WO2020093929A1 - 电子装置、无线通信方法和计算机可读介质 - Google Patents

电子装置、无线通信方法和计算机可读介质 Download PDF

Info

Publication number
WO2020093929A1
WO2020093929A1 PCT/CN2019/114743 CN2019114743W WO2020093929A1 WO 2020093929 A1 WO2020093929 A1 WO 2020093929A1 CN 2019114743 W CN2019114743 W CN 2019114743W WO 2020093929 A1 WO2020093929 A1 WO 2020093929A1
Authority
WO
WIPO (PCT)
Prior art keywords
position range
electronic device
user equipment
receiving
measurement information
Prior art date
Application number
PCT/CN2019/114743
Other languages
English (en)
French (fr)
Inventor
许威
王宇成
张文博
Original Assignee
索尼公司
许威
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 索尼公司, 许威 filed Critical 索尼公司
Priority to US17/283,023 priority Critical patent/US11516809B2/en
Priority to CN201980072679.6A priority patent/CN113170322B/zh
Publication of WO2020093929A1 publication Critical patent/WO2020093929A1/zh
Priority to US17/972,662 priority patent/US11785622B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/12Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves by co-ordinating position lines of different shape, e.g. hyperbolic, circular, elliptical or radial
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/023Services making use of location information using mutual or relative location information between multiple location based services [LBS] targets or of distance thresholds
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/006Locating users or terminals or network equipment for network management purposes, e.g. mobility management with additional information processing, e.g. for direction or speed determination
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S1/00Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
    • G01S1/02Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith using radio waves
    • G01S1/08Systems for determining direction or position line
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering

Definitions

  • the present disclosure generally relates to the field of wireless communication, and more particularly, to electronic devices, wireless communication methods, and computer-readable media related to beam positioning.
  • the positioning in the mobile communication system can use the beam positioning technology.
  • the accuracy of beam positioning is limited by the distance from the user equipment to be located to the base station, the size and topology of the base station antenna array, and so on. For example, for cell edge user equipment that is far away from the base station, the positioning accuracy is low.
  • an electronic device for wireless communication includes a processing circuit configured to: determine a first position range of a user equipment based on first measurement information of the user equipment regarding a first beam scan; at a first position When the range is lower than a predetermined accuracy requirement, determining the adjustment of the beam configuration based on the first position range; and determining the second position range of the user equipment based on the second measurement information of the user equipment regarding the second beam scan using the adjusted beam configuration .
  • a wireless communication method includes: determining a first position range of a user equipment based on first measurement information about a first beam scan of the user equipment; when the first position range is lower than a predetermined accuracy requirement, based on A position range determines the adjustment of the beam configuration; and the second position range of the user equipment is determined based on the second measurement information of the user equipment regarding the second beam scan using the adjusted beam configuration.
  • an electronic device for wireless communication includes a processing circuit configured to: control to measure a first beam scan to obtain first measurement information, the first measurement information is used to determine an electronic A first position range of the device; and controlling to measure a second beam scan using the adjusted beam configuration to obtain second measurement information used to determine the second position range of the electronic device.
  • the adjustment of the beam configuration is determined based on the first position range.
  • a wireless communication method includes: measuring a first beam scan to obtain first measurement information, where the first measurement information is used to determine a first position range of the electronic device; and using the adjusted The second beam scan of the beam configuration performs measurement to obtain second measurement information, and the second measurement information is used to determine a second position range of the electronic device.
  • the adjustment of the beam configuration is determined based on the first position range.
  • Embodiments of the present invention also include a computer-readable medium that includes executable instructions, which when executed by the information processing device, cause the information processing device to execute the method according to the above-described embodiment.
  • the embodiments of the present invention are beneficial to improve the accuracy of beam positioning.
  • FIG. 1 is a block diagram showing a configuration example of an electronic device for wireless communication according to an embodiment of the present invention
  • FIG. 2 is a block diagram showing a configuration example of an electronic device for wireless communication according to another embodiment
  • FIG. 3 is a block diagram showing a configuration example of an electronic device for wireless communication according to another embodiment
  • FIG. 4 is a flowchart illustrating an example of a process of a wireless communication method according to an embodiment of the present invention
  • FIG. 5 is a block diagram showing a configuration example of an electronic device for wireless communication according to an embodiment of the present invention.
  • FIG. 6 is a flowchart illustrating an example of a process of a wireless communication method according to an embodiment of the present invention
  • FIG. 7 is a signaling flowchart showing an example of a process according to an embodiment of the present invention.
  • TRP Transmit / Receive Port
  • 11 is a schematic diagram for explaining beam scanning positioning of two TRPs
  • FIG. 12 is a schematic diagram for explaining beam scanning positioning of three TRPs
  • FIG. 13 is a schematic diagram for explaining beam scanning positioning of two TRPs
  • FIG. 14 is a schematic diagram for explaining beam scanning positioning of a single TRP
  • 15 is a schematic diagram for explaining rotating beam positioning
  • 16 is a schematic diagram for explaining the beam rotation angle
  • FIG. 17 is a schematic diagram for explaining rotating beam positioning
  • 19 is a schematic diagram for explaining a single TRP for narrow beam rotation positioning
  • 20 is a schematic diagram for explaining beam rotation positioning by multiple TRPs
  • 21 is a schematic diagram for explaining the single TRP performing secondary beam rotation positioning
  • 22 is a block diagram showing an exemplary structure of a computer that implements the method and apparatus of the present disclosure
  • FIG. 23 is a block diagram showing an example of a schematic configuration of a smartphone to which the technology of the present disclosure can be applied.
  • FIG. 24 is a block diagram showing an example of a schematic configuration of gNB (base station in a 5G system) to which the technology of the present disclosure can be applied.
  • gNB base station in a 5G system
  • the electronic device 100 for wireless communication includes a processing circuit 110.
  • the processing circuit 110 may be implemented as a specific chip, a chipset, a central processing unit (CPU), or the like, for example.
  • the processing circuit 110 includes a range determination unit 111 and a configuration determination unit 113. It should be noted that although the range determination unit 111 and the configuration determination unit 113 are shown in the form of functional blocks in the drawings, it should be understood that the functions of each unit can also be implemented by the processing circuit as a whole, and not necessarily by It is realized by processing discrete actual components in the circuit. In addition, although the processing circuit is shown in a box in the figure, the electronic device may include a plurality of processing circuits, and the functions of each unit may be distributed into the plurality of processing circuits, so that the plurality of processing circuits cooperate to perform these functions .
  • the electronic device 100 may be set on the base station side, and may work as a location management module (Location Management Function, LMF).
  • LMF Location Management Function
  • NR New Radio
  • the positioning request can be initiated on the user side or the network side. If initiated on the user side, for example, the access management module (AMF, Access Management Function) of the control plane receives the positioning request sent by the user, and then forwards the information related to the positioning request to the positioning service system, such as LMF in NR. After completing the positioning operation, the positioning service system feeds back the obtained positioning information to the AMF, and the AMF sends the information to the requesting entity. In some cases, the AMF can also issue a positioning request by itself and request the positioning service system to complete the operation.
  • AMF Access Management Function
  • LTE Long Term Evolution
  • OTDOA Observed Time Difference Of Arrival
  • MIMO Large-scale multi-antenna
  • 5G large-scale antenna technology can form a narrow beam with high gain, can use the angle information of the beam to achieve high-precision positioning.
  • the LTE communication system uses OTDOA technology to calculate the user equipment (UE) location by measuring the time difference of arrival.
  • UE user equipment
  • the minimum beam angle for beam scanning for signal transmission in 5G is limited by the number of base station antennas and the topology of the base station antenna, and as the beam propagation distance increases, the beam gain decreases exponentially, and the beam coverage Significantly increased, resulting in a larger positioning error range.
  • the positioning accuracy of the OTDOA technology used in LTE is very limited, especially with large errors in the vertical direction.
  • the OTDOA (Precision Synchronization) vertical positioning accuracy should preferably exceed 10 meters, and the horizontal positioning accuracy should be above the meter level.
  • beam scanning is used for positioning in NR, due to the propagation characteristics of the beam and the limitation of the size of the base station antenna array, for many users, especially those far away from the main positioning base station, the positioning accuracy they can obtain cannot meet the NR positioning accuracy requirements.
  • the following is a simple calculation in a single TRP beam scanning positioning scenario: assuming the narrowest beam angle is 4 °, and the NR positioning accuracy is required to be 0.5m.
  • the calculated distance between the UE to be located and the TRP cannot exceed 7m.
  • multi-TRP cooperative beam scanning positioning can improve positioning accuracy, the final accuracy is still limited to the narrowest beam angle (TRP antenna configuration). For UEs farther from TRP, the positioning accuracy is worse.
  • the range determining unit 111 of the electronic device 100 is configured to determine the first position range of the UE based on the first measurement information of the UE regarding the first beam scan.
  • the configuration determination unit 113 is configured to determine the adjustment of the beam configuration based on the first position range. According to one embodiment, the configuration determination unit 113 may determine the adjustment of the beam configuration only when the first position range is lower than a predetermined accuracy requirement.
  • the range determining unit 111 is further configured to determine the second position range of the UE based on the second measurement information of the UE regarding the second beam scan using the adjusted beam configuration.
  • the beam configuration may include beam direction or beam width or both beam direction and beam width.
  • the determination of the first position range and the second position range may be based on the transmission angle of the strongest beam received by the UE, or may be based on both the transmission angle of the strongest beam and the received power of the strongest beam.
  • the first measurement information and the second measurement information may include information of the beam with the maximum received power determined by the UE by measuring the received power of each beam in the beam scan.
  • the adjustment of the beam configuration may include adjusting the beam direction so that the adjacent beam divides the first position range.
  • the beam direction can be rotated by a certain angle, so that the boundary between adjacent beams divides the first position range.
  • the adjustment of the beam configuration may include making the adjusted adjacent two beams bisect the first position range, for example, making the boundary of the rotated adjacent two beams bisect the first position range or cross the first position range The central point.
  • the adjustment of the beam configuration may include minimizing the maximum area in all sub-regions after the adjusted (eg, rotated) beam divides the first position range.
  • the adjustment of the beam configuration may also include adjusting the beam direction and width so that the adjusted (for example, rotated) adjacent beam covers the first position range.
  • the second measurement information may include information of the beam with the maximum received power determined by the UE measuring the adjusted (eg, rotated) at least two adjacent beams.
  • FIG. 2 shows a configuration example of an electronic device for wireless communication according to another embodiment.
  • the electronic device 200 includes a processing circuit 210 that includes a range determination unit 211 and a configuration determination unit 213, which are similar to the range determination unit 111 and the configuration determination unit 113 described previously with reference to FIG. 1, respectively.
  • the processing circuit 210 also includes a set determination unit 215.
  • the set determination unit 215 is configured to determine a first transmit / receive end (TRP) set of the wireless access point for performing the first beam scanning based on the first beam configuration.
  • the set determining unit 215 is further configured to determine a second set of receiving / transmitting ends of the wireless access point based on the first measurement information, for performing second beam scanning based on the second beam configuration.
  • the first receiving / transmitting terminal set and the second receiving / transmitting terminal set respectively include one or more receiving / transmitting terminal circuits.
  • the set determining unit 215 may be configured to determine the receiving / transmitting end of the wireless access point adjacent to the main wireless access point of the cell where the UE is located as the first receiving / transmitting end set.
  • the set determining unit 215 may be configured to determine the first set of receiving / transmitting ends according to the strength of the receiving / transmitting end connected to the wireless access point receiving the uplink signal sent by the UE, for example, determining the receiving / transmitting end with high signal strength as the first Receive / Send collection.
  • the set determining unit 215 may be configured to determine the receiving / transmitting end of the wireless access point adjacent to the first position range of the UE as the second receiving / transmitting end set.
  • the set determining unit 215 may be configured to determine the second set of receiving / transmitting ends according to the strength of the receiving / transmitting end of the wireless access point receiving the uplink signal sent by the UE, for example, determining the receiving / transmitting end with high signal strength as the second receiving / Origin collection.
  • the first receiver / transmitter set may be the selected initial receiver / transmitter set, and may receive measurement information of the user equipment on the beam corresponding to the maximum received power in the initial receiver / transmitter set, and determine the first position according to the initial receiver / transmitter set Range, improve the accuracy of the positioning position of the user equipment by limiting the position range.
  • FIG. 3 shows a configuration example of an electronic device for wireless communication according to another embodiment.
  • the electronic device 300 includes a processing circuit 310 including a range determination unit 311 and a configuration determination unit 313, which are similar to the range determination unit 111 and the configuration determination unit 113 described previously with reference to FIG. 1, respectively.
  • the processing circuit 310 also includes an accuracy determination unit 315.
  • the accuracy determination unit 315 is configured to determine whether the second position range meets positioning accuracy requirements. In the case where the second position range does not meet the positioning accuracy requirements, the configuration determination unit 313 may further determine the adjustment of the beam configuration.
  • the accuracy determination unit 315 may determine whether the second position range meets the positioning accuracy requirement based on one or more of the following conditions: the maximum offset of the second position range is less than the position offset required by the positioning accuracy; The area of the second position range is smaller than the position uncertainty area required by the positioning accuracy; and the weighted average position offset in each direction of the second position range is smaller than the weighted average position offset required by the positioning accuracy.
  • the accuracy determination unit 315 may determine whether the first position range meets positioning accuracy requirements in a similar manner.
  • FIG. 7 shows an example process of base station cooperative positioning based on rotating beams as an exemplary embodiment of the present invention.
  • the cooperative positioning process first select the initial TRP set to perform beam scanning to determine the initial position range of the UE. Next, optionally, according to the initial position range and positioning accuracy requirements, a new TRP set is selected and the beam rotation angle and direction of each TRP are calculated cooperatively. Each TRP sequentially transmits two beams in the direction of the determined beam rotation angle. Through the UE feedback beam measurement value, the accuracy position of the UE is determined within the initial position range. Finally, according to the UE positioning accuracy requirements, determine whether to complete positioning.
  • the process may start corresponding to the positioning request of the UE (S701). Thereafter, based on the system configuration, parameter exchange can be performed in each unit (S703).
  • the main TRP / LMF selects the initial TRP set to perform beam scanning, and calculates the beam width of each TRP in the initial set.
  • the master TRP / LMF may deliver the beam width to each TRP in the initial set and notify each TRP to perform beam scanning and UE measurement (S707).
  • the UE performs a beam positioning process, and in S711 the measurement information is reported back to the main TRP / LMF (or each TRP in the initial set).
  • the master TRP / LMF calculates the UE initial location range.
  • the main TRP / LMF can select a new TRP set for rotating beam positioning, and the main TRP / LMF (or the cooperation of each TRP in the new set) calculates the beam rotation angle, direction, and beam width of each TRP.
  • the main TRP / LMF will send parameters such as the beam rotation angle to each TRP in the new set (S717).
  • each TRP in the new TRP set cooperates to perform rotational beam positioning within the initial position range.
  • the UE reports the measurement information back to the main TRP / LMF (or each TRP in the new set).
  • the master TRP / LMF calculates the new location range of the UE, and the master TRP or LMF may determine whether to complete positioning according to the UE positioning accuracy requirements.
  • the determined position is delivered to the UE.
  • step S715 If the positioning accuracy requirements are not met, that is, further beam positioning needs to be performed (YES in S723), then return to step S715 to repeat the positioning process.
  • the system When the UE positioning request reaches the LMF (S701), the system first enters the initialization phase.
  • the UE and the LMF can exchange information such as the type of the main TRP where the UE is located, the shape of the antenna array, and coverage. Multiple TRPs near the main TRP can also report the above information to the main TRP or LMF.
  • the TRP type may be a macro base station or a small base station
  • the antenna array shape may be a different topological shape such as a planar array or a uniform linear array (ULA).
  • the master TRP or LMF After collecting the information of multiple TRPs near the UE, the master TRP or LMF determines, in S705, TRPs participating in cooperative positioning according to the positioning requirements of the UE to form an initial TRP set, and determines the beam width of each TRP for beam scanning.
  • an actual measurement method based on the reference signal may also be used.
  • the UE may send an uplink reference signal, and each TRP near the main TRP uses the reference signal to measure parameters such as the power of the received signal.
  • the main TRP or LMF selects the TRPs with the strongest received signal power to form the initial TRP set.
  • the specific number of TRPs performing beam scanning and the beam scanning width of each TRP can be determined according to factors such as positioning accuracy and resource overhead.
  • the master TRP or LMF After the initial TRP set is selected, in S707, the master TRP or LMF notifies each TRP in the initial TRP set to perform beam scanning simultaneously and deliver each TRP beam scanning width, and notifies the UE to perform beam measurement.
  • each TRP After receiving the notification, each TRP performs beam scanning on the selected time slot in S709. Specifically, the UE receives the beam scanned from each TRP beam in the initial TRP set, measures the received power of each beam, and reports the beam number and the maximum received power corresponding to the received power of each TRP to the main TRP / LMF or the initial set Each TRP (S711).
  • FIG. 8 shows an example of the TRP beam scanning process.
  • TRP1 sends 4 beams in sequence, and the UE measures the received power of these 4 beams and finds the beam with the highest received power, for example, reports the beam number and power to the main TRP or LMF.
  • each TRP in the main TRP or LMF or the initial set may calculate the UE position range according to the strongest beam of each TRP reported by the UE and the corresponding received power.
  • the solid line indicates the range of the strongest beams of TRP1, TRP2, and TRP3 reported by the UE, and the overlapping area, that is, the shaded diagonal line area is determined as the position range of the UE. If the location range meets the UE's positioning accuracy requirements, the location can be directly reported to the UE. If the location range does not meet the UE positioning accuracy requirements, subsequent steps need to be performed to further determine the location range.
  • the determination of the position range may be based on the transmission angle of the strongest beam received by the UE, or may be based on both the transmission angle of the strongest beam and the received power of the strongest beam.
  • 10, 12 and 14 show examples of determining the position range based on both the transmission angle of the strongest beam and the received power of the strongest beam.
  • a single TRP calculates the UE position range through feedback of the beam angle and the received power, as shown in the shaded area where UE2 is located.
  • the UE position range may also be calculated based on feedback of beam angles and received power for multiple TRPs.
  • FIG. 12 shows an example of calculating the UE position range based on the feedback of the beam angle and received power of 3 TRPs.
  • the UE position range can also be calculated through feedback of a wide beam angle and received power.
  • FIG. 14 shows the position range of a single TRP after being positioned by wide beam scanning, as shown by the hatched area in the figure.
  • 11 and 13 show examples of determining the position range based on the emission angle of the strongest beam.
  • the UE position range is calculated based on the feedback of the beam angles of 2 TRPs, as shown by the hatched area in the figure.
  • FIG. 13 shows an example of the position range after two TRPs perform wide beam scanning positioning.
  • the beam scanning widths of TRP1 and TRP2 are ⁇ ° and ⁇ °, respectively, and the position range after the beam scanning is the oblique line area.
  • the main TRP / LMF selects the number and location of TRPs for coordinated positioning of the rotating beam and adds these TRPs to the new TRP set, And each TRP in the main TRP / LMF or the new set cooperates to calculate the beam rotation angle, direction, and beam width of each TRP.
  • the determination of the beam rotation angle, direction, and beam width may be based on one or more of the following rules:
  • All TRPs in the new set cooperate to calculate the beam rotation angle and direction, so that the maximum area in all sub-regions after all the rotating beams are divided into the initial position range is minimized;
  • Fig. 16 shows an example that satisfies the criterion 1), where TRP 3 is selected by the main TRP or LMF for rotating beam positioning, the calculated position range after the beam scanning process, and a point A at the center of the position range is given, such that The boundary between two adjacent beams sent by TRP3 in the process of rotating beam positioning passes through point A, thereby obtaining the beam rotation angle ⁇ °.
  • the master TRP or LMF notifies TRP 3 of the calculated beam rotation angle of TRP 3 and requires TRP 3 to perform the rotation beam positioning, and at the same time informs the UE to prepare for the rotation beam measurement (S717).
  • the strongest beam direction of TRP1 beam scanning stage is y Axis
  • the angle of the strongest beam of TRP 2 relative to the x axis is ⁇ °
  • point A is the intersection of the direction of the strongest beam of TRP 1 and TRP 2.
  • the main TRP or LMF selects TRP 3 for rotating beam positioning, and the principle of determining the beam rotation angle is: TRP 3 rotates the beam direction through point A. Therefore, the beam rotation angle ⁇ ° can be calculated as follows:
  • each TRP sequentially transmits two adjacent beams corresponding to the beam rotation angle for the position range, thereby performing the rotation beam positioning.
  • TRP 3 performs rotating beam positioning based on the calculated beam rotation angle ⁇ ° and beam width, and sequentially transmits two adjacent beams corresponding to the beam rotation angle ⁇ °.
  • 17 to 19 show example ways of rotating beam positioning.
  • TRP1 is selected for rotating beam positioning (S719) after being selected for beam scanning positioning (S709).
  • TRP 1 sequentially sends two adjacent beams determined by the beam rotation angle.
  • TRP3 is selected for narrow rotating beam positioning (S719).
  • TRP3 sequentially sends multiple adjacent beams determined by the beam rotation angle to the initial position range.
  • the TRP sequentially sends a plurality of adjacent beams determined by the beam rotation angle to the initial position range.
  • the UE measures the received power of the adjacent beam corresponding to each TRP, selects the beam corresponding to each TRP with greater received power, and reports the strongest beam number and received power to the main TRP / LMF or each TRP in the new set (S721).
  • Each TRP in the main TRP / LMF or the new set combines the strongest beam with the strongest beam in the beam scanning stage to determine the strongest virtual beam.
  • Each TRP in the main TRP / LMF or the new set cooperatively calculates a new position range based on the strongest virtual beam of each TRP and the received power (S723).
  • the "first position uncertainty” area and the “second position uncertainty” area are the initial position range of the beam scanning stage and the position range of the rotating beam positioning stage, respectively.
  • the "three location uncertainty” area is determined as the location range of the UE.
  • the master TRP or LMF can determine whether the positioning is completed. If the new location range meets the UE positioning accuracy requirements, the main TRP or LMF can directly report the location to the UE (S725); if the new location range does not meet the UE positioning accuracy requirements, then return to S715 to continue rotating beam positioning.
  • the master TRP or LMF's judgment on whether to complete positioning can be based on the calculated new position range and positioning accuracy requirements, and can be based on one or more of the following requirements:
  • the area of the position range is less than the position uncertainty area required by the positioning accuracy
  • FIG. 18 shows that after TRP1 and TRP2 are selected for wide beam scanning positioning, TRP3 is selected for narrow rotating beam positioning.
  • TRP3 When performing narrow-rotation beam positioning, TRP3 sequentially sends multiple adjacent beams determined by the beam rotation angle to the initial position range. After TRP3 completes rotating beam positioning, TRP collaboratively calculates a new position range as shown in the "Second Position Uncertainty" area in the figure.
  • the maximum offset can be calculated as shown by the dashed diagonal line in the "Second Position Uncertainty" area. Assuming that the maximum offset of the new position range (dashed diagonal line) is 3m, the positioning If the position offset required by the accuracy is 5m, the position range meets the positioning accuracy requirement, and the position is directly reported to the UE, and the positioning process ends.
  • the initial position range after wide beam positioning is shown in the "first position uncertainty” area in the figure, and the new position range after narrow rotating beam positioning As shown in the "Second Position Uncertainty” area.
  • the main TRP or LMF needs to continue to select a new TRP set for rotating beam positioning. If the same TRP is selected for rotating beam positioning, and finally the "Third Position Uncertainty" area in the figure is calculated as a new position range and meets the UE positioning accuracy requirements, the position range is delivered to the UE to be positioned .
  • embodiments of the present invention have one or more of the following advantages:
  • the positioning accuracy is not limited by the number of base station antennas (beam angle resolution);
  • the positioning scheme is more flexible and can better achieve the balance of positioning accuracy, delay and resource consumption;
  • the wireless communication method includes the following steps S410 to S430.
  • the first position range of the user equipment is determined based on the first measurement information of the user equipment regarding the first beam scan.
  • the adjustment of the beam configuration is determined. This step may only be performed when the first position range is below a predetermined accuracy requirement.
  • the second position range of the user equipment is determined based on the second measurement information of the user equipment regarding the second beam scan using the adjusted beam configuration.
  • the electronic device 500 for wireless communication includes a processing circuit 510 that includes a control unit 511.
  • the control unit 511 is configured to control to measure the first beam scan to obtain first measurement information, which is used to determine the first position range of the electronic device.
  • the control unit 511 is also configured to control to measure the second beam scan using the adjusted beam configuration to obtain second measurement information, which is used to determine the second position range of the electronic device.
  • the adjustment of the beam configuration is determined based on the first position range.
  • the electronic device 500 can work as user equipment.
  • FIG. 6 shows a wireless communication method according to an embodiment, which is implemented on the user equipment side, for example.
  • the method includes S610, measuring the first beam scan to obtain first measurement information, where the first measurement information is used to determine a first position range of the electronic device.
  • the method further includes S620, measuring a second beam scan using the adjusted beam configuration to obtain second measurement information, where the second measurement information is used to determine a second position range of the electronic device.
  • the adjustment of the beam configuration is determined based on the first position range.
  • embodiments of the present invention further include a computer-readable medium, which includes executable instructions, which when executed by the information processing device, cause the information processing device to execute the method according to the above-described embodiment.
  • each step of the above method and each constituent module and / or unit of the above device may be implemented as software, firmware, hardware, or a combination thereof.
  • a program that constitutes software for implementing the above method can be installed from a storage medium or a network to a computer with a dedicated hardware structure (such as the general-purpose computer 2200 shown in FIG. 22).
  • a dedicated hardware structure such as the general-purpose computer 2200 shown in FIG. 22.
  • the arithmetic processing unit (i.e., CPU) 2201 performs various processes according to a program stored in a read-only memory (ROM) 2202 or a program loaded from a storage section 2208 to a random access memory (RAM) 2203.
  • ROM read-only memory
  • RAM random access memory
  • data required when the CPU 2201 executes various processes and the like are also stored as necessary.
  • the CPU 2201, the ROM 2202, and the RAM 2203 are linked to each other via the bus 2204.
  • the input / output interface 2205 is also linked to the bus 2204.
  • the following components are linked to the input / output interface 2205: input section 2206 (including keyboard, mouse, etc.), output section 2207 (including display, such as cathode ray tube (CRT), liquid crystal display (LCD), etc., and speakers, etc.) , A storage section 2208 (including a hard disk, etc.), a communication section 2209 (including a network interface card such as a LAN card, a modem, etc.).
  • the communication section 2209 performs communication processing via a network such as the Internet.
  • the driver 2210 can also be linked to the input / output interface 2205 as needed.
  • a removable medium 2211 such as a magnetic disk, an optical disk, a magneto-optical disk, a semiconductor memory, or the like is installed on the drive 2210 as needed, so that the computer program read out therefrom is installed into the storage section 2208 as needed.
  • a program constituting the software is installed from a network such as the Internet or a storage medium such as a removable medium 2211.
  • a storage medium is not limited to the removable medium 2211 shown in FIG. 22 in which the program is stored and distributed separately from the device to provide the program to the user.
  • removable media 2211 include magnetic disks (including floppy disks (registered trademark)), optical disks (including compact disk read-only memory (CD-ROM) and digital versatile disk (DVD)), and magneto-optical disks (including mini disk (MD) (registered trademark) ))
  • the storage medium may be a ROM 2202, a hard disk included in the storage section 2208, or the like, in which programs are stored, and distributed to users together with devices containing them.
  • Embodiments of the present invention also relate to a program product storing machine-readable instruction codes.
  • the instruction code When the instruction code is read and executed by the machine, the above method according to the embodiment of the present invention may be executed.
  • a storage medium for carrying the above-mentioned program product storing machine-readable instruction codes is also included in the disclosure of the present invention.
  • the storage medium includes, but is not limited to, a floppy disk, an optical disk, a magneto-optical disk, a memory card, a memory stick, and so on.
  • the electronic device may be implemented as any type of gNB or evolved Node B (eNB), such as a macro eNB and a small eNB.
  • eNB evolved Node B
  • the small eNB may be an eNB covering a cell smaller than a macro cell, such as a pico eNB, a micro eNB, and a home (femto) eNB.
  • the electronic device may be implemented as any other type of base station, such as a NodeB and a base transceiver station (BTS).
  • BTS base transceiver station
  • the electronic device may include: a main body (also referred to as a base station device) configured to control wireless communication; and one or more remote wireless head ends (RRHs) provided at different places from the main body.
  • a main body also referred to as a base station device
  • RRHs remote wireless head ends
  • various types of terminals that will be described below can operate as a base station by temporarily or semi-permanently performing base station functions.
  • the electronic device When the electronic device is used on the user equipment side, it can be implemented as a mobile terminal (such as a smart phone, tablet personal computer (PC), notebook PC, portable game terminal, portable / dongle-type mobile router, and digital camera) or Vehicle-mounted terminals (such as car navigation equipment).
  • the electronic device may be a wireless communication module (such as an integrated circuit module including a single or multiple wafers) mounted on each of the above terminals.
  • the smartphone 2500 includes a processor 2501, a memory 2502, a storage device 2503, an external connection interface 2504, a camera device 2506, a sensor 2507, a microphone 2508, an input device 2509, a display device 2510, a speaker 2511, a wireless communication interface 2512, one or more Antenna switch 2515, one or more antennas 2516, bus 2517, battery 2518, and auxiliary controller 2519.
  • the processor 2501 may be, for example, a CPU or a system on chip (SoC), and controls functions of the application layer and other layers of the smartphone 2500.
  • the memory 2502 includes RAM and ROM, and stores data and programs executed by the processor 2501.
  • the storage device 2503 may include a storage medium such as a semiconductor memory and a hard disk.
  • the external connection interface 2504 is an interface for connecting an external device such as a memory card and a universal serial bus (USB) device to the smartphone 2500.
  • USB universal serial bus
  • the imaging device 2506 includes an image sensor such as a charge coupled device (CCD) and a complementary metal oxide semiconductor (CMOS), and generates a captured image.
  • the sensor 2507 may include a set of sensors, such as measurement sensors, gyro sensors, geomagnetic sensors, and acceleration sensors.
  • the microphone 2508 converts the sound input to the smartphone 2500 into an audio signal.
  • the input device 2509 includes, for example, a touch sensor configured to detect a touch on the screen of the display device 2510, a keypad, a keyboard, a button, or a switch, and receives operation or information input from the user.
  • the display device 2510 includes a screen such as a liquid crystal display (LCD) and an organic light emitting diode (OLED) display, and displays an output image of the smartphone 2500.
  • the speaker 2511 converts the audio signal output from the smartphone 2500 into sound.
  • the wireless communication interface 2512 supports any cellular communication scheme (such as LTE and LTE-advanced), and performs wireless communication.
  • the wireless communication interface 2512 may generally include, for example, a baseband (BB) processor 2513 and a radio frequency (RF) circuit 2514.
  • the BB processor 2513 can perform, for example, encoding / decoding, modulation / demodulation, and multiplexing / demultiplexing, and perform various types of signal processing for wireless communication.
  • the RF circuit 2514 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives wireless signals via the antenna 2516.
  • the wireless communication interface 2512 may be a chip module on which the BB processor 2513 and the RF circuit 2514 are integrated.
  • the wireless communication interface 2512 may include a plurality of BB processors 2513 and a plurality of RF circuits 2514.
  • FIG. 23 shows an example in which the wireless communication interface 2512 includes a plurality of BB processors 2513 and a plurality of RF circuits 2514, the wireless communication interface 2512 may also include a single BB processor 2513 or a single RF circuit 2514.
  • the wireless communication interface 2512 may support another type of wireless communication scheme, such as a short-range wireless communication scheme, a near field communication scheme, and a wireless local area network (LAN) scheme.
  • the wireless communication interface 2512 may include a BB processor 2513 and an RF circuit 2514 for each wireless communication scheme.
  • Each of the antenna switches 2515 switches the connection destination of the antenna 2516 between a plurality of circuits included in the wireless communication interface 2512 (for example, circuits for different wireless communication schemes).
  • Each of the antennas 2516 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna), and is used for the wireless communication interface 2512 to transmit and receive wireless signals.
  • the smartphone 2500 may include a plurality of antennas 2516.
  • FIG. 23 shows an example in which the smartphone 2500 includes multiple antennas 2516, the smartphone 2500 may also include a single antenna 2516.
  • the smartphone 2500 may include an antenna 2516 for each wireless communication scheme.
  • the antenna switch 2515 may be omitted from the configuration of the smartphone 2500.
  • the bus 2517 connects the processor 2501, memory 2502, storage device 2503, external connection interface 2504, camera device 2506, sensor 2507, microphone 2508, input device 2509, display device 2510, speaker 2511, wireless communication interface 2512, and auxiliary controller 2519 to each other connection.
  • the battery 2518 supplies power to each block of the smartphone 2500 shown in FIG. 23 via a feeder, which is partially shown as a dotted line in the figure.
  • the auxiliary controller 2519 operates the minimum necessary functions of the smartphone 2500 in the sleep mode, for example.
  • the transceiver device of the device on the user equipment side may be implemented by the wireless communication interface 2512.
  • At least part of the functions of the processing circuit and / or each unit of the electronic device on the user equipment side or the information processing device according to the embodiment of the present invention may also be implemented by the processor 2501 or the auxiliary controller 2519.
  • the power consumption of the battery 2518 may be reduced by the auxiliary controller 2519 performing part of the functions of the processor 2501.
  • the processor 2501 or the auxiliary controller 2519 may execute the processing circuit and / or each unit of the electronic device or the information processing device on the user equipment side according to an embodiment of the present invention by executing the program stored in the memory 2502 or the storage device 2503 At least part of the function.
  • the gNB 2300 includes multiple antennas 2310 and base station equipment 2320.
  • the base station device 2320 and each antenna 2310 may be connected to each other via a radio frequency (RF) cable.
  • RF radio frequency
  • Each of the antennas 2310 includes a single or multiple antenna elements (such as multiple antenna elements included in a multiple input multiple output (MIMO) antenna), and is used for the base station device 2320 to transmit and receive wireless signals.
  • the gNB 2300 may include multiple antennas 2310.
  • multiple antennas 2310 may be compatible with multiple frequency bands used by gNB 2300.
  • the base station device 2320 includes a controller 2321, a memory 2322, a network interface 2323, and a wireless communication interface 2325.
  • the controller 2321 may be, for example, a CPU or a DSP, and operates various functions of higher layers of the base station device 2320. For example, the controller 2321 generates a data packet based on the data in the signal processed by the wireless communication interface 2325, and transfers the generated packet via the network interface 2323. The controller 2321 may bundle data from multiple baseband processors to generate bundle packets, and deliver the generated bundle packets. The controller 2321 may have a logical function of performing control such as radio resource control, radio bearer control, mobility management, admission control, and scheduling. This control can be performed in conjunction with nearby gNB or core network nodes.
  • the memory 2322 includes RAM and ROM, and stores programs executed by the controller 2321 and various types of control data (such as terminal lists, transmission power data, and scheduling data).
  • the network interface 2323 is a communication interface for connecting the base station device 2320 to the core network 2324.
  • the controller 2321 may communicate with the core network node or another gNB via the network interface 2323.
  • gNB 2300 and the core network node or other gNB may be connected to each other through logical interfaces such as S1 interface and X2 interface.
  • the network interface 2323 can also be a wired communication interface or a wireless communication interface for a wireless return line. If the network interface 2323 is a wireless communication interface, the network interface 2323 can use a higher frequency band for wireless communication than the frequency band used by the wireless communication interface 2325.
  • the wireless communication interface 2325 supports any cellular communication scheme such as Long Term Evolution (LTE) and LTE-Advanced, and provides a wireless connection to terminals located in the cell of the gNB 2300 via the antenna 2310.
  • the wireless communication interface 2325 may generally include, for example, a BB processor 2326 and an RF circuit 2327.
  • the BB processor 2326 can perform, for example, encoding / decoding, modulation / demodulation, and multiplexing / demultiplexing, and perform layers (such as L1, media access control (MAC), radio link control (RLC), and packet data aggregation protocol PDCP)) various types of signal processing.
  • the BB processor 2326 may have some or all of the above-mentioned logic functions.
  • the BB processor 2326 may be a memory storing a communication control program, or a module including a processor configured to execute the program and related circuits.
  • the update program can change the function of the BB processor 2326.
  • the module may be a card or blade inserted into the slot of the base station device 2320. Alternatively, the module may also be a chip mounted on a card or blade.
  • the RF circuit 2327 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives wireless signals via the antenna 2310.
  • the wireless communication interface 2325 may include a plurality of BB processors 2326.
  • multiple BB processors 2326 may be compatible with multiple frequency bands used by gNB 2300.
  • the wireless communication interface 2325 may include a plurality of RF circuits 2327.
  • multiple RF circuits 2327 may be compatible with multiple antenna elements.
  • FIG. 24 shows an example in which the wireless communication interface 2325 includes a plurality of BB processors 2326 and a plurality of RF circuits 2327, the wireless communication interface 2325 may also include a single BB processor 2326 or a single RF circuit 2327.
  • the transceiver device of the wireless communication device on the base station side may be implemented by the wireless communication interface 2325.
  • At least a part of the processing circuit and / or the function of each unit of the electronic device on the base station side or the wireless communication device may also be implemented by the controller 2321.
  • the controller 2321 may execute at least a part of the functions of the processing circuit and / or each unit of the electronic device or wireless communication device on the base station side by executing the program stored in the memory 2322.
  • the method of the present invention is not limited to being executed in the chronological order described in the specification, but may also be executed in other chronological order, in parallel or independently. Therefore, the execution order of the methods described in this specification does not limit the technical scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开涉及电子装置、无线通信方法和计算机可读介质。用于无线通信的电子装置包括处理电路,处理电路被配置为:基于用户设备关于第一波束扫描的第一测量信息确定用户设备的第一位置范围;在第一位置范围低于预定的精度要求时,基于第一位置范围确定波束配置的调整;以及基于用户设备关于利用经调整的波束配置进行的第二波束扫描的第二测量信息确定用户设备的第二位置范围。

Description

电子装置、无线通信方法和计算机可读介质 技术领域
本公开一般涉及无线通信领域,更具体地,涉及与波束定位有关的电子装置、无线通信方法以及计算机可读介质。
背景技术
移动通信系统中的定位可以使用波束定位技术。波束定位的精度受限于待定位用户设备到基站的距离、基站天线阵列的规模和拓扑等。例如,对于与基站相距较远的小区边缘用户设备,定位精度较低。
发明内容
在下文中给出了关于本发明实施例的简要概述,以便提供关于本发明的某些方面的基本理解。应当理解,以下概述并不是关于本发明的穷举性概述。它并不是意图确定本发明的关键或重要部分,也不是意图限定本发明的范围。其目的仅仅是以简化的形式给出某些概念,以此作为稍后论述的更详细描述的前序。
根据一个实施例,一种用于无线通信的电子装置包括处理电路,处理电路被配置为:基于用户设备关于第一波束扫描的第一测量信息确定用户设备的第一位置范围;在第一位置范围低于预定的精度要求时,基于第一位置范围确定波束配置的调整;以及基于用户设备关于利用经调整的波束配置进行的第二波束扫描的第二测量信息确定用户设备的第二位置范围。
根据另一个实施例,一种无线通信方法包括:基于用户设备关于第一波束扫描的第一测量信息确定用户设备的第一位置范围;在第一位置范围低于预定的精度要求时,基于第一位置范围确定波束配置的调整;以及基于用户设备关于利用经调整的波束配置进行的第二波束扫描的第二测量信息确定用户设备的第二位置范围。
根据另一个实施例,一种用于无线通信的电子装置包括处理电路,处理电路被配置为:进行控制以对第一波束扫描进行测量以获得第一测量信息,第一测量信息用于确定电子装置的第一位置范围;以及进行控制以对利用经 调整的波束配置的第二波束扫描进行测量以获得第二测量信息,第二测量信息用于确定电子装置的第二位置范围。波束配置的调整是基于第一位置范围确定的。
根据另一个实施例,一种无线通信方法包括:对第一波束扫描进行测量以获得第一测量信息,第一测量信息用于确定所述电子装置的第一位置范围;以及对利用经调整的波束配置的第二波束扫描进行测量以获得第二测量信息,第二测量信息用于确定所述电子装置的第二位置范围。波束配置的调整是基于第一位置范围确定的。
本发明实施例还包括一种计算机可读介质,其包括可执行指令,当可执行指令被信息处理设备执行时,使得信息处理设备执行根据上述实施例的方法。
本发明实施例有利于提高波束定位的精度。
附图说明
本发明可以通过参考下文中结合附图所给出的描述而得到更好的理解,其中在所有附图中使用了相同或相似的附图标记来表示相同或者相似的部件。所述附图连同下面的详细说明一起包含在本说明书中并且形成本说明书的一部分,而且用来进一步举例说明本发明的优选实施例和解释本发明的原理和优点。在附图中:
图1是示出根据本发明的一个实施例的用于无线通信的电子装置的配置示例的框图;
图2是示出根据另一个实施例的用于无线通信的电子装置的配置示例的框图;
图3是示出根据另一个实施例的用于无线通信的电子装置的配置示例的框图;
图4是示出根据本发明的一个实施例的无线通信方法的过程示例的流程图;
图5是示出根据本发明一个实施例的用于无线通信的电子装置的配置示例的框图;
图6是示出根据本发明的一个实施例的无线通信方法的过程示例的流程图;
图7是示出根据本发明实施例的过程示例的信令流程图;
图8是用于说明波束扫描过程的示意图;
图9是用于说明旋转波束定位的示意图;
图10是用于说明单个发送接收端口(Transmit/Receive port,TRP)的波束扫描定位的示意图;
图11是用于说明两个TRP的波束扫描定位的示意图;
图12是用于说明三个TRP的波束扫描定位的示意图;
图13是用于说明两个TRP的波束扫描定位的示意图;
图14是用于说明单个TRP的波束扫描定位的示意图;
图15是用于说明旋转波束定位的示意图;
图16是用于说明波束旋转角度的示意图;
图17是用于说明旋转波束定位的示意图;
图18是用于说明窄波束旋转定位的示意图;
图19是用于说明单个TRP进行窄波束旋转定位的示意图;
图20是用于说明多个TRP进行波束旋转定位的示意图;
图21是用于说明单个TRP进行二次波束旋转定位的示意图;
图22是示出实现本公开的方法和设备的计算机的示例性结构的框图;
图23是示出可以应用本公开内容的技术的智能电话的示意性配置的示例的框图;以及
图24是示出可以应用本公开内容的技术的gNB(5G系统中的基站)的示意性配置的示例的框图。
具体实施方式
下面将参照附图来说明本发明的实施例。在本发明的一个附图或一种实施方式中描述的元素和特征可以与一个或更多个其它附图或实施方式中示出的元素和特征相结合。应当注意,为了清楚的目的,附图和说明中省略了与本发明无关的、本领域普通技术人员已知的部件和处理的表示和描述。
如图1所示,根据本实施例的用于无线通信的电子装置100包括处理电 路110。处理电路110例如可以实现为特定芯片、芯片组或者中央处理单元(CPU)等。
处理电路110包括范围确定单元111和配置确定单元113。需要指出,虽然附图中以功能块的形式示出了范围确定单元111和配置确定单元113,然而应理解,各单元的功能也可以由处理电路作为一个整体来实现,而并不一定是通过处理电路中分立的实际部件来实现。另外,虽然图中以一个框示出处理电路,然而电子装置可以包括多个处理电路,并且可以将各单元的功能分布到多个处理电路中,从而由多个处理电路协同操作来执行这些功能。
根据本实施例的电子装置100可以被设置在基站侧,并且可以工作为位置管理模块(Location Management Function,LMF)。LMF用于新无线(New Radio,NR)中的移动位置管理,其接收定位需求,并分配定位任务,也可进行位置计算。
定位请求可以在用户侧或网络侧发起。若在用户侧发起,例如,控制平面的接入管理模块(AMF,Access Management Function)收到用户发来的定位请求后,将定位请求相关信息转发给定位服务系统,例如NR中的LMF。定位服务系统完成相关定位操作后将得到的定位信息反馈给AMF,AMF再将信息发送给提出请求的实体。在某些情况下,AMF也可以自己发出定位请求,并要求定位服务系统完成操作。
传统移动通信系统如长期演进(LTE)中的定位采用基于传播延时测量的观察到达时间差(Observed Time Difference Of Arrival,OTDOA)技术,由于LTE使用多天线技术支持最多8天线的TRP配置,还没有应用大规模多天线(Massive MIMO)技术,因此不能形成高度方向性高增益的窄波束。在NR中,采用进行数据传输的波束扫描,5G大规模天线技术可以形成高增益的窄波束,可以用波束的角度信息来实现高精度定位。
在定位方式方面,LTE通信系统使用OTDOA技术通过测量到达时间差来计算用户设备(UE)位置。在波束扫描方面,5G中对于信号传输的波束扫描的最小波束角度受限于基站天线数和基站天线的拓扑结构,且随着波束传播距离的增加,波束增益按指数级减小,波束覆盖范围显著增大从而导致定位位置的误差范围变大。
LTE中使用的OTDOA技术的定位精度十分受限,特别是垂直方向上误差较大。在不同场景下OTDOA(精确同步)垂直方向定位精度最好也要超过10米,水平定位精度在米级以上。NR中若使用波束扫描进行定位,由于 波束的传播特性和基站天线阵列规模限制,对于很多用户特别是离主定位基站距离较远的用户,其能够获得的定位精度不能满足NR定位精度要求。下面在单TRP波束扫描定位场景进行简单计算:假设最窄波束角度为4°,NR定位精度要求为0.5m,若想达到该定位精度,计算得到待定位UE到TRP的距离不能超过7m。虽然多TRP协作波束扫描定位可以提高定位精度,但最终精度仍然受限于最窄波束角度(TRP天线配置),对于离TRP较远的UE,定位精度更差。
继续参照图1,根据本实施例的电子装置100的范围确定单元111被配置为基于UE关于第一波束扫描的第一测量信息,确定UE的第一位置范围。
配置确定单元113被配置为基于第一位置范围确定波束配置的调整。根据一个实施例,配置确定单元113可以仅在第一位置范围低于预定的精度要求时确定波束配置的调整。
范围确定单元111还被配置为基于UE关于利用经调整的波束配置进行的第二波束扫描的第二测量信息,确定UE的第二位置范围。
根据一个实施例,波束配置可以包括波束方向或波束宽度或波束方向和波束宽度两者。
根据一个实施例,第一位置范围和第二位置范围的确定可以基于UE接收到的最强波束的发射角,或者可以基于最强波束的发射角以及最强波束的接收功率两者。
根据一个实施例,第一测量信息和第二测量信息可以包括UE通过测量波束扫描中各波束的接收功率而确定的具有最大接收功率的波束的信息。
根据一个实施例,波束配置的调整可以包括调整波束方向以使得相邻波束分割第一位置范围。例如,可以将波束方向旋转一定角度,使得相邻波束的分界线分割第一位置范围。
更具体地,波束配置的调整可以包括使得经调整的相邻两个波束平分第一位置范围,例如使得经旋转的相邻两个波束的分界线平分第一位置范围或穿过第一位置范围的中心点。或者,波束配置的调整可以包括使得经调整的(例如经旋转的)波束对第一位置范围分割后所有子区域中的最大面积最小化。
此外,波束配置的调整还可以包括调整波束方向和宽度,使得经调整的(例如经旋转的)相邻波束覆盖第一位置范围。
另外,第二测量信息可以包括通过UE对经调整的(例如经旋转的)至少两个相邻波束进行测量而确定的具有最大接收功率的波束的信息。
图2示出了根据另一个实施例的用于无线通信的电子装置的配置示例。
如图2所示,电子装置200包括处理电路210,处理电路210包括范围确定单元211和配置确定单元213,其分别与前面参照图1描述的范围确定单元111和配置确定单元113类似。此外,处理电路210还包括集合确定单元215。
集合确定单元215被配置为确定无线接入点的第一收/发端(TRP)集合,用于基于第一波束配置进行第一波束扫描。集合确定单元215还被配置为基于第一测量信息确定无线接入点的第二收/发端集合,用于基于第二波束配置进行第二波束扫描。第一收/发端集合和第二收/发端集合分别包括一个或更多个收/发端电路。
根据一个实施例,集合确定单元215可以被配置为将与UE所在小区的主无线接入点邻近的无线接入点的收/发端确定为第一收/发端集合。或者,集合确定单元215可以被配置为根据无线接入点接的收/发端收到UE发送的上行信号的强度确定第一收/发端集合,例如将信号强度高的收/发端确定为第一收/发端集合。
此外,集合确定单元215可以被配置为将与UE的第一位置范围邻近的无线接入点的收/发端确定为第二收/发端集合。或者,集合确定单元215可以被配置为根据无线接入点的收/发端接收到UE发送的上行信号的强度确定第二收/发端集合,例如将信号强度高的收/发端确定为第二收/发端集合。
第一收/发端集合可以为选定的初始收/发端集合,并且可以接收用户设备对初始收/发端集合中与最大接收功率对应的波束的测量信息,根据初始收/发端集合确定第一位置范围,通过限定位置范围提高用户设备的定位位置的精度。
图3示出了根据另一个实施例的用于无线通信的电子装置的配置示例。
如图3所示,电子装置300包括处理电路310,处理电路310包括范围确定单元311和配置确定单元313,其分别与前面参照图1描述的范围确定单元111和配置确定单元113类似。此外,处理电路310还包括精度确定单元315。
精度确定单元315被配置为确定第二位置范围是否满足定位精度要求。在第二位置范围不满足定位精度要求的情况下,可以通过配置确定单元313 进一步确定波束配置的调整。
根据一个实施例,精度确定单元315可以基于以下条件中的一项或更多项确定第二位置范围是否满足定位精度要求:第二位置范围的最大偏移小于定位精度要求的位置偏移;第二位置范围的面积小于定位精度要求的位置不确定面积;以及第二位置范围的各方向加权平均位置偏移小于定位精度要求的加权平均位置偏移。精度确定单元315可以以类似的方式确定第一位置范围是否满足定位精度要求。
接下来,结合具体示例说明根据本发明实施例的波束定位的示例过程。需要指出,在下述示例中包含了本发明上述实施例的多个方面。
图7示出了作为本发明示例实施例的基于旋转波束的基站协作定位的示例过程。
在该协作定位过程中,首先选择初始TRP集合进行波束扫描,确定UE的初始位置范围。接下来,可选地,根据初始位置范围以及定位精度需求,选择新的TRP集合并协作计算各TRP的波束旋转角度和方向。各TRP在确定的波束旋转角度方向上顺序发送两个波束。通过UE反馈波束测量值,在初始位置范围内确定UE的精度位置。最后根据UE定位精度要求,确定是否完成定位。
更具体地,如图7所示,该过程可以相应于UE的定位请求(S701)而开始。此后,基于系统配置,可以在各单元见进行参数交换(S703)。
在S705,主TRP/LMF选定初始TRP集合进行波束扫描,计算初始集合中各TRP的波束宽度。
然后,主TRP/LMF可以将波束宽度下发给初始集合中各TRP并通知各TRP进行波束扫描和UE进行测量(S707)。
接下来,在S709,UE进行波束定位过程,并且在S711将测量信息反馈上报给主TRP/LMF(或初始集合中各TRP)。
在S713,主TRP/LMF(或初始集合中各TRP协作)计算UE初始位置范围。
在S715,主TRP/LMF可以选择新的TRP集合进行旋转波束定位,主TRP/LMF(或新集合中各TRP协作)计算各TRP的波束旋转角度、方向和波束宽度。
若由主TRP/LMF计算,则主TRP/LMF将波束旋转角度等参数下发给新 集合中各TRP(S717)。
在S719,新的TRP集合中各TRP在初始位置范围内协作进行旋转波束定位。
在S721,UE将测量信息反馈上报给主TRP/LMF(或新集合中各TRP)。
在S723,主TRP/LMF(或新集合中各TRP协作)计算UE新的位置范围,并且主TRP或LMF可以根据UE定位精度要求,确定是否完成定位。
如果满足定位精度要求,即不需要进一步进行波束定位(S723中的“否”),则在S725,将所确定的位置下发给UE。
如果不满足定位精度要求,即需要进一步进行波束定位(S723中的“是”),则返回步骤S715重复进行定位过程。
接下来,将对根据本发明示例实施例的波束定位过程进行更具体的说明。
当UE定位请求到达LMF后(S701),系统首先进入初始化阶段。
在S703,UE与LMF可以交换UE所在主TRP的类型、天线阵列形状、覆盖范围等信息。主TRP附近多个TRP也可以将上述信息报告给主TRP或LMF。例如,TRP类型可以是宏基站或小基站,天线阵列形状可以是平面阵列或均匀线性阵列(ULA)等不同拓扑形状。
主TRP或LMF收集完UE附近的多个TRP的信息之后,在S705,根据UE的定位需求,确定参与协作定位的TRP,组成初始TRP集合,并确定每个TRP进行波束扫描的波束宽度。
对于参与波束扫描的初始TRP集合的选择,也可以采用基于参考信号的实际测量方式。具体地,UE可以发送上行参考信号,主TRP附近的各个TRP通过该参考信号测量接收信号的功率等参数。主TRP或LMF在收到各个TRP反馈回来的测量功率值后,选择接收信号功率最强的几个TRP组成初始TRP集合。对于进行波束扫描的TRP具体个数以及各TRP的波束扫描宽度,可以根据定位精度、资源开销等因素而进行确定。
初始TRP集合选定之后,在S707,主TRP或LMF通知初始TRP集合中的各TRP同时进行波束扫描并下发各TRP波束扫描宽度,并且通知UE进行波束测量。
各TRP收到通知后,在S709,在选定的时隙上进行波束扫描。具体地,UE接收到来自初始TRP集合中各TRP波束扫描的波束,测量各波束的接收功率,并将对应各TRP的接收功率最大的波束编号以及最大接收功率上报给 主TRP/LMF或初始集合中各TRP(S711)。
图8示出了TRP的波束扫描过程示例。在该示例中,TRP1顺序发送4个波束,UE分别测量这4个波束的接收功率并找到接收功率最大的波束,例如将该波束编号及功率上报给主TRP或LMF。
返回参照图7,在S713,主TRP或LMF或初始集合中的各TRP可以根据UE上报的各TRP的最强波束以及对应接收功率计算UE位置范围。
在图9所示的示例中,实线指示UE上报的TRP1、TRP2和TRP3的最强波束的范围,其重叠区域即阴影斜线区域被确定为UE的位置范围。若该位置范围符合UE定位精度需求,则可以直接将位置报告给UE。若位置范围不符合UE定位精度需求,则需要进行后续步骤以进一步确定位置范围。
如前所述,位置范围的确定可以基于UE接收到的最强波束的发射角,或者可以基于最强波束的发射角以及最强波束的接收功率两者。
图10、图12和图14示出了基于最强波束的发射角以及最强波束的接收功率两者确定位置范围的示例。
在图10所示的示例中,单个TRP通过波束角度和接收功率的反馈计算UE位置范围,如图中UE2所在的阴影区域所示。
也可以基于针对多个TRP的波束角度和接收功率的反馈来计算UE位置范围。图12示出了基于3个TRP的波束角度和接收功率的反馈计算UE位置范围的示例。
此外,还可以通过宽波束角度和接收功率的反馈计算UE位置范围。图14示出了单个TRP进行宽波束扫描定位后的位置范围,如图中斜线区域所示。
图11和图13示出了基于最强波束的发射角确定位置范围的示例。
在图11所示的示例中,基于2个TRP的波束角度的反馈计算UE位置范围,如图中斜线区域所示。
此外,多个TRP可以进行不同宽度的波束扫描。图13示出了2个TRP进行宽波束扫描定位后的位置范围的示例。如图13所示,TRP 1和TRP 2的波束扫描宽度分别为α°和β°,波束扫描后的位置范围为斜线区域。
继续参照图7,基于在S713中计算的UE位置范围以及定位精度需求,在S715,主TRP/LMF选择用于进行旋转波束协作定位的TRP的数目及位置并将这些TRP加入新的TRP集合,并且主TRP/LMF或新集合中各TRP协 作计算各TRP的波束旋转角度、方向以及波束宽度。
作为示例,波束旋转角度、方向以及波束宽度的确定可以基于以下规则中的一项或更多项:
1)新集合中各TRP相邻两个旋转波束的分界线尽可能平分初始位置范围,或穿过初始位置范围的中心点;
2)新集合中所有TRP协作计算波束旋转角度和方向,使得所有旋转波束对初始位置范围分割后所有子区域中的最大面积最小化;以及
3)新集合中各TRP的相邻两个旋转波束的旋转方向和宽度选择需要覆盖初始位置范围。
图16示出了满足第1)准则的示例,其中TRP 3被主TRP或LMF选择来进行旋转波束定位,根据波束扫描流程之后计算得到的位置范围,并给定位置范围中心的点A,使得TRP 3在旋转波束定位的流程中发送的相邻两个波束的分界线穿过点A,从而得到波束旋转角度β°。主TRP或LMF将计算后的TRP 3的波束旋转角度通知给TRP 3并要求TRP 3进行旋转波束定位,同时通知UE准备进行旋转波束测量(S717)。
下面结合图16说明波束旋转角度计算的一个示例。
假设已用于波束扫描定位的TRP 1、TRP 2和TRP 3的坐标分别为(0,0)、(x2,y2)和(x3,y3),TRP 1波束扫描阶段的最强波束方向为y轴,TRP 2的最强波束相对于x轴的角度为α°,点A为TRP 1和TRP 2最强波束方向的交点。主TRP或LMF选择TRP 3进行旋转波束定位,确定波束旋转角度的原则是:TRP 3旋转波束方向经过点A。因此,波束旋转角度β°可以按如下公式计算:
Figure PCTCN2019114743-appb-000001
继续参照图7,根据在S715计算出的波束旋转角度,在S719,各TRP针对位置范围分别顺序发送对应波束旋转角度的相邻两个波束,从而进行旋转波束定位。
再次参照图15,TRP 3根据计算出的波束旋转角度β°以及波束宽度,进行旋转波束定位,顺序发送对应于波束旋转角度β°的相邻两个波束。
图17至图19示出了旋转波束定位的示例方式。
在图17所示的示例中,TRP 1在被选择进行波束扫描定位(S709)之后又被选择进行旋转波束定位(S719)。在进行旋转波束定位时,TRP 1顺序发送由波束旋转角度确定的相邻两个波束。
在图18所示的示例中,TRP 1和TRP 2在被选择进行宽波束扫描定位(S709)之后,TRP 3被选择进行窄旋转波束定位(S719)。在进行窄旋转波束定位时,TRP 3向初始位置范围顺序发送由波束旋转角度确定的相邻多个波束。
在图19所示的示例中,单个TRP在被选择通过宽波束角度和接收功率进行宽波束扫描定位(S709)之后,又被选择进行窄旋转波束定位(S719)。在进行窄旋转波束定位时,该TRP向初始位置范围顺序发送由波束旋转角度确定的相邻多个波束。
继续参照图7,UE测量对应各TRP的相邻波束的接收功率,选出各TRP对应更大接收功率的波束,将最强波束编号和接收功率上报给主TRP/LMF或新集合中各TRP(S721)。主TRP/LMF或新集合中各TRP结合该最强波束与波束扫描阶段最强波束联合确定最强虚拟波束。主TRP/LMF或新集合中各TRP根据各TRP的最强虚拟波束以及接收功率协作计算新的位置范围(S723)。
如图20所示,“第一位置不确定性”区域和“第二位置不确定性”区域分别为波束扫描阶段的初始位置范围和旋转波束定位阶段的位置范围,将其重叠区域即“第三位置不确定性”区域确定为UE的位置范围。
在S723中,在计算出UE新的位置范围后,根据UE的定位精度需求,主TRP或LMF可以判断是否完成定位。若新的位置范围符合UE定位精度需求,则主TRP或LMF可以直接将位置报告给UE(S725);若新的位置范围不符合UE定位精度需求,则返回S715继续进行旋转波束定位。
主TRP或LMF对是否完成定位的判断可以基于计算出的新的位置范围和定位精度要求,并且可以基于以下要求中的一项或更多项:
1)位置范围的最大偏移小于定位精度要求的位置偏移;
2)位置范围的面积小于定位精度要求的位置不确定面积;以及
3)位置范围的各方向加权平均位置偏移小于定位精度要求的加权平均位置偏移。
关于要求1),再次参照图18进行具体说明。图18示出了为在TRP 1、 TRP 2被选择进行宽波束扫描定位之后,TRP 3被选择进行窄旋转波束定位。在进行窄旋转波束定位时,TRP 3向初始位置范围顺序发送由波束旋转角度确定的相邻多个波束。在TRP 3完成旋转波束定位之后,TRP协作计算新的位置范围如图中“第二位置不确定性”区域所示。
基于该位置范围,可以计算得到最大偏移为“第二位置不确定性”区域中的虚线对角线所示,假设新的位置范围的最大偏移(虚线对角线)为3m,而定位精度要求的位置偏移为5m,则该位置范围满足定位精度要求,直接将位置报告给UE,定位流程结束。
下面参照图21进一步说明该步骤。
假设同一个TRP先后被选择进行宽波束扫描定位和窄旋转波束定位,宽波束定位后的初始位置范围如图中“第一位置不确定性”区域所示,窄旋转波束定位后新的位置范围如图中“第二位置不确定性”区域所示。假设“第二位置不确定性”区域的位置范围仍然不满足UE定位精度要求,主TRP或LMF需要继续选择新的TRP集合做旋转波束定位。若同一个TRP被选择进行旋转波束定位,最后计算得到图中“第三位置不确定性”区域为新的位置范围,且满足UE定位精度要求,则将该位置范围下发给待定位的UE。
需要指出,本发明不限于上述示例中的具体细节。
取决于具体配置,本发明实施例具有以下优点中的一项或更多项:
使得定位精度不受基站天线数(波束角度分辨率)限制;
使得远距离定位精度显著提高;
可以实现多TRP协作定位,适用于不同数目TRP协作定位的场景;
定位方案更加灵活,可以更好地达到定位精度、时延、资源消耗的平衡;
引入用户设备接收功率的测量结合波束角度范围,共同辅助定位提高精度。
在前面对于根据本发明实施例的装置的描述过程中,显然也公开了一些方法和过程。接下来,在不重复前面描述过的细节的情况下,给出对于根据本发明实施例的无线通信方法的说明。
如图4所示,根据一个实施例的无线通信方法包括以下步骤S410至S430。
在S410,基于用户设备关于第一波束扫描的第一测量信息,确定用户设备的第一位置范围。
在S420,基于第一位置范围,确定波束配置的调整。该步骤可以仅在第一位置范围低于预定的精度要求时进行。
在S430,基于用户设备关于利用经调整的波束配置进行的第二波束扫描的第二测量信息,确定用户设备的第二位置范围。
前面描述了对应于基站侧或LMF的实施例,本发明还包括实现在UE侧的实施例。
如图5所示,根据一个实施例的用于无线通信的电子装置500包括处理电路510,处理电路510包括控制单元511。
控制单元511被配置为进行控制以对第一波束扫描进行测量以获得第一测量信息,第一测量信息用于确定电子装置的第一位置范围。
控制单元511还被配置为进行控制以对利用经调整的波束配置的第二波束扫描进行测量以获得第二测量信息,第二测量信息用于确定所述电子装置的第二位置范围。波束配置的调整是基于第一位置范围确定的。
电子装置500可以工作为用户设备。
图6示出了根据一个实施例的无线通信方法,其例如实现在用户设备侧。
该方法包括S610,对第一波束扫描进行测量以获得第一测量信息,第一测量信息用于确定电子装置的第一位置范围。
该方法还包括S620,对利用经调整的波束配置的第二波束扫描进行测量以获得第二测量信息,第二测量信息用于确定电子装置的第二位置范围。波束配置的调整是基于第一位置范围确定的。
此外,本发明实施例还包括计算机可读介质,其包括可执行指令,当可执行指令被信息处理设备执行时,使得信息处理设备执行根据上述实施例的方法。
作为示例,上述方法的各个步骤以及上述装置的各个组成模块和/或单元可以实施为软件、固件、硬件或其组合。在通过软件或固件实现的情况下,可以从存储介质或网络向具有专用硬件结构的计算机(例如图22所示的通用计算机2200)安装构成用于实施上述方法的软件的程序,该计算机在安装有各种程序时,能够执行各种功能等。
在图22中,运算处理单元(即CPU)2201根据只读存储器(ROM)2202中存储的程序或从存储部分2208加载到随机存取存储器(RAM)2203的程序执行各种处理。在RAM 2203中,也根据需要存储当CPU 2201执行各种 处理等等时所需的数据。CPU 2201、ROM 2202和RAM 2203经由总线2204彼此链路。输入/输出接口2205也链路到总线2204。
下述部件链路到输入/输出接口2205:输入部分2206(包括键盘、鼠标等等)、输出部分2207(包括显示器,比如阴极射线管(CRT)、液晶显示器(LCD)等,和扬声器等)、存储部分2208(包括硬盘等)、通信部分2209(包括网络接口卡比如LAN卡、调制解调器等)。通信部分2209经由网络比如因特网执行通信处理。根据需要,驱动器2210也可链路到输入/输出接口2205。可拆卸介质2211比如磁盘、光盘、磁光盘、半导体存储器等等根据需要被安装在驱动器2210上,使得从中读出的计算机程序根据需要被安装到存储部分2208中。
在通过软件实现上述系列处理的情况下,从网络比如因特网或存储介质比如可拆卸介质2211安装构成软件的程序。
本领域的技术人员应当理解,这种存储介质不局限于图22所示的其中存储有程序、与设备相分离地分发以向用户提供程序的可拆卸介质2211。可拆卸介质2211的例子包含磁盘(包含软盘(注册商标))、光盘(包含光盘只读存储器(CD-ROM)和数字通用盘(DVD))、磁光盘(包含迷你盘(MD)(注册商标))和半导体存储器。或者,存储介质可以是ROM 2202、存储部分2208中包含的硬盘等等,其中存有程序,并且与包含它们的设备一起被分发给用户。
本发明的实施例还涉及一种存储有机器可读取的指令代码的程序产品。所述指令代码由机器读取并执行时,可执行上述根据本发明实施例的方法。
相应地,用于承载上述存储有机器可读取的指令代码的程序产品的存储介质也包括在本发明的公开中。所述存储介质包括但不限于软盘、光盘、磁光盘、存储卡、存储棒等等。
本申请的实施例还涉及以下电子设备。在电子设备用于基站侧的情况下,电子设备可以被实现为任何类型的gNB或演进型节点B(eNB),诸如宏eNB和小eNB。小eNB可以为覆盖比宏小区小的小区的eNB,诸如微微eNB、微eNB和家庭(毫微微)eNB。代替地,电子设备可以被实现为任何其他类型的基站,诸如NodeB和基站收发台(BTS)。电子设备可以包括:被配置为控制无线通信的主体(也称为基站设备);以及设置在与主体不同的地方的一个或多个远程无线头端(RRH)。另外,下面将描述的各种类型的终端均可以通过暂时地或半持久性地执行基站功能而作为基站工作。
电子设备用于用户设备侧的情况下,可以被实现为移动终端(诸如智能 电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)。此外,电子设备可以为安装在上述终端中的每个终端上的无线通信模块(诸如包括单个或多个晶片的集成电路模块)。
[关于终端设备的应用示例]
图23是示出可以应用本公开内容的技术的智能电话2500的示意性配置的示例的框图。智能电话2500包括处理器2501、存储器2502、存储装置2503、外部连接接口2504、摄像装置2506、传感器2507、麦克风2508、输入装置2509、显示装置2510、扬声器2511、无线通信接口2512、一个或多个天线开关2515、一个或多个天线2516、总线2517、电池2518以及辅助控制器2519。
处理器2501可以为例如CPU或片上系统(SoC),并且控制智能电话2500的应用层和另外层的功能。存储器2502包括RAM和ROM,并且存储数据和由处理器2501执行的程序。存储装置2503可以包括存储介质,诸如半导体存储器和硬盘。外部连接接口2504为用于将外部装置(诸如存储卡和通用串行总线(USB)装置)连接至智能电话2500的接口。
摄像装置2506包括图像传感器(诸如电荷耦合器件(CCD)和互补金属氧化物半导体(CMOS)),并且生成捕获图像。传感器2507可以包括一组传感器,诸如测量传感器、陀螺仪传感器、地磁传感器和加速度传感器。麦克风2508将输入到智能电话2500的声音转换为音频信号。输入装置2509包括例如被配置为检测显示装置2510的屏幕上的触摸的触摸传感器、小键盘、键盘、按钮或开关,并且接收从用户输入的操作或信息。显示装置2510包括屏幕(诸如液晶显示器(LCD)和有机发光二极管(OLED)显示器),并且显示智能电话2500的输出图像。扬声器2511将从智能电话2500输出的音频信号转换为声音。
无线通信接口2512支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口2512通常可以包括例如基带(BB)处理器2513和射频(RF)电路2514。BB处理器2513可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路2514可以包括例如混频器、滤波器和放大器,并且经由天线2516来传送和接收无线信号。无线通信接口2512可以为其上集成有BB处理器2513和RF电路2514的一个芯片模块。如图23所示,无线通信接口2512可以包括多个BB处理器2513和多个RF电路2514。虽然图23示出其中无 线通信接口2512包括多个BB处理器2513和多个RF电路2514的示例,但是无线通信接口2512也可以包括单个BB处理器2513或单个RF电路2514。
此外,除了蜂窝通信方案之外,无线通信接口2512可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线局域网(LAN)方案。在此情况下,无线通信接口2512可以包括针对每种无线通信方案的BB处理器2513和RF电路2514。
天线开关2515中的每一个在包括在无线通信接口2512中的多个电路(例如用于不同的无线通信方案的电路)之间切换天线2516的连接目的地。
天线2516中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口2512传送和接收无线信号。如图23所示,智能电话2500可以包括多个天线2516。虽然图23示出其中智能电话2500包括多个天线2516的示例,但是智能电话2500也可以包括单个天线2516。
此外,智能电话2500可以包括针对每种无线通信方案的天线2516。在此情况下,天线开关2515可以从智能电话2500的配置中省略。
总线2517将处理器2501、存储器2502、存储装置2503、外部连接接口2504、摄像装置2506、传感器2507、麦克风2508、输入装置2509、显示装置2510、扬声器2511、无线通信接口2512以及辅助控制器2519彼此连接。电池2518经由馈线向图23所示的智能电话2500的各个块提供电力,馈线在图中被部分地示为虚线。辅助控制器2519例如在睡眠模式下操作智能电话2500的最小必需功能。
在图23所示的智能电话2500中,根据本发明实施例的用户设备侧的设备的收发装置可以由无线通信接口2512实现。根据本发明实施例的用户设备侧的电子装置或信息处理设备的处理电路和/或各单元的功能的至少一部分也可以由处理器2501或辅助控制器2519实现。例如,可以通过由辅助控制器2519执行处理器2501的部分功能而减少电池2518的电力消耗。此外,处理器2501或辅助控制器2519可以通过执行存储器2502或存储装置2503中存储的程序而执行根据本发明实施例的用户设备侧的电子装置或信息处理设备的处理电路和/或各单元的功能的至少一部分。
[关于基站的应用示例]
图24是示出可以应用本公开内容的技术的gNB的示意性配置的示例的 框图。gNB 2300包括多个天线2310以及基站设备2320。基站设备2320和每个天线2310可以经由射频(RF)线缆彼此连接。
天线2310中的每一个均包括单个或多个天线元件(诸如包括在多输入多输出(MIMO)天线中的多个天线元件),并且用于基站设备2320发送和接收无线信号。如图24所示,gNB 2300可以包括多个天线2310。例如,多个天线2310可以与gNB 2300使用的多个频带兼容。
基站设备2320包括控制器2321、存储器2322、网络接口2323以及无线通信接口2325。
控制器2321可以为例如CPU或DSP,并且操作基站设备2320的较高层的各种功能。例如,控制器2321根据由无线通信接口2325处理的信号中的数据来生成数据分组,并经由网络接口2323来传递所生成的分组。控制器2321可以对来自多个基带处理器的数据进行捆绑以生成捆绑分组,并传递所生成的捆绑分组。控制器2321可以具有执行如下控制的逻辑功能:该控制诸如为无线资源控制、无线承载控制、移动性管理、接纳控制和调度。该控制可以结合附近的gNB或核心网节点来执行。存储器2322包括RAM和ROM,并且存储由控制器2321执行的程序和各种类型的控制数据(诸如终端列表、传输功率数据以及调度数据)。
网络接口2323为用于将基站设备2320连接至核心网2324的通信接口。控制器2321可以经由网络接口2323而与核心网节点或另外的gNB进行通信。在此情况下,gNB 2300与核心网节点或其他gNB可以通过逻辑接口(诸如S1接口和X2接口)而彼此连接。网络接口2323还可以为有线通信接口或用于无线回传线路的无线通信接口。如果网络接口2323为无线通信接口,则与由无线通信接口2325使用的频带相比,网络接口2323可以使用较高频带用于无线通信。
无线通信接口2325支持任何蜂窝通信方案(诸如长期演进(LTE)和LTE-先进),并且经由天线2310来提供到位于gNB 2300的小区中的终端的无线连接。无线通信接口2325通常可以包括例如BB处理器2326和RF电路2327。BB处理器2326可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行层(例如L1、介质访问控制(MAC)、无线链路控制(RLC)和分组数据汇聚协议(PDCP))的各种类型的信号处理。代替控制器2321,BB处理器2326可以具有上述逻辑功能的一部分或全部。BB处理器2326可以为存储通信控制程序的存储器,或者为包括被配置为执行程序的处理器和相关电路的模块。更新程序可以使BB处理器2326的功能改变。该模块可以为插入 到基站设备2320的槽中的卡或刀片。可替代地,该模块也可以为安装在卡或刀片上的芯片。同时,RF电路2327可以包括例如混频器、滤波器和放大器,并且经由天线2310来传送和接收无线信号。
如图24所示,无线通信接口2325可以包括多个BB处理器2326。例如,多个BB处理器2326可以与gNB 2300使用的多个频带兼容。如图24所示,无线通信接口2325可以包括多个RF电路2327。例如,多个RF电路2327可以与多个天线元件兼容。虽然图24示出其中无线通信接口2325包括多个BB处理器2326和多个RF电路2327的示例,但是无线通信接口2325也可以包括单个BB处理器2326或单个RF电路2327。
在图24所示的gNB 2300中,基站侧的无线通信设备的收发装置可以由无线通信接口2325实现。基站侧的电子装置或无线通信设备的处理电路和/或各单元的功能的至少一部分也可以由控制器2321实现。例如,控制器2321可以通过执行存储在存储器2322中的程序而执行基站侧的电子装置或无线通信设备的处理电路和/或各单元的功能的至少一部分。
在上面对本发明具体实施例的描述中,针对一种实施方式描述和/或示出的特征可以用相同或类似的方式在一个或更多个其它实施方式中使用,与其它实施方式中的特征相组合,或替代其它实施方式中的特征。
应该强调,术语“包括/包含”在本文使用时指特征、要素、步骤或组件的存在,但并不排除一个或更多个其它特征、要素、步骤或组件的存在或附加。
在上述实施例和示例中,采用了数字组成的附图标记来表示各个步骤和/或单元。本领域的普通技术人员应理解,这些附图标记只是为了便于叙述和绘图,而并非表示其顺序或任何其他限定。
此外,本发明的方法不限于按照说明书中描述的时间顺序来执行,也可以按照其他的时间顺序地、并行地或独立地执行。因此,本说明书中描述的方法的执行顺序不对本发明的技术范围构成限制。
尽管上面已经通过对本发明的具体实施例的描述对本发明进行了披露,但是,应该理解,上述的所有实施例和示例均是示例性的,而非限制性的。本领域的技术人员可在所附权利要求的精神和范围内设计对本发明的各种修改、改进或者等同物。这些修改、改进或者等同物也应当被认为包括在本发明的保护范围内。

Claims (19)

  1. 一种用于无线通信的电子装置,其包括处理电路,所述处理电路被配置为:
    基于用户设备关于第一波束扫描的第一测量信息,确定所述用户设备的第一位置范围;
    在所述第一位置范围低于预定的精度要求时,基于所述第一位置范围确定波束配置的调整;以及
    基于所述用户设备关于利用经调整的波束配置进行的第二波束扫描的第二测量信息,确定所述用户设备的第二位置范围。
  2. 根据权利要求1所述的电子装置,其中,所述波束配置至少包括波束方向或波束宽度之一。
  3. 根据权利要求1所述的电子装置,其中,所述处理电路还被配置为:
    确定无线接入点的第一收/发端集合,用于基于第一波束配置进行所述第一波束扫描,所述第一收/发端集合包括一个或多个收/发端电路;以及基于所述第一测量信息,确定无线接入点的第二收/发端集合,用于基于第二波束配置进行所述第二波束扫描,所述第二收/发端集合包括一个或多个收/发端电路。
  4. 根据权利要求3所述的电子装置,其中,
    对所述第一收/发端集合的确定包括:
    将与所述用户设备所在小区的主无线接入点邻近的无线接入点的收/发端确定为所述第一收/发端集合;或者
    根据无线接入点的收/发端接收到所述用户设备发送的上行信号的强度,将信号强度高的收/发端确定为所述第一收/发端集合,
    对所述第二收/发端集合的确定包括:
    将与所述用户设备的所述第一位置范围邻近的无线接入点的收/发端确定为所述第二收/发端集合;或者
    根据无线接入点的收/发端接收到所述用户设备发送的上行信号的强度,将信号强度高的收/发端确定为所述第二收/发端集合。
  5. 根据权利要求3所述的电子装置,其中,所述第一收/发端集合为选定的初始收/发端集合,并且
    所述处理电路被配置为:进行控制以接收用户设备对所述初始收/发端集合中与最大接收功率对应的波束的测量信息,根据所述初始收/发端集合确定所述第一位置范围,通过限定位置范围提高用户设备的定位位置的精度。
  6. 根据权利要求1所述的电子装置,其中,所述处理电路还被配置为:
    在所述第二位置范围不满足所述定位精度要求的情况下对波束配置进行调整。
  7. 根据权利要求1所述的电子装置,其中,基于以下条件中的一项或更多项确定所述第一位置范围或所述第二位置范围是否满足定位精度要求:
    所述第一位置范围或第二位置范围的最大偏移小于定位精度要求的位置偏移;
    所述第一位置范围或第二位置范围的面积小于定位精度要求的位置不确定面积;以及
    所述第一位置范围或第二位置范围的各方向加权平均位置偏移小于定位精度要求的加权平均位置偏移。
  8. 根据权利要求1所述的电子装置,其中,所述第一位置范围和所述第二位置范围的确定基于以下方面:
    所述用户设备接收到的最强波束的发射角;或者
    所述最强波束的发射角以及所述最强波束的接收功率两者。
  9. 根据权利要求1所述的电子装置,其中,所述第一测量信息和所述第二测量信息包括:
    所述用户设备通过测量波束扫描中各波束的接收功率而确定的具有最大接收功率的波束的信息。
  10. 根据权利要求1所述的电子装置,其中,波束配置的所述调整包括:
    调整波束方向以使得相邻波束分割所述第一位置范围;
    使得经调整的相邻两个波束平分所述第一位置范围;或者
    使得经调整的波束对所述第一位置范围分割后所有子区域中的最大面积最小化。
  11. 根据权利要求10所述的电子装置,其中,波束配置的所述调整包括:
    调整波束方向和宽度,使得经调整的相邻波束覆盖所述第一位置范围。
  12. 根据权利要求10所述的电子装置,其中,所述第二测量信息包括:
    通过所述用户设备对经调整的至少两个相邻波束进行测量而确定的具有最大接收功率的波束的信息。
  13. 根据权利要求1至12中任一项所述的电子装置,其中,所述电子装置被设置在基站侧。
  14. 根据权利要求1至12中任一项所述的电子装置,其中,所述电子装置工作为位置管理模块LMF。
  15. 一种无线通信方法,包括:
    基于用户设备关于第一波束扫描的第一测量信息,确定所述用户设备的第一位置范围;
    在所述第一位置范围低于预定的精度要求时,基于所述第一位置范围确定波束配置的调整;以及
    基于所述用户设备关于利用经调整的波束配置进行的第二波束扫描的第二测量信息,确定所述用户设备的第二位置范围。
  16. 一种用于无线通信的电子装置,其包括处理电路,所述处理电路被配置为:
    进行控制以对第一波束扫描进行测量以获得第一测量信息,所述第一测量信息用于确定所述电子装置的第一位置范围;以及
    进行控制以对利用经调整的波束配置的第二波束扫描进行测量以获得第二测量信息,所述第二测量信息用于确定所述电子装置的第二位置范围,
    其中,所述波束配置的调整是基于所述第一位置范围确定的。
  17. 根据权利要求16所述的电子装置,其工作为用户设备。
  18. 一种无线通信方法,包括:
    对第一波束扫描进行测量以获得第一测量信息,所述第一测量信息用于确定所述电子装置的第一位置范围;以及
    对利用经调整的波束配置的第二波束扫描进行测量以获得第二测量信息,所述第二测量信息用于确定所述电子装置的第二位置范围,
    其中,所述波束配置的调整是基于所述第一位置范围确定的。
  19. 一种计算机可读介质,其包括可执行指令,当所述可执行指令被信息处理设备执行时,使得所述信息处理设备执行根据权利要求15或18所述的方法。
PCT/CN2019/114743 2018-11-07 2019-10-31 电子装置、无线通信方法和计算机可读介质 WO2020093929A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/283,023 US11516809B2 (en) 2018-11-07 2019-10-31 Electronic apparatus, wireless communication method and computer-readable medium for measurements based on adjusted beam configurations
CN201980072679.6A CN113170322B (zh) 2018-11-07 2019-10-31 电子装置、无线通信方法和计算机可读介质
US17/972,662 US11785622B2 (en) 2018-11-07 2022-10-25 Electronic apparatus, wireless communication method and computer-readable medium for measurements based on adjusted beam configurations

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811318599.8 2018-11-07
CN201811318599.8A CN111163480A (zh) 2018-11-07 2018-11-07 电子装置、无线通信方法和计算机可读介质

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US17/283,023 A-371-Of-International US11516809B2 (en) 2018-11-07 2019-10-31 Electronic apparatus, wireless communication method and computer-readable medium for measurements based on adjusted beam configurations
US17/972,662 Continuation US11785622B2 (en) 2018-11-07 2022-10-25 Electronic apparatus, wireless communication method and computer-readable medium for measurements based on adjusted beam configurations

Publications (1)

Publication Number Publication Date
WO2020093929A1 true WO2020093929A1 (zh) 2020-05-14

Family

ID=70555001

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/114743 WO2020093929A1 (zh) 2018-11-07 2019-10-31 电子装置、无线通信方法和计算机可读介质

Country Status (3)

Country Link
US (2) US11516809B2 (zh)
CN (2) CN111163480A (zh)
WO (1) WO2020093929A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114765852A (zh) * 2021-01-15 2022-07-19 大唐移动通信设备有限公司 定位角度校准方法及装置
US11496231B2 (en) 2004-03-29 2022-11-08 The Nielsen Company (Us), Llc Methods and apparatus to detect a blank frame in a digital video broadcast signal
EP4117358A1 (en) * 2021-07-09 2023-01-11 Nokia Technologies Oy Enhanced positioning in cellular communication networks

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111163480A (zh) 2018-11-07 2020-05-15 索尼公司 电子装置、无线通信方法和计算机可读介质
US11832115B2 (en) * 2020-05-04 2023-11-28 Qualcomm Incorporated Estimating features of a radio frequency band based on an inter-band reference signal
CN111929646A (zh) * 2020-08-14 2020-11-13 中国地质大学(北京) 波束扫描探地雷达系统及智能波束扫描探测方法
CN115549731A (zh) * 2021-06-29 2022-12-30 中兴通讯股份有限公司 一种5G Massive MIMO波束管理方法和装置、存储介质及电子设备
CN116528353A (zh) * 2022-01-21 2023-08-01 索尼集团公司 用于定位的电子设备与方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1744763A (zh) * 2005-09-30 2006-03-08 上海贝豪通讯电子有限公司 在td-scdma和wifi系统下的联合定位方法
CN1753550A (zh) * 2004-09-20 2006-03-29 北京三星通信技术研究有限公司 利用波束成形增强定位信号发送的方法及设备
CN103984971A (zh) * 2014-05-31 2014-08-13 范志广 基于天线阵列相位差测向射频识别的无线定位方法及系统
CN106130617A (zh) * 2016-06-17 2016-11-16 谭毅 基于天线阵列波束赋形角度逐级扫描的终端定向算法
EP3306337A1 (en) * 2016-10-10 2018-04-11 Fraunhofer Gesellschaft zur Förderung der Angewand User equipment localization in a mobile communication network
CN108169710A (zh) * 2017-11-16 2018-06-15 捷开通讯(深圳)有限公司 基于可重构天线的定位方法及定位系统

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9489813B1 (en) * 2006-09-22 2016-11-08 Michael L. Beigel System for location in environment and identification tag
KR101499384B1 (ko) * 2014-02-07 2015-03-11 한국과학기술원 위치 추정 서비스 및 데이터 통신을 동시에 지원하는 빔포밍 벡터 조정 방법 및 장치
KR101751350B1 (ko) * 2015-07-08 2017-06-27 국방과학연구소 위치 추정 서비스 및 데이터 통신을 동시에 지원하기 위한 분산 안테나 시스템에서의 빔포밍 방법 및 장치
US9853713B2 (en) * 2016-05-06 2017-12-26 Ubiqomm Llc Unmanned aerial vehicle (UAV) beam pointing and data rate optimization for high throughput broadband access
KR102656957B1 (ko) * 2016-12-16 2024-04-16 삼성전자 주식회사 무선통신 시스템에서 고속 이동을 위한 측정 방법 및 장치
US10595271B2 (en) * 2017-01-05 2020-03-17 Samsung Electronics Co., Ltd Method, apparatus, and system for terminal identification and paging signal transmission for terminal in power saving state
EP3586451B1 (en) * 2017-03-20 2021-02-17 Huawei Technologies Co., Ltd. Apparatus for configuring reference signal beams based on accuracy of user equipment localization
CN107948916B (zh) * 2017-11-08 2020-09-04 国网冀北电力有限公司电力科学研究院 多波束定位方法、装置及系统
CN110138519A (zh) * 2018-02-02 2019-08-16 索尼公司 无线通信系统中的装置和方法、计算机可读存储介质
CN110289896A (zh) * 2018-03-15 2019-09-27 索尼公司 电子装置、无线通信方法以及计算机可读介质
US10779126B2 (en) * 2018-07-13 2020-09-15 Qualcomm Incorporated Systems and methods for PRS muting in a fifth generation wireless network
CN111163480A (zh) * 2018-11-07 2020-05-15 索尼公司 电子装置、无线通信方法和计算机可读介质
CN111565414B (zh) * 2019-02-13 2022-04-05 华为技术有限公司 一种用于定位的波束信息获取方法及装置
CN112135304A (zh) * 2019-06-25 2020-12-25 中兴通讯股份有限公司 一种基于非独立组网nsa系统的波束管理方法和装置
US11662421B2 (en) * 2019-08-09 2023-05-30 Qualcomm Incorporated Report of receive or transmit beam lock information
EP4405699A1 (en) * 2021-09-23 2024-07-31 Qualcomm Incorporated Discontinuous reception (drx) based anchor user equipment (ue) selection for joint positioning sessions

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1753550A (zh) * 2004-09-20 2006-03-29 北京三星通信技术研究有限公司 利用波束成形增强定位信号发送的方法及设备
CN1744763A (zh) * 2005-09-30 2006-03-08 上海贝豪通讯电子有限公司 在td-scdma和wifi系统下的联合定位方法
CN103984971A (zh) * 2014-05-31 2014-08-13 范志广 基于天线阵列相位差测向射频识别的无线定位方法及系统
CN106130617A (zh) * 2016-06-17 2016-11-16 谭毅 基于天线阵列波束赋形角度逐级扫描的终端定向算法
EP3306337A1 (en) * 2016-10-10 2018-04-11 Fraunhofer Gesellschaft zur Förderung der Angewand User equipment localization in a mobile communication network
CN108169710A (zh) * 2017-11-16 2018-06-15 捷开通讯(深圳)有限公司 基于可重构天线的定位方法及定位系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KEYSIGHT TECHNOLOGIES: "On Coarse&Fine TX Beam Peak Search Measurement Approaches", 3GPP TSG-RAN WG4 MEETING #88BIS R4-1813582, 12 October 2018 (2018-10-12), XP051582245 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11496231B2 (en) 2004-03-29 2022-11-08 The Nielsen Company (Us), Llc Methods and apparatus to detect a blank frame in a digital video broadcast signal
CN114765852A (zh) * 2021-01-15 2022-07-19 大唐移动通信设备有限公司 定位角度校准方法及装置
EP4117358A1 (en) * 2021-07-09 2023-01-11 Nokia Technologies Oy Enhanced positioning in cellular communication networks

Also Published As

Publication number Publication date
US11516809B2 (en) 2022-11-29
CN113170322A (zh) 2021-07-23
CN111163480A (zh) 2020-05-15
US11785622B2 (en) 2023-10-10
CN113170322B (zh) 2024-09-24
US20230039686A1 (en) 2023-02-09
US20210345316A1 (en) 2021-11-04

Similar Documents

Publication Publication Date Title
WO2020093929A1 (zh) 电子装置、无线通信方法和计算机可读介质
WO2021031714A1 (zh) 一种基于相对角度的定位方法及装置
US10944449B2 (en) Apparatus and method in wireless communication system, and computer readable storage medium
WO2019237998A1 (zh) 电子设备、用户设备、无线通信方法和存储介质
JP2017512449A (ja) 非管理ネットワークにおけるアクセスポイントのロケーションディスカバリ
US10911117B2 (en) Electronic device in wireless communication system, method, and computer readable storage medium
US10015728B2 (en) Method and apparatus for performing scan operations
US11510172B1 (en) Device detection and locationing within a wireless network
US10951273B2 (en) Electronic device, method and storage medium for wireless communication system
WO2015096074A1 (zh) 上行参考信号配置的方法、基站、定位服务器及系统
CN111954229A (zh) 一种位置信息发送方法、装置和终端设备
TW202244536A (zh) 使用射頻感測的室內地圖產生
WO2019210804A1 (zh) 波束训练方法、相关装置及系统
WO2020108502A1 (zh) 用于无线通信系统的电子设备、方法和存储介质
WO2022141219A1 (zh) 一种定位方法及相关装置
WO2022253127A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2022105334A1 (zh) 一种波束对准的方法,信息传输的方法以及相关设备
US20240187282A1 (en) Electronic device for wireless communication, wireless communication method, and storage medium
WO2024198973A1 (zh) 一种定位方法及装置
WO2023151469A1 (zh) 定位方法及装置
WO2019205075A1 (zh) 波束定位方法、装置及系统
CN114584918A (zh) 一种室内定位方法及相关设备、计算机可读存储介质
CN116528353A (zh) 用于定位的电子设备与方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19882019

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19882019

Country of ref document: EP

Kind code of ref document: A1