WO2020161905A1 - Microscope, control device for microscope, and program - Google Patents

Microscope, control device for microscope, and program Download PDF

Info

Publication number
WO2020161905A1
WO2020161905A1 PCT/JP2019/004676 JP2019004676W WO2020161905A1 WO 2020161905 A1 WO2020161905 A1 WO 2020161905A1 JP 2019004676 W JP2019004676 W JP 2019004676W WO 2020161905 A1 WO2020161905 A1 WO 2020161905A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
optical system
microscope
optical
mode
Prior art date
Application number
PCT/JP2019/004676
Other languages
French (fr)
Japanese (ja)
Inventor
智裕 川崎
良一 左高
正宏 水田
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to PCT/JP2019/004676 priority Critical patent/WO2020161905A1/en
Publication of WO2020161905A1 publication Critical patent/WO2020161905A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/18Arrangements with more than one light path, e.g. for comparing two specimens
    • G02B21/20Binocular arrangements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/18Arrangements with more than one light path, e.g. for comparing two specimens
    • G02B21/20Binocular arrangements
    • G02B21/22Stereoscopic arrangements

Definitions

  • the technology of the present disclosure relates to a microscope, a microscope control device, and a program.
  • Microscopes are known to have various functions depending on their use.
  • a surgical microscope also has, for example, two optical systems for the observer's right eye and left eye, and stereoscopic vision is performed by providing a parallax angle to the observation optical axis from the observation target of the two optical systems.
  • a microscope that makes it possible is known.
  • Microscopes for such applications are required to have high resolution and variable magnification in order to magnify and view not only the stereoscopic image but also the observation target image.
  • a zoom optical system in which a plurality of lenses are combined is used to change the magnification.
  • Japanese Unexamined Patent Publication No. 2017-23583 discloses an ophthalmic microscope including an illumination system, a pair of main light receiving systems, a pair of main eyepiece systems, a control unit, a light separating element, and a pair of sub light receiving systems. Has been done.
  • the microscope that enables stereoscopic vision by having multiple optical systems as described above is generally expensive and large in size. Therefore, a microscope with reduced cost or size is desired.
  • a control unit capable of switching between two modes.
  • a first optical system having a first optical axis, including a shared objective lens or a first objective lens and a first imaging optical system;
  • a second optical system having a second optical axis, including the shared objective lens or the second objective lens and a second imaging optical system, Of the first optical system and the second optical system, only the first optical system includes a zoom optical system.
  • a first optical system having a first optical axis, including a shared objective lens or a first objective lens and a first imaging optical system
  • a second optical system having a second optical axis, including the shared objective lens or the second objective lens and a second imaging optical system
  • a third optical system having a third optical axis, including the shared objective lens or the third objective lens and a third imaging optical system,
  • the resolution of the first optical system is higher than the resolution of the second optical system
  • the resolution of the third optical system is higher than the resolution of the second optical system.
  • the microscope control device An image acquisition unit that acquires a first image captured by the first image sensor and a second image captured by the second image sensor; A first mode in which the first image is displayed on the image display device, and a second mode in which the first image and the second image having different resolutions from each other are displayed as three-dimensional display images on the image display device.
  • the program according to this embodiment is On the computer, Obtaining a first image captured by the first image sensor and a second image captured by the second image sensor, A first mode in which the first image is displayed on the image display device, and a second mode in which the first image and the second image having different resolutions from each other are displayed as three-dimensional display images on the image display device. Step to switch between 2 modes, Is a program for executing.
  • FIG. 15 is a schematic configuration diagram excluding an illumination system showing an example of the arrangement viewed from the BB direction in FIG. 14. It is a block diagram which shows an example of the hardware constitutions of the electric system of the microscope which concerns on 3rd Embodiment. It is a schematic block diagram which shows an example of the structure which can change the substantial angle of the microscope which concerns on 3rd Embodiment. It is a plane layout diagram showing movement of the 2nd optical system when changing a parallax angle concerning this embodiment.
  • CCD Charge Coupled Device
  • CMOS Complementary Metal-Oxide-Semiconductor
  • OCT optical Coherence Tomography
  • CPU is an abbreviation for “Central Processing Unit”.
  • I/F refers to an abbreviation for “Interface” (interface).
  • HDD is an abbreviation for “Hard Disk Drive”.
  • ROM is an abbreviation for “Read Only Memory”.
  • RAM is an abbreviation for “Random Access Memory”.
  • CD-ROM is an abbreviation for “Compact Disc Read Only Memory”.
  • ASIC is an abbreviation of “Application Specific Integrated Circuit” (application-specific integrated circuit).
  • FPGA is an abbreviation for “Field-Programmable Gate Array”.
  • PLD is an abbreviation for “Programmable Logic Device”.
  • SoC System on Chip
  • IC is an abbreviation for “Integrated Circuit”.
  • SSD is an abbreviation for “Solid State Drive”.
  • USB is an abbreviation for “Universal Serial Bus”.
  • EEPROM is an abbreviation for “Electrically Erasable Programmable Read-Only Memory”.
  • FIG. 1 shows a schematic configuration diagram of a microscope 100 including two optical systems and capable of stereoscopic vision as viewed from the lateral direction (side).
  • FIG. 2 shows a plan configuration view of the microscope 100 viewed from above (eg, an upper side in the vertical direction). 1 and 2, for convenience, the height direction when the microscope 100 is horizontally arranged is the Z-axis direction, and the horizontal direction is the X-axis direction and the Y-axis direction.
  • FIGS. 1 and 2 are schematic diagrams for showing an arrangement relationship, not according to actual dimensions and scales. The same applies to the following drawings unless otherwise specified.
  • the microscope 100 includes a first objective optical system 26 including a shared objective lens 12, a first zoom optical system 20, and a first imaging optical system 22.
  • the microscope 100 includes a second optical system 36 including the shared objective lens 12 and the second imaging optical system 32.
  • the second optical system 36 does not include a zoom optical system.
  • the shared objective lens 12 has a role of an objective lens in the first optical system 26 and a role of an objective lens in the second optical system 36, and is a shared objective lens for the first optical system 26 and the second optical system 36. is there.
  • the microscope 100 also includes a first illumination system 40 that illuminates the target surface 10A of the observation target 10.
  • the first zoom optical system 20 and the first imaging optical system 22 will be described separately for convenience, they may be a zoom imaging optical system in which the zoom optical system and the imaging optical system are combined.
  • the effective aperture of the lens of the second optical system 36 closest to the shared objective lens 12 in the optical path is different from the effective aperture of the lens of the first optical system 26 closest to the shared objective lens 12.
  • the effective aperture of the lens of the second imaging optical system 32 closest to the shared objective lens 12 is different from the effective aperture of the lens of the first zoom optical system 20 closest to the shared objective lens 12.
  • the effective aperture of the lens of the first zoom optical system 20 closest to the shared objective lens 12 is also referred to as the effective aperture of the first optical system 26.
  • the effective aperture of the lens of the second imaging optical system 32 closest to the shared objective lens 12 is also referred to as the effective aperture of the second optical system 36.
  • the effective aperture of the second optical system 36 is smaller than the effective aperture of the first optical system 26. Therefore, the substantial numerical aperture of the second optical system 36 is smaller than the substantial numerical aperture of the first optical system 26. Therefore, the resolution of the second optical system 36 is lower than that of the first optical system 26.
  • the level of resolution is determined based on at least one of the numerical aperture, the depth of focus, the aberration, and the material of the lens in the optical system to be compared. Further, the level of resolution may be determined based on the number of pixels of an image pickup element that acquires an optical image as an image or the presence or absence of a zoom optical system. It is determined that the larger the numerical aperture and the depth of focus are, the higher the resolution is, the smaller the various aberrations are, the higher the resolution is, and the higher the transmittance of each wavelength light is, the higher the resolution of the lens material is. Further, it is determined that the larger the number of pixels of the image sensor, the higher the resolution. Further, it is determined that the resolution with the zoom optical system is higher than that without the zoom optical system. Further, for example, in the present embodiment, the first optical system 26 and the second optical system 36 have a configuration in which the performance of the optical system or the performance of the image sensor is different from each other due to the difference in resolution as described above.
  • the microscope 100 forms an image by the first image-capturing device 24, which acquires the optical image of the observation target formed by the first image-forming optical system 22 as an image (for example, a first image), and the second image-forming optical system 32.
  • a second image sensor 34 that acquires an optical image of the observation target as an image (for example, a second image).
  • the first image sensor 24 and the second image sensor 34 are image sensors using, for example, a CCD sensor or a CMOS sensor.
  • the first image sensor 24 is, for example, a 4K image sensor including approximately 8,300,000 pixels having 3840 pixels ⁇ 2160 pixels.
  • the second image pickup device 34 is an HD image pickup device including, for example, 1280 pixels ⁇ 720 pixels, which is approximately 920,000 pixels.
  • the first image sensor 24 that acquires, as the first image, the optical image formed by the first optical system 26 that has a relatively higher resolution than the second optical system 36.
  • the number of pixels of the second image sensor 34 that acquires an optical image formed by the second optical system 36 having a relatively lower resolution than the first optical system 26 as the second image is relatively small.
  • An image sensor is used.
  • the invention is not limited to this, and the first image sensor 24 and the second image sensor 34 may use image sensors having the same number of pixels.
  • the number of pixels of the first image sensor 24 and the number of pixels of the second image sensor 34 described above are merely examples, and the specific number of pixels is not limited in the technology of the present disclosure.
  • the synchronization in the technique of the present disclosure includes that two or more signals, timings of processing, and the like match, and the timings include matching or a slight deviation in an allowable range.
  • the first light beam 5 emitted from the target surface 10A is converted into parallel light by the shared objective lens 12 of the afocal system along the first optical axis OL1 and enters the first deflection mirror 14. ..
  • the first light flux 5 along the first optical axis OL1 is also simply referred to as the light of the first optical axis OL1.
  • the first deflection mirror 14 is an example of a first deflection element according to the technique of the present disclosure.
  • the first light flux 5 that has entered the first deflection mirror 14 is deflected from the Z direction to the minus X direction, further passes through the first diaphragm 16, and reaches the first half mirror 15.
  • the total amount of the first light flux 5 that has reached the first half mirror 15 is deflected in the Y direction as shown in FIG. 2, and is guided to the first zoom optical system 20.
  • the first light flux 5 that has passed through the first zoom optical system 20 is imaged by the first imaging optical system 22 on the imaging surface of the first imaging device 24, and is imaged by the first imaging device 24.
  • the second light beam 6 emitted from the target surface 10A is converted into parallel light by the shared objective lens 12 along the second optical axis OR1, and passes through the second diaphragm 17 to the second light beam. It is guided to the imaging optical system 32.
  • the second light flux 6 is imaged and imaged by the second imaging optical system 32 on the imaging surface of the second imaging element 34.
  • the microscope 100 does not have a zoom optical system in the second optical system 36.
  • the afocal system is a system in which the first light flux 5 and the second light flux 6 emitted from the target surface 10A at the focal position become parallel light that neither converges nor diverges.
  • the afocal system is a system in which the first optical axis OL1 and the second optical axis OR1 are parallel to each other.
  • the first illumination system 40 includes a first illumination light source 41 and a first light source optical system 42.
  • the illumination light emitted from the first illumination light source 41 is collimated by the first light source optical system 42 and reaches the first half mirror 15 along the illumination optical axis LA.
  • the illumination light that has reached the first half mirror 15 passes through the first half mirror 15 and travels backward along the path of the first light flux 5 along the first optical axis OL1.
  • the illumination light reaches the target surface 10A through the first deflection mirror 14 and the shared objective lens 12 and illuminates the target surface 10A.
  • the first illumination light source 41 is, for example, a transillumination light source that illuminates and reflects the retina via the pupil of the eyeball and uses the reflected light as illumination light.
  • the illuminated target surface 10A is the anterior segment.
  • the first illumination light source 41 may include, for example, an optical fiber that carries light from the light source.
  • an oblique illumination system (not shown) for illuminating the posterior segment may be provided.
  • the oblique illumination system is an illumination system that illuminates the posterior segment or the fundus from the outside of the transillumination illumination through the pupil.
  • a front lens is detachably arranged on the observation target side of the shared objective lens 12 so that the posterior eye can be focused.
  • a near infrared light irradiation system (not shown) for the optical coherence tomography (OCT) may be provided. This makes it possible to obtain the tomographic image of the fundus using OCT while directly observing the fundus and to confirm the presence or absence of a lesion.
  • the first optical axis OL1 (or the optical path of the first optical axis OL1) and the illumination optical axis LA (or the illumination optical axis LA).
  • Optical path can be matched, and the degree of freedom of arrangement is improved.
  • the first deflecting mirror 14 is movable as will be described later, since the moving direction of the first deflecting mirror 14 coincides with the direction of the illumination optical axis LA, even if the first deflecting mirror 14 moves, the illumination system is moved. Need not be moved.
  • the microscope 100 does not have a light source that illuminates the target surface 10A via the second optical system 36. Since the eye that is the observation target 10 is illuminated only with the illumination light from the first illumination light source 41, the influence of the illumination light on the eye can be reduced.
  • the first image of the observation target 10 based on the first light flux 5 captured by the first image sensor 24 is used as an image for the left eye, for example.
  • the second image of the observation target 10 based on the second light flux 6 captured by the second image sensor 34 is used, for example, as an image for the right eye. Other methods of using the first image and the second image will be described later.
  • the microscope 100 includes the above-described optical element, the control unit 90, the image transmission unit 60, and the input unit 140.
  • the control unit 90 includes an image processing unit 50, an image selection unit 55, an output I/F 56, an input I/F 57, a first deflection mirror driving unit 81, a second imaging optical system driving unit 82, and a second imaging optical system driving unit 82. It includes a 1-zoom optical system drive unit 84, a first illumination light source drive unit 86, a computer 110, and an external I/F 130. These are connected to the bus line 120.
  • the first image captured by the first image sensor 24 and the second image captured by the second image sensor 34 are acquired by the computer 110 via the input I/F 57 as electrical image signals, and the RAM 114 described below is used. Memorized in.
  • the computer 110 is an example of an image acquisition unit according to the technique of the present disclosure.
  • the image processing unit 50 performs image processing on the stored first image and second image.
  • the image selection unit 55 selects an image to be displayed on the image display device 70.
  • the output I/F 56 is an interface between the image transmission unit 60 and the control unit 90.
  • the input I/F 57 is an interface between the input unit 140, the first image sensor 24, the second image sensor 34, and the control unit 90.
  • the first deflection mirror drive unit 81 drives the first deflection mirror 14.
  • the second imaging optical system drive unit 82 drives together the second diaphragm 17, the second imaging optical system 32, and the second image sensor 34.
  • the first zoom optical system drive unit 84 moves the lens group of the first zoom optical system 20 in the optical axis direction to change the magnification.
  • the first illumination light source drive unit 86 turns on and off the first illumination light source 41, adjusts the light source intensity, and the like.
  • the external I/F 130 is an interface for connecting an external device (not shown). Examples of the external device include a personal computer, a USB memory, an SSD, a server, and the like.
  • the image selection unit 55 selects a display image for the left eye which is observed by the user from the first image and the second image which have been image-processed according to the observation mode set by the observer, that is, the plurality of observation modes. Select the display image for the right eye.
  • the selected display image for the left eye and the selected display image for the right eye are transmitted to the image display device 70 by the image transmission unit 60 via the output I/F 56.
  • the image display device 70 displays the display image for the left eye on the left side of the screen, and the display image for the right eye on the right side of the screen, for example.
  • the position for displaying each image is not limited to the left side and the right side of the screen of the image display device 70, but for convenience, the display image for the left eye is also referred to as the left image and the display image for the right eye is also referred to as the right image.
  • the display image for the left eye is displayed for convenience.
  • the left image and the display image for the right eye are also referred to as the right image.
  • the first image is selected as the left image and the second image is selected as the right image, but the present invention is not limited to this. Details of the image processing unit 50, the first deflection mirror driving unit 81, and the second imaging optical system driving unit 82, and details of the observation mode will be described later.
  • the user uses the input unit 140 to make various settings regarding the observation of the observation target 10 and operate the microscope 100.
  • the input unit 140 is, for example, a keyboard, various switches, a touch panel, a voice input microphone, and/or a foot pedal.
  • the user sets the observation mode, adjusts the magnification of the image, adjusts the light source intensity, changes the substantial angle, and the like via the input unit 140.
  • the input information is acquired by the computer 110 via the input I/F 57.
  • the computer 110 controls each part based on the input information.
  • the computer 110 includes a CPU 112, a RAM 114, and a ROM 116, and the CPU 112, the RAM 114, and the ROM 116 are connected to the bus line 120.
  • the CPU 112 controls the entire microscope 100.
  • the RAM 114 is a volatile memory used as a work area or the like when executing various programs.
  • the ROM 116 is a non-volatile memory that stores a microscope control program 118 that controls basic operations of the microscope 100, various parameters, and the like.
  • the first CPU 112 is illustrated in the first embodiment, it is also possible to use a plurality of CPUs.
  • the ROM 116 stores a microscope control program 118.
  • the microscope control program 118 is an example of a “program” according to the technique of the present disclosure.
  • the example in which the microscope control program 118 is stored in the ROM 116 is given, but the technique of the present disclosure is not limited to this.
  • the microscope control program 118 may be stored in an HDD, an EEPROM, a flash memory or the like (not shown) connected to the bus line 120.
  • the CPU 112 reads the microscope control program 118 from the ROM 116 and expands the read microscope control program 118 in the RAM 114. Then, the CPU 112 executes the microscope control program 118, and as an example, the image processing unit 50, the image selection unit 55, the first deflection mirror drive unit 81, the second imaging optical system drive unit 82, and the second image formation optical system drive unit 82 shown in FIG. It operates as the 1-zoom optical system drive unit 84 and the first illumination light source drive unit 86.
  • the first zoom optical system 20 and the first imaging optical system 22 are incident with the light of the first optical axis OL1 deflected by the first deflection mirror 14 and the first half mirror 15. They are sequentially arranged along the Y-axis direction (eg, horizontal direction). With this configuration, the size of the portion of the first image pickup device in the microscope 100 in the thickness direction (eg, Z-axis direction, vertical direction) can be reduced.
  • the effective aperture of the second optical system 36 is smaller than the effective aperture of the first optical system 26.
  • the second optical system 36 does not have a zoom optical system. That is, of the first optical system 26 and the second optical system 36, only the first optical system 26 has a zoom optical system. With such a configuration, the size of the second optical system 36 can be designed compactly. Therefore, the size of the microscope 100 can be made smaller than that of a microscope including two first optical systems 26 for both eyes, and the manufacturing cost can be reduced.
  • the shared objective lens 12 is described as being composed of one lens in FIG. 1, but may be composed of a plurality of lenses in combination.
  • each of the first zoom optical system 20, the first imaging optical system 22, the second imaging optical system 32, and the first light source optical system 42 is composed of one or more lenses.
  • the first zoom optical system 20 is composed of four lenses.
  • the four lenses are the first lens 20A, the second lens 20B, the third lens 20C, and the fourth lens 20D from the side closer to the shared objective lens 12.
  • the first lens 20A is a lens that substantially determines the numerical aperture of the first optical system 26.
  • the second lens 20B and the third lens 20C determine the magnification of the first zoom optical system 20 by changing their positions in conjunction with each other.
  • the second lens 20B moves in one direction along the optical axis from the lowest magnification to the highest magnification.
  • the zoom cam is configured such that the moving direction of the third lens 20C is reversed during the magnification change.
  • the first optical axis OL1 and the second optical axis OR1 form a parallax angle of the real angle R1 at the position of the observation target 10.
  • the parallax angle is also referred to as a body angle.
  • the first image and the second image obtained from the respective light fluxes that have passed through the two optical axes having the substantial angle at the position of the observation target 10 by the two optical systems are also referred to as parallax images.
  • the first image obtained by the first optical system 26 and the second image obtained by the second optical system 36 form a parallax image.
  • the optical axis of the first optical system 26 and the optical axis of the second optical system 36 are configured to have a parallax angle.
  • the first deflecting mirror 14 is driven by the first deflecting mirror driving unit 81 so as to move along the parallax direction in which parallax is desired (in this case, the X-axis direction).
  • the first deflection mirror 14 is movable in a direction that changes the substantial angle formed by the first optical axis OL1 and the second optical axis OR1 at the position of the observation target 10.
  • At least one optical element of the second optical system 36 is movable in a direction in which the substantial angle R1 formed by the first optical axis OL1 and the second optical axis OR1 at the position of the observation target 10 is changed.
  • the second diaphragm 17, the second image forming optical system 32, and the second image sensor 34 are driven by the second image forming optical system driving unit 82 to generate a parallax direction (in this case, the X-axis direction). Is driven to move integrally along.
  • the second diaphragm 17, the second imaging optical system 32, and the second imaging element 34 are arranged in a direction in which the substantial angle R1 formed by the first optical axis OL1 and the second optical axis OR1 at the position of the observation target 10 is changed. Can be moved.
  • FIG. 6 shows that the first deflecting mirror 14 has moved from the position indicated by the dotted line in the X direction to the position indicated by the first deflecting mirror 14 indicated by the solid line.
  • the first diaphragm 16 does not move in FIG. 6, the first diaphragm 16 may move in conjunction with the first deflection mirror 14.
  • the second diaphragm 17, the second imaging optical system 32, and the second image sensor 34 are integrally moved in the minus X direction from the position indicated by the dotted line and moved to the positions indicated by the solid lines.
  • the first optical axis OL1 shown by the dotted line moves to the position of the optical axis OL2 shown by the dashed line
  • the second optical axis OR1 shown by the dotted line moves to the position of the optical axis OR2 shown by the dashed line.
  • the actual angle R2 formed by the optical axis OL2 and the optical axis OR2 is the actual angle R1 before the first deflection mirror 14, the second diaphragm 17, the second imaging optical system 32, and the second image sensor 34 are moved. Will be smaller than.
  • the substantial angle R2 becomes large.
  • the stereoscopic effect of the observation target 10 seen by the user can be changed.
  • the image processing unit 50 is configured to obtain an optimum stereoscopic image when the user views the first image captured by the first image sensor 24 and the second image captured by the second image sensor 34 with both eyes. Image processing. Specifically, the image processing unit 50 adjusts the electronic zoom magnification so that the magnification of the first image and the magnification of the second image are aligned. “Matching the same magnification” means that the magnifications are about the same, but not only the magnifications are completely the same, but the magnifications are not so large when the user sees the first image and the second image. Includes magnification. "Same magnification” is also referred to as "substantially the same magnification". By matching the magnifications of the two images, the two images are adjusted to a magnification integrated with each other (integration magnification).
  • the first image is used as an image for the left eye
  • the second image is used as an image for the right eye, for example.
  • the first optical system 26 has the first zoom optical system 20, but the second optical system 36 has no zoom optical system. Therefore, when the first zoom optical system 20 is driven to change the magnification of the first image, the optical magnification of the image differs between the first image and the second image. Therefore, the image processing unit 50 electronically enlarges or reduces the second image, and the magnification of the second image is adjusted to the magnification of the optically enlarged first image.
  • the process of electronically enlarging or reducing an image is also referred to as electronic zoom.
  • the method of matching the optical zoom magnification with the electronic zoom magnification it is also possible to set the optical zoom magnification and the electronic zoom magnification individually and match them.
  • the electronic zoom magnification of the second image is adjusted by the control unit 90 (or the image processing unit 50) based on the magnification of the first image. It is preferable.
  • the electronic zoom magnification of the second image is adjusted in association with the magnification of the first image. Adjusting the magnification of the second image based on the magnification of the first image includes adjusting the visual field range of the first image and the visual field range of the second image so as to be approximately the same.
  • the image processing unit 50 adjusts the electronic zoom magnification of the second image in association with the optical magnification change of the first image by the first zoom optical system 20. That is, the image processing unit 50 adjusts the electronic zoom magnification so as to be substantially the same as the optical magnification achieved by the first zoom optical system 20.
  • a stereoscopic image with a changed magnification can be observed with binocular vision without a sense of discomfort. Therefore, as compared with the case where zoom optical systems are provided in both the first optical system 26 and the second optical system 36, stereoscopic viewing can be performed with a resolution that does not change so much, and manufacturing cost and size can be reduced. ..
  • the image processing unit 50 may electronically enlarge or reduce the first image.
  • the first image and the second image can be magnified more than the magnifying power of the first zoom optical system 20.
  • the first image and the second image can be reduced to be smaller than the minimum magnification of the first zoom optical system 20.
  • the user can perform stereoscopic viewing with a magnification in a range exceeding the magnification range of the first zoom optical system 20.
  • the method of changing the electronic magnification in association with the change of the optical magnification by the first zoom optical system 20 is to detect the magnification of the first zoom optical system 20 set by the user and set the electronic zoom magnification to the first value. It suffices to match the magnification of the zoom optical system 20.
  • the user inputs the magnification of the first zoom optical system 20 via the input unit 140.
  • the user's magnification input method is to enter a numerical value using a keyboard, select a preset magnification, or change the magnification continuously with a lever or dial to change the desired magnification position. There is a method to stop at.
  • the magnification (eg, the magnification of the first zoom optical system 20) may be calculated by detecting the position of a specific lens of the first zoom optical system 20, and the magnification of the electronic zoom may be adjusted to that.
  • the specific lens is a lens whose position uniquely corresponds to the magnification of the first zoom optical system 20, and corresponds to, for example, the second lens 20B in FIG.
  • a table or a functional expression that associates a specific lens position with the magnification of the first zoom optical system 20 is stored in advance in the ROM 116, and the magnification can be calculated from the position of the lens or the rotation speed of the drive motor.
  • a method of adjusting the magnification by image analysis may be used. For example, when the magnifications of the first image and the second image are relatively close to each other, similar-shaped objects are detected from the first image and the second image, and the similar-sized objects are made equal in size. 2 Enlarge or reduce the image with electronic zoom. When the first image and the second image have a large difference in magnification and a similar shape cannot be found, the electronic zoom magnification is changed until a similar shape is detected in both the first image and the second image. After detecting a similar shape, the magnification is adjusted by the above method.
  • the image processing unit 50 performs brightness adjustment, white balance adjustment, RGB correction, and the like of the first image and the second image to make the brightness of the first image and the second image uniform. Further, the image processing unit 50 may adjust the orientations of the two images (eg, the first image and the second image) displayed on the image display device 70 so that they are oriented in a predetermined direction for the user. ..
  • the image transmitting unit 60 transmits the first image and the second image processed by the image processing unit 50 to the image display device 70.
  • the image transmitter 60 is, for example, an image transmitter for wirelessly transmitting an image. It is also possible to transmit the image by wire, and in that case, the image transmission unit 60 includes an output unit such as an output terminal for image transmission.
  • the image display device 70 displays, for example, the first image and the second image.
  • the image display device 70 can display the first image and the second image so that they can be viewed stereoscopically.
  • the type of the image display device 70 that enables stereoscopic observation is not limited, and a known display device that allows stereoscopic viewing can be used.
  • the image display device 70 is a head-mounted display that can be worn on the head or face.
  • the head-mounted display has, for example, two independent display screens for the right eye and the left eye (or a display screen in which an image is displayed in space), and each of the two screens has an image for the right eye and an image for the right eye. Display the image for the left eye.
  • two images having a substantial angle, a stereoscopic effect can be generated in the displayed image.
  • the image display device 70 may be a head-mounted display that alternately displays a frame image for the left eye and a frame image for the right eye.
  • This type of display device alternately displays a first image for the left eye and a first image for the right eye at high speed, and displays a shutter for the right eye and a shutter for the left eye in accordance with the display of each image. Open and close alternately. The shutter for the right eye is closed while the first image for the left eye is displayed, and the shutter for the left eye is closed while the second image for the right eye is displayed.
  • the user can see the first image and the second image with the left eye and the right eye, respectively, and stereoscopic vision is realized.
  • the image display device 70 may be a display device having one flat liquid crystal display screen.
  • the image display device 70 alternately displays an image for the right eye and an image for the left eye for each scanning line, for example.
  • On the screens of the scanning lines of the image for the right eye and the scanning lines of the image for the left eye polarizing plates having opposite polarization directions are provided.
  • the user has a polarizing filter having the same polarization direction as the polarizing plate provided on the scanning line for the right eye on the right side and a polarizing filter having the same polarization plane as the polarizing plate provided on the scanning line for the left eye on the left side. Wear glasses to observe the image.
  • the image display device 70 may be a display device using a lenticular lens in which a large number of cylindrical lenses are arranged.
  • the lenticular display device displays an image for the right eye and an image for the left eye for each pixel line. Then, the display device displays the displayed right-eye image and left-eye image in the right-eye direction and the left-eye direction by the cylindrical lens arranged for each pixel line.
  • the image display device 70 may use a parallax barrier type image display device as an image display device capable of stereoscopic vision with the naked eye.
  • the parallax barrier system is a system in which different pixels are visible to the left and right eyes of an observer. Specifically, for example, a shield plate having a hole or a groove for every two left and right pixels is arranged in front of the display pixel. As a result, the right eye sees only the image for the right eye, and the left eye sees only the image for the left eye. Since the image for the right eye and the image for the left eye have a parallax angle, binocular parallax can be created with the naked eye.
  • the image display device 70 is a device separate from the microscope 100.
  • the image display device 70 may be configured as a microscope system integrated with the microscope 100. In this case, it is preferable to reduce the dimension of the microscope 100 in the Z-axis direction and arrange the image display device 70 above the first optical system 26 and the second optical system 36. Accordingly, the layout design can be performed so that the image display device 70 is arranged in front of the user.
  • the image display device 70 is described as being controlled or operated independently of the microscope 100. However, the image display device 70 may be controlled by the control unit 90 of the microscope 100.
  • the control unit acquires, for example, a first image captured by the first image sensor and a second image captured by the second image sensor, a first image, and a second image.
  • a first mode in which the first image is displayed on the image display device 70 and a second image in which the resolution of the first image and the first image are different from each other are three-dimensional display images (for example, stereoscopic image capable of stereoscopic viewing, parallax). It is possible to switch between the second mode in which the image is displayed on the image display device 70 as an image.
  • the user can select and set the observation mode. Specifically, the user can set the first mode which is the detailed observation mode, the second mode which is the stereoscopic observation mode, and the third mode which is the variable magnification observation mode.
  • the image selection unit 55 selects and combines the left-eye image and the right-eye image from the first image and the second image based on the observation mode set by the user.
  • the image selection unit 55 selects the first image 72 having a relatively high resolution as the image for the left eye and the image for the right eye, as shown in FIG. 7, for example. To do. In this case, the observed image does not become a stereoscopic image because there is no substantial angle, but there is an advantage that the user can see a relatively high-resolution image with both eyes. This is suitable when the observation target 10 is enlarged and viewed at high resolution.
  • stereoscopic viewing is not performed in the first mode, so it is not necessary to display the same first image 72 as the image for the left eye and the image for the right eye on the two image display surfaces. You may display one 1st image 72 on an image display surface, and it may be viewed with both eyes.
  • the image selection unit 55 selects the first image 72 for the left eye and the second image 73 for the right eye, as shown in FIG. 8, for example.
  • the second image 73 is schematically represented as an image having a lower resolution than the first image 72.
  • the control unit 90 forms a parallax image with the first image 72 obtained by the first optical system 26 and the second image 73 obtained by the second optical system 36.
  • the control unit 90 causes the image display device 70 to display the second image 73 in synchronization with the display timing of the first image 72.
  • the second image 73 has a lower resolution than the first image 72 in the present embodiment, the first image 72 may have a lower resolution than the second image 73.
  • the image selection unit 55 selects the second image 73 having a relatively low resolution as the image for the right eye and the image for the left eye, as shown in FIG. 9, for example. ..
  • the resolution of the observed image is relatively low, there is an advantage that the user can quickly zoom and observe the image from low magnification to high magnification by the electronic zoom.
  • FIGS. 7 to 9 the left-eye image and the right-eye image are arranged side by side for the sake of clarity, but as described above, the left-eye image and the right-eye image are not necessarily shown. It does not have to be displayed on the left and right sides of the screen at the same time.
  • the image for the left eye and the image for the right eye are appropriately displayed according to the method of the display device.
  • the third mode does not perform stereoscopic vision, it is not always necessary to display the same second image 73 as images for the left eye and the right eye on the two image display surfaces.
  • One second image 73 may be displayed on the image display surface so that it can be viewed with both eyes.
  • the microscope 100 having the above-described configuration has two optical systems having different configurations such as resolution, thereby providing a microscope capable of stereoscopic viewing and suppressing cost and size.
  • the effective aperture of the second optical system is smaller than the effective aperture of the first optical system 26. Therefore, while the microscope 100 is capable of stereoscopic viewing, the manufacturing cost and size can be suppressed as compared with the configuration in which the effective diameters of the two optical systems are the same.
  • the microscope of this embodiment can display an image obtained from two optical systems by a plurality of display methods (image display methods).
  • the optical system for the right eye and the optical system for the left eye have the same configuration and are used only for stereoscopic viewing.
  • the microscope 100 according to the first embodiment has the first zoom optical system 20 only in the first optical system 26, the second optical system 36 does not have the zoom optical system, and the first optical system 26 does not. It has a simpler configuration.
  • the first image can be used as a left-eye image
  • the second image can be used as a right-eye image for stereoscopic viewing
  • the first image can be used as a left-eye image and a right-eye image.
  • the second image can be used as an image for the left eye and an image for the right eye.
  • the user can set a plurality of observation modes.
  • the microscope 100 having such a configuration enables stereoscopic viewing and can reduce the manufacturing cost and size as compared with the configuration including the zoom optical system on both sides. Further, in addition to the stereoscopic observation mode, it is possible to select a detailed observation mode or a variable magnification observation mode. Further, by using an image sensor having a smaller number of pixels than the first image sensor 24 as the second image sensor 34, the manufacturing cost can be further reduced.
  • the light of the optical axis OL1 is deflected in two directions (eg, the X-axis direction and the Y-axis direction) by using the first deflection mirror 14 and the first half mirror 15, and the first zoom optical
  • the system 20 and the first imaging optical system 22 are arranged along the Y-axis direction.
  • the size of the microscope 100 in the Z-axis direction that is, the height can be reduced.
  • the first zoom optical system 20 and the first imaging optical system 22 are moved in the same Z-axis direction as the second imaging optical system 32. You may arrange in line.
  • the size of the microscope 100 in the Y-axis direction, that is, the lateral direction can be reduced.
  • the first half mirror 15 is used to guide the illumination light from the first illumination light source 41 to the target surface 10A along the first optical axis OL1.
  • Other configurations are the same as those in the first embodiment.
  • a deflecting element is used to form the second image forming optical system 32 and the second image pickup device.
  • 34 may be aligned in the same Y direction as the first zoom optical system 20 and the first imaging optical system 22 (not shown).
  • the size of the microscope 100 in the Z-axis direction that is, the height can be further reduced.
  • the optical image of the target surface 10A is acquired as an image using the first image sensor 24 and the first image sensor 34. Then, the user observes the captured image using the image display device 70. However, the optical image may be directly observed without using the first image sensor 24 and the first image sensor 34.
  • the first zoom optical system 20 and the first imaging optical system 22 are arranged in the same direction as the second imaging optical system 32 without using the first deflection mirror 14. To do. Then, the first eyepiece lens 23 is arranged in the first image formation optical system 22, and the second eyepiece lens 33 is arranged in the second image formation optical system 32.
  • an erecting prism or the like is arranged so that the image viewed through the eyepiece is erect (not shown).
  • the size of the microscope 100B in the Y-axis direction can be reduced.
  • the microscope 100B does not need to include the image display device 70.
  • the eyepiece lens and the image pickup device may be exchangeable by adding an exchange adapter for the device.
  • the objective lens of the first optical system 26 and the objective lens of the second optical system 36 use the shared objective lens 12 that also serves as both.
  • the microscope 100C may be provided with a first objective lens 45 dedicated to the first optical system 26 and a second objective lens 46 dedicated to the second optical system 36 instead of the shared objective lens 12. .. That is, the first objective lens 45, the first zoom optical system 20, and the first image forming optical system are included in the first optical system 26.
  • the second objective lens 46 and the second imaging optical system 32 are included in the second optical system 36.
  • the effective aperture of the first optical system 26 is the effective aperture of the first objective lens 45
  • the effective aperture of the second optical system 36 is the effective aperture of the second objective lens 46.
  • Other configurations are the same as those in the first embodiment.
  • the microscope 100C does not need to have the relatively large-sized shared objective lens 12, and can use the relatively small first objective lens 45 and the second objective lens 46.
  • the entire element from the first objective lens 45 to the first imaging element 24 is moved in the direction of arrow W1 with the observation target 10 as the center.
  • the entire element from the second objective lens 46 to the second image pickup element 34 is moved in the direction of the arrow W2 around the observation target 10. By doing so, the microscope 100C can change the body angle R1.
  • the effective aperture of the first optical system 26 and the effective aperture of the second optical system 36 are different.
  • the effective aperture of the first optical system 26 and the effective aperture of the second optical system 36 may be the same. Even if the second optical system 36 does not have a zoom optical system, if the effective aperture of the second optical system 36 is the same as the effective aperture of the first optical system 26, it is easy to obtain an image with uniform brightness. Also in each of the modified examples described above, the same effects as the basic effects described in the first embodiment can be obtained.
  • a microscope 200 for ophthalmologic surgery includes a shared objective lens 12, a first imaging optical system 222, a first imaging element 224, a second imaging optical system 32, and a second imaging element. 34 and 34.
  • the microscope 200 also includes a first half mirror 15, a first diaphragm 16, a second diaphragm 17, and a first illumination system 40.
  • the shared objective lens 12 and the first imaging optical system 222 constitute a first optical system 226, and the shared objective lens 12 and the second imaging optical system 32 constitute a second optical system 36.
  • the first imaging optical system 222 and the second imaging optical system 32 have substantially the same optical configuration.
  • Neither the first optical system 226 nor the second optical system 36 has a zoom optical system. Therefore, the optical resolutions of the first optical system 226 and the second optical system 36 are the same.
  • the observation light for the left eye emitted from the target surface 10A is converted into parallel light by the common objective lens 12 along the first optical axis OL1, passes through the diaphragm 16, and is incident on the first half mirror 15.
  • the observation light that has entered the first half mirror 15 passes through the first half mirror 15, and is then imaged on the imaging surface of the first imaging element 224 by the first imaging optical system 222, so that the optical image of the target surface 10A is 1 image pickup element 224.
  • the observation light for the right eye emitted from the target surface 10A is converted into parallel light by the common objective lens 12 along the second optical axis OR1, and passes through the second diaphragm 17 to the second imaging optical system 32. Be led to. Then, the observation light is imaged on the imaging surface of the second imaging element 34 by the second imaging optical system 32, and the optical image of the target surface 10A is acquired by the second imaging element 34.
  • the number of pixels of the first image sensor 224 is about 3840 pixels ⁇ 2160 pixels, about 8.3 million pixels, and the number of pixels of the second image sensor 34 is about 1280 pixels ⁇ 720 pixels, about 920,000 pixels.
  • the number of pixels of the first image sensor 224 and the number of pixels of the second image sensor 34 are different.
  • the number of pixels of the first image sensor 224 and the number of pixels of the second image sensor 34 described above are examples, and it is sufficient that the numbers of pixels of the two are different, and in the technique of the present disclosure, specific pixels of each. The number is not limited.
  • the first image acquired by the first image sensor 224 having a large number of pixels has a relatively high resolution compared to the second image
  • the second image acquired by the second image sensor 34 having a small number of pixels is the first image.
  • the resolution is relatively low compared to one image.
  • the image processing unit 50 is capable of enlarging and reducing the first image and the second image by electronic zoom, respectively. However, it is preferable that the first image and the second image are scaled up and down in association with each other so that the first image and the second image have the same scale.
  • the first illumination system 40 is the same as in the first embodiment.
  • the illumination light emitted from the first illumination light source 41 is collimated by the first light source optical system 42 and enters the first half mirror 15 along the illumination optical axis LA.
  • the illumination light that has entered the first half mirror 15 is deflected by the first half mirror 15 and enters the target surface 10A via the shared objective lens 12 along the first optical axis OL1.
  • At least one optical element of the second optical system 36 moves in a direction (parallax direction) that changes the substantial angle R1 formed by the first optical axis OL1 and the second optical axis OR1 at the position of the observation target 10.
  • the second diaphragm 17, the second imaging optical system 32, and the second image pickup device 34 are integrally driven by the second imaging optical system driving unit 82 so as to move along the X axis. It That is, the second diaphragm 17, the second imaging optical system 32, and the second imaging element 34 are arranged in a direction in which the substantial angle R1 formed by the first optical axis OL1 and the second optical axis OR1 at the position of the observation target 10 is changed. Can be moved. By making the body angle R1 changeable, the body angle R1 can be adjusted so that the user can obtain the most appropriate stereoscopic effect.
  • the control unit of the microscope 200 has the same configuration as the control unit 90 of the first embodiment shown in FIG. 3 except that it does not have the first deflection mirror drive unit 81 and the first zoom optical system drive unit 84.
  • the configuration of the image display device 70 is similar to that of the first embodiment.
  • the microscope 200 can display a combination of the first image and the second image on the image display device 70 based on the above-described observation mode set by the user. For example, when the user sets the first mode which is the detailed observation mode, the image selection unit 55 selects the first image as an image for the left and right eyes.
  • the displayed image is not a stereoscopic image, but the user can see a high resolution image.
  • the image selection unit 55 selects the first image and the second image as the images for the left eye and the right eye.
  • the user can observe the object as a stereoscopic image by viewing this with both eyes. That is, in the second mode, the parallax image is formed by the first image 72 obtained by the first optical system 226 and the second image 73 obtained by the second optical system 36.
  • the image selection unit 55 selects the second image as the image for the left and right eyes.
  • the user has a low-resolution image, the user can quickly zoom in and view an image from low magnification to high magnification by electronic zoom.
  • the number of pixels of the first image sensor 224 is about 8.30 million pixels, and the number of pixels of the second image sensor 34 is about 920,000 pixels. Therefore, the manufacturing cost can be suppressed as compared with the case where the image pickup device having approximately 8.30 million pixels is used for both the first image pickup device 224 and the second image pickup device 34.
  • the user can observe a stereoscopic image by viewing the first image and the second image displayed on the image display device with both eyes.
  • the first image can be used as a binocular image
  • the second image can be used as a binocular image.
  • the modified example or the alternative configuration described in the first embodiment can also be applied to the microscope 200 in the second embodiment.
  • the first optical system and the second optical system do not have a zoom optical system.
  • the microscope 200 may include a zoom optical system (not shown) in the first optical system.
  • the microscope 200 can further increase the optical resolution of the first optical system. That is, the optical resolution of the microscope 200 can be substantially increased.
  • the first optical system 226 and the second optical system 36 are arranged along the Z-axis direction.
  • the orientation of the arrangement of the first optical system 226 and the second optical system 36 is not limited.
  • the two optical systems may be arranged along the Y-axis direction by using deflection elements (not shown). In this case, the microscope 200 can reduce the size of the microscope 200 in the Z-axis direction.
  • the microscope 200 may move the optical axis OL1 of the first optical system 226 to change the substantial angle R1.
  • the microscope 200 may be configured such that the first half mirror 15, the first diaphragm 16, the first imaging optical system 222, and the first image sensor 224 are moved as a unit so that the substantial angle R1 can be changed.
  • the microscope 300 has a structure in which another observation optical system is added to the microscope 100 of the first embodiment.
  • the microscope 300 is a microscope that allows an operator (doctor) and an assistant to stereoscopically observe the observation target 10. As shown in FIG. 14, the operator observes from the direction of arrow DA, and the assistant observes from the direction of arrow DB.
  • the microscope 300 includes a first optical system 26 including a shared objective lens 12, a first zoom optical system 20, and a first imaging optical system 22.
  • the microscope 300 includes a second optical system 36 including the shared objective lens 12 and the second imaging optical system 32.
  • the microscope 300 includes a third optical system 326 including the shared objective lens 12, a third zoom optical system 320, and a third imaging optical system 322. That is, the shared objective lens 12 serves also as the objective lens of the first optical system 26, the objective lens of the second optical system 36, and the objective lens of the third optical system 326.
  • the effective aperture of the first optical system 26 is about the same as the effective aperture of the third optical system 326.
  • the effective aperture of the second optical system 36 is different from the effective aperture of the first optical system 26 or the third optical system 326. Specifically, when the optical magnifications of the optical systems are the same, the effective aperture of the second optical system 36 is smaller than the effective aperture of the first optical system 26 or the third optical system 326. That is, the substantial numerical aperture of the second optical system 36 is smaller than the substantial numerical aperture of the first optical system 26 and the third optical system 326.
  • the first optical system 26 and the third optical system 326 may be configured to have different substantial numerical apertures. Even in that case, it is preferable that the substantial numerical aperture of the first optical system 26 and the third optical system 326 be larger than the substantial numerical aperture of the second optical system 36.
  • the microscope 300 includes a first imaging device 24 that acquires an optical image of an observation target formed by the first imaging optical system 22 as a first image, and an observation target formed by the second imaging optical system 32. It includes a second image sensor 34 that acquires an optical image as a second image, and a third image sensor 324 that acquires an optical image of an observation target formed by the third imaging optical system 322 as a third image.
  • the microscope 300 also includes a first illumination system 40 that illuminates the target surface 10A of the observation target 10.
  • the first light flux 5 emitted from the target surface 10A is converted into parallel light by the common objective lens 12 along the first optical axis OL1 and is incident on the first deflection mirror 14.
  • the first light flux 5 that has entered the first deflection mirror 14 is deflected from the Z direction to the negative Y direction, further passes through the first diaphragm 16, and enters the first half mirror 15.
  • the entire amount of the first light flux 5 that has entered the first half mirror 15 is deflected in the minus X direction and is guided to the first zoom optical system 20.
  • the first light flux 5 that has passed through the first zoom optical system 20 is imaged on the imaging surface of the first imaging element 24 by the first imaging optical system 22, and an optical image of the target surface 10A is acquired.
  • the third light flux 307 emitted from the target surface 10A is converted into parallel light by the shared objective lens 12 along the third optical axis OR3 and enters the third deflection mirror 314.
  • the third deflection mirror 314 is an example of the third deflection element according to the technique of the present disclosure.
  • the third light flux 307 incident on the third deflection mirror 314 is deflected from the Z direction to the Y direction, further passes through the third diaphragm 316, and is incident on the third half mirror 315.
  • the third light flux 307 that has entered the third half mirror 315 is deflected in the minus X direction and guided to the third zoom optical system 320.
  • the third light flux 307 that has passed through the third zoom optical system 320 is imaged on the imaging surface of the third imaging element 324 by the third imaging optical system 322, and an optical image of the target surface 10A is acquired.
  • the second light flux 6 emitted from the target surface 10A is converted into parallel light by the shared objective lens 12 along the second optical axis OR1, and the second image is formed via the second diaphragm 17. It is guided to the optical system 32.
  • the second light flux 6 is imaged on the imaging surface of the second imaging element 34 by the second imaging optical system 32, and the optical image of the target surface 10A is acquired.
  • the microscope 300 does not have a zoom optical system in the second optical system 36.
  • the microscope 300 includes a zoom optical system only in the first optical system 26 and the third optical system 326 of the first optical system 26, the second optical system 36, and the third optical system 326.
  • the first optical axis OL1 and the third optical axis OR3 form a substantial angle R3 at the position of the observation target 10. Further, as shown in FIG. 16, the first optical axis OL1 and the second optical axis OR1 form a substantial angle R1 at the position of the observation target 10.
  • the first image acquired by the first image sensor 24 is used as an image for the left eye of the operator.
  • the third image acquired by the third image sensor 324 is used as an image for the right eye of the operator. Since the first image and the third image have the substantial angle R3, the operator can see the stereoscopic image by viewing the first image and the third image with both eyes.
  • the first image is also used as an image for the left eye of the assistant, and the second image obtained by the second image sensor 34 is provided as an image for the right eye of the assistant.
  • the assistant since the first image and the second image have the substantial angle R1, the assistant can see the stereoscopic image by viewing the first image and the second image with both eyes.
  • the first image sensor 24, the second image sensor 34, and the third image sensor 324 are image sensors using, for example, a CCD sensor or a CMOS sensor.
  • the first image pickup device 24 and the third image pickup device 324 are 4K image pickup devices each composed of about 8.3 million pixels of 3840 pixels ⁇ 2160 pixels.
  • the second image sensor 34 is an HD image sensor that is composed of approximately 920,000 pixels of 1280 pixels ⁇ 720 pixels. Note that the above-described number of pixels is an example, and the specific number of pixels is not limited.
  • the microscope 300 includes an image transmitting unit 60, a control unit 91, and an input unit 140 in addition to the above-mentioned optical elements.
  • the control unit 91 includes an image processing unit 50, an image selection unit 55, an output I/F 56, an input I/F 57, a first deflection mirror driving unit 81, a second imaging optical system driving unit 82, and a second imaging optical system driving unit 82.
  • the three-deflection mirror drive unit 83, the first zoom optical system drive unit 84, the third zoom optical system drive unit 85, the first illumination light source drive unit 86, the computer 110, and the external I/F 130 are included. All of these are connected to the bus line 120.
  • the first image captured by the first image sensor 24, the second image captured by the second image sensor 34, and the third image captured by the third image sensor 324 are electrical image signals. It is acquired by the computer 110 via the input I/F 57 and stored in the RAM 114.
  • the image processing unit 50 performs image processing on the stored first image, second image, and third image.
  • the image selection unit 55 selects an image to be displayed on the image display device 370.
  • the output I/F 56 is an interface between the image transmission unit 60 and the control unit 91.
  • the input I/F 57 is an interface between the input unit 140, the first image sensor 24, the second image sensor 34, the third image sensor 324, and the control unit 91.
  • the third deflection mirror driving section 83 drives the third deflection mirror 314.
  • the third zoom optical system drive unit 85 moves the lens group of the third zoom optical system 320 to change the magnification.
  • Other configurations are the same as the configurations described in the control unit 90 of the first embodiment.
  • the user uses the input unit 140 to perform various settings related to observation and operate the microscope 300.
  • the input unit 140 is, for example, a keyboard, various switches, a touch panel, a voice input microphone, and/or a foot pedal.
  • the user sets the observation mode, adjusts the magnification of the image, adjusts the light source intensity, changes the substantial angle, and the like via the input unit 140.
  • the input information is acquired by the computer 110 via the input I/F 57.
  • the computer 110 controls each part based on the input information.
  • the microscope 300 basically uses the first image and the second image as observation images for the assistant.
  • the first image and the third image are used as observation images for the operator.
  • the observation image for the assistant can be selected in a plurality of observation modes as described later.
  • Magnification of the first image is optically changed by the first zoom optical system 20, and magnification of the third image is optically changed by the third zoom optical system 320.
  • the second image is aligned with the magnification of the first zoom optical system 20 in association with the change of the magnification of the first image by the first zoom optical system 20.
  • the image processing unit 50 adjusts the electronic zoom magnification.
  • the method of adjusting the magnifications of the optical zoom and the electronic zoom in conjunction with each other is as described in the first embodiment.
  • the image processing unit 50 can enlarge or reduce the first image and the third image by electronic zoom. Even in this case, the two images selected by the first image, the second image, and the third image, which are observed by the operator or the assistant, have the magnification combined with the optical zoom, that is, the visual field range adjusted to the same degree.
  • the two images selected by the first image, the second image, and the third image which are observed by the operator or the assistant, have the magnification combined with the optical zoom, that is,
  • the image selection unit 55 selects the display image for the left eye from the first image, the second image, and the third image that have been image-processed by the image processing unit 50 according to the above-described observation mode set by the operator and the assistant. And the display image for the right eye.
  • the selected left-eye display image and right-eye display image are transmitted to the image display device 370 by the image transmitting unit 60 via the output I/F 56.
  • the image display device 370 displays the display image for the left eye and the display image for the right eye.
  • the image display device 370 includes a first display portion 371 for an assistant and a second display portion 372 for an operator.
  • the first display unit 371 displays any two of the first image, the second image, and the third image.
  • the second display unit 372 displays any two of the first image, the second image, and the third image.
  • the first display unit 371 and the second display unit 372 are examples of the first image display unit and the second image display unit of the present disclosure, respectively.
  • the “surgeon and/or assistant” is also referred to as “user”.
  • An image selection unit 55 selects a display image for the left eye and a display image for the right eye from the first image, the second image, and the third image that have been image-processed by the image processing unit 50.
  • the selected display image is transmitted to the image display device 370 by the image transmission unit 60 via the output I/F 56.
  • the first display unit 371 of the image display device 370 displays, for example, a first image and a second image for the assistant to observe the observation target 10.
  • the second display unit 372 of the image display device 370 displays, for example, a first image and a third image for the operator to observe the observation target 10.
  • the first display unit 371 and the second display unit 372 are, for example, the display devices of the types described in the first embodiment.
  • the first display unit 371 may be a head-mounted display for an assistant and the second display unit 372 may be a head-mounted display for an operator.
  • the image display device 370 may be a display device having a first flat liquid crystal display unit 371 and a second flat liquid crystal display unit 372.
  • the flat liquid crystal type image display device 370 is arranged, for example, above the first optical system 26, the second optical system 36, and the third optical system 326.
  • the assistant looks at the first flat liquid crystal display unit 371 by wearing the deflecting glasses, and the surgeon wears the deflecting glasses to make the second flat liquid crystal display unit. Look at 372.
  • At least one of the first deflecting mirror 14 and the third deflecting mirror 314 is movable in a direction in which the substantial angle R3 formed by the first optical axis OL1 and the third optical axis OR3 at the position of the observation target is changed. Is.
  • the first deflection mirror 14 is driven in the Y-axis direction by the first deflection mirror drive unit 81.
  • the third deflecting mirror 314 is driven in the Y-axis direction by the third deflecting mirror driving section 83.
  • FIG. 18 is a diagram in which the first deflecting mirror 14 is driven in the Y direction from the position indicated by the dotted line to the position indicated by the solid line, and the third deflecting mirror 314 is driven in the negative Y direction from the position indicated by the dotted line to the position indicated by the solid line.
  • the physical angle R4 formed by the optical axis OL3 after the first deflection mirror 14 has moved and the optical axis OR4 after the third deflection mirror 314 has moved is smaller than the physical angle R3 before the movement.
  • the first optical axis OL1 moves to the optical axis OL3 as shown in FIG.
  • the assistant looking at the first image from the first optical axis OL1 and the second image from the second optical axis OR1 as shown in FIG. 16 only the first optical axis OL1 of the first image is optical axis OL3.
  • the direction and angle of the real angle R1 change, and the stereoscopic image viewed by the assistant feels uncomfortable.
  • at least one optical element included in the second optical system 36 can move in the same direction in conjunction with the movement of the first deflection mirror 14. As an example, as shown in FIG.
  • the second diaphragm 17, the second imaging optical system 32, and the second image sensor 34 are integrated so that they move in the same direction in conjunction with the movement of the first deflection mirror 14. You may comprise. Accordingly, it is possible to prevent the stereoscopic image viewed by the assistant from being uncomfortable.
  • the microscope 300 can be set by the user by selecting an observation mode for an assistant. Specifically, the user can set the first mode which is the detailed observation mode, the second mode which is the stereoscopic observation mode, and the third mode which is the variable magnification observation mode.
  • the image selection unit 55 selects the image for the left eye and the image for the right eye from the first image, the second image, and the third image based on the observation mode set by the user.
  • an arrow DA shown in FIG. 14 that is, a first image 72 acquired by the first image sensor 24 as viewed from the operator, a second image 73 acquired by the second image sensor 34, and a third image sensor 324. It is assumed that the third image 74 acquired in step 1 is an image as shown in FIG. The operator sees the first image 72 and the third image 74, and the assistant basically sees the first image 72 and the second image 73.
  • the image selection unit 55 selects the first image 72 having a relatively high resolution as the image for the left eye and the image for the right eye, and the selected image is, for example, FIG. Is displayed on the first display unit 371 as shown in.
  • the displayed image is rotated 90 degrees counterclockwise.
  • the observed image does not become a stereoscopic image because there is no substantial angle, but there is an advantage that the assistant can see a relatively high-resolution image with both eyes. This is suitable for enlarging and viewing the fine target surface 10A with high resolution.
  • the image selection unit 55 selects the first image 72 for the left eye and the second image 73 for the right eye.
  • the selected image is displayed on the first display unit 371 as shown in FIG. 22, for example, and the assistant can see the stereoscopic image viewed from the arrow DB. That is, the control unit 91 forms a parallax image with the first image 72 obtained by the first optical system 26 and the second image 73 obtained by the second optical system 36.
  • the control unit 91 displays the second image 73 on the first display unit 371 in synchronization with the display timing of the first image 72.
  • the second image 73 having a lower resolution than the first image 72 and the third image 74 is used, the resolution is lower than the image viewed by the operator, but stereoscopic vision is possible.
  • the second image 73 has a lower resolution than the first image 72 in the present embodiment, the first image 72 may have a lower resolution than the second image 73.
  • the image selection unit 55 selects the second image 73 having a relatively low resolution as the image for the right eye and the image for the left eye.
  • the selected image is displayed on the first display unit 371 as shown in FIG. 23, for example.
  • the image to be observed is not stereoscopic and its resolution is relatively low, but the assistant has the advantage that the image can be quickly zoomed and observed from low magnification to high magnification by electronic zoom.
  • the assistant can set the fourth mode in which the same image as the image viewed by the operator (eg, high-resolution image, parallax image) is displayed on the first display unit 371.
  • the image selection unit 55 selects the first image 72 as the display image for the left eye displayed on the first display unit 371, and the third image 74 as the display image for the right eye. Select. That is, in the fourth mode, the control unit 91 forms the parallax image using the first image 72 and the third image 74.
  • the image processing unit 50 can display the first image 72 and the third image 74 viewed from the DA direction as shown in FIG. 24, for example.
  • the assistant can also view the high-resolution stereoscopic image in the direction viewed by the operator. That is, a parallax image is formed by the first image 72 obtained by the first optical system 26 and the third image 74 obtained by the third optical system 326.
  • the orientations of the first image 72 and the third image 74 to be viewed by the assistant can be set to a predetermined orientation of the image viewed from the place where the assistant is located.
  • the image selection unit 55 sets the display image for the surgeon, for example, as the left-eye image displayed on the second display unit 372 as shown in FIG. 25.
  • the first image 72 and the third image 74 as the image for the right eye are selected. This allows the operator to see a high-resolution stereoscopic image viewed from the DA direction.
  • This mode is the normal mode for the surgeon.
  • the left-eye image and the right-eye image are arranged side by side for the sake of clarity, but as described above, the left-eye image and the right-eye image are not necessarily shown. It is not necessary to display images on the left and right of the image display surface (eg, screen) at the same time. As described in the first embodiment, it is appropriately displayed depending on the model of the display device.
  • a mode other than the normal mode may be selected.
  • the operator may display a fifth mode in which the second image 73 is displayed as an image for the left eye on the operator's second display section 372 and the third image 74 is displayed as an image for the right eye in the second display section 372. You may make it selectable.
  • the second image 73 has a lower resolution than the third image 74, but it is easy to change the magnification with the digital zoom.
  • the combination of modes that can be selected by the surgeon and the assistant is arbitrary.
  • the operator basically selects the normal mode in which the first image 72 and the third image 74 are displayed on the second display section 372 for the operator, and the assistant displays the first image 72 and the second image 73.
  • the second mode to be displayed on the first display portion 371 for use is selected.
  • the combination of the operator and the observation mode of the assistant is not limited to this.
  • the assistant can select any of the first mode to the fourth mode.
  • the control unit 91 causes the second display unit 372 for the operator to display the second image 73 and the third image 74 (fifth mode), and the first display unit 371 for the assistant displays the first image 72 and the third image 74.
  • the two images 73 can be displayed (second mode).
  • the control unit 91 causes the second display unit 372 for the operator to display the second image 73 and the third image 74 (fifth mode), and the first display unit 371 for the assistant displays the first image 72 and the third image 74.
  • Three images 74 can be displayed (fourth mode).
  • the control unit 91 can be displayed in the fourth mode for the surgeon and in the fifth mode for the assistant.
  • the substantial numerical aperture of the second optical system 36 is smaller than the substantial numerical aperture of the first optical system 26 and the third optical system 326. Furthermore, the second optical system 36 does not have a zoom optical system. Therefore, the manufacturing cost and size can be reduced as compared with the case where the second optical system 36 has the same numerical aperture as the first optical system 26 and the third optical system 326 and the zoom optical system. On the other hand, the surgeon and the assistant can each see a stereoscopic image.
  • both the operator and the assistant can observe the stereoscopic image. Furthermore, the assistant can set a plurality of observation modes, and the mode in which the assistant sees the observation image viewed by the operator can also be set. According to the third embodiment, it is possible to fully utilize a plurality of optical systems having different resolutions. In addition, the assistant can perform an observation substantially equivalent to the case where the second optical system 36 has the same numerical aperture as the first optical system 26 and the third optical system 326.
  • the orientation of the arrangement of the first optical system 26 and the third optical system 326 is not limited to the orientation shown in FIG. It is possible to freely change the direction of each optical system by changing the direction and the number of polarizing mirrors. Further, in the third embodiment, the third zoom optical system 320 is provided in the third optical system 326, but the third optical system 326 may not have the third zoom optical system.
  • the shared objective lens 12 is used as the objective lens of the first optical system 26, the second optical system 36, and the third optical system 326.
  • the first optical system 26 is provided with a dedicated first objective lens
  • the second optical system 36 is provided with a dedicated second objective lens
  • the third optical system 326 is provided with a dedicated third objective lens. May be.
  • the microscope 300 is provided with a relatively small dedicated objective lens instead of the relatively large shared objective lens 12, and thus the size can be reduced.
  • the substantial angle R3 formed by the first optical axis OL1 and the third optical axis OR3 can be changed, but at least one optical element included in the second optical system 36 is the first optical axis OL1.
  • the second optical axis OR1 and the second optical axis OR1 may be configured to be movable in a direction that changes the substantial angle R1 formed at the position of the observation target.
  • the microscope 300 may be configured such that the second diaphragm 17, the second imaging optical system 32, and the second image sensor 34 can be moved in the direction in which the real angle R1 is changed as shown in FIG. In the tenth modification, the microscope 300 can adjust the stereoscopic effect even for the image for the assistant.
  • the microscope 300 may be configured so that the first deflection mirror 14 does not move but only the third deflection mirror 314 moves, as a configuration in which the body angle R3 can be changed.
  • the first deflection mirror driving unit 81 is unnecessary.
  • the second diaphragm 17, the second imaging optical system 32, and the second image sensor 34 may be moved in only one direction. Therefore, the configuration in which both the body angle R1 and the body angle R3 can be changed becomes easy.
  • the microscope control program 118 may be stored in an arbitrary portable storage medium 400 such as SSD, USB memory, or CD-ROM.
  • the microscope control program 118 of the storage medium 400 is installed in the RAM 114 of the computer 110, and the installed microscope control program 118 is executed by the CPU 112.
  • the microscope control program 118 is stored in a storage unit such as another computer or a server device connected to the microscope 100, 200, 300 via a communication network (not shown), and the microscope control program 118 causes the microscope 100, 200, It may be downloaded in response to the request of 300. In this case, the downloaded microscope control program 118 is executed by the CPU 112.
  • the hardware structure of the processing unit that executes various processes such as the image processing unit and the image selection unit is a general-purpose unit that executes software (program) and functions as various processing units.
  • a CPU which is a processor
  • a processor having a circuit configuration specifically designed to execute a specific process such as a PLD (Programmable Logic Device) or an ASIC, which is a processor whose circuit configuration can be changed after manufacturing the FPGA. It includes a dedicated electric circuit.
  • One processing unit may be configured by one of these various processors, or a combination of two or more processors of the same type or different types (for example, a combination of a plurality of FPGAs or a combination of a CPU and an FPGA). Combination). Further, the plurality of processing units may be configured by one processor.
  • one processor is configured with a combination of one or more CPUs and software, as represented by computers such as clients and servers.
  • the processor functions as a plurality of processing units.
  • SoC system on chip
  • a and/or B is synonymous with “at least one of A and B”. That is, “A and/or B” means that only A may be used, only B may be used, or a combination of A and B may be used. Further, in the present specification, the same concept as “A and/or B” is also applied to the case where three or more matters are linked by “and/or”.

Abstract

A microscope comprising: a first optical system with a first optical axis that includes a shared objective lens or a first objective lens and a first imaging optical system; a second optical system with a second optical axis that includes a shared objective lens or a second objective lens and a second imaging optical system; a first imaging element that acquires an optical image focused by the first imaging optical system as a first image; a second imaging element that acquires an optical image focused by the second imaging optical system as a second image; and a control unit capable of switching between a first mode for displaying the first image on an image display device and a second mode for displaying the first image and the second image having a resolution different from the first image on the image display device as a three-dimensional display image.

Description

顕微鏡、顕微鏡用制御装置及びプログラムMicroscope, microscope control device and program
 本開示の技術は、顕微鏡、顕微鏡用制御装置及びプログラムに関する。 The technology of the present disclosure relates to a microscope, a microscope control device, and a program.
 顕微鏡は、その用途に応じてさまざまな機能を有するタイプが知られている。手術用の顕微鏡においても、例えば、観察者の右眼用と左眼用との2つの光学系を有し、2つの光学系の観察対象からの観察光軸に視差角を持たせて立体視を可能とした顕微鏡が知られている。  Microscopes are known to have various functions depending on their use. A surgical microscope also has, for example, two optical systems for the observer's right eye and left eye, and stereoscopic vision is performed by providing a parallax angle to the observation optical axis from the observation target of the two optical systems. A microscope that makes it possible is known.
 このような用途の顕微鏡は、立体視だけでなく、観察対象像を拡大して見るために高解像度でかつ倍率を変えられることが要求されている。一般的には、高解像度とするためには、例えば開口数の大きなレンズを使用し、又は複数のレンズを組み合わせて収差をできるだけ少なくすること等が必要である。また、倍率を変えるために、複数のレンズを組み合わせたズーム光学系が用いられる。  Microscopes for such applications are required to have high resolution and variable magnification in order to magnify and view not only the stereoscopic image but also the observation target image. Generally, in order to achieve high resolution, it is necessary to use a lens having a large numerical aperture, or to combine a plurality of lenses to reduce aberrations as much as possible. A zoom optical system in which a plurality of lenses are combined is used to change the magnification.
 また、手術用顕微鏡には、医師が対象を立体観察するための2つの光学系に加えて、第2の医師又は助手が対象を観察可能な光学系を備えるタイプがある。 In addition, there are types of surgical microscopes that include an optical system that allows a second doctor or an assistant to observe the target, in addition to two optical systems that allow the doctor to stereoscopically observe the target.
 特開2017-23583号公報には、照明系と、一対の主受光系と、一対の主接眼系と、制御部と、光分離素子と、一対の副受光系とを含む眼科用顕微鏡が開示されている。 Japanese Unexamined Patent Publication No. 2017-23583 discloses an ophthalmic microscope including an illumination system, a pair of main light receiving systems, a pair of main eyepiece systems, a control unit, a light separating element, and a pair of sub light receiving systems. Has been done.
 以上のように複数の光学系を有することにより立体視を可能とした顕微鏡は、一般にコストが高く、またサイズも大きい。従って、コスト又はサイズを抑制した顕微鏡が望まれる。 The microscope that enables stereoscopic vision by having multiple optical systems as described above is generally expensive and large in size. Therefore, a microscope with reduced cost or size is desired.
 本実施形態に係る顕微鏡は、
 共用対物レンズ又は第1対物レンズと第1結像光学系とを含む、第1光軸を有する第1光学系と、
 前記共用対物レンズ又は第2対物レンズと第2結像光学系とを含む、第2光軸を有する第2光学系と、
 前記第1結像光学系によって結像される光学像を第1画像として取得する第1撮像素子と、
 前記第2結像光学系によって結像される光学像を第2画像として取得する第2撮像素子と、
 前記第1画像を画像表示装置に表示する第1モードと、前記第1画像と前記第1画像とは解像度が異なる前記第2画像とを3次元表示用画像として前記画像表示装置に表示する第2モードとを切替可能である制御部と、を備える。
The microscope according to this embodiment,
A first optical system having a first optical axis, including a shared objective lens or a first objective lens and a first imaging optical system;
A second optical system having a second optical axis, including the shared objective lens or the second objective lens and a second imaging optical system;
A first image sensor for obtaining an optical image formed by the first image forming optical system as a first image;
A second image sensor for acquiring an optical image formed by the second image forming optical system as a second image;
A first mode in which the first image is displayed on the image display device, and a second mode in which the first image and the second image having different resolutions from each other are displayed on the image display device as three-dimensional display images. And a control unit capable of switching between two modes.
 また、本実施形態に係る顕微鏡は、
 共用対物レンズ又は第1対物レンズと第1結像光学系とを含む、第1光軸を有する第1光学系と、
 前記共用対物レンズ又は第2対物レンズと第2結像光学系とを含む、第2光軸を有する第2光学系と、を備え、
 前記第1光学系と前記第2光学系とのうち前記第1光学系のみにズーム光学系を含む。
Further, the microscope according to the present embodiment,
A first optical system having a first optical axis, including a shared objective lens or a first objective lens and a first imaging optical system;
A second optical system having a second optical axis, including the shared objective lens or the second objective lens and a second imaging optical system,
Of the first optical system and the second optical system, only the first optical system includes a zoom optical system.
 また、本実施形態に係る顕微鏡は、
 共用対物レンズ又は第1対物レンズと第1結像光学系とを含む、第1光軸を有する第1光学系と、
 前記共用対物レンズ又は第2対物レンズと第2結像光学系とを含む、第2光軸を有する第2光学系と、
 前記共用対物レンズ又は第3対物レンズと第3結像光学系とを含む、第3光軸を有する第3光学系と、を備え、
 前記第1光学系の解像度が前記第2光学系の解像度よりも高く、
 前記第3光学系の解像度が前記第2光学系の解像度よりも高い
Further, the microscope according to the present embodiment,
A first optical system having a first optical axis, including a shared objective lens or a first objective lens and a first imaging optical system;
A second optical system having a second optical axis, including the shared objective lens or the second objective lens and a second imaging optical system;
A third optical system having a third optical axis, including the shared objective lens or the third objective lens and a third imaging optical system,
The resolution of the first optical system is higher than the resolution of the second optical system,
The resolution of the third optical system is higher than the resolution of the second optical system.
 本実施形態に係る顕微鏡用制御装置は、
 第1撮像素子により撮像される第1画像と第2撮像素子により撮像される第2画像とを取得する画像取得部と、
 前記第1画像を画像表示装置に表示する第1モードと、前記第1画像と前記第1画像とは解像度が異なる前記第2画像とを3次元表示用画像として前記画像表示装置に表示する第2モードとを切替可能である制御部と、
を備える。
The microscope control device according to the present embodiment,
An image acquisition unit that acquires a first image captured by the first image sensor and a second image captured by the second image sensor;
A first mode in which the first image is displayed on the image display device, and a second mode in which the first image and the second image having different resolutions from each other are displayed as three-dimensional display images on the image display device. A control unit capable of switching between two modes,
Equipped with.
 本実施形態に係るプログラムは、
 コンピュータに、
 第1撮像素子により撮像される第1画像と第2撮像素子により撮像される第2画像とを取得するステップと、
 前記第1画像を画像表示装置に表示する第1モードと、前記第1画像と前記第1画像とは解像度が異なる前記第2画像とを3次元表示用画像として前記画像表示装置に表示する第2モードとを切替えるステップと、
を実行させるためのプログラムである。
The program according to this embodiment is
On the computer,
Obtaining a first image captured by the first image sensor and a second image captured by the second image sensor,
A first mode in which the first image is displayed on the image display device, and a second mode in which the first image and the second image having different resolutions from each other are displayed as three-dimensional display images on the image display device. Step to switch between 2 modes,
Is a program for executing.
第1実施形態に係る顕微鏡を側面から見た配置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of arrangement which looked at the microscope which concerns on 1st Embodiment from the side surface. 第1実施形態に係る顕微鏡を上面から見た配置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the arrangement which looked at the microscope which concerns on 1st Embodiment from the upper surface. 第1実施形態に係る顕微鏡の電気系のハードウェア構成の一例を示すブロック図である。It is a block diagram which shows an example of the hardware constitutions of the electric system of the microscope which concerns on 1st Embodiment. 第1実施形態に係る顕微鏡の制御部のコンピュータの構成の一例を示すブロック図である。It is a block diagram which shows an example of a structure of the computer of the control part of the microscope which concerns on 1st Embodiment. 第1光学系のレンズ構成の一例を示す概略図である。It is a schematic diagram showing an example of the lens composition of the 1st optical system. 第1実施形態に係る顕微鏡の実体角を変更可能な構成の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the structure which can change the substantial angle of the microscope which concerns on 1st Embodiment. 第1実施形態に係る顕微鏡の画像を第1モードで表示する詳細表示画像である。It is a detailed display image which displays the image of the microscope which concerns on 1st Embodiment in 1st mode. 第1実施形態に係る顕微鏡の画像を第2モードで表示する立体表示画像である。It is a stereoscopic display image which displays the image of the microscope which concerns on 1st Embodiment in 2nd mode. 第1実施形態に係る顕微鏡の画像を第3モードで表示する変倍表示画像である。6 is a variable-magnification display image for displaying an image of the microscope according to the first embodiment in a third mode. 変形例1に係る顕微鏡の側面から見た概略構成図である。It is a schematic block diagram seen from the side of the microscope concerning the modification 1. 変形例2に係る顕微鏡の側面から見た概略構成図である。It is a schematic block diagram seen from the side surface of the microscope which concerns on the modification 2. 変形例3に係る顕微鏡の側面から見た概略構成図である。It is a schematic block diagram seen from the side surface of the microscope which concerns on the modification 3. 第2実施形態に係る顕微鏡の側面から見た配置の一例を示す概略構成図である。It is a schematic structure figure showing an example of arrangement seen from the side of a microscope concerning a 2nd embodiment. 第3実施形態に係る顕微鏡の上面から見た配置の一例を示す概略構成図である。It is a schematic structure figure showing an example of arrangement seen from the upper surface of a microscope concerning a 3rd embodiment. 図14のA-A方向から見た配置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of arrangement|positioning seen from the AA direction of FIG. 図14のB-B方向から見た配置の一例を示す照明系を除く概略構成図である。FIG. 15 is a schematic configuration diagram excluding an illumination system showing an example of the arrangement viewed from the BB direction in FIG. 14. 第3実施形態に係る顕微鏡の電気系のハードウェア構成の一例を示すブロック図である。It is a block diagram which shows an example of the hardware constitutions of the electric system of the microscope which concerns on 3rd Embodiment. 第3実施形態に係る顕微鏡の実体角を変更可能な構成の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the structure which can change the substantial angle of the microscope which concerns on 3rd Embodiment. 本実施形態に係る視差角を変更する場合の第2光学系の移動を示す平面配置図である。It is a plane layout diagram showing movement of the 2nd optical system when changing a parallax angle concerning this embodiment. 第3実施形態に係る顕微鏡の各光学系から得られる画像の模式図である。It is a schematic diagram of the image obtained from each optical system of the microscope which concerns on 3rd Embodiment. 本実施形態に係る助手用の第1モード画像の模式図である。It is a schematic diagram of the 1st mode image for assistants which concerns on this embodiment. 本実施形態に係る助手用の第2モード画像の模式図である。It is a schematic diagram of a second mode image for an assistant according to the present embodiment. 本実施形態に係る助手用の第3モード画像の模式図である。It is a schematic diagram of the 3rd mode image for assistants concerning this embodiment. 本実施形態に係る助手用表示画面に術者用表示画像を表示する第4モードの画像模式図である。It is an image schematic diagram of the 4th mode which displays a display image for surgeons on a display screen for assistants concerning this embodiment. 本実施形態に係る術者用の立体表示画像の模式図である。It is a schematic diagram of a stereoscopic display image for an operator according to the present embodiment. 本実施形態に係る記憶媒体から顕微鏡制御プログラムをインストールする模式図である。It is a schematic diagram which installs the microscope control program from the storage medium which concerns on this embodiment.
 以下、本開示の技術の実施形態の一例を、図面を参照して説明する。
 以下の説明において、「CCD」とは、“Charge Coupled Device”の略称を指す。「CMOS」とは、“Complementary Metal-Oxide-Semiconductor”の略称を指す。「OCT」とは、“Optical Coherence Tomography”の略称を指す。
Hereinafter, an example of an embodiment of the technology of the present disclosure will be described with reference to the drawings.
In the following description, “CCD” is an abbreviation for “Charge Coupled Device”. “CMOS” is an abbreviation for “Complementary Metal-Oxide-Semiconductor”. “OCT” is an abbreviation for “Optical Coherence Tomography”.
 また、以下の説明において、「CPU」とは、“Central Processing Unit”の略称を指す。「I/F」とは、“Interface”(インターフェース)の略称を指す。「HDD」とは、“Hard Disk Drive”の略称を指す。「ROM」とは、“Read Only Memory”の略称を指す。「RAM」とは、“Random Access Memory”の略称を指す。「CD-ROM」とは、“Compact Disc Read Only Memory”の略称を指す。「ASIC」とは、“Application Specific Integrated Circuit”(特定用途向け集積回路)の略称を指す。「FPGA」とは、“Field-Programmable Gate Array”の略称を指す。「PLD」とは、“Programmable Logic Device”の略称を指す。「SoC」とは、“System on Chip”の略称を指す。「IC」とは、“Integrated Circuit”の略称を指す。「SSD」とは、“Solid State Drive”の略称を指す。「USB」とは、“Universal Serial Bus”の略称を指す。「EEPROM」とは、“Electrically Erasable Programmable Read-Only Memory”の略称を指す。 Also, in the following description, “CPU” is an abbreviation for “Central Processing Unit”. “I/F” refers to an abbreviation for “Interface” (interface). “HDD” is an abbreviation for “Hard Disk Drive”. “ROM” is an abbreviation for “Read Only Memory”. “RAM” is an abbreviation for “Random Access Memory”. “CD-ROM” is an abbreviation for “Compact Disc Read Only Memory”. “ASIC” is an abbreviation of “Application Specific Integrated Circuit” (application-specific integrated circuit). “FPGA” is an abbreviation for “Field-Programmable Gate Array”. “PLD” is an abbreviation for “Programmable Logic Device”. “SoC” is an abbreviation for “System on Chip”. “IC” is an abbreviation for “Integrated Circuit”. “SSD” is an abbreviation for “Solid State Drive”. “USB” is an abbreviation for “Universal Serial Bus”. “EEPROM” is an abbreviation for “Electrically Erasable Programmable Read-Only Memory”.
(第1実施形態)
 第1実施形態に係る眼科手術用の顕微鏡100について、図面を参照して説明する。以下の図面において、特に記載しない限り、顕微鏡100の後述の光学系などを覆う筐体(又はカバー)の図示は省略する。2つの光学系を備える立体視が可能な顕微鏡100を横方向(側方)から見た概略構成図を図1に示す。この顕微鏡100を上方(例、鉛直方向の上側)から見た平面構成図を図2に示す。図1及び図2では、便宜的に、顕微鏡100を水平に配置したときの高さ方向をZ軸方向とし、横方向をX軸方向とY軸方向とする。なお、図1及び図2は実際の寸法及び縮尺に従ったものではなく、配置関係を示すための概略図である。特に記載しない限り、以下の図面においても同様である。
(First embodiment)
A microscope 100 for eye surgery according to the first embodiment will be described with reference to the drawings. In the following drawings, a housing (or a cover) for covering an optical system described later of the microscope 100 and the like is omitted unless otherwise specified. FIG. 1 shows a schematic configuration diagram of a microscope 100 including two optical systems and capable of stereoscopic vision as viewed from the lateral direction (side). FIG. 2 shows a plan configuration view of the microscope 100 viewed from above (eg, an upper side in the vertical direction). 1 and 2, for convenience, the height direction when the microscope 100 is horizontally arranged is the Z-axis direction, and the horizontal direction is the X-axis direction and the Y-axis direction. It should be noted that FIGS. 1 and 2 are schematic diagrams for showing an arrangement relationship, not according to actual dimensions and scales. The same applies to the following drawings unless otherwise specified.
 一例として図1及び図2に示すように、顕微鏡100は、共用対物レンズ12と、第1ズーム光学系20と、第1結像光学系22と、を含む第1光学系26を備える。顕微鏡100は、共用対物レンズ12と、第2結像光学系32と、を含む第2光学系36を備える。第2光学系36は、ズーム光学系を備えていない構成である。共用対物レンズ12は、第1光学系26における対物レンズの役割と、第2光学系36における対物レンズの役割とを持ち、第1光学系26と第2光学系36とにおける共用の対物レンズである。また、顕微鏡100は、観察対象10の対象面10Aを照明する第1照明系40を有する。なお、第1ズーム光学系20と第1結像光学系22とを便宜上区別して説明するが、ズーム光学系と結像光学系とが合わさったズーム結像光学系であってもよい。 As an example, as shown in FIGS. 1 and 2, the microscope 100 includes a first objective optical system 26 including a shared objective lens 12, a first zoom optical system 20, and a first imaging optical system 22. The microscope 100 includes a second optical system 36 including the shared objective lens 12 and the second imaging optical system 32. The second optical system 36 does not include a zoom optical system. The shared objective lens 12 has a role of an objective lens in the first optical system 26 and a role of an objective lens in the second optical system 36, and is a shared objective lens for the first optical system 26 and the second optical system 36. is there. The microscope 100 also includes a first illumination system 40 that illuminates the target surface 10A of the observation target 10. Although the first zoom optical system 20 and the first imaging optical system 22 will be described separately for convenience, they may be a zoom imaging optical system in which the zoom optical system and the imaging optical system are combined.
 光路において共用対物レンズ12に最も近い第2光学系36のレンズの有効口径は、共用対物レンズ12に最も近い第1光学系26のレンズの有効口径と異なる。例えば、共用対物レンズ12に最も近い第2結像光学系32のレンズの有効口径は、第1ズーム光学系20の最も共用対物レンズ12に近いレンズの有効口径と異なる。第1ズーム光学系20の最も共用対物レンズ12に近いレンズの有効口径を第1光学系26の有効口径とも称する。第2結像光学系32の最も共用対物レンズ12に近いレンズの有効口径を第2光学系36の有効口径とも称する。例えば、第1光学系26と第2光学系36との光学倍率が同じ場合、第2光学系36の有効口径は第1光学系26の有効口径よりも小さい。そのため、第2光学系36の実質的な開口数は第1光学系26の実質的な開口数よりも小さい。従って、第2光学系36の解像度は第1光学系26の解像度よりも低い。 The effective aperture of the lens of the second optical system 36 closest to the shared objective lens 12 in the optical path is different from the effective aperture of the lens of the first optical system 26 closest to the shared objective lens 12. For example, the effective aperture of the lens of the second imaging optical system 32 closest to the shared objective lens 12 is different from the effective aperture of the lens of the first zoom optical system 20 closest to the shared objective lens 12. The effective aperture of the lens of the first zoom optical system 20 closest to the shared objective lens 12 is also referred to as the effective aperture of the first optical system 26. The effective aperture of the lens of the second imaging optical system 32 closest to the shared objective lens 12 is also referred to as the effective aperture of the second optical system 36. For example, when the optical magnifications of the first optical system 26 and the second optical system 36 are the same, the effective aperture of the second optical system 36 is smaller than the effective aperture of the first optical system 26. Therefore, the substantial numerical aperture of the second optical system 36 is smaller than the substantial numerical aperture of the first optical system 26. Therefore, the resolution of the second optical system 36 is lower than that of the first optical system 26.
 本明細書では、解像度の高低は、比較する光学系における、開口数、焦点深度、収差、及びレンズの材質のうちの少なくとも1つに基づいて判断される。また、解像度の高低は、光学像を画像として取得する撮像素子の画素数又はズーム光学系の有無に基づいて判断してもよい。開口数及び焦点深度は大きいほど解像度が高く、各種収差は小さいほど解像度が高く、レンズの材質は各波長光の透過度が高いほど解像度が高いと判断される。また、撮像素子の画素数は大きいほど解像度が高いと判断される。また、ズーム光学系を有するほうがズーム光学系を有さないほうよりも解像度が高いと判断される。また、例えば、本実施形態において、第1光学系26と第2光学系36とは、上記したような解像度の違いによって、互いに光学系の性能又は撮像素子の性能が異なる構成である。 In this specification, the level of resolution is determined based on at least one of the numerical aperture, the depth of focus, the aberration, and the material of the lens in the optical system to be compared. Further, the level of resolution may be determined based on the number of pixels of an image pickup element that acquires an optical image as an image or the presence or absence of a zoom optical system. It is determined that the larger the numerical aperture and the depth of focus are, the higher the resolution is, the smaller the various aberrations are, the higher the resolution is, and the higher the transmittance of each wavelength light is, the higher the resolution of the lens material is. Further, it is determined that the larger the number of pixels of the image sensor, the higher the resolution. Further, it is determined that the resolution with the zoom optical system is higher than that without the zoom optical system. Further, for example, in the present embodiment, the first optical system 26 and the second optical system 36 have a configuration in which the performance of the optical system or the performance of the image sensor is different from each other due to the difference in resolution as described above.
 顕微鏡100は、第1結像光学系22によって結像される観察対象の光学像を画像(例、第1画像)として取得する第1撮像素子24と、第2結像光学系32によって結像される観察対象の光学像を画像(例、第2画像)として取得する第2撮像素子34とを含む。第1撮像素子24及び2撮像素子34は、例えばCCDセンサ又はCMOSセンサを用いた撮像素子である。第1撮像素子24は、例えば画素数が3840画素×2160画素の約830万画素から構成される4K撮像素子である。第2撮像素子34は、例えば1280画素×720画素の約92万画素から構成されるHD撮像素子である。 The microscope 100 forms an image by the first image-capturing device 24, which acquires the optical image of the observation target formed by the first image-forming optical system 22 as an image (for example, a first image), and the second image-forming optical system 32. And a second image sensor 34 that acquires an optical image of the observation target as an image (for example, a second image). The first image sensor 24 and the second image sensor 34 are image sensors using, for example, a CCD sensor or a CMOS sensor. The first image sensor 24 is, for example, a 4K image sensor including approximately 8,300,000 pixels having 3840 pixels×2160 pixels. The second image pickup device 34 is an HD image pickup device including, for example, 1280 pixels×720 pixels, which is approximately 920,000 pixels.
 本実施形態1では、上述のように、第2光学系36と比較して解像度が相対的に高い第1光学系26によって結像される光学像を第1画像として取得する第1撮像素子24は、画素数が相対的に多い撮像素子を用いる。一方、第1光学系26と比較して解像度が相対的に低い第2光学系36によって結像される光学像を第2画像として取得する第2撮像素子34は、画素数が相対的に少ない撮像素子を用いる。しかしこれに限らず、第1撮像素子24及び第2撮像素子34は、同じ画素数の撮像素子を用いてもよい。上記の第1撮像素子24の画素数と第2撮像素子34の画素数は単なる例示であり、本開示の技術においてはそれぞれの具体的な画素数は限定されない。また、本開示の技術における同期は2つ以上の信号や処理等のタイミングが合うことを含み、そのタイミングは一致すること又は許容できる範囲の少しのズレを含む。 In the first embodiment, as described above, the first image sensor 24 that acquires, as the first image, the optical image formed by the first optical system 26 that has a relatively higher resolution than the second optical system 36. Uses an image sensor having a relatively large number of pixels. On the other hand, the number of pixels of the second image sensor 34 that acquires an optical image formed by the second optical system 36 having a relatively lower resolution than the first optical system 26 as the second image is relatively small. An image sensor is used. However, the invention is not limited to this, and the first image sensor 24 and the second image sensor 34 may use image sensors having the same number of pixels. The number of pixels of the first image sensor 24 and the number of pixels of the second image sensor 34 described above are merely examples, and the specific number of pixels is not limited in the technology of the present disclosure. In addition, the synchronization in the technique of the present disclosure includes that two or more signals, timings of processing, and the like match, and the timings include matching or a slight deviation in an allowable range.
 図1に示すように、対象面10Aから発した第1光束5は、第1光軸OL1に沿ってアフォーカル系の共用対物レンズ12によって平行光に変換されて第1偏向ミラー14に入射する。なお、第1光軸OL1に沿った第1光束5を単に第1光軸OL1の光ともいう。他の光軸に沿った光束も同様である。第1偏向ミラー14は、本開示の技術に係る第1偏向素子の一例である。第1偏向ミラー14に入射した第1光束5は、Z方向からマイナスX方向に偏向され、さらに第1絞り16を通過して第1ハーフミラー15に到達する。第1ハーフミラー15に到達した第1光束5は全量が図2に示すようにY方向に偏向されて第1ズーム光学系20に導かれる。第1ズーム光学系20を通過した第1光束5は第1結像光学系22によって第1撮像素子24の撮像面に結像され、第1撮像素子24によって撮像される。 As shown in FIG. 1, the first light beam 5 emitted from the target surface 10A is converted into parallel light by the shared objective lens 12 of the afocal system along the first optical axis OL1 and enters the first deflection mirror 14. .. The first light flux 5 along the first optical axis OL1 is also simply referred to as the light of the first optical axis OL1. The same applies to light beams along other optical axes. The first deflection mirror 14 is an example of a first deflection element according to the technique of the present disclosure. The first light flux 5 that has entered the first deflection mirror 14 is deflected from the Z direction to the minus X direction, further passes through the first diaphragm 16, and reaches the first half mirror 15. The total amount of the first light flux 5 that has reached the first half mirror 15 is deflected in the Y direction as shown in FIG. 2, and is guided to the first zoom optical system 20. The first light flux 5 that has passed through the first zoom optical system 20 is imaged by the first imaging optical system 22 on the imaging surface of the first imaging device 24, and is imaged by the first imaging device 24.
 一方、対象面10Aから発した第2光束6は、図1に示すように、第2光軸OR1に沿って共用対物レンズ12によって平行光に変換され、第2絞り17を経由して第2結像光学系32に導かれる。第2光束6は第2結像光学系32によって第2撮像素子34の撮像面に結像され、撮像される。なお、顕微鏡100は、第2光学系36にズーム光学系を有していない。 On the other hand, as shown in FIG. 1, the second light beam 6 emitted from the target surface 10A is converted into parallel light by the shared objective lens 12 along the second optical axis OR1, and passes through the second diaphragm 17 to the second light beam. It is guided to the imaging optical system 32. The second light flux 6 is imaged and imaged by the second imaging optical system 32 on the imaging surface of the second imaging element 34. The microscope 100 does not have a zoom optical system in the second optical system 36.
 アフォーカル系とは、焦点位置にある対象面10Aから発した第1光束5及び第2光束6が、収束も発散もしない平行光となる系である。又は、アフォーカル系とは、第1光軸OL1と第2光軸OR1とが平行となる系である。共用対物レンズ12から撮像側をアフォーカル系とすることにより、第1光学系26の第1光軸OL1の光の折り曲げ設計及びレンズ、偏光素子、ハーフミラー及び/又は絞り等の光学素子の配置設計が容易となる。また、後述するように、第1光学系26と第2光学系36との視差角を変更する構成が容易となる。 The afocal system is a system in which the first light flux 5 and the second light flux 6 emitted from the target surface 10A at the focal position become parallel light that neither converges nor diverges. Alternatively, the afocal system is a system in which the first optical axis OL1 and the second optical axis OR1 are parallel to each other. By making the imaging side from the shared objective lens 12 an afocal system, the bending design of the light of the first optical axis OL1 of the first optical system 26 and the arrangement of optical elements such as a lens, a polarizing element, a half mirror and/or a diaphragm. Design becomes easy. Further, as will be described later, the configuration for changing the parallax angle between the first optical system 26 and the second optical system 36 becomes easy.
 第1照明系40は、第1照明光源41と第1光源光学系42とを含む。第1照明光源41から射出された照明光は、第1光源光学系42によってコリメートされ、照明光軸LAに沿って第1ハーフミラー15に到達する。第1ハーフミラー15に到達した照明光は、第1ハーフミラー15を透過して第1光軸OL1に沿って第1光束5の経路を逆に向かって進む。照明光は、第1偏向ミラー14及び共用対物レンズ12を経て対象面10Aに到達して対象面10Aを照明する。第1照明光源41は、例えば眼球の瞳を介して網膜を照光して反射させ、反射光を照明光として用いる徹照用光源である。この場合、照明される対象面10Aは前眼部である。第1照明光源41は、例えば光源からの光を搬送する光ファイバを含んでもよい。 The first illumination system 40 includes a first illumination light source 41 and a first light source optical system 42. The illumination light emitted from the first illumination light source 41 is collimated by the first light source optical system 42 and reaches the first half mirror 15 along the illumination optical axis LA. The illumination light that has reached the first half mirror 15 passes through the first half mirror 15 and travels backward along the path of the first light flux 5 along the first optical axis OL1. The illumination light reaches the target surface 10A through the first deflection mirror 14 and the shared objective lens 12 and illuminates the target surface 10A. The first illumination light source 41 is, for example, a transillumination light source that illuminates and reflects the retina via the pupil of the eyeball and uses the reflected light as illumination light. In this case, the illuminated target surface 10A is the anterior segment. The first illumination light source 41 may include, for example, an optical fiber that carries light from the light source.
 なお、図1では第1照明系40のみを図示しているが、第1照明系40に加えて、後眼部照明用の図示しない斜照明系を設けてもよい。斜照明系は、徹照用照明よりも外側から瞳を介して後眼部又は眼底部を照明する照明系である。斜照明系を併設する場合、共用対物レンズ12よりも観察対象側に前置レンズを挿脱可能に配置して、後眼部に焦点を合わせられるようにする。 Note that, although only the first illumination system 40 is illustrated in FIG. 1, in addition to the first illumination system 40, an oblique illumination system (not shown) for illuminating the posterior segment may be provided. The oblique illumination system is an illumination system that illuminates the posterior segment or the fundus from the outside of the transillumination illumination through the pupil. When an oblique illumination system is provided, a front lens is detachably arranged on the observation target side of the shared objective lens 12 so that the posterior eye can be focused.
 また、光干渉断層計(OCT)のための図示しない近赤外光照射系を設けてもよい。これにより、眼底部を直接観察しながらOCTを用いて眼底部の断層像を取得し、病変部の有無を確認することが可能となる。 Also, a near infrared light irradiation system (not shown) for the optical coherence tomography (OCT) may be provided. This makes it possible to obtain the tomographic image of the fundus using OCT while directly observing the fundus and to confirm the presence or absence of a lesion.
 第1光軸OL1の方向を変える第1ハーフミラー15から照明光を導入することで、第1光軸OL1(又は第1光軸OL1の光路)と照明光軸LA(又は照明光軸LAの光路)とを一致させることができ、配置の自由度が向上する。また、後述のように第1偏向ミラー14は移動可能であるが、第1偏向ミラー14の移動方向が照明光軸LAの方向と一致するため、第1偏向ミラー14が移動しても照明系を移動させる必要がない。なお、顕微鏡100は、第2光学系36を介して対象面10Aを照明する光源は有していない。観察対象10である眼は、第1照明光源41からの照明光だけで照光されるため、眼に与える照明光の影響を少なくすることができる。 By introducing the illumination light from the first half mirror 15 that changes the direction of the first optical axis OL1, the first optical axis OL1 (or the optical path of the first optical axis OL1) and the illumination optical axis LA (or the illumination optical axis LA). (Optical path) can be matched, and the degree of freedom of arrangement is improved. Although the first deflecting mirror 14 is movable as will be described later, since the moving direction of the first deflecting mirror 14 coincides with the direction of the illumination optical axis LA, even if the first deflecting mirror 14 moves, the illumination system is moved. Need not be moved. The microscope 100 does not have a light source that illuminates the target surface 10A via the second optical system 36. Since the eye that is the observation target 10 is illuminated only with the illumination light from the first illumination light source 41, the influence of the illumination light on the eye can be reduced.
 第1撮像素子24によって撮像された、第1光束5に基づく観察対象10の第1画像は、例えば左眼用の画像として利用される。また、第2撮像素子34によって撮像された、第2光束6に基づく観察対象10の第2画像は、例えば右眼用の画像として利用される。その他の第1画像と第2画像の利用方法については後述する。 The first image of the observation target 10 based on the first light flux 5 captured by the first image sensor 24 is used as an image for the left eye, for example. The second image of the observation target 10 based on the second light flux 6 captured by the second image sensor 34 is used, for example, as an image for the right eye. Other methods of using the first image and the second image will be described later.
 一例として図3に示すように、顕微鏡100は、前述の光学要素と、制御部90と、画像送信部60と、入力部140と、を含む。制御部90は、画像処理部50と、画像選択部55と、出力I/F56と、入力I/F57と、第1偏向ミラー駆動部81と、第2結像光学系駆動部82と、第1ズーム光学系駆動部84と、第1照明光源駆動部86と、コンピュータ110と、外部I/F130とを含む。これらはバスライン120に接続されている。 As an example, as shown in FIG. 3, the microscope 100 includes the above-described optical element, the control unit 90, the image transmission unit 60, and the input unit 140. The control unit 90 includes an image processing unit 50, an image selection unit 55, an output I/F 56, an input I/F 57, a first deflection mirror driving unit 81, a second imaging optical system driving unit 82, and a second imaging optical system driving unit 82. It includes a 1-zoom optical system drive unit 84, a first illumination light source drive unit 86, a computer 110, and an external I/F 130. These are connected to the bus line 120.
 第1撮像素子24によって撮像された第1画像と第2撮像素子34によって撮像された第2画像とは、電気的な画像信号として入力I/F57を介してコンピュータ110によって取得され、後述のRAM114に記憶される。コンピュータ110は、本開示の技術にかかる画像取得部の一例である。画像処理部50は、記憶された第1画像及び第2画像を画像処理する。画像選択部55は、画像表示装置70に表示する画像を選択する。出力I/F56は、画像送信部60と制御部90とのインターフェースである。入力I/F57は、入力部140、第1撮像素子24及び第2撮像素子34と制御部90とのインターフェースである。第1偏向ミラー駆動部81は、第1偏向ミラー14を駆動する。第2結像光学系駆動部82は、第2絞り17、第2結像光学系32及び第2撮像素子34を合わせて駆動する。第1ズーム光学系駆動部84は、第1ズーム光学系20のレンズ群を光軸方向に移動させて倍率を変更する。第1照明光源駆動部86は、第1照明光源41の点灯、消灯、光源強度の調整等を行う。外部I/F130は、図示しない外部装置を接続するためのインターフェースである。外部装置としては、例えば、パーソナルコンピュータ、USBメモリ、SSD及びサーバ等が挙げられる。 The first image captured by the first image sensor 24 and the second image captured by the second image sensor 34 are acquired by the computer 110 via the input I/F 57 as electrical image signals, and the RAM 114 described below is used. Memorized in. The computer 110 is an example of an image acquisition unit according to the technique of the present disclosure. The image processing unit 50 performs image processing on the stored first image and second image. The image selection unit 55 selects an image to be displayed on the image display device 70. The output I/F 56 is an interface between the image transmission unit 60 and the control unit 90. The input I/F 57 is an interface between the input unit 140, the first image sensor 24, the second image sensor 34, and the control unit 90. The first deflection mirror drive unit 81 drives the first deflection mirror 14. The second imaging optical system drive unit 82 drives together the second diaphragm 17, the second imaging optical system 32, and the second image sensor 34. The first zoom optical system drive unit 84 moves the lens group of the first zoom optical system 20 in the optical axis direction to change the magnification. The first illumination light source drive unit 86 turns on and off the first illumination light source 41, adjusts the light source intensity, and the like. The external I/F 130 is an interface for connecting an external device (not shown). Examples of the external device include a personal computer, a USB memory, an SSD, a server, and the like.
 画像選択部55は、観察者つまりユーザによって複数の観察モードから設定された観察モードに従って、画像処理された第1画像及び第2画像の中から、ユーザに観察される左眼用の表示画像と右眼用の表示画像とを選択する。選択された左眼用の表示画像と右眼用の表示画像とは、出力I/F56を介して画像送信部60によって画像表示装置70に送信される。画像表示装置70は、左眼用の表示画像を例えば画面の左側に、右眼用の表示画像を例えば画面の右側に、それぞれ表示する。各画像を表示する位置は画像表示装置70における画面の左側と右側に限らないが、便宜上、左眼用の表示画像を左側画像と、右眼用の表示画像を右側画像とも称する。例えば、各画像を表示する位置は画面にストライプ状に各画像が交互に表示される場合又は画面の上側と下側とに各画像が表示される場合において、便宜上、左眼用の表示画像を左側画像と、右眼用の表示画像を右側画像とも称する。本実施形態では、左側画像として第1画像を、右側画像として第2画像を選択するが、これに限定されるものではない。なお、画像処理部50、第1偏向ミラー駆動部81及び第2結像光学系駆動部82の詳細と、観察モードの詳細とについては後述する。 The image selection unit 55 selects a display image for the left eye which is observed by the user from the first image and the second image which have been image-processed according to the observation mode set by the observer, that is, the plurality of observation modes. Select the display image for the right eye. The selected display image for the left eye and the selected display image for the right eye are transmitted to the image display device 70 by the image transmission unit 60 via the output I/F 56. The image display device 70 displays the display image for the left eye on the left side of the screen, and the display image for the right eye on the right side of the screen, for example. The position for displaying each image is not limited to the left side and the right side of the screen of the image display device 70, but for convenience, the display image for the left eye is also referred to as the left image and the display image for the right eye is also referred to as the right image. For example, in the case where each image is displayed alternately on the screen in a striped pattern or when each image is displayed on the upper side and the lower side of the screen, the display image for the left eye is displayed for convenience. The left image and the display image for the right eye are also referred to as the right image. In the present embodiment, the first image is selected as the left image and the second image is selected as the right image, but the present invention is not limited to this. Details of the image processing unit 50, the first deflection mirror driving unit 81, and the second imaging optical system driving unit 82, and details of the observation mode will be described later.
 ユーザは、入力部140を用いて、観察対象10の観察に関する各種設定や顕微鏡100の操作を行う。入力部140は、例えばキーボード、各種スイッチ、タッチパネル、音声入力用マイク及び/又はフットペダル等である。例えば、ユーザは観察モードの設定、画像の倍率の調節、光源強度の調節、及び実体角の変更等を入力部140を介して行う。入力された情報は入力I/F57を介してコンピュータ110によって取得される。コンピュータ110は入力された情報に基づいて各部を制御する。 The user uses the input unit 140 to make various settings regarding the observation of the observation target 10 and operate the microscope 100. The input unit 140 is, for example, a keyboard, various switches, a touch panel, a voice input microphone, and/or a foot pedal. For example, the user sets the observation mode, adjusts the magnification of the image, adjusts the light source intensity, changes the substantial angle, and the like via the input unit 140. The input information is acquired by the computer 110 via the input I/F 57. The computer 110 controls each part based on the input information.
 一例として図4に示すように、コンピュータ110は、CPU112、RAM114、及びROM116を含み、CPU112、RAM114、及びROM116はバスライン120に接続されている。CPU112は、顕微鏡100の全体を制御する。RAM114は、各種プログラムの実行時のワークエリア等として用いられる揮発性のメモリである。ROM116は、顕微鏡100の基本的な動作を制御する顕微鏡制御プログラム118及び各種パラメータ等を記憶する不揮発性のメモリである。なお、本第1実施形態では、1つのCPU112を例示しているが、複数のCPUを用いることも可能である。 As an example, as illustrated in FIG. 4, the computer 110 includes a CPU 112, a RAM 114, and a ROM 116, and the CPU 112, the RAM 114, and the ROM 116 are connected to the bus line 120. The CPU 112 controls the entire microscope 100. The RAM 114 is a volatile memory used as a work area or the like when executing various programs. The ROM 116 is a non-volatile memory that stores a microscope control program 118 that controls basic operations of the microscope 100, various parameters, and the like. Although the first CPU 112 is illustrated in the first embodiment, it is also possible to use a plurality of CPUs.
 ROM116は、顕微鏡制御プログラム118を記憶している。顕微鏡制御プログラム118は、本開示の技術に係る「プログラム」の一例である。なお、本第1実施形態では、顕微鏡制御プログラム118がROM116に記憶されている形態例を挙げているが、本開示の技術はこれに限定されない。例えば、顕微鏡制御プログラム118は、バスライン120に接続されているHDD、EEPROM、又はフラッシュメモリ等(いずれも図示せず)に記憶されていてもよい。 The ROM 116 stores a microscope control program 118. The microscope control program 118 is an example of a “program” according to the technique of the present disclosure. In the first embodiment, the example in which the microscope control program 118 is stored in the ROM 116 is given, but the technique of the present disclosure is not limited to this. For example, the microscope control program 118 may be stored in an HDD, an EEPROM, a flash memory or the like (not shown) connected to the bus line 120.
 CPU112は、ROM116から顕微鏡制御プログラム118を読み出し、読み出した顕微鏡制御プログラム118をRAM114に展開する。そして、CPU112は、顕微鏡制御プログラム118を実行することで、一例として図3に示す画像処理部50、画像選択部55、第1偏向ミラー駆動部81、第2結像光学系駆動部82、第1ズーム光学系駆動部84及び第1照明光源駆動部86として動作する。 The CPU 112 reads the microscope control program 118 from the ROM 116 and expands the read microscope control program 118 in the RAM 114. Then, the CPU 112 executes the microscope control program 118, and as an example, the image processing unit 50, the image selection unit 55, the first deflection mirror drive unit 81, the second imaging optical system drive unit 82, and the second image formation optical system drive unit 82 shown in FIG. It operates as the 1-zoom optical system drive unit 84 and the first illumination light source drive unit 86.
 図1と図2に戻り、第1ズーム光学系20及び第1結像光学系22は、第1偏向ミラー14と第1ハーフミラー15によって偏向される第1光軸OL1の光が入射し、Y軸方向(例、水平方向)に沿って順次配置されている。この構成により、顕微鏡100における第1撮像素子の部分の厚さ方向(例、Z軸方向、鉛直方向)のサイズを小さくすることができる。 Returning to FIG. 1 and FIG. 2, the first zoom optical system 20 and the first imaging optical system 22 are incident with the light of the first optical axis OL1 deflected by the first deflection mirror 14 and the first half mirror 15. They are sequentially arranged along the Y-axis direction (eg, horizontal direction). With this configuration, the size of the portion of the first image pickup device in the microscope 100 in the thickness direction (eg, Z-axis direction, vertical direction) can be reduced.
 前述のように、第2光学系36の有効口径は第1光学系26の有効口径よりも小さい。さらに、第2光学系36はズーム光学系を有していない。つまり、第1光学系26と第2光学系36とのうち、第1光学系26にのみズーム光学系を備える。このような構成により、第2光学系36のサイズをコンパクトに設計することができる。したがって、顕微鏡100のサイズは、両眼用として第1光学系26を2つ備える顕微鏡に比べてサイズをコンパクトにすることができ、また製造コストを低減することができる。 As mentioned above, the effective aperture of the second optical system 36 is smaller than the effective aperture of the first optical system 26. Further, the second optical system 36 does not have a zoom optical system. That is, of the first optical system 26 and the second optical system 36, only the first optical system 26 has a zoom optical system. With such a configuration, the size of the second optical system 36 can be designed compactly. Therefore, the size of the microscope 100 can be made smaller than that of a microscope including two first optical systems 26 for both eyes, and the manufacturing cost can be reduced.
 共用対物レンズ12は、図1では1枚のレンズで構成されているように記載されているが、複数のレンズを組み合わせて構成してもよい。同様に、第1ズーム光学系20、第1結像光学系22、第2結像光学系32、第1光源光学系42は、それぞれが1枚又は複数のレンズから構成されている。 The shared objective lens 12 is described as being composed of one lens in FIG. 1, but may be composed of a plurality of lenses in combination. Similarly, each of the first zoom optical system 20, the first imaging optical system 22, the second imaging optical system 32, and the first light source optical system 42 is composed of one or more lenses.
 一例として図5に示すように、第1ズーム光学系20は4枚のレンズから構成される。4枚のレンズは、共用対物レンズ12に近い側から、第1レンズ20A、第2レンズ20B、第3レンズ20C及び第4レンズ20Dである。第1レンズ20Aは、実質的に第1光学系26の開口数を決めるレンズである。矢印で図示するように、第2レンズ20Bと第3レンズ20Cは、これらの位置が連動して変わることによって第1ズーム光学系20の倍率を決定する。第2レンズ20Bは、最も低い倍率から最も高い倍率まで、光軸に沿って一方方向に移動する。第3レンズ20Cは倍率変更の途中で移動方向が反転するようにズームカムが構成されている。 As an example, as shown in FIG. 5, the first zoom optical system 20 is composed of four lenses. The four lenses are the first lens 20A, the second lens 20B, the third lens 20C, and the fourth lens 20D from the side closer to the shared objective lens 12. The first lens 20A is a lens that substantially determines the numerical aperture of the first optical system 26. As shown by the arrows, the second lens 20B and the third lens 20C determine the magnification of the first zoom optical system 20 by changing their positions in conjunction with each other. The second lens 20B moves in one direction along the optical axis from the lowest magnification to the highest magnification. The zoom cam is configured such that the moving direction of the third lens 20C is reversed during the magnification change.
 図1に示すように、第1光軸OL1と第2光軸OR1とは、観察対象10の位置において実体角R1の視差角をなす。この視差角を有することにより、ユーザが左眼と右眼とでそれぞれ第1画像と第2画像とを同時に見れば立体像として観察される。なお、視差角は、実体角とも称する。上記2つの光学系によって観察対象10の位置において実体角を有する2つの光軸に沿って通過したそれぞれの光束から得られる第1画像と第2画像を視差画像とも称する。例えば、第1光学系26により得られる第1画像と第2光学系36により得られる第2画像とで、視差画像が形成される。換言すれば、視差画像を形成するため、第1光学系26の光軸と第2光学系36の光軸とが視差角を有するように構成される。 As shown in FIG. 1, the first optical axis OL1 and the second optical axis OR1 form a parallax angle of the real angle R1 at the position of the observation target 10. By having this parallax angle, when the user simultaneously views the first image and the second image with the left eye and the right eye respectively, they are viewed as a stereoscopic image. Note that the parallax angle is also referred to as a body angle. The first image and the second image obtained from the respective light fluxes that have passed through the two optical axes having the substantial angle at the position of the observation target 10 by the two optical systems are also referred to as parallax images. For example, the first image obtained by the first optical system 26 and the second image obtained by the second optical system 36 form a parallax image. In other words, in order to form a parallax image, the optical axis of the first optical system 26 and the optical axis of the second optical system 36 are configured to have a parallax angle.
 一例として図6に示すように、第1偏向ミラー14は、第1偏向ミラー駆動部81によって、視差を付けたい視差方向(この場合、X軸方向)に沿って移動するように駆動される。言い換えれば、第1偏向ミラー14は、第1光軸OL1と第2光軸OR1とが観察対象10の位置でなす実体角を変更する方向に移動可能である。 As an example, as shown in FIG. 6, the first deflecting mirror 14 is driven by the first deflecting mirror driving unit 81 so as to move along the parallax direction in which parallax is desired (in this case, the X-axis direction). In other words, the first deflection mirror 14 is movable in a direction that changes the substantial angle formed by the first optical axis OL1 and the second optical axis OR1 at the position of the observation target 10.
 また、第2光学系36の少なくとも1つの光学素子が、第1光軸OL1と第2光軸OR1とが観察対象10の位置でなす実体角R1を変更する方向に移動可能である。具体的には、第2絞り17、第2結像光学系32及び第2撮像素子34は、第2結像光学系駆動部82によって、視差を付けたい視差方向(この場合、X軸方向)に沿って一体的に移動するように駆動される。つまり、第2絞り17、第2結像光学系32及び第2撮像素子34は、第1光軸OL1と第2光軸OR1とが観察対象10の位置でなす実体角R1を変更する方向に移動可能である。 Further, at least one optical element of the second optical system 36 is movable in a direction in which the substantial angle R1 formed by the first optical axis OL1 and the second optical axis OR1 at the position of the observation target 10 is changed. Specifically, the second diaphragm 17, the second image forming optical system 32, and the second image sensor 34 are driven by the second image forming optical system driving unit 82 to generate a parallax direction (in this case, the X-axis direction). Is driven to move integrally along. That is, the second diaphragm 17, the second imaging optical system 32, and the second imaging element 34 are arranged in a direction in which the substantial angle R1 formed by the first optical axis OL1 and the second optical axis OR1 at the position of the observation target 10 is changed. Can be moved.
 図6は、第1偏向ミラー14が点線の位置から、X方向に移動して実線の第1偏向ミラー14に示す位置に移動したことを示す。図6では、第1絞り16は動いていないが、第1偏向ミラー14に連動して第1絞り16が移動するように構成してもよい。同様に、第2絞り17、第2結像光学系32及び第2撮像素子34が、点線の位置からマイナスX方向に一体的に移動してそれぞれ実線で示す位置に移動したことを示す。 FIG. 6 shows that the first deflecting mirror 14 has moved from the position indicated by the dotted line in the X direction to the position indicated by the first deflecting mirror 14 indicated by the solid line. Although the first diaphragm 16 does not move in FIG. 6, the first diaphragm 16 may move in conjunction with the first deflection mirror 14. Similarly, it shows that the second diaphragm 17, the second imaging optical system 32, and the second image sensor 34 are integrally moved in the minus X direction from the position indicated by the dotted line and moved to the positions indicated by the solid lines.
 図6に示す例では、点線で示す第1光軸OL1が一点鎖線で示す光軸OL2の位置に移動し、点線で示す第2光軸OR1が一点鎖線で示す光軸OR2の位置に移動している。その結果、光軸OL2と光軸OR2とのなす実体角R2は、第1偏向ミラー14、第2絞り17、第2結像光学系32及び第2撮像素子34が移動する前の実体角R1よりも小さくなる。第1偏向ミラー14、第2絞り17、第2結像光学系32及び第2撮像素子34をそれぞれ反対方向へ移動させると、実体角R2は大きくなる。 In the example shown in FIG. 6, the first optical axis OL1 shown by the dotted line moves to the position of the optical axis OL2 shown by the dashed line, and the second optical axis OR1 shown by the dotted line moves to the position of the optical axis OR2 shown by the dashed line. ing. As a result, the actual angle R2 formed by the optical axis OL2 and the optical axis OR2 is the actual angle R1 before the first deflection mirror 14, the second diaphragm 17, the second imaging optical system 32, and the second image sensor 34 are moved. Will be smaller than. When the first deflection mirror 14, the second diaphragm 17, the second imaging optical system 32, and the second image sensor 34 are moved in the opposite directions, the substantial angle R2 becomes large.
 所定のタイミング又はユーザごと等において、このように実体角を変更することにより、ユーザが見る観察対象10の立体感を変更することができる。この構成により、観察対象10の状態、照明条件、又は使用目的等によってユーザが最適な立体感が得られる実体角を調節することができる。 By changing the real angle in this way at a predetermined timing or for each user, the stereoscopic effect of the observation target 10 seen by the user can be changed. With this configuration, it is possible to adjust the stereoscopic angle at which the user can obtain an optimal stereoscopic effect depending on the state of the observation target 10, the illumination conditions, the purpose of use, and the like.
 画像処理部50は、第1撮像素子24で撮像された第1画像及び第2撮像素子34で撮像された第2画像をユーザが両眼で見たときに、最適な立体画像が得られるように画像処理する。具体的には、画像処理部50は、第1画像の倍率と第2画像の倍率とが揃うように電子ズームの倍率を調整する。「倍率が揃う」とは、同じ程度の倍率ということであるが、倍率が完全に同じ倍率だけでなく、ユーザが第1画像と第2画像を見たときに違和感の生じない程度に揃った倍率を含むことをいう。「倍率が揃う」を「実質的に同じ倍率」であるともいう。上記2つの画像の倍率を揃えることによって、2つの画像は、互いに統合された倍率(統合倍率)に調整される。 The image processing unit 50 is configured to obtain an optimum stereoscopic image when the user views the first image captured by the first image sensor 24 and the second image captured by the second image sensor 34 with both eyes. Image processing. Specifically, the image processing unit 50 adjusts the electronic zoom magnification so that the magnification of the first image and the magnification of the second image are aligned. “Matching the same magnification” means that the magnifications are about the same, but not only the magnifications are completely the same, but the magnifications are not so large when the user sees the first image and the second image. Includes magnification. "Same magnification" is also referred to as "substantially the same magnification". By matching the magnifications of the two images, the two images are adjusted to a magnification integrated with each other (integration magnification).
 前述のように、第1画像は、例えば左眼用の画像として利用され、第2画像は、例えば右眼用の画像として利用される。第1光学系26は第1ズーム光学系20を有するが、第2光学系36はズーム光学系を有しない。そのため、第1ズーム光学系20を駆動させて第1画像の倍率を変更した場合、第1画像と第2画像とで画像の光学的倍率が異なる。そこで、画像処理部50によって第2画像を電子的に拡大又は縮小する処理が行われ、第2画像の倍率が光学的に拡大された第1画像の倍率に合わせられる。画像を電子的に拡大又は縮小する処理を電子ズームとも称する。 As described above, the first image is used as an image for the left eye, and the second image is used as an image for the right eye, for example. The first optical system 26 has the first zoom optical system 20, but the second optical system 36 has no zoom optical system. Therefore, when the first zoom optical system 20 is driven to change the magnification of the first image, the optical magnification of the image differs between the first image and the second image. Therefore, the image processing unit 50 electronically enlarges or reduces the second image, and the magnification of the second image is adjusted to the magnification of the optically enlarged first image. The process of electronically enlarging or reducing an image is also referred to as electronic zoom.
 光学ズームの倍率と電子ズームの倍率とを合わせる方法は、光学ズームの倍率と電子ズームの倍率とをそれぞれ個別に設定して合わせることも可能である。しかし、第1画像の光学ズームの倍率がユーザによって設定された場合に、第2画像の電子ズームの倍率が制御部90(又は画像処理部50)によって第1画像の倍率に基づいて調整されることが好ましい。又は、第2画像の電子ズームの倍率は、第1画像の倍率に連動して調整されることが好ましい。第2画像の倍率が第1画像の倍率に基づいて調整されるということは、第1画像の視野範囲と第2画像の視野範囲とを、同程度になるように調整するということを含む。 As for the method of matching the optical zoom magnification with the electronic zoom magnification, it is also possible to set the optical zoom magnification and the electronic zoom magnification individually and match them. However, when the optical zoom magnification of the first image is set by the user, the electronic zoom magnification of the second image is adjusted by the control unit 90 (or the image processing unit 50) based on the magnification of the first image. It is preferable. Alternatively, it is preferable that the electronic zoom magnification of the second image is adjusted in association with the magnification of the first image. Adjusting the magnification of the second image based on the magnification of the first image includes adjusting the visual field range of the first image and the visual field range of the second image so as to be approximately the same.
 一例として画像処理部50は、第2画像の電子ズームの倍率を、第1ズーム光学系20による第1画像の光学的な倍率変化に連動させて調節する。つまり、画像処理部50は、第1ズーム光学系20により達成される光学的な倍率と実質的に同じ倍率となるように電子ズームの倍率を調整する。これにより、倍率を変更した立体像を両眼視で違和感なく観察できる。そのため、第1光学系26と第2光学系36との両方にズーム光学系を設ける場合に比べ、あまり変わらない解像度で立体視が可能となり、かつ製造コストやサイズを低減することが可能となる。 As an example, the image processing unit 50 adjusts the electronic zoom magnification of the second image in association with the optical magnification change of the first image by the first zoom optical system 20. That is, the image processing unit 50 adjusts the electronic zoom magnification so as to be substantially the same as the optical magnification achieved by the first zoom optical system 20. As a result, a stereoscopic image with a changed magnification can be observed with binocular vision without a sense of discomfort. Therefore, as compared with the case where zoom optical systems are provided in both the first optical system 26 and the second optical system 36, stereoscopic viewing can be performed with a resolution that does not change so much, and manufacturing cost and size can be reduced. ..
 画像処理部50は、第1画像を電子的に拡大又は縮小してもよい。これにより、例えば第1画像と第2画像を第1ズーム光学系20の拡大率より大きく拡大することができる。また逆に、第1画像と第2画像を第1ズーム光学系20の最低倍率より小さく縮小することができる。その結果、ユーザは第1ズーム光学系20の倍率範囲を超える範囲の倍率で立体視が可能となる。 The image processing unit 50 may electronically enlarge or reduce the first image. Thereby, for example, the first image and the second image can be magnified more than the magnifying power of the first zoom optical system 20. On the contrary, the first image and the second image can be reduced to be smaller than the minimum magnification of the first zoom optical system 20. As a result, the user can perform stereoscopic viewing with a magnification in a range exceeding the magnification range of the first zoom optical system 20.
 第1ズーム光学系20による光学的な倍率変化に連動して電子的倍率を変化させる方法は、ユーザによって設定された第1ズーム光学系20の倍率を検出して、電子ズームの倍率を第1ズーム光学系20の倍率に合わせればよい。第1ズーム光学系20の倍率は、ユーザが入力部140を介して入力する。ユーザの倍率入力方法は、キーボード等を用いて数値で入力する方法、予め段階的に設定された倍率を選択する方法、又はレバー又はダイヤル等で連続的に倍率を変化させ、希望の倍率の位置で停止させる方法等がある。 The method of changing the electronic magnification in association with the change of the optical magnification by the first zoom optical system 20 is to detect the magnification of the first zoom optical system 20 set by the user and set the electronic zoom magnification to the first value. It suffices to match the magnification of the zoom optical system 20. The user inputs the magnification of the first zoom optical system 20 via the input unit 140. The user's magnification input method is to enter a numerical value using a keyboard, select a preset magnification, or change the magnification continuously with a lever or dial to change the desired magnification position. There is a method to stop at.
 また、第1ズーム光学系20の特定のレンズの位置を検出することにより、倍率(例、第1ズーム光学系20の倍率)を計算し、電子ズームの倍率をそれに合わせてもよい。特定のレンズとは、そのレンズの位置が第1ズーム光学系20の倍率と一義的に対応するレンズであり、例えば図5の第2レンズ20Bが相当する。予めROM116に特定のレンズの位置と第1ズーム光学系20の倍率とを対応付けるテーブル又は関数式を記憶しておき、レンズの位置又は駆動モータの回転数から倍率を計算することができる。 Alternatively, the magnification (eg, the magnification of the first zoom optical system 20) may be calculated by detecting the position of a specific lens of the first zoom optical system 20, and the magnification of the electronic zoom may be adjusted to that. The specific lens is a lens whose position uniquely corresponds to the magnification of the first zoom optical system 20, and corresponds to, for example, the second lens 20B in FIG. A table or a functional expression that associates a specific lens position with the magnification of the first zoom optical system 20 is stored in advance in the ROM 116, and the magnification can be calculated from the position of the lens or the rotation speed of the drive motor.
 また、第1ズーム光学系20による光学的な倍率変化に連動して電子的倍率を変化させる方法として、画像解析により倍率を合わせる方法でもよい。例えば、第1画像と第2画像の倍率が比較的近い場合は、第1画像と第2画像の中から相似形の物体を検出し、その相似形の物体の大きさが等しくなるように第2画像を電子ズームで拡大又は縮小する。第1画像と第2画像の倍率が大きく異なっていて相似形の形状が発見できない場合は、第1画像と第2画像の両方に相似形の形状を検出するまで電子ズームの倍率を変更し、相似形の形状を検出した後、上記の方法で倍率を合わせる。 Also, as a method of changing the electronic magnification in association with the change of the optical magnification by the first zoom optical system 20, a method of adjusting the magnification by image analysis may be used. For example, when the magnifications of the first image and the second image are relatively close to each other, similar-shaped objects are detected from the first image and the second image, and the similar-sized objects are made equal in size. 2 Enlarge or reduce the image with electronic zoom. When the first image and the second image have a large difference in magnification and a similar shape cannot be found, the electronic zoom magnification is changed until a similar shape is detected in both the first image and the second image. After detecting a similar shape, the magnification is adjusted by the above method.
 例えば第1実施形態では、第2光学系36の有効口径が第1光学系26の有効口径よりも小さいため、相対的に第1画像が明るく、第2画像が暗い画像となる。このような場合、画像処理部50は、第1画像及び第2画像の輝度調整、ホワイトバランス調整及びRGB補正等を行って第1画像と第2画像との明るさを揃える。また、画像処理部50は、画像表示装置70に表示される2つの画像(例、第1画像、第2画像)の向きを、ユーザに対して所定の向きになるようそれぞれ調整してもよい。 For example, in the first embodiment, since the effective aperture of the second optical system 36 is smaller than the effective aperture of the first optical system 26, the first image is relatively bright and the second image is relatively dark. In such a case, the image processing unit 50 performs brightness adjustment, white balance adjustment, RGB correction, and the like of the first image and the second image to make the brightness of the first image and the second image uniform. Further, the image processing unit 50 may adjust the orientations of the two images (eg, the first image and the second image) displayed on the image display device 70 so that they are oriented in a predetermined direction for the user. ..
 画像送信部60は、画像処理部50で処理された第1画像及び第2画像を画像表示装置70に送信する。第1実施形態では、画像送信部60は例えば無線で画像を送信するための画像トランスミッタである。また、有線で画像を送信することも可能であり、その場合は、画像送信部60は画像送信用の出力端子等の出力部を含む。 The image transmitting unit 60 transmits the first image and the second image processed by the image processing unit 50 to the image display device 70. In the first embodiment, the image transmitter 60 is, for example, an image transmitter for wirelessly transmitting an image. It is also possible to transmit the image by wire, and in that case, the image transmission unit 60 includes an output unit such as an output terminal for image transmission.
 画像表示装置70は、例えば第1画像と第2画像を表示する。特に画像表示装置70は、第1画像と第2画像を立体視ができるように表示可能である。本開示の技術においては、立体観察を可能とする画像表示装置70の種類は限定されず、公知の立体視が可能な表示装置を用いることができる。 The image display device 70 displays, for example, the first image and the second image. In particular, the image display device 70 can display the first image and the second image so that they can be viewed stereoscopically. In the technology of the present disclosure, the type of the image display device 70 that enables stereoscopic observation is not limited, and a known display device that allows stereoscopic viewing can be used.
 例えば、画像表示装置70は、頭部又は顔面に装着可能なヘッドマウント型ディスプレイである。ヘッドマウント型ディスプレイは、例えば右眼用と左眼用の独立した2つの表示画面(又は空間に画像が表示される表示画面)を有しており、2つの画面それぞれに右眼用の画像と左眼用の画像を表示する。実体角を有する2つの画像を表示することにより、表示画像に立体感を生じさせることができる。 For example, the image display device 70 is a head-mounted display that can be worn on the head or face. The head-mounted display has, for example, two independent display screens for the right eye and the left eye (or a display screen in which an image is displayed in space), and each of the two screens has an image for the right eye and an image for the right eye. Display the image for the left eye. By displaying two images having a substantial angle, a stereoscopic effect can be generated in the displayed image.
 また、画像表示装置70は、左眼用のフレーム画像と右眼用のフレーム画像とを交互に表示するヘッドマウント型ディスプレイでもよい。このタイプの表示装置は、左眼用の第1画像と右眼用の第1画像とを高速で交互に表示し、それぞれの画像の表示に合わせて右眼のシャッタと左眼のシャッタとを交互に開閉する。左眼用の第1画像を表示している間は右眼用のシャッタを閉じ、右眼用の第2画像を表示している間は左眼用のシャッタを閉じる。この方法によって、ユーザは左眼と右眼とでそれぞれ第1画像と第2画像を見ることができ、立体視が実現される。 Further, the image display device 70 may be a head-mounted display that alternately displays a frame image for the left eye and a frame image for the right eye. This type of display device alternately displays a first image for the left eye and a first image for the right eye at high speed, and displays a shutter for the right eye and a shutter for the left eye in accordance with the display of each image. Open and close alternately. The shutter for the right eye is closed while the first image for the left eye is displayed, and the shutter for the left eye is closed while the second image for the right eye is displayed. By this method, the user can see the first image and the second image with the left eye and the right eye, respectively, and stereoscopic vision is realized.
 また、画像表示装置70は1つのフラット液晶表示画面を有する表示装置でもよい。この画像表示装置70は、例えば走査線ごとに交互に右眼用の画像と左眼用の画像とを表示する。右眼用の画像の走査線と左眼用の画像の走査線の画面上には偏光方向が逆の偏光板がそれぞれ設けられている。ユーザは、右眼用走査線上に設けられた偏光板と同じ偏光方向を持つ偏光フィルタを右側に、左眼用走査線上に設けられた偏光板と同じ偏光面を持つ偏光フィルタを左側にそれぞれ有する眼鏡をかけて画像を観察する。 The image display device 70 may be a display device having one flat liquid crystal display screen. The image display device 70 alternately displays an image for the right eye and an image for the left eye for each scanning line, for example. On the screens of the scanning lines of the image for the right eye and the scanning lines of the image for the left eye, polarizing plates having opposite polarization directions are provided. The user has a polarizing filter having the same polarization direction as the polarizing plate provided on the scanning line for the right eye on the right side and a polarizing filter having the same polarization plane as the polarizing plate provided on the scanning line for the left eye on the left side. Wear glasses to observe the image.
 また、画像表示装置70は、シリンドリカルレンズを多数配置したレンチキュラレンズを用いた表示装置でもよい。レンチキュラ表示装置は、右眼用の画像と左眼用の画像とを画素ライン毎に表示する。そして表示された右眼用の画像と左眼用の画像とを、画素ライン毎に配置されたシリンドリカルレンズにより、右眼方向と左眼方向に向けて表示する表示装置である。レンチキュラ表示装置を用いる場合は、偏光眼鏡をかける必要がないというメリットがある。また、画像表示装置70は、裸眼で立体視が可能な画像表示装置として、パララックスバリア方式の画像表示装置を用いてもよい。パララックスバリア方式とは、観察者の左右両眼に異なる画素が見えるようにする方式である。具体的には、例えば表示画素の手前に左右2画素ごとに1つの穴、または溝を設けた遮蔽板を配置する。これにより、右眼は右眼用の画像のみを見て、左眼は左眼用の画像のみを見る。右眼用の画像と左眼用の画像は、視差角を有するため、裸眼で両眼視差を作り出すことができる。 The image display device 70 may be a display device using a lenticular lens in which a large number of cylindrical lenses are arranged. The lenticular display device displays an image for the right eye and an image for the left eye for each pixel line. Then, the display device displays the displayed right-eye image and left-eye image in the right-eye direction and the left-eye direction by the cylindrical lens arranged for each pixel line. When using a lenticular display device, there is an advantage that it is not necessary to wear polarized glasses. Further, the image display device 70 may use a parallax barrier type image display device as an image display device capable of stereoscopic vision with the naked eye. The parallax barrier system is a system in which different pixels are visible to the left and right eyes of an observer. Specifically, for example, a shield plate having a hole or a groove for every two left and right pixels is arranged in front of the display pixel. As a result, the right eye sees only the image for the right eye, and the left eye sees only the image for the left eye. Since the image for the right eye and the image for the left eye have a parallax angle, binocular parallax can be created with the naked eye.
 画像表示装置70がヘッドマウント型ディスプレイの場合は、画像表示装置70は顕微鏡100とは別体の装置である。しかし、画像表示装置70がフラット液晶表示画面を有するタイプの場合、画像表示装置70が顕微鏡100と一体化されている顕微鏡システムとして構成してもよい。この場合、顕微鏡100のZ軸方向の寸法を小さくし、画像表示装置70が第1光学系26及び第2光学系36の上部に配置されることが好ましい。これにより、ユーザの正面前方に画像表示装置70が配置されるように配置設計することができる。 When the image display device 70 is a head-mounted display, the image display device 70 is a device separate from the microscope 100. However, when the image display device 70 is of a type having a flat liquid crystal display screen, the image display device 70 may be configured as a microscope system integrated with the microscope 100. In this case, it is preferable to reduce the dimension of the microscope 100 in the Z-axis direction and arrange the image display device 70 above the first optical system 26 and the second optical system 36. Accordingly, the layout design can be performed so that the image display device 70 is arranged in front of the user.
 上記の説明では、画像表示装置70は顕微鏡100とは独立して制御又は操作されるものとして説明している。しかし、画像表示装置70は顕微鏡100の制御部90により制御されてもよい。 In the above description, the image display device 70 is described as being controlled or operated independently of the microscope 100. However, the image display device 70 may be controlled by the control unit 90 of the microscope 100.
 第1実施形態に係る制御部は、例えば、第1撮像素子により撮像される第1画像と第2撮像素子により撮像される第2画像とを取得する工程と、第1画像と第2画像とのうち第1画像を画像表示装置70に表示する第1モードと、第1画像と第1画像とは解像度が異なる第2画像とを3次元表示用画像(例、立体視できる立体画像、視差画像、など)として画像表示装置70に表示する第2モードとを切替可能である。 The control unit according to the first embodiment acquires, for example, a first image captured by the first image sensor and a second image captured by the second image sensor, a first image, and a second image. Among them, a first mode in which the first image is displayed on the image display device 70 and a second image in which the resolution of the first image and the first image are different from each other are three-dimensional display images (for example, stereoscopic image capable of stereoscopic viewing, parallax). It is possible to switch between the second mode in which the image is displayed on the image display device 70 as an image.
 例えば、顕微鏡100は、観察モードをユーザが選択して設定することができる。具体的には、ユーザは、詳細観察モードである第1モード、立体観察モードである第2モード、変倍観察モードである第3モードを設定可能である。画像選択部55は、ユーザによって設定された観察モードに基づき、第1画像と第2画像から左眼用画像と右眼用画像とを選択して組み合わせる。 For example, in the microscope 100, the user can select and set the observation mode. Specifically, the user can set the first mode which is the detailed observation mode, the second mode which is the stereoscopic observation mode, and the third mode which is the variable magnification observation mode. The image selection unit 55 selects and combines the left-eye image and the right-eye image from the first image and the second image based on the observation mode set by the user.
 例えば、ユーザが第1モードを選択した場合は、画像選択部55は、例えば図7に示すように、解像度が相対的に高い第1画像72を、左眼用及び右眼用の画像として選択する。この場合、観察される画像は実体角がないため立体画像にはならないが、ユーザは相対的に高解像度の画像を両眼で見ることができるというメリットがある。これは観察対象10を高解像度で拡大して見る場合に適している。 For example, when the user selects the first mode, the image selection unit 55 selects the first image 72 having a relatively high resolution as the image for the left eye and the image for the right eye, as shown in FIG. 7, for example. To do. In this case, the observed image does not become a stereoscopic image because there is no substantial angle, but there is an advantage that the user can see a relatively high-resolution image with both eyes. This is suitable when the observation target 10 is enlarged and viewed at high resolution.
 なお、第1モードでは立体視を行わないため、必ずしも左眼用及び右眼用の画像として同じ第1画像72を2つの画像表示面に表示する必要はない。画像表示面に1つの第1画像72を表示してそれを両眼視してもよい。 Note that stereoscopic viewing is not performed in the first mode, so it is not necessary to display the same first image 72 as the image for the left eye and the image for the right eye on the two image display surfaces. You may display one 1st image 72 on an image display surface, and it may be viewed with both eyes.
 また、ユーザが第2モードを選択した場合は、画像選択部55は、例えば図8に示すように、左眼用として第1画像72を、右眼用として第2画像73を選択する。なお、図8では、第2画像73は第1画像72よりも解像度が低い画像として模式的に表している。この場合、ユーザは観察対象10の立体的な画像を見ることができる。この際、ユーザは実体角を調整して立体感を調節することができる。第2モードの場合、制御部90は、第1光学系26により得られる第1画像72と第2光学系36により得られる第2画像73とで視差画像を形成させる。第2モードにおいて、制御部90は、第1画像72の表示のタイミングに同期させて第2画像73を画像表示装置70に表示させる 。本実施形態では、第2画像73が第1画像72よりも解像度が低い例を説明しているが、第1画像72が第2画像73よりも解像度が低くてもよい。 When the user selects the second mode, the image selection unit 55 selects the first image 72 for the left eye and the second image 73 for the right eye, as shown in FIG. 8, for example. In addition, in FIG. 8, the second image 73 is schematically represented as an image having a lower resolution than the first image 72. In this case, the user can see the stereoscopic image of the observation target 10. At this time, the user can adjust the stereoscopic effect by adjusting the stereoscopic angle. In the second mode, the control unit 90 forms a parallax image with the first image 72 obtained by the first optical system 26 and the second image 73 obtained by the second optical system 36. In the second mode, the control unit 90 causes the image display device 70 to display the second image 73 in synchronization with the display timing of the first image 72. Although the second image 73 has a lower resolution than the first image 72 in the present embodiment, the first image 72 may have a lower resolution than the second image 73.
 また、ユーザが第3モードを選択した場合は、画像選択部55は、例えば図9に示すように、解像度が相対的に低い第2画像73を右眼用及び左眼用の画像として選択する。この場合、観察される画像の解像度は相対的に低いが、ユーザは電子ズームにより低倍率から高倍率まで画像を素早く変倍して観察することができるというメリットがある。なお、図7から図9では、分かりやすくするため左眼用の画像と右眼用の画像を左右に並べて記載したが、前述のように左眼用の画像と右眼用の画像とは必ずしも画面の左右に同時に表示する必要はない。左眼用の画像と右眼用の画像は、表示装置の方式により適宜表示される。 Further, when the user selects the third mode, the image selection unit 55 selects the second image 73 having a relatively low resolution as the image for the right eye and the image for the left eye, as shown in FIG. 9, for example. .. In this case, although the resolution of the observed image is relatively low, there is an advantage that the user can quickly zoom and observe the image from low magnification to high magnification by the electronic zoom. Note that, in FIGS. 7 to 9, the left-eye image and the right-eye image are arranged side by side for the sake of clarity, but as described above, the left-eye image and the right-eye image are not necessarily shown. It does not have to be displayed on the left and right sides of the screen at the same time. The image for the left eye and the image for the right eye are appropriately displayed according to the method of the display device.
 なお、第3モードでは立体視を行わないため、必ずしも左眼用及び右眼用の画像として同じ第2画像73を2つの画像表示面に表示する必要はない。画像表示面に1つの第2画像73を表示してそれを両眼視してもよい。 Note that since the third mode does not perform stereoscopic vision, it is not always necessary to display the same second image 73 as images for the left eye and the right eye on the two image display surfaces. One second image 73 may be displayed on the image display surface so that it can be viewed with both eyes.
 以上の構成を有する顕微鏡100は、解像度などの構成が異なる2つの光学系を有することにより、立体視を可能とし、かつコストとサイズを抑制した顕微鏡が提供される。具体的には、第2光学系の有効口径が第1光学系26の有効口径より小さい。そのため、顕微鏡100は立体視が可能でありながらも、2つの光学系の有効口径が同じ構成と比較して製造コストとサイズを抑制することができる。また、本実施形態の顕微鏡は、2つの光学系から得られる画像を複数の表示方法(画像表示方法)で表示することができる。 The microscope 100 having the above-described configuration has two optical systems having different configurations such as resolution, thereby providing a microscope capable of stereoscopic viewing and suppressing cost and size. Specifically, the effective aperture of the second optical system is smaller than the effective aperture of the first optical system 26. Therefore, while the microscope 100 is capable of stereoscopic viewing, the manufacturing cost and size can be suppressed as compared with the configuration in which the effective diameters of the two optical systems are the same. Further, the microscope of this embodiment can display an image obtained from two optical systems by a plurality of display methods (image display methods).
 また、従来技術の顕微鏡は、右眼用の光学系と左眼用の光学系を同じ構成の光学系とし、立体視のために利用するだけであった。それに対して実施形態1に係る顕微鏡100は、第1光学系26だけに第1ズーム光学系20を有しており、第2光学系36はズーム光学系を有さず、第1光学系26よりもシンプルな構成である。そして、第1画像を左眼用の画像として利用し、第2画像を右眼用の画像として立体視に用いるほか、第1画像を左眼用と右眼用の画像として利用することができ、又は第2画像を左眼用と右眼用の画像として利用することができる。この構成により、ユーザは複数の観察モードを設定することができる。 Also, in the conventional microscope, the optical system for the right eye and the optical system for the left eye have the same configuration and are used only for stereoscopic viewing. In contrast, the microscope 100 according to the first embodiment has the first zoom optical system 20 only in the first optical system 26, the second optical system 36 does not have the zoom optical system, and the first optical system 26 does not. It has a simpler configuration. The first image can be used as a left-eye image, the second image can be used as a right-eye image for stereoscopic viewing, and the first image can be used as a left-eye image and a right-eye image. Alternatively, the second image can be used as an image for the left eye and an image for the right eye. With this configuration, the user can set a plurality of observation modes.
 このような構成の顕微鏡100は、立体視を可能とし、かつ両方にズーム光学系を備える構成よりも製造コストとサイズを抑制することができる。さらに、立体観察モードのほか、詳細観察モード、変倍観察モードのモード選択も可能である。また、第2撮像素子34として、第1撮像素子24の画素数より少ない画素数を持つ撮像素子を用いることで、製造コストをさらに低減できる。 The microscope 100 having such a configuration enables stereoscopic viewing and can reduce the manufacturing cost and size as compared with the configuration including the zoom optical system on both sides. Further, in addition to the stereoscopic observation mode, it is possible to select a detailed observation mode or a variable magnification observation mode. Further, by using an image sensor having a smaller number of pixels than the first image sensor 24 as the second image sensor 34, the manufacturing cost can be further reduced.
(変形例1)
 上述の第1実施形態では、第1偏向ミラー14及び第1ハーフミラー15を用いて光軸OL1の光を2つの方向(例、X軸方向とY軸方向)に偏向し、第1ズーム光学系20及び第1結像光学系22をY軸方向に沿って配置している。これにより、顕微鏡100のZ軸方向のサイズ、即ち高さを低減することができる。しかし、図10に示す顕微鏡100Aのように、第1偏向ミラー14を用いずに、第1ズーム光学系20及び第1結像光学系22を第2結像光学系32と同じZ軸方向に揃えて配置してもよい。変形例1によれば、顕微鏡100のY軸方向つまり横方向のサイズを小さくすることができる。なお、第1ハーフミラー15は、第1照明光源41からの照明光を第1光軸OL1に沿って対象面10Aに導くために用いる。その他の構成は第1実施形態と同じである。
(Modification 1)
In the above-described first embodiment, the light of the optical axis OL1 is deflected in two directions (eg, the X-axis direction and the Y-axis direction) by using the first deflection mirror 14 and the first half mirror 15, and the first zoom optical The system 20 and the first imaging optical system 22 are arranged along the Y-axis direction. As a result, the size of the microscope 100 in the Z-axis direction, that is, the height can be reduced. However, like the microscope 100A shown in FIG. 10, without using the first deflection mirror 14, the first zoom optical system 20 and the first imaging optical system 22 are moved in the same Z-axis direction as the second imaging optical system 32. You may arrange in line. According to the first modification, the size of the microscope 100 in the Y-axis direction, that is, the lateral direction can be reduced. The first half mirror 15 is used to guide the illumination light from the first illumination light source 41 to the target surface 10A along the first optical axis OL1. Other configurations are the same as those in the first embodiment.
 また、第1ズーム光学系20及び第1結像光学系22を第2結像光学系32と同じZ方向に揃える代わりに、偏向素子を用いて第2結像光学系32及び第2撮像素子34を第1ズーム光学系20及び第1結像光学系22と同じY方向に揃えて配置してもよい(図示省略)。この変形例では、顕微鏡100のZ軸方向のサイズつまり高さをさらに小さくすることができる。 Further, instead of aligning the first zoom optical system 20 and the first image forming optical system 22 in the same Z direction as the second image forming optical system 32, a deflecting element is used to form the second image forming optical system 32 and the second image pickup device. 34 may be aligned in the same Y direction as the first zoom optical system 20 and the first imaging optical system 22 (not shown). In this modification, the size of the microscope 100 in the Z-axis direction, that is, the height can be further reduced.
(変形例2)
 上述の第1実施形態では、第1撮像素子24及び第1撮像素子34を用いて対象面10Aの光学像を画像として取得する。そしてユーザは撮像された画像を画像表示装置70を用いて観察する。しかし第1撮像素子24及び第1撮像素子34を用いずに、光学像を直接観察するようにしてもよい。例えば、図11に示す顕微鏡100Bのように、第1偏向ミラー14を用いずに第1ズーム光学系20及び第1結像光学系22を第2結像光学系32と同じ方向に揃えて配置する。そして第1結像光学系22に第1接眼レンズ23を配設し、第2結像光学系32に第2接眼レンズ33を配設する。この場合、接眼レンズを介して見た画像が正立するように、正立プリズム等を配置する(図示省略)。この変形例2によれば、顕微鏡100BのY軸方向のサイズを小さくすることができる。また、顕微鏡100Bは画像表示装置70を備える必要がない。また、器具の交換用アダプタを追加することにより、接眼レンズと撮像素子とを交換可能に構成してもよい。
(Modification 2)
In the above-described first embodiment, the optical image of the target surface 10A is acquired as an image using the first image sensor 24 and the first image sensor 34. Then, the user observes the captured image using the image display device 70. However, the optical image may be directly observed without using the first image sensor 24 and the first image sensor 34. For example, like the microscope 100B shown in FIG. 11, the first zoom optical system 20 and the first imaging optical system 22 are arranged in the same direction as the second imaging optical system 32 without using the first deflection mirror 14. To do. Then, the first eyepiece lens 23 is arranged in the first image formation optical system 22, and the second eyepiece lens 33 is arranged in the second image formation optical system 32. In this case, an erecting prism or the like is arranged so that the image viewed through the eyepiece is erect (not shown). According to this modification 2, the size of the microscope 100B in the Y-axis direction can be reduced. Further, the microscope 100B does not need to include the image display device 70. Further, the eyepiece lens and the image pickup device may be exchangeable by adding an exchange adapter for the device.
(変形例3)上記の実施形態1では、第1光学系26の対物レンズと第2光学系36の対物レンズは、両者を兼ねる共用対物レンズ12を用いた。しかし、図12に示すように、顕微鏡100Cは共用対物レンズ12に代えて第1光学系26専用の第1対物レンズ45及び第2光学系36専用の第2対物レンズ46をそれぞれ設けてもよい。つまり、第1対物レンズ45、第1ズーム光学系20及び第1結像光学系を含めて第1光学系26として構成する。また、第2対物レンズ46及び第2結像光学系32を含めて第2光学系36として構成する。この場合、第1光学系26の有効口径は第1対物レンズ45の有効口径であり、第2光学系36の有効口径は第2対物レンズ46の有効口径である。その他の構成は第1実施形態と同じである。 (Modification 3) In the above-described first embodiment, the objective lens of the first optical system 26 and the objective lens of the second optical system 36 use the shared objective lens 12 that also serves as both. However, as shown in FIG. 12, the microscope 100C may be provided with a first objective lens 45 dedicated to the first optical system 26 and a second objective lens 46 dedicated to the second optical system 36 instead of the shared objective lens 12. .. That is, the first objective lens 45, the first zoom optical system 20, and the first image forming optical system are included in the first optical system 26. The second objective lens 46 and the second imaging optical system 32 are included in the second optical system 36. In this case, the effective aperture of the first optical system 26 is the effective aperture of the first objective lens 45, and the effective aperture of the second optical system 36 is the effective aperture of the second objective lens 46. Other configurations are the same as those in the first embodiment.
 変形例3によれば、顕微鏡100Cは、比較的大型の共用対物レンズ12を設ける必要がなく、比較的小型の第1対物レンズ45と第2対物レンズ46とを用いることができる。この構成では、例えば第1対物レンズ45から第1撮像素子24までの素子全体を、観察対象10を中心に矢印W1の方向に移動させる。また、第2対物レンズ46から第2撮像素子34までの素子全体を、観察対象10を中心に矢印W2の方向に移動させる。こうすることにより、顕微鏡100Cは実体角R1を変更することができる。 According to the third modification, the microscope 100C does not need to have the relatively large-sized shared objective lens 12, and can use the relatively small first objective lens 45 and the second objective lens 46. In this configuration, for example, the entire element from the first objective lens 45 to the first imaging element 24 is moved in the direction of arrow W1 with the observation target 10 as the center. In addition, the entire element from the second objective lens 46 to the second image pickup element 34 is moved in the direction of the arrow W2 around the observation target 10. By doing so, the microscope 100C can change the body angle R1.
(変形例4)
 上述の第1実施形態では、第1光学系26の有効口径と第2光学系36の有効口径とが異なる。しかし、本実施形態の顕微鏡は、第1光学系26の有効口径と第2光学系36の有効口径とを同じとしてもよい。第2光学系36がズーム光学系を有しない場合でも、第2光学系36の有効口径が第1光学系26の有効口径が同じ場合は、明るさが揃った画像を得やすくなる。以上説明した各変形例においても、第1実施形態で説明した基本的な効果と同等の効果が得られる。
(Modification 4)
In the above-described first embodiment, the effective aperture of the first optical system 26 and the effective aperture of the second optical system 36 are different. However, in the microscope of this embodiment, the effective aperture of the first optical system 26 and the effective aperture of the second optical system 36 may be the same. Even if the second optical system 36 does not have a zoom optical system, if the effective aperture of the second optical system 36 is the same as the effective aperture of the first optical system 26, it is easy to obtain an image with uniform brightness. Also in each of the modified examples described above, the same effects as the basic effects described in the first embodiment can be obtained.
(第2実施形態)
 次に、第2実施形態について、図面を参照して説明する。なお、第1実施形態と同じ要素には同じ番号を付して詳細な説明は省略する。図13に示すように、眼科手術用の顕微鏡200は、共用対物レンズ12と、第1結像光学系222と、第1撮像素子224と、第2結像光学系32と、第2撮像素子34とを含む。また、顕微鏡200は、第1ハーフミラー15と、第1絞り16と、第2絞り17と、第1照明系40とを含む。
(Second embodiment)
Next, a second embodiment will be described with reference to the drawings. The same elements as those in the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted. As shown in FIG. 13, a microscope 200 for ophthalmologic surgery includes a shared objective lens 12, a first imaging optical system 222, a first imaging element 224, a second imaging optical system 32, and a second imaging element. 34 and 34. The microscope 200 also includes a first half mirror 15, a first diaphragm 16, a second diaphragm 17, and a first illumination system 40.
 共用対物レンズ12と、第1結像光学系222とで第1光学系226を構成し、共用対物レンズ12と、第2結像光学系32とで第2光学系36を構成する。第1結像光学系222と第2結像光学系32とは、実質的に同等の光学的な構成を有する。第1光学系226及び第2光学系36のいずれにもズーム光学系は有していない。したがって、第1光学系226及び第2光学系36の光学的な解像度は同じである。 The shared objective lens 12 and the first imaging optical system 222 constitute a first optical system 226, and the shared objective lens 12 and the second imaging optical system 32 constitute a second optical system 36. The first imaging optical system 222 and the second imaging optical system 32 have substantially the same optical configuration. Neither the first optical system 226 nor the second optical system 36 has a zoom optical system. Therefore, the optical resolutions of the first optical system 226 and the second optical system 36 are the same.
 対象面10Aから発した左眼用の観察光は、第1光軸OL1に沿って共用対物レンズ12によって平行光に変換されて絞り16を通過し、第1ハーフミラー15に入射する。第1ハーフミラー15に入射した観察光は第1ハーフミラー15を透過し、次いで第1結像光学系222によって第1撮像素子224の撮像面に結像され、対象面10Aの光学像が第1撮像素子224により取得される。 The observation light for the left eye emitted from the target surface 10A is converted into parallel light by the common objective lens 12 along the first optical axis OL1, passes through the diaphragm 16, and is incident on the first half mirror 15. The observation light that has entered the first half mirror 15 passes through the first half mirror 15, and is then imaged on the imaging surface of the first imaging element 224 by the first imaging optical system 222, so that the optical image of the target surface 10A is 1 image pickup element 224.
 一方、対象面10Aから発した右眼用の観察光は、第2光軸OR1に沿って共用対物レンズ12によって平行光に変換され、第2絞り17を経由して第2結像光学系32に導かれる。そして観察光は第2結像光学系32によって第2撮像素子34の撮像面に結像され、対象面10Aの光学像が第2撮像素子34により取得される。 On the other hand, the observation light for the right eye emitted from the target surface 10A is converted into parallel light by the common objective lens 12 along the second optical axis OR1, and passes through the second diaphragm 17 to the second imaging optical system 32. Be led to. Then, the observation light is imaged on the imaging surface of the second imaging element 34 by the second imaging optical system 32, and the optical image of the target surface 10A is acquired by the second imaging element 34.
 ここで、第1撮像素子224の画素数は、3840画素×2160画素の約830万画素、第2撮像素子34の画素数は、1280画素×720画素の約92万画素である。このように、第2実施形態では、第1撮像素子224の画素数と第2撮像素子34の画素数とが異なる。なお、上記の第1撮像素子224の画素数と第2撮像素子34の画素数は例示であり、両者の画素数が異なっていればよく、本開示の技術においては、それぞれの具体的な画素数は限定されない。 Here, the number of pixels of the first image sensor 224 is about 3840 pixels×2160 pixels, about 8.3 million pixels, and the number of pixels of the second image sensor 34 is about 1280 pixels×720 pixels, about 920,000 pixels. Thus, in the second embodiment, the number of pixels of the first image sensor 224 and the number of pixels of the second image sensor 34 are different. Note that the number of pixels of the first image sensor 224 and the number of pixels of the second image sensor 34 described above are examples, and it is sufficient that the numbers of pixels of the two are different, and in the technique of the present disclosure, specific pixels of each. The number is not limited.
 画素数の多い第1撮像素子224によって取得される第1画像は第2画像と比較して相対的に高解像度であり、画素数の少ない第2撮像素子34によって取得される第2画像は第1画像と比較して相対的に低解像度である。画像処理部50は、第1画像と第2画像を電子ズームによりそれぞれ拡大、縮小することが可能である。ただし、第1画像と第2画像とで倍率が揃うように第1画像と第2画像とで倍率を連動させて拡大、縮小することが好ましい。 The first image acquired by the first image sensor 224 having a large number of pixels has a relatively high resolution compared to the second image, and the second image acquired by the second image sensor 34 having a small number of pixels is the first image. The resolution is relatively low compared to one image. The image processing unit 50 is capable of enlarging and reducing the first image and the second image by electronic zoom, respectively. However, it is preferable that the first image and the second image are scaled up and down in association with each other so that the first image and the second image have the same scale.
 第1照明系40は、第1実施形態と同じである。第1照明光源41から射出された照明光は、第1光源光学系42によってコリメートされ、照明光軸LAに沿って第1ハーフミラー15に入射する。第1ハーフミラー15に入射した照明光は、第1ハーフミラー15によって偏向され、第1光軸OL1に沿って共用対物レンズ12を経て対象面10Aに入射する。 The first illumination system 40 is the same as in the first embodiment. The illumination light emitted from the first illumination light source 41 is collimated by the first light source optical system 42 and enters the first half mirror 15 along the illumination optical axis LA. The illumination light that has entered the first half mirror 15 is deflected by the first half mirror 15 and enters the target surface 10A via the shared objective lens 12 along the first optical axis OL1.
 顕微鏡200は、第2光学系36の少なくとも1つの光学素子が、第1光軸OL1と第2光軸OR1とが観察対象10の位置でなす実体角R1を変更する方向(視差方向)に移動可能である。具体的には、第2絞り17、第2結像光学系32及び第2撮像素子34は、一体となって第2結像光学系駆動部82によってX軸に沿って移動するように駆動される。つまり、第2絞り17、第2結像光学系32及び第2撮像素子34は、第1光軸OL1と第2光軸OR1とが観察対象10の位置でなす実体角R1を変更する方向に移動可能である。実体角R1を変更可能とすることで、ユーザが最も適切な立体感を得られるように実体角R1を調節することができる。 In the microscope 200, at least one optical element of the second optical system 36 moves in a direction (parallax direction) that changes the substantial angle R1 formed by the first optical axis OL1 and the second optical axis OR1 at the position of the observation target 10. It is possible. Specifically, the second diaphragm 17, the second imaging optical system 32, and the second image pickup device 34 are integrally driven by the second imaging optical system driving unit 82 so as to move along the X axis. It That is, the second diaphragm 17, the second imaging optical system 32, and the second imaging element 34 are arranged in a direction in which the substantial angle R1 formed by the first optical axis OL1 and the second optical axis OR1 at the position of the observation target 10 is changed. Can be moved. By making the body angle R1 changeable, the body angle R1 can be adjusted so that the user can obtain the most appropriate stereoscopic effect.
 顕微鏡200の制御部は、第1偏向ミラー駆動部81及び第1ズーム光学系駆動部84を有しないほかは、図3に示す第1実施形態の制御部90と同等の構成を有する。画像表示装置70の構成も第1実施形態と同様である。 The control unit of the microscope 200 has the same configuration as the control unit 90 of the first embodiment shown in FIG. 3 except that it does not have the first deflection mirror drive unit 81 and the first zoom optical system drive unit 84. The configuration of the image display device 70 is similar to that of the first embodiment.
 顕微鏡200は、ユーザが設定した上述の観察モードに基づいて、第1画像と第2画像を組み合わせて画像表示装置70に表示させることができる。例えば、ユーザが詳細観察モードである第1モードに設定した場合は、画像選択部55は、第1画像を左右両眼用の画像として選択する。表示される画像は立体画像ではないが、ユーザは高解像度の画像を見ることができる。 The microscope 200 can display a combination of the first image and the second image on the image display device 70 based on the above-described observation mode set by the user. For example, when the user sets the first mode which is the detailed observation mode, the image selection unit 55 selects the first image as an image for the left and right eyes. The displayed image is not a stereoscopic image, but the user can see a high resolution image.
 また、ユーザが立体観察モードである第2モードに設定した場合は、画像選択部55は、第1画像と第2画像を左眼用と右眼用の画像として選択する。ユーザはこれを両眼視することで立体画像として対象を観察可能である。つまり、第2モードの場合、第1光学系226により得られる第1画像72と第2光学系36により得られる第2画像73とで視差画像が形成される。 Further, when the user sets the second mode which is the stereoscopic observation mode, the image selection unit 55 selects the first image and the second image as the images for the left eye and the right eye. The user can observe the object as a stereoscopic image by viewing this with both eyes. That is, in the second mode, the parallax image is formed by the first image 72 obtained by the first optical system 226 and the second image 73 obtained by the second optical system 36.
 また、ユーザが変倍観察モードである第3モードに設定した場合は、画像選択部55は、第2画像を左右両眼用の画像として選択する。ユーザは低解像度の画像ではあるが低倍率から高倍率までの画像を電子ズームにより素早く変倍して見ることができる。 Further, when the user sets the third mode which is the variable magnification observation mode, the image selection unit 55 selects the second image as the image for the left and right eyes. Although the user has a low-resolution image, the user can quickly zoom in and view an image from low magnification to high magnification by electronic zoom.
 以上のような構成を有する第2実施形態の顕微鏡200によれば、第1撮像素子224の画素数が約830万画素、第2撮像素子34の画素数は約92万画素である。そのため、第1撮像素子224と第2撮像素子34の両方に例えば約830万画素の撮像素子を用いる場合に比べて製造コストを抑制することができる。 According to the microscope 200 of the second embodiment having the above configuration, the number of pixels of the first image sensor 224 is about 8.30 million pixels, and the number of pixels of the second image sensor 34 is about 920,000 pixels. Therefore, the manufacturing cost can be suppressed as compared with the case where the image pickup device having approximately 8.30 million pixels is used for both the first image pickup device 224 and the second image pickup device 34.
 また、ユーザは画像表示装置に表示された第1画像と第2画像を両眼視することにより立体画像を観察可能である。さらに、第1画像を両眼用の画像として利用し、又は第2画像を両眼用の画像として利用することができる。この構成により、複数の観察モードを設定することができる。 Also, the user can observe a stereoscopic image by viewing the first image and the second image displayed on the image display device with both eyes. Further, the first image can be used as a binocular image, or the second image can be used as a binocular image. With this configuration, a plurality of observation modes can be set.
(変形例5)
 第2実施形態における顕微鏡200においても、第1実施形態で説明した変形例又は代替構成を適用することが可能である。例えば、上記の顕微鏡200では、第1光学系及び第2光学系はズーム光学系を有していない。しかし、顕微鏡200は第1光学系に図示しないズーム光学系を備えてもよい。この構成により、顕微鏡200は第1光学系の光学的解像度をより高めることができる。即ち、顕微鏡200の光学的解像度を実質的に高めることができる。
(Modification 5)
The modified example or the alternative configuration described in the first embodiment can also be applied to the microscope 200 in the second embodiment. For example, in the above microscope 200, the first optical system and the second optical system do not have a zoom optical system. However, the microscope 200 may include a zoom optical system (not shown) in the first optical system. With this configuration, the microscope 200 can further increase the optical resolution of the first optical system. That is, the optical resolution of the microscope 200 can be substantially increased.
(変形例6)
 また、上記の顕微鏡200の例では、第1光学系226及び第2光学系36はZ軸方向に沿って配置されている。しかし、本開示の技術においては、第1光学系226及び第2光学系36の配置の向きは限定されない。2つの光学系は、それぞれ図示しない偏向素子を用いてY軸方向に沿って配置してもよい。この場合、顕微鏡200は、顕微鏡200のZ軸方向のサイズを小さくすることができる。
(Modification 6)
In the example of the microscope 200 described above, the first optical system 226 and the second optical system 36 are arranged along the Z-axis direction. However, in the technique of the present disclosure, the orientation of the arrangement of the first optical system 226 and the second optical system 36 is not limited. The two optical systems may be arranged along the Y-axis direction by using deflection elements (not shown). In this case, the microscope 200 can reduce the size of the microscope 200 in the Z-axis direction.
(変形例7)
 また、上記の顕微鏡200の例では、第2絞り17、第2結像光学系32及び第2撮像素子34を移動させて実体角R1を変更する。これに代えて、又は加えて、顕微鏡200は第1光学系226の光軸OL1を移動させて実体角R1を変更可能としてもよい。例えば、図6に示すように、第1偏向ミラー14と第1ハーフミラー15とを組み合わせて第1光軸OL1の光を偏向し、第1偏向ミラー14を移動させることで実体角R1を変更することができる。あるいは、顕微鏡200は第1ハーフミラー15、第1絞り16、第1結像光学系222及び第1撮像素子224を一体で移動させて実体角R1を変更可能なように構成してもよい。
(Modification 7)
In the example of the microscope 200 described above, the second diaphragm 17, the second imaging optical system 32, and the second image sensor 34 are moved to change the substantial angle R1. Instead of or in addition to this, the microscope 200 may move the optical axis OL1 of the first optical system 226 to change the substantial angle R1. For example, as shown in FIG. 6, the first deflection mirror 14 and the first half mirror 15 are combined to deflect the light of the first optical axis OL1, and the first deflection mirror 14 is moved to change the substantial angle R1. can do. Alternatively, the microscope 200 may be configured such that the first half mirror 15, the first diaphragm 16, the first imaging optical system 222, and the first image sensor 224 are moved as a unit so that the substantial angle R1 can be changed.
(第3実施形態)
 次に、第3実施形態に係る眼科手術用の顕微鏡300について図面を参照して説明する。一例として図14から図16に示すように、顕微鏡300は、第1実施形態の顕微鏡100にもう1つの観察光学系を加えた構造を備える。顕微鏡300は、術者(医師)と助手とがそれぞれ観察対象10を立体視可能な顕微鏡である。図14に示すように、術者は矢印DAの方向から観察し、助手は矢印DBの方向から観察する。
(Third Embodiment)
Next, a microscope 300 for eye surgery according to the third embodiment will be described with reference to the drawings. As an example, as shown in FIGS. 14 to 16, the microscope 300 has a structure in which another observation optical system is added to the microscope 100 of the first embodiment. The microscope 300 is a microscope that allows an operator (doctor) and an assistant to stereoscopically observe the observation target 10. As shown in FIG. 14, the operator observes from the direction of arrow DA, and the assistant observes from the direction of arrow DB.
 具体的には、顕微鏡300は、共用対物レンズ12と、第1ズーム光学系20と、第1結像光学系22と、を含む第1光学系26を備える。顕微鏡300は、共用対物レンズ12と、第2結像光学系32と、を含む第2光学系36を備える。顕微鏡300は、共用対物レンズ12と、第3ズーム光学系320と、第3結像光学系322と、を含む第3光学系326を備える。つまり、共用対物レンズ12は、第1光学系26の対物レンズと、第2光学系36の対物レンズと、第3光学系326の対物レンズとを兼ねている。 Specifically, the microscope 300 includes a first optical system 26 including a shared objective lens 12, a first zoom optical system 20, and a first imaging optical system 22. The microscope 300 includes a second optical system 36 including the shared objective lens 12 and the second imaging optical system 32. The microscope 300 includes a third optical system 326 including the shared objective lens 12, a third zoom optical system 320, and a third imaging optical system 322. That is, the shared objective lens 12 serves also as the objective lens of the first optical system 26, the objective lens of the second optical system 36, and the objective lens of the third optical system 326.
 第1光学系26の有効口径は、第3光学系326の有効口径と同じ程度である。第2光学系36の有効口径は、第1光学系26又は第3光学系326の有効口径とは異なる。具体的には、光学系の光学倍率が同じ場合、第2光学系36の有効口径は、第1光学系26又は第3光学系326の有効口径よりも小さい。つまり、第2光学系36の実質的な開口数は第1光学系26及び第3光学系326の実質的な開口数よりも小さい。なお、第1光学系26と第3光学系326の実質的な開口数とが異なるように構成してもよい。その場合でも、第1光学系26と第3光学系326の実質的な開口数が第2光学系36の実質的な開口数よりも大きいことが好ましい。 The effective aperture of the first optical system 26 is about the same as the effective aperture of the third optical system 326. The effective aperture of the second optical system 36 is different from the effective aperture of the first optical system 26 or the third optical system 326. Specifically, when the optical magnifications of the optical systems are the same, the effective aperture of the second optical system 36 is smaller than the effective aperture of the first optical system 26 or the third optical system 326. That is, the substantial numerical aperture of the second optical system 36 is smaller than the substantial numerical aperture of the first optical system 26 and the third optical system 326. Note that the first optical system 26 and the third optical system 326 may be configured to have different substantial numerical apertures. Even in that case, it is preferable that the substantial numerical aperture of the first optical system 26 and the third optical system 326 be larger than the substantial numerical aperture of the second optical system 36.
 顕微鏡300は、第1結像光学系22によって結像される観察対象の光学像を第1画像として取得する第1撮像素子24と、第2結像光学系32によって結像される観察対象の光学像を第2画像として取得する第2撮像素子34と、第3結像光学系322によって結像される観察対象の光学像を第3画像として取得する第3撮像素子324と、を含む。また、顕微鏡300は、観察対象10の対象面10Aを照明する第1照明系40を備える。 The microscope 300 includes a first imaging device 24 that acquires an optical image of an observation target formed by the first imaging optical system 22 as a first image, and an observation target formed by the second imaging optical system 32. It includes a second image sensor 34 that acquires an optical image as a second image, and a third image sensor 324 that acquires an optical image of an observation target formed by the third imaging optical system 322 as a third image. The microscope 300 also includes a first illumination system 40 that illuminates the target surface 10A of the observation target 10.
 図15に示すように、対象面10Aから発した第1光束5は、第1光軸OL1に沿って共用対物レンズ12によって平行光に変換されて第1偏向ミラー14に入射する。第1偏向ミラー14に入射した第1光束5は、Z方向からマイナスY方向に偏向され、さらに第1絞り16を通過して第1ハーフミラー15に入射する。図14に示すように、第1ハーフミラー15に入射した第1光束5は、全量がマイナスX方向に偏向されて第1ズーム光学系20に導かれる。第1ズーム光学系20を通過した第1光束5は第1結像光学系22によって第1撮像素子24の撮像面に結像され、対象面10Aの光学像が取得される。 As shown in FIG. 15, the first light flux 5 emitted from the target surface 10A is converted into parallel light by the common objective lens 12 along the first optical axis OL1 and is incident on the first deflection mirror 14. The first light flux 5 that has entered the first deflection mirror 14 is deflected from the Z direction to the negative Y direction, further passes through the first diaphragm 16, and enters the first half mirror 15. As shown in FIG. 14, the entire amount of the first light flux 5 that has entered the first half mirror 15 is deflected in the minus X direction and is guided to the first zoom optical system 20. The first light flux 5 that has passed through the first zoom optical system 20 is imaged on the imaging surface of the first imaging element 24 by the first imaging optical system 22, and an optical image of the target surface 10A is acquired.
 一方、対象面10Aから発した第3光束307は、第3光軸OR3に沿って共用対物レンズ12によって平行光に変換されて第3偏向ミラー314に入射する。第3偏向ミラー314は、本開示の技術に係る第3偏向素子の一例である。第3偏向ミラー314に入射した第3光束307は、Z方向からY方向に偏向され、さらに第3絞り316を通過して第3ハーフミラー315に入射する。図14に示すように、第3ハーフミラー315に入射した第3光束307は、マイナスX方向に偏向されて第3ズーム光学系320に導かれる。第3ズーム光学系320を通過した第3光束307は第3結像光学系322によって第3撮像素子324の撮像面に結像され、対象面10Aの光学像が取得される。 On the other hand, the third light flux 307 emitted from the target surface 10A is converted into parallel light by the shared objective lens 12 along the third optical axis OR3 and enters the third deflection mirror 314. The third deflection mirror 314 is an example of the third deflection element according to the technique of the present disclosure. The third light flux 307 incident on the third deflection mirror 314 is deflected from the Z direction to the Y direction, further passes through the third diaphragm 316, and is incident on the third half mirror 315. As shown in FIG. 14, the third light flux 307 that has entered the third half mirror 315 is deflected in the minus X direction and guided to the third zoom optical system 320. The third light flux 307 that has passed through the third zoom optical system 320 is imaged on the imaging surface of the third imaging element 324 by the third imaging optical system 322, and an optical image of the target surface 10A is acquired.
 図16に示すように、対象面10Aから発した第2光束6は、第2光軸OR1に沿って共用対物レンズ12によって平行光に変換され、第2絞り17を経由して第2結像光学系32に導かれる。第2光束6は第2結像光学系32によって第2撮像素子34の撮像面に結像され、対象面10Aの光学像が取得される。なお、顕微鏡300は、第2光学系36にズーム光学系を有していない。また、顕微鏡300は、第1光学系26、第2光学系36、及び第3光学系326のうちの第1光学系26及び第3光学系326のみにズーム光学系を含む。 As shown in FIG. 16, the second light flux 6 emitted from the target surface 10A is converted into parallel light by the shared objective lens 12 along the second optical axis OR1, and the second image is formed via the second diaphragm 17. It is guided to the optical system 32. The second light flux 6 is imaged on the imaging surface of the second imaging element 34 by the second imaging optical system 32, and the optical image of the target surface 10A is acquired. The microscope 300 does not have a zoom optical system in the second optical system 36. In addition, the microscope 300 includes a zoom optical system only in the first optical system 26 and the third optical system 326 of the first optical system 26, the second optical system 36, and the third optical system 326.
 図15に示すように、第1光軸OL1と第3光軸OR3とは観察対象10の位置において実体角R3をなす。また図16に示すように、第1光軸OL1と第2光軸OR1とは観察対象10の位置において実体角R1をなす。 As shown in FIG. 15, the first optical axis OL1 and the third optical axis OR3 form a substantial angle R3 at the position of the observation target 10. Further, as shown in FIG. 16, the first optical axis OL1 and the second optical axis OR1 form a substantial angle R1 at the position of the observation target 10.
 第1撮像素子24によって取得される第1画像は、術者の左眼用の画像に供される。第3撮像素子324によって取得される第3画像は、術者の右眼用の画像に供される。第1画像と第3画像とは実体角R3を有しているため、術者は第1画像と第3画像とを両眼視することで立体画像を見ることができる。 The first image acquired by the first image sensor 24 is used as an image for the left eye of the operator. The third image acquired by the third image sensor 324 is used as an image for the right eye of the operator. Since the first image and the third image have the substantial angle R3, the operator can see the stereoscopic image by viewing the first image and the third image with both eyes.
 また、第1画像は、助手の左眼用の画像にも供され、第2撮像素子34によって取得される第2画像は、例えば助手の右眼用の画像に供される。この場合、第1画像と第2画像とは実体角R1を有しているため、助手は第1画像と第2画像とを両眼視することで立体画像を見ることができる。 The first image is also used as an image for the left eye of the assistant, and the second image obtained by the second image sensor 34 is provided as an image for the right eye of the assistant. In this case, since the first image and the second image have the substantial angle R1, the assistant can see the stereoscopic image by viewing the first image and the second image with both eyes.
 第1撮像素子24、第2撮像素子34及び第3撮像素子324は、例えばCCDセンサ又はCMOSセンサを用いた撮像素子である。第1撮像素子24と第3撮像素子324は、それぞれ3840画素×2160画素の約830万画素から構成される4K撮像素子である。第2撮像素子34は、第1撮像素子24と異なり、1280画素×720画素の約92万画素から構成されるHD撮像素子である。なお、上記の画素数は例示であり、それぞれの具体的な画素数は限定されない。 The first image sensor 24, the second image sensor 34, and the third image sensor 324 are image sensors using, for example, a CCD sensor or a CMOS sensor. The first image pickup device 24 and the third image pickup device 324 are 4K image pickup devices each composed of about 8.3 million pixels of 3840 pixels×2160 pixels. Unlike the first image sensor 24, the second image sensor 34 is an HD image sensor that is composed of approximately 920,000 pixels of 1280 pixels×720 pixels. Note that the above-described number of pixels is an example, and the specific number of pixels is not limited.
 顕微鏡300は、一例として図17に示すように、上述の光学要素のほかに、画像送信部60と、制御部91と、入力部140と、を備える。制御部91は、画像処理部50と、画像選択部55と、出力I/F56と、入力I/F57と、第1偏向ミラー駆動部81と、第2結像光学系駆動部82と、第3偏向ミラー駆動部83と、第1ズーム光学系駆動部84と、第3ズーム光学系駆動部85と、第1照明光源駆動部86と、コンピュータ110と、外部I/F130と、を含む。これらはいずれもバスライン120に接続されている。 As shown in FIG. 17 as an example, the microscope 300 includes an image transmitting unit 60, a control unit 91, and an input unit 140 in addition to the above-mentioned optical elements. The control unit 91 includes an image processing unit 50, an image selection unit 55, an output I/F 56, an input I/F 57, a first deflection mirror driving unit 81, a second imaging optical system driving unit 82, and a second imaging optical system driving unit 82. The three-deflection mirror drive unit 83, the first zoom optical system drive unit 84, the third zoom optical system drive unit 85, the first illumination light source drive unit 86, the computer 110, and the external I/F 130 are included. All of these are connected to the bus line 120.
 第1撮像素子24によって撮像された第1画像と、第2撮像素子34によって撮像された第2画像と、第3撮像素子324によって撮像された第3画像とは、電気的な画像信号として、入力I/F57を介してコンピュータ110によって取得され、RAM114に記憶される。画像処理部50は、記憶された第1画像、第2画像、及び第3画像を画像処理する。画像選択部55は、画像表示装置370に表示する画像を選択する。出力I/F56は、画像送信部60と制御部91とのインターフェースである。入力I/F57は、入力部140、第1撮像素子24、第2撮像素子34及び第3撮像素子324と制御部91とのインターフェースである。第3偏向ミラー駆動部83は、第3偏向ミラー314を駆動する。第3ズーム光学系駆動部85は、第3ズーム光学系320のレンズ群を移動させて倍率を変更する。その他の構成は、第1実施形態の制御部90で説明した構成と同じである。 The first image captured by the first image sensor 24, the second image captured by the second image sensor 34, and the third image captured by the third image sensor 324 are electrical image signals. It is acquired by the computer 110 via the input I/F 57 and stored in the RAM 114. The image processing unit 50 performs image processing on the stored first image, second image, and third image. The image selection unit 55 selects an image to be displayed on the image display device 370. The output I/F 56 is an interface between the image transmission unit 60 and the control unit 91. The input I/F 57 is an interface between the input unit 140, the first image sensor 24, the second image sensor 34, the third image sensor 324, and the control unit 91. The third deflection mirror driving section 83 drives the third deflection mirror 314. The third zoom optical system drive unit 85 moves the lens group of the third zoom optical system 320 to change the magnification. Other configurations are the same as the configurations described in the control unit 90 of the first embodiment.
 ユーザは、入力部140を用いて、観察に関する各種設定や顕微鏡300の操作を行う。入力部140は、例えばキーボード、各種スイッチ、タッチパネル、音声入力用マイク及び/又はフットペダル等である。ユーザは観察モードの設定、画像の倍率の調節、光源強度の調節及び実体角の変更等を入力部140を介して行う。入力された情報は入力I/F57を介してコンピュータ110によって取得される。コンピュータ110は入力された情報に基づいて各部を制御する。 The user uses the input unit 140 to perform various settings related to observation and operate the microscope 300. The input unit 140 is, for example, a keyboard, various switches, a touch panel, a voice input microphone, and/or a foot pedal. The user sets the observation mode, adjusts the magnification of the image, adjusts the light source intensity, changes the substantial angle, and the like via the input unit 140. The input information is acquired by the computer 110 via the input I/F 57. The computer 110 controls each part based on the input information.
 顕微鏡300は、基本的には、第1画像と第2画像とが助手用の観察画像として用いられる。また、第1画像と第3画像とが術者用の観察画像として用いられる。ただし、助手用の観察画像は、後述のように複数の観察モードで選択可能である。 The microscope 300 basically uses the first image and the second image as observation images for the assistant. In addition, the first image and the third image are used as observation images for the operator. However, the observation image for the assistant can be selected in a plurality of observation modes as described later.
 第1画像は、第1ズーム光学系20によって光学的に倍率が変更され、第3画像は、第3ズーム光学系320によって光学的に倍率が変更される。一方、第2画像は、第1画像と組み合わせて観察される場合は、第1画像の第1ズーム光学系20による倍率の変更に連動して、第1ズーム光学系20の倍率に揃うように画像処理部50によって電子ズームの倍率が調整される。光学ズームと電子ズームの倍率を連動させて調整する方法は、第1実施形態で説明したとおりである。なお、画像処理部50は、第1画像と第3画像を電子ズームとして拡大又は縮小することが可能である。この場合でも、第1画像、第2画像及び第3画像のうちから選択される、術者又は助手が観察する2つの画像は、光学ズームと組み合わせた倍率、即ち視野範囲が同程度に調整されていることが好ましい。 Magnification of the first image is optically changed by the first zoom optical system 20, and magnification of the third image is optically changed by the third zoom optical system 320. On the other hand, when the second image is observed in combination with the first image, the second image is aligned with the magnification of the first zoom optical system 20 in association with the change of the magnification of the first image by the first zoom optical system 20. The image processing unit 50 adjusts the electronic zoom magnification. The method of adjusting the magnifications of the optical zoom and the electronic zoom in conjunction with each other is as described in the first embodiment. The image processing unit 50 can enlarge or reduce the first image and the third image by electronic zoom. Even in this case, the two images selected by the first image, the second image, and the third image, which are observed by the operator or the assistant, have the magnification combined with the optical zoom, that is, the visual field range adjusted to the same degree. Preferably.
 画像選択部55は、術者及び助手によって設定された上述の観察モードに従って、画像処理部50によって画像処理された第1画像、第2画像、及び第3画像の中から、左眼用表示画像と右目用表示画像とを選択する。選択された左眼用表示画像と右目用表示画像は、出力I/F56を介して画像送信部60によって画像表示装置370に送信される。画像表示装置370は、左眼用表示画像と右目用表示画像を表示する。画像表示装置370は、助手用の第1表示部371と、術者用の第2表示部372とを含む。第1表示部371は、第1画像、第2画像、及び第3画像のいずれか2つを表示する。第2表示部372は、第1画像、第2画像、及び第3画像のいずれか2つを表示する。第1表示部371と第2表示部372は、それぞれ本開示の第1画像表示部と第2画像表示部の一例である。以下「術者及び/又は助手」を「ユーザ」とも称する。 The image selection unit 55 selects the display image for the left eye from the first image, the second image, and the third image that have been image-processed by the image processing unit 50 according to the above-described observation mode set by the operator and the assistant. And the display image for the right eye. The selected left-eye display image and right-eye display image are transmitted to the image display device 370 by the image transmitting unit 60 via the output I/F 56. The image display device 370 displays the display image for the left eye and the display image for the right eye. The image display device 370 includes a first display portion 371 for an assistant and a second display portion 372 for an operator. The first display unit 371 displays any two of the first image, the second image, and the third image. The second display unit 372 displays any two of the first image, the second image, and the third image. The first display unit 371 and the second display unit 372 are examples of the first image display unit and the second image display unit of the present disclosure, respectively. Hereinafter, the “surgeon and/or assistant” is also referred to as “user”.
 画像処理部50によって画像処理された第1画像、第2画像及び第3画像から、画像選択部55によって左眼用の表示画像と右目用の表示画像とが選択される。選択された表示画像は、出力I/F56を介して画像送信部60によって画像表示装置370に送信される。画像表示装置370の第1表示部371は、助手が観察対象10を観察するための例えば第1画像と第2画像とを表示する。画像表示装置370の第2表示部372は、術者が観察対象10を観察するための例えば第1画像と第3画像とを表示する。 An image selection unit 55 selects a display image for the left eye and a display image for the right eye from the first image, the second image, and the third image that have been image-processed by the image processing unit 50. The selected display image is transmitted to the image display device 370 by the image transmission unit 60 via the output I/F 56. The first display unit 371 of the image display device 370 displays, for example, a first image and a second image for the assistant to observe the observation target 10. The second display unit 372 of the image display device 370 displays, for example, a first image and a third image for the operator to observe the observation target 10.
 第1表示部371と第2表示部372は、例えばそれぞれが第1実施形態で説明した型式の表示装置である。例えば、第1表示部371が助手用のヘッドマウント型ディスプレイであり、第2表示部372が術者用のヘッドマウント型ディスプレイであってもよい。また、画像表示装置370は、第1フラット液晶表示部371と第2フラット液晶表示部372とを有する表示装置でもよい。フラット液晶型の画像表示装置370は、例えば第1光学系26、第2光学系36、及び第3光学系326の上部に配置される。この場合は、第1実施形態で説明したように、助手が偏向眼鏡をかける等して第1フラット液晶表示部371を見て、術者が偏向眼鏡をかける等して第2フラット液晶表示部372を見る。 The first display unit 371 and the second display unit 372 are, for example, the display devices of the types described in the first embodiment. For example, the first display unit 371 may be a head-mounted display for an assistant and the second display unit 372 may be a head-mounted display for an operator. Further, the image display device 370 may be a display device having a first flat liquid crystal display unit 371 and a second flat liquid crystal display unit 372. The flat liquid crystal type image display device 370 is arranged, for example, above the first optical system 26, the second optical system 36, and the third optical system 326. In this case, as described in the first embodiment, the assistant looks at the first flat liquid crystal display unit 371 by wearing the deflecting glasses, and the surgeon wears the deflecting glasses to make the second flat liquid crystal display unit. Look at 372.
 顕微鏡300は、第1偏向ミラー14と第3偏向ミラー314との少なくとも一方が、第1光軸OL1と第3光軸OR3とが観察対象の位置でなす実体角R3を変更する方向に移動可能である。一例として図18に示すように、第1偏向ミラー14は、第1偏向ミラー駆動部81によってY軸方向に駆動される。また第3偏向ミラー314は、第3偏向ミラー駆動部83によってY軸方向に駆動される。 In the microscope 300, at least one of the first deflecting mirror 14 and the third deflecting mirror 314 is movable in a direction in which the substantial angle R3 formed by the first optical axis OL1 and the third optical axis OR3 at the position of the observation target is changed. Is. As an example, as shown in FIG. 18, the first deflection mirror 14 is driven in the Y-axis direction by the first deflection mirror drive unit 81. Further, the third deflecting mirror 314 is driven in the Y-axis direction by the third deflecting mirror driving section 83.
 図18は、第1偏向ミラー14が点線で示す位置から実線で示す位置にY方向に駆動され、第3偏向ミラー314が点線で示す位置から実線で示す位置にマイナスY方向に駆動された図である。第1偏向ミラー14が移動した後の光軸OL3と、第3偏向ミラー314が移動した後の光軸OR4とがなす実体角R4は、移動する前の実体角R3よりも小さい。第1偏向ミラー14と第3偏向ミラー314とをそれぞれ逆方向に移動させると、実体角は大きくなる。 FIG. 18 is a diagram in which the first deflecting mirror 14 is driven in the Y direction from the position indicated by the dotted line to the position indicated by the solid line, and the third deflecting mirror 314 is driven in the negative Y direction from the position indicated by the dotted line to the position indicated by the solid line. Is. The physical angle R4 formed by the optical axis OL3 after the first deflection mirror 14 has moved and the optical axis OR4 after the third deflection mirror 314 has moved is smaller than the physical angle R3 before the movement. When the first deflecting mirror 14 and the third deflecting mirror 314 are moved in opposite directions, the real angle becomes large.
 第1偏向ミラー14が移動すると、図18に示すように第1光軸OL1が光軸OL3に移動する。助手が図16に示すように第1光軸OL1からの第1画像と第2光軸OR1からの第2画像を見ている状態で、第1画像の第1光軸OL1だけが光軸OL3に移動すると、実体角R1の方向と角度が変わり、助手が見る立体画像に違和感が生じる。この違和感が生じないようにするため、第2光学系36に含まれる少なくとも1つの光学素子が、第1偏向ミラー14の動きと連動して同じ方向へ移動可能である。一例として図19に示すように、第2絞り17、第2結像光学系32及び第2撮像素子34が一体となって、第1偏向ミラー14の移動に連動して同じ方向に移動するように構成してもよい。これにより、助手が見る立体画像に違和感が生じないようにすることができる。 When the first deflection mirror 14 moves, the first optical axis OL1 moves to the optical axis OL3 as shown in FIG. With the assistant looking at the first image from the first optical axis OL1 and the second image from the second optical axis OR1 as shown in FIG. 16, only the first optical axis OL1 of the first image is optical axis OL3. Moving to, the direction and angle of the real angle R1 change, and the stereoscopic image viewed by the assistant feels uncomfortable. In order to prevent this discomfort from occurring, at least one optical element included in the second optical system 36 can move in the same direction in conjunction with the movement of the first deflection mirror 14. As an example, as shown in FIG. 19, the second diaphragm 17, the second imaging optical system 32, and the second image sensor 34 are integrated so that they move in the same direction in conjunction with the movement of the first deflection mirror 14. You may comprise. Accordingly, it is possible to prevent the stereoscopic image viewed by the assistant from being uncomfortable.
 顕微鏡300は、ユーザが助手用の観察モードを選択して設定することができる。具体的には、ユーザは、詳細観察モードである第1モード、立体観察モードである第2モード、変倍観察モードである第3モードを設定可能である。画像選択部55は、ユーザによって設定された観察モードに基づき、第1画像、第2画像及び第3画像から左眼用画像と右眼用画像とを選択する。 The microscope 300 can be set by the user by selecting an observation mode for an assistant. Specifically, the user can set the first mode which is the detailed observation mode, the second mode which is the stereoscopic observation mode, and the third mode which is the variable magnification observation mode. The image selection unit 55 selects the image for the left eye and the image for the right eye from the first image, the second image, and the third image based on the observation mode set by the user.
 一例として、図14に示す矢印DA、つまり術者から見て第1撮像素子24で取得される第1画像72、第2撮像素子34で取得される第2画像73、及び第3撮像素子324で取得される第3画像74が図20に示すような画像である場合を想定する。術者は第1画像72と第3画像74を見、助手は基本的に第1画像72と第2画像73を見ることになる。 As an example, an arrow DA shown in FIG. 14, that is, a first image 72 acquired by the first image sensor 24 as viewed from the operator, a second image 73 acquired by the second image sensor 34, and a third image sensor 324. It is assumed that the third image 74 acquired in step 1 is an image as shown in FIG. The operator sees the first image 72 and the third image 74, and the assistant basically sees the first image 72 and the second image 73.
 助手が第1モードを選択した場合は、画像選択部55は、解像度が相対的に高い第1画像72を、左眼用及び右眼用の画像として選択し、選択された画像は例えば図21に示すように第1表示部371に表示される。ここで、助手は図20のDB方向から見るため、表示する画像は反時計回りに90度回転されている。この場合、観察される画像は実体角がないため立体画像にはならないが、助手は相対的に高解像度の画像を両眼で見ることができるというメリットがある。これは細かい対象面10Aを高解像度で拡大して見る場合に適している。 When the assistant selects the first mode, the image selection unit 55 selects the first image 72 having a relatively high resolution as the image for the left eye and the image for the right eye, and the selected image is, for example, FIG. Is displayed on the first display unit 371 as shown in. Here, since the assistant sees from the DB direction in FIG. 20, the displayed image is rotated 90 degrees counterclockwise. In this case, the observed image does not become a stereoscopic image because there is no substantial angle, but there is an advantage that the assistant can see a relatively high-resolution image with both eyes. This is suitable for enlarging and viewing the fine target surface 10A with high resolution.
 また、助手が第2モードを選択した場合は、画像選択部55は、左眼用として第1画像72を、右眼用として第2画像73を選択する。この場合、選択された画像は例えば図22に示すように第1表示部371に表示され、助手は矢印DBから見た立体画像を見ることができる。つまり、制御部91は、第1光学系26により得られる第1画像72と第2光学系36により得られる第2画像73とで視差画像を形成させる。第2モードにおいて、制御部91は、第1画像72の表示のタイミングに同期させて第2画像73を第1表示部371に表示させる 。第2モードでは、第1画像72及び第3画像74よりも解像度の低い第2画像73を用いるため、術者が見る画像よりも解像度が低いが、立体視が可能である。本実施形態では、第2画像73が第1画像72よりも解像度が低い例を説明しているが、第1画像72が第2画像73よりも解像度が低くてもよい。 Further, when the assistant selects the second mode, the image selection unit 55 selects the first image 72 for the left eye and the second image 73 for the right eye. In this case, the selected image is displayed on the first display unit 371 as shown in FIG. 22, for example, and the assistant can see the stereoscopic image viewed from the arrow DB. That is, the control unit 91 forms a parallax image with the first image 72 obtained by the first optical system 26 and the second image 73 obtained by the second optical system 36. In the second mode, the control unit 91 displays the second image 73 on the first display unit 371 in synchronization with the display timing of the first image 72. In the second mode, since the second image 73 having a lower resolution than the first image 72 and the third image 74 is used, the resolution is lower than the image viewed by the operator, but stereoscopic vision is possible. Although the second image 73 has a lower resolution than the first image 72 in the present embodiment, the first image 72 may have a lower resolution than the second image 73.
 また、助手が第3モードを選択した場合は、画像選択部55は、解像度が相対的に低い第2画像73を右眼用及び左眼用の画像として選択する。この場合、選択された画像は例えば図23に示すように第1表示部371に表示される。観察される画像は立体ではなく、その解像度は相対的に低いが、助手は電子ズームにより低倍率から高倍率まで画像を素早く変倍して観察することができるというメリットがある。 Further, when the assistant selects the third mode, the image selection unit 55 selects the second image 73 having a relatively low resolution as the image for the right eye and the image for the left eye. In this case, the selected image is displayed on the first display unit 371 as shown in FIG. 23, for example. The image to be observed is not stereoscopic and its resolution is relatively low, but the assistant has the advantage that the image can be quickly zoomed and observed from low magnification to high magnification by electronic zoom.
 さらに助手は、術者が見る画像と同じ画像(例、高解像度の画像、視差画像)を第1表示部371に表示させる、第4モードを設定することができる。第4モードに設定された場合、画像選択部55は、第1表示部371に表示される左眼用の表示画像として第1画像72を選択し、右眼用の表示画像として第3画像74を選択する。つまり第4モードにおいて、制御部91は、第1画像72と第3画像74とを用いて視差画像を形成させる。この場合、画像処理部50は、例えば図24に示すようにDA方向から見た第1画像72と第3画像74を表示することができる。このように表示することで、術者が見る方向の高解像度の立体画像を助手も同時に見ることができる。つまり、第1光学系26により得られる第1画像72と第3光学系326により得られる第3画像74とで視差画像が形成される。なお、助手が見るための第1画像72と第3画像74の向きは、助手が位置する場所から見た、予め定められた画像の向きに設定することができる。 Furthermore, the assistant can set the fourth mode in which the same image as the image viewed by the operator (eg, high-resolution image, parallax image) is displayed on the first display unit 371. When the fourth mode is set, the image selection unit 55 selects the first image 72 as the display image for the left eye displayed on the first display unit 371, and the third image 74 as the display image for the right eye. Select. That is, in the fourth mode, the control unit 91 forms the parallax image using the first image 72 and the third image 74. In this case, the image processing unit 50 can display the first image 72 and the third image 74 viewed from the DA direction as shown in FIG. 24, for example. By displaying in this way, the assistant can also view the high-resolution stereoscopic image in the direction viewed by the operator. That is, a parallax image is formed by the first image 72 obtained by the first optical system 26 and the third image 74 obtained by the third optical system 326. The orientations of the first image 72 and the third image 74 to be viewed by the assistant can be set to a predetermined orientation of the image viewed from the place where the assistant is located.
 一方、術者が術者用立体観察モードを設定すると、画像選択部55は、術者用の表示画像として、例えば図25に示すように、第2表示部372に表示する左眼用画像として第1画像72と、右眼用画像として第3画像74を選択する。これにより、術者はDA方向から見た高解像度の立体画像を見ることができる。このモードは術者用の通常モードである。 On the other hand, when the surgeon sets the surgeon's stereoscopic observation mode, the image selection unit 55 sets the display image for the surgeon, for example, as the left-eye image displayed on the second display unit 372 as shown in FIG. 25. The first image 72 and the third image 74 as the image for the right eye are selected. This allows the operator to see a high-resolution stereoscopic image viewed from the DA direction. This mode is the normal mode for the surgeon.
 なお、図21から図25では、分かりやすくするため左眼用の画像と右眼用の画像を左右に並べて記載したが、前述のように左眼用の画像と右眼用の画像とは必ずしも画像表示面(例、画面)の左右に同時に表示する必要はない。第1実施形態で説明したように、表示装置の型式により適宜表示される。 Note that in FIGS. 21 to 25, the left-eye image and the right-eye image are arranged side by side for the sake of clarity, but as described above, the left-eye image and the right-eye image are not necessarily shown. It is not necessary to display images on the left and right of the image display surface (eg, screen) at the same time. As described in the first embodiment, it is appropriately displayed depending on the model of the display device.
 また、術者用の観察モードとして、通常モード以外のモードを選択できるようにしてもよい。例えば、第2画像73を左眼用画像として術者用の第2表示部372に表示させ、第3画像74を右眼用画像として第2表示部372に表示させる第5モードを術者が選択できるようにしてもよい。第2画像73は、第3画像74よりも解像度が低いが、デジタルズームで変倍が容易である。 Also, as the observation mode for the operator, a mode other than the normal mode may be selected. For example, the operator may display a fifth mode in which the second image 73 is displayed as an image for the left eye on the operator's second display section 372 and the third image 74 is displayed as an image for the right eye in the second display section 372. You may make it selectable. The second image 73 has a lower resolution than the third image 74, but it is easy to change the magnification with the digital zoom.
 さらに、術者と助手とで、それぞれが選択できるモードの組み合わせは任意である。例えば、基本的には術者が第1画像72と第3画像74を術者用の第2表示部372に表示させる通常モードを選択し、助手が第1画像72と第2画像73を助手用の第1表示部371に表示させる第2モードを選択する。しかし術者と助手の観察モードの組み合わせはこれに限定されない。 Furthermore, the combination of modes that can be selected by the surgeon and the assistant is arbitrary. For example, the operator basically selects the normal mode in which the first image 72 and the third image 74 are displayed on the second display section 372 for the operator, and the assistant displays the first image 72 and the second image 73. The second mode to be displayed on the first display portion 371 for use is selected. However, the combination of the operator and the observation mode of the assistant is not limited to this.
 例えば、術者が通常モードを選択している場合に、助手は第1モードから第4モードのいずれでも選択できる。また、制御部91は、術者用の第2表示部372に第2画像73と第3画像74を表示させ(第5モード)、助手用の第1表示部371に第1画像72と第2画像73を表示させる(第2モード)ことができる。また、制御部91は、術者用の第2表示部372に第2画像73と第3画像74を表示させ(第5モード)、助手用の第1表示部371に第1画像72と第3画像74を表示させる(第4モード)ことができる。あるいは、制御部91は、術者用に第4モードで表示させ、助手用に第5モードで表示させることもできる。 For example, if the surgeon has selected the normal mode, the assistant can select any of the first mode to the fourth mode. Further, the control unit 91 causes the second display unit 372 for the operator to display the second image 73 and the third image 74 (fifth mode), and the first display unit 371 for the assistant displays the first image 72 and the third image 74. The two images 73 can be displayed (second mode). Further, the control unit 91 causes the second display unit 372 for the operator to display the second image 73 and the third image 74 (fifth mode), and the first display unit 371 for the assistant displays the first image 72 and the third image 74. Three images 74 can be displayed (fourth mode). Alternatively, the control unit 91 can be displayed in the fourth mode for the surgeon and in the fifth mode for the assistant.
 以上の構成を有する第3実施形態によれば、第2光学系36の実質的な開口数は第1光学系26及び第3光学系326の実質的な開口数よりも小さい。さらに第2光学系36はズーム光学系を有していない。従って、第2光学系36が第1光学系26及び第3光学系326と同等の開口数を有し、ズーム光学系を有する場合に比較して、製造コストとサイズを低減することができる。一方で、術者及び助手は、それぞれが立体画像を見ることができる。 According to the third embodiment having the above configuration, the substantial numerical aperture of the second optical system 36 is smaller than the substantial numerical aperture of the first optical system 26 and the third optical system 326. Furthermore, the second optical system 36 does not have a zoom optical system. Therefore, the manufacturing cost and size can be reduced as compared with the case where the second optical system 36 has the same numerical aperture as the first optical system 26 and the third optical system 326 and the zoom optical system. On the other hand, the surgeon and the assistant can each see a stereoscopic image.
 また、第3実施形態によれば、術者と助手の双方が立体画像を観察可能である。さらに、助手は複数の観察モードを設定することができ、また、術者が見る観察画像を助手が見るモードも設定可能である。第3実施形態によれば、複数の解像度が異なる光学系を十分に活用することができる。また、第2光学系36が第1光学系26及び第3光学系326と同等の開口数を有する場合と実質的に同等の観察を助手が行うことができる。 Also, according to the third embodiment, both the operator and the assistant can observe the stereoscopic image. Furthermore, the assistant can set a plurality of observation modes, and the mode in which the assistant sees the observation image viewed by the operator can also be set. According to the third embodiment, it is possible to fully utilize a plurality of optical systems having different resolutions. In addition, the assistant can perform an observation substantially equivalent to the case where the second optical system 36 has the same numerical aperture as the first optical system 26 and the third optical system 326.
(変形例8)
 第3実施形態における顕微鏡300においても、第1実施形態又は第2実施形態で説明した変形例又は代替構成を適用することが可能である。例えば、本開示の技術においては第1光学系26と第3光学系326との配置の向きは図14に示す向きに限定されない。偏光ミラーの向きや数を変えて各光学系の向きを自由に変えることができる。また、第3実施形態では、第3光学系326に第3ズーム光学系320を設けているが、第3光学系326に第3ズーム光学系を有していなくてもよい。
(Modification 8)
Also in the microscope 300 in the third embodiment, it is possible to apply the modified examples or alternative configurations described in the first embodiment or the second embodiment. For example, in the technique of the present disclosure, the orientation of the arrangement of the first optical system 26 and the third optical system 326 is not limited to the orientation shown in FIG. It is possible to freely change the direction of each optical system by changing the direction and the number of polarizing mirrors. Further, in the third embodiment, the third zoom optical system 320 is provided in the third optical system 326, but the third optical system 326 may not have the third zoom optical system.
(変形例9)
 第3実施形態では、第1光学系26、第2光学系36及び第3光学系326の対物レンズとして、共用対物レンズ12を用いた。しかし、顕微鏡300は、第1光学系26に専用の第1対物レンズを、第2光学系36に専用の第2対物レンズを、第3光学系326に専用の第3対物レンズを、それぞれ設けてもよい。変形例9では、顕微鏡300は、比較的大型の共用対物レンズ12の代わりに、比較的小型の専用対物レンズを設けるため、サイズを低減することができる。
(Modification 9)
In the third embodiment, the shared objective lens 12 is used as the objective lens of the first optical system 26, the second optical system 36, and the third optical system 326. However, in the microscope 300, the first optical system 26 is provided with a dedicated first objective lens, the second optical system 36 is provided with a dedicated second objective lens, and the third optical system 326 is provided with a dedicated third objective lens. May be. In Modification 9, the microscope 300 is provided with a relatively small dedicated objective lens instead of the relatively large shared objective lens 12, and thus the size can be reduced.
(変形例10)
 第3実施形態では第1光軸OL1と第3光軸OR3とがなす実体角R3を変更可能であるが、さらに第2光学系36に含まれる少なくとも1つの光学素子が、第1光軸OL1と第2光軸OR1とが観察対象の位置でなす実体角R1を変更する方向に移動可能に構成してもよい。例えば、顕微鏡300は、第2絞り17、第2結像光学系32及び第2撮像素子34を、図6に示すように実体角R1を変更する方向に移動可能に構成してもよい。変形例10では、顕微鏡300は、助手用の画像についても立体感を調節することができる。
(Modification 10)
In the third embodiment, the substantial angle R3 formed by the first optical axis OL1 and the third optical axis OR3 can be changed, but at least one optical element included in the second optical system 36 is the first optical axis OL1. The second optical axis OR1 and the second optical axis OR1 may be configured to be movable in a direction that changes the substantial angle R1 formed at the position of the observation target. For example, the microscope 300 may be configured such that the second diaphragm 17, the second imaging optical system 32, and the second image sensor 34 can be moved in the direction in which the real angle R1 is changed as shown in FIG. In the tenth modification, the microscope 300 can adjust the stereoscopic effect even for the image for the assistant.
(変形例11)
 実体角R3を変更可能な構成として、顕微鏡300は、第1偏向ミラー14は移動せず、第3偏向ミラー314だけが移動するように構成してもよい。変形例11は、第1偏向ミラー駆動部81が不要となる。また、図19に示すような、第2絞り17、第2結像光学系32及び第2撮像素子34を第1偏向ミラー14の移動に連動して移動させるといった必要がないというメリットがある。さらに、助手が見る画像の実体角R1を変更するために、第2絞り17、第2結像光学系32及び第2撮像素子34を一方向だけに移動させればよい。そのため、実体角R1と実体角R3の両方を変更可能とする構成が容易となる。
(Modification 11)
The microscope 300 may be configured so that the first deflection mirror 14 does not move but only the third deflection mirror 314 moves, as a configuration in which the body angle R3 can be changed. In the modified example 11, the first deflection mirror driving unit 81 is unnecessary. Further, there is an advantage that it is not necessary to move the second diaphragm 17, the second imaging optical system 32, and the second image pickup device 34 in conjunction with the movement of the first deflection mirror 14 as shown in FIG. Furthermore, in order to change the substantial angle R1 of the image viewed by the assistant, the second diaphragm 17, the second imaging optical system 32, and the second image sensor 34 may be moved in only one direction. Therefore, the configuration in which both the body angle R1 and the body angle R3 can be changed becomes easy.
 上記の各実施形態では、顕微鏡制御プログラム118をROM116から読み出す場合を例示したが、必ずしも最初からROM116に記憶させておく必要はない。例えば、図26に示すように、SSD、USBメモリ、又はCD-ROM等の任意の可搬型の記憶媒体400に顕微鏡制御プログラム118を記憶させておいてもよい。この場合、記憶媒体400の顕微鏡制御プログラム118がコンピュータ110のRAM114にインストールされ、インストールされた顕微鏡制御プログラム118がCPU112によって実行される。 In each of the above embodiments, the case where the microscope control program 118 is read from the ROM 116 is illustrated, but it is not always necessary to store the microscope control program 118 in the ROM 116 from the beginning. For example, as shown in FIG. 26, the microscope control program 118 may be stored in an arbitrary portable storage medium 400 such as SSD, USB memory, or CD-ROM. In this case, the microscope control program 118 of the storage medium 400 is installed in the RAM 114 of the computer 110, and the installed microscope control program 118 is executed by the CPU 112.
 また、図示しない通信網を介して顕微鏡100,200,300に接続される他のコンピュータ又はサーバ装置等の記憶部に顕微鏡制御プログラム118を記憶させておき、顕微鏡制御プログラム118が顕微鏡100,200,300の要求に応じてダウンロードされるようにしてもよい。この場合、ダウンロードされた顕微鏡制御プログラム118がCPU112によって実行される。 Further, the microscope control program 118 is stored in a storage unit such as another computer or a server device connected to the microscope 100, 200, 300 via a communication network (not shown), and the microscope control program 118 causes the microscope 100, 200, It may be downloaded in response to the request of 300. In this case, the downloaded microscope control program 118 is executed by the CPU 112.
 上記実施形態において、例えば、画像処理部及び画像選択部といった各種の処理を実行する処理部のハードウェア的な構造としては、ソフトウェア(プログラム)を実行して各種の処理部として機能する汎用的なプロセッサであるCPUに加えて、FPGAなどの製造後に回路構成を変更可能なプロセッサであるPLD(プログラマブルロジックデバイス)、ASICなどの特定の処理を実行させるために専用に設計された回路構成を有するプロセッサである専用電気回路などが含まれる。 In the above embodiment, for example, the hardware structure of the processing unit that executes various processes such as the image processing unit and the image selection unit is a general-purpose unit that executes software (program) and functions as various processing units. In addition to a CPU, which is a processor, a processor having a circuit configuration specifically designed to execute a specific process, such as a PLD (Programmable Logic Device) or an ASIC, which is a processor whose circuit configuration can be changed after manufacturing the FPGA. It includes a dedicated electric circuit.
 1つの処理部は、これらの各種のプロセッサのうちの1つで構成されてもよいし、同種または異種の2つ以上のプロセッサの組み合わせ(例えば、複数のFPGAの組み合わせや、CPUとFPGAとの組み合わせ)で構成されてもよい。また、複数の処理部を1つのプロセッサで構成してもよい。 One processing unit may be configured by one of these various processors, or a combination of two or more processors of the same type or different types (for example, a combination of a plurality of FPGAs or a combination of a CPU and an FPGA). Combination). Further, the plurality of processing units may be configured by one processor.
 複数の処理部を1つのプロセッサで構成する例としては、第1に、クライアント及びサーバなどのコンピュータに代表されるように、1つ以上のCPUとソフトウェアの組み合わせで1つのプロセッサを構成し、このプロセッサが複数の処理部として機能する形態がある。第2に、SoC(システムオンチップ)などに代表されるように、複数の処理部を含むシステム全体の機能を1つのICチップで実現するプロセッサを使用する形態がある。このように、各種の処理部は、ハードウェア的な構造として、上記各種のプロセッサの1つ以上を用いて構成される。 As an example of configuring a plurality of processing units with one processor, firstly, one processor is configured with a combination of one or more CPUs and software, as represented by computers such as clients and servers. There is a form in which the processor functions as a plurality of processing units. Secondly, as represented by SoC (system on chip) and the like, there is a form in which a processor that realizes the functions of the entire system including a plurality of processing units by one IC chip is used. In this way, the various processing units are configured by using one or more of the above various processors as a hardware structure.
 さらに、これらの各種のプロセッサのハードウェア的な構造としては、より具体的には、半導体素子などの回路素子を組み合わせた電気回路を用いることができる。 Further, as the hardware structure of these various processors, more specifically, an electric circuit in which circuit elements such as semiconductor elements are combined can be used.
 本明細書において、「A及び/又はB」は、「A及びBのうちの少なくとも1つ」と同義である。つまり、「A及び/又はB」は、Aだけであってもよいし、Bだけであってもよいし、A及びBの組み合わせであってもよい、という意味である。また、本明細書において、3つ以上の事柄を「及び/又は」で結び付けて表現する場合も、「A及び/又はB」と同様の考え方が適用される。 In the present specification, “A and/or B” is synonymous with “at least one of A and B”. That is, “A and/or B” means that only A may be used, only B may be used, or a combination of A and B may be used. Further, in the present specification, the same concept as “A and/or B” is also applied to the case where three or more matters are linked by “and/or”.
 本明細書に記載された全ての文献、特許出願及び技術規格は、個々の文献、特許出願及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。 All documents, patent applications and technical standards mentioned in this specification are to the same extent as if each individual document, patent application and technical standard was specifically and individually noted to be incorporated by reference. Incorporated by reference in the book.

Claims (43)

  1.  共用対物レンズ又は第1対物レンズと第1結像光学系とを含む、第1光軸を有する第1光学系と、
     前記共用対物レンズ又は第2対物レンズと第2結像光学系とを含む、第2光軸を有する第2光学系と、
     前記第1結像光学系によって結像される光学像を第1画像として取得する第1撮像素子と、
     前記第2結像光学系によって結像される光学像を第2画像として取得する第2撮像素子と、
     前記第1画像を画像表示装置に表示する第1モードと、前記第1画像と前記第1画像とは解像度が異なる前記第2画像とを3次元表示用画像として前記画像表示装置に表示する第2モードとを切替可能である制御部と、を備える顕微鏡。
    A first optical system having a first optical axis, including a shared objective lens or a first objective lens and a first imaging optical system;
    A second optical system having a second optical axis, including the shared objective lens or the second objective lens and a second imaging optical system;
    A first image sensor for obtaining an optical image formed by the first image forming optical system as a first image;
    A second image sensor for acquiring an optical image formed by the second image forming optical system as a second image;
    A first mode in which the first image is displayed on the image display device, and a second mode in which the first image and the second image having different resolutions from each other are displayed as three-dimensional display images on the image display device. A microscope comprising: a control unit capable of switching between two modes.
  2.  前記第2モードにおいて、前記制御部は、前記第1光学系により得られる前記第1画像と前記第2光学系により得られる前記第2画像とで視差画像を形成させる、請求項1に記載の顕微鏡。 2. The parallax image is formed by the first image obtained by the first optical system and the second image obtained by the second optical system, in the second mode, the control unit. microscope.
  3.  前記制御部は、前記第2画像を前記画像表示装置に表示する第3モードに切替可能である、請求項1又は請求項2に記載の顕微鏡。 The microscope according to claim 1 or 2, wherein the control unit can switch to a third mode in which the second image is displayed on the image display device.
  4.  前記第1光学系と前記第2光学系とのうち前記第1光学系のみにズーム光学系を含む、請求項1から請求項3のいずれか一項に記載の顕微鏡。 The microscope according to any one of claims 1 to 3, wherein only the first optical system of the first optical system and the second optical system includes a zoom optical system.
  5.  前記第2画像の倍率を電子的に変更可能な画像処理部を備え、前記画像処理部は、前記ズーム光学系によって拡大又は縮小された前記第1画像に基づいて前記第2画像の倍率を調整する、請求項4に記載の顕微鏡。 An image processing unit capable of electronically changing the magnification of the second image is provided, and the image processing unit adjusts the magnification of the second image based on the first image enlarged or reduced by the zoom optical system. The microscope according to claim 4, which comprises:
  6.  前記画像処理部は、前記第1画像と前記第2画像との視野範囲を調整する、請求項5に記載の顕微鏡。 The microscope according to claim 5, wherein the image processing unit adjusts a visual field range of the first image and the second image.
  7.  前記第2光学系に含まれる少なくとも1つの光学素子が、前記第1光軸と前記第2光軸とが観察対象の位置でなす実体角を変更する方向に移動可能である、請求項1から請求項6のいずれか一項に記載の顕微鏡。 At least one optical element included in the second optical system is movable in a direction in which a substantial angle formed by the first optical axis and the second optical axis at a position of an observation target is changed. The microscope according to claim 6.
  8.  前記第1撮像素子の画素数と前記第2撮像素子の画素数とが異なる請求項1から請求項7のいずれか一項に記載の顕微鏡。 The microscope according to any one of claims 1 to 7, wherein the number of pixels of the first image sensor is different from the number of pixels of the second image sensor.
  9.  前記第1光学系の有効口径と前記第2光学系の有効口径とが異なる、請求項1から請求項8のいずれか一項に記載の顕微鏡。 The microscope according to any one of claims 1 to 8, wherein the effective aperture of the first optical system and the effective aperture of the second optical system are different.
  10.  前記共用対物レンズ又は第3対物レンズと第3結像光学系とを含む、第3光軸を有する第3光学系と、前記第3結像光学系によって結像される光学像を第3画像として取得する第3撮像素子とを備える、請求項1から請求項9のいずれか一項に記載の顕微鏡。 A third optical system including the shared objective lens or the third objective lens and a third imaging optical system, having a third optical axis, and an optical image formed by the third imaging optical system as a third image. The microscope according to any one of claims 1 to 9, further comprising:
  11.  前記第3光学系の解像度が前記第2光学系の解像度よりも高い、又は前記第3撮像素子の画素数が前記第2撮像素子の画素数よりも多い、請求項10に記載の顕微鏡。 The microscope according to claim 10, wherein the resolution of the third optical system is higher than the resolution of the second optical system, or the number of pixels of the third image sensor is larger than the number of pixels of the second image sensor.
  12.  共用対物レンズ又は第1対物レンズと第1結像光学系とを含む、第1光軸を有する第1光学系と、
     前記共用対物レンズ又は第2対物レンズと第2結像光学系とを含む、第2光軸を有する第2光学系と、を備え、
     前記第1光学系と前記第2光学系とのうち前記第1光学系のみにズーム光学系を含む、顕微鏡。
    A first optical system having a first optical axis, including a shared objective lens or a first objective lens and a first imaging optical system;
    A second optical system having a second optical axis, including the shared objective lens or the second objective lens and a second imaging optical system,
    A microscope including a zoom optical system only in the first optical system of the first optical system and the second optical system.
  13.  前記第1結像光学系によって結像される光学像を第1画像として取得する第1撮像素子と、
     前記第2結像光学系によって結像される光学像を第2画像として取得する第2撮像素子と、を備え、
     前記第1撮像素子の画素数と前記第2撮像素子の画素数とが異なる請求項12に記載の顕微鏡。
    A first image sensor for obtaining an optical image formed by the first image forming optical system as a first image;
    A second image sensor for obtaining an optical image formed by the second image forming optical system as a second image,
    The microscope according to claim 12, wherein the number of pixels of the first image sensor and the number of pixels of the second image sensor are different.
  14.  前記第2画像の倍率を電子的に変更可能な画像処理部を備え、前記画像処理部は、前記ズーム光学系によって拡大又は縮小された前記第1画像に基づいて前記第2画像の倍率を調整する、請求項13に記載の顕微鏡。 An image processing unit capable of electronically changing the magnification of the second image is provided, and the image processing unit adjusts the magnification of the second image based on the first image enlarged or reduced by the zoom optical system. The microscope according to claim 13, wherein
  15.  前記画像処理部は、前記第1画像と前記第2画像との視野範囲を調整する、請求項14に記載の顕微鏡。 The microscope according to claim 14, wherein the image processing unit adjusts a visual field range of the first image and the second image.
  16.  前記第1画像を画像表示装置に表示する第1モードと、前記第1画像と前記第2画像とを3次元表示用画像として前記画像表示装置に表示する第2モードと、前記第2画像を前記画像表示装置に表示する第3モードと、を切替可能である制御部を備える、請求項13から請求項15の何れか一項に記載の顕微鏡。 A first mode in which the first image is displayed on the image display device, a second mode in which the first image and the second image are displayed as three-dimensional display images on the image display device, and the second image The microscope according to any one of claims 13 to 15, further comprising a control unit capable of switching between a third mode displayed on the image display device and the third mode.
  17.  前記第2モードにおいて、前記制御部は、前記第1光学系により得られる前記第1画像と前記第2光学系により得られる前記第2画像とで視差画像を形成させる、請求項16に記載の顕微鏡。 17. The parallax image according to claim 16, wherein in the second mode, the control unit forms a parallax image with the first image obtained by the first optical system and the second image obtained by the second optical system. microscope.
  18.  前記第2光学系に含まれる少なくとも1つの光学素子が、前記第1光軸と前記第2光軸とが観察対象の位置でなす実体角を変更する方向に移動可能である、請求項12から請求項17のいずれか一項に記載の顕微鏡。 13. At least one optical element included in the second optical system is movable in a direction in which a substantial angle formed by the first optical axis and the second optical axis at an observation target position is changed. The microscope according to claim 17.
  19.  前記共用対物レンズ又は第3対物レンズと第3結像光学系とを含む、第3光軸を有する第3光学系と、前記第3結像光学系によって結像される光学像を第3画像として取得する第3撮像素子と、を備える、請求項12から請求項18のいずれか一項に記載の顕微鏡。 A third optical system including the shared objective lens or the third objective lens and a third imaging optical system, having a third optical axis, and an optical image formed by the third imaging optical system as a third image. The 3rd image sensor acquired as.
  20.  前記第3光学系の解像度が前記第2光学系の解像度よりも高い、請求項19に記載の顕微鏡。 The microscope according to claim 19, wherein the resolution of the third optical system is higher than the resolution of the second optical system.
  21.  共用対物レンズ又は第1対物レンズと第1結像光学系とを含む、第1光軸を有する第1光学系と、
     前記共用対物レンズ又は第2対物レンズと第2結像光学系とを含む、第2光軸を有する第2光学系と、
     前記共用対物レンズ又は第3対物レンズと第3結像光学系とを含む、第3光軸を有する第3光学系と、を備え、
     前記第1光学系の解像度が前記第2光学系の解像度よりも高く、
     前記第3光学系の解像度が前記第2光学系の解像度よりも高い顕微鏡。
    A first optical system having a first optical axis, including a shared objective lens or a first objective lens and a first imaging optical system;
    A second optical system having a second optical axis, including the shared objective lens or the second objective lens and a second imaging optical system;
    A third optical system having a third optical axis, including the shared objective lens or the third objective lens and a third imaging optical system,
    The resolution of the first optical system is higher than the resolution of the second optical system,
    A microscope in which the resolution of the third optical system is higher than the resolution of the second optical system.
  22.  前記第1光学系、前記第2光学系、及び前記第3光学系のうちの前記第1光学系及び前記第3光学系のみにズーム光学系を含む、請求項21に記載の顕微鏡。 22. The microscope according to claim 21, wherein only the first optical system and the third optical system of the first optical system, the second optical system, and the third optical system include a zoom optical system.
  23.  前記第1結像光学系によって結像される光学像を第1画像として取得する第1撮像素子と、
     前記第2結像光学系によって結像される光学像を第2画像として取得する第2撮像素子と、
     前記第3結像光学系によって結像される光学像を第3画像として取得する第3撮像素子と、を備え、
     前記第1撮像素子の画素数と前記第2撮像素子の画素数とが異なる請求項21又は請求項22に記載の顕微鏡。
    A first image sensor for obtaining an optical image formed by the first image forming optical system as a first image;
    A second image sensor for acquiring an optical image formed by the second image forming optical system as a second image;
    A third image sensor for obtaining an optical image formed by the third image forming optical system as a third image,
    The microscope according to claim 21 or 22, wherein the number of pixels of the first image sensor is different from the number of pixels of the second image sensor.
  24.  前記第1画像、前記第2画像、及び前記第3画像を電子的に拡大及び縮小可能な画像処理部を備える、請求項23に記載の顕微鏡。 The microscope according to claim 23, comprising an image processing unit capable of electronically enlarging and reducing the first image, the second image, and the third image.
  25.  前記画像処理部は、前記第1画像、前記第2画像、及び前記第3画像のうちから、倍率が調整された2つの画像を生成する請求項24に記載の顕微鏡。 The microscope according to claim 24, wherein the image processing unit generates two images of which the magnification is adjusted from the first image, the second image, and the third image.
  26.  前記画像処理部は、前記第1画像、前記第2画像、及び前記第3画像のうちから、視野範囲が調整された2つの画像を生成する請求項24又は請求項25に記載の顕微鏡。 The microscope according to claim 24 or 25, wherein the image processing unit generates two images in which the visual field range is adjusted from the first image, the second image, and the third image.
  27.  前記第1画像を画像表示装置に表示する第1モードと、前記第1画像と前記第2画像とを3次元表示用画像として前記画像表示装置に表示する第2モードと、前記第2画像を前記画像表示装置に表示する第3モードと、を切替可能である制御部を備える、請求項24から請求項26の何れか一項に記載の顕微鏡。 A first mode in which the first image is displayed on the image display device, a second mode in which the first image and the second image are displayed as three-dimensional display images on the image display device, and the second image The microscope according to any one of claims 24 to 26, comprising a control unit capable of switching between a third mode displayed on the image display device and the third mode.
  28.  前記第2モードにおいて、前記制御部は、前記第1光学系により得られる前記第1画像と前記第2光学系により得られる前記第2画像とで視差画像を形成させる、請求項27に記載の顕微鏡。 28. In the second mode, the control unit forms a parallax image with the first image obtained by the first optical system and the second image obtained by the second optical system. microscope.
  29.  前記制御部は、前記第1画像を左側画像とし、前記第3画像を右側画像として前記画像表示装置に表示する第4モードに切替可能である、請求項27又は請求項28に記載の顕微鏡。 29. The microscope according to claim 27 or claim 28, wherein the control unit can switch to a fourth mode in which the first image is a left image and the third image is a right image and is displayed on the image display device.
  30.  前記第4モードにおいて、前記制御部は、前記第1光学系により得られる前記第1画像と前記第3光学系により得られる前記第3画像とで視差画像を形成させる、請求項29に記載の顕微鏡。 30. In the fourth mode, the control unit forms a parallax image with the first image obtained by the first optical system and the third image obtained by the third optical system. microscope.
  31.  前記画像処理部は、前記第1画像及び前記第3画像の向きを、予め定められた向きに合わせる請求項29又は請求項30に記載の顕微鏡。 31. The microscope according to claim 29 or claim 30, wherein the image processing unit matches the orientations of the first image and the third image with a predetermined orientation.
  32.  前記画像表示装置は、前記第1画像、前記第2画像、及び前記第3画像のいずれか2つを表示する第1画像表示部と、前記第1画像、前記第2画像及び前記第3画像のいずれか2つを表示する第2画像表示部と、を備える、請求項27から請求項31のいずれか一項に記載の顕微鏡。 The image display device includes a first image display unit that displays any two of the first image, the second image, and the third image; and the first image, the second image, and the third image. 32. The microscope according to claim 27, further comprising a second image display unit that displays any two of the above.
  33.  前記制御部は、前記第1画像と前記第2画像とを用いて視差画像を形成させる前記第2モードで前記第1画像表示部に表示させ、前記第2画像と前記第3画像とを用いて視差画像を形成させる第5モードで前記第2画像表示部に表示させる、請求項32に記載の顕微鏡。 The control unit causes the first image display unit to display in the second mode in which a parallax image is formed using the first image and the second image, and uses the second image and the third image. 33. The microscope according to claim 32, wherein the microscope is displayed in the second image display unit in a fifth mode for forming a parallax image.
  34.  前記制御部は、前記第2画像と前記第3画像とを用いて視差画像を形成させる第5モードで前記第1画像表示部に表示させ、前記第1画像と前記第3画像とを用いて視差画像を形成させる第4モードで前記第2画像表示部に表示させる、請求項32に記載の顕微鏡。 The control unit causes the first image display unit to display in a fifth mode in which a parallax image is formed using the second image and the third image, and uses the first image and the third image. The microscope according to claim 32, wherein the microscope is displayed on the second image display unit in a fourth mode for forming a parallax image.
  35.  前記制御部は、前記第2モードにおいて、前記第1画像の表示に同期させて前記第2画像を前記画像表示装置に表示させる、請求項27から請求項32のいずれか一項に記載の顕微鏡。 33. The microscope according to claim 27, wherein the control unit causes the image display device to display the second image in synchronization with the display of the first image in the second mode. ..
  36.  前記第1光軸の光を偏向する第1偏向素子と、前記第3光軸の光を偏向する第3偏向素子とを備え、前記第1偏向素子と前記第3偏向素子との少なくとも一方が、前記第1光軸と前記第3光軸とが観察対象の位置でなす実体角を変更する方向に移動可能である、請求項21から請求項35のいずれか一項に記載の顕微鏡。 A first deflecting element that deflects the light of the first optical axis and a third deflecting element that deflects the light of the third optical axis are provided, and at least one of the first deflecting element and the third deflecting element is provided. The microscope according to any one of claims 21 to 35, wherein the first optical axis and the third optical axis are movable in a direction that changes a substantial angle formed at a position of an observation target.
  37.  前記第2光学系に含まれる少なくとも1つの光学素子が、前記第1偏向素子の動きと連動して同じ方向へ移動可能である、請求項36に記載の顕微鏡。 37. The microscope according to claim 36, wherein at least one optical element included in the second optical system is movable in the same direction in conjunction with the movement of the first deflecting element.
  38.  前記第1偏向素子と前記第3偏向素子とのうち、前記第3偏向素子のみが、前記第1光軸と前記第3光軸とが観察対象の位置でなす実体角を変更する方向に移動可能である、請求項36に記載の顕微鏡。 Of the first deflecting element and the third deflecting element, only the third deflecting element moves in a direction in which the substantial angle formed by the first optical axis and the third optical axis at the position of the observation target is changed. 37. The microscope according to claim 36, which is possible.
  39.  前記第2光学系に含まれる少なくとも1つの光学素子が、前記第1光軸と前記第2光軸とが観察対象の位置でなす実体角を変更する方向に移動可能である、請求項21から請求項38のいずれか一項に記載の顕微鏡。 22. At least one optical element included in the second optical system is movable in a direction in which a substantial angle formed by a position of an observation target between the first optical axis and the second optical axis is changed. The microscope according to claim 38.
  40.  前記第3光学系の解像度は、前記第1光学系の解像度に相当する解像度である、請求項21から請求項39のいずれか一項に記載の顕微鏡。 The microscope according to any one of claims 21 to 39, wherein the resolution of the third optical system is a resolution corresponding to the resolution of the first optical system.
  41.  前記第1光学系、前記第2光学系及び前記第3光学系のそれぞれの解像度の高低は、前記第1光学系、前記第2光学系及び前記第3光学系についての、開口数、焦点深度、収差、レンズの材質、及びズーム光学系の有無のうちの少なくとも1つに基づいて判断される、請求項21から請求項40のいずれか一項に記載の顕微鏡。 The level of resolution of each of the first optical system, the second optical system, and the third optical system depends on the numerical aperture and the depth of focus of the first optical system, the second optical system, and the third optical system. The microscope according to any one of claims 21 to 40, which is determined based on at least one of the following: the aberration, the material of the lens, and the presence or absence of a zoom optical system.
  42.  第1撮像素子により撮像される第1画像と第2撮像素子により撮像される第2画像とを取得する画像取得部と、
     前記第1画像を画像表示装置に表示する第1モードと、前記第1画像と前記第1画像とは解像度が異なる前記第2画像とを3次元表示用画像として前記画像表示装置に表示する第2モードとを切替可能である制御部と、
    を備える顕微鏡用制御装置。
    An image acquisition unit that acquires a first image captured by the first image sensor and a second image captured by the second image sensor;
    A first mode in which the first image is displayed on the image display device, and a second mode in which the first image and the second image having different resolutions from each other are displayed as three-dimensional display images on the image display device. A control unit capable of switching between two modes,
    And a control device for a microscope.
  43.  コンピュータに、
     第1撮像素子により撮像される第1画像と第2撮像素子により撮像される第2画像とを取得するステップと、
     前記第1画像を画像表示装置に表示する第1モードと、前記第1画像と前記第1画像とは解像度が異なる前記第2画像とを3次元表示用画像として前記画像表示装置に表示する選択する第2モードとを切替えるステップと、
    を実行させるためのプログラム。
    On the computer,
    Obtaining a first image captured by the first image sensor and a second image captured by the second image sensor,
    Selection for displaying on the image display device a first mode for displaying the first image on the image display device and the second image having a different resolution from the first image as a three-dimensional display image on the image display device To switch the second mode to
    A program to execute.
PCT/JP2019/004676 2019-02-08 2019-02-08 Microscope, control device for microscope, and program WO2020161905A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/004676 WO2020161905A1 (en) 2019-02-08 2019-02-08 Microscope, control device for microscope, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/004676 WO2020161905A1 (en) 2019-02-08 2019-02-08 Microscope, control device for microscope, and program

Publications (1)

Publication Number Publication Date
WO2020161905A1 true WO2020161905A1 (en) 2020-08-13

Family

ID=71948187

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/004676 WO2020161905A1 (en) 2019-02-08 2019-02-08 Microscope, control device for microscope, and program

Country Status (1)

Country Link
WO (1) WO2020161905A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6161118A (en) * 1984-09-01 1986-03-28 Canon Inc Stereoscopic microscope
JPH05323199A (en) * 1991-10-31 1993-12-07 Olympus Optical Co Ltd Stereoscopic observation device
JP2003344779A (en) * 2002-05-29 2003-12-03 Olympus Optical Co Ltd Image display
JP2005210217A (en) * 2004-01-20 2005-08-04 Olympus Corp Stereoscopic camera
JP2007133064A (en) * 2005-11-09 2007-05-31 Olympus Medical Systems Corp Surgical microscope
JP2012042774A (en) * 2010-08-20 2012-03-01 Nikon Corp Imaging optical system, microscope device and stereomicroscope device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6161118A (en) * 1984-09-01 1986-03-28 Canon Inc Stereoscopic microscope
JPH05323199A (en) * 1991-10-31 1993-12-07 Olympus Optical Co Ltd Stereoscopic observation device
JP2003344779A (en) * 2002-05-29 2003-12-03 Olympus Optical Co Ltd Image display
JP2005210217A (en) * 2004-01-20 2005-08-04 Olympus Corp Stereoscopic camera
JP2007133064A (en) * 2005-11-09 2007-05-31 Olympus Medical Systems Corp Surgical microscope
JP2012042774A (en) * 2010-08-20 2012-03-01 Nikon Corp Imaging optical system, microscope device and stereomicroscope device

Similar Documents

Publication Publication Date Title
JP7225300B2 (en) Stereoscopic visualization camera and platform
US7768702B2 (en) Medical stereo observation system
US7768701B2 (en) Three-dimensional medical imaging apparatus
JP6521982B2 (en) Surgical visualization system and display
KR101476820B1 (en) 3D video microscope
JP2006158452A5 (en)
JP6502720B2 (en) Ophthalmic microscope
US7280274B2 (en) Three-dimensional image observation microscope system
JP4508569B2 (en) Binocular stereoscopic observation device, electronic image stereoscopic microscope, electronic image stereoscopic observation device, electronic image observation device
KR101654589B1 (en) Medical microscope system based on stereoscopic 3D comprising auto focusing and object distance
JP2002085330A (en) Stereoscopic endoscope device
US20220304767A1 (en) Operating microscope and ophthalmic system
WO2020161905A1 (en) Microscope, control device for microscope, and program
JP2023542384A (en) Microsurgical aid device
JP6830334B2 (en) Ophthalmic equipment
WO2020095445A1 (en) Microscope
US20220313085A1 (en) Surgery 3D Visualization Apparatus
US11504001B2 (en) Surgery 3D visualization apparatus
JP2017106994A (en) Surgical stereoscopic observation device
WO2022244582A1 (en) Ophthalmic microscope
JP3577107B2 (en) Stereo microscope
WO2020095444A1 (en) Microscope
JP7475248B2 (en) Stereoscopic imaging device and ophthalmic device
JP2017012536A (en) Ophthalmic microscope
JP2022077565A (en) Ophthalmology imaging apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19914439

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19914439

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP