WO2009131243A1 - Stereoscopic microscope - Google Patents

Stereoscopic microscope Download PDF

Info

Publication number
WO2009131243A1
WO2009131243A1 PCT/JP2009/058432 JP2009058432W WO2009131243A1 WO 2009131243 A1 WO2009131243 A1 WO 2009131243A1 JP 2009058432 W JP2009058432 W JP 2009058432W WO 2009131243 A1 WO2009131243 A1 WO 2009131243A1
Authority
WO
WIPO (PCT)
Prior art keywords
illumination
optical system
magnification
variable magnification
lens group
Prior art date
Application number
PCT/JP2009/058432
Other languages
French (fr)
Japanese (ja)
Inventor
大内由美子
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Publication of WO2009131243A1 publication Critical patent/WO2009131243A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/18Arrangements with more than one light path, e.g. for comparing two specimens
    • G02B21/20Binocular arrangements
    • G02B21/22Stereoscopic arrangements

Definitions

  • the present invention relates to a stereomicroscope. Background art
  • the present invention has a pair of left and right observation optical systems and a pair of left and right illumination optical systems,
  • the pair of left and right observation optical systems has a plurality of variable magnification optical systems respectively disposed in the respective observation optical systems, and one objective lens.
  • the pair of left and right illumination optical systems are respectively disposed in the respective illumination optical systems, and a plurality of variable magnification illumination lenses that can be formed by changing the magnification of the light source image in accordance with the magnification of the variable magnification optical system.
  • the illumination light deflection member is disposed between the variable magnification optical system and the one objective lens.
  • a stereomicroscope characterized by being provided is provided.
  • FIG. 1 is a schematic side view of a configuration including a partial cross section of a stereomicroscope according to an embodiment.
  • FIGS. 28 and 2B show configuration examples of the illumination lens group of the stereomicroscope according to the embodiment.
  • FIG. 2A shows a high magnification and
  • FIG. 2B shows a low magnification.
  • FIG. 3 is a schematic side view of a configuration including a partial cross section of the stereomicroscope according to the first modification.
  • FIG. 4 is a schematic side view of the configuration of the stereomicroscope according to the second modification including a partial cross section.
  • Figures 5A and 5B show the entrance pupil diameter at each magnification of the variable magnification optical system.
  • Figure 5A shows the high magnification and
  • Figure 5B shows the low magnification.
  • FIG. 1 is a schematic side view of a configuration including a partial cross section of a stereomicroscope according to an embodiment.
  • 2A and 2B show an example of a variable magnification illumination lens group in the illumination optical system of the stereomicroscope according to the embodiment, FIG. 2A shows a lens arrangement at high magnification, and FIG. 2B shows low magnification. Each lens arrangement is shown.
  • light from an external light source 1 is guided to a pair of left and right illumination optical systems SL and SR by an optical fiber 2 A.
  • the emission end 2 R of the optical fiber 2 A of the right illumination optical system SR becomes the right light source 2 R of the right illumination optical system SR.
  • the left end of the left illumination optical system SL is 2 L.
  • Source 2 L a semiconductor light emitting element such as an LED may be disposed on the right light source 2 R and the left light source 2 L to serve as a light source.
  • the light from the right light source 2R is incident on the right variable magnification illumination lens group 3R that forms a light source image at (or near) the entrance pupil position of the variable magnification optical system included in the observation optical system described later.
  • the magnification is changed to a predetermined magnification by moving a zoom lens group, which will be described later, by the magnification mechanism 3 Ra, and enters the right diffuser plate 4 R.
  • Light diffused by the right diffusing plate 4 R is a half mirror 5 that is disposed at an angle of approximately 45 degrees with respect to the optical axis of the right observation optical system IR. Reflected in the direction.
  • the light reflected by the half mirror 5 illuminates the specimen 8 placed on the stand 9 via the objective lens 7 coaxially with the optical axis of the right observation optical system IR.
  • the light from the specimen 8 is collected by the objective lens 7, passes through the half mirror 5, and enters the right variable optical system 1 1 R of the right observation optical system IR.
  • the light incident on the right variable magnification optical system 1 1 R is subjected to a predetermined variable magnification action by the right variable magnification optical system 1 1 R, and is formed on an image plane (not shown) of the right observation optical system IR by an imaging lens (not shown). Form an image.
  • the light from the image plane is magnified by the eyepiece lens 14 (14 R) through the right eyepiece optical system 13 R that performs erecting of the image in the eyepiece tube 13 as a real image to the observer. Observed.
  • light from the left light source 2 L is incident on the left variable illumination lens group 3 L that forms a light source image at (or near) the entrance pupil position of the variable magnification optical system included in the left observation optical system IL.
  • the magnification is changed to a predetermined magnification by moving a zoom lens group, which will be described later, by the zoom mechanism 3 La, and enters the left diffuser 4 L.
  • the light diffused by the left diffusing plate 4 L is reflected in the direction of the objective lens 7 by the half mirror 5 disposed at an angle of approximately 45 degrees to the optical axis of the left observation optical system IL.
  • the light reflected by the half mirror 5 illuminates the specimen 8 placed on the stand 9 via the objective lens 7 coaxially with the left observation optical system IL.
  • the light from the specimen 8 is collected by the objective lens 7, passes through the half mirror 5, and enters the left magnification optical system 11L of the left observation optical system IL.
  • the light incident on the left zoom optical system 11 L is subjected to a predetermined zoom action by the left zoom optical system 11 L, and an image is formed on an image plane (not shown) of the left observation optical system IL by an imaging lens (not shown). Form an image.
  • the illumination device 6 includes the left and right illumination optical systems SL and SR, the left and right light sources 2L and 2R, the left and right variable magnification illumination lens groups 3 L and 3R, the left and right diffusion plates 4 L and 4R, and the half mirror 5. Has been configured.
  • the illumination device 6 is configured to be detachable between the variable magnification optical systems 11 R and 11 L and the objective lens 7.
  • the right zoom optical system 1 1R and the left zoom optical system 1 1 L rotate the zoom dial 12 to zoom lens groups (eg, ll Ra, 11 Rb, ll L) along their optical axes.
  • a, 1 1 L b) can be moved continuously by a cam mechanism (not shown) and continuously scaled.
  • the focusing operation on the specimen 8 can be performed by rotating the focusing dial 10 and moving up and down the entire stereomicroscope main body 20.
  • one half mirror can be used for the right illumination optical system S R and the left illumination optical system S L, or individual half mirrors can be used.
  • the case where one common half mirror 5 is inserted into the left and right observation optical systems I L and I R is described. In this way, the real microscope 100 according to the embodiment is configured.
  • variable magnification illumination lens groups 3 L and 3 R of the left and right illumination optical systems SL and SR will be described with reference to FIGS. 2A and 2B.
  • L and R indicating the left are omitted from each reference except for a part.
  • Figure 2A shows the various lenses of the variable magnification illumination lens group 3 when the variable magnification optical system 11 is changed to a high magnification. The arrangement of the process group is shown.
  • variable magnification optical system 1 1 When the variable magnification optical system 1 1 is high magnification, among the light beams converted into parallel light by the objective lens 7, a light beam with a larger diameter can pass through the variable magnification optical system 1 1, and the variable magnification optical system 1 1 When the magnification is low, only a narrow parallel beam enters the variable magnification optical system 11 as compared with the high magnification. In other words, the numerical aperture NA of the objective lens 7 changes depending on the magnification of the variable magnification optical system 11 (see FIGS. 5A and 5B).
  • the diameter of the light beam emitted by the action of the variable magnification illumination lens group 3 in the illumination optical system S is The observation light must be equivalent to NA.
  • variable magnification illumination lens group 3 has a three-group configuration
  • the second lens group has a variable magnification mechanism (3 La, 3 Ra (see FIG. 1)) in the optical axis direction.
  • the beam diameter of the illumination light emitted from the variable magnification illumination lens group 3 can be changed.
  • the variable magnification illumination lens group 3 includes, in order from the diffuser 4 side toward the light source 2, a first lens group 3 1 having a positive refractive power, a second lens group 3 2 having a negative refractive power, and a third lens having a positive refractive power. It consists of a lens group 33.
  • variable magnification optical system 11 When the variable magnification optical system 11 is changed to a high magnification, as shown in FIG. 2A, the second lens group 3 2 is moved by the moving mechanism (3 La, 3 Ra (see FIG. 1)). 1 Lens group 3 It is moved along the optical axis to the 1 side, and the illumination light beam emitted from the variable magnification illumination lens group 3 can be thickened to be equivalent to NA of the observation light.
  • variable magnification optical system 11 when the variable magnification optical system 11 is changed to a low magnification, as shown in Fig. 2B, the second lens group 3 2 is moved (3 La, 3 Ra (see Fig. 1)). ) Is moved toward the third lens group 33 along the optical axis, and the illumination light beam emitted from the variable magnification illumination lens group 3 can be narrowed to be equivalent to NA of the observation light.
  • the combined focal length of the variable magnification illumination lens group 3 can be changed by moving the second lens group 32 of the variable magnification illumination lens group 3 along the optical axis.
  • the movement of the variable magnification optical system 11 due to the variable magnification and the movement of the second lens group of the variable magnification illumination optical system 3 are configured to be linked by a mechanism (not shown).
  • the interlocking mechanism is a mechanical device such as a cam mechanism, or the position of the zoom lens group (11 La, 11 Lb, ll Ra, l lRb) of the variable magnification optical system 11 is detected by a sensor, etc. This can be achieved by a device that electrically controls the movement mechanism (3La, 3Ra) of the tunnel group 3.
  • the maximum magnification from the end face 2 of the Fino 2 A to the light source image is i3H and the diameter of the fiber 2A is ⁇ f at the high magnification of Fig. 2A, it is formed on the exit side of the variable magnification illumination lens group 3.
  • the diameter of the light source image ⁇ iH is
  • FIGS. 5A and 5B show the entrance pupil diameter at each magnification of the variable magnification optical system, FIG. 5A shows the maximum magnification, and FIG. 5B shows the minimum magnification.
  • the illumination light beam has an entrance pupil diameter of about 1Z4, more preferably about 1Z2 at the maximum magnification.
  • the illumination beam system ⁇ i H at the maximum magnification is
  • variable magnification illumination lens group 3 has one movable lens group 32 that controls the magnification change, so it is difficult to accurately maintain the position of the light source at the entrance pupil position of the variable magnification optical system 11.
  • the movable lens group 32 of the illumination lens group 3 is composed of two or more, when the light source image position is spatially immovable or the entrance pupil position of the variable magnification optical system 11 changes depending on the magnification,
  • the light source image position can be set to a position suitable for the position. Table 1 below shows a numerical example of the illumination lens group 3.
  • i is the number of the surface from the object side
  • r is the radius of curvature
  • d is the surface spacing
  • nd is the refractive index at the d-line (wavelength ⁇ -587. 6 nm)
  • d is d line
  • the image surface represents the image surface.
  • the refractive index of air nd 1.00000 is omitted.
  • “ ⁇ ” in the radius of curvature r column indicates a plane.
  • d i represents the variable surface interval value for surface number i.
  • Supplemental expression corresponding value indicates the corresponding value of each conditional expression.
  • mm is generally used for the focal length f, radius of curvature r, surface spacing d and other lengths, etc. unless otherwise specified, but the optical system is proportional. Since the same optical performance can be obtained even if it is enlarged or proportionally reduced, it is not limited to this. Further, the unit is not limited to “mm”, and other appropriate units can be used.
  • zooming of the observation optical system is performed by moving a part of the zoom lens group in conjunction with the zooming of the optical system.
  • the entrance pupil position of the variable magnification optical system 11 is as follows when the magnification is high, medium, and low.
  • the light source side is positive (ten) and the objective lens side is negative (one) from a predetermined plane.
  • the conjugate image position of the entrance pupil of the variable magnification optical system 11 formed in the illumination optical system S is as follows.
  • the magnification of the variable magnification optical system 11 is changed, it can be formed at positions that are substantially close to each other (position change is small).
  • the magnification of the illumination optical system can be used to change the magnification of the light source image and to correct the entrance pupil conjugate position variation, which is always good. Lighting is possible.
  • the configuration of the stereomicroscope main body is the same as that of the above-described embodiment, and the same components are denoted by the same reference numerals and description thereof is omitted.
  • the left and right configurations are the same as those of the above-described embodiment, and in the following description, L and R indicating left and right are omitted from each reference except for a part.
  • FIG. 3 shows a first modification of the stereomicroscope according to the embodiment.
  • the stereomicroscope 200 according to the first modification enables observation with a simple polarized stereomicroscope.
  • Polarizer P 1 (P 1 L, P 1R) is placed between the half mirror 5 and the variable magnification optical system 11 (11L, 11 R) in the optical path of the observation optical system I.
  • the polarizing plate P 2 (P 2L, P2R) is arranged on the side.
  • the polarizing plate P 1 and the polarizing plate P 2 are configured to be rotatable about the optical axis so that they can be set in a crossed Nicols state.
  • the polarizing plate P 1 and the polarizing plate P 2 may be configured to be detachable in the optical path.
  • the polarizing plate P 1 and the polarizing plate P 2 can be shared with the above-described embodiment.
  • the two polarizing plates P 1 and P 2 can be arranged in the lighting device 6 so as to be crossed Nicols, so that it can be used as a simple polarization stereomicroscope.
  • variable magnification illumination lens group 3 is linked to the variable magnification optical system 11 in the same manner as in the above-described embodiment.
  • other operations and effects are the same as those of the above-described embodiment, and redundant description is omitted.
  • FIG. 4 shows a second modification of the stereomicroscope according to the embodiment.
  • the stereomicroscope 300 according to the second modification enables observation with an epifluorescence stereomicroscope.
  • the first wavelength selective filter is an excitation filter F 1 (F 1 L) between the diffuser 4 (4L, 4R) and the half mirror 5 in the optical path of the illumination device 6 (6L, 6R).
  • FIR excitation filter
  • barrier filter F that is a second wavelength selection filter that selects the fluorescence wavelength between the half mirror 5 in the optical path of the observation optical system I and the variable magnification optical system 11 (11L, 11 R) 2 (F 2L, F 2 R) are arranged.
  • the barrier filter evening F 2 may be an emission filter.
  • the excitation filter F 1 and the barrier filter F 2 may be configured to be removable in the optical path. This makes it possible to share the first modified example with the above-described embodiment.
  • the two wavelength selection filters F 1 and F 2 are arranged in the illumination device 6 and can be used as an epifluorescence stereomicroscope.
  • the variable magnification illumination lens group 3 is linked to the variable magnification optical system 11 as in the above-described embodiment.
  • other operations and effects are the same as those of the above-described embodiment, and redundant description is omitted.
  • the diffusion plates 4 R and 4 L can be constituted by a single diffusion plate.

Abstract

A stereoscopic microscope (100) provided with a pair of right and left observation optical systems (I) and a pair of right and left illumination optical systems (S) is characterized in that the observation optical systems (I) have a variable magnification optical system (11) and an objective lens (7), the illumination optical systems (S) have an illumination light deflection member (5) arranged in an optical path of the observation optical systems and a variable magnification illumination lens group (3) that can make a magnification of a light source image formed at an entrance pupil of the variable magnification optical system changeable in accordance with a magnification of the variable magnification optical system, the illumination light deflection member (5) is arranged between the variable magnification optical system (11) and the objective lens (7), thereby providing a stereoscopic microscope that can irradiate suitable illumination light to a sample in accordance with a magnification operation of an observation optical system.

Description

明 細 書 発明の名称  Description Title of Invention
実体顕微鏡 技術分野 Stereomicroscope Technical Field
本発明は、 実体顕微鏡に関する。 背景技術  The present invention relates to a stereomicroscope. Background art
従来、 実体顕微鏡では、 標本の深部まで影のない鮮明な観察像を取得するため に同軸落射照明が提案されている (例えば、 特開平 1 0— 1 4 9 3 7号公報、 図 2参照) 。  Conventionally, in stereo microscopes, coaxial epi-illumination has been proposed in order to obtain a clear observation image without shadows up to the deep part of the specimen (see, for example, Japanese Patent Laid-Open No. 10-1 4 9 37, FIG. 2). .
従来の同軸落射照明では、 標本に照射される照明光は観察光学系に配置されて いる変倍光学系の変倍操作とは無関係に照射されているため、 高倍観察時におい て解像力が不足すると言う問題がある。 発明の開示  In conventional coaxial epi-illumination, the illumination light applied to the specimen is irradiated regardless of the variable magnification operation of the variable magnification optical system arranged in the observation optical system. There is a problem to say. Disclosure of the invention
上記課題を解決するため、 本発明は、 左右一対の観察光学系と、 左右一対の照 明光学系とを有し、  In order to solve the above problems, the present invention has a pair of left and right observation optical systems and a pair of left and right illumination optical systems,
前記左右一対の観察光学系は、 その各観察光学系中にぞれぞれ配設される複数 の変倍光学系と、 一つの対物レンズとを有し、  The pair of left and right observation optical systems has a plurality of variable magnification optical systems respectively disposed in the respective observation optical systems, and one objective lens.
前記左右一対の照明光学系は、 その各照明光学系中にそれぞれ配設され、 前記 変倍光学系の変倍に応じて光源像の倍率を変化させて形成可能な複数の変倍照 明レンズ群と、 前記左右一対の観察光学系の光路中に配設される照明光偏向部材 とを有し、  The pair of left and right illumination optical systems are respectively disposed in the respective illumination optical systems, and a plurality of variable magnification illumination lenses that can be formed by changing the magnification of the light source image in accordance with the magnification of the variable magnification optical system. A group, and an illumination light deflection member disposed in the optical path of the pair of left and right observation optical systems,
前記照明光偏向部材は、 前記変倍光学系と前記一つの対物レンズとの間に配 設されることを特徴とする実体顕微鏡を提供する。 The illumination light deflection member is disposed between the variable magnification optical system and the one objective lens. A stereomicroscope characterized by being provided is provided.
本発明によれば、 観察光学系の変倍操作に応じた好適な照明光を標本に照射す ることを可能とする実体顕微鏡を提供することができる。 図面の簡単な説明  According to the present invention, it is possible to provide a stereomicroscope capable of irradiating a specimen with a suitable illumination light corresponding to a magnification operation of the observation optical system. Brief Description of Drawings
図 1は、 実施の形態に係る実体顕微鏡の一部断面を含む側面概略構成図である。 図 2八、 2 Bは、実施の形態に係る実体顕微鏡の照明レンズ群の構成例を示し、 図 2 Aは高倍時を、 図 2 Bは低倍時をそれぞれ示す。  FIG. 1 is a schematic side view of a configuration including a partial cross section of a stereomicroscope according to an embodiment. FIGS. 28 and 2B show configuration examples of the illumination lens group of the stereomicroscope according to the embodiment. FIG. 2A shows a high magnification and FIG. 2B shows a low magnification.
図 3は、 第 1変形例に係る実体顕微鏡の一部断面を含む側面概略構成図である。 図 4は、 第 2変形例に係る実体顕微鏡の一部断面を含む側面概略構成図である。 図 5 A、 5 Bは、 変倍光学系の各倍率における入射瞳径を示し、 図 5 Aは高倍 時を、 図 5 Bは低倍時をそれぞれ示す。 発明を実施するための形態  FIG. 3 is a schematic side view of a configuration including a partial cross section of the stereomicroscope according to the first modification. FIG. 4 is a schematic side view of the configuration of the stereomicroscope according to the second modification including a partial cross section. Figures 5A and 5B show the entrance pupil diameter at each magnification of the variable magnification optical system. Figure 5A shows the high magnification and Figure 5B shows the low magnification. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施の形態に係る実体顕微鏡について図面を参照しつつ説明す る。 なお、 以下の実施の形態は、 発明の理解の容易化のためのものに過ぎず、 本 発明の技術的思想を逸脱しない範囲において当業者により実施可能な付加 ·置換 等を施すことを排除することは意図していない。  A stereomicroscope according to an embodiment of the present invention will be described below with reference to the drawings. The following embodiments are merely for facilitating the understanding of the invention, and excluding additions / substitutions and the like that can be implemented by those skilled in the art without departing from the technical idea of the present invention. It is not intended.
図 1は、 実施の形態に係る実体顕微鏡の一部断面を含む側面概略構成図である。 図 2 A、 2 Bは、 実施の形態に係る実体顕微鏡の照明光学系中にある変倍照明レ ンズ群の一例を示し、 図 2 Aは高倍時のレンズ配置を、 図 2 Bは低倍時のレンズ 配置をそれぞれ示す。  FIG. 1 is a schematic side view of a configuration including a partial cross section of a stereomicroscope according to an embodiment. 2A and 2B show an example of a variable magnification illumination lens group in the illumination optical system of the stereomicroscope according to the embodiment, FIG. 2A shows a lens arrangement at high magnification, and FIG. 2B shows low magnification. Each lens arrangement is shown.
図 1において、 外部光源 1からの光は、 光ファイバ一 2 Aにより、 左右一対の 照明光学系 S L、 S Rに導かれる。 このような構成では、 右照明光学系 S Rの光 ファイバー 2 Aの出射端 2 Rは、右照明光学系 S Rの右光源 2 Rとなる。同様に、 左照明光学系 S Lの光ファイバ一 2 Aの射出端 2 Lは、 左照明光学系 S Lの左光 源 2 Lとなる。 なお、 右光源 2 R、 左光源 2 Lに L E D等の半導体発光素子を配 置して光源とすることもできる。 In FIG. 1, light from an external light source 1 is guided to a pair of left and right illumination optical systems SL and SR by an optical fiber 2 A. In such a configuration, the emission end 2 R of the optical fiber 2 A of the right illumination optical system SR becomes the right light source 2 R of the right illumination optical system SR. Similarly, the left end of the left illumination optical system SL is 2 L. Source 2 L. In addition, a semiconductor light emitting element such as an LED may be disposed on the right light source 2 R and the left light source 2 L to serve as a light source.
右光源 2 Rからの光は、 後述する観察光学系に含まれる変倍光学系の入射瞳位 置 (またはその近傍) に光源像を形成する右変倍照明レンズ群 3 Rに入射し、 変 倍機構 3 R aで後述する変倍レンズ群を移動させることにより所定倍率への変 更が行われ、 右拡散板 4 Rに入射する。  The light from the right light source 2R is incident on the right variable magnification illumination lens group 3R that forms a light source image at (or near) the entrance pupil position of the variable magnification optical system included in the observation optical system described later. The magnification is changed to a predetermined magnification by moving a zoom lens group, which will be described later, by the magnification mechanism 3 Ra, and enters the right diffuser plate 4 R.
右拡散板 4 Rで拡散作用を受けた光は、 右観察光学系 I Rの光軸に略 4 5度傾 斜して配置されたハーフミラ一 5で左右共通の対物レンズ 7 (以後、 単に対物レ ンズ 7と記す) 方向に反射する。  Light diffused by the right diffusing plate 4 R is a half mirror 5 that is disposed at an angle of approximately 45 degrees with respect to the optical axis of the right observation optical system IR. Reflected in the direction.
ハ一フミラー 5で反射された光は、 対物レンズ 7を介してスタンド 9上に載置 された標本 8を右観察光学系 I Rの光軸と同軸に照明する。  The light reflected by the half mirror 5 illuminates the specimen 8 placed on the stand 9 via the objective lens 7 coaxially with the optical axis of the right observation optical system IR.
標本 8からの光は、 対物レンズ 7で集光されハ一フミラー 5を透過して右観察 光学系 I Rの右変倍光学系 1 1 Rに入射する。  The light from the specimen 8 is collected by the objective lens 7, passes through the half mirror 5, and enters the right variable optical system 1 1 R of the right observation optical system IR.
右変倍光学系 1 1 Rに入射した光は、 右変倍光学系 1 1 Rで所定の変倍作用を 受け、 不図示の結像レンズにより右観察光学系 I Rの不図示の像面に像を結像す る。  The light incident on the right variable magnification optical system 1 1 R is subjected to a predetermined variable magnification action by the right variable magnification optical system 1 1 R, and is formed on an image plane (not shown) of the right observation optical system IR by an imaging lens (not shown). Form an image.
像面からの光は、 接眼鏡筒 1 3内で像の正立化等を行う右接眼光学系 1 3 Rを 介して接眼レンズ 1 4 ( 1 4 R) で拡大して観察者に実像として観察される。 同様に、 左光源 2 Lからの光は、 左観察光学系 I Lに含まれる変倍光学系の入 射瞳位置 (またはその近傍) に光源像を形成する左変倍照明レンズ群 3 Lに入射 し、 変倍機構 3 L aで後述する変倍レンズ群を移動することにより所定倍率への 変更が行われ、 左拡散板 4 Lに入射する。  The light from the image plane is magnified by the eyepiece lens 14 (14 R) through the right eyepiece optical system 13 R that performs erecting of the image in the eyepiece tube 13 as a real image to the observer. Observed. Similarly, light from the left light source 2 L is incident on the left variable illumination lens group 3 L that forms a light source image at (or near) the entrance pupil position of the variable magnification optical system included in the left observation optical system IL. Then, the magnification is changed to a predetermined magnification by moving a zoom lens group, which will be described later, by the zoom mechanism 3 La, and enters the left diffuser 4 L.
左拡散板 4 Lで拡散作用を受けた光は、 左観察光学系 I Lの光軸に略 4 5度傾 斜して配置されたハーフミラー 5で対物レンズ 7方向に反射する。  The light diffused by the left diffusing plate 4 L is reflected in the direction of the objective lens 7 by the half mirror 5 disposed at an angle of approximately 45 degrees to the optical axis of the left observation optical system IL.
ハーフミラー 5で反射された光は、 対物レンズ 7を介してスタンド 9上に載置 された標本 8を左観察光学系 I Lと同軸に照明する。 標本 8からの光は、 対物レンズ 7で集光されハーフミラー 5を透過して左観察 光学系 I Lの左変倍光学系 11 Lに入射する。 The light reflected by the half mirror 5 illuminates the specimen 8 placed on the stand 9 via the objective lens 7 coaxially with the left observation optical system IL. The light from the specimen 8 is collected by the objective lens 7, passes through the half mirror 5, and enters the left magnification optical system 11L of the left observation optical system IL.
左変倍光学系 11 Lに入射した光は、 左変倍光学系 11 Lで所定の変倍作用を 受け、 不図示の結像レンズにより左観察光学系 I Lの不図示の像面に像を結像す る。  The light incident on the left zoom optical system 11 L is subjected to a predetermined zoom action by the left zoom optical system 11 L, and an image is formed on an image plane (not shown) of the left observation optical system IL by an imaging lens (not shown). Form an image.
像面からの光は、 接眼鏡筒 13内で像の正立化等を行う左接眼光学系 13Lを 介して接眼レンズ 14 (14L) で拡大して観察者に実像として観察される。 このように、 照明装置 6は、 左右照明光学系 SL、 SRである左右光源 2L、 2R、 左右変倍照明レンズ群 3 L、 3R、 左右の拡散板 4 L、 4R、 およびハー フミラー 5が内蔵されて構成されている。 なお、 照明装置 6は、 変倍光学系 11 R、 11Lと対物レンズ 7との間に着脱可能に構成されている。  The light from the image plane is magnified by the eyepiece 14 (14L) through the left eyepiece optical system 13L for erecting the image in the eyepiece tube 13 and observed as a real image by the observer. As described above, the illumination device 6 includes the left and right illumination optical systems SL and SR, the left and right light sources 2L and 2R, the left and right variable magnification illumination lens groups 3 L and 3R, the left and right diffusion plates 4 L and 4R, and the half mirror 5. Has been configured. The illumination device 6 is configured to be detachable between the variable magnification optical systems 11 R and 11 L and the objective lens 7.
また、 右変倍光学系 1 1Rと左変倍光学系 1 1 Lは、 ズームダイヤル 12を回 転することでそれぞれの光軸に沿ってズームレンズ群 (例えば、 l l Ra、 11 Rb、 l l L a、 1 1 L b) が図示しないカム機構によって移動して連続的に変 倍することができる。  The right zoom optical system 1 1R and the left zoom optical system 1 1 L rotate the zoom dial 12 to zoom lens groups (eg, ll Ra, 11 Rb, ll L) along their optical axes. a, 1 1 L b) can be moved continuously by a cam mechanism (not shown) and continuously scaled.
また、 標本 8への合焦操作は焦準ダイヤル 10を回転して実体顕微鏡本体 20 全体を上下することで行うことができる。  Further, the focusing operation on the specimen 8 can be performed by rotating the focusing dial 10 and moving up and down the entire stereomicroscope main body 20.
なお、 ハーフミラー 5は右照明光学系 S Rと左照明光学系 S Lとで 1つのハ一 フミラーを使用することもできるし、 個別のハーフミラーを使用することもでき る。 上記説明では 1つの共通ハーフミラー 5を左右観察光学系 I L、 I Rに揷入 して使用した場合について説明している。 このようにして、 実施の形態に係る実 体顕微鏡 100が構成されている。  As the half mirror 5, one half mirror can be used for the right illumination optical system S R and the left illumination optical system S L, or individual half mirrors can be used. In the above description, the case where one common half mirror 5 is inserted into the left and right observation optical systems I L and I R is described. In this way, the real microscope 100 according to the embodiment is configured.
次に、 左右照明光学系 SL、 SRの左右変倍照明レンズ群 3 L、 3 Rについて 図 2A、 2 Bを参照しつつ説明する。 上述のように左右の構成は同様であり、 以 下の説明では一部を除き各符号から左おを示す L、 Rを省略して説明する。  Next, the left and right variable magnification illumination lens groups 3 L and 3 R of the left and right illumination optical systems SL and SR will be described with reference to FIGS. 2A and 2B. As described above, the left and right configurations are the same, and in the following description, L and R indicating the left are omitted from each reference except for a part.
図 2 Aは、 変倍光学系 11が高倍に変倍された際の変倍照明レンズ群 3の各レ ンズ群の配置を示している。 Figure 2A shows the various lenses of the variable magnification illumination lens group 3 when the variable magnification optical system 11 is changed to a high magnification. The arrangement of the process group is shown.
変倍光学系 1 1が高倍のときは対物レンズ 7により平行光に変換された光束 のうち、 より径の太い光束が変倍光学系 1 1を通ることができ、 変倍光学系 1 1 が低倍のときは高倍に比較して細い平行光束しか変倍光学系 1 1に入らない。 す なわち、 変倍光学系 1 1の倍率によって対物レンズ 7の開口数 NAが変化する (図 5 A、 5 B参照) 。  When the variable magnification optical system 1 1 is high magnification, among the light beams converted into parallel light by the objective lens 7, a light beam with a larger diameter can pass through the variable magnification optical system 1 1, and the variable magnification optical system 1 1 When the magnification is low, only a narrow parallel beam enters the variable magnification optical system 11 as compared with the high magnification. In other words, the numerical aperture NA of the objective lens 7 changes depending on the magnification of the variable magnification optical system 11 (see FIGS. 5A and 5B).
照明光学系 Sからの照明光と標本 8からの観察光の N Aを同程度にするため には、 照明光学系 S中の変倍照明レンズ群 3の作用を受けて射出される光束の径 が、 観察光の NA相当である必要がある。  In order to make the NA of the illumination light from the illumination optical system S and the observation light from the specimen 8 approximately the same, the diameter of the light beam emitted by the action of the variable magnification illumination lens group 3 in the illumination optical system S is The observation light must be equivalent to NA.
実施の形態に係る実体顕微鏡 1 0 0では、 変倍照明レンズ群 3を 3群構成とし、 第 2レンズ群を変倍機構 (3 L a、 3 R a (図 1参照) ) で光軸方向に移動する ことにより、 変倍照明レンズ群 3を射出する照明光の光束径を変更できるように している。  In the stereomicroscope 100 according to the embodiment, the variable magnification illumination lens group 3 has a three-group configuration, and the second lens group has a variable magnification mechanism (3 La, 3 Ra (see FIG. 1)) in the optical axis direction. By moving to, the beam diameter of the illumination light emitted from the variable magnification illumination lens group 3 can be changed.
変倍照明レンズ群 3は、 拡散板 4側から光源 2に向かって順に、 正屈折力の第 1レンズ群 3 1と、 負屈折力の第 2レンズ群 3 2と、 正屈折力の第 3レンズ群 3 3とから構成されている。  The variable magnification illumination lens group 3 includes, in order from the diffuser 4 side toward the light source 2, a first lens group 3 1 having a positive refractive power, a second lens group 3 2 having a negative refractive power, and a third lens having a positive refractive power. It consists of a lens group 33.
変倍光学系 1 1が高倍に変倍された際には、 図 2 Aに示すように、 第 2レンズ 群 3 2が移動機構 (3 L a、 3 R a (図 1参照) ) により第 1レンズ群 3 1側に 光軸に沿って移動されて、 変倍照明レンズ群 3を射出する照明光束を太くし観察 光の N A相当にすることができる。  When the variable magnification optical system 11 is changed to a high magnification, as shown in FIG. 2A, the second lens group 3 2 is moved by the moving mechanism (3 La, 3 Ra (see FIG. 1)). 1 Lens group 3 It is moved along the optical axis to the 1 side, and the illumination light beam emitted from the variable magnification illumination lens group 3 can be thickened to be equivalent to NA of the observation light.
一方、 変倍光学系 1 1が低倍に変倍された際には、 図 2 Bに示すように、 第 2 レンズ群 3 2が移動機構 (3 L a、 3 R a (図 1参照) ) により第 3レンズ群 3 3側に光軸に沿って移動されて、 変倍照明レンズ群 3を射出する照明光束を細く し観察光の N A相当にすることができる。  On the other hand, when the variable magnification optical system 11 is changed to a low magnification, as shown in Fig. 2B, the second lens group 3 2 is moved (3 La, 3 Ra (see Fig. 1)). ) Is moved toward the third lens group 33 along the optical axis, and the illumination light beam emitted from the variable magnification illumination lens group 3 can be narrowed to be equivalent to NA of the observation light.
このように、 変倍照明レンズ群 3の第 2レンズ群 3 2を光軸に沿って移動する ことで変倍照明レンズ群 3の合成焦点距離を変化させることができる。 なお、 変倍光学系 1 1の変倍による移動と変倍照明光学系 3の第 2レンズ群の 移動とは不図示の機構により連動するように構成されている。 例えば、 連動機構 はカム機構等の機械的装置、 あるいは変倍光学系 11のズームレンズ群 (11 L a、 11 Lb, l l Ra、 l lRb) の位置をセンサー等で検出して変倍照明レ ンズ群 3の移動機構 (3La、 3Ra) を電動制御する装置等により達成するこ とができる。 Thus, the combined focal length of the variable magnification illumination lens group 3 can be changed by moving the second lens group 32 of the variable magnification illumination lens group 3 along the optical axis. The movement of the variable magnification optical system 11 due to the variable magnification and the movement of the second lens group of the variable magnification illumination optical system 3 are configured to be linked by a mechanism (not shown). For example, the interlocking mechanism is a mechanical device such as a cam mechanism, or the position of the zoom lens group (11 La, 11 Lb, ll Ra, l lRb) of the variable magnification optical system 11 is detected by a sensor, etc. This can be achieved by a device that electrically controls the movement mechanism (3La, 3Ra) of the tunnel group 3.
次に、 光源像と入射瞳径の関係について図 2 A、 2B、 図 5A、 5Bを参照し つつ説明する。  Next, the relationship between the light source image and the entrance pupil diameter will be described with reference to FIGS. 2A and 2B, FIGS. 5A and 5B.
図 2 Aの高倍率時において、 ファイノ 2 Aの端面 2から光源像までの最大倍率 を i3Hとし、 ファイバ 2 Aの直径を φ f とするとき、 変倍照明レンズ群 3の射出 側に形成される光源像の直径 φ iHは、  When the maximum magnification from the end face 2 of the Fino 2 A to the light source image is i3H and the diameter of the fiber 2A is φ f at the high magnification of Fig. 2A, it is formed on the exit side of the variable magnification illumination lens group 3. The diameter of the light source image φ iH is
φ i Η=ι3ΗΧ φ f  φ i Η = ι3ΗΧ φ f
となる。 It becomes.
一方、 図 2 Bの低倍率時において、 ファイバ 2 Aの端面 2から光源像までの最 小倍率を^ Lとし、 ファイバ 2 Aの直径を φ f とするとき、 変倍照明レンズ群 3 の射出側に形成される光源像の直径 φ i Lは、  On the other hand, when the minimum magnification from the end face 2 of the fiber 2 A to the light source image is ^ L and the diameter of the fiber 2 A is φ f at the low magnification in Fig. 2B, the exit of the variable magnification illumination lens group 3 The diameter φ i L of the light source image formed on the side is
φ i L = i3 L X φ f  φ i L = i3 L X φ f
となる。 It becomes.
そして、図 5 A、 5 Bに示すように、 φ i H=E P H (最大倍率時の入射瞳径)、 φ i L = EPL (最小倍率時の入射瞳径) の条件を満たすとき、 光源像が入射瞳 径を覆うための必要十分な照明が得られる。 ここで、 図 5A、 5Bは、 変倍光学 系の各倍率における入射瞳径を示し、 図 5 Aは最大倍率時を、 図 5 Bは最小倍率 時をそれぞれ示す。  As shown in Figs. 5A and 5B, when the conditions of φ i H = EPH (incident pupil diameter at maximum magnification) and φ i L = EPL (incidence pupil diameter at minimum magnification) are satisfied, the light source image Provides sufficient illumination to cover the entrance pupil diameter. Here, FIGS. 5A and 5B show the entrance pupil diameter at each magnification of the variable magnification optical system, FIG. 5A shows the maximum magnification, and FIG. 5B shows the minimum magnification.
従って、 Therefore,
Figure imgf000007_0001
Figure imgf000007_0001
を満たすことで、 N Aに相当する照明光を得ることができる。 一方、 観察光学系 Iの変倍光学系 1 1と同じ変倍比を実現しょうとすると、 変 倍照明レンズ群 3のレンズ枚数が増加し、 変倍照明レンズ群 3中の変倍レンズ群 32の移動距離が長くなるなど変倍照明レンズ群 3のコストアップになる。 そこ でコストをあまりかけない簡易的な変倍照明レンズ群 3として、 最高倍率時に入 射瞳径の 1Z4程度、 より好ましくは 1Z2程度の照明光束とすることが好まし い。 By satisfying the conditions, illumination light equivalent to NA can be obtained. On the other hand, if an attempt is made to achieve the same zoom ratio as the zoom optical system 1 1 of the observation optical system I, the number of lenses of the zoom illumination lens group 3 will increase, and the zoom lens group in the zoom illumination lens group 3 32 This increases the cost of the variable magnification illumination lens group 3, such as a longer travel distance. Therefore, as a simple variable magnification illumination lens group 3 that does not cost much, it is preferable that the illumination light beam has an entrance pupil diameter of about 1Z4, more preferably about 1Z2 at the maximum magnification.
このような構成では、 最大倍率時の照明光束系 Φ i Hは  In such a configuration, the illumination beam system Φ i H at the maximum magnification is
φ i H>0. 25 XEPH  φ i H> 0.25 XEPH
を満足すればよい。 このとき、Should be satisfied. At this time,
3H/ 3L>0. 25 X (EPH/EPL)  3H / 3L> 0.25 X (EPH / EPL)
を満足する。 Satisfied.
また、  Also,
Φ i H>0. 5 XEPH  Φ i H> 0.5 XEPH
がより好ましい。 このとき、Is more preferable. At this time,
H βL>0. 5 X (EPH/EPL)  H βL> 0.5 X (EPH / EPL)
を満足する。 Satisfied.
以上の結果から、 下記の条件 (1) を満足することが望ましい。  From the above results, it is desirable to satisfy the following condition (1).
(1) 0. 25< (/3HXEPL) / (/3LXEPH) ≤ 1. 0  (1) 0. 25 <(/ 3HXEPL) / (/ 3LXEPH) ≤ 1.0
なお、 上述の変倍照明レンズ群 3は、 倍率変更を司る可動レンズ群 32が 1つ なので、 光源の位置を正確に変倍光学系 1 1の入射瞳位置に保つことは難しいが、 変倍照明レンズ群 3の可動レンズ群 32を 2つ以上で構成すれば、 光源像位置を 空間的に不動とするか、 あるいは変倍光学系 1 1の入射瞳位置が倍率によって変 わるとき、 それぞれの位置に適した位置へ光源像位置を設定することができる。 以下、 照明レンズ群 3の一数値実施例を表 1に示す。  Note that the variable magnification illumination lens group 3 described above has one movable lens group 32 that controls the magnification change, so it is difficult to accurately maintain the position of the light source at the entrance pupil position of the variable magnification optical system 11. If the movable lens group 32 of the illumination lens group 3 is composed of two or more, when the light source image position is spatially immovable or the entrance pupil position of the variable magnification optical system 11 changes depending on the magnification, The light source image position can be set to a position suitable for the position. Table 1 below shows a numerical example of the illumination lens group 3.
表中の (面データ) において、 iは物体側からの面の番号、 rは曲率半径、 d は面間隔、 ndは d線 (波長 λ- 587. 6 nm) における屈折率、 レ dは d線 (波長 λ = 587. 6 nm)におけるアッベ数、 d iは変倍における可変面間隔、 像面は像面をそれぞれ表している。 なお、 空気の屈折率 n d = 1. 00000は 記載を省略している。 また、 曲率半径 r欄の 「∞」 は平面を示している。 In (surface data) in the table, i is the number of the surface from the object side, r is the radius of curvature, d is the surface spacing, nd is the refractive index at the d-line (wavelength λ-587. 6 nm), and d is d line The Abbe number at (wavelength λ = 587.6 nm), di represents the variable surface distance during zooming, and the image surface represents the image surface. Note that the refractive index of air nd = 1.00000 is omitted. In addition, “∞” in the radius of curvature r column indicates a plane.
t  t
(可変間隔データ)において、 d iは面番号 iでの可変面間隔値を表している。 (条件式対応値) は、 各条件式の対応値をそれぞれ示す。  In (variable interval data), d i represents the variable surface interval value for surface number i. (Conditional expression corresponding value) indicates the corresponding value of each conditional expression.
なお、以下の全ての諸元値において、掲載されている焦点距離 f、曲率半径 r、 面間隔 dその他の長さ等は、 特記の無い場合一般に 「mm」 が使われるが、 光学 系は比例拡大または比例縮小しても同等の光学性能が得られるので、 これに限ら れるものではない。 また、 単位は 「mm」 に限定されることなく他の適当な単位 を用いることもできる。  In all the following specifications, “mm” is generally used for the focal length f, radius of curvature r, surface spacing d and other lengths, etc. unless otherwise specified, but the optical system is proportional. Since the same optical performance can be obtained even if it is enlarged or proportionally reduced, it is not limited to this. Further, the unit is not limited to “mm”, and other appropriate units can be used.
(表 1)  (table 1)
(面データ)  (Surface data)
ί r d yd yd  ί r d yd yd
1 oo 1.0 1. 51680 64.1  1 oo 1.0 1. 51680 64.1
2 oo 5.0  2 oo 5.0
3 50.000 5.0 1. 60311 60.6  3 50.000 5.0 1. 60311 60.6
4 -50.000 d4  4 -50.000 d4
5 -90.000 2.0 1. 67163 38.8  5 -90.000 2.0 1. 67 163 38.8
6 45.000 d6  6 45.000 d6
7 5.0 1. 51680 64.1  7 5.0 1. 51 680 64.1
8 20.0 8 20.0
Figure imgf000009_0001
Figure imgf000009_0001
(可変間隙データ)  (Variable gap data)
高倍 低倍  High magnification Low magnification
d4 = 1.0 100.0  d4 = 1.0 100.0
d6 = 100.0 1.0 (条件式対応値)d6 = 100.0 1.0 (Values for conditional expressions)
Figure imgf000010_0001
Figure imgf000010_0001
|3 L= 1. 2  | 3 L = 1.2
EPH=25 (最大倍率時)  EPH = 25 (at maximum magnification)
EPL=3. 0 (最小倍率時)  EPL = 3.0 (at minimum magnification)
(1) (]3HXEPL) / ( LXEPH) =0. 64  (1) (] 3HXEPL) / (LXEPH) = 0.64
以上述べたように、 実施の形態に係る実体顕微鏡によれば、 観察光学系の変倍 光学系の変倍に連動して、 変倍照明レンズ群の一部のレンズ群を移動させること で照明光学系の変倍を行い、 照明光学系を射出する照明光を結像光学系の NA相 当に設定することができ、 低倍から高倍まで良好な観察像が得られる実体顕微鏡 を提供することができる。  As described above, according to the stereomicroscope according to the embodiment, zooming of the observation optical system is performed by moving a part of the zoom lens group in conjunction with the zooming of the optical system. To provide a stereo microscope that can change the optical system and set the illumination light emitted from the illumination optical system to be equivalent to the NA of the imaging optical system, and obtain a good observation image from low to high magnification. Can do.
また、上記数値例の実体顕微鏡 100の場合、変倍光学系 11の入射瞳位置は、 その倍率が高倍時、 中倍時、 低倍時のとき以下の位置になる。 ここで、 所定の面 から光源側を正 (十)、 対物レンズ側を負 (一) とする。  Further, in the case of the stereomicroscope 100 of the above numerical example, the entrance pupil position of the variable magnification optical system 11 is as follows when the magnification is high, medium, and low. Here, the light source side is positive (ten) and the objective lens side is negative (one) from a predetermined plane.
変倍光学系 11の倍率 一 変倍光学系 11の入射瞳位置から変倍照明 レンズ群 3の面番号 3の面までの距離 高倍時 一 140麗  Magnification of variable magnification optical system 11 1 Distance from entrance pupil position of variable magnification optical system 11 to variable magnification illumination Surface from surface number 3 of lens group 3 High magnification 1 140
中倍時 一 120mm  Medium double 1 120mm
低倍時 一 32iM  Low time 1 32iM
ここで、照明光学系 S中の変倍照明レンズ群 3を全て固定としたときにおける、 照明光学系 S 中に形成される変倍光学系 1 1の入射瞳の共役像の位置 (入射瞳共 役位置)は、  Here, when all the variable magnification illumination lens groups 3 in the illumination optical system S are fixed, the position of the conjugate image of the entrance pupil of the variable magnification optical system 11 formed in the illumination optical system S (Position)
変倍光学系 一 変倍照明 一 変倍照明レンズ群 3の面番号 8の 1 1の倍率 レンズ群 3 面から入射瞳共役位置までの距離 高倍時 d4=l,d6=100 +20醒  Magnification optical system 1 Magnification illumination 1 Magnification illumination lens group 3 surface number 8 1 1 1 magnification Lens group 3 surface to entrance pupil conjugate position High magnification d4 = l, d6 = 100 +20
中倍時 d4=l,d6=100 +25讓 低倍時 d4=l, d6=100 + 140mm となり、 低倍時の入射瞳共役位置に光源像 (光源) を置くと、 高倍時に適切な 照明ができず、 高倍時の入射瞳共役位置に光源像 (光源) を置くと、 低倍時に照 野が不足する等の問題が起こる。 Medium time d4 = l, d6 = 100 +25 讓 At low magnification, d4 = l, d6 = 100 + 140mm. If a light source image (light source) is placed at the entrance pupil conjugate position at low magnification, proper illumination is not possible at high magnification, and the light source is at the entrance pupil conjugate position at high magnification. When an image (light source) is placed, problems such as insufficient illumination occur at low magnification.
それに対し、 照明光学系 S中の変倍照明レンズ群 3の可動レンズ群 32を移動 すると、 照明光学系 S 中に形成される変倍光学系 1 1の入射瞳の共役像位置は、 以下のように変倍光学系 1 1の倍率が変わっても概ね互いに近い位置 (位置の変 動が小さい) に形成されることが可能になる。  On the other hand, when the movable lens group 32 of the variable magnification illumination lens group 3 in the illumination optical system S is moved, the conjugate image position of the entrance pupil of the variable magnification optical system 11 formed in the illumination optical system S is as follows. Thus, even if the magnification of the variable magnification optical system 11 is changed, it can be formed at positions that are substantially close to each other (position change is small).
変倍光学系 一 変倍照明 一 変倍照明レンズ群 3の面番号 8の 1 1の倍率 レンズ群 3 面から入射瞳共役位置までの距離 高倍時 d4=l, d6=100 + 20麵  Magnification optical system 1 Magnification illumination 1 Magnification illumination lens group 3 Surface number 8 1 1 Magnification Distance from lens group 3 surface to entrance pupil conjugate position High magnification d4 = l, d6 = 100 + 20 麵
中倍時 d4=l, d6=100 + 25賺  Medium time d4 = l, d6 = 100 + 25 賺
低倍時 d4=100, d6=l +40麵  Low magnification d4 = 100, d6 = l +40 麵
以上により、 本実施の形態に係る実体顕微鏡によれば、 照明光学系の変倍によ り、 光源像の倍率変化を行うとともに入射瞳共役位置変動の補正も行うことがで き、 常に良好な照明が可能になる。  As described above, according to the stereomicroscope according to the present embodiment, the magnification of the illumination optical system can be used to change the magnification of the light source image and to correct the entrance pupil conjugate position variation, which is always good. Lighting is possible.
次に、 実施の形態に係る実体顕微鏡の変形例について図面を参照しつつ説明す る。 以下の第 1、 第 2変形例では、 実体顕微鏡本体の構成は上記実施の形態と同 様であり同じ構成には同じ符号を付し説明を省略する。 左右の構成は前述の実施 の形態と同様であり、 以下の説明では一部を除き各符号から左右を示す L、 Rを 省略して説明する。  Next, a modification of the stereomicroscope according to the embodiment will be described with reference to the drawings. In the following first and second modified examples, the configuration of the stereomicroscope main body is the same as that of the above-described embodiment, and the same components are denoted by the same reference numerals and description thereof is omitted. The left and right configurations are the same as those of the above-described embodiment, and in the following description, L and R indicating left and right are omitted from each reference except for a part.
(第 1変形例)  (First variation)
実施の形態に係る実体顕微鏡の第 1変形例を図 3に示す。  FIG. 3 shows a first modification of the stereomicroscope according to the embodiment.
第 1変形例に係る実体顕微鏡 2 0 0は、 簡易偏光実体顕微鏡観察を可能にする ものである。  The stereomicroscope 200 according to the first modification enables observation with a simple polarized stereomicroscope.
図 3において、 照明装置 6 ( 6 L、 6 R) の光路中の拡散板 4 ( 4 L、 4 R) とハーフミラー 5との間に偏光板 P 1 (P 1 L、 P 1R) が配置され、 観察光学 系 Iの光路中のハーフミラー 5と変倍光学系 11 (11L、 11 R) との間に偏 光板 P 2 (P 2L、 P2R) が配置されている。 そして、 偏光板 P 1と偏光板 P 2はクロスニコル状態に設定できるように光軸を中心として回転可能に構成さ れている。 なお、 偏光板 P 1と偏光板 P 2は、 光路中に揷脱可能に構成しても良 レ^ これにより、 前述した実施の形態との共用化が可能となる。 In Fig. 3, diffuser plate 4 (4 L, 4 R) in the light path of lighting device 6 (6 L, 6 R) Polarizer P 1 (P 1 L, P 1R) is placed between the half mirror 5 and the variable magnification optical system 11 (11L, 11 R) in the optical path of the observation optical system I. The polarizing plate P 2 (P 2L, P2R) is arranged on the side. The polarizing plate P 1 and the polarizing plate P 2 are configured to be rotatable about the optical axis so that they can be set in a crossed Nicols state. Note that the polarizing plate P 1 and the polarizing plate P 2 may be configured to be detachable in the optical path. As a result, the polarizing plate P 1 and the polarizing plate P 2 can be shared with the above-described embodiment.
このように、 第 1変形例では照明装置 6に 2つの偏光板 P 1、 P 2を互いにク ロスニコルになるよう配置できるので、 簡易偏光実体顕微鏡として使用すること ができる。  As described above, in the first modification, the two polarizing plates P 1 and P 2 can be arranged in the lighting device 6 so as to be crossed Nicols, so that it can be used as a simple polarization stereomicroscope.
なお、 変倍光学系 11に変倍照明レンズ群 3が連動することは前述の実施の形 態と同様である。 また、 その他の作用、 効果も前述の実施の形態と同様であり、 重複する説明を省略する。  Note that the variable magnification illumination lens group 3 is linked to the variable magnification optical system 11 in the same manner as in the above-described embodiment. In addition, other operations and effects are the same as those of the above-described embodiment, and redundant description is omitted.
(第 2変形例)  (Second modification)
実施の形態に係る実体顕微鏡の第 2変形例を図 4に示す。  FIG. 4 shows a second modification of the stereomicroscope according to the embodiment.
第 2変形例に係る実体顕微鏡 300は、 落射蛍光実体顕微鏡観察を可能にする ものである。  The stereomicroscope 300 according to the second modification enables observation with an epifluorescence stereomicroscope.
図 4において、 照明装置 6 (6L、 6R) の光路中の拡散板 4 (4L、 4R) とハーフミラ一 5との間に第 1の波長選択フィル夕である励起フィル夕 F 1 (F 1 L、 F I R) が配置され、 観察光学系 Iの光路中のハーフミラー 5と変倍光学 系 11 (11L、 11 R) との間に蛍光波長を選択する第 2の波長選択フィルタ であるバリアフィルタ F 2 (F 2L、 F 2 R) が配置されている。 なお、 バリア フィル夕 F 2はェミッションフィルタでも良い。 また、 励起フィルタ F 1とバリ ァフィルタ F 2を光路中に揷脱可能に構成しても良い。これにより、第 1変形例、 前述した実施の形態との共用化が可能となる。  In FIG. 4, the first wavelength selective filter is an excitation filter F 1 (F 1 L) between the diffuser 4 (4L, 4R) and the half mirror 5 in the optical path of the illumination device 6 (6L, 6R). , FIR), and a barrier filter F that is a second wavelength selection filter that selects the fluorescence wavelength between the half mirror 5 in the optical path of the observation optical system I and the variable magnification optical system 11 (11L, 11 R) 2 (F 2L, F 2 R) are arranged. The barrier filter evening F 2 may be an emission filter. Further, the excitation filter F 1 and the barrier filter F 2 may be configured to be removable in the optical path. This makes it possible to share the first modified example with the above-described embodiment.
このように、 第 2変形例では照明装置 6に 2つの波長選択フィルタ F 1、 F 2 を配置しており、 落射蛍光実体顕微鏡として使用することができる。 なお、 変倍光学系 1 1に変倍照明レンズ群 3が連動することは前述の実施の形 態と同様である。 また、 その他の作用、 効果も前述の実施の形態と同様であり、 重複する説明を省略する。 Thus, in the second modification, the two wavelength selection filters F 1 and F 2 are arranged in the illumination device 6 and can be used as an epifluorescence stereomicroscope. The variable magnification illumination lens group 3 is linked to the variable magnification optical system 11 as in the above-described embodiment. In addition, other operations and effects are the same as those of the above-described embodiment, and redundant description is omitted.
このように、 実施の形態に係る実体顕微鏡では、 対物レンズと変倍光学系との 間の照明装置を適宜交換することで、 落射照明を用いた種々の変倍 (ズーム) 実 体顕微鏡観察を達成することができる。 また、 拡散板 4 R、 4 Lは一枚の拡散板 で構成することも可能である。  In this way, in the stereomicroscope according to the embodiment, various zooming zooms using epi-illumination can be performed by appropriately replacing the illumination device between the objective lens and the zooming optical system. Can be achieved. Further, the diffusion plates 4 R and 4 L can be constituted by a single diffusion plate.

Claims

請 求 の 範 囲 請求項 1 . 左右一対の観察光学系と、 左右一対の照明光学系とを有し、 前記左右一対の観察光学系は、 その各観察光学系中にぞれぞれ配設される複数 の変倍光学系と、 一つの対物レンズとを有し、 Claim scope 1. A pair of left and right observation optical systems and a pair of left and right illumination optical systems, wherein the pair of left and right observation optical systems are arranged in each of the observation optical systems. A plurality of variable magnification optical systems and one objective lens,
前記左右一対の照明光学系は、 その各照明光学系中にそれぞれ配設され、 前記 変倍光学系の変倍に応じて光源像の倍率を変化させて形成可能な複数の変倍照 明レンズ群と、 前記左右一対の観察光学系の光路中に配設される照明光偏向部材 とを有し、  The pair of left and right illumination optical systems are respectively arranged in the illumination optical systems, and a plurality of variable magnification illumination lenses that can be formed by changing the magnification of the light source image according to the magnification of the variable magnification optical system. A group, and an illumination light deflection member disposed in the optical path of the pair of left and right observation optical systems,
前記照明光偏向部材は、 前記変倍光学系と前記一つの対物レンズとの間に配 設されることを特徴とする実体顕微鏡。 請求項 2 . 前記変倍照明レンズ群は、 前記変倍光学系の変倍に応じて前記光源 像の倍率を少なくとも 2つの状態に設定可能であることを特徴とする請求項 1 に記載の実体顕微鏡。 請求項 3 . 前記複数の変倍照明レンズ群は、 前記変倍光学系の変倍に応じて変 化する前記変倍光学系の入射瞳位置に対して所定の関係付けをした位置に前記 光源像を形成することを特徴とする請求項 1又は 2に記載の実体顕微鏡。 請求項 4. 前記所定の関係付けをした位置は少なくとも 2つの位置であること を特徴とする請求項 3に記載の実体顕微鏡。 請求項 5 . 前記照明光学系は、 前記照明光偏向部材と前記変倍照明レンズ群と の間に光拡散部材を有することを特徴とする請求項 1に記載の実体顕微鏡。 請求項 6. 前記変倍光学系が最大倍率のときの当該変倍光学系の入射瞳径を E PH、 The stereoscopic microscope characterized in that the illumination light deflection member is disposed between the variable magnification optical system and the one objective lens. 2. The entity according to claim 1, wherein the variable magnification illumination lens group can set the magnification of the light source image in at least two states according to the variable magnification of the variable magnification optical system. microscope. 3. The plurality of variable magnification illumination lens groups may be arranged such that the light source has a predetermined relationship with an entrance pupil position of the variable magnification optical system that changes in accordance with the variable magnification of the variable magnification optical system. The stereomicroscope according to claim 1 or 2, wherein an image is formed. [Claim 4] The stereomicroscope according to claim 3, wherein the predetermined relation is at least two positions. 5. The stereomicroscope according to claim 1, wherein the illumination optical system includes a light diffusion member between the illumination light deflection member and the variable magnification illumination lens group. 6. The entrance pupil diameter of the variable magnification optical system when the variable magnification optical system is at the maximum magnification is E PH,
前記変倍光学系が最小倍率のときの入射瞳径を E P L、  The entrance pupil diameter when the variable magnification optical system is at the minimum magnification is E P L,
前記照明光学系により形成される前記光源像の最大倍率を β Η、  Β Η, the maximum magnification of the light source image formed by the illumination optical system,
前記照明光学系により形成される前記光源像の最小倍率を ]3 L、 とするとき 0. 2 5く ((3HXEPL) / (;3 LXEPH) ≤ 1. 0  When the minimum magnification of the light source image formed by the illumination optical system is] 3 L, 0.25 ((3HXEPL) / (; 3 LXEPH) ≤ 1.0
の条件を満足することを特徴とする請求項 1に記載の実体顕微鏡。 請求項 7. 前記変倍照明レンズ群は、 複数のレンズ群からなり、 2. The stereomicroscope according to claim 1, wherein the following condition is satisfied. 7. The variable magnification illumination lens group includes a plurality of lens groups,
前記複数のレンズ群のうち少なくとも 1つのレンズ群を光軸に沿って移動す ることで前記光源像の倍率を変更することを特徴とする請求項 1に記載の実体 顕微鏡。 請求項 8. 前記変倍照明レンズ群は、 光源側から順に、 正屈折力の第 1レンズ 群と、 負屈折力の第 2レンズ群と、 正屈折力の第 3レンズ群を有し、  2. The stereomicroscope according to claim 1, wherein a magnification of the light source image is changed by moving at least one lens group of the plurality of lens groups along an optical axis. The variable power illumination lens group includes, in order from the light source side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens group having a positive refractive power,
前記光源像の倍率を変更する際、 前記第 2レンズ群を光軸に沿って移動するこ とを特徴とする請求項 1に記載の実体顕微鏡。 請求項 9. 前記照明光学系は、 前記照明光偏向部材と前記変倍照明レンズ群と の間に第 1偏光部材を有し、  2. The stereomicroscope according to claim 1, wherein when changing the magnification of the light source image, the second lens group is moved along the optical axis. 9. The illumination optical system has a first polarizing member between the illumination light deflection member and the variable magnification illumination lens group,
前記観察光学系は、 前記照明光偏向部材と前記変倍光学系との間に第 2偏光部 材とを有し、  The observation optical system has a second polarizing member between the illumination light deflection member and the variable magnification optical system,
前記第 1偏光部材と前記第 2偏光部材は、 クロスニコル状態に設定可能である ことを特徴とする請求項 1に記載の実体顕微鏡。 請求項 1 0. 前記照明光学系は、 前記照明光偏向部材と前記変倍照明レンズ群 との間に第 1波長選択部材を有し、 The stereomicroscope according to claim 1, wherein the first polarizing member and the second polarizing member can be set in a crossed Nicol state. 10. The illumination optical system includes the illumination light deflection member and the variable magnification illumination lens group. A first wavelength selection member between and
前記観察光学系は、 前記照明光偏向部材と前記変倍光学系との間に第 2波長選 択部材を有することを特徴とする請求項 1に記載の実体顕微鏡。  2. The stereomicroscope according to claim 1, wherein the observation optical system includes a second wavelength selection member between the illumination light deflection member and the variable power optical system.
PCT/JP2009/058432 2008-04-23 2009-04-22 Stereoscopic microscope WO2009131243A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008112894 2008-04-23
JP2008-112894 2008-04-23

Publications (1)

Publication Number Publication Date
WO2009131243A1 true WO2009131243A1 (en) 2009-10-29

Family

ID=41216966

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/058432 WO2009131243A1 (en) 2008-04-23 2009-04-22 Stereoscopic microscope

Country Status (1)

Country Link
WO (1) WO2009131243A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020095444A1 (en) * 2018-11-09 2020-05-14 株式会社ニコン Microscope

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11231227A (en) * 1998-02-10 1999-08-27 Olympus Optical Co Ltd Stereomicroscope
JP2002098899A (en) * 2000-09-21 2002-04-05 Olympus Optical Co Ltd Fluorescent microscope
JP2004109840A (en) * 2002-09-20 2004-04-08 Olympus Corp Stereomicroscope
JP2006154229A (en) * 2004-11-29 2006-06-15 Nikon Corp Microscope
JP2007086503A (en) * 2005-09-22 2007-04-05 Olympus Corp Microscope

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11231227A (en) * 1998-02-10 1999-08-27 Olympus Optical Co Ltd Stereomicroscope
JP2002098899A (en) * 2000-09-21 2002-04-05 Olympus Optical Co Ltd Fluorescent microscope
JP2004109840A (en) * 2002-09-20 2004-04-08 Olympus Corp Stereomicroscope
JP2006154229A (en) * 2004-11-29 2006-06-15 Nikon Corp Microscope
JP2007086503A (en) * 2005-09-22 2007-04-05 Olympus Corp Microscope

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020095444A1 (en) * 2018-11-09 2020-05-14 株式会社ニコン Microscope

Similar Documents

Publication Publication Date Title
CN106772976B (en) A kind of microcobjective and wide visual field high-resolution imaging system
US7593157B2 (en) Zoom microscope
JP4671463B2 (en) Illumination optical system and microscope equipped with illumination optical system
JP2001166214A (en) Optical device
JP2006154230A (en) Zoom microscope
JP5286774B2 (en) Microscope device and fluorescent cube used therefor
JP5646278B2 (en) Microscope adapter unit
JPH08190056A (en) Optical observation device
US9715097B2 (en) Stereomicroscope having a main observer beam path and a co-observer beam path
JPWO2008069220A1 (en) Imaging device and microscope
JPH1031161A (en) Device for producing longitudinal chromatic aberration defined at confocal microscope optical path
JP3544564B2 (en) Microscope equipment
JP5087386B2 (en) microscope
JP2002365555A (en) Illumination optical system for microscope
JP4862368B2 (en) Zoom microscope
KR101907845B1 (en) Transmissive illumination fluorescence microscope comprising Koehler illumination
JP5389390B2 (en) Observation device
JP2010091679A (en) Microscope apparatus, and fluorescence cube used for the same
WO2007135976A1 (en) Zoom microscope
JP4434612B2 (en) Microscope and zoom objective
WO2009131243A1 (en) Stereoscopic microscope
US7706076B2 (en) Optical system
JP2009008701A (en) Illuminator and zoom microscope with this illuminator
US20050088735A1 (en) Multi-axis imaging system with single-axis relay
JP3861372B2 (en) microscope

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09733960

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 09733960

Country of ref document: EP

Kind code of ref document: A1