive) direction.
In step 92, the left oblique illumination light deflection element 125L2 and the left oblique illumination light source oblique illumination optical system 1621L are fixed, and the first left deflection element 125L1, the left diaphragm 12L, the left complete coaxial illumination light source complete coaxial illumination optical system 1823L It is moved in the (positive) direction. The left imaging optical device 131415L is moved in the Z (negative) direction.
(第2の変形例)
 第2の変形例は、前置レンズ132(図17参照)を備える。
(Second modified example)
The second modified example includes a front lens 132 (see FIG. 17).
(第3の変形例)
 第3の変形例は、ファイバ140を備えている。
(Third Modification)
The third modified example includes a fiber 140.
[第6の実施の形態] [Sixth Embodiment]
 次に、本開示の技術の第6の実施の形態を説明する。 Next, a sixth embodiment of the technology of the present disclosure will be described.
 第6の実施の形態の手術用顕微鏡の構成は、第1の実施の形態の手術用顕微鏡100A1と略同様の構成であるので、主として異なる部分を説明する。 The configuration of the surgical microscope according to the sixth embodiment is substantially the same as that of the surgical microscope 100A1 according to the first embodiment, so mainly different portions will be described.
 図23には、第6の実施の形態の手術用顕微鏡100Cの断面図が示されている。 FIG. 23 shows a sectional view of the surgical microscope 100C according to the sixth embodiment.
 手術用顕微鏡100Cは、第1右側偏向素子125R及び第1左側偏向素子125Lを備えている。
 第1右側偏向素子125Rは、本開示の技術の「右側偏向素子」の一例であり、第1左側偏向素子125Lは、本開示の技術の「左側偏向素子」の一例である。
The surgical microscope 100C includes a first right-side deflection element 125R and a first left-side deflection element 125L.
The first right-side deflection element 125R is an example of the “right-side deflection element” of the technology of the present disclosure, and the first left-side deflection element 125L is an example of the “left-side deflection element” of the technology of the present disclosure.
 右側斜照明光源16R及び右側斜照明光学系21Rは、右側斜照明光源16Rから発せられた右側斜照明光が、Z(負)方向に発せられ、対物レンズ11に直接到達するように、配置されている。 The right oblique illumination light source 16R and the right oblique illumination optical system 21R are arranged so that the right oblique illumination light emitted from the right oblique illumination light source 16R is emitted in the Z (negative) direction and directly reaches the objective lens 11. ing.
 右側完全同軸照明光源18R及び右側完全同軸照明光学系23Rは、右側完全同軸照明光源18Rにより発せられた右側完全同軸照明光が第1右側偏向素子125Rを透過して対物レンズ11に到達するように、配置されている。 The right perfect coaxial illumination light source 18R and the right perfect coaxial illumination optical system 23R are arranged so that the right perfect coaxial illumination light emitted by the right perfect coaxial illumination light source 18R passes through the first right deflection element 125R and reaches the objective lens 11. Has been placed.
 左側斜照明光源16L及び左側斜照明光学系21Lは、左側斜照明光源16Lから発せられた左側斜照明光が、Z(負)方向に発せられ、対物レンズ11に直接到達するように、配置されている。 The left oblique illumination light source 16L and the left oblique illumination optical system 21L are arranged so that the left oblique illumination light emitted from the left oblique illumination light source 16L is emitted in the Z (negative) direction and directly reaches the objective lens 11. ing.
 左側完全同軸照明光源18L及び左側完全同軸照明光学系23Lは、左側完全同軸照明光源18Lにより発せられた左側完全同軸照明光が第1左側偏向素子125Lを透過して対物レンズ11に到達するように、配置されている。 The left perfect coaxial illumination light source 18L and the left perfect coaxial illumination optical system 23L allow the left perfect coaxial illumination light emitted by the left perfect coaxial illumination light source 18L to pass through the first left deflecting element 125L and reach the objective lens 11. Has been placed.
 ステップ84では、第2右側偏向素子26Rは固定され、第1右側偏向素子125R、及び右側絞り12Rが、X(正)方向に移動される。右側照明光源光学系1618Rが、X(正)方向に移動される。右側撮像光学装置131415Rが、Z(正)方向に移動される。
 ステップ84では、第2左側偏向素子26Lは固定され、第1左側偏向素子125L、及び左側絞り12Lが、X(負)方向に移動される。左側照明光源光学系1618Lが、X(負)方向に移動される。左側撮像光学装置131415Lが、Z(正)方向に移動される。
 ステップ92では、第1右側偏向素子125R、及び右側絞り12Rが、X(負)方向に移動される。右側照明光源光学系1618Rが、X(負)方向に移動される。右側撮像光学装置131415Rが、Z(負)方向に移動される。
 ステップ92では、第1左側偏向素子125L、左側絞り12Lが、X(正)方向に移動される。左側照明光源光学系1618Lが、X(正)方向に移動される。左側撮像光学装置131415Lが、Z(負)方向に移動される。
In step 84, the second right deflecting element 26R is fixed, and the first right deflecting element 125R and the right diaphragm 12R are moved in the X (positive) direction. The right side illumination light source optical system 1618R is moved in the X (positive) direction. The right imaging optical device 131415R is moved in the Z (positive) direction.
In step 84, the second left deflection element 26L is fixed, and the first left deflection element 125L and the left diaphragm 12L are moved in the X (negative) direction. The left side illumination light source optical system 1618L is moved in the X (negative) direction. The left imaging optical device 131415L is moved in the Z (positive) direction.
In step 92, the first right-side deflection element 125R and the right-side diaphragm 12R are moved in the X (negative) direction. The right side illumination light source optical system 1618R is moved in the X (negative) direction. The right imaging optical device 131415R is moved in the Z (negative) direction.
In step 92, the first left-side deflection element 125L and the left-side diaphragm 12L are moved in the X (positive) direction. The left side illumination light source optical system 1618L is moved in the X (positive) direction. The left imaging optical device 131415L is moved in the Z (negative) direction.
 第6の実施の形態は第1の実施の形態と同様の効果を有する。
 第6の実施の形態は、前置レンズ132(図17参照)を備えたり、ファイバ140(図18参照)を備えたりしてもよい。
The sixth embodiment has the same effects as the first embodiment.
The sixth embodiment may include the front lens 132 (see FIG. 17) or the fiber 140 (see FIG. 18).
[第7の実施の形態] [Seventh Embodiment]
 次に、本開示の技術の第7の実施の形態を説明する。 Next, a seventh embodiment of the technology of the present disclosure will be described.
 第7の実施の形態の手術用顕微鏡の構成は、第5の実施の形態の手術用顕微鏡100Bと略同様の構成であるので、主として異なる部分を説明する。 The configuration of the surgical microscope of the seventh embodiment is substantially the same as that of the surgical microscope 100B of the fifth embodiment, so mainly different parts will be described.
 図24には、第7の実施の形態の手術用顕微鏡100Dの断面図が示されている。 FIG. 24 shows a sectional view of the surgical microscope 100D of the seventh embodiment.
 図24に示すように、第7の実施の形態の手術用顕微鏡100Dは、第5の実施の形態の手術用顕微鏡100B(図21参照)の第1右側偏向素子125R1及び第1左側偏向素子125L1の代わりに、右側透過反射素子125R11及び左側透過反射素子125L11を備えている。 As shown in FIG. 24, the surgical microscope 100D of the seventh embodiment is the same as the first right deflection element 125R1 and the first left deflection element 125L1 of the surgical microscope 100B (see FIG. 21) of the fifth embodiment. Instead of, the right side transmissive reflection element 125R11 and the left side transmissive reflection element 125L11 are provided.
 手術用顕微鏡100Dでは、第5の実施の形態の手術用顕微鏡100Bの第2右側偏向素子26R及び第2左側偏向素子26Lが省略されている。 In the surgical microscope 100D, the second right-side deflection element 26R and the second left-side deflection element 26L of the surgical microscope 100B according to the fifth embodiment are omitted.
 右側透過反射素子125R11には、右側完全同軸照明光が直接到達し、右側透過反射素子125R11は、右側完全同軸照明光を対物レンズ11に向かって反射し、眼からの反射光を透過する。右側透過反射素子125R11を透過した眼からの反射光である右側観察光は、右側変倍光学系13Rに入射する。右側透過反射素子125R11と右側変倍光学系13Rとの間に、右側絞り12Rが配置されている。 Right-side perfect coaxial illumination light directly reaches the right-side transflective element 125R11, and the right-side transmissive reflective element 125R11 reflects the right-side perfect coaxial illumination light toward the objective lens 11 and transmits the reflected light from the eye. The right observation light, which is the reflected light from the eye that has passed through the right transmissive reflection element 125R11, enters the right variable magnification optical system 13R. The right diaphragm 12R is arranged between the right transmissive reflection element 125R11 and the right variable magnification optical system 13R.
 左側透過反射素子125L11には、左側完全同軸照明光が直接到達し、左側透過反射素子125L11は、左側完全同軸照明光を対物レンズ11に向かって反射し、眼からの反射光を透過する。左側透過反射素子125L11を透過した眼からの反射光である左側観察光は、左側変倍光学系13Lに入射する。左側透過反射素子125L11と左側変倍光学系13Lとの間に、左側絞り12Lが配置されている。
 右側斜照明光偏向素子125R2は、右側斜照明光を、対物レンズ11に向かって反射する。左側斜照明光偏向素子125L2は、左側斜照明光を、対物レンズ11に向かって反射する。
 右側透過反射素子125R11は、本開示の技術の「右側透過素子」の一例である。
左側透過反射素子125L11は、本開示の技術の「左側透過素子」の一例である。右側斜照明光偏向素子125R2は、本開示の技術の「右側反射偏向素子」の一例である。左側斜照明光偏向素子125L2は、本開示の技術の「左側反射偏向素子」の一例である。
The left perfect coaxial illumination light directly reaches the left transflective element 125L11, and the left transflective element 125L11 reflects the left perfect coaxial illumination light toward the objective lens 11 and transmits the reflected light from the eye. The left observation light, which is the reflected light from the eye that has passed through the left transmissive reflection element 125L11, enters the left variable power optical system 13L. The left diaphragm 12L is arranged between the left transmissive reflection element 125L11 and the left variable power optical system 13L.
The right oblique illumination light deflection element 125R2 reflects the right oblique illumination light toward the objective lens 11. The left oblique illumination light deflection element 125L2 reflects the left oblique illumination light toward the objective lens 11.
The right side transmissive reflection element 125R11 is an example of the “right side transmissive element” in the technology of the present disclosure.
The left transmissive reflective element 125L11 is an example of a “left transmissive element” in the technology of the present disclosure. The right oblique illumination light deflection element 125R2 is an example of the “right reflection deflection element” in the technique of the present disclosure. The left oblique illumination light deflection element 125L2 is an example of the “left side reflection deflection element” in the technique of the present disclosure.
 右側の各要素は同一の第1の移動基板に配置されており、左側の各要素は同一の第2の移動基板に配置されている。 Each element on the right side is arranged on the same first moving board, and each element on the left side is arranged on the same second moving board.
 立体感調整(ステップ84、ステップ92)のため、移動機構を介して第1の移動基板が移動され、移動機構を介して第2の移動基板が移動される。 For the three-dimensional effect adjustment (step 84, step 92), the first moving substrate is moved via the moving mechanism, and the second moving substrate is moved via the moving mechanism.
 第7の実施の形態は第5の実施の形態と同様の効果を有する。
 第7の実施の形態は、前置レンズ132(図17参照)を備えたり、ファイバ140(図18参照)を備えたりしてもよい。
The seventh embodiment has the same effects as the fifth embodiment.
The seventh embodiment may include the front lens 132 (see FIG. 17) or the fiber 140 (see FIG. 18).
[変形例] [Modification]
 第1の実施の形態から第7の実施の形態では、コンピュータを利用したソフトウェア構成により制御処理が実現される形態例を示したが、本開示の技術はこれに限定されるものではない。例えば、コンピュータを利用したソフトウェア構成に代えて、FPGA又はASIC等のハードウェア構成のみによって、制御処理が実行されるようにしてもよい。制御処理がソフトウェア構成とハードウェア構成との組み合わせた構成によって実行されるようにしてもよい。また、本実施形態に記載の手術顕微鏡は、用途に応じて、対象物から生じる蛍光、りん光、又は赤外光を観察光として受光する構成にしてもよい。 In the first to seventh embodiments, examples of forms in which control processing is realized by a software configuration using a computer have been shown, but the technology of the present disclosure is not limited to this. For example, instead of the software configuration using a computer, the control process may be executed only by a hardware configuration such as FPGA or ASIC. The control processing may be executed by a combination of software configuration and hardware configuration. Further, the surgical microscope according to the present embodiment may be configured to receive fluorescence, phosphorescence, or infrared light generated from an object as observation light depending on the application.
 本明細書に記載された全ての文献、特許出願及び技術規格は、個々の文献、特許出願及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。 All documents, patent applications and technical standards mentioned in this specification are to the same extent as if each individual document, patent application and technical standard was specifically and individually noted to be incorporated by reference. Incorporated by reference in the book.
 以上の実施の形態に関し、更に以下の付記を開示する。 Regarding the above embodiment, the following additional notes are disclosed.
 (付記1)
 対物レンズと、
 各々前記対物レンズと変倍光学系との間に設けられ且つ各々の照明光を、前記対物レンズを介して対象物に向かって反射すると共に、前記対象物から反射し且つ前記対物レンズを透過した反射光を各々反射することにより、右側観察光を形成する右側偏向素子及び左側観察光を形成する左側偏向素子と、
 を備え、
 前記右側偏向素子及び前記左側偏向素子は、前記反射光を反射した場合、前記反射光を、前記右側観察光と前記左側観察光とが互いに近づく方向と異なる方向に反射する、
 顕微鏡。
 付記1の発明は、右側偏向素子及び左側偏向素子の各々は、照明光を、前記対物レンズを介して対象物に向かって反射すると共に、前記対象物から反射し且つ前記対物レンズを透過した反射光を反射することにより、上記の照明光路と観察光路とを共用し、右側偏向素子及び左側偏向素子の各々は、対象物から反射し且つ対物レンズを透過した反射光を反射するので、薄型に寄与できる。
(Appendix 1)
An objective lens,
Each illumination light is provided between the objective lens and the variable power optical system and reflects each illumination light toward the object through the objective lens, and is reflected from the object and transmitted through the objective lens. A right-side deflection element that forms right-side observation light and a left-side deflection element that forms left-side observation light by reflecting the respective reflected lights;
Equipped with
When the right deflection element and the left deflection element reflect the reflected light, the reflected light is reflected in a direction different from a direction in which the right observation light and the left observation light approach each other,
microscope.
In the invention of appendix 1, each of the right-side deflection element and the left-side deflection element reflects the illumination light toward the object through the objective lens, and reflects the illumination light from the object and transmitted through the objective lens. By reflecting the light, the illumination light path and the observation light path are shared, and each of the right-side deflection element and the left-side deflection element reflects the reflected light reflected from the object and transmitted through the objective lens. Can contribute.
11   対物レンズ
12R 右側絞り
12L 左側絞り
13L 左側変倍光学系
13R 右側変倍光学系
14L 左側結像光学系
14R 右側結像光学系
15L 左側撮像素子
15R 右側撮像素子
16L 左側斜照明光源
16R 右側斜照明光源
18L 左側完全同軸照明光源
18R 右側完全同軸照明光源
21L 左側斜照明光学系
21R 右側斜照明光学系
23L 左側完全同軸照明光学系
23R 右側完全同軸照明光学系
25R 第1右側偏向素子
25L 第1左側偏向素子
26R 第2右側偏向素子
26L 第2左側偏向素子
64   立体感増加スイッチ
66   立体感減少スイッチ
68R 第1右側偏向素子移動部
68L 第1左側偏向素子移動部
69R 右側絞り移動部
69L 左側絞り移動部
85 右側絞り径変更部
87 左側絞り径変更部
100AD 表示装置
1618R 右側照明光源光学系
1618L 左側照明光源光学系
25R1 第1右側偏向素子
25L1 第1左側偏向素子
25R2 右側斜照明光偏向素子
25L2 左側斜照明光偏向素子
125R 第1右側偏向素子
125L 第1左側偏向素子
125R1 第1右側偏向素子
125L1 第1左側偏向素子
125R2 右側斜照明光偏向素子
125L2 左側斜照明光偏向素子
125R11 右側透過反射素子
125L11 左側透過反射素子
11 Objective Lens 12R Right Stop 12L Left Stop 13L Left Zoom Optical System 13R Right Zoom Optical System 14L Left Imaging Optical System 14R Right Imaging Optical System 15L Left Image Sensor 15R Right Image Sensor 16L Left Oblique Illumination Light Source 16R Right Oblique Illumination Light source 18L Left perfect coaxial illumination light source 18R Right perfect coaxial illumination light source 21L Left oblique illumination optical system 21R Right oblique illumination optical system 23L Left perfect coaxial illumination optical system 23R Right perfect coaxial illumination optical system 25R First right deflection element 25L First left deflection Element 26R Second right deflecting element 26L Second left deflecting element 64 Stereoscopic effect increasing switch 66 Stereoscopic effect decreasing switch 68R First right deflecting element moving unit 68L First left deflecting element moving unit 69R Right diaphragm moving section 69L Left diaphragm moving section 85 Right side aperture diameter changing unit 87 Left side aperture diameter changing unit 100AD Display device 161 R right side illumination light source optical system 1618L left side illumination light source optical system 25R1 first right side deflection element 25L1 first left side deflection element 25R2 right side oblique illumination light deflection element 25L2 left side oblique illumination light deflection element 125R first right side deflection element 125L first left side deflection element 125R1 1st right side deflection element 125L1 1st left side deflection element 125R2 Right side oblique illumination light deflection element 125L2 Left side oblique illumination light deflection element 125R11 Right side transmission reflection element 125L11 Left side transmission reflection element

Claims (34)

  1.  対物レンズと、
     対象物からの観察光に含まれる右側観察光を右側撮像素子に結像する右側観察光学系と、
     前記対象物からの観察光に含まれる左側観察光を左側撮像素子に結像する左側観察光学系と、
     前記対物レンズと前記右側観察光学系との間に設けられ、前記対象物を照明する右側照明光を反射すると共に、前記対象物から生じる前記右側観察光を前記右側観察光学系へ偏向する右側偏向素子と、
     前記対物レンズと前記左側観察光学系との間に設けられ、前記対象物を照明する左側照明光を反射すると共に、前記対象物から生じる前記左側観察光を前記左側観察光学系へ偏向する左側偏向素子と、
     を備え、
     前記右側偏向素子は、前記右側観察光を、前記対物レンズの光軸の方向に対して交差する方向に偏向するように配置され、
     前記左側偏向素子は、前記左側観察光を、前記対物レンズの光軸の方向に対して交差する方向に偏向するように配置されている、
     顕微鏡。
    An objective lens,
    A right observation optical system that forms an image of the right observation light included in the observation light from the object on the right imaging element,
    A left observation optical system that forms a left observation light included in the observation light from the object on a left imaging element,
    A right-side deflection provided between the objective lens and the right-side observation optical system to reflect right-side illumination light that illuminates the object and to deflect the right-side observation light generated from the object to the right-side observation optical system. Element,
    A left-side deflector, which is provided between the objective lens and the left-side observation optical system, reflects the left-side illumination light that illuminates the object and deflects the left-side observation light generated from the object to the left-side observation optical system. Element,
    Equipped with
    The right deflection element is arranged so as to deflect the right observation light in a direction intersecting with a direction of an optical axis of the objective lens,
    The left side deflection element is arranged to deflect the left side observation light in a direction intersecting the direction of the optical axis of the objective lens.
    microscope.
  2.  前記右側偏向素子及び前記左側偏向素子は、前記右側観察光と前記左側観察光とが互いに近づく方向と異なる方向に偏向する、請求項1に記載の顕微鏡。 The microscope according to claim 1, wherein the right side deflection element and the left side deflection element deflect the right side observation light and the left side observation light in directions different from each other.
  3.  前記右側偏向素子及び前記左側偏向素子は、前記対物レンズの光軸の方向視において、前記右側観察光及び前記左側観察光を互いに異なる方向に反射する
     請求項1又は請求項2に記載の顕微鏡。
    The microscope according to claim 1 or 2, wherein the right-side deflection element and the left-side deflection element reflect the right-side observation light and the left-side observation light in different directions when viewed in a direction of an optical axis of the objective lens.
  4.  前記右側偏向素子は、前記対物レンズの光軸に垂直な方向の成分を持つように、前記右側観察光を反射し、
     前記左側偏向素子は、前記右側偏向素子における前記右側観察光の偏向方向とは異なる方向に前記左側観察光を反射する、
     請求項1から請求項3の何れか1項に記載の顕微鏡。
    The right deflection element reflects the right observation light so as to have a component in a direction perpendicular to the optical axis of the objective lens,
    The left side deflection element reflects the left side observation light in a direction different from a deflection direction of the right side observation light in the right side deflection element,
    The microscope according to any one of claims 1 to 3.
  5.  前記右側偏向素子は、前記右側観察光を鉛直方向に直交する方向に偏向する
     前記左側偏向素子は、前記左側観察光を鉛直方向に直交する方向に偏向する
     請求項1から請求項4の何れか1項に記載の顕微鏡。
    The right deflection element deflects the right observation light in a direction orthogonal to the vertical direction, and the left deflection element deflects the left observation light in a direction orthogonal to the vertical direction. The microscope according to item 1.
  6.  前記右側偏向素子及び前記左側偏向素子は、前記右側観察光及び前記左側観察光を、前記対物レンズの光軸に対して交差する方向を含む平面に沿って互いに異なる方向に、反射する
     請求項1から請求項5の何れか1項に記載の顕微鏡。
    The right side deflection element and the left side deflection element reflect the right side observation light and the left side observation light in different directions along a plane including a direction intersecting the optical axis of the objective lens. To the microscope according to claim 5.
  7.  前記右側照明光を生成する右側照明光学系と、
     前記左側照明光を生成する左側照明光学系と、
     を更に備える請求項1から請求項6の何れか1項に記載の顕微鏡。
    A right side illumination optical system for generating the right side illumination light,
    A left side illumination optical system for generating the left side illumination light,
    The microscope according to any one of claims 1 to 6, further comprising:
  8.  前記右側照明光には、種類が異なる第1の右側照明光と第2の右側照明光との少なくとも一方が含まれ、
     前記左側照明光には、種類が異なる第1の左側照明光と第2の左側照明光との少なくとも一方が含まれる、
     請求項1から請求項7の何れか1項に記載の顕微鏡。
    The right side illumination light includes at least one of first right side illumination light and second right side illumination light of different types,
    The left side illumination light includes at least one of first left side illumination light and second left side illumination light of different types,
    The microscope according to any one of claims 1 to 7.
  9.  前記右側観察光の光軸に対する前記第2の右側照明光の光軸の角度は、前記右側観察光の光軸に対する前記第1の右側照明光の光軸の角度よりも大きく、
     前記左側観察光の光軸に対する前記第2の左側照明光の光軸の角度は、前記左側観察光の光軸に対する前記第1の左側照明光の光軸の角度よりも大きい、
     請求項8に記載の顕微鏡。
    The angle of the optical axis of the second right side illumination light with respect to the optical axis of the right side observation light is larger than the angle of the optical axis of the first right side illumination light with respect to the optical axis of the right side observation light,
    The angle of the optical axis of the second left side illumination light with respect to the optical axis of the left side observation light is larger than the angle of the optical axis of the first left side illumination light with respect to the optical axis of the left side observation light.
    The microscope according to claim 8.
  10.  光軸が前記右側観察光の光軸および前記左側観察光の光軸の少なくとも一方と一致する完全同軸照明光と、
     光軸が前記右側観察光の光軸および前記左側観察光の光軸の少なくとも一方と所定角度ずれている近同軸照明光と、
     の少なくとも一方が含まれる、
     請求項8又は請求項9の何れか1項に記載の顕微鏡。
    A perfect coaxial illumination light whose optical axis coincides with at least one of the optical axis of the right side observation light and the optical axis of the left side observation light,
    Near-axis illumination light whose optical axis is offset by a predetermined angle from at least one of the optical axis of the right-side observation light and the optical axis of the left-side observation light,
    At least one of
    The microscope according to any one of claims 8 and 9.
  11.  前記右側照明光及び前記左側照明光の各々は、徹照用の照明光と斜照明用の照明光とを含む、
     請求項8から請求項10の何れか1項に記載の顕微鏡。
    Each of the right side illumination light and the left side illumination light includes illumination light for transillumination and illumination light for oblique illumination,
    The microscope according to any one of claims 8 to 10.
  12.  前記右側偏向素子は、前記第1の右側照明光及び前記第2の右側照明光を反射し、
     前記左側偏向素子は、前記第1の左側照明光及び前記第2の左側照明光を反射する、
     請求項8から請求項11の何れか1項に記載の顕微鏡。
    The right side deflection element reflects the first right side illumination light and the second right side illumination light,
    The left side deflection element reflects the first left side illumination light and the second left side illumination light,
    The microscope according to any one of claims 8 to 11.
  13.  前記右側偏向素子は、前記第1の右側照明光及び前記第2の右側照明光の一方のみを反射又は透過し、
     前記左側偏向素子は、前記第1の左側照明光及び前記第2の左側照明光の一方のみを反射又は透過し、
     請求項8から請求項11の何れか1項に記載の顕微鏡。
    The right side deflection element reflects or transmits only one of the first right side illumination light and the second right side illumination light,
    The left-side deflection element reflects or transmits only one of the first left-side illumination light and the second left-side illumination light,
    The microscope according to any one of claims 8 to 11.
  14.  前記右側偏向素子は、前記第1の右側照明光及び前記第2の右側照明光の一方のみを反射し、
     前記左側偏向素子は、前記第1の左側照明光及び前記第2の左側照明光の一方のみを反射し、
     前記第1の右側照明光及び前記第2の右側照明光の他方のみを前記対象物に向かって反射する右側反射偏向素子と、
     前記第1の左側照明光及び前記第2の左側照明光の他方のみを前記対象物に向かって反射する左側反射偏向素子と、
    を更に備える、
     請求項13に記載の顕微鏡。
    The right side deflection element reflects only one of the first right side illumination light and the second right side illumination light,
    The left side deflection element reflects only one of the first left side illumination light and the second left side illumination light,
    A right-side reflective deflection element that reflects only the other of the first right-side illumination light and the second right-side illumination light toward the object;
    A left-side reflective deflection element that reflects only the other of the first left-side illumination light and the second left-side illumination light toward the object,
    Is further provided,
    The microscope according to claim 13.
  15.  前記右側観察光学系と前記右側偏向素子との間に配置され、前記右側偏向素子への照明光及び前記右側偏向素子からの前記右側観察光の一方を透過し且つ他方を反射する右側透過反射素子と、
     前記左側観察光学系と前記左側偏向素子との間に配置され、前記左側偏向素子への照明光及び前記左側偏向素子からの前記左側観察光の一方を透過し且つ他方を反射する左側透過反射素子と、
     を更に備える、請求項1から請求項12の何れか1項に記載の顕微鏡。
    A right transmissive reflection element that is arranged between the right observation optical system and the right deflection element and transmits one of the illumination light to the right deflection element and the right observation light from the right deflection element and reflects the other. When,
    A left transmissive reflection element, which is arranged between the left observation optical system and the left deflection element, transmits one of the illumination light to the left deflection element and the left observation light from the left deflection element and reflects the other. When,
    The microscope according to any one of claims 1 to 12, further comprising:
  16.  前記右側照明光及び前記左側照明光は、徹照用の照明光である、
     請求項1から請求項7の何れか1項に記載の顕微鏡。
    The right side illumination light and the left side illumination light are illumination light for transillumination,
    The microscope according to any one of claims 1 to 7.
  17.  前記右側観察光の光軸および前記左側観察光の光軸が前記対象物の位置でなす実体角が連続的に変化するように、前記右側偏向素子および前記左側偏向素子の少なくとも一方を移動させる移動部を更に備える、
     請求項1から請求項16の何れか1項に記載の顕微鏡。
    A movement for moving at least one of the right deflection element and the left deflection element so that the physical angle formed by the optical axes of the right observation light and the left observation light at the position of the object continuously changes. Further comprises a section,
    The microscope according to any one of claims 1 to 16.
  18.  前記移動部は、前記右側偏向素子および前記左側偏向素子の各々を左右対称に移動させる、
     請求項17に記載の顕微鏡。
    The moving unit moves each of the right-side deflection element and the left-side deflection element symmetrically.
    The microscope according to claim 17.
  19.  前記右側観察光学系は、前記右側観察光学系と前記対物レンズとの間に、前記右側観察光の光軸に垂直な前記右側観察光の光束の有効面積が、前記右側観察光学系の前記対物レンズに最も近い位置における有効面積および前記対物レンズの前記右側観察光学系に最も近い位置における有効面積よりも小さい極小となる位置が存在するように、形成され、
     前記左側観察光学系は、前記左側観察光学系と前記対物レンズとの間に、前記左側観察光の光軸に垂直な前記左側観察光の光束の有効面積が、前記左側観察光学系の前記対物レンズに最も近い位置における有効面積および前記対物レンズの前記左側観察光学系に最も近い位置における有効面積よりも小さい極小となる位置が存在するように、形成されている、 
     請求項1から請求項18の何れか1項に記載の顕微鏡。
    The right side observation optical system is configured such that an effective area of a light flux of the right side observation light perpendicular to an optical axis of the right side observation light is between the right side observation optical system and the objective lens. It is formed so that there is an effective area at a position closest to the lens and a minimum position smaller than the effective area at a position closest to the right side observation optical system of the objective lens,
    The left side observation optical system has an effective area of a light flux of the left side observation light perpendicular to the optical axis of the left side observation light between the left side observation optical system and the objective lens. It is formed so that there is an effective area at a position closest to the lens and a minimum position smaller than the effective area at a position closest to the left side observation optical system of the objective lens,
    The microscope according to any one of claims 1 to 18.
  20.  前記右側観察光の光軸に垂直な前記右側観察光の光束の有効面積が極小となる位置は、前記右側観察光学系の瞳の位置であり、
     前記左側観察光の光軸に垂直な前記左側観察光の光束の有効面積が最小となる位置は、前記左側観察光学系の瞳の位置である、
     請求項19に記載の顕微鏡。
    The position where the effective area of the light flux of the right side observation light perpendicular to the optical axis of the right side observation light is a minimum is the position of the pupil of the right side observation optical system,
    The position where the effective area of the luminous flux of the left side observation light perpendicular to the optical axis of the left side observation light is the minimum is the position of the pupil of the left side observation optical system,
    The microscope according to claim 19.
  21.  前記右側観察光学系と前記対物レンズとの間に配置され、前記右側観察光の光軸に垂直な前記右側観察光の光束の有効面積を制限する右側絞りと、
     前記左側観察光学系と前記対物レンズとの間に配置され、前記左側観察光の光軸に垂直な前記左側観察光の光束の有効面積を制限する左側絞りと、
     を更に備える、請求項1から請求項20の何れか1項に記載の顕微鏡。
    A right diaphragm which is arranged between the right observation optical system and the objective lens, and which limits the effective area of the light flux of the right observation light perpendicular to the optical axis of the right observation light;
    A left diaphragm disposed between the left observation optical system and the objective lens, which limits an effective area of a light flux of the left observation light perpendicular to an optical axis of the left observation light;
    The microscope according to any one of claims 1 to 20, further comprising:
  22.  前記右側観察光学系には、右側変倍光学系が含まれ、
     前記左側観察光学系には、左側変倍光学系が含まれ、
     前記右側絞りおよび前記左側絞りの各々は、可変絞りであり、
     前記右側観察光学系の倍率に基づいて前記右側絞りが調整されることにより、前記右側観察光における前記有効面積が調整され、
     前記左側観察光学系の倍率に基づいて前記左側絞りが調整されることにより、前記左側観察光における前記有効面積が調整される、
     請求項21に記載の顕微鏡。
    The right-side observation optical system includes a right-side variable power optical system,
    The left-side observation optical system includes a left-side variable power optical system,
    Each of the right diaphragm and the left diaphragm is a variable diaphragm,
    By adjusting the right diaphragm based on the magnification of the right observation optical system, the effective area in the right observation light is adjusted,
    By adjusting the left diaphragm based on the magnification of the left observation optical system, the effective area of the left observation light is adjusted,
    The microscope according to claim 21.
  23.  前記右側観察光学系の倍率が低倍端から高倍端に変倍するのに連動して、前記右側絞りの絞り径が大きくなるように、前記右側絞りを制御する右側絞り径調整部と、
     前記左側観察光学系の倍率が低倍端から高倍端に変倍するのに連動して、前記左側絞りの絞り径が大きくなるように、前記左側絞りを制御する左側絞り径調整部と、
     を更に備える、請求項22に記載の顕微鏡。
    In conjunction with the magnification of the right-side observation optical system changing from the low-magnification end to the high-magnification end, so that the diaphragm diameter of the right-side diaphragm increases, a right-side diaphragm diameter adjusting unit that controls the right-side diaphragm,
    In conjunction with the magnification of the left observation optical system changing from the low magnification end to the high magnification end, a left diaphragm diameter adjusting unit that controls the left diaphragm so that the diaphragm diameter of the left diaphragm increases.
    23. The microscope according to claim 22, further comprising:
  24.  前記右側絞り径調整部は、前記右側絞りの絞り径がズーム倍率ごとに予め定められた最大径以下となるように、前記右側絞りを調整し、
     前記左側絞り径調整部は、前記左側絞りの絞り径がズーム倍率ごとに予め定められた最大径以下となるように、前記左側絞りを調整する、
     請求項23に記載の顕微鏡。
    The right diaphragm stop adjusts the right diaphragm so that the diaphragm diameter of the right diaphragm is equal to or smaller than a maximum diameter that is predetermined for each zoom magnification,
    The left side diaphragm diameter adjusting unit adjusts the left side diaphragm so that the diaphragm diameter of the left side diaphragm is equal to or smaller than a maximum diameter predetermined for each zoom magnification,
    The microscope according to claim 23.
  25.  前記右側偏向素子の移動に基づいて前記右側絞りを移動させる右側絞り移動部と、前記左側偏向素子の移動に基づいて前記左側絞りを移動させる左側絞り移動部とを備える、
     請求項22から請求項24の何れか1項に記載の顕微鏡。
    A right diaphragm moving section that moves the right diaphragm based on the movement of the right deflecting element; and a left diaphragm moving section that moves the left diaphragm based on the movement of the left deflecting element.
    The microscope according to any one of claims 22 to 24.
  26.  前記右側偏向素子は、前記対物レンズと前記右側変倍光学系との間に配置され、
     前記左側偏向素子は、前記対物レンズと前記左側変倍光学系との間に配置されている
     請求項22から請求項25の何れか1項に記載の顕微鏡。
    The right-side deflection element is arranged between the objective lens and the right-side variable magnification optical system,
    The microscope according to any one of claims 22 to 25, wherein the left-side deflection element is arranged between the objective lens and the left-side variable magnification optical system.
  27.  前記右側偏向素子の大きさが、前記右側観察光の光軸に垂直な前記右側観察光の光束の有効面積が所定の面積になるように定められ、
     前記左側偏向素子の大きさが、前記左側観察光の光軸に垂直な前記左側観察光の光束の有効面積が所定の面積になるように定められている、
     請求項1から請求項21の何れか1項に記載の顕微鏡。
    The size of the right deflection element is determined so that the effective area of the light flux of the right observation light perpendicular to the optical axis of the right observation light is a predetermined area,
    The size of the left-side deflection element is determined so that the effective area of the light flux of the left-side observation light perpendicular to the optical axis of the left-side observation light is a predetermined area.
    The microscope according to any one of claims 1 to 21.
  28.  前記右側偏向素子に、前記右側観察光の光軸に垂直な前記右側観察光の光束の有効面積が所定の面積になるように、光を遮光するマスクが設置され、
     前記左側偏向素子に、前記左側観察光の光軸に垂直な前記左側観察光の光束の有効面積が所定の面積になるように、光を遮光するマスクが設置されている、
     請求項1から請求項21の何れか1項に記載の顕微鏡。
    The right deflection element, the effective area of the light flux of the right observation light perpendicular to the optical axis of the right observation light is a predetermined area, a mask for shielding light is installed,
    The left deflection element is provided with a mask that blocks light so that the effective area of the light flux of the left observation light perpendicular to the optical axis of the left observation light has a predetermined area.
    The microscope according to any one of claims 1 to 21.
  29.  前記右側観察光および前記左側観察光により得られる画像を表示する表示部を更に備え、
     前記表示部は、ユーザが前記顕微鏡の正面側から視認している状態での前記顕微鏡の本体を対象とした第1の視野領域から外れた領域に前記画像を表示し、
     または、
     前記顕微鏡の本体は、ユーザが前記顕微鏡の正面側から視認している状態での前記画像を対象とした第2の視野領域から外れた領域に配置される、
     請求項1から請求項28の何れか1項に記載の顕微鏡。
    Further comprising a display unit for displaying an image obtained by the right side observation light and the left side observation light,
    The display unit displays the image in an area deviating from the first visual field area for the main body of the microscope in a state where the user is visually recognizing it from the front side of the microscope,
    Or
    The main body of the microscope is arranged in a region deviating from a second visual field region in which the user views the image from the front side of the microscope.
    The microscope according to any one of claims 1 to 28.
  30.  対物レンズと、
     対象物からの観察光に含まれる右側観察光を右側撮像素子に結像する右側観察光学系と、
     前記対象物からの観察光に含まれる左側観察光を左側撮像素子に結像する左側観察光学系と、
     前記対物レンズと前記右側観察光学系との間に設けられ、前記対象物を照明する右側照明光を反射すると共に、前記対象物から生じる前記右側観察光を前記右側観察光学系へ透過する右側透過素子と、
     前記対物レンズと前記左側観察光学系との間に設けられ、前記対象物を照明する左側照明光を反射すると共に、前記対象物から生じる前記左側観察光を前記左側観察光学系へ透過する左側透過素子と、
     を備える、顕微鏡。
    An objective lens,
    A right observation optical system for forming an image of the right observation light included in the observation light from the object on the right imaging element,
    A left observation optical system that forms a left observation light included in the observation light from the object on a left imaging element,
    A right transmission that is provided between the objective lens and the right observation optical system, reflects the right illumination light that illuminates the object, and transmits the right observation light generated from the object to the right observation optical system. Element,
    A left transmission that is provided between the objective lens and the left observation optical system, reflects left illumination light that illuminates the object, and transmits the left observation light generated from the object to the left observation optical system. Element,
    A microscope.
  31.  前記右側照明光を生成する右側照明光学系と、
     前記左側照明光を生成する左側照明光学系と、
     を更に備える請求項30に記載の顕微鏡。
    A right side illumination optical system for generating the right side illumination light,
    A left side illumination optical system for generating the left side illumination light,
    The microscope according to claim 30, further comprising:
  32.  前記右側照明光及び前記左側照明光の各々には、種類が異なる第1の照明光と第2の照明光との少なくとも一方が含まれる、
     請求項31に記載の顕微鏡。
    Each of the right side illumination light and the left side illumination light includes at least one of different types of first illumination light and second illumination light,
    The microscope according to claim 31.
  33.  前記右側透過素子は、前記右側照明光の前記第1の照明光及び前記第2の照明光の一方のみを反射し、
     前記左側透過素子は、前記左側照明光の前記第1の照明光及び前記第2の照明光の一方のみを反射し、
     請求項32に記載の顕微鏡。
    The right side transmission element reflects only one of the first illumination light and the second illumination light of the right side illumination light,
    The left-side transmission element reflects only one of the first illumination light and the second illumination light of the left-side illumination light,
    The microscope according to claim 32.
  34.  前記右側照明光の前記第1の照明光及び前記第2の照明光の他方のみを前記対象物に向かって反射する右側反射偏向素子と、
     前記左側照明光の前記第1の照明光及び前記第2の照明光の他方のみを前記対象物に向かって反射する左側反射偏向素子と、
    を更に備える、
     請求項33に記載の顕微鏡。
    A right side reflection deflection element that reflects only the other of the first illumination light and the second illumination light of the right illumination light toward the object;
    A left-side reflection deflection element that reflects only the other of the first illumination light and the second illumination light of the left-side illumination light toward the object,
    Is further provided,
    The microscope according to claim 33.
PCT/JP2018/041700 2018-11-09 2018-11-09 Microscope WO2020095445A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/041700 WO2020095445A1 (en) 2018-11-09 2018-11-09 Microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/041700 WO2020095445A1 (en) 2018-11-09 2018-11-09 Microscope

Publications (1)

Publication Number Publication Date
WO2020095445A1 true WO2020095445A1 (en) 2020-05-14

Family

ID=70611916

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/041700 WO2020095445A1 (en) 2018-11-09 2018-11-09 Microscope

Country Status (1)

Country Link
WO (1) WO2020095445A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022053898A1 (en) * 2020-09-08 2022-03-17 Alcon Inc. Illumination system and method for ophthalmic surgical microscopes

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08257037A (en) * 1995-03-20 1996-10-08 Nikon Corp Microscope for operation
US5760952A (en) * 1996-01-25 1998-06-02 J.D. Moller Optische Werke Gmbh Illuminating device for a surgical microscope
JP2006301523A (en) * 2005-04-25 2006-11-02 Olympus Medical Systems Corp Medical microscope
JP2008102535A (en) * 2007-11-06 2008-05-01 Olympus Corp Stereo microscope
JP2013544539A (en) * 2010-09-28 2013-12-19 サイファイ メドテック エッセ.エッレ.エッレ. Corneal confocal microscope (CCM)

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08257037A (en) * 1995-03-20 1996-10-08 Nikon Corp Microscope for operation
US5760952A (en) * 1996-01-25 1998-06-02 J.D. Moller Optische Werke Gmbh Illuminating device for a surgical microscope
JP2006301523A (en) * 2005-04-25 2006-11-02 Olympus Medical Systems Corp Medical microscope
JP2008102535A (en) * 2007-11-06 2008-05-01 Olympus Corp Stereo microscope
JP2013544539A (en) * 2010-09-28 2013-12-19 サイファイ メドテック エッセ.エッレ.エッレ. Corneal confocal microscope (CCM)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022053898A1 (en) * 2020-09-08 2022-03-17 Alcon Inc. Illumination system and method for ophthalmic surgical microscopes

Similar Documents

Publication Publication Date Title
JP5066350B2 (en) Greenough-type stereomicroscope
JP5066349B2 (en) Stereo microscope
US8934169B2 (en) Dual objective 3-D stereomicroscope
US9910257B2 (en) Stereoscopic microscope
US8305684B2 (en) Microscope apparatus having optical systems forming optical paths parallel to an optical axis of an objective lens
JP4508569B2 (en) Binocular stereoscopic observation device, electronic image stereoscopic microscope, electronic image stereoscopic observation device, electronic image observation device
JP2014145968A (en) Surgical microscope system
KR101478270B1 (en) Variable 3-dimensional stereomicroscope assembly
WO2020095445A1 (en) Microscope
JP2009265665A (en) Three-dimensional microscope with beam splitter device
US20170105620A1 (en) Stereo-optic surgical contact lens
WO2021153572A1 (en) Operation microscope and ophthalmologic system
WO2020095444A1 (en) Microscope
JP2008292513A (en) Variable power optical system
WO2020095443A1 (en) Microscope
JP2012141470A (en) Imaging optical system and microscope device
JPS6217722A (en) Single objective stereoscopic vision binocular microscope
JP2017106994A (en) Surgical stereoscopic observation device
JP3479123B2 (en) Multiple image stereoscopic device
WO2020161905A1 (en) Microscope, control device for microscope, and program
JP2012042774A (en) Imaging optical system, microscope device and stereomicroscope device
JP2021001990A (en) Lateral speculum
JPS61226723A (en) Stereomicroscope
JP2018110809A (en) Microscope for ophthalmology
JPH07104189A (en) Stereomicroscope

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18939286

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18939286

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP