WO2019210804A1 - 波束训练方法、相关装置及系统 - Google Patents

波束训练方法、相关装置及系统 Download PDF

Info

Publication number
WO2019210804A1
WO2019210804A1 PCT/CN2019/084290 CN2019084290W WO2019210804A1 WO 2019210804 A1 WO2019210804 A1 WO 2019210804A1 CN 2019084290 W CN2019084290 W CN 2019084290W WO 2019210804 A1 WO2019210804 A1 WO 2019210804A1
Authority
WO
WIPO (PCT)
Prior art keywords
frame
indication information
scanning frame
beam scanning
location indication
Prior art date
Application number
PCT/CN2019/084290
Other languages
English (en)
French (fr)
Inventor
李彦淳
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2019210804A1 publication Critical patent/WO2019210804A1/zh
Priority to US17/087,756 priority Critical patent/US11800375B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/003Locating users or terminals or network equipment for network management purposes, e.g. mobility management locating network equipment

Definitions

  • the present application relates to the field of wireless communication and beamforming technologies, and in particular, to a beam training method, related apparatus, and system.
  • Beam training is the main process in beamforming technology. Beam training is a two-way beamforming frame transmission process that provides the necessary signals to enable the communicating parties to select the sector beam direction suitable for transmitting and receiving signals based on the signal. After the beam training is successfully completed, the communicating parties can determine the sector beam direction suitable for transmitting and receiving signals, thereby adjusting the antenna configuration and transmitting data by using beamforming technology.
  • the present application provides a beam training method, a related device and a system, which can be used to converge the sector scanning range of a communication device in beam training, improve the efficiency of beam training, and thereby improve the efficiency of beamforming.
  • the present application provides a beam training method applied to a first device side.
  • the beam training method includes: receiving, by the first device, a data frame, where the data frame carries spatial location indication information of the first device and spatial location indication information of the second device; the first device determines, according to the data frame, A transmit beam and/or a receive beam for beam training between the second devices.
  • the present application provides a beam training method applied to a network device side.
  • the beam training method includes: the network device generates a data frame, where the data frame carries spatial location indication information of the first device and spatial location indication information of the second device; the network device sends the data frame to the first And the data frame is used by the first device to determine a transmit beam and/or a receive beam for performing beam training with the second device.
  • the network device may be one or more.
  • the network device may be a base station or an access point (AP) to which the first device accesses.
  • AP access point
  • the first device determines the transmit beam and/or the receive beam according to the information carried in the data frame. Several possible determination methods are listed below.
  • the first determination method determining a transmission beam and/or a reception beam based on spatial coordinates of the first device and the second device.
  • the first device may determine the spatial coordinates of the first device according to the spatial location indication information of the first device carried in the data frame, and determine the spatial coordinates of the second device according to the spatial location indication information of the second device carried in the data frame. After determining the spatial coordinates of the first device and the second device, the first device may know the direction in which the first device points to the second device, and according to the direction in which the first device points to the second device, all or In the partial beam, the transmit beam and/or the receive beam are determined.
  • the second determination method according to the information carried in the data frame and the information acquired in the process of receiving the data, query the mapping relationship between the information and the transmit beam and/or the receive beam to determine the transmit beam. And / or receive beams.
  • mapping table between the information and the transmit beam and/or the receive beam may be stored in the first device.
  • the present application may also determine the transmitting beam and/or the receiving beam by other means.
  • the first device can converge the sector scanning range in the beam training with the second device, improve the efficiency of beam training, and thereby improve the efficiency of beamforming.
  • the transmit sector scan may be omitted, and the beam is directly used as the optimal transmit beam of the first device.
  • the number of receive beams determined by the first device is one. In this case, the time spent by beam training can be further reduced, and beamforming efficiency is improved.
  • the spatial location indication information of the first device can be obtained in the following three different manners.
  • the spatial location indication information of the first device is obtained by using the third device.
  • the spatial location indication information of the first device may include the following situations:
  • the spatial position indication information of the first device may include: angle information of the first beam, and spatial coordinates of the third device.
  • the spatial position indication information of the first device may include: angle information of the first beam, transmission power of the first beam scanning frame, and spatial coordinates of the third device.
  • the spatial location indication information of the first device may further include a transmission time of the first beam scanning frame.
  • the first beam is a beam corresponding to the first beam scanning frame
  • the first beam scanning frame is a signal received by the first device in the beam scanning frame frame sent by the third device.
  • the spatial location indication information of the first device includes: a beam identifier of the second beam, an angle information of the second beam, a transmit power of the second beam scan frame, and a beam identifier of the third beam, the third device Space coordinates.
  • the second beam is a beam corresponding to the second beam scanning frame
  • the third beam is a beam corresponding to the third beam scanning frame
  • the second beam scanning frame and the third beam scanning frame are sent by the third device to the first device.
  • the spatial location indication information of the first device includes: a beam identifier of the fourth beam, and a spatial coordinate of the third device.
  • the fourth beam is a beam corresponding to the fourth beam scanning frame
  • the fourth beam scanning frame is a beam scanning frame in which the third device receives the beam scanning frame frame sent by the first device, and the signal quality is optimal, or A beam scan frame with a signal quality greater than a threshold, or an earliest received beam scan frame.
  • the spatial location indication information of the first device is obtained by using the third device.
  • the spatial location indication information of the first device may include: related information of the third device and related information of the fourth device.
  • the related information of the third device may include the following four situations:
  • the first beam is a beam corresponding to the first beam scanning frame
  • the first beam scanning frame is a beam scanning frame, or a signal quality, in which the first device receives the beam scanning frame frame sent by the third device, the signal quality is optimal.
  • the second beam is a beam corresponding to the second beam scanning frame
  • the third beam is a beam corresponding to the third beam scanning frame
  • the second beam scanning frame and the third beam scanning frame are sent by the third device to the first device.
  • the fourth beam is a beam corresponding to the fourth beam scanning frame
  • the fourth beam scanning frame is a beam scanning frame or signal quality in which the third device receives the beam scanning frame frame sent by the first device, the signal quality is optimal.
  • the related information of the fourth device may include the following four situations:
  • the fifth beam is a beam corresponding to the fifth beam scanning frame
  • the fifth beam scanning frame is a beam scanning frame or signal quality in which the first device receives the beam scanning frame frame sent by the fourth device, the signal quality is optimal.
  • the sixth beam is a beam corresponding to the sixth beam scanning frame
  • the seventh beam is a beam corresponding to the seventh beam scanning frame
  • the sixth beam scanning frame and the seventh beam scanning frame are sent by the fourth device to the first device.
  • the eighth beam is a beam corresponding to the eighth beam scanning frame
  • the eighth beam scanning frame is a beam scanning frame, or a signal quality, in which the fourth device receives the beam scanning frame frame sent by the first device, the signal quality is optimal.
  • the network device may store the spatial location indication information of the first device and the second device, where the first device may connect the spatial location indication information of the first device and the second device acquired from the network server.
  • the spatial location indication information of the first device may include spatial coordinates of the first device.
  • the spatial location indication information of the second device may also include spatial coordinates of the first device.
  • the spatial coordinates can be represented by latitude and longitude, polar coordinates or three-dimensional coordinates.
  • the present application provides a first device that can be used to perform the beam training method described in the first aspect.
  • the first device can include a memory and a processor, a transmitter and a receiver coupled to the memory, wherein: the transmitter is for transmitting a signal, the receiver is for receiving a transmitted signal, and the memory is for The implementation code of the beam training method described in the first aspect is stored, the processor being operative to execute the program code stored in the memory, ie to perform the beam training method provided by the first aspect or the possible implementation of the first aspect.
  • the application provides a network device, which can be used to perform the beam training method described in the second aspect.
  • the network device can include a memory and a processor and transmitter coupled to the memory, wherein: the processor is for generating a signal, the transmitter is for transmitting the signal, and the memory is for storing a second aspect description
  • the implementation code of the beam training method is further configured to execute the program code stored in the memory, that is, to perform the beam training method provided by the second aspect or the possible implementation of the second aspect.
  • the present application provides a first device, comprising a plurality of functional modules, for performing the method provided by the first aspect or the possible implementation of the first aspect.
  • the present application provides a computer readable storage medium having stored thereon program code for implementing the beam training method described in the first aspect or the possible implementation of the first aspect, the program The code contains execution instructions for running the beam training method described in the first aspect or possible embodiments of the first aspect.
  • the present application provides a computer readable storage medium having stored thereon program code for implementing the beam training method described in the second aspect or the possible implementation of the second aspect, the program The code contains execution instructions for running the beam training method described in the second aspect or the possible embodiments of the second aspect.
  • a computer program product comprising instructions which, when run on a computer, cause the computer to perform the beam training method described in the first aspect or the possible embodiment of the first aspect.
  • a computer program product comprising instructions which, when run on a computer, cause the computer to perform the beam training method described in the ninth or ninth aspect of the possible embodiments.
  • the first device may determine a transmit beam and/or a receive beam that performs beam training with the second device.
  • the transmit sector may be scanned by the determined transmit beam, and the determined The receiving beam performs the receiving sector scanning, and does not need to traverse all the sector beams, converging the range of the sector scanning, which can reduce the time spent by the beam training, thereby improving the beamforming efficiency.
  • FIG. 1 is a schematic structural diagram of a wireless communication system provided by the present application.
  • FIG. 2 is a schematic structural diagram of a terminal provided by the present application.
  • FIG. 3 is a schematic structural diagram of a network device provided by the present application.
  • FIG. 4 is a schematic flowchart of a beam training method provided by the present application.
  • FIG. 5 is a schematic diagram of a scenario of a first device, a second device, and a third device according to Embodiment 1 of the present application;
  • FIG. 6A, FIG. 7A, FIG. 8A, FIG. 9A, FIG. 11A, FIG. 12A, and FIG. 13A are flowcharts of data frame interaction according to Embodiment 1 of the present application;
  • FIG. 6B is a schematic structural diagram of a beam scanning frame according to Embodiment 1 of the present application.
  • FIG. 7B is a schematic structural diagram of a beam scanning frame, a first query frame, and a first query report frame according to Embodiment 1 of the present application;
  • FIG. 7C is a schematic structural diagram of a beam scanning frame, a query frame, and a query report frame according to Embodiment 1 of the present application;
  • FIG. 8B is a schematic structural diagram of another beam scanning frame according to Embodiment 1 of the present application.
  • FIG. 9B is a schematic structural diagram of still another beam scanning frame according to Embodiment 1 of the present application.
  • Figure 10 is a schematic view of the off angle provided by the present application.
  • FIG. 11B and FIG. 12B are schematic structural diagrams of a second beam scanning frame and a third beam scanning frame according to Embodiment 1 of the present application;
  • FIG. 13B is a schematic structural diagram of a first beam feedback frame provided by the present application.
  • FIG. 14 is a schematic diagram of a scenario of a first device, a second device, a third device, and a fourth device according to Embodiment 2 of the present application;
  • FIG. 15 and FIG. 16 are flowcharts of data frame interaction according to Embodiment 2 of the present application.
  • FIG. 17 is a functional block diagram of a first device provided by the present application.
  • the wireless communication system to which the present application relates is first introduced.
  • the wireless communication system of the present application operates in a high frequency band, is not limited to a long term evolution (LTE) system, and may be a fifth generation mobile communication (the 5th generation, 5G) system and a new air interface (NR).
  • LTE long term evolution
  • 5G fifth generation mobile communication
  • NR new air interface
  • M2M machine to machine
  • WIFI WIFI system
  • the wireless communication system 100 can include one or more network devices 101, one or more terminals 102. among them:
  • Network device 101 may be distributed throughout wireless communication system 100, either stationary or mobile.
  • network device 101 may be a base station that may be used to communicate with one or more terminals, or may be used to communicate with one or more base stations having partial terminal functions.
  • the base station may be a base transceiver station (BTS) in a time division synchronous code division multiple access (TD-SCDMA) system, or may be an evolved base station in an LTE system (evolutional node B) , eNB), and base stations in 5G systems, new air interface (NR) systems.
  • the network device 101 may also be an access point (AP), a transit node (Trans TRP), a central unit (CU), or other network entity.
  • AP access point
  • Trans TRP transit node
  • CU central unit
  • Terminals 102 may be distributed throughout wireless communication system 100, either stationary or mobile.
  • the terminal 102 may be a mobile phone, VR glasses, a mobile device, a mobile station, a mobile unit, an M2M terminal, a wireless unit, a remote unit, a terminal agent, and a mobile client. and many more.
  • the wireless communication system 100 is a multi-beam communication system. among them:
  • the network device 101 can be configured with a large-scale antenna array, and uses beamforming technology to control the antenna array to form beams with different directions, through which data is transmitted and received.
  • the terminal 102 can also be configured with an antenna array, and can also transmit and receive data with different directed beams. That is to say, in the wireless communication system 100, multiple devices are used for communication in the network device 101 and the terminal 102.
  • the beam formed by the network device 101 or the terminal 102 by using the beamforming technology has a certain coverage, and the coverage is similar to a sector, which is called a sector. Therefore, the beam can also be referred to as a sector beam.
  • a beam used when the network element sends data to another network element is called a transmit beam
  • a beam used when receiving data sent by another network element is called a receive.
  • Beam a beam used when receiving data sent by another network element
  • the receive beam and its corresponding transmit beam may be the same beam, and the two may share the same transceiver.
  • the antenna ports corresponding to the receiving beams and their corresponding transmit beams may be quasi co-location (QCL).
  • the quasi co-location means that at least one of the following parameters is the same or has a certain correspondence: an angle of arrival (AoA), a dominant angle of incidence (dominant AoA), an average incident angle, and a power angle spectrum of the incident angle ( Power angular spectrum of AoA, PAS of AoA), angle of departure (AoD), main exit angle, average exit angle, power angle spectrum of exit angle, terminal transmit beamforming, terminal receive beamforming, spatial channel correlation Scenario, base station transmit beamforming, base station receive beamforming, average channel gain, average channel delay, delay spread, doppler spread, and the like.
  • FIG. 2 is a schematic structural diagram of a terminal 20 provided by the present application.
  • the terminal 20 may include: one or more processors 201, a memory 202, a communication interface 203, a receiver 205, a transmitter 206, a coupler 207, an antenna 208, a terminal interface 202, and an input and output module (The audio input and output module 210, the key input module 211, the display 212, and the like are included. These components can be connected by bus 204 or other means, and FIG. 2 is exemplified by a bus connection. among them:
  • Communication interface 203 can be used by terminal 20 to communicate with other communication devices, such as with network devices.
  • the communication interface 203 may be a Long Term Evolution (LTE) (4G) communication interface, or may be a 5G or a future communication interface of a new air interface.
  • LTE Long Term Evolution
  • 5G 5G
  • the terminal 20 may be configured with a wired communication interface 203, such as a local access network (LAN) interface.
  • LAN local access network
  • Transmitter 206 and receiver 205 can be viewed as a wireless modem.
  • the number of the transmitter 206 and the receiver 205 may each be one or more.
  • the antenna 208 can be used to convert electromagnetic energy in a transmission line into electromagnetic waves in free space, or to convert electromagnetic waves in free space into electromagnetic energy in a transmission line.
  • the coupler 207 is configured to divide the mobile communication signal received by the antenna 208 into multiple channels and distribute it to a plurality of receivers 205. As can be appreciated, the antenna 208 can be implemented as a large scale antenna array.
  • the terminal 20 may also include other communication components such as a GPS module, a Bluetooth module, a wireless fidelity (Wi-Fi) module, and the like.
  • the terminal 20 can also support other wireless communication signals such as satellite signals, short-wave signals, and the like, without being limited to the wireless communication signals described above.
  • the terminal 20 can also perform wired communication through a wired network interface such as a LAN interface.
  • the input and output module can be used to implement the interaction between the terminal 20 and the terminal/external environment, and can mainly include the audio input and output module 210, the key input module 211, the display 212, and the like. Specifically, the input and output module may further include: a camera, a touch screen, a sensor, and the like. The input and output modules communicate with the terminal processor 201 through the terminal interface 209.
  • Memory 202 is coupled to terminal processor 201 for storing various software programs and/or sets of instructions.
  • memory 202 can include high speed random access memory, and can also include non-volatile memory, such as one or more magnetic disk storage devices, flash memory devices, or other non-volatile solid state storage devices.
  • the memory 202 can store an operating system (hereinafter referred to as a system) such as an embedded operating system such as ANDROID, IOS, WINDOWS, or LINUX.
  • the memory 202 can also store a network communication program that can be used to communicate with one or more additional devices, one or more terminal devices, one or more network devices.
  • the memory 202 can also store a terminal interface program, which can realistically display the content of the application through a graphical operation interface, and receive control operations of the application through the input control such as menus, dialog boxes, and keys. .
  • the memory 202 can be used to store an implementation of the beam training method provided by one or more embodiments of the present application on the terminal 20 side.
  • the beam training method provided by one or more embodiments of the present application, please refer to the subsequent embodiments.
  • Terminal processor 201 can be used to read and execute computer readable instructions. Specifically, the terminal processor 201 can be used to invoke a program stored in the memory 212, for example, the implementation of the beam training method provided by one or more embodiments of the present application on the terminal 20 side, and execute the instructions contained in the program.
  • the terminal 20 can be the terminal 102 in the wireless communication system 100 shown in FIG. 1 and can be implemented as a mobile device, a mobile station, a mobile unit, a wireless unit, a remote unit, and a mobile client. And so on.
  • the terminal 20 shown in FIG. 2 is only an implementation manner of the embodiment of the present application. In an actual application, the terminal 20 may further include more or fewer components, which are not limited herein.
  • network device 30 provided by some embodiments of the present application.
  • the network device 30 can be implemented as the network device 101 in the communication system shown in FIG. 1.
  • network device 30 may include one or more network device processors 301, memory 302, communication interface 303, transmitter 305, receiver 306, coupler 307, and antenna 308. These components can be connected via bus 304 or other means, and Figure 3 is exemplified by a bus connection. among them:
  • Communication interface 303 can be used by network device 30 to communicate with other communication devices, such as terminal devices or other network devices.
  • the terminal device may be the terminal 20 shown in FIG. 2.
  • the communication interface 303 may be a Long Term Evolution (LTE) (4G) communication interface, or may be a 5G or a future communication interface of a new air interface.
  • LTE Long Term Evolution
  • the network device 30 may also be configured with a wired communication interface 303 to support wired communication.
  • a backhaul link between one network device 30 and other network devices 30 may be a wired communication connection.
  • transmitter 305 and receiver 306 can be viewed as a wireless modem.
  • Transmitter 305 can be used to perform transmission processing on signals output by network device processor 301, such as by beamforming.
  • Receiver 306 can be used to receive signals, such as by directional reception.
  • the antenna 308 can be used to convert electromagnetic energy in a transmission line into electromagnetic waves in free space, or to convert electromagnetic waves in free space into electromagnetic energy in a transmission line.
  • Coupler 307 can be used to divide the mobile pass signal into multiple channels and distribute it to multiple receivers 306.
  • the antenna 308 of the network device can be implemented as a large scale antenna array.
  • Memory 302 is coupled to network device processor 301 for storing various software programs and/or sets of instructions.
  • memory 302 may include high speed random access memory, and may also include non-volatile memory, such as one or more magnetic disk storage devices, flash memory devices, or other non-volatile solid state storage devices.
  • the memory 302 can store an operating system (hereinafter referred to as a system) such as an embedded operating system such as uCOS, VxWorks, or RTLinux.
  • a system such as an embedded operating system such as uCOS, VxWorks, or RTLinux.
  • the memory 302 can also store a network communication program that can be used to communicate with one or more additional devices, one or more terminal devices, one or more network devices.
  • the network device processor 301 can be used to read and execute computer readable instructions. Specifically, the network device processor 301 can be used to invoke a program stored in the memory 302, for example, the implementation of the beam training method provided by one or more embodiments of the present application on the network device 30 side, and execute the instructions included in the program. .
  • the network device 30 can be the terminal 101 in the wireless communication system 100 shown in FIG. 1, and the network device 30 can be implemented as a base transceiver station, a wireless transceiver, a basic service set (BSS), and an extended service set (ESS), NodeB, eNodeB, gNodeB, access point or TRP, etc.
  • BSS basic service set
  • ESS extended service set
  • NodeB NodeB
  • eNodeB eNodeB
  • gNodeB access point or TRP, etc.
  • the network device 30 shown in FIG. 3 is only one implementation of the embodiment of the present application. In an actual application, the network device 30 may further include more or fewer components, which are not limited herein.
  • the present application provides a beam training method, which can be used to converge the sector scanning range of the communication equipment in the beam training SLS phase, improve the efficiency of beam training, and improve the beamforming efficiency.
  • the beam training process between the first device and the second device is taken as an example to illustrate the beam training method of the present application.
  • the main inventive idea of the present application is to converge the sector scanning range during beam training between the first device and the second device by using the spatial location of the first device and the spatial location of the second device.
  • the spatial location of the first device can be obtained in a plurality of manners.
  • the most common manner is that the first device acquires its own spatial location through a positioning system such as a GPS.
  • a positioning system such as GPS
  • the method of acquiring the spatial position of the first device by using a positioning system such as GPS has at least the following two disadvantages: 1.
  • the GPS signal cannot cover all the communication devices, and the communication device in the indoor, underground, etc. environment cannot receive the GPS signal, and cannot Positioning by GPS; 2, GPS positioning accuracy is not enough, the spatial position of the first device obtained by GPS and other positioning systems is not accurate enough.
  • the first device acquires the spatial location of the first device by means of other devices.
  • the manner in which the spatial location of the first device is obtained in the present application is not limited to the use environment, and a relatively accurate spatial location of the first device can be obtained.
  • FIG. 4 is a schematic flowchart diagram of a beam training method provided by the present application. As shown, the method can include the following steps:
  • the first device receives a data frame, where the data frame carries spatial location indication information of the first device and spatial location indication information of the second device.
  • the first device may be a network device (such as a base station, an AP, etc.) in the communication system shown in FIG. 1, or may be a terminal in the communication system shown in FIG. 1.
  • the first device is configured with an antenna array, and the beamforming technique can be used to control the antenna array to form beams with different pointing directions.
  • the second device may be a network device (such as a base station, an AP, etc.) in the communication system shown in FIG. 1, or may be a terminal in the communication system shown in FIG. 1.
  • the second device may be configured with an antenna array or only a single antenna.
  • the data frame can be sent by one or more devices.
  • the first device is a terminal
  • the data frame may be sent by a base station or an AP accessed by the terminal.
  • the base station or the AP that the terminal accesses is a base station or an AP that has a connection relationship with the terminal, that is, the terminal performs authentication, establishment of a session connection, and the like at the base station or the AP to access the base station or the AP.
  • the data frame may be sent in a broadcast manner by a base station or an AP that is not connected to the terminal, and the first device may receive the data frame broadcast by the base station or the AP.
  • the base station or the AP that is not connected to the terminal means that the terminal does not perform authentication, establish a session connection, or the like at the base station or the AP to access the base station or the AP, but the terminal can receive the data sent by the base station or the AP. frame.
  • the data frame carries the spatial location indication information of the first device and the spatial location indication information of the second device.
  • the first device determines, according to the data frame, a transmit beam and/or a receive beam that performs beam training with the second device.
  • the transmit beam and/or the receive beam mentioned later in the present application are both a transmit beam and/or a receive beam for beam training between the first device and the second device.
  • the first device determines the transmit beam and/or the receive beam according to the information carried in the data frame. Several possible determination methods are listed below.
  • the first determination method determining a transmission beam and/or a reception beam according to spatial coordinates of the first device and the second device.
  • the first device determines the spatial coordinates of the first device according to the spatial location indication information of the first device that is carried in the data frame, and determines the spatial coordinates of the second device according to the spatial location indication information of the second device that is carried in the data frame.
  • the method for the first device to determine the spatial coordinates of the first device and the second device may refer to the related description of the subsequent embodiments.
  • the first device may know the direction in which the first device points to the second device, and according to the direction in which the first device points to the second device, all or In the partial beam, the transmit beam and/or the receive beam are determined.
  • the second determination method according to the information carried in the data frame and the information acquired in the process of receiving the data, query the mapping relationship between the information and the transmit beam and/or the receive beam to determine the transmit beam. And / or receive beams.
  • mapping table between the information and the transmit beam and/or the receive beam may be stored in the first device.
  • the present invention is not limited to the above two determination methods, and the present application may also determine the transmit beam and/or the receive beam by other means.
  • the first device may further determine the transmit beam and/or the receive beam according to the information carried by the data frame and the posture information of the first device itself.
  • the first device is movable, and when the posture of the first device changes, the direction in which the beam can be generated also changes.
  • the first device is a mobile phone.
  • the screen of the mobile phone is facing upward, the beam generated by the antenna on the screen side points upward.
  • the beam generated by the antenna on the screen side points downward, that is, when the posture of the mobile phone is different.
  • the same beam has different directions.
  • the manner of determining the transmit beam and/or the receive beam taking into account the change of the beam direction, the determined transmit beam and/or receive beam can be more accurately pointed to the second device.
  • the posture information of the first device may be obtained by a measuring device such as a gyroscope, a gravity meter, a compass, or the like configured by the first device.
  • the posture information of the first device may be obtained by the visual device configured by the first device, for example, acquiring a feature object in the scene by using a camera, and obtaining posture information of the first device according to different positions of the feature object appearing in the screen. .
  • the first device determines at least one transmit beam and/or at least one receive beam among all or part of the beams that can be formed.
  • the partial beams may be the same, or all the beams may be the same (that is, the transmit and receive beams determined by the first device are the same).
  • an angle between a beam direction of the transmit beam determined by the first device and a direction of the first device pointing to the second device is less than a first threshold, and determining a beam direction of the receive beam and the first device pointing
  • the angle between the directions of the second device is less than a second threshold.
  • the first threshold and the second threshold may be preset, and may be, for example, 10 degrees, 20 degrees, or the like. It can be understood that the smaller the value of the first threshold is, the smaller the number of finally determined transmit beams is. Similarly, when the value of the second threshold is smaller, the number of finally received receiving beams is smaller.
  • the first device determines the transmit beam and/or the receive beam that is beam-trained with the second device, performing the scan of the transmit sector in the beam training by using the determined transmit beam, by determining The receive beam performs a received sector scan in beam training.
  • the transmit sector scan in the beam training is used by the first device to determine an optimal transmit beam when transmitting data to the second device.
  • the transmitting sector scanning process includes: the first device separately sends a beam scanning frame to the second device by using the multiple transmitting beams, and the second device receives multiple beam scanning frames, And determining a beam scanning frame with the best signal quality, and feeding back the beam corresponding to the beam scanning frame (ie, the optimal transmitting beam) to the first device, so that the first device knows the best transmitting beam when transmitting data to the second device.
  • the second device determines the beam scanning frame with the optimal signal quality, it may be determined according to at least one of the following: path loss (PL), signal receiving power, signal gain or reference signal (carrying in the beam scanning frame) Reference signal received power (RSRP), signal to noise ratio, signal to interference and noise ratio, delay spread of the channel, and the like.
  • PL path loss
  • RSRP Reference signal received power
  • signal to noise ratio signal to interference and noise ratio
  • delay spread of the channel and the like.
  • the received sector scan in the beam training is used by the first device to determine an optimal receive beam when receiving data transmitted by the second device.
  • the receiving sector scanning process includes: the first device respectively receives a beam scanning frame sent by the second device by using the multiple receiving beams, and determines a beam scanning frame with an optimal signal quality.
  • the beam used by the first device to receive the beam scanning frame with the best signal quality is the best receiving beam.
  • the process of determining the beam scanning frame with the best signal quality of the first device is similar to the determining process of the second device, and details are not described herein.
  • the first device when the number of the transmit beams determined by the first device is one, the first device does not need to perform the transmit sector scan, and directly determines the determined one transmit beam as the optimal transmit beam. Similarly, when the number of receiving beams determined by the first device is one, the first device does not need to perform receiving sector scanning, and directly determines a received beam as the optimal receiving beam.
  • the first device may use the same frequency band or channel, or may use different frequency bands or channels, receive the data frame in the above step S110, and perform the above-mentioned receiving sector scanning process and/or transmitting sector scanning process.
  • the first device may determine a transmit beam and/or a receive beam that performs beam training with the second device.
  • the transmit sector may be scanned by the determined transmit beam, and the determined receive is received.
  • the beam performs the sector scanning, which does not need to traverse all the sector beams, and converges the range of the sector scanning, which can reduce the time spent by the beam training, thereby improving the beamforming efficiency.
  • the data frame interaction process in the beam training method shown in FIG. 4 is described in detail below through three embodiments, and how the first device determines the transmit beam and/or the receive beam.
  • the data frame carries spatial location indication information of the first device and spatial location indication information of the second device.
  • the following three embodiments will mainly describe the spatial location indication information of the first device carried in the data frame, the content of the spatial location indication information of the second device, and the sending manner.
  • the spatial location indication information of the second device may be a polar coordinate, a three-dimensional coordinate, or the like of the second device, and may be carried in a beacon frame or a management frame. Or other types of frames may be sent by any device that stores the spatial location indication information of the second device.
  • the device may be any device that has a connection relationship with the first device.
  • the first device is a terminal
  • the second device is an AP2.
  • the terminal has accessed any AP0 or AP1 that has a connection relationship with the terminal.
  • AP0 or AP1 stores the spatial coordinates of AP2 and sends the spatial coordinates of AP2 to the terminal.
  • the coordinates mentioned later may be established with reference to a spherical surface (such as the surface of the earth) or with a rectangular coordinate system (for example, the surface of the earth may be approximated as a plane in a small range).
  • the first embodiment and the second embodiment mainly discuss how the first device obtains the spatial location indication information of the first device, and the specific content of the spatial location indication information.
  • the first device acquires the spatial location indication information of the first device by using the third device.
  • Both the first device and the third device have the capability of beamforming.
  • the third device may be a network device or a terminal device in the communication system.
  • the first device and the third device may have a connection relationship (wireless connection or wired connection), for example, the first device is a terminal, and the third device may be an AP that the first device has accessed.
  • the first device and the third device may also have no connection relationship.
  • FIG. 5 shows a schematic diagram of a scenario of a first device, a second device, and a third device.
  • the spatial position indication information of the first device includes: angle information of the first beam, and spatial coordinates of the third device.
  • the first beam is a beam corresponding to the first beam scanning frame
  • the first beam scanning frame is a beam scanning frame, or a signal quality, in which the first device receives the beam scanning frame frame sent by the third device, and the signal quality is optimal.
  • the spatial coordinates of the third device may be information such as polar coordinates, three-dimensional coordinates, and the like that can reflect the spatial location of the third device.
  • the spatial coordinates of the third device may be sent to the first device by any device that stores the spatial coordinates.
  • the first device is a terminal
  • the third device is an AP1
  • the first device (terminal) has accessed the AP0 and the third device (AP1)
  • the AP0 can store the spatial coordinates of the AP1, and send the spatial coordinates of the AP1 to the terminal.
  • the third device (AP1) to transmit its own spatial coordinates to the first device (terminal). It can be understood that when the spatial coordinates of the third device are sent by the third device to the first device, the spatial coordinates of the third device can be carried in the data frame sent by any third device in the embodiment to the first device. .
  • the first device receives the data frame to obtain other information than the spatial coordinates of the third device, that is, the angle information of the first beam, in the spatial position indication information of the first device.
  • the data frame includes a first beam scanning frame (SSW frame), and the first beam scanning frame carries angle information of the first beam.
  • SSW frame first beam scanning frame
  • FIG. 6A shows a first data frame interaction flowchart, which includes the following steps:
  • the S1 and the third device send a beam scanning frame to the first device by using at least one beam, where the beam scanning frame carries angle information of the corresponding beam.
  • the third device controls the antenna array to form at least one beam by using a beamforming technology, and sends a beam scanning frame to the first device by using the at least one beam.
  • FIG. 6B illustrates a possible structure of a beam scanning frame transmitted by a third device to a first device in a first data frame interaction manner.
  • the beam scanning frame shown in Fig. 6B is transmitted at the data link layer and can be obtained by a packet transmitted by the network layer.
  • the packet type field in the beam scanning frame indicates the packet type transmitted by the network layer, and the packet type is related to which fields are specifically included in the beam scanning frame, and different frames may be included in the frame corresponding to different packet types.
  • the first device may be configured to include a direction field, an ID field, a CDOWN field, an AoD field, a ZoD field, a CRC field, and the like in the beam scanning frame by using the packet type field in the beam scanning frame of FIG. 6B.
  • the direction field indicates that the packet mapping the beam scanning frame is an uplink packet or a downlink packet, or indicates whether the packet is a downlink packet from the AP or a non-AP, or indicates that the packet is from a device that has been located (with precise coordinate information). It is still a downstream packet of a non-located device.
  • the ID field indicates the ID of the device that sent the packet or the ID of the device that received the packet.
  • the CDOWN field indicates the number of subsequent beam scanning frames after the beam scanning frame. For example, when the value of CDOWN is "5", it indicates that there are still 5 beam scanning frames sent to the first device.
  • the beam scanning frame may further include a redundancy check bit CRC.
  • the angle information of the beam corresponding to the beam scanning frame is carried in at least one of the following fields: an angle of departure (AoD) field and a vertical angle (ZoD) field.
  • AoD angle of departure
  • ZoD vertical angle
  • the AoD field indicates the horizontal angle of the beam
  • the ZoD field indicates the vertical angle of the beam.
  • the horizontal and elevation angles are for directional line segments.
  • taking the direction of the first device pointing to the third device as an example take two points in the direction and take two points A and B (for the convenience of description, point A is the location of the third device, point B is the first The location of a device).
  • the point A projected onto the horizontal plane passing through B and parallel to the XOY plane is A'
  • the point B projected onto the vertical plane passing through A and parallel to the YOZ plane is B'
  • B-B' and B-A' The included angle is the horizontal angle ⁇ 1 in the direction
  • the angle between BA and B-A' is the vertical angle ⁇ 1 in the direction.
  • the first device receives at least one beam scanning frame, and determines a first beam scanning frame and a first beam.
  • the first device may select one beam scanning frame with the best signal quality as the first beam scanning frame in the multiple beam scanning frames, and the corresponding third device is configured to transmit the beam of the first beam scanning frame as the first a beam.
  • the first device may select any one of the beam scanning frames whose signal quality is greater than the threshold as the first beam scanning frame, and the corresponding third device is configured to transmit the beam of the first beam scanning frame as the first beam.
  • the first device may select one of the earliest received beam scanning frames as the first beam scanning frame, and the corresponding third device is configured to transmit the beam of the first beam scanning frame as the first beam.
  • the first device can learn the angle information of the first beam.
  • the data frame includes a first beam scanning frame (SSW frame) and a first beam direction announcement, and the first beam scanning frame carries a beam identifier of the first beam.
  • the first query report frame carries the angle information of the first beam.
  • FIG. 7A shows a flow chart of a second type of data frame interaction manner, which includes the following steps:
  • the S1 and the third device send a beam scanning frame (SSW frame) to the first device by using at least one beam, where the beam scanning frame carries a beam identifier of the corresponding beam.
  • SSW frame beam scanning frame
  • the third device controls the antenna array to form at least one beam by using a beamforming technology, and sends a beam scanning frame to the first device by using the at least one beam.
  • FIG. 7B illustrates a possible structure of the beam scanning frame sent by the third device to the first device in the second data frame interaction mode.
  • the beam scan frame includes fields for indicating beam identification.
  • the field may be a Sector ID or a Beam ID field, and is used to directly indicate a beam identifier of the corresponding beam.
  • the field may be a CDOWN field, and is used to indirectly indicate a beam identifier of the corresponding beam.
  • the first device may feed back the CDOWN value to the third device, and the third device may learn according to the sequence of the transmitting beam scanning frame.
  • the beam scanning frame corresponds to the beam identification of the beam.
  • the beam identification may be a beam number.
  • the beam of the network device 101 in the communication system shown in FIG. 1 may include: beam 1 - beam 5
  • the beam of the terminal 102 may include: beam a - beam c.
  • the beam scanning frame may further include a flag (with direction info), when the flag bit takes a first value (for example, “1”), indicating that the third device stores the angle information of the corresponding beam. .
  • the first device receives at least one beam scanning frame, and determines a first beam scanning frame and a first beam.
  • this step is the same as the step S2 in the first data frame interaction mode, and can be referred to the related description.
  • the first device sends a beam direction query frame to the third device, where the first query frame carries a beam identifier of the first beam.
  • the first device sends a first query frame to the third device, where the first device is queried for the angle information of the first beam.
  • the flag bit in the first beam scanning frame takes the first value
  • the first device sends the first query frame to the third device.
  • the first query frame includes a frame type field for indicating that the frame is a query frame.
  • a field for indicating the first beam identification is further included in the first query frame.
  • the beam identifier of the first beam may be directly indicated by a Sector ID or a Beam ID field.
  • the beam identifier of the first beam is indirectly indicated by the CDOWN1 field. For example, when the value of CDOWN1 is “5”, the sequence of the first beam scan frame in all beam scanning frames sent by the third device is indicated.
  • the first beam scanning frame is the sixth last beam scanning frame sent by the third device, and the third device can learn the beam identifier of the first beam corresponding to the first beam scanning frame according to the sequence of the transmitting beam scanning frame.
  • the third device receives the first query frame, and sends a first query report frame to the first device, where the first query report frame carries the angle information of the first beam.
  • Figure 7B illustrates one possible structure of the first query report frame.
  • CDOWN1 can be used to indicate the beam identification of the first beam
  • the AoD1 field can be used to indicate the horizontal angle of the first beam
  • the AoD1 field can be used to indicate the vertical angle of the first beam.
  • the first device can learn the angle information of the first beam.
  • the beam scanning frame sent by the third device to the first device includes at least one beam training signal (TRN), and each beam training signal Based on different beam transmissions.
  • TRN beam training signal
  • the third device sends multiple beam scanning frames to the first device, and each beam scanning frame may include a CDOWN field indicating the number of subsequent beam scanning frames.
  • the beam scanning frame includes at least one beam training signal, and each beam training signal is transmitted through a different beam.
  • the beam scanning frame may indicate the number of beam training signals TRN carried by the beam scanning frame in the PHY header or the MAC frame.
  • the beam training signal TRN can also be sent in a multi-space stream.
  • different streams in the multi-spatial stream of the beam training signal TRN can be transmitted in different beam directions, and can also be carried in the corresponding beam query frame. Space stream number.
  • the location of the beam training signal may be at a position indicating an end, an intermediate, or other protocol agreement of a presentation protocol data unit (PPDU).
  • PPDU presentation protocol data unit
  • the first device After receiving the beam scanning frame and the beam training signal included therein, and determining the beam training signal with the best signal quality, the first device sends a beam query to the third device.
  • the CDOWN field and the AWV ID field may be included in the query frame, and the beam training signal indicating that the signal quality is optimal is the beam training signal indicated by the AWV ID field in the beam scanning frame indicated by the CDOWN field.
  • the query frame shown in FIG. 7C indicates that the beam quality signal with the best signal quality is the second beam training signal in the second beam scan frame transmitted by the third device.
  • the third device may find a corresponding beam training signal according to the query frame, and carry the beam information of the beam training signal in the beam query response to the first device.
  • the first device can obtain the spatial location indication information of the first device: the angle information of the first beam, and the spatial coordinates of the third device.
  • the spatial location indication information of the first device in Embodiment 1 may further include: a transmission time of the first beam scanning frame.
  • the first beam scanning frame may further include: a transmission time of the first beam scanning frame.
  • the two types of data frame interaction modes are not limited.
  • the spatial location indication information of the first device may be sent by different devices or the same device multiple times, which is not limited in this application.
  • the following describes the spatial location indication information of the first device acquired by the first device, and how to determine the transmit beam and/or the receive beam after the spatial location indication information of the second device is acquired by any one of the devices.
  • the two determination methods in step S120 in the method embodiment shown in FIG. 4 are described.
  • the first determination method determining a transmit beam and/or a receive beam according to spatial coordinates of the first device and the second device. It can be viewed in conjunction with the scene graph shown in FIG. 5, and the method can include the following steps:
  • S1 Determine, according to the angle information of the first beam, angle information of a direction in which the third device points to the first device.
  • the first device uses the beam corresponding to the beam scanning frame whose signal quality is greater than the threshold or the signal quality is optimal or is the earliest received as the first beam, and therefore, the third device can be approximated to be directed to the first device.
  • the direction is the same as the direction of the first beam.
  • the angle information of the first beam includes the horizontal angle ⁇ b and the elevation angle ⁇ b
  • the horizontal angle ⁇ ′ 1 ⁇ b of the direction of the third device pointing to the first device
  • the vertical angle ⁇ ′ 1 ⁇ b .
  • the distance L 1 between the third device and the first device may be estimated according to the signal transmission time t 1 between the third device and the first device.
  • L 1 t 1 ⁇ v
  • v is a signal transmission rate.
  • the signal transmission time t 1 between the first device and the third device can be determined according to the following three ways:
  • the first beam scanning frame includes a transmission time.
  • the first device may compare the transmission time and the time when the first beam scanning frame is received, and acquire a signal transmission time t 1 between the third device and the first device.
  • the first device may send a time measurement frame to the third device, and the third device returns to the first device after receiving the time measurement frame.
  • the first device may estimate a signal transmission time t 1 between the third device and the first device according to a time difference between the transmission time measurement frame and the received response.
  • the transmission time of the first beam scanning frame is negotiated by the first device and the third device or by a standard protocol.
  • the first device may compare the transmission time and the time when the first beam scanning frame is received, and acquire a signal transmission time t 1 between the third device and the first device.
  • S3. Determine spatial coordinates of the first device according to angle information of a direction in which the third device points to the first device, a distance between the third device and the first device, and a spatial coordinate of the third device.
  • the spatial coordinate of the first device is determined to be (x 1 , y 1 , z 1 ) according to the following formula.
  • (x 3 , y 3 , z 3 ) is the spatial coordinate of the third device.
  • S4 Determine a transmit beam and/or a receive beam according to the spatial coordinates of the first device and the spatial coordinates of the second device.
  • the direction of the first device pointing to the second device can be known.
  • the horizontal angle ⁇ and the vertical angle ⁇ of the direction in which the first device is directed to the second device can be known by geometric relationship:
  • a beam with a smaller angle between the beam direction and the direction of the first device pointing to the second device in the beam that can be formed by the first device is used as the transmit beam and/or the receive beam.
  • the transmit beam and/or the receive beam are used for beam training between the first device and the second device.
  • the second determination method according to the information carried in the data frame and the information obtained during the process of receiving the data frame, query the mapping relationship between the information and the transmit beam and/or the receive beam, and determine the transmit beam and/or receive. Beam.
  • the information carried by the data frame and the information obtained during the receiving of the data frame (including angle information of the first beam, transmission time of the first beam scanning frame, spatial coordinates of the third device, and spatial location indication information of the second device)
  • the mapping relationship table may be pre-stored in the first device.
  • the first device may determine the process of transmitting a beam and/or receiving a beam in a historical period according to itself, or other devices, to establish the mapping relationship table.
  • the present application may also determine the transmit beam and/or the receive beam of the first device by other means.
  • the spatial location indication information of the first device includes: angle information of the first beam, transmission power of the first beam scanning frame, and spatial coordinates of the third device.
  • the first beam is a beam corresponding to the first beam scanning frame
  • the first beam scanning frame is a beam scanning frame, or a signal quality, in which the first device receives the beam scanning frame frame sent by the third device, and the signal quality is optimal.
  • the spatial position indication information of the first device in Embodiment 2 further includes the transmit power of the first beam scan frame.
  • the space coordinates of the third device are the same as those of Embodiment 1, and reference may be made to the related description.
  • the following mainly discusses how the first device receives the data frame to obtain other information except the spatial coordinates of the third device in the spatial position indication information of the first device, that is, the angle information of the first beam and the first beam scanning frame. Transmit power.
  • the data frame includes a first beam scanning frame (SSW frame), and the first beam scanning frame carries the angle information of the first beam and the transmission power of the first beam scanning frame.
  • SSW frame first beam scanning frame
  • FIG. 8A shows a first data frame interaction flowchart, which includes the following steps:
  • the S1 and the third device send a beam scanning frame to the first device by using at least one beam, where the beam scanning frame carries the angle information of the corresponding beam and the transmitting power of the beam scanning frame.
  • FIG. 8B illustrates a possible structure of a beam scanning frame transmitted by the third device to the first device in the first data frame interaction mode.
  • the transmit power field can be used to indicate the transmit power of the beam scan frame. It can be understood that, in a specific implementation, the transmit power of the beam scan frame may also be indicated by other fields, which is not limited in this application.
  • the first device receives at least one beam scanning frame, and determines a first beam scanning frame and a first beam.
  • steps S1, S2 is similar to that of FIG. 6A, and reference can be made to the related description.
  • the first device can learn the angle information and the transmit power of the first beam.
  • the data frame includes a first beam scanning frame (SSW frame) and a first beam direction announcement, and the first beam scanning frame carries the beam identifier and the first beam of the first beam. Scanning the transmit power of the frame, the first query report frame carries the angle information of the first beam.
  • SSW frame first beam scanning frame
  • first beam direction announcement carries the beam identifier and the first beam of the first beam.
  • the first query report frame carries the angle information of the first beam.
  • FIG. 9A is a flowchart of a second data frame interaction manner, which includes the following steps:
  • the S1 and the third device send a beam scanning frame (SSW frame) to the first device by using at least one beam, where the beam scanning frame carries a beam identifier of the corresponding beam and a transmission power of the beam scanning frame.
  • SSW frame beam scanning frame
  • the third device controls the antenna array to form at least one beam by using a beamforming technology, and sends a beam scanning frame to the first device by using the at least one beam.
  • FIG. 9B illustrates a possible structure of the beam scanning frame sent by the third device to the first device in the second data frame interaction mode.
  • the CDOWN field or the Sector ID or Beam ID field can be used to indicate the beam identification of the beam corresponding to the beam scanning frame.
  • the transmit power field and the like can be used to indicate the transmit power of the beam scanning frame.
  • the first device receives at least one beam scanning frame, and determines a first beam scanning frame and a first beam.
  • the first device sends a beam direction query to the third device, where the first query frame carries a beam identifier of the first beam.
  • the structure of the first query frame is the same as that in FIG. 7B, and the related description can be referred to.
  • the third device receives the first query frame, and sends a first query report frame to the first device, where the first query report frame carries the angle information of the first beam.
  • the structure of the first query report frame is the same as that in FIG. 7B, and the related description can be referred to.
  • the first device can learn the angle information and the transmit power of the first beam.
  • the first device can obtain the spatial location indication information of the first device: the angle information of the first beam, the transmit power of the first beam scan frame, and the spatial coordinates of the third device.
  • the spatial location indication information of the first device in Embodiment 2 may further include: a transmission time of the first beam scanning frame.
  • the first beam scanning frame may further include: a transmission time of the first beam scanning frame.
  • the two types of data frame interaction modes are not limited.
  • the spatial location indication information of the first device may be sent by different devices or the same device multiple times, which is not limited in this application.
  • the following describes the spatial location indication information of the first device acquired by the first device, and how to determine the transmit beam and/or the receive beam after the spatial location indication information of the second device is acquired by any one of the devices.
  • the two determination methods in step S120 in the method embodiment shown in FIG. 4 are described.
  • the first determination method determining a transmit beam and/or a receive beam according to spatial coordinates of the first device and the second device. Referring to the scene graph shown in FIG. 5, the method may include the following steps:
  • S1 Determine, according to the angle information of the first beam and the transmit power of the first beam scan frame, angle information of a direction in which the third device points to the first device.
  • the first device determines, according to the transmit power, an off angle between the direction in which the third device is directed to the first device and the first beam.
  • the device in the sector coverage of the first beam can receive the first beam scanning frame, but the received power of the first beam scanning frame received by the device at different locations is different, and the closer to the first beam main
  • the device receiving power in the direction of the flap is larger.
  • the angle between the direction in which the third device actually points to the device and the first beam may be referred to as an off angle, and the relationship between the off angle and the power loss is a positive correlation.
  • the first device may compare the received power with the transmit power carried in the first beam scanning frame, determine a power loss, and determine a third device according to a mapping relationship between the power loss and the off angle.
  • An angle of deviation between the direction of the first device and the first beam that is, the angle between the direction in which the third device actually points to the first device and the direction of the main lobe of the first beam.
  • Figure 10 is a schematic illustration of the off angle.
  • the first device determines, according to the off angle and the angle information of the first beam, angle information of a direction of the third device pointing to the first device, the angle information including at least one of a horizontal angle ⁇ ′ 1 and a height angle ⁇ ′ 1 .
  • S3. Determine spatial coordinates of the first device according to angle information of a direction in which the third device points to the first device, a distance between the third device and the first device, and a spatial coordinate of the third device.
  • S4 Determine a transmit beam and/or a receive beam according to the spatial coordinates of the first device and the spatial coordinates of the second device.
  • steps S2-S4 is the same as the first determination method of the above-described first embodiment, and reference can be made to the related description.
  • the second determination method querying the mapping relationship between the information and the transmit beam and/or the receive beam according to the information carried in the data frame and the information obtained in the process of receiving the data frame, and determining the transmit beam and/or Or receive beam.
  • the information carried in the data frame and the information obtained in the process of receiving the data frame (including angle information of the first beam, transmission time and transmission power of the first beam scanning frame, spatial coordinates of the third device, and second device).
  • the mapping relationship may be pre-stored in the first device.
  • the present application may also determine the transmit beam and/or the receive beam of the first device by other means.
  • the spatial location indication information of the first device includes: angle information of the second beam, transmit power of the second beam scan frame, beam identifier of the second beam, beam identifier of the third beam, and third device Spatial coordinates.
  • the second beam is a beam corresponding to the second beam scanning frame
  • the third beam is a beam corresponding to the third beam scanning frame
  • the second beam scanning frame and the third beam scanning frame are sent by the third device to the first device. .
  • the space coordinates of the third device are the same as those of Embodiment 1, and reference may be made to the related description.
  • the following mainly discusses how the first device receives the data frame to obtain other information except the spatial coordinates of the third device in the spatial position indication information of the first device, that is, the angle information of the second beam and the second beam scanning frame. Transmit power, beam identification of the second beam, beam identification of the third beam.
  • the data frame includes a second beam scanning frame (SSW frame) and a third beam scanning frame, and the second beam scanning frame carries angle information of the second beam and a second beam scanning.
  • FIG. 11A shows a first data frame interaction flowchart, which includes the following steps:
  • the third device sends a second beam scanning frame to the first device by using the second beam, and sends a third beam scanning frame to the first device by using the third beam.
  • the second beam scanning frame carries angle information of the second beam, a transmit power of the second beam scan frame, and a beam identifier of the second beam.
  • the third beam scanning frame carries a beam identification of the third beam.
  • the second beam and the third beam are different beams, and the second beam and the third beam may be any two beams formed by the third device using the beamforming technique to control the antenna array.
  • FIG. 11B illustrates a possible structure of the second beam scanning frame and the third beam scanning frame in the first data frame interaction mode.
  • the data frame includes a second beam scanning frame (SSW frame), a second beam direction announcement, and a third beam scanning frame.
  • the second beam scanning frame carries the beam identifier of the second beam and the transmit power of the second beam scanning frame.
  • the second query report frame carries angle information of the second beam.
  • the third beam scanning frame carries a beam identification of the third beam.
  • FIG. 12A shows a flow chart of a second type of data frame interaction manner, which includes the following steps:
  • the third device sends a second beam scanning frame to the first device by using the second beam, and sends a third beam scanning frame to the first device by using the third beam.
  • the second beam scanning frame carries the transmit power of the second beam scan frame and the beam identifier of the second beam.
  • the third beam scanning frame carries a beam identification of the third beam.
  • the second beam and the third beam are different beams, and the second beam and the third beam may be any two beams formed by the third device using the beamforming technique to control the antenna array.
  • FIG. 12B illustrates a possible structure of the second beam scanning frame and the third beam scanning frame in the second data frame interaction mode.
  • the first device sends a second direction frame (beam direction query) to the third device, where the second query frame carries a beam identifier of the second beam.
  • a second direction frame beam direction query
  • the third device receives the second query frame, and sends a second query report frame to the first device, where the second query report frame carries the angle information of the second beam.
  • steps S2 and S3 is the same as the second type of data frame interaction in the first embodiment, and reference can be made to the related description.
  • the structure of the second query frame and the second query report frame may also refer to the first query frame, the first query report frame and the related description shown in FIG. 7B.
  • the first device can learn the angle information of the second beam, the transmit power of the second beam scan frame, the identifier of the second beam, and the identifier of the third beam.
  • the first device can obtain the spatial location indication information of the first device: the angle information of the second beam, the transmit power of the second beam scan frame, the beam identifier of the second beam, and the beam identifier of the third beam.
  • the spatial coordinates of the three devices can obtain the spatial location indication information of the first device: the angle information of the second beam, the transmit power of the second beam scan frame, the beam identifier of the second beam, and the beam identifier of the third beam.
  • the two types of data frame interaction modes are not limited.
  • the spatial location indication information of the first device may be sent by different devices or the same device multiple times, which is not limited in this application.
  • the following describes how the first device obtains the spatial location indication information of the first device by using the third device, and after obtaining the spatial location indication information of the second device by using any one of the devices, how to determine the transmit beam and/or the receive beam.
  • the two determination methods in step S120 in the method embodiment shown in FIG. 4 are described.
  • the first determination method determining a transmit beam and/or a receive beam according to spatial coordinates of the first device and the second device. Referring to the scene graph shown in FIG. 5, the method may include the following steps:
  • S1 Determine, according to the beam identifier of the second beam, the beam identifier of the third beam, and the angle information of the second beam, the angle information of the direction in which the third device points to the first device.
  • the first device determines, according to the beam identifiers of the second beam and the third beam, a direction in which the third device points to the first device and an off angle between the second beams.
  • the difference may be There is a relationship between the gain difference, the gain difference, and the off angle of the device relative to the two beams.
  • the relationship between the gain difference and the off angle may be determined and stored by the first device according to the beam widths of the second beam and the third beam, and the beam widths of the second beam and the third beam may be sent by the third device to the first device. It can also be obtained from the network or other device by the first device.
  • the first device After receiving the second beam scanning frame and the third beam scanning frame, the first device determines a gain difference between the two according to the received power, and determines that the third device actually points to the first according to the relationship between the gain difference and the off angle. The direction of the device and the angle of deviation between the second beams.
  • the first device determines, according to the off angle and the angle information of the second beam, angle information of a direction of the third device pointing to the first device, the angle information including at least one of a horizontal angle ⁇ ′ 1 and a height angle ⁇ ′ 1 .
  • the farther from the third device the smaller the power of the received second beam scanning frame, the greater the power loss. Therefore, the distance between the third device and the first device is in a positive correlation with the power loss of the second beam scanning frame.
  • the mapping relationship between distance and power loss can be pre-stored by the first device.
  • the first device may compare the received power with the transmit power carried in the second beam scanning frame to determine the power loss, and determine the third device and the first device according to the mapping relationship between the power loss and the distance. the distance between.
  • S3. Determine spatial coordinates of the first device according to angle information of a direction in which the third device points to the first device, a distance between the third device and the first device, and a spatial coordinate of the third device.
  • S4 Determine a transmit beam and/or a receive beam according to the spatial coordinates of the first device and the spatial coordinates of the second device.
  • steps S3 and S4 is the same as the first determination method in the first embodiment, and reference can be made to the related description.
  • the second method for determining according to the information carried in the data frame, querying a mapping relationship between the data frame carrying information and the transmitting beam and/or the receiving beam, and determining the transmitting beam and/or the receiving beam.
  • the information carried by the data frame includes: angle information of the second beam, transmit power of the second beam scan frame, beam identifier of the second beam, beam identifier of the third beam, spatial coordinates of the third device, and second device
  • the spatial location indication information has a mapping relationship with the transmit beam and/or the receive beam, and the mapping relationship may be pre-stored in the first device.
  • the present application may also determine the transmit beam and/or the receive beam of the first device by other means.
  • the spatial location indication information of the first device includes: a beam identifier of the fourth beam, and a spatial coordinate of the third device.
  • the fourth beam is a beam corresponding to the fourth beam scanning frame
  • the fourth beam scanning frame is a beam scanning frame, or a signal quality, in which the third device receives the beam scanning frame frame sent by the first device, the signal quality is optimal.
  • the space coordinates of the third device are the same as those of Embodiment 1, and reference may be made to the related description.
  • the following mainly discusses how the first device receives the data frame to obtain other information than the spatial coordinate of the third device, that is, the beam identifier of the fourth beam, in the spatial location indication information of the first device.
  • the data frame includes a sector sweeping feedback frame (SSW feedback frame), and the first beam feedback frame carries a beam identifier of the fourth beam.
  • SSW feedback frame sector sweeping feedback frame
  • the data frame interaction manner in this embodiment may include the following steps:
  • the first device sends a beam scanning frame to the third device by using at least one beam, where the beam scanning frame carries a beam identifier of the corresponding beam.
  • the first device controls the antenna array to form at least one beam by using a beamforming technology, and sends a beam scanning frame to the third device by using the at least one beam.
  • the third device receives at least one beam scanning frame, and determines a fourth beam scanning frame and a fourth beam.
  • the third device may select one beam scanning frame with the best signal quality as the fourth beam scanning frame, and the corresponding first device is configured to transmit the beam of the fourth beam scanning frame as the fourth beam.
  • the third device may select any one of the beam scanning frames whose signal quality is greater than the threshold as the fourth beam scanning frame, and the corresponding first device is configured to transmit the beam of the fourth beam scanning frame as the fourth beam.
  • the third device may select the earliest received beam scanning frame as the fourth beam scanning frame, and the corresponding first device is configured to transmit the beam of the fourth beam scanning frame as the fourth beam.
  • the third device sends a first beam feedback frame to the first device, where the first beam feedback frame carries a beam identifier of the fourth beam.
  • Figure 13B illustrates one possible configuration of the first beam feedback frame.
  • the CDOWN field or the Sector ID or the Beam ID field may be used to indicate the beam identifier of the fourth beam.
  • the first device can learn the beam identifier of the fourth beam.
  • the first device can obtain the spatial location indication information of the first device: the beam identifier of the fourth beam, and the spatial coordinates of the third device.
  • the data frame interaction mode is not limited to the foregoing.
  • the spatial location indication information of the first device may be sent by different devices or the same device multiple times, which is not limited in this application.
  • the following describes how the first device obtains the spatial location indication information of the first device by using the fourth device, and after obtaining the spatial location indication information of the second device by using any one of the devices, how to determine the transmit beam and/or the receive beam.
  • the two determination methods in step S120 in the method embodiment shown in FIG. 4 are described.
  • the first determination method determining a transmit beam and/or a receive beam according to spatial coordinates of the first device and the second device.
  • the method can include the following steps:
  • the first device determines, according to the beam identifier of the fourth beam, angle information of a direction in which the first device points to the third device.
  • the first device may query the beam corresponding to the beam identifier in the beam that can be formed by the first beam according to the beam identifier of the fourth beam, and obtain the angle information of the beam (ie, the fourth beam).
  • the beam that the third device in the fourth embodiment feeds back to the first device by using the first beam feedback frame is: a beam corresponding to a beam scanning frame whose signal quality is greater than a threshold or the signal quality is optimal or the earliest received, and therefore, It can be approximated that the direction of the first device pointing to the third device is the same as the direction of the beam corresponding to the beam scanning frame. That is, the angle information of the direction in which the first device points to the third device is the same as the angle information of the beam (ie, the fourth beam) queried by the first device.
  • the angle information of the direction of the third device pointing to the direction of the first device may be determined according to the angle information of the direction of the first device pointing to the third device, as shown in FIG. 5 and related descriptions.
  • the angle information includes at least one of a horizontal angle ⁇ ' 1 and a height angle ⁇ ' 1 .
  • the first device determines a distance between the third device and the third device.
  • the first device estimates the third device and the first device according to the time difference t2 between the transmitting beam scanning frame and the received first beam feedback frame in steps S1 and S4 in the data frame interaction process in FIG. 13A.
  • S3. Determine spatial coordinates of the first device according to angle information of a direction in which the first device points to the third device, a distance between the first device and the third device, and a spatial coordinate of the third device.
  • S4 Determine a transmit beam and/or a receive beam according to the spatial coordinates of the first device and the spatial coordinates of the second device.
  • steps S3 and S4 is similar to the first determination method of the first embodiment, and reference can be made to the related description.
  • the second determination method according to the information carried in the data frame and the information acquired in the process of receiving the data frame, query the mapping relationship between the information and the transmit beam and/or the receive beam, and determine the transmit beam and / or receive beam.
  • the information includes at least a beam identifier of the fourth beam, a spatial coordinate of the third device, spatial location indication information of the second device, a time difference between the transmitted beam scanning frame and the received first beam feedback frame, and the transmission.
  • the present application may also determine the transmit beam and/or the receive beam of the first device by other means.
  • the first device acquires the spatial location indication information of the first device by using the third device and the fourth device.
  • the first device, the third device, and the fourth device may have a connection relationship (wireless connection or wired connection), or may have no connection relationship.
  • the first device is a terminal, and the third device and the fourth device may be APs that the first device has accessed.
  • FIG. 14 is a schematic diagram of a scenario of a first device, a second device, a third device, and a fourth device.
  • the spatial location indication information of the first device may include two parts, one part is related to the third device, and the other part is related to the fourth device, and the two pieces of information are described in detail below.
  • the information related to the third device may include any one of the following:
  • the first beam is a beam corresponding to the first beam scanning frame
  • the first beam scanning frame is a beam scanning frame, or a signal quality, in which the first device receives the beam scanning frame frame sent by the third device, and the signal quality is optimal.
  • the second beam is a beam corresponding to the second beam scanning frame
  • the third beam is a beam corresponding to the third beam scanning frame
  • the second beam scanning frame and the third beam scanning frame are sent by the third device to the first device.
  • the fourth beam is a beam corresponding to the fourth beam scanning frame
  • the fourth beam scanning frame is a beam scanning frame, or a signal quality, in which the third device receives the beam scanning frame frame sent by the first device, the signal quality is optimal.
  • the process of the first device receiving the data frame to obtain the information related to the third device in the spatial location indication information of the first device is the same as Embodiment 1 to Embodiment 4 in Embodiment 1, and reference may be made to the related description. .
  • the information related to the fourth device may include any one of the following:
  • the fifth beam is a beam corresponding to the fifth beam scanning frame
  • the fifth beam scanning frame is a beam scanning frame or signal quality in which the first device receives the beam scanning frame frame sent by the fourth device, the signal quality is optimal.
  • the sixth beam is a beam corresponding to the sixth beam scanning frame
  • the seventh beam is a beam corresponding to the seventh beam scanning frame
  • the sixth beam scanning frame and the seventh beam scanning frame are sent by the fourth device to the first device.
  • the eighth beam is a beam corresponding to the eighth beam scanning frame
  • the eighth beam scanning frame is a beam scanning frame, or a signal quality, in which the fourth device receives the beam scanning frame frame sent by the first device, the signal quality is optimal.
  • the process of the first device receiving the data frame to obtain the information related to the fourth device in the spatial location indication information of the first device is similar to the implementation manner of Embodiment 1 to Embodiment 4 in the first embodiment, and the related description may be referred to. .
  • the two types of information the information related to the third device, and the information related to the fourth device may be arbitrarily combined. That is, the spatial location indication information of the first device in this embodiment has at least 16 implementation manners.
  • the spatial location indication information of the first device includes the information related to the (1)th and the third device, and the information related to the (1)th and the fourth device, for example, the spatial location indication information of the first device.
  • the angle information of the first beam, the angle information of the fifth beam, the spatial coordinates of the third device, and the spatial coordinates of the fourth device are used as an example to describe the data frame interaction mode.
  • the spatial coordinates of the third device, the receiving manner of the spatial coordinates of the fourth device, and the receiving manner of the spatial coordinates of the third device in the first embodiment are the same, and the related description can be referred to.
  • the following mainly discusses how the first device receives the data frame to obtain other information than the spatial coordinates of the third device and the fourth device in the spatial position indication information of the first device.
  • the data frame interaction manner may include the following steps:
  • the third device sends a beam scanning frame to the first device by using at least one beam, where the beam scanning frame carries the identifier of the third device and the beam identifier of the corresponding beam.
  • the fourth device sends a beam scanning frame to the first device by using at least one beam, where the beam scanning frame carries the identifier of the fourth device and the beam identifier of the corresponding beam.
  • the beam scanning frame carries a device identifier, and is used to indicate that the beam scanning frame of the first device is sent by the third device or the fourth device.
  • the first device receives at least one beam scanning frame sent by the third device, and determines a first beam scanning frame and a first beam.
  • the first device receives at least one beam scanning frame sent by the fourth device, and determines a fifth beam scanning frame and a fifth beam.
  • the operation of the first device determining the first beam scanning frame and the first beam, the fourth device determining the fifth beam scanning frame and the fifth beam is the same as the step S2 in the first data frame interaction mode in the first embodiment, See the related description.
  • the first device sends a first query frame to the third device, where the first query frame carries the identifier of the third device and the beam identifier of the first beam.
  • the first device sends a fifth query frame to the fourth device, where the fifth query frame carries the identifier of the fourth device and the beam identifier of the fifth beam.
  • the identifier of the third device is carried in the first query frame, and is used to indicate that the first query frame is sent by the first device to the third device.
  • the fifth query frame is the same.
  • the third device receives the first query frame, and sends a first query report frame to the first device, where the first query report frame carries the identifier of the third device and the angle information of the first beam.
  • the fourth device receives the fifth query frame, and sends a fifth query report frame to the first device, where the fifth query report frame carries the identifier of the fourth device and the angle information of the fifth beam.
  • the identifier of the third device is carried in the first query report frame, and is used to indicate that the first query report frame is sent to the first device by the third device, and the fifth query report frame is similar.
  • the spatial location indication information of the first device includes the information related to the (4)th and the third device, and the information related to the (4)th and the fourth device, for example, the spatial location indication information of the first device.
  • the method includes: a beam identifier of the fourth beam, a beam identifier of the eighth beam, a spatial coordinate of the third device, and a spatial coordinate of the fourth device, and illustrates the data frame interaction mode.
  • the spatial coordinates of the third device, the receiving manner of the spatial coordinates of the fourth device, and the receiving manner of the spatial coordinates of the third device in the first embodiment are the same, and the related description can be referred to.
  • the following mainly discusses how the first device receives the data frame to obtain other information than the spatial coordinates of the third device and the fourth device in the spatial position indication information of the first device. Referring to Figure 16, the following steps may be included:
  • the first device sends a beam scanning frame to the third device by using at least one beam, and sends a beam scanning frame to the fourth device by using at least one beam, where the beam scanning frame carries a beam identifier of the corresponding beam.
  • the third device receives at least one beam scanning frame sent by the first device, and determines a fourth beam scanning frame and a fourth beam.
  • the fourth device receives at least one beam scanning frame sent by the first device, and determines an eighth beam scanning frame and an eighth beam.
  • the operation of determining the fourth beam by the third device and determining the eighth beam by the fourth device is the same as the step S2 in the first data frame interaction mode in Embodiment 1 of the first embodiment.
  • the operation of determining the fourth beam by the third device and determining the eighth beam by the fourth device is the same as the step S2 in the first data frame interaction mode in Embodiment 1 of the first embodiment.
  • the third device sends a first beam feedback frame to the first device, where the first beam feedback frame carries the identifier of the third device and the beam identifier of the fourth beam.
  • the fourth device sends a second beam feedback frame to the first device, where the second beam feedback frame carries the identifier of the fourth device and the beam identifier of the eighth beam.
  • the identifier of the third device is carried in the first beam feedback frame, and is used to indicate that the first beam feedback frame is sent by the third device to the first device, and the second beam feedback frame is similar.
  • the two types of data frame interaction modes are not limited.
  • the spatial location indication information of the first device may be sent by different devices or the same device multiple times.
  • the two data frame interaction modes listed above are only examples.
  • the related information of the third device and the related information of the fourth device may be arbitrarily combined.
  • the combination and the manner of the data frame interaction refer to the related description of the first embodiment, and details are not described herein.
  • the following describes how the first device obtains the spatial location indication information of the first device by using the second device, and after obtaining the spatial location indication information of the second device by using any device, how to determine the transmit beam and/or the receive beam.
  • the two determination methods in step S120 in the method embodiment shown in FIG. 4 are described.
  • the first determination method determining a transmit beam and/or a receive beam according to spatial coordinates of the first device and the second device. Referring to the scene graph view shown in FIG. 14, the method may include the following steps:
  • the first device determines angle information of a direction pointing to the third device, and determines angle information of a direction pointing to the fourth device.
  • the first device may determine, according to information related to the third device in the spatial location indication information of the first device, angle information of a direction in which the first device points to the third device.
  • the direction of the third device pointing to the first device may be determined according to step 1 of the first determining method in the first embodiment 1-3 of the embodiment.
  • the angle information determines the angle information of the direction in which the first device determines the direction of the third device according to the relationship of the angle information in the opposite direction.
  • the first device may determine the angle information of the direction of the third device according to step 1 of the first determining method in Embodiment 4 of the embodiment.
  • the first device may determine, according to the information related to the fourth device in the spatial location indication information of the first device, the angle information of the direction in which the first device points to the fourth device.
  • the method of determining the angle information of the direction in which the first device is directed to the fourth device is similar to the method of determining the angle information of the direction in which the first device is directed to the third device, and reference may be made to the related description.
  • S2 Determine the spatial coordinates of the first device according to the angle information of the direction in which the first device points to the third device and the angle information of the direction in which the first device points to the fourth device.
  • the spatial coordinates (x 1 , y 1 , z 1 ) of the first device are determined according to the following formula.
  • (x 3 , y 3 , z 3 ) is the spatial coordinate of the third device
  • (x 4 , y 4 , z 4 ) is the spatial coordinate of the fourth device
  • ⁇ 1 and ⁇ 1 are the first device pointing
  • the vertical and horizontal angles of the three devices, ⁇ 2 and ⁇ 2 are the vertical and horizontal angles of the first device pointing to the fourth device, respectively.
  • the direction of the first device pointing to the second device can be known.
  • a beam with a smaller angle between the beam direction and the direction of the first device pointing to the second device in the beam that can be formed by the first device is used as the transmit beam and/or the receive beam.
  • the transmit beam and/or the receive beam are used for beam training between the first device and the second device.
  • the second determination method determining a transmission beam and/or according to the information carried in the data frame and the information acquired during the process of receiving the data frame, the mapping relationship between the information and the transmit beam and/or the receive beam. Receive beam.
  • the present application may also determine the transmit beam and/or the receive beam of the first device by other means.
  • the first device may obtain, by using a network, indication information of spatial location information of the first device and indication information of spatial location information of the second device.
  • the network device may store the spatial location indication information of the first device and the second device, where the first device may obtain the spatial location indication information of the first device and the second device that are obtained from the network server.
  • the spatial location indication information of the first device may include spatial coordinates of the first device.
  • the spatial location indication information of the second device may also include spatial coordinates of the first device.
  • the spatial coordinates can be represented by latitude and longitude, polar coordinates or three-dimensional coordinates.
  • the following describes how to determine the transmit beam and/or the receive beam after the first device acquires the spatial location indication information of the first device and the spatial location indication information of the second device.
  • the first determining method in step S120 in the method embodiment shown in FIG. 4 is described.
  • the first device determines the transmit beam and/or the receive beam according to the spatial coordinates of the first device and the second device. It can include the following steps:
  • S1 Determine a spatial coordinate of the first device according to the spatial location indication information of the first device, and determine a spatial coordinate of the second device according to the spatial location indication information of the second device.
  • S2 Determine a transmit beam and/or a receive beam according to a spatial coordinate of the first device and a spatial coordinate of the second device.
  • the method is not limited to the foregoing determining manner.
  • the present application may also determine the transmit beam and/or the receive beam of the first device by using other methods.
  • the first device may receive the data frame carrying the indication information of the first device and the indication information of the second device by using the first embodiment, the second embodiment, and the third embodiment, and determining, according to the information carried in the data frame, the second device Transmit beam and/or receive beam during beam training.
  • the first device may send the received data frame or the information determined according to the data frame to the second device, where the second device may determine, by using the received information, that the first device performs beam training.
  • a transmit beam and/or a receive beam of the second device may be sent the received data frame to the second device, where the second device may determine the spatial coordinates of the second device and the first device by using the information carried in the data frame (and the foregoing embodiment)
  • the determining method used by a device is the same), and determining the transmit beam and/or the receive beam of the second device according to the spatial coordinates of the second device and the first device, and may also utilize the information carried in the data frame and the transmit beam and/or The mapping relationship between the receiving beams is determined.
  • the first device may send the information determined according to the received data frame to the second device, for example, the spatial coordinates of the first device and the spatial coordinates of the second device, and the direction of the first device pointing to the second device.
  • Angle information or the like to cause the second device to determine its own transmit beam and/or receive beam.
  • FIG. 17 is a functional block diagram of a first device 40 provided by the present application.
  • the first device 40 can include a receiving unit 401, a determining unit 402, where
  • the receiving unit 401 is configured to receive a data frame, where the data frame carries spatial location indication information of the first device and spatial location indication information of the second device;
  • the determining unit 402 is configured to determine, according to the data frame, a transmit beam and/or a receive beam that performs beam training with the second device.
  • the first device may determine a transmit beam and/or a receive beam that performs beam training with the second device.
  • the transmit sector may be scanned by the determined transmit beam, and the determined The receiving beam performs the receiving sector scanning, and does not need to traverse all the sector beams, converging the range of the sector scanning, which can reduce the time spent by the beam training, thereby improving the beamforming efficiency.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center via wired (eg, coaxial cable, fiber optic, digital subscriber line) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (eg, a solid state hard disk).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种波束训练方法、相关装置及系统。该方法可包括:第一设备接收数据帧,所述数据帧携带第一设备的空间位置指示信息和第二设备的空间位置指示信息;所述第一设备根据所述数据帧,确定与所述第二设备之间进行波束训练的发射波束和/或接收波束。实施本申请,可收敛通信设备在波束训练中的扇区扫描范围,提高波束训练的效率,进而提高波束成形的效率。

Description

波束训练方法、相关装置及系统
本申请要求于2018年05月04日递交中国国家知识产权局的申请号为201810425049.X、发明名称为“波束训练方法、相关装置及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信及波束成形(beamforming)技术领域,特别涉及波束训练方法、相关装置及系统。
背景技术
移动业务的发展对无线通信的数据速率和效率要求越来越高,在现有及未来的无线通信系统中,波束成形技术用来将传输信号的能量限制在某个波束方向内,增加信号强度,提高信号发送和接收的效率,改善通信质量。
波束训练是波束成形技术中的主要流程。波束训练是一种双向的波束成形帧传输过程,用于提供必要的信号,使通信双方根据该信号选择适合发送和接收信号的扇区波束方向。在波束训练成功完成后,通信双方可以确定适合发送和接收信号的扇区波束方向,从而调整天线配置,利用波束成形技术传输数据。
随着波束成形的应用范围越来越广,如何减少波束训练所消耗的时间,提高波束成形的效率,是亟需解决的问题。
发明内容
本申请提供了波束训练方法、相关装置及系统,可用于收敛通信设备在波束训练中的扇区扫描范围,提高波束训练的效率,进而提高波束成形的效率。
第一方面,本申请提供一种波束训练方法,应用于第一设备侧。该波束训练方法包括:第一设备接收数据帧,所述数据帧携带第一设备的空间位置指示信息和第二设备的空间位置指示信息;所述第一设备根据所述数据帧,确定与所述第二设备之间进行波束训练的发射波束和/或接收波束。
第二方面,本申请提供了一种波束训练方法,应用于网络设备侧。该波束训练方法包括:网络设备生成数据帧,所述数据帧携带第一设备的空间位置指示信息和第二设备的空间位置指示信息;所述网络设备将所述数据帧发送给所述第一设备,所述数据帧用于所述第一设备确定与所述第二设备之间进行波束训练的发射波束和/或接收波束。在第二方面提供的方法中,网络设备可以为一个或多个。该网络设备可以是第一设备接入的基站或接入点(access point,AP)。
本申请中,第一设备根据数据帧携带的信息确定发射波束和/或接收波束的方式有多种,以下列举几种可能的确定方法。
(1)第1种确定方法:根据第一设备和第二设备的空间坐标确定发射波束和/或接收 波束。
这里,第一设备可根据数据帧中携带的第一设备的空间位置指示信息确定第一设备的空间坐标,根据数据帧中携带的第二设备的空间位置指示信息确定第二设备的空间坐标。在确定第一设备和第二设备的空间坐标之后,第一设备可以获知第一设备指向第二设备的方向,并根据第一设备指向第二设备的方向,在第一设备能够形成的所有或部分波束中,确定出发射波束和/或接收波束。
(2)第2种确定方法:根据数据帧中携带的信息以及接收该数据的过程中所获取的信息,查询这些信息与发射波束和/或接收波束之间的映射关系表,确定出发射波束和/或接收波束。
这里,该信息与发射波束和/或接收波束之间的映射关系表可存储在第一设备中。
可理解的,不限于上述2中确定方法,本申请还可通过其他方式确定出发射波束和/或接收波束。
实施第一方面或第二方面描述的波束训练方法,第一设备可收敛在与第二设备的波束训练中的扇区扫描范围,提高波束训练的效率,进而提高波束成形的效率。
可理解的,当第一设备确定出的发射波束的数量为一个时,可省略发射扇区扫描,直接将该波束作为第一设备的最佳发射波束。当第一设备确定出的接收波束的数量为一个时同理。这种情况下,可进一步降低波束训练消耗的时间,提高波束成型效率。
本申请中,第一设备的空间位置指示信息可通过以下三种不同的方式得到。
(一)第一设备的空间位置指示信息借助第三设备得到,在这种情况下,第一设备的空间位置指示信息可包括以下几种情况:
(1)第一设备的空间位置指示信息可包括:第一波束的角度信息、第三设备的空间坐标。
(2)第一设备的空间位置指示信息可包括:第一波束的角度信息、第一波束扫描帧的发射功率、第三设备的空间坐标。
在可选实施例中,上述第(1)、(2)种情况中,第一设备的空间位置指示信息还可包括第一波束扫描帧的发射时间。
上述第(1)、(2)种情况中,第一波束为第一波束扫描帧所对应的波束,第一波束扫描帧为第一设备接收到第三设备发送的波束扫描帧帧中,信号质量最优的波束扫描帧、或信号质量大于阈值的波束扫描帧、或最早接收到的波束扫描帧。
(3)第一设备的空间位置指示信息包括:第二波束的波束标识、所述第二波束的角度信息、第二束扫描帧的发射功率,以及,第三波束的波束标识、第三设备的空间坐标。
其中,第二波束为第二波束扫描帧所对应的波束,第三波束为第三波束扫描帧所对应的波束,第二波束扫描帧和第三波束扫描帧由第三设备发送给第一设备。
(4)第一设备的空间位置指示信息包括:第四波束的波束标识、第三设备的空间坐标。
其中,第四波束为第四波束扫描帧所对应的波束,第四波束扫描帧为第三设备接收到所述第一设备发送的波束扫描帧帧中,信号质量最优的波束扫描帧、或信号质量大于阈值的波束扫描帧、或最早接收到的波束扫描帧。
(二)第一设备的空间位置指示信息借助第三设备得到,在这种情况下,第一设备的空间位置指示信息可包括:第三设备的相关信息和第四设备的相关信息。
其中,第三设备的相关信息可包括如下四种情况:
(1)第一波束的角度信息、第三设备的空间坐标。
(2)第一波束的角度信息、第一波束扫描帧的发射功率、第三设备的空间坐标。
(3)第二波束的角度信息、第二波束的波束标识、第三波束的波束标识、第三设备的空间坐标。
(4)第四波束的波束标识、第三设备的空间坐标。
这里,第一波束为第一波束扫描帧所对应的波束,第一波束扫描帧为第一设备接收到第三设备发送的波束扫描帧帧中,信号质量最优的波束扫描帧、或信号质量大于阈值的波束扫描帧、或最早接收到的波束扫描帧。
这里,第二波束为第二波束扫描帧所对应的波束,第三波束为第三波束扫描帧所对应的波束,第二波束扫描帧和第三波束扫描帧由第三设备发送给第一设备。
这里,第四波束为第四波束扫描帧所对应的波束,第四波束扫描帧为第三设备接收到第一设备发送的波束扫描帧帧中,信号质量最优的波束扫描帧、或信号质量大于阈值的波束扫描帧、或最早接收到的波束扫描帧。
其中,第四设备的相关信息可包括如下四种情况:
(1)第五波束的角度信息、第四设备的空间坐标。
(2)第五波束的角度信息、第五波束扫描帧的发射功率、第四设备的空间坐标。
(3)第六波束的角度信息、第六波束的波束标识、第七波束的波束标识、第四设备的空间坐标。
(4)第八波束的波束标识、第四设备的空间坐标。
其中,第五波束为第五波束扫描帧所对应的波束,第五波束扫描帧为第一设备接收到第四设备发送的波束扫描帧帧中,信号质量最优的波束扫描帧、或信号质量大于阈值的波束扫描帧、或最早接收到的波束扫描帧。
其中,第六波束为第六波束扫描帧所对应的波束,第七波束为第七波束扫描帧所对应的波束,第六波束扫描帧和第七波束扫描帧由第四设备发送给第一设备。
其中,第八波束为第八波束扫描帧所对应的波束,第八波束扫描帧为第四设备接收到第一设备发送的波束扫描帧帧中,信号质量最优的波束扫描帧、或信号质量大于阈值的波束扫描帧、或最早接收到的波束扫描帧。
(三)第一设备的空间位置指示信息和第二设备的空间位置指示信息借助网络得到。
具体的,网络服务器中可存储第一设备及第二设备的空间位置指示信息,第一设备可通过网络连接从网络服务器中获取的第一设备及第二设备的空间位置指示信息。
可选的,第一设备的空间位置指示信息可以包括第一设备的空间坐标。第二设备的空间位置指示信息也可以包括第一设备的空间坐标。该空间坐标可通过经纬度、极坐标或三维坐标表示。
第三方面,本申请提供一种第一设备,可用于执行第一方面描述的波束训练方法。所述第一设备可包括:存储器以及与所述存储器耦合的处理器、发射器和接收器,其中:所 述发射器用于发送信号,所述接收器用于接收发送的信号,所述存储器用于存储第一方面描述的波束训练方法的实现代码,所述处理器用于执行所述存储器中存储的程序代码,即执行第一方面或第一方面的可能的实施方式所提供的波束训练方法。
第四方面,本申请提供一种网络设备,可用于执行第二方面描述的波束训练方法。该网络设备可包括:存储器以及与所述存储器耦合的处理器和发射器,其中:所述处理器用于生成信号,所述发射器用于发送所述信号,所述存储器器用于存储第二方面描述的波束训练方法的实现代码,所述处理器还用于执行所述存储器中存储的程序代码,即执行第二方面或第二方面的可能的实施方式所提供的波束训练方法。
第五方面,本申请提供了一种第一设备,包括多个功能模块,用于执行第一方面或第一方面可能的实施方式所提供的方法。
第六方面,本申请提供了一种计算机可读存储介质,所述可读存储介质上存储有实现第一方面或第一方面的可能的实施方式所描述的波束训练方法的程序代码,该程序代码包含运行第一方面或第一方面的可能的实施方式所描述的波束训练方法的执行指令。
第七方面,本申请提供了一种计算机可读存储介质,所述可读存储介质上存储有实现第二方面或第二方面的可能的实施方式所描述的波束训练方法的程序代码,该程序代码包含运行第二方面或第二方面的可能的实施方式所描述的波束训练方法的执行指令。
第八方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面或第一方面可能的实施方式描述的波束训练方法。
第九方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第九方面或第九方面可能的实施方式描述的波束训练方法。
实施本申请,第一设备可确定与第二设备之间进行波束训练的发射波束和/或接收波束,在进行波束训练时,可通过确定出的发射波束进行发射扇区扫描,通过确定出的接收波束进行接收扇区扫描,无需遍历所有的扇区波束,收敛了扇区扫描的范围,可以降低波束训练消耗的时间,从而提高波束成形的效率。
附图说明
图1为本申请提供的无线通信系统的结构示意图;
图2为本申请提供的终端的结构示意图;
图3为本申请提供的网络设备的结构示意图;
图4为本申请提供的波束训练方法的流程示意图;
图5为本申请实施例一提供的第一设备、第二设备和第三设备的场景示意图;
图6A、图7A、图8A、图9A、图11A、图12A、图13A为本申请实施例一提供的数据帧交互流程图;
图6B为本申请实施例一提供的一种波束扫描帧的结构示意图;
图7B为本申请实施例一提供的一种波束扫描帧、第一查询帧、第一查询报告帧的结构示意图;
图7C为本申请实施例一提供的一种波束扫描帧、查询帧、查询报告帧的结构示意图;
图8B为本申请实施例一提供的另一种波束扫描帧的结构示意图;
图9B为本申请实施例一提供的又一种波束扫描帧的结构示意图;
图10为本申请提供的偏离角的示意图;
图11B、图12B为本申请实施例一提供的第二波束扫描帧和第三波束扫描帧的结构示意图;
图13B为本申请提供的第一波束反馈帧的结构示意图;
图14为本申请实施例二提供的第一设备、第二设备、第三设备和第四设备的场景示意图;
图15、图16为本申请实施例二提供的数据帧交互流程图;
图17为本申请提供的第一设备的功能框图。
具体实施方式
本申请的实施方式部分使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。
参见图1,首先介绍本申请涉及的无线通信系统。本申请的无线通信系统工作在高频频段上,不限于长期演进(long term evolution,LTE)系统,还可以是未来演进的第五代移动通信(the 5th Generation,5G)系统、新空口(NR)系统,机器与机器通信(machine to machine,M2M)系统、WIFI系统等。如图1所示,该无线通信系统100可包括:一个或多个网络设备101,一个或多个终端102。其中:
网络设备101可以分布在整个无线通信系统100中,可以是静止的,也可以是移动的。在本申请的一些实施例中,网络设备101可以为基站,基站可以用于与一个或多个终端进行通信,也可以用于与一个或多个具有部分终端功能的基站进行通信。基站可以是时分同步码分多址(time division synchronous code division multiple access,TD-SCDMA)系统中的基站收发台(base transceiver station,BTS),也可以是LTE系统中的演进型基站(evolutional node B,eNB),以及5G系统、新空口(NR)系统中的基站。另外,网络设备101也可以为接入点(access point,AP)、传输节点(Trans TRP)、中心单元(central unit,CU)或其他网络实体。
终端102可以分布在整个无线通信系统100中,可以是静止的,也可以是移动的。在本申请的一些实施例中,终端102可以是手机、VR眼镜、移动设备、移动台(mobile station)、移动单元(mobile unit)、M2M终端、无线单元,远程单元、终端代理、移动客户端等等。
本申请中,无线通信系统100是多波束通信系统。其中:
网络设备101可以配置有大规模的天线阵列,并利用波束成形技术控制天线阵列形成不同指向的波束,通过这些波束进行数据的收发。终端102也可以配置有天线阵列,也能以不同指向的波束进行数据的收发。也即是说,在无线通信系统100中,网络设备101和终端102中采用多波束进行通信。
其中,网络设备101或终端102利用波束成形技术形成的波束具有一定的覆盖范围,覆盖范围类似扇形,称为扇区。因此,波束也可称为扇区波束。
可理解的,一个网元和另一个网元传输数据时,该网元向另一个网元发送数据时使用的波束称为发射波束,接收另一个网元发送的数据时使用的波束称为接收波束。可选的, 接收波束和其对应的发射波束可以是相同的波束,二者可以共享相同收发装置。可选的,接收波束和其对应的发射波束各自对应的天线端口可以是准共址(quasi co-location,QCL)的。可选的,准共址是指以下至少一个参数相同或者有确定的对应关系:入射角(angle of arrival,AoA)、主入射角(dominant AoA)、平均入射角、入射角的功率角度谱(power angular spectrum of AoA,PAS of AoA)、水平离开角(angle of departure,AoD)、主出射角、平均出射角、出射角的功率角度谱、终端发射波束成形、终端接收波束成形、空间信道相关性、基站发射波束成形、基站接收波束成形、平均信道增益、平均信道时延、时延扩展(delay spread)、多普勒扩展(doppler spread)等。
参见图2,图2示出了本申请提供的的终端20的结构示意图。如图2所示,终端20可包括:一个或多个处理器201、存储器202、通信接口203、接收器205、发射器206、耦合器207、天线208、终端接口202,以及输入输出模块(包括音频输入输出模块210、按键输入模块211以及显示器212等)。这些部件可通过总线204或者其他方式连接,图2以通过总线连接为例。其中:
通信接口203可用于终端20与其他通信设备,例如和网络设备进行通信。具体的,通信接口203可以是长期演进(LTE)(4G)通信接口,也可以是5G或者未来新空口的通信接口。不限于无线通信接口,终端20还可以配置有有线的通信接口203,例如局域接入网(local access network,LAN)接口。
发射器206和接收器205可看作一个无线调制解调器。在终端20中,发射器206和接收器205的数量均可以是一个或者多个。天线208可用于将传输线中的电磁能转换成自由空间中的电磁波,或者将自由空间中的电磁波转换成传输线中的电磁能。耦合器207用于将天线208接收到的移动通信信号分成多路,分配给多个的接收器205。可理解的,天线208可实现为大规模天线阵列。
除了图2所示的发射器206和接收器205,终端20还可包括其他通信部件,例如GPS模块、蓝牙(bluetooth)模块、无线高保真(wireless fidelity,Wi-Fi)模块等。不限于上述表述的无线通信信号,终端20还可以支持其他无线通信信号,例如卫星信号、短波信号等等。不限于无线通信,终端20还可以通过有线网络接口(如LAN接口)进行有线通信。
所述输入输出模块可用于实现终端20和终端/外部环境之间的交互,可主要包括音频输入输出模块210、按键输入模块211以及显示器212等。具体的,所述输入输出模块还可包括:摄像头、触摸屏以及传感器等等。其中,所述输入输出模块均通过终端接口209与终端处理器201进行通信。
存储器202与终端处理器201耦合,用于存储各种软件程序和/或多组指令。具体的,存储器202可包括高速随机存取的存储器,并且也可包括非易失性存储器,例如一个或多个磁盘存储设备、闪存设备或其他非易失性固态存储设备。存储器202可以存储操作系统(下述简称系统),例如ANDROID,IOS,WINDOWS,或者LINUX等嵌入式操作系统。存储器202还可以存储网络通信程序,该网络通信程序可用于与一个或多个附加设备,一个或多个终端设备,一个或多个网络设备进行通信。
存储器202还可以存储终端接口程序,该终端接口程序可以通过图形化的操作界面将 应用程序的内容形象逼真的显示出来,并通过菜单、对话框以及按键等输入控件接收终端对应用程序的控制操作。在本申请的一些实施例中,存储器202可用于存储本申请的一个或多个实施例提供的波束训练方法在终端20侧的实现程序。关于本申请的一个或多个实施例提供的波束训练方法的实现,请参考后续实施例。
终端处理器201可用于读取和执行计算机可读指令。具体的,终端处理器201可用于调用存储于存储器212中的程序,例如本申请的一个或多个实施例提供的波束训练方法在终端20侧的实现程序,并执行该程序包含的指令。
可以理解的,终端20可以是图1示出的无线通信系统100中的终端102,可实施为移动设备,移动台(mobile station),移动单元(mobile unit),无线单元,远程单元,移动客户端等等。
需要说明的,图2所示的终端20仅仅是本申请实施例的一种实现方式,实际应用中,终端20还可以包括更多或更少的部件,这里不作限制。
参考图3,图3示出了本申请的一些实施例提供的网络设备30。这里,网络设备30可以实现为图1所示通信系统中的网络设备101。如图3所示,网络设备30可包括:一个或多个网络设备处理器301、存储器302、通信接口303、发射器305、接收器306、耦合器307和天线308。这些部件可通过总线304或者其他方式连接,图3以通过总线连接为例。其中:
通信接口303可用于网络设备30与其他通信设备,例如终端设备或其他网络设备,进行通信。具体的,所述终端设备可以是图2所示的终端20。具体的,通信接口303通信接口203可以是长期演进(LTE)(4G)通信接口,也可以是5G或者未来新空口的通信接口。不限于无线通信接口,网络设备30还可以配置有有线的通信接口303来支持有线通信,例如一个网络设备30与其他网络设备30之间的回程链接可以是有线通信连接。
在本申请的一些实施例中,发射器305和接收器306可看作一个无线调制解调器。发射器305可用于对网络设备处理器301输出的信号进行发射处理,例如通过波束成形实现定向发送。接收器306可用于接收信号,例如通过波束成形实现定向接收。在网络设备30中,发射器305和接收器306的数量均可以是一个或者多个。天线308可用于将传输线中的电磁能转换成自由空间中的电磁波,或者将自由空间中的电磁波转换成传输线中的电磁能。耦合器307可用于将移动通信号分成多路,分配给多个的接收器306。可理解的,网络设备的天线308可以实现为大规模天线阵列。
存储器302与网络设备处理器301耦合,用于存储各种软件程序和/或多组指令。具体的,存储器302可包括高速随机存取的存储器,并且也可包括非易失性存储器,例如一个或多个磁盘存储设备、闪存设备或其他非易失性固态存储设备。
存储器302可以存储操作系统(下述简称系统),例如uCOS、VxWorks、RTLinux等嵌入式操作系统。存储器302还可以存储网络通信程序,该网络通信程序可用于与一个或多个附加设备,一个或多个终端设备,一个或多个网络设备进行通信。
本申请实施例中,网络设备处理器301可用于读取和执行计算机可读指令。具体的,网络设备处理器301可用于调用存储于存储器302中的程序,例如本申请的一个或多个实 施例提供的波束训练方法在网络设备30侧的实现程序,并执行该程序包含的指令。
可以理解的,网络设备30可以是图1示出的无线通信系统100中的终端101,网络设备30可实施为基站收发台,无线收发器,一个基本服务集(BSS),一个扩展服务集(ESS),NodeB,eNodeB,gNodeB,接入点或TRP等等。
需要说明的,图3所示的网络设备30仅仅是本申请实施例的一种实现方式,实际应用中,网络设备30还可以包括更多或更少的部件,这里不作限制。
基于上述通信系统及相关设备,本申请提供了一种波束训练方法,可用于收敛通信设备在波束训练SLS阶段中的扇区扫描范围,提高波束训练的效率,进而提高波束成形的效率。本申请以第一设备和第二设备之间的波束训练过程为例,说明本申请的波束训练方法。
本申请的主要发明思想为:通过第一设备的空间位置和第二设备的空间位置,收敛第一设备与第二设备之间进行波束训练时的扇区扫描范围。
这里,第一设备的空间位置可以通过多种方式获取,最常用的方式为第一设备通过GPS等定位系统获取自身的空间位置。但是,通过GPS等定位系统获取第一设备的空间位置的方式至少存在以下两点不足:1、GPS信号不能覆盖所有的通信设备,在室内、地下等环境中的通信设备无法接收GPS信号,不能通过GPS进行定位;2、GPS定位精度不够,通过GPS等定位系统获取到的第一设备的空间位置不够准确。
本申请中,第一设备借助其他设备,获取第一设备的空间位置。本申请中获取第一设备空间位置的方式,不受限于使用环境,并且,可获取较为精确的第一设备的空间位置。
参见图4,图4为本申请提供的波束训练方法的流程示意图。如图所示,该方法可包括如下步骤:
S110、第一设备接收数据帧,该数据帧携带第一设备的空间位置指示信息和第二设备的空间位置指示信息。
本申请中,第一设备可以是图1所示通信系统中的网络设备(如基站、AP等),也可以是图1所示通信系统中的终端。第一设备配置有天线阵列,可利用波束成形技术控制天线阵列形成不同指向的波束。
本申请中,第二设备可以是图1所示通信系统中的网络设备(如基站、AP等),也可以是图1所示通信系统中的终端。第二设备可以配置有天线阵列,也可以仅配置单个天线。
具体的,数据帧可以由一个或多个设备发送。例如,当第一设备为终端时,数据帧可由该终端接入的基站或AP发送。这里,终端接入的基站或AP为,和终端具有连接关系的基站或AP,即终端在该基站或AP处进行了认证、建立会话连接等操作以接入该基站或AP。又例如,数据帧可由和终端没有连接关系的基站或AP以广播的方式发送,第一设备可接收该基站或AP广播的数据帧。这里,和终端没有连接关系的基站或AP是指,终端没有在该基站或AP处进行认证、建立会话连接等操作以接入该基站或AP,但终端能够接收到该基站或AP发送的数据帧。
本申请中,该数据帧中携带第一设备的空间位置指示信息和第二设备的空间位置指示信息。
S120、第一设备根据数据帧,确定与所述第二设备之间进行波束训练的发射波束和/或 接收波束。
可理解的,本申请后续提到的发射波束和/或接收波束均为第一设备与第二设备之间进行波束训练的发射波束和/或接收波束。
本申请中,第一设备根据数据帧携带的信息确定发射波束和/或接收波束的方式有多种,以下列举几种可能的确定方法。
(1)第1种确定方法:根据第一设备和第二设备的空间坐标确定发射波束和/或接收波束。
具体的,第一设备根据数据帧中携带的第一设备的空间位置指示信息确定第一设备的空间坐标,根据数据帧中携带的第二设备的空间位置指示信息确定第二设备的空间坐标。这里,第一设备确定第一设备和第二设备空间坐标的方法可参考后续实施例的相关描述。
在确定第一设备和第二设备的空间坐标之后,第一设备可以获知第一设备指向第二设备的方向,并根据第一设备指向第二设备的方向,在第一设备能够形成的所有或部分波束中,确定出发射波束和/或接收波束。
(2)第2种确定方法:根据数据帧中携带的信息以及接收该数据的过程中所获取的信息,查询这些信息与发射波束和/或接收波束之间的映射关系表,确定出发射波束和/或接收波束。
这里,该信息与发射波束和/或接收波束之间的映射关系表可存储在第一设备中。
可理解的,不限于上述2种确定方法,本申请还可通过其他方式确定出发射波束和/或接收波束。
可选的,第一设备还可根据数据帧携带的信息,结合第一设备自身的姿态信息,确定发射波束和/或接收波束。具体的,第一设备可移动,当第一设备的姿态发生变化时,可生成波束的方向也发生变化。例如,第一设备为手机,当手机的屏幕朝上时,屏幕侧的天线生成的波束指向上方,当手机的屏幕朝下时,屏幕侧的天线生成的波束指向下方,即在手机姿态不同时,同一个波束的指向也不相同。考虑第一设备的姿态信息确定发射波束和/或接收波束的方式,充分考虑到波束指向的变化,确定出的发射波束和/或接收波束能够更加精准地指向第二设备。
可选的,第一设备的姿态信息可由第一设备配置的陀螺仪、重力计、指南针等测量器件得到。可选的,第一设备的姿态信息还可由第一设备配置的视觉设备得到,例如通过摄像头获取场景中的特征物体,根据特征物体出现在画面中的不同位置,来获得第一设备的姿态信息。
本申请中,第一设备在能够形成的所有或部分波束中,确定出至少一个发射波束和/或至少一个接收波束。在该至少一个发射波束和至少一个接收波束中,可以有部分波束相同,也可以全部波束都相同(即第一设备确定出的收发波束相同)。
可选的,第一设备确定出的发射波束的波束方向与第一设备指向第二设备的方向之间的夹角小于第一阈值,确定出的接收波束的波束方向与所述第一设备指向所述第二设备的方向之间的夹角小于第二阈值。其中,第一阈值和第二阈值可预先设置,例如可以为10度、20度等。可理解的,当第一阈值的取值越小,最终确定出的发射波束的个数越少。类似的,当第二阈值的取值越小,最终确定出的接收波束的个数越少。
在可选实施例中,第一设备确定出与第二设备之间进行波束训练的发射波束和/或接收波束后,通过确定出的发射波束进行波束训练中的发射扇区扫描,通过确定出的接收波束进行波束训练中的接收扇区扫描。
具体的,波束训练中的发射扇区扫描用于第一设备确定向第二设备发送数据时的最佳发射波束。当第一设备确定出多个发射波束时,该发射扇区扫描过程包括:第一设备通过该多个发射波束分别向第二设备发送波束扫描帧,第二设备接收到多个波束扫描帧,并确定信号质量最优的波束扫描帧,并将该波束扫描帧对应的波束(即最佳发射波束)反馈给第一设备,使得第一设备获知向第二设备发送数据时的最佳发射波束。
其中,第二设备确定信号质量最优的波束扫描帧时,可根据以下至少一项确定:路径损耗(path loss,PL)、信号接收功率、信号增益或参考信号(被携带在波束扫描帧中)接收功率(reference signal received power,RSRP)、信噪比、信干噪比、信道的时延扩展(delay spread)等。
具体的,波束训练中的接收扇区扫描用于第一设备确定接收第二设备发送的数据时的最佳接收波束。当第一设备确定出多个接收波束时,该接收扇区扫描过程包括:第一设备通过该多个接收波束分别接收第二设备发送的波束扫描帧,并确定信号质量最优的波束扫描帧,第一设备用于接收该信号质量最优的波束扫描帧的波束即为最佳接收波束。其中,第一设备确定信号质量最优的波束扫描帧的过程和上述第二设备的确定过程类似,在此不赘述。
可理解的,在第一设备确定出的发射波束的数量为一个时,第一设备无需再进行发射扇区扫描,直接将确定出的一个发射波束作为最佳发射波束。类似的,在第一设备确定出的接收波束的数量为一个时,第一设备无需再进行接收扇区扫描,直接将确定出的一个接收波束作为最佳接收波束。
在应用中,第一设备可使用相同频段或信道,也可使用不同频段或信道,接收上述步骤S110中的数据帧,以及,执行上述的接收扇区扫描过程和/或发送扇区扫描过程。
上述可知,第一设备可确定与第二设备之间进行波束训练的发射波束和/或接收波束,在进行波束训练时,可通过确定出的发射波束进行发射扇区扫描,通过确定出的接收波束进行接收扇区扫描,无需遍历所有的扇区波束,收敛了扇区扫描的范围,可以降低波束训练消耗的时间,从而提高波束成形的效率。
下面通过三个实施例详细描述图4所示波束训练方法中的数据帧交互过程,以及,第一设备如何确定发射波束和/或接收波束。
在后续三个实施例中,数据帧携带第一设备的空间位置指示信息和第二设备的空间位置指示信息。后续三个实施例将主要描述数据帧中携带的第一设备的空间位置指示信息、第二设备的空间位置指示信息的内容及发送方式。
在实施例一和实施例二中,第二设备的空间位置指示信息可以为第二设备的极坐标、三维坐标等,可被携带在信标帧(beacon frame)、或管理帧(management frame)或其他类型帧中,可由任意一个存储有第二设备的空间位置指示信息的设备发送。可选的,该设备可以是和第一设备有连接关系的任意一个设备,例如,第一设备为终端,第二设备为AP2,终端已接入任意一个和终端有连接关系的AP0或AP1,AP0或AP1存储AP2的空间坐标, 并将AP2的空间坐标发送给终端。
本申请中,后续提到的坐标可以参照球面建立(如地球表面),也可以参照直角坐标系建立(如地球表面在小范围内可近似为平面)。
下面,实施例一和实施例二将主要讨论第一设备如何获取第一设备的空间位置指示信息,以及,该空间位置指示信息的具体内容。
(一)实施例一
本实施例中,第一设备借助第三设备获取第一设备的空间位置指示信息。第一设备和第三设备均具有波束成形的能力。第三设备可以为通信系统中的网络设备或终端设备。
可选的,本实施例中,第一设备和第三设备可以有连接关系(无线连接或有线连接),例如,第一设备为终端,第三设备可以为第一设备已经接入的AP。可选的,本实施例中,第一设备和第三设备也可以没有连接关系。可参见图5,图5示出了第一设备、第二设备和第三设备的场景示意图。
本实施例可包括以下4种实施方式:
(1)实施方式1
在实施方式1中,第一设备的空间位置指示信息包括:第一波束的角度信息、第三设备的空间坐标。其中,第一波束为第一波束扫描帧所对应的波束,第一波束扫描帧为第一设备接收到第三设备发送的波束扫描帧帧中,信号质量最优的波束扫描帧、或信号质量大于阈值的波束扫描帧、或最早接收到的波束扫描帧。
其中,第三设备的空间坐标可以为极坐标、三维坐标等可以反映第三设备空间位置的信息。可选的,第三设备的空间坐标可以由任意存储有该空间坐标的设备发送给第一设备。例如,第一设备为终端,第三设备为AP1,第一设备(终端)已接入AP0和第三设备(AP1),AP0可以存储AP1的空间坐标,并将AP1的空间坐标发送给终端,也可由第三设备(AP1)将自身的空间坐标发送给第一设备(终端)。可理解的,当第三设备的空间坐标由第三设备发送给第一设备时,第三设备的空间坐标可被携带在本实施方式中任意一个第三设备发送给第一设备的数据帧中。
下面主要讨论第一设备如何接收数据帧,以获取第一设备的空间位置指示信息中,除第三设备的空间坐标之外的其他信息,即第一波束的角度信息。有以下两种数据帧交互方式:
1、第1种数据帧交互方式。
在第1种数据帧交互方式中,数据帧包括第一波束扫描帧(sector sweeping frame,SSW frame),第一波束扫描帧携带第一波束的角度信息。
参见图6A,图6A示出了第1种数据帧交互流程图,包括如下步骤:
S1、第三设备通过至少一个波束向第一设备发送波束扫描帧,波束扫描帧携带对应波束的角度信息。
具体的,第三设备利用波束成形技术控制天线阵列形成至少一个波束,并通过该至少一个波束向第一设备发送波束扫描帧。参见图6B,图6B示出了第1种数据帧交互方式中第三设备向第一设备发送的波束扫描帧一种可能的结构。
这里,图6B所示的波束扫描帧在数据链路层传输,可由网络层传输的包(packet)映 射得到。如图6B所示,波束扫描帧中的packet type字段指示网络层传输的包类型,包类型和该波束扫描帧中具体包括哪些字段相关,不同的包类型所对应帧中可以包括不同的字段。例如,第一设备通过图6B所述波束扫描帧中的packet type字段,可获知该波束扫描帧中包括direction字段、ID字段、CDOWN字段、AoD字段、ZoD字段、CRC字段等。
其中,direction字段指示映射该波束扫描帧的包为上行包或下行包,或,指示该包是来自AP还是非AP的下行包,或,指示该包是来自已定位(具有精确坐标信息)设备还是非已定位设备的下行包。
其中,ID字段指示发送该包的设备的ID或接收该包的设备的ID。
其中,CDOWN字段指示在该波束扫描帧后的后续波束扫描帧个数。例如,CDOWN的取值为“5”时,指示后续还有5个波束扫描帧发向第一设备。可选的,该波束扫描帧还可包括冗余校验位CRC。
如图所示,波束扫描帧对应波束的角度信息被携带在以下至少一个字段中:水平角(angle of departure,AoD)字段、垂直角(,ZoD)字段。其中,AoD字段指示波束的水平角,ZoD字段指示波束的垂直角。
参见图5,水平角和高度角针对有方向的线段。如图所示,以第一设备指向第三设备的方向为例,在该方向上任取两点任取两点A和B(为了描述方便,A点为第三设备所在位置,B点为第一设备所在位置)。A投影到经过B且和XOY面平行的水平面上的点为A’,B投影到经过A且和YOZ面平行的垂直面上的点为B’,B-B’和B-A’之间的夹角为该方向的水平角φ 1,B-A和B-A’之间的夹角为该方向的垂直角θ 1。可理解的,A指向B的直线或线段对应的水平角φ’ 1=360°-φ 1,垂直角θ’ 1=-θ 1。可理解的,波束的水平角和高度角为波束主瓣方向上的水平角和高度角。
可理解的,上述所有的字段可以以子字段的形式出现在一个字段中,该字段可命名为beamforming information field或sector sweeping field字段或其他名称。
S2、第一设备接收至少一个波束扫描帧,确定第一波束扫描帧以及第一波束。
可选的,第一设备可在多个波束扫描帧中选择信号质量最优的一个波束扫描帧作为第一波束扫描帧,对应的第三设备用于发射该第一波束扫描帧的波束作为第一波束。
可选的,第一设备可选择任意一个信号质量大于阈值的一个波束扫描帧作为第一波束扫描帧,对应的第三设备用于发射该第一波束扫描帧的波束作为第一波束。
可选的,第一设备可选择最早接收到的一个波束扫描帧作为第一波束扫描帧,对应的第三设备用于发射该第一波束扫描帧的波束作为第一波束。
经过上述步骤,第一设备能够获知第一波束的角度信息。
2、第2种数据帧交互方式。
在第2种数据帧交互方式中,数据帧包括第一波束扫描帧(SSW frame)和第一查询报告帧(beam direction announcement),第一波束扫描帧携带第一波束的波束标识。第一查询 报告帧携带第一波束的角度信息。
第2种数据帧交互方式和第1种数据帧交互方式的不同之处在于,第一波束的角度信息由第三设备接收到第一设备的询问帧后发送。参见图7A,图7A示出了第2种数据帧交互方式的流程图,包括如下步骤:
S1、第三设备通过至少一个波束向第一设备发送波束扫描帧(SSW frame),波束扫描帧携带对应波束的波束标识。
具体的,第三设备利用波束成形技术控制天线阵列形成至少一个波束,并通过该至少一个波束向第一设备发送波束扫描帧。参见图7B,图7B示出了第2种数据帧交互方式中第三设备向第一设备发送的该波束扫描帧一种可能的结构。如图所示,该波束扫描帧包括用于指示波束标识的字段。可选的,该字段可以为Sector ID或Beam ID字段,用于直接指示对应波束的波束标识。可选的,该字段可以为CDOWN字段,用于间接指示对应波束的波束标识,例如,CDOWN字段的取值为“5”时,指示了该波束扫描帧在第三设备发送的所有波束扫描帧中的顺序(该波束扫描帧为第三设备发送的倒数第6个波束扫描帧),第一设备可将该CDOWN值反馈给第三设备,第三设备可根据发送波束扫描帧的顺序,获知该波束扫描帧对应波束的波束标识。
这里,波束标识可以为波束编号,例如图1所示通信系统中的网络设备101的波束可包括:波束1-波束5,终端102的波束可包括:波束a-波束c。
可选的,该波束扫描帧还可包括标志位(with direction info),用于当该标志位取第一值(例如“1”)时指示所述第三设备中存储有对应波束的角度信息。
S2、第一设备接收至少一个波束扫描帧,确定第一波束扫描帧以及第一波束。
该步骤的实现和第1种数据帧交互方式中步骤S2相同,可参见相关描述。
S3、第一设备向第三设备发送第一查询帧(beam direction query frame),第一查询帧携带第一波束的波束标识。
具体的,确定第一波束扫描帧以及第一波束后,第一设备向第三设备发送第一查询帧,用于向第一设备询问第一波束的角度信息。可选的,在第一波束扫描帧中的标志位取第一值时,第一设备向第三设备发送该第一查询帧。
参见图7B,图7B示出了第一查询帧一种可能的结构。如图所示,第一查询帧包括帧类型(frame type)字段,用于指示该帧为查询帧。第一查询帧中还包括用于指示第一波束标识的字段。可选的,可通过Sector ID或Beam ID字段直接指示第一波束的波束标识。可选的,可通过CDOWN1字段间接指示第一波束的波束标识,例如,CDOWN1的取值为“5”时,指示了第一波束扫描帧在第三设备发送的所有波束扫描帧中的顺序(该第一波束扫描帧为第三设备发送的倒数第6个波束扫描帧),第三设备可根据发送波束扫描帧的顺序,获知该第一波束扫描帧对应的第一波束的波束标识。
S4、第三设备接收到第一查询帧,并向第一设备发送第一查询报告帧,第一查询报告帧携带第一波束的角度信息。
参见图7B,图7B示出了第一查询报告帧一种可能的结构。如图所示,CDOWN1可用于指示第一波束的波束标识,AoD1字段可用于指示第一波束的水平角,AoD1字段可用于指示第一波束的垂直角。
经过上述步骤,第一设备能够获知第一波束的角度信息。
可选的,在上述第2种数据帧交互方式中,还有一种可能的形式,第三设备发送给第一设备的波束扫描帧中包括至少一个波束训练信号(TRN),每个波束训练信号基于不同的波束发送。参见图7C,下面简单描述该过程。
如图7C所示,第三设备向第一设备发送多个波束扫描帧,每个波束扫描帧可包括CDOWN字段,指示后续的波束扫描帧的个数。波束扫描帧中包括至少一个波束训练信号,每个波束训练信号通过不同的波束发送。其中,波束扫描帧可在PHY头部或MAC帧中指示该波束扫描帧携带的波束训练信号TRN的个数。可选的,波束训练信号TRN还可以以多空间流的方式发出,在同一时刻,波束训练信号TRN的多空间流中不同流可以往不同波束方向发射,在对应的波束查询帧中还可携带空间流编号。可选的,该波束训练信号的位置可以在表示协议数据单元(presentation protocol data unit,PPDU)的结尾、中间或其他协议约定的位置。
第一设备接收到波束扫描帧及其包括的波束训练信号,并确定接收到的信号质量最优的波束训练信号后,向第三设备发送查询帧(beam query)。查询帧中可包括CDOWN字段和AWV ID字段,指示信号质量最优的波束训练信号为CDOWN字段指示的波束扫描帧中,AWV ID字段所指示的波束训练信号。图7C中所示的查询帧指示信号质量最优的波束训练信号为第三设备发送的第二个波束扫描帧中的第2个波束训练信号。
第三设备接收到查询帧后,可根据查询帧找到对应的波束训练信号,并将发送该波束训练信号的波束的角度信息携带在波束反馈帧(beam query response)中发送给第一设备。
经过实施方式1,第一设备可获知第一设备的空间位置指示信息:第一波束的角度信息、第三设备的空间坐标。
在可选实施例中,实施方式1中的第一设备的空间位置指示信息还可包括:第一波束扫描帧的发射时间。在以上两种数据帧交互方式中,第一波束扫描帧还可包括:该第一波束扫描帧的发射时间。
可理解的,不限于上述两种数据帧交互方式,具体实现中,第一设备的空间位置指示信息可以分多次由不同的设备或同一设备发送,本申请不做限制。
下面描述第一设备通过实施方式1获取到第一设备的空间位置指示信息,通过任意一个设备获取到第二设备的空间位置指示信息后,如何确定发射波束和/或接收波束。结合图4所示方法实施例中步骤S120中的两种确定方法进行描述。
1、第1种确定方法:根据第一设备和第二设备的空间坐标确定发射波束和/或接收波束。可结合图5所示场景图查看,该方法可包括如下步骤:
S1、根据第一波束的角度信息,确定第三设备指向第一设备的方向的角度信息。
具体的,实施方式1中,第一设备将信号质量大于阈值或信号质量最优或最早接收到的波束扫描帧所对应的波束作为第一波束,因此,可近似认为第三设备指向第一设备的方向和第一波束的指向相同。例如,当第一波束的角度信息包括水平角φ b和高度角θ b时,第 三设备指向第一设备的方向的水平角φ’ 1=φ b,垂直角θ’ 1=θ b
S2、根据第一设备和第三设备之间的信号传输时间,确定第三设备和第一设备之间的距离。
具体的,可根据第三设备和第一设备之间的信号传输时间t 1,估算第三设备和第一设备之间的距离L 1。可选的,L 1=t 1×v,v为信号传输速率。这里,可根据以下三种方式确定第一设备和第三设备之间的信号传输时间t 1:
第一种方式,第一波束扫描帧中包括发射时间。第一设备可对比该发射时间和接收到第一波束扫描帧的时间,获取第三设备和第一设备之间的信号传输时间t 1
第二种方式,第一设备可在接收到第一波束扫描帧后,向第三设备发送时间测量帧,第三设备接收到时间测量帧后回复第一设备。第一设备可根据发送时间测量帧到接收到回复之间的时间差估算第三设备和第一设备之间的信号传输时间t 1
第三种方式,第一波束扫描帧的发射时间由第一设备和第三设备协商或者由标准协议约定。第一设备可对比该发射时间和接收到第一波束扫描帧的时间,获取第三设备和第一设备之间的信号传输时间t 1
S3、根据第三设备指向第一设备的方向的角度信息、第三设备和第一设备之间的距离、第三设备的空间坐标,确定第一设备的空间坐标。
可选的,根据以下公式确定第一设备的空间坐标为(x 1,y 1,z 1)。其中,(x 3,y 3,z 3)为第三设备的空间坐标。
Figure PCTCN2019084290-appb-000001
Figure PCTCN2019084290-appb-000002
Figure PCTCN2019084290-appb-000003
S4、根据第一设备的空间坐标和第二设备的空间坐标,确定发射波束和/或接收波束。
具体的,确定第一设备的空间坐标和第二设备的空间坐标后,能够获知第一设备指向第二设备的方向。例如,可通过几何关系获知第一设备指向第二设备的方向的水平角φ和垂直角θ:
Figure PCTCN2019084290-appb-000004
Figure PCTCN2019084290-appb-000005
可选的,可将第一设备能够形成的波束中,波束方向和第一设备指向第二设备的方向之间的夹角小于阈值的波束作为发射波束和/或接收波束。这里,发射波束和/或接收波束用于第一设备和第二设备之间进行波束训练。
2、第2种确定方法:根据数据帧中携带的信息以及接收数据帧过程中获得的信息,查询这些信息与发射波束和/或接收波束之间的映射关系表,确定发射波束和/或接收波束。
具体的,数据帧携带的信息以及接收数据帧过程中获得的信息(包括第一波束的角度信息、第一波束扫描帧的发射时间、第三设备的空间坐标和第二设备的空间位置指示信息)与发射波束和/或接收波束之间存在映射关系,映射关系表可预先存储在第一设备中。这里,第一设备可根据自身,或其他设备,在历史周期中确定发射波束和/或接收波束的过程,来建立该映射关系表。
可理解的,不限于上述两种确定方式,具体实现中,本申请还可通过其他方式确定第一设备的发射波束和/或接收波束。
(2)实施方式2
在实施方式2中,第一设备的空间位置指示信息包括:第一波束的角度信息、第一波束扫描帧的发射功率、第三设备的空间坐标。其中,第一波束为第一波束扫描帧所对应的波束,第一波束扫描帧为第一设备接收到第三设备发送的波束扫描帧帧中,信号质量最优的波束扫描帧、或信号质量大于阈值的波束扫描帧、或最早接收到的波束扫描帧。
和上述实施方式1的不同之处在于,实施方式2中第一设备的空间位置指示信息还包括了第一波束扫描帧的发射功率。
其中,第三设备的空间坐标和实施方式1相同,可参照相关描述。下面主要讨论第一设备如何接收数据帧,以获取第一设备的空间位置指示信息中,除第三设备的空间坐标之外的其他信息,即第一波束的角度信息、第一波束扫描帧的发射功率。有以下两种数据帧交互方式:
1、第1种数据帧交互方式。
在第1种数据帧交互方式中,数据帧包括第一波束扫描帧(sector sweeping frame,SSW frame),第一波束扫描帧携带第一波束的角度信息和第一波束扫描帧的发射功率。
参见图8A,图8A示出了第1种数据帧交互流程图,包括如下步骤:
S1、第三设备通过至少一个波束向第一设备发送波束扫描帧,波束扫描帧携带对应波束的角度信息和该波束扫描帧的发射功率。
参见图8B,图8B示出了第1种数据帧交互方式中第三设备向第一设备发送的波束扫描帧一种可能的结构。其中,发射功率字段可用于指示波束扫描帧的发射功率。可理解的,具体实现中,也可通过其他字段指示波束扫描帧的发射功率,本申请不作限制。
S2、第一设备接收至少一个波束扫描帧,确定第一波束扫描帧以及第一波束。
可理解的,步骤S1、S2的实现和图6A类似,可参照相关描述。
经过上述步骤,第一设备能够获知第一波束的角度信息和发射功率。
2、第2种数据帧交互方式。
在第2种数据帧交互方式中,数据帧包括第一波束扫描帧(SSW frame)和第一查询报 告帧(beam direction announcement),第一波束扫描帧携带第一波束的波束标识和第一波束扫描帧的发射功率,第一查询报告帧携带第一波束的角度信息。
第2种数据帧交互方式和第1种数据帧交互方式的不同之处在于,第一波束的角度信息和第一波束扫描帧的发射功率由第三设备分开发送。参见图9A,图9A示出了第2种数据帧交互方式的流程图,包括如下步骤:
S1、第三设备通过至少一个波束向第一设备发送波束扫描帧(SSW frame),波束扫描帧携带对应波束的波束标识和该波束扫描帧的发射功率。
具体的,第三设备利用波束成形技术控制天线阵列形成至少一个波束,并通过该至少一个波束向第一设备发送波束扫描帧。参见图9B,图9B示出了第2种数据帧交互方式中第三设备向第一设备发送的该波束扫描帧一种可能的结构。如图所示,CDOWN字段或Sector ID或Beam ID字段可用于指示波束扫描帧对应波束的波束标识,发射功率字段等可用于指示波束扫描帧的发射功率。
S2、第一设备接收至少一个波束扫描帧,确定第一波束扫描帧以及第一波束。
S3、第一设备向第三设备发送第一查询帧(beam direction query),第一查询帧携带第一波束的波束标识。
这里,第一查询帧的结构和图7B中相同,可参照相关描述。
S4、第三设备接收到第一查询帧,并向第一设备发送第一查询报告帧,第一查询报告帧携带第一波束的角度信息。
这里,第一查询报告帧的结构和图7B中相同,可参照相关描述。
经过上述步骤,第一设备能够获知第一波束的角度信息和发射功率。
可理解的,在上述第2种数据帧交互方式中,还有一种可能的实现方式,该实现方式和图7C类似,可参考图7C以及上述第2种数据帧交互方式的相关描述,这里不赘述。
经过实施方式2,第一设备可获知第一设备的空间位置指示信息:第一波束的角度信息、第一波束扫描帧的发射功率、第三设备的空间坐标。
在可选实施例中,实施方式2中的第一设备的空间位置指示信息还可包括:第一波束扫描帧的发射时间。在以上两种数据帧交互方式中,第一波束扫描帧还可包括:该第一波束扫描帧的发射时间。
可理解的,不限于上述两种数据帧交互方式,具体实现中,第一设备的空间位置指示信息可以分多次由不同的设备或同一设备发送,本申请不做限制。
下面描述第一设备通过实施方式2获取到第一设备的空间位置指示信息,通过任意一个设备获取到第二设备的空间位置指示信息后,如何确定发射波束和/或接收波束。结合图4所示方法实施例中步骤S120中的两种确定方法进行描述。
1、第1种确定方法:根据第一设备和第二设备的空间坐标确定发射波束和/或接收波束。结合图5所示场景图查看,该方法可包括如下步骤:
S1、根据第一波束的角度信息和第一波束扫描帧的发射功率,确定第三设备指向第一设备的方向的角度信息。
首先,第一设备根据发射功率确定第三设备指向第一设备的方向和第一波束之间的偏离角。
具体的,在第一波束的扇区覆盖范围内的设备都可以接收到第一波束扫描帧,但在不同位置的设备接收到的第一波束扫描帧的接收功率不同,越靠近第一波束主瓣方向的设备接收功率越大。第三设备实际指向设备的方向和第一波束之间的夹角可称为偏离角,偏离角和功率损耗之间呈正相关的映射关系。
第一设备接收到第一波束扫描帧后,可对比接收功率和第一波束扫描帧中携带的发射功率,确定功率损耗,并根据功率损耗和偏离角之间的映射关系,确定第三设备实际指向第一设备的方向和第一波束之间的偏离角,即第三设备实际指向第一设备的方向和第一波束的主瓣方向之间的夹角。参见图10,图10为该偏离角的示意图。
然后,第一设备根据该偏离角和第一波束的角度信息,确定第三设备指向第一设备的方向的角度信息,该角度信息包括水平角φ’ 1和高度角θ’ 1中的至少一个。
S2、根据第一设备和第三设备之间的信号传输时间,确定第三设备和第一设备之间的距离。
S3、根据第三设备指向第一设备的方向的角度信息、第三设备和第一设备之间的距离、第三设备的空间坐标,确定第一设备的空间坐标。
S4、根据第一设备的空间坐标和第二设备的空间坐标,确定发射波束和/或接收波束。
可理解的,步骤S2-S4的实现与上述实施方式1的第1种确定方法相同,可参照相关描述。
2、第2种确定方法:根据数据帧中携带的信息以及接收数据帧的过程中获得的信息,查询这些信息与发射波束和/或接收波束之间的映射关系表,确定出发射波束和/或接收波束。
具体的,数据帧携带的信息以及接收数据帧的过程中获得的信息(包括第一波束的角度信息、第一波束扫描帧的发射时间和发射功率、第三设备的空间坐标和第二设备的空间位置指示信息)与发射波束和/或接收波束之间存在映射关系,该映射关系可预先存储在第一设备中。
可理解的,不限于上述两种确定方式,具体实现中,本申请还可通过其他方式确定第一设备的发射波束和/或接收波束。
(3)实施方式3
在实施方式3中,第一设备的空间位置指示信息包括:第二波束的角度信息、第二波束扫描帧的发射功率、第二波束的波束标识、第三波束的波束标识、第三设备的空间坐标。其中,第二波束为第二波束扫描帧所对应的波束,第三波束为第三波束扫描帧所对应的波束,第二波束扫描帧和第三波束扫描帧由第三设备发送给第一设备。
其中,第三设备的空间坐标和实施方式1相同,可参照相关描述。下面主要讨论第一设备如何接收数据帧,以获取第一设备的空间位置指示信息中,除第三设备的空间坐标之外的其他信息,即第二波束的角度信息、第二波束扫描帧的发射功率、第二波束的波束标识、第三波束的波束标识。有以下两种数据帧交互方式:
1、第1种数据帧交互方式。
在第1种数据帧交互方式中,数据帧包括第二波束扫描帧(sector sweeping frame,SSW frame)和第三波束扫描帧,第二波束扫描帧携带第二波束的角度信息、第二波束扫描帧的发射功率和第二波束的波束标识;第三波束扫描帧携带第三波束的波束标识。
参见图11A,图11A示出了第1种数据帧交互流程图,包括如下步骤:
S1、第三设备通过第二波束向第一设备发送第二波束扫描帧,通过第三波束向第一设备发送第三波束扫描帧。
该第二波束扫描帧携带第二波束的角度信息、第二波束扫描帧的发射功率和第二波束的波束标识。该第三波束扫描帧携带第三波束的波束标识。这里,第二波束和第三波束是不同的波束,第二波束和第三波束可以是第三设备利用波束成形技术控制天线阵列形成的任意两个波束。
参见图11B,图11B示出了第1种数据帧交互方式中的第二波束扫描帧和第三波束扫描帧一种可能的结构。
2、第2种数据帧交互方式。
在第2种数据帧交互方式中,数据帧包括第二波束扫描帧(SSW frame)、第二查询报告帧(beam direction announcement)和第三波束扫描帧。其中,第二波束扫描帧携带第二波束的波束标识和第二波束扫描帧的发射功率。第二查询报告帧携带第二波束的角度信息。第三波束扫描帧携带第三波束的波束标识。
第2种数据帧交互方式和第1种数据帧交互方式的不同之处在于,第二波束的角度信息和第二波束扫描帧的发射功率、第二波束的波束标识由第三设备分开发送。参见图12A,图12A示出了第2种数据帧交互方式的流程图,包括如下步骤:
S1、第三设备通过第二波束向第一设备发送第二波束扫描帧,通过第三波束向第一设备发送第三波束扫描帧。
该第二波束扫描帧携带第二波束扫描帧的发射功率和第二波束的波束标识。该第三波束扫描帧携带第三波束的波束标识。这里,第二波束和第三波束是不同的波束,第二波束和第三波束可以是第三设备利用波束成形技术控制天线阵列形成的任意两个波束。
参见图12B,图12B示出了第2种数据帧交互方式中的第二波束扫描帧和第三波束扫描帧一种可能的结构。
S2、第一设备向第三设备发送第二查询帧(beam direction query),第二查询帧携带第二波束的波束标识。
S3、第三设备接收到第二查询帧,并向第一设备发送第二查询报告帧,第二查询报告帧携带第二波束的角度信息。
可理解的,步骤S2、S3的实现与上述实施方式1的第2种数据帧交互方式相同,可参照相关描述。这里,第二查询帧和第二查询报告帧的结构也可参照图7B所示的第一查询帧、第一查询报告帧及相关描述。
经过上述步骤,第一设备能够获知第二波束的角度信息、第二波束扫描帧的发射功率、第二波束的标识、第三波束的标识。
可理解的,在上述第2种数据帧交互方式中,还有一种可能的实现方式,该实现方式和图7C类似,可参考图7C以及上述第2种数据帧交互方式的相关描述,这里不赘述。
经过实施方式3,第一设备可获知第一设备的空间位置指示信息:第二波束的角度信息、第二波束扫描帧的发射功率、第二波束的波束标识、第三波束的波束标识、第三设备的空间坐标。
可理解的,不限于上述两种数据帧交互方式,具体实现中,第一设备的空间位置指示信息可以分多次由不同的设备或同一设备发送,本申请不做限制。
下面描述第一设备通过实施方式3获取到第一设备的空间位置指示信息,通过任意一个设备获取到第二设备的空间位置指示信息后,如何确定发射波束和/或接收波束。结合图4所示方法实施例中步骤S120中的两种确定方法进行描述。
1、第1种确定方法:根据第一设备和第二设备的空间坐标确定发射波束和/或接收波束。结合图5所示场景图查看,该方法可包括如下步骤:
S1、根据第二波束的波束标识、第三波束的波束标识、第二波束的角度信息,确定第三设备指向第一设备的方向的角度信息。
首先,第一设备根据第二波束和第三波束的波束标识确定第三设备指向第一设备的方向和第二波束之间的偏离角。
具体的,在第二波束和第三波束的扇区覆盖范围内的任意一个设备,接收到的第二波束扫描帧的功率和第三波束扫描帧的功率之间存在差值,该差值可称为增益差,增益差和该设备相对于两个波束的偏离角之间具有关联关系。这里,增益差和偏离角之间的关联关系可由第一设备根据第二波束和第三波束的波束宽度确定并存储,第二波束和第三波束的波束宽度可由第三设备发送给第一设备,也可由第一设备从网络或其他设备中获取。
第一设备接收到第二波束扫描帧和第三波束扫描帧后,根据接收功率确定两者的增益差,并可根据增益差和偏离角之间的关联关系,确定第三设备实际指向第一设备的方向和第二波束之间的偏离角。
然后,第一设备根据该偏离角和第二波束的角度信息,确定第三设备指向第一设备的方向的角度信息,该角度信息包括水平角φ’ 1和高度角θ’ 1中的至少一个。
S2、根据第二波束扫描帧的发射功率,确定第三设备和第一设备之间的距离。
具体的,在第二波束的覆盖范围内,距离第三设备越远的设备,接收到的第二波束扫描帧的功率越小,功率损耗越大。因此,第三设备和第一设备之间的距离,与,第二波束扫描帧的功率损耗,呈正相关的映射关系。这里,距离和功率损耗的映射关系可由第一设备预先存储。
第一设备接收到第二波束扫描帧后,可对比接收功率和第二波束扫描帧中携带的发射功率,确定功率损耗,并根据功率损耗和距离的映射关系,确定第三设备和第一设备之间的距离。
S3、根据第三设备指向第一设备的方向的角度信息、第三设备和第一设备之间的距离、第三设备的空间坐标,确定第一设备的空间坐标。
S4、根据第一设备的空间坐标和第二设备的空间坐标,确定发射波束和/或接收波束。
可理解的,步骤S3、S4的实现与上述实施方式1中第1种确定方式相同,可参照相关描述。
2、第2种确定方法:根据数据帧中携带的信息,查询数据帧携带信息与发射波束和/或接收波束之间的映射关系表,确定出发射波束和/或接收波束。
具体的,数据帧携带的信息(包括第二波束的角度信息、第二波束扫描帧的发射功率、第二波束的波束标识、第三波束的波束标识、第三设备的空间坐标和第二设备的空间位置指示信息)与发射波束和/或接收波束之间存在映射关系,该映射关系可预先存储在第一设备中。
可理解的,不限于上述两种确定方式,具体实现中,本申请还可通过其他方式确定第一设备的发射波束和/或接收波束。
(4)实施方式4
在实施方式4中,第一设备的空间位置指示信息包括:第四波束的波束标识、第三设备的空间坐标。其中,第四波束为第四波束扫描帧所对应的波束,第四波束扫描帧为第三设备接收到第一设备发送的波束扫描帧帧中,信号质量最优的波束扫描帧、或信号质量大于阈值的波束扫描帧、或最早接收到的波束扫描帧。
其中,第三设备的空间坐标和实施方式1相同,可参照相关描述。下面主要讨论第一设备如何接收数据帧,以获取第一设备的空间位置指示信息中,除第三设备的空间坐标之外的其他信息,即第四波束的波束标识。
在本实施方式中,数据帧包括第一波束反馈帧(sector sweeping feedback frame,SSW feedback frame),该第一波束反馈帧携带第四波束的波束标识。
参见图13A,本实施方式中的数据帧交互方式可包括如下步骤:
S1、第一设备通过至少一个波束向第三设备发送波束扫描帧,波束扫描帧携带对应波束的波束标识。
具体的,第一设备利用波束成形技术控制天线阵列形成至少一个波束,并通过该至少一个波束向第三设备发送波束扫描帧。
S2、第三设备接收至少一个波束扫描帧,确定第四波束扫描帧以及第四波束。
可选的,第三设备可选择信号质量最优的一个波束扫描帧作为第四波束扫描帧,对应的第一设备用于发射该第四波束扫描帧的波束作为第四波束。
可选的,第三设备可选择任意一个信号质量大于阈值的波束扫描帧作为第四波束扫描帧,对应的第一设备用于发射该第四波束扫描帧的波束作为第四波束。
可选的,第三设备可选择最早接收到的波束扫描帧作为第四波束扫描帧,对应的第一设备用于发射该第四波束扫描帧的波束作为第四波束。
S3、第三设备向第一设备发送第一波束反馈帧,该第一波束反馈帧携带第四波束的波束标识。
参见图13B,图13B示出了第一波束反馈帧一种可能的结构。其中CDOWN字段或Sector ID或Beam ID字段等可用于指示第四波束的波束标识。
经过上述步骤,第一设备能够获知第四波束的波束标识。
可理解的,在上述第2种数据帧交互方式中,还有一种可能的实现方式,该实现方式 和图7C类似,可参考图7C以及上述第2种数据帧交互方式的相关描述,这里不赘述。
经过实施方式4,第一设备可获知第一设备的空间位置指示信息:第四波束的波束标识、第三设备的空间坐标。
可理解的,不限于上述的数据帧交互方式,具体实现中,第一设备的空间位置指示信息可以分多次由不同的设备或同一设备发送,本申请不做限制。
下面描述第一设备通过实施方式4获取到第一设备的空间位置指示信息,通过任意一个设备获取到第二设备的空间位置指示信息后,如何确定发射波束和/或接收波束。结合图4所示方法实施例中步骤S120中的两种确定方法进行描述。
1、第1种确定方法:根据第一设备和第二设备的空间坐标确定发射波束和/或接收波束。该方法可包括如下步骤:
S1、第一设备根据第四波束的波束标识,确定第一设备指向第三设备的方向的角度信息。
首先,第一设备可根据第四波束的波束标识,查询自身所能形成的波束中和该波束标识对应的波束,并获知该波束(即第四波束)的角度信息。
具体的,实施方式4中的第三设备通过第一波束反馈帧向第一设备反馈的波束为:信号质量大于阈值或信号质量最优或最早接收到的波束扫描帧所对应的波束,因此,可近似认为第一设备指向第三设备的方向和该波束扫描帧所对应波束的指向相同。即,第一设备指向第三设备的方向的角度信息和第一设备查询到的波束(即第四波束)的角度信息相同。
由于相反方向的角度信息之间具有关联关系(可参见图5及相关描述),可根据第一设备指向第三设备的方向的角度信息,确定第三设备指向第一设备的方向的角度信息,该角度信息包括水平角φ’ 1和高度角θ’ 1中的至少一个。
S2、第一设备确定和第三设备之间的距离。
具体的,第一设备根据图13A所述数据帧交互流程中的步骤S1和S4中,发送波束扫描帧和接收到第一波束反馈帧之间的时间差t2,估算第三设备和第一设备之间的距离L 2。可选的,L 2=t 2×v,v为信号传输速率。
S3、根据第一设备指向第三设备的方向的角度信息、第一设备和第三设备之间的距离、第三设备的空间坐标,确定第一设备的空间坐标。
S4、根据第一设备的空间坐标和第二设备的空间坐标,确定发射波束和/或接收波束。
可理解的,步骤S3、S4的实现与上述实施方式1第1种确定方法类似,可参照相关描述。
2、第2种确定方法:根据数据帧中携带的信息以及接收数据帧的过程中获取到的信息,查询这些信息与发射波束和/或接收波束之间的映射关系表,确定出发射波束和/或接收波束。
具体的,该信息(至少包括第四波束的波束标识、第三设备的空间坐标、第二设备的空间位置指示信息、发送波束扫描帧和接收到第一波束反馈帧之间的时间差)与发射波束 和/或接收波束之间存在映射关系,该映射关系可预先存储在第一设备中。
可理解的,不限于上述两种确定方式,具体实现中,本申请还可通过其他方式确定第一设备的发射波束和/或接收波束。
(二)实施例二
本实施例中,第一设备借助第三设备和第四设备获取第一设备的空间位置指示信息。其中,第一设备和第三设备、第四设备可以有连接关系(无线连接或有线连接),也可以没有连接关系。例如,第一设备为终端,第三设备、第四设备可以为第一设备已经接入的AP。参见图14,图14示出了第一设备、第二设备、第三设备和第四设备的场景示意图。
本实施例中,第一设备的空间位置指示信息可包括两部分,一部分和第三设备相关,另一部分和第四设备相关,下面详细描述这两部分信息。
其中,和第三设备相关的信息,可以包括以下任意一种:
(1)第一波束的角度信息、第三设备的空间坐标。
(2)第一波束的角度信息、第一波束扫描帧的发射功率、第三设备的空间坐标。
(3)第二波束的角度信息、第二波束的波束标识、第三波束的波束标识、第三设备的空间坐标。
(4)第四波束的波束标识、第三设备的空间坐标。
其中,第一波束为第一波束扫描帧所对应的波束,第一波束扫描帧为第一设备接收到第三设备发送的波束扫描帧帧中,信号质量最优的波束扫描帧、或信号质量大于阈值的波束扫描帧、或最早接收到的波束扫描帧。
其中,第二波束为第二波束扫描帧所对应的波束,第三波束为第三波束扫描帧所对应的波束,第二波束扫描帧和第三波束扫描帧由第三设备发送给第一设备。
其中,第四波束为第四波束扫描帧所对应的波束,第四波束扫描帧为第三设备接收到第一设备发送的波束扫描帧帧中,信号质量最优的波束扫描帧、或信号质量大于阈值的波束扫描帧、或最早接收到的波束扫描帧。
可理解的,第一设备接收数据帧以获取第一设备的空间位置指示信息中,和第三设备相关的信息的过程,和实施例一中实施方式1-实施方式4相同,可参照相关描述。
其中,和第四设备相关的信息,可以包括以下任意一种:
(1)第五波束的角度信息、第四设备的空间坐标。
(2)第五波束的角度信息、第五波束扫描帧的发射功率、第四设备的空间坐标。
(3)第六波束的角度信息、第六波束的波束标识、第七波束的波束标识、第四设备的空间坐标。
(4)第八波束的波束标识、第四设备的空间坐标。
其中,第五波束为第五波束扫描帧所对应的波束,第五波束扫描帧为第一设备接收到第四设备发送的波束扫描帧帧中,信号质量最优的波束扫描帧、或信号质量大于阈值的波束扫描帧、或最早接收到的波束扫描帧。
其中,第六波束为第六波束扫描帧所对应的波束,第七波束为第七波束扫描帧所对应的波束,第六波束扫描帧和第七波束扫描帧由第四设备发送给第一设备。
其中,第八波束为第八波束扫描帧所对应的波束,第八波束扫描帧为第四设备接收到 第一设备发送的波束扫描帧帧中,信号质量最优的波束扫描帧、或信号质量大于阈值的波束扫描帧、或最早接收到的波束扫描帧。
可理解的,第一设备接收数据帧以获取第一设备的空间位置指示信息中,和第四设备相关的信息的过程,和实施例一中实施方式1-实施方式4类似,可参照相关描述。
可理解的,本实施例中,第一设备的空间位置指示信息中,上述两类信息:和第三设备相关的信息,与,和第四设备相关的信息,可以任意组合。即,本实施例中第一设备的空间位置指示信息至少有16种实现方式。
下面列举两种可能的数据帧交互方式:
1、以第一设备的空间位置指示信息包括第(1)种和第三设备相关的信息、第(1)种和第四设备相关的信息为例,即以第一设备的空间位置指示信息包括:第一波束的角度信息、第五波束的角度信息、第三设备的空间坐标、第四设备的空间坐标为例,说明该数据帧交互方式。
这里,第三设备的空间坐标、第四设备的空间坐标的接收方式和实施例一中第三设备的空间坐标的接收方式相同,可参照相关描述。下面主要讨论第一设备如何接收数据帧,以获取第一设备的空间位置指示信息中,除第三设备和第四设备的空间坐标之外的其他信息。参见图15,该数据帧交互方式可包括如下步骤:
S1、第三设备通过至少一个波束向第一设备发送波束扫描帧,该波束扫描帧携带第三设备的标识和对应波束的波束标识;
第四设备通过至少一个波束向第一设备发送波束扫描帧,该波束扫描帧携带第四设备的标识和对应波束的波束标识。
这里,波束扫描帧中携带设备标识,用于指示第一设备该波束扫描帧是由第三设备或第四设备发送的。
S2、第一设备接收第三设备发送的至少一个波束扫描帧,确定第一波束扫描帧以及第一波束;
第一设备接收第四设备发送的至少一个波束扫描帧,确定第五波束扫描帧以及第五波束。
这里,第一设备确定第一波束扫描帧和第一波束、第四设备确定第五波束扫描帧和第五波束的操作和实施例一实施方式1第1种数据帧交互方式中步骤S2相同,可参见相关描述。
S3、第一设备向第三设备发送第一查询帧,第一查询帧携带第三设备的标识和第一波束的波束标识;
第一设备向第四设备发送第五查询帧,第五查询帧携带第四设备的标识和第五波束的波束标识。
这里,第一查询帧中携带第三设备的标识,用于指示第一查询帧为第一设备发送给第三设备的。第五查询帧同理。
S4、第三设备接收到第一查询帧,向第一设备发送第一查询报告帧,第一查询报告帧携带第三设备的标识和第一波束的角度信息;
第四设备接收到第五查询帧,向第一设备发送第五查询报告帧,第五查询报告帧携带 第四设备的标识和第五波束的角度信息。
这里,第一查询报告帧中携带第三设备的标识,用于指示第一查询报告帧为第三设备发送给第一设备的,第五查询报告帧同理。
2、以第一设备的空间位置指示信息包括第(4)种和第三设备相关的信息、第(4)种和第四设备相关的信息为例,即以第一设备的空间位置指示信息包括:第四波束的波束标识、第八波束的波束标识、第三设备的空间坐标、第四设备的空间坐标为例,说明该数据帧交互方式。
这里,第三设备的空间坐标、第四设备的空间坐标的接收方式和实施例一中第三设备的空间坐标的接收方式相同,可参照相关描述。下面主要讨论第一设备如何接收数据帧,以获取第一设备的空间位置指示信息中,除第三设备和第四设备的空间坐标之外的其他信息。参见图16,可包括如下步骤:
S1、第一设备通过至少一个波束向第三设备发送波束扫描帧,通过至少一个波束向第四设备发送波束扫描帧,波束扫描帧中携带对应波束的波束标识。
S2、第三设备接收第一设备发送的至少一个波束扫描帧,确定第四波束扫描帧和第四波束;
第四设备接收第一设备发送的至少一个波束扫描帧,确定第八波束扫描帧和第八波束。
这里,第三设备确定第四波束、第四设备确定第八波束的操作和实施例一实施方式1第1种数据帧交互方式中步骤S2相同,可参见相关描述。
S3、第三设备向第一设备发送第一波束反馈帧,该第一波束反馈帧携带第三设备的标识和第四波束的波束标识;
第四设备向第一设备发送第二波束反馈帧,该第二波束反馈帧携带第四设备的标识和第八波束的波束标识。
这里,第一波束反馈帧中携带第三设备的标识,用于指示第一波束反馈帧为第三设备发送给第一设备的,第二波束反馈帧同理。
可理解的,不限于上述列举的两种数据帧交互方式,具体实现中,第一设备的空间位置指示信息可以分多次由不同的设备或同一设备发送,本申请不做限制。
可理解的,上述列举的两种数据帧交互方式仅仅为示例,具体实现中,在第一设备的空间位置指示信息中,第三设备的相关信息和第四设备的相关信息可以任意组合,每种组合的实现方式以及数据帧交互方式可参照实施例一的相关描述,在此不赘述。
下面描述第一设备通过实施例二获取到第一设备的空间位置指示信息,通过任意一个设备获取到第二设备的空间位置指示信息后,如何确定发射波束和/或接收波束。结合图4所示方法实施例中步骤S120中的两种确定方法进行描述。
1、第1种确定方法:根据第一设备和第二设备的空间坐标确定发射波束和/或接收波束。结合图14所示场景图查看,该方法可包括如下步骤:
S1、第一设备确定指向第三设备的方向的角度信息,确定指向第四设备的方向的角度信息。
具体的,第一设备可根据第一设备的空间位置指示信息中和第三设备相关的信息,确定第一设备指向第三设备的方向的角度信息。
由于和第三设备相关的信息有多种实现方式,对应的有多种确定方法。当和第三设备相关的信息为上述第(1)-(3)种时,可根据实施例一实施方式1-3中第1种确定方法的步骤1确定第三设备指向第一设备的方向的角度信息,再根据相反方向的角度信息的关联关系,确定第一设备确定指向第三设备的方向的角度信息。当和第三设备相关的信息为上述第(4)种时,可根据实施例一实施方式4中第1种确定方法的步骤1确定第一设备确定指向第三设备的方向的角度信息,可参照相关描述。
具体的,第一设备可根据第一设备的空间位置指示信息中和第四设备相关的信息,确定第一设备指向第四设备的方向的角度信息。这里,确定第一设备指向第四设备的方向的角度信息的方法,和确定第一设备指向第三设备的方向的角度信息的方法类似,可参照相关描述。
S2、根据第一设备指向第三设备的方向的角度信息、第一设备指向第四设备的方向的角度信息,确定第一设备的空间坐标。
可选的,根据以下公式确定第一设备的空间坐标(x 1,y 1,z 1)。
Figure PCTCN2019084290-appb-000006
Figure PCTCN2019084290-appb-000007
Figure PCTCN2019084290-appb-000008
其中,(x 3,y 3,z 3)为第三设备的空间坐标,(x 4,y 4,z 4)为第四设备的空间坐标,φ 1、θ 1分别为第一设备指向第三设备的垂直角和水平角,φ 2、θ 2分别为第一设备指向第四设备的垂直角和水平角。
S3、根据第一设备的空间坐标和第二设备的空间坐标,确定发射波束和/或接收波束。
具体的,确定第一设备的空间坐标和第二设备的空间坐标后,能够获知第一设备指向第二设备的方向。
可选的,可将第一设备能够形成的波束中,波束方向和第一设备指向第二设备的方向之间的夹角小于阈值的波束作为发射波束和/或接收波束。这里,发射波束和/或接收波束用于第一设备和第二设备之间进行波束训练。
2、第2种确定方法:根据数据帧中携带的信息以及接收数据帧过程中获取到的信息,这些信息与发射波束和/或接收波束之间的映射关系表,确定出发射波束和/或接收波束。
可理解的,不限于上述2种确定方式,具体实现中,本申请还可通过其他方式确定第一设备的发射波束和/或接收波束。
(三)实施例三
本实施例中,第一设备可通过网络获取第一设备的空间位置信息的指示信息和第二设备的空间位置信息的指示信息。可选的,网络服务器中可存储第一设备及第二设备的空间位置指示信息,第一设备可通过网络连接从网络服务器中获取的第一设备及第二设备的空间位置指示信息。
可选的,第一设备的空间位置指示信息可以包括第一设备的空间坐标。第二设备的空间位置指示信息也可以包括第一设备的空间坐标。该空间坐标可通过经纬度、极坐标或三维坐标表示。
下面描述在第一设备获取第一设备的空间位置指示信息和第二设备的空间位置指示信息后,如何确定发射波束和/或接收波束。
结合图4所示方法实施例中步骤S120中的第一种确定方法进行描述,在该确定方法中,第一设备根据第一设备和第二设备的空间坐标确定发射波束和/或接收波束,可包括如下步骤:
S1、根据第一设备的空间位置指示信息,确定第一设备的空间坐标;根据第二设备的空间位置指示信息,确定第二设备的空间坐标。
S2、根据第一设备的空间坐标和第二设备的空间坐标,确定发射波束和/或接收波束。
可理解的,不限于上述的确定方式,具体实现中,本申请还可通过其他方式确定第一设备的发射波束和/或接收波束。
通过实施例一、实施例二和实施例三,第一设备可接收携带第一设备的指示信息和第二设备的指示信息的数据帧,并根据数据帧中携带的信息确定和第二设备进行波束训练时的发射波束和/或接收波束。
在可选实施例中,第一设备可将接收到的数据帧或者根据数据帧确定出的信息发送给第二设备,第二设备可利用接收到的信息确定和第一设备进行波束训练时,第二设备的发射波束和/或接收波束。可选的,第一设备可将接收到的数据帧发送给第二设备,第二设备可利用数据帧中携带的信息,确定第二设备和第一设备的空间坐标(和上述实施例中第一设备使用的确定方法相同),并根据第二设备和第一设备的空间坐标,确定第二设备的发射波束和/或接收波束,也可利用数据帧中携带的信息和发射波束和/或接收波束之间的映射关系确定。可选的,第一设备可将根据接收到的数据帧确定出的信息发送给第二设备,例如,第一设备的空间坐标和第二设备的空间坐标、第一设备指向第二设备的方向的角度信息等,以使第二设备确定自身的发射波束和/或接收波束。
上述详细描述了本申请的波束训练方法,为了更好地实施上述的方法,相应地,下面提供了本申请的相关装置。
参见图17,图17为本申请提供的第一设备40的功能框图。如图所示,第一设备40可包括接收单元401,确定单元402,其中,
接收单元401,用于接收数据帧,该数据帧携带第一设备的空间位置指示信息和第二设备的空间位置指示信息;
确定单元402,用于根据数据帧,确定与第二设备之间进行波束训练的发射波束和/或接收波束。
可以理解的,关于第一设备40包括的各个功能单元的具体实现,可参考前述方法实施例的相关描述,这里不再赘述。
实施本申请,第一设备可确定与第二设备之间进行波束训练的发射波束和/或接收波束,在进行波束训练时,可通过确定出的发射波束进行发射扇区扫描,通过确定出的接收波束进行接收扇区扫描,无需遍历所有的扇区波束,收敛了扇区扫描的范围,可以降低波束训练消耗的时间,从而提高波束成形的效率。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线)或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk)等。

Claims (16)

  1. 一种波束训练方法,其特征在于,包括:
    第一设备接收数据帧,所述数据帧携带所述第一设备的空间位置指示信息和第二设备的空间位置指示信息;
    所述第一设备根据所述数据帧,确定与所述第二设备之间进行波束训练的发射波束和/或接收波束。
  2. 一种波束训练方法,其特征在于,包括:
    网络设备生成数据帧,所述数据帧携带第一设备的空间位置指示信息和第二设备的空间位置指示信息;
    所述网络设备将所述数据帧发送给所述第一设备,所述数据帧用于所述第一设备确定与所述第二设备之间进行波束训练的发射波束和/或接收波束。
  3. 如权利要求1或2所述的方法,其特征在于,
    所述第一设备的空间位置指示信息包括:第一波束的角度信息、第三设备的空间坐标;
    其中,所述第一波束为第一波束扫描帧所对应的波束,所述第一波束扫描帧为所述第一设备接收到所述第三设备发送的波束扫描帧帧中,信号质量最优的波束扫描帧、或信号质量大于阈值的波束扫描帧、或最早接收到的波束扫描帧。
  4. 如权利要求1或2所述的方法,其特征在于,
    所述第一设备的空间位置指示信息包括:第二波束的波束标识、所述第二波束的角度信息、第二束扫描帧的发射功率,以及,第三波束的波束标识、第三设备的空间坐标;
    其中,所述第二波束为第二波束扫描帧所对应的波束,所述第三波束为第三波束扫描帧所对应的波束,所述第二波束扫描帧和所述第三波束扫描帧由所述第三设备发送给所述第一设备。
  5. 如权利要求1或2所述的方法,其特征在于,所述第一设备的空间位置指示信息包括:第四波束的波束标识、第三设备的空间坐标;
    其中,所述第四波束为第四波束扫描帧所对应的波束,所述第四波束扫描帧为所述第三设备接收到所述第一设备发送的波束扫描帧帧中,信号质量最优的波束扫描帧、或信号质量大于阈值的波束扫描帧、或最早接收到的波束扫描帧。
  6. 如权利要求1或2所述的方法,其特征在于,
    所述第一设备的空间位置指示信息包括:第三设备的相关信息、第四设备的相关信息。
  7. 如权利要求1或2所述的方法,其特征在于,所述第一设备的空间位置指示信息包括所述第一设备的空间坐标、所述第二设备的空间位置指示信息包括所述第二设备的空间坐标。
  8. 一种第一设备,其特征在于,包括:接收单元,确定单元,其中,
    所述接收单元,用于接收数据帧,所述数据帧携带所述第一设备的空间位置指示 信息和第二设备的空间位置指示信息;
    所述确定单元,用于根据所述数据帧,确定与所述第二设备之间进行波束训练的发射波束和/或接收波束。
  9. 如权利要求8所述的第一设备,其特征在于,
    所述第一设备的空间位置指示信息包括:第一波束的角度信息、第三设备的空间坐标;
    其中,所述第一波束为第一波束扫描帧所对应的波束,所述第一波束扫描帧为所述第一设备接收到所述第三设备发送的波束扫描帧帧中,信号质量最优的波束扫描帧、或信号质量大于阈值的波束扫描帧、或最早接收到的波束扫描帧。
  10. 如权利要求8所述的第一设备,其特征在于,
    所述第一设备的空间位置指示信息包括:第二波束的波束标识、所述第二波束的角度信息、第二束扫描帧的发射功率,以及,第三波束的波束标识、第三设备的空间坐标;
    其中,所述第二波束为第二波束扫描帧所对应的波束,所述第三波束为第三波束扫描帧所对应的波束,所述第二波束扫描帧和所述第三波束扫描帧由所述第三设备发送给所述第一设备。
  11. 如权利要求8所述的第一设备,其特征在于,所述第一设备的空间位置指示信息包括:第四波束的波束标识、第三设备的空间坐标;
    其中,所述第四波束为第四波束扫描帧所对应的波束,所述第四波束扫描帧为所述第三设备接收到所述第一设备发送的波束扫描帧帧中,信号质量最优的波束扫描帧、或信号质量大于阈值的波束扫描帧、或最早接收到的波束扫描帧。
  12. 如权利要求8所述的第一设备,其特征在于,
    所述第一设备的空间位置指示信息包括:第三设备的相关信息、第四设备的相关信息。
  13. 如权利要求8所述的第一设备,其特征在于,所述第一设备的空间位置指示信息包括所述第一设备的空间坐标、所述第二设备的空间位置指示信息包括所述第二设备的空间坐标。
  14. 一种包含指令的计算机程序产品,其特征在于,当所述计算机程序产品在电子设备上运行时,使得所述电子设备执行如权利要求1-7中任一项所述的方法。
  15. 一种计算机可读存储介质,包括指令,其特征在于,当所述指令在计算机上运行上运行时,使得所述计算机上运行执行如权利要求1-7中任一项所述的方法。
  16. 一种装置,用于执行如权利要求1至7中任一项所述的方法。
PCT/CN2019/084290 2018-05-04 2019-04-25 波束训练方法、相关装置及系统 WO2019210804A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/087,756 US11800375B2 (en) 2018-05-04 2020-11-03 Beam training method, related apparatus, and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810425049.XA CN110445523B (zh) 2018-05-04 2018-05-04 波束训练方法、相关装置及系统
CN201810425049.X 2018-05-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/087,756 Continuation US11800375B2 (en) 2018-05-04 2020-11-03 Beam training method, related apparatus, and system

Publications (1)

Publication Number Publication Date
WO2019210804A1 true WO2019210804A1 (zh) 2019-11-07

Family

ID=68387047

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/084290 WO2019210804A1 (zh) 2018-05-04 2019-04-25 波束训练方法、相关装置及系统

Country Status (3)

Country Link
US (1) US11800375B2 (zh)
CN (1) CN110445523B (zh)
WO (1) WO2019210804A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117749257A (zh) * 2024-02-20 2024-03-22 成都星联芯通科技有限公司 终端搜索高轨多波束的工程实现方法、装置和终端设备

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110753388B (zh) * 2018-07-23 2021-08-20 华为技术有限公司 一种波束管理方法和相关设备
CN113765547B (zh) * 2020-06-03 2023-04-07 华为技术有限公司 一种波束对齐方法及相关设备
CN114641009B (zh) * 2020-12-16 2023-06-16 中国联合网络通信集团有限公司 波束扫描方法和装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106817157A (zh) * 2015-11-28 2017-06-09 华为技术有限公司 一种波束训练方法及装置
WO2017146766A1 (en) * 2016-02-26 2017-08-31 Intel IP Corporation Frame structures sounding reference signals in cellular systems
CN107209258A (zh) * 2015-02-02 2017-09-26 高通股份有限公司 用于估计无线通信设备之间的距离的技术
CN107888243A (zh) * 2016-09-30 2018-04-06 电信科学技术研究院 一种波束训练方法、终端及基站

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9318805B2 (en) * 2012-08-21 2016-04-19 Qualcomm Incorporated Updating a beam pattern table
US9357534B2 (en) * 2013-08-09 2016-05-31 Qualcomm Incorporated Method and apparatus for location aided high frequency operations
CN108777589B (zh) * 2013-09-09 2021-08-13 华为技术有限公司 一种波束追踪的方法、装置和系统
US10801024B2 (en) * 2015-05-20 2020-10-13 Indiana University Research And Technology Corporation Inhibition of lncRNA HOTAIR and related materials and methods
CN106982084A (zh) * 2016-01-19 2017-07-25 中兴通讯股份有限公司 一种混合波束训练方法、站点及终端
CN107580367B (zh) * 2016-07-04 2020-12-25 华为技术有限公司 信道训练方法和装置
CN107733484A (zh) * 2016-08-12 2018-02-23 电信科学技术研究院 波束赋形的波束训练方法及装置
US10863474B2 (en) * 2016-10-21 2020-12-08 Qualcomm Incorporated Millimeter-wavelength network map for use in a beamforming procedure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107209258A (zh) * 2015-02-02 2017-09-26 高通股份有限公司 用于估计无线通信设备之间的距离的技术
CN106817157A (zh) * 2015-11-28 2017-06-09 华为技术有限公司 一种波束训练方法及装置
WO2017146766A1 (en) * 2016-02-26 2017-08-31 Intel IP Corporation Frame structures sounding reference signals in cellular systems
CN107888243A (zh) * 2016-09-30 2018-04-06 电信科学技术研究院 一种波束训练方法、终端及基站

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117749257A (zh) * 2024-02-20 2024-03-22 成都星联芯通科技有限公司 终端搜索高轨多波束的工程实现方法、装置和终端设备
CN117749257B (zh) * 2024-02-20 2024-05-17 成都星联芯通科技有限公司 终端搜索高轨多波束的工程实现方法、装置和终端设备

Also Published As

Publication number Publication date
US20210051489A1 (en) 2021-02-18
CN110445523B (zh) 2023-02-14
US11800375B2 (en) 2023-10-24
CN110445523A (zh) 2019-11-12

Similar Documents

Publication Publication Date Title
WO2019210804A1 (zh) 波束训练方法、相关装置及系统
CN110012536B (zh) 用于终端设备的定位方法、装置及系统
WO2021031714A1 (zh) 一种基于相对角度的定位方法及装置
US8787184B2 (en) Collaborative sharing of location information among devices in a network
JP2019507874A (ja) ワイヤレスローカルエリアネットワークの測距および方向検出のためのユニキャストおよびブロードキャストプロトコル
WO2020093929A1 (zh) 电子装置、无线通信方法和计算机可读介质
US20180310127A1 (en) System and Method for Collaborative Position Determination
US11743682B2 (en) Indoor map generation using radio frequency sensing
WO2015196696A1 (zh) 时钟同步方法、射频拉远单元、基带处理单元及基站
US20220123817A1 (en) Apparatus, method and computer program for beam management
WO2019105302A1 (zh) 信号测量方法、相关装置及系统
WO2024087612A1 (zh) 用于定位的方法及装置
TW202215865A (zh) 用於用戶裝備功率節省的接收天線適配的方法和裝置
US20220124669A1 (en) Communication method and apparatus, device, system, and storage medium
WO2019101051A1 (zh) 用于无线通信系统的电子设备、方法和存储介质
WO2021217457A1 (zh) 一种定位信息的确定方法及通信装置
TWI807115B (zh) 毫米波信號的通訊路徑確定方法、測量裝置及測量控制器
US9979083B2 (en) Radio equipment positioning
TW202218446A (zh) 使用天線資訊的抵達角和出發角系統最佳化
WO2016082496A1 (zh) 室内定位方法、无线接收装置、无线发射装置及存储介质
WO2024027643A1 (zh) 一种信息传输方法、装置及设备
WO2022105334A1 (zh) 一种波束对准的方法,信息传输的方法以及相关设备
TWI830169B (zh) 用於定位之發射波束成形之裝置、方法及設備及包含有相關聯程式指令之非暫時性電腦可讀媒體
WO2022077399A1 (zh) 一种下行定位方法及通信装置
WO2023232040A1 (zh) 通信方法及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19796046

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19796046

Country of ref document: EP

Kind code of ref document: A1