WO2015196696A1 - 时钟同步方法、射频拉远单元、基带处理单元及基站 - Google Patents

时钟同步方法、射频拉远单元、基带处理单元及基站 Download PDF

Info

Publication number
WO2015196696A1
WO2015196696A1 PCT/CN2014/090635 CN2014090635W WO2015196696A1 WO 2015196696 A1 WO2015196696 A1 WO 2015196696A1 CN 2014090635 W CN2014090635 W CN 2014090635W WO 2015196696 A1 WO2015196696 A1 WO 2015196696A1
Authority
WO
WIPO (PCT)
Prior art keywords
clock
radio remote
phase
remote unit
beidou
Prior art date
Application number
PCT/CN2014/090635
Other languages
English (en)
French (fr)
Inventor
白伟岐
李永国
陈杰
李康伟
孟海芳
党威
赵飞鹏
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2015196696A1 publication Critical patent/WO2015196696A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter

Definitions

  • the present invention relates to the field of communications, and in particular, to a clock synchronization method, a radio remote unit, a baseband processing unit, and a base station.
  • the core concept of the distributed base station structure is to separate the base station processing unit (BBU) of the traditional macro base station and the radio remote unit (Radio Remote Unite, RRU for short), and the two are connected by optical fiber or cable.
  • BBU base station processing unit
  • RRU Radio Remote Unite
  • the clock synchronization between the existing RRU and the BBU is mainly based on the GPS system, but due to the GPS system. Subject to the United States, it is also more expensive to use, increasing the cost of clock synchronization between the RRU and the BBU.
  • the invention provides a clock synchronization method, a radio remote unit, a baseband processing unit and a base station, which solves the problem of high clock synchronization cost between the RRU and the BBU in the prior art.
  • an embodiment of the present invention provides a clock synchronization method, including: a radio remote unit receiving Beidou information sent by a Beidou satellite, and processing the Beidou clock after processing; the radio remote unit receiving the baseband processing unit sends the The air interface frame frequency; the radio remote unit uses the Beidou clock as the reference clock and the air interface frame frequency to perform phase discrimination counting and clock locking, and obtains the first phase discrimination value; the radio remote unit sets the first phase identification value and the frame number of the air interface frame rate. It is passed back to the baseband processing unit for clock synchronization.
  • the Beidou clock is a PP1S clock; the air interface frame rate is a 10 ms frame rate signal.
  • the Beidou information further includes geographic location information of the radio remote unit; the method further includes: the radio remote unit receiving the positioning request sent by the terminal, and determining between the terminal and the radio remote unit The radio remote unit transmits the geographical location information and the distance to the baseband processing unit; the radio remote unit receives the geographical location information of the terminal sent by the baseband processing unit, and sends the geographic location information to the terminal.
  • the distance between the terminal and the radio remote unit is determined by using one of the following manners: calculating the terminal and the radio frequency by using a wireless channel model according to the strength and delay of the uplink and downlink communication signals of the terminal The distance of the remote unit is determined; the distance between the terminal and the remote radio unit is determined according to the cell identification number of the terminal, the signal center of the cell, and the signal coverage radius.
  • the present invention further provides another clock synchronization method, comprising: a baseband processing unit transmitting an air interface frame rate to a radio remote unit; and a baseband processing unit receiving a backhaul unit of the radio remote unit to use a Beidou clock as a reference clock and an air interface frame frequency.
  • the first phase-detection value obtained by phase-detection counting and clock locking, and the frame number of the air interface frame rate;
  • the baseband processing unit performs phase-detection counting on the local system clock according to the first phase-detection value and the frame number of the air interface frame rate, and obtains the second Phase discrimination value;
  • the baseband processing unit adjusts the system clock according to the second phase discrimination value to synchronize with the Beidou clock.
  • the Beidou clock is a Pulse Per One Second (PP1S) clock; the air interface frame rate is a 10 ms frame rate signal.
  • P1S Pulse Per One Second
  • the method further includes: the baseband processing unit receives geographical location information sent by at least three radio remote units and a distance from the same terminal; and the baseband processing unit uses each radio remote unit as Center, the distance between the remote unit and the same terminal is the radius of the sphere, determine the intersection of at least three spheres, and determine the geographical location information of the terminal according to the geographical location information and intersection of the remote unit.
  • the invention also provides another clock synchronization method, comprising: the baseband processing unit sends the air interface frame rate to the radio remote unit; the radio remote unit receives the Beidou information sent by the Beidou satellite, and processes the Beidou clock after processing; The remote unit receives the air interface frame rate sent by the baseband processing unit; the radio remote unit performs phase discrimination counting and clock locking on the Beidou clock as the reference clock and the air interface frame frequency to obtain a first phase detection value, and the first phase detection value and The frame number of the air interface frame rate is returned to the baseband processing unit; the baseband processing unit receives the first phase detector value and the frame number of the air interface frame rate; the baseband processing unit baseband processing unit according to the first phase detection value and the frame number of the air interface frame rate The system clock performs phase discrimination counting to obtain a second phase-detection value; the baseband processing unit adjusts the system clock according to the second phase-detection value to synchronize with the Beidou clock.
  • the Beidou information further includes geographic location information of the radio remote unit; the method further includes: receiving, by the radio remote unit, a positioning request sent by the terminal, and determining a distance between the terminal and the radio remote unit;
  • the radio remote unit sends its geographical location information and distance to the baseband processing unit;
  • the baseband processing unit is centered on each radio remote unit, and the distance between the radio remote unit and the same terminal is a spherical surface, and is determined to The intersection point of the three spherical planes is determined according to the geographical location information and the intersection point of the radio remote unit, and is sent to the radio remote unit;
  • the radio remote unit receives the geographical location information of the terminal and sends it Give the terminal.
  • the invention also provides a radio remote unit, comprising: a Beidou information receiving module, an air interface frame frequency receiving module, a first phase detecting module and a phase detecting value transmitting module; the Beidou information receiving module is configured to receive the Beidou information sent by the Beidou satellite.
  • the air interface frame frequency receiving module is configured to receive the air interface frame frequency sent by the baseband processing unit;
  • the first phase detecting module is configured to use the Beidou clock as the reference clock and the air interface frame frequency to perform phase counting and The clock is locked to obtain a first phase-detection value;
  • the phase-detection value transmitting module is configured to return the frame number of the first phase-detection value and the air interface frame rate to the baseband processing unit for clock synchronization.
  • the Beidou information further includes geographic location information of the radio remote unit;
  • the radio remote unit further includes a positioning request receiving module, a distance determining module, a geographic information sending module, and a geographic information receiving module;
  • the receiving module is configured to receive a positioning request sent by the terminal;
  • the distance determining module is configured to determine a distance between the terminal and the remote radio unit;
  • the geographic information sending module is configured to send the geographic location information and the distance of the remote radio unit to the baseband processing unit.
  • the geographic information receiving module is configured to receive the geographic location information of the terminal sent by the baseband processing unit and send the same to the terminal.
  • the invention also provides a baseband processing unit, comprising: an air interface frame frequency transmitting module, a phase detecting value receiving module, a second phase detecting module and a synchronization module; the air interface frame frequency transmitting module is configured to send the air interface frame frequency to the radio frequency remote
  • the phase-detecting value receiving module is configured to receive a first phase-detection value obtained by phase-counting and clock-locking with a Beidou clock as a reference clock and an air interface frame frequency, and a frame number of the air interface frame frequency, which is returned by the remote radio unit;
  • the second phase detecting module is configured to perform phase discrimination counting on the local system clock according to the first phase detecting value and the frame number of the air interface frame frequency to obtain a second phase detecting value; and the synchronization module is configured to adjust the system clock according to the second phase detecting value. Synchronized with the Beidou clock.
  • the method further includes a distance receiving module and a geographic location determining module; the distance receiving module is configured to receive geographical location information sent by at least three radio remote units and a distance from the same terminal;
  • the determining module is set to be centered on each radio remote unit, and the distance between the radio remote unit and the same terminal is a spherical surface, and the intersection of at least three spherical surfaces is determined, and the geographic location information and the intersection point of the radio remote unit are determined. Geographic location information of the terminal.
  • the present invention also provides a base station comprising: at least one of the above-mentioned radio remote unit and the baseband processing unit described above.
  • the invention provides a clock synchronization method, a radio remote unit, a baseband processing unit and a base station, wherein the clock synchronization method comprises: the radio remote unit receives the Beidou information sent by the Beidou satellite, and processes the Beidou clock after processing the radio frequency; The remote unit receives the air interface frame rate sent by the baseband processing unit; the radio remote unit uses the Beidou clock as the reference clock and the air interface frame frequency to perform phase discrimination counting and clock locking to obtain the first phase detection value; the radio remote unit will be the first The phase number and frame number of the air interface frame rate are passed back to the baseband processing unit for clock synchronization.
  • the method mainly uses the Beidou clock as a reference clock to synchronize the clock between the radio remote unit and the baseband processing unit. Since the Beidou system is developed in the country, the use of the Beidou clock does not cause too high a cost, thereby reducing the cost. The cost of clock synchronization between the remote radio unit and the baseband processing unit.
  • FIG. 1 is a schematic flowchart of a clock synchronization method according to Embodiment 1 of the present invention
  • FIG. 2 is a schematic structural diagram of a module for processing Beidou information and terminal communication information in an RRU according to Embodiment 1 of the present invention
  • FIG. 3 is a schematic flowchart of a clock synchronization method according to Embodiment 2 of the present invention.
  • FIG. 4 is a schematic flowchart of a clock synchronization method according to Embodiment 3 of the present invention.
  • FIG. 5 is a schematic structural diagram of a BBU and an RRU in a clock synchronization method according to Embodiment 3 of the present invention
  • FIG. 6 is a schematic structural diagram of a radio remote unit according to Embodiment 4 of the present invention.
  • FIG. 7 is a schematic structural diagram of another radio remote unit according to Embodiment 4 of the present invention.
  • FIG. 8 is a schematic structural diagram of a baseband processing unit according to Embodiment 5 of the present invention.
  • FIG. 9 is a schematic structural diagram of another baseband processing unit according to Embodiment 5 of the present invention.
  • FIG. 10 is a schematic structural diagram of a base station according to Embodiment 6 of the present invention.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • This embodiment provides a clock synchronization method. Referring to FIG. 1, the method includes the following steps:
  • Step S101 The radio remote unit receives the Beidou information sent by the Beidou satellite, and processes the Beidou clock after processing;
  • Step S102 The radio remote unit receives the air interface frame rate sent by the baseband processing unit.
  • Step S103 The radio remote unit performs phase-counting and clock-locking of the Beidou clock as a reference clock and the received air interface frame frequency to obtain a first phase-detection value;
  • Step S104 The radio remote unit returns the frame number of the first phase detection value and the air interface frame rate to the baseband processing unit for clock synchronization.
  • the RRU in the present embodiment is further configured to receive the Beidou information transmitted by the Beidou satellite.
  • the RRU needs to process the received information before performing the phase counting and calculation processing.
  • the two signals are implemented at different frequencies. Therefore, the RRU in this embodiment may be referred to as a dual-frequency RRU.
  • the RRU can process the received information in the following manner. See Figure 2: After the duplex information is filtered, the communication information of the Beidou information and the terminal enters the LNA (Low Noise Amplifier) through the channel, and then mirrors.
  • LNA Low Noise Amplifier
  • the local oscillator 1 and the local oscillator 2 are respectively used to realize different frequencies (the local oscillator 1 is the processing of the RRU Beidou information 2.4G, the local oscillator 2 is the processing of the communication data service frequency band), and then the channel selection filtering and the AMP amplifier are performed.
  • the digital intermediate frequency processing includes ADC conversion (digital-to-analog conversion), NCO (numerically controlled oscillator) and mixing, digital filtering), AGC (Automatic Gain Control) output signal .
  • the Beidou information may include a Beidou clock, that is, clock information, such as a PP1S clock signal. Geographical information (such as TOD information) and time information may also be included in the Beidou information.
  • the clock synchronization between the RRU and the BBU is mainly performed according to the Beidou clock.
  • the geographic location information of the RRU receiving the Beidou information may be determined according to the geographic information in the Beidou information for terminal navigation.
  • the navigation proposed in this embodiment is not a positioning request that the terminal directly sends to the Beidou satellite, thereby obtaining the geographical location information of the terminal.
  • the RRU is used as a transit station to determine the geographical location information of the terminal.
  • the process is as follows: the RRU receives the location request sent by the terminal, and determines the distance between the terminal and the RRU; the RRU sends the geographic location information of the RRU and the distance from the terminal to the BBU; the RRU receives the geographical location information of the terminal sent by the BBU, and Send it to the terminal.
  • the RRU may determine the distance between the terminal and the RRU in the following manner: according to the strength and delay of the uplink and downlink communication signals of the terminal, calculate the distance between the terminal and the RRU by using the wireless channel model; or according to the cell identification number where the terminal is located (for example, Cell) -ID), the signal center of the cell in which it is located, and the signal coverage radius determine the distance between the terminal and the RRU.
  • the 4G signal is used to calculate the terminal and The location of the RRU is better, because the 4G signal is characterized by: Multiple-Input Multiple-Output (MIMO) technology in LTE, and Orthogonal Frequency Division Multiplexing (Orthogonal Frequency Division Multiplexing).
  • MIMO Multiple-Input Multiple-Output
  • Orthogonal Frequency Division Multiplexing Orthogonal Frequency Division Multiplexing
  • Anti-multipath interference for OFDM facilitates measurement of signals.
  • the 4G base station can obtain the coverage of the cell according to its own configuration (for example, remote sensing RS, antenna angle, etc.), and the 4G base station has an overlay calculation function to calculate the coverage of the cell, that is, an accurate sector size.
  • the BBU determines the geographic location information of the terminal according to the geographic location information of the RRU and the distance between the terminal and the RRU. For details on how to determine the geographic location information of the terminal based on the geographic location information of the RRU and the distance between the terminal and the RRU, refer to the second embodiment.
  • the terminal-related data can also be stored in the BBU, such as an Oracle (ORCLE) database, which is convenient for the user to call.
  • the air interface frame rate may be a 10 ms frame rate signal.
  • the RRU uses the Beidou clock as the reference clock and the 10ms frame rate signal to perform phase-counting, and obtains the first phase-detection value.
  • the first phase-detection value and the 10ms frame-frequency signal are transmitted back to the BBU, and the BBU can perform the two information pairs.
  • the system clock of the own system performs phase identification counting to obtain a second phase-detection value, and the system clock is adjusted according to the second phase-detection value, so that it can be synchronized with the Beidou clock.
  • the Beidou clock is used as the clock for its operation and clock locked. In this way, the clock in the BBU is synchronized with the Beidou clock, and the clock in the RRU is the Beidou clock used, thereby realizing the clock synchronization between the BBU and the RRU.
  • the RRU can transmit the frame number of the first phase-detection value and the air interface frame rate to the BBU by using a Common Public Radio Interface (CPRI)/Infrared (Infrared, Ir. for short) interface. . If the RRU needs to send the geographical location information to the BBU, the first phase identification value, the air interface frame rate, and the geographical location information may be packaged, and then the signaling stream is sent to the BBU.
  • CPRI Common Public Radio Interface
  • Ir. Infrared
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • This embodiment provides a clock synchronization method. Referring to FIG. 3, the method includes the following steps:
  • Step S301 The baseband processing unit sends the air interface frame rate to the radio remote unit;
  • Step S302 The baseband processing unit receives a first phase-detection value obtained by phase-counting and clock-locking with a Beidou clock as a reference clock and an air interface frame frequency, and a frame number of the air interface frame rate, which is returned by the remote radio unit;
  • Step S303 The baseband processing unit performs phase-detection counting on the local system clock according to the first phase-detection value and the frame number of the air interface frame frequency, to obtain a second phase-detection value;
  • Step S304 The baseband processing unit adjusts the system clock according to the second phase discrimination value to synchronize with the Beidou clock.
  • the Beidou clock may be a PP1S clock; the air interface frame rate may be a 10 ms frame rate signal.
  • the second phase-detection value can be obtained in the following manner: the BBU parses the frame number of the air interface frame rate and the first phase-detection value sent by the RRU, and recovers the Beidou clock.
  • PP1S is taken as an example, and the restored PP1S is used.
  • the clock phase detection module which is output as a reference signal to the BBU, performs phase discrimination counting processing to obtain a second phase discrimination value.
  • the processing of the clock is mainly done by the CC board (clock and control unit).
  • the above step S304 can use the PID algorithm to adjust the synchronization between the system clock and the Beidou clock: convert the second phase-detection value into a voltage value, and the DAC portion adjusts the output of the local crystal oscillator OCXO, thus forming a closed-loop phase-locking process, reaching the system clock and the Beidou clock. Synchronize.
  • the Beidou information may further include geographic location information of the RRU, and the base station processing unit may determine geographic location information of the terminal that is requested to be located according to the geographic location information of the RRU.
  • Determining the geographic location information of the terminal by the BBU may include: the baseband processing unit receives the geographical location information sent by the at least three radio remote units and the distance from the same terminal; the baseband processing unit centers on each radio remote unit, and the radio frequency remotely The distance between the unit and the same terminal is a spherical surface, and the intersection of at least three spherical surfaces is determined, and the geographical location information of the terminal is determined according to the geographical location information and the intersection point of the remote radio unit.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • This embodiment provides a clock synchronization method. Referring to FIG. 4, the method includes the following steps:
  • Step S401 The baseband processing unit sends the air interface frame rate to the radio remote unit;
  • Step S402 The radio remote unit receives the Beidou information sent by the Beidou satellite, and processes the Beidou clock after processing it;
  • Step S403 The radio remote unit receives the air interface frame rate sent by the baseband processing unit.
  • Step S404 The radio remote unit performs phase-counting and clock-locking of the Beidou clock as the reference clock and the air interface frame frequency to obtain a first phase-detection value, and returns the first phase-detection value and the frame number of the air interface frame rate to the baseband.
  • Step S405 The baseband processing unit receives the first phase-detection value and the frame number of the air interface frame rate;
  • Step S406 The baseband processing unit performs phase-collection counting on the system clock of the baseband processing unit according to the first phase-detection value and the frame number of the air interface frame frequency, to obtain a second phase-detection value;
  • Step S407 The baseband processing unit adjusts the system clock according to the second phase discrimination value to synchronize with the Beidou clock.
  • the Beidou clock can be a PP1S clock; the air interface frame rate is a 10 ms frame rate signal.
  • the Beidou information may further include geographic location information of the RRU; the RRU may locate the terminal according to the geographic location information.
  • the radio remote unit receives the positioning request sent by the terminal, and determines the distance between the terminal and the radio remote unit; the radio remote unit transmits its geographical location information and distance to the baseband processing unit; the baseband processing unit uses each radio remote unit Centering, the distance between the remote unit and the same terminal is a radius, and the intersection of at least three spheres is determined.
  • the geographical location information of the terminal and the intersection point are determined according to the geographical location information of the remote unit and sent.
  • the radio remote unit is received; the radio remote unit receives the geographical location information of the terminal and sends it to the terminal.
  • the RRU After receiving the location request and the Beidou information of the terminal, the RRU performs phase identification counting processing on the TOD information and the Beidou clock PP1S. After the fiber is returned to the LTE baseband processing board of the BBU, the baseband processing board processes the received information, and then sends the Beidou clock information transmitted by the RRU to the FPGA module of the BBU to perform phase identification counting processing and clock detection on the Beidou clock information. Processing, etc., then get the internal synchronization signal for clock synchronization.
  • the FPGA module sends it to the CPU module, and the Beidou communication information processing module, the user cell information processing module, and the LTE reference signal measurement processing module determine the geographic location information of the terminal that is requested to be located according to the TOD information.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • the radio remote unit includes: a Beidou information receiving module 601, an air interface frame frequency receiving module 602, a first phase detecting module 603, and a phase detecting value sending module 604.
  • the Beidou information receiving module 601 is configured to receive the Beidou information sent by the Beidou satellite, and the Beidou information includes a Beidou clock;
  • the air interface frame frequency receiving module 602 is configured to receive the air interface frame frequency sent by the baseband processing unit;
  • the first phase detecting module 603 is set to be the Beidou
  • the clock is used as the reference clock and the air interface frame frequency for phase-counting and clock locking, to obtain a first phase-detection value;
  • the phase-detection value transmitting module 604 is configured to return the frame number of the first phase-detection value and the air interface frame rate to the baseband processing unit. Used for clock synchronization.
  • the Beidou information received by the radio remote unit further includes geographic location information of the radio remote unit;
  • the radio remote unit includes a Beidou information receiving module. 701, the air interface frame frequency receiving unit 702, the first phase detecting module 703 and the phase difference value transmitting module 704, further comprising a positioning request receiving module 705, a distance determining module 706, a geographic information sending module 707 and a geographic information receiving module 708;
  • the location request determining module 705 is configured to receive a location request sent by the terminal;
  • the distance determination module 706 is configured to determine a distance between the terminal and the remote radio unit;
  • the geographic information sending module 707 is configured to The location information and the distance are sent to the baseband processing unit;
  • the geographic information receiving module 708 is configured to receive the geographic location information of the terminal transmitted by the baseband processing unit and send it to the terminal.
  • the distance determining module includes a first distance determining module or a second distance determining module: the first distance determining module is configured to calculate the terminal and the radio remote unit according to the strength and delay of the uplink and downlink communication signals of the terminal.
  • the second distance determining module is configured to determine the distance between the terminal and the remote radio unit according to the cell identification number of the terminal, the signal center of the cell, and the signal coverage radius.
  • Embodiment 5 is a diagrammatic representation of Embodiment 5:
  • the baseband processing unit includes: an air interface frame frequency sending module 801, a phase detector value receiving module 802, a second phase detecting module 803, and a synchronization module 804;
  • the sending module 801 is configured to send the air interface frame rate to the radio remote unit;
  • the phase value receiving module 802 is configured to receive the phase counter counting and clock locking of the Beidou clock as the reference clock and the air interface frame frequency, which are returned by the radio remote unit.
  • the second phase-detecting module 803 is configured to perform phase-checking on the local system clock according to the first phase-detection value and the frame number of the air interface frame frequency to obtain a second phase-detection value
  • the synchronization module 804 is configured to adjust the system clock to synchronize with the Beidou clock based on the second phase discrimination value.
  • the baseband processing unit includes a null interface frame frequency transmitting module 901, a phase detector value receiving module 902, a second phase detecting module 903, and a synchronization module 904.
  • the distance receiving module 905 is further configured to receive the geographic location information sent by the at least three radio remote units and the distance from the same terminal; the geographic location determining module 906 is configured to Each radio remote unit is centered, and the distance between the radio remote unit and the same terminal is a radius. The intersection of at least three spheres is determined, and the geographic location information of the terminal is determined according to the geographical location information and the intersection of the radio remote unit. .
  • the present embodiment provides a base station, which includes at least one radio remote unit provided in the above fourth embodiment and a baseband processing unit as provided in the above fifth embodiment.
  • FIG. 10 is a base station provided in the embodiment, where the base station includes three radio remote units 1001, 1002, and 1003 provided in the foregoing fourth embodiment, and one provided in the foregoing fifth embodiment.
  • the radio remote unit comprises: a Beidou information receiving module, an air interface frame frequency receiving unit, a first phase detecting module and a phase detecting value transmitting module;
  • the Beidou information receiving module is configured to receive the Beidou information sent by the Beidou satellite, and the Beidou information includes a Beidou clock;
  • the air interface frame frequency receiving module is configured to receive the air interface frame frequency sent by the baseband processing unit;
  • the first phase detecting module is configured to perform phase discrimination counting and clock locking by using the Beidou clock as the reference clock and the air interface frame frequency, to obtain a first phase detecting value;
  • the phase value transmitting module is configured to return the frame number of the first phase detection value and the air interface frame rate to the baseband processing unit for clock synchronization.
  • the unit comprises: an air interface frame frequency sending module, a phase detecting value receiving module, a second phase detecting module and a synchronization module;
  • the air interface frame frequency transmitting module is configured to send the air interface frame frequency to the radio remote unit;
  • the phase detecting value receiving module is configured to receive The first phase-detection value obtained by the phase-counting and clock-locking of the reference clock and the air interface frame frequency, and the frame number of the air interface frame rate, and the second phase-detecting module are set according to the first
  • the phase-detection value and the frame number of the air interface frame rate are phase-counted by the local system clock to obtain a second phase-detection value;
  • the synchronization module is configured to adjust the system clock according to the second phase-detection value to synchronize with the Beidou clock.
  • the base station may further perform navigation according to the Beidou information, and further include a geographic location of the RRU in the Beidou information received by the RRU.
  • the Beidou information received by the radio remote unit further includes a positioning request receiving module, a distance determining module, a geographic information sending module, and a geographic information receiving module; the positioning request determining module is configured to receive a positioning request sent by the terminal; and the distance determining module is set to determine a distance between the terminal and the remote radio unit; the geographic information sending module is configured to send the geographic location information and the distance to the baseband processing unit; the geographic information receiving module is configured to receive the geographic location information of the terminal sent by the baseband processing unit, and Send to the terminal.
  • the baseband processing unit further includes a distance receiving module and a geographic location determining module; the distance receiving module is configured to receive geographical location information sent by at least three radio remote units and a distance from the same terminal; the geographic location determining module is configured to use each radio frequency
  • the remote unit is centered, and the distance between the remote radio unit and the same terminal is a spherical surface, and the intersection of at least three spherical surfaces is determined, and the geographical position information of the terminal is determined according to the geographical location information and the intersection point of the radio remote unit.
  • the above technical solution provided by the embodiment of the present invention mainly performs clock synchronization between the radio remote unit and the baseband processing unit by using the Beidou clock as a reference clock. Since the Beidou system is developed in the country, the use of the Beidou clock does not occur. Too high a cost, which reduces the cost of clock synchronization between the remote radio unit and the baseband processing unit.

Abstract

本发明公开了时钟同步方法、射频拉远单元、基带处理单元及基站,其中的时钟同步方法包括:射频拉远单元接收北斗卫星发送的北斗信息,对其进行处理后提取北斗时钟;射频拉远单元接收基带处理单元发送的空口帧频;射频拉远单元将北斗时钟作为参考时钟与空口帧频进行鉴相计数和时钟锁定,得到第一鉴相值;射频拉远单元将第一鉴相值及空口帧频的帧号回传给基带处理单元用于时钟同步。该方法主要通过将北斗时钟作为参考时钟进行射频拉远单元和基带处理单元之间的时钟同步,因北斗系统为本国开发的系统,对北斗时钟的使用不会产生太高的费用,从而降低了射频拉远单元和基带处理单元之间的时钟同步的成本。

Description

时钟同步方法、射频拉远单元、基带处理单元及基站 技术领域
本发明涉及通信领域,尤其涉及时钟同步方法、射频拉远单元、基带处理单元及基站。
背景技术
随着通信技术的不断发展,基站产品越来越丰富,而且各有特色。从整体发展来看,分布式基站无疑代表了“下一代基站”的基本走向。分布式基站具有低成本、环境适应性强、工程建设方便的优势,尤其是在未来的4G移动网络中,分布式基站将得到非常广泛的应用。分布式基站结构的核心概念就是把传统宏基站的基带处理单元(Building Base band Unite,简称为BBU)和射频拉远单元(Radio Remote Unite,简称为RRU)分离,二者通过光纤或电缆相连。在网络部署时,将基带处理单元与核心网、无线网络控制设备集中在机房内,通过光纤与规划站点上部署的射频拉远单元进行连接,完成网络覆盖,从而降低建设维护成本、提高效率。
因BBU和RRU间通过光纤或电缆进行通信,所以就必然存储BBU和RRU之间的时钟同步的问题,现有的RRU与BBU之间的时钟同步主要是基于GPS系统进行的,但是由于GPS系统受制于美国,因此其使用费用也较昂贵,从而增加了RRU和BBU之间的时钟同步的成本。
发明内容
本发明提供一种时钟同步方法、射频拉远单元、基带处理单元及基站,解决现有技术中RRU和BBU之间时钟同步成本高的问题。
为解决上述技术问题,本发明实施例提供一种时钟同步方法,包括:射频拉远单元接收北斗卫星发送的北斗信息,对其进行处理后提取北斗时钟;射频拉远单元接收基带处理单元发送的空口帧频;射频拉远单元将北斗时钟作为参考时钟与空口帧频进行鉴相计数和时钟锁定,得到第一鉴相值;射频拉远单元将第一鉴相值及空口帧频的帧号回传给基带处理单元用于时钟同步。
在本发明的一种实施例中,北斗时钟为PP1S时钟;空口帧频为10ms帧频信号。
在本发明的一种实施例中,北斗信息还包括射频拉远单元的地理位置信息;该方法还包括:射频拉远单元接收终端发送的定位请求,并确定终端与射频拉远单元之间的距离;射频拉远单元将地理位置信息和距离发送给基带处理单元;射频拉远单元接收基带处理单元发送的终端的地理位置信息,并将其发送给终端。
在本发明的一种实施例中,采用以下方式中的一种确定终端与射频拉远单元之间的距离:根据终端的上下行通信信号的强度、时延,采用无线信道模型计算终端与射频拉远单元的距离;根据终端所在的小区标示号、所在小区的信号中心以及信号覆盖半径确定终端与射频拉远单元的距离。
本发明还提供了另一种时钟同步方法,包括:基带处理单元将空口帧频发送给射频拉远单元;基带处理单元接收射频拉远单元回传的以北斗时钟为参考时钟与空口帧频进行鉴相计数和时钟锁定得到的第一鉴相值,以及空口帧频的帧号;基带处理单元根据第一鉴相值和空口帧频的帧号对本地系统时钟进行鉴相计数,得到第二鉴相值;基带处理单元根据第二鉴相值调整系统时钟使其与北斗时钟同步。
在本发明的一种实施例中,北斗时钟为秒脉冲(Pulse Per one Second,简称为PP1S)时钟;空口帧频为10ms帧频信号。
在本发明的一种实施例中,该方法还包括:基带处理单元接收至少三个射频拉远单元发送的地理位置信息及其与同一个终端的距离;基带处理单元以各射频拉远单元为中心,射频拉远单元与同一个终端之间的距离为半径做球面,确定至少三个球面的交点,根据射频拉远单元的地理位置信息及交点确定终端的地理位置信息。
本发明还提供了另一种时钟同步方法,包括:基带处理单元将空口帧频发送给射频拉远单元;射频拉远单元接收北斗卫星发送的北斗信息,对其进行处理后提取北斗时钟;射频拉远单元接收基带处理单元发送的空口帧频;射频拉远单元将北斗时钟作为参考时钟与空口帧频进行鉴相计数和时钟锁定,得到第一鉴相值,并将第一鉴相值及空口帧频的帧号回传给基带处理单元;基带处理单元接收第一鉴相值和空口帧频的帧号;基带处理单元根据第一鉴相值和空口帧频的帧号对基带处理单元的系统时钟进行鉴相计数,得到第二鉴相值;基带处理单元根据第二鉴相值调整系统时钟使其与北斗时钟同步。
在本发明的一种实施例中,北斗信息还包括射频拉远单元的地理位置信息;该方法还包括:射频拉远单元接收终端发送的定位请求,并确定终端与射频拉远单元的距离;射频拉远单元将其地理位置信息和距离发送给基带处理单元;基带处理单元以各射频拉远单元为中心,射频拉远单元与同一个终端之间的距离为半径做球面,确定至 少三个球面的交点,根据射频拉远单元的地理位置信息及交点确定终端的地理位置信息,并将其发送给射频拉远单元;射频拉远单元接收终端的地理位置信息,并将其发送给终端。
本发明还提供了一种射频拉远单元,包括:北斗信息接收模块、空口帧频接收模块、第一鉴相模块和鉴相值发送模块;北斗信息接收模块设置为接收北斗卫星发送的北斗信息,并对其进行处理后提取北斗时钟;空口帧频接收模块设置为接收基带处理单元发送的空口帧频;第一鉴相模块设置为将北斗时钟作为参考时钟与空口帧频进行鉴相计数和时钟锁定,得到第一鉴相值;鉴相值发送模块设置为将第一鉴相值及空口帧频的帧号回传给基带处理单元用于时钟同步。
在本发明的一种实施例中,北斗信息还包括射频拉远单元的地理位置信息;射频拉远单元还包括定位请求接收模块、距离确定模块、地理信息发送模块和地理信息接收模块;定位请求接收模块设置为接收终端发送的定位请求;距离确定模块设置为确定终端与射频拉远单元之间的距离;地理信息发送模块设置为将射频拉远单元的地理位置信息和距离发送给基带处理单元;地理信息接收模块设置为接收基带处理单元发送的终端的地理位置信息,并将其发送给终端。
本发明还提供了一种基带处理单元,包括:空口帧频发送模块、鉴相值接收模块、第二鉴相模块和同步模块;空口帧频发送模块设置为将空口帧频发送给射频拉远单元;鉴相值接收模块设置为接收射频拉远单元回传的以北斗时钟为参考时钟与空口帧频进行鉴相计数和时钟锁定得到的第一鉴相值,以及空口帧频的帧号;第二鉴相模块设置为根据第一鉴相值和空口帧频的帧号对本地系统时钟进行鉴相计数得到第二鉴相值;同步模块设置为根据第二鉴相值调整系统时钟使其与北斗时钟同步。
在本发明的一种实施例中,还包括距离接收模块、地理位置确定模块;距离接收模块设置为接收至少三个射频拉远单元发送的地理位置信息及其与同一个终端的距离;地理位置确定模块设置为以各射频拉远单元为中心,射频拉远单元与同一个终端之间的距离为半径做球面,确定至少三个球面的交点,根据射频拉远单元的地理位置信息及交点确定终端的地理位置信息。
本发明还提供了一种基站,包括:至少一个上述的射频拉远单元和上述的基带处理单元。
本发明的有益效果是:
本发明提供了时钟同步方法、射频拉远单元、基带处理单元及基站,其中的一种时钟同步方法包括:射频拉远单元接收北斗卫星发送的北斗信息,对其进行处理后提取北斗时钟;射频拉远单元接收基带处理单元发送的空口帧频;射频拉远单元将北斗时钟作为参考时钟与空口帧频进行鉴相计数和时钟锁定,得到第一鉴相值;射频拉远单元将第一鉴相值及空口帧频的帧号回传给基带处理单元用于时钟同步。该方法主要通过将北斗时钟作为参考时钟进行射频拉远单元和基带处理单元之间的时钟同步,因北斗系统为本国开发的系统,对北斗时钟的使用不会产生太高的费用,从而降低了射频拉远单元和基带处理单元之间的时钟同步的成本。
附图说明
图1为本发明实施例一提供的一种时钟同步方法的流程示意图;
图2为本发明实施例一提供的RRU中对北斗信息和终端通信信息进行处理的模块的结构示意图;
图3为本发明实施例二提供的一种时钟同步方法的流程示意图;
图4为本发明实施例三提供的一种时钟同步方法的流程示意图;
图5为本发明实施例三提供的一种时钟同步方法中BBU与RRU的结构示意图;
图6为本发明实施例四提供的一种射频拉远单元的结构示意图;
图7为本发明实施例四提供的另一种射频拉远单元的结构示意图;
图8为本发明实施例五提供的一种基带处理单元的结构示意图;
图9为本发明实施例五提供的另一种基带处理单元的结构示意图;
图10为本发明实施例六提供的一种基站的结构示意图。
具体实施方式
下面通过具体实施方式结合附图对本发明作进一步详细说明。
实施例一:
本实施例提供了一种时钟同步方法,请参见图1,该方法包括如下步骤:
步骤S101:射频拉远单元接收北斗卫星发送的北斗信息,对其进行处理后提取北斗时钟;
步骤S102:射频拉远单元接收基带处理单元发送的空口帧频;
步骤S103:射频拉远单元将北斗时钟作为参考时钟与接收的空口帧频进行鉴相计数和时钟锁定,得到第一鉴相值;
步骤S104:射频拉远单元将第一鉴相值及空口帧频的帧号回传给基带处理单元用于时钟同步。
上述步骤S101和步骤S102的顺序不做限制。
在本实施例中的RRU除了具备现有技术中的接收终端(例如手机)的通信信号的功能外,还设置为接收北斗卫星发送的北斗信息。RRU在接收到北斗信息或终端的通信信号之后,需对接收到的信息进行处理,然后才可以进行鉴相计数和计算处理。在对北斗信息和通信信号进行处理后,使两种信号实现不同的频率,因此,本实施例中的RRU可以称为双频RRU。RRU可采用以下方法对接收到的信息进行处理,请参见图2:北斗信息和终端的通信信息经过双工滤波之后,分别经通道进入LNA(Low Noise Amplifier,低噪声放大器),然后再进行镜像滤波,滤波后分别采用本振1和本振2实现不同的频率(本振1是RRU北斗信息2.4G的处理,本振2是通信数据业务频段的处理),然后经信道选择滤波和AMP放大器,最后经过数字中频处理(数字中频处理包括ADC转换(数模转换)、NCO(numerically controlled oscillator,数字控制振荡器)及混频、数字滤波)、AGC(Automatic Gain Control,自动增益控制)输出信号。
在上述步骤S102中,北斗信息中可包括北斗时钟,也即时钟信息,例如PP1S时钟信号。北斗信息中还可包括地理信息(例如TOD信息)和时间信息。本实施例中主要是根据该北斗时钟进行RRU和BBU之间的时钟同步。进一步地,还可以根据北斗信息中的地理信息确定接收北斗信息的RRU的地理位置信息,用于终端导航。本实施例提出的导航并不是让终端直接向北斗卫星发送的定位请求,从而获得终端的地理位置信息。本实施例出于节约成本的原则,采用RRU作为中转站确定终端的地理位置信息。其过程如下:RRU接收终端发送的定位请求,并确定终端与RRU之间的距离;RRU将RRU的地理位置信息和与终端的距离发送给BBU;RRU接收BBU发送的终端的地理位置信息,并将其发送给终端。其中RRU可采用以下方式确定终端与RRU之间的距离:根据终端的上下行通信信号的强度、时延,采用无线信道模型计算终端与RRU的距离;或根据终端所在的小区标示号(例如Cell-ID)、所在小区的信号中心以及信号覆盖半径确定终端与RRU的距离。在本实施例中,采用4G信号计算终端与 RRU的位置的效果更佳,因4G信号的特点是:LTE中的多入多出(Multiple-Input Multiple-Output,简称为MIMO)技术,正交频分复用技术(Orthogonal Frequency Division Multiplexing,简称为OFDM)抗多径干扰,有利于测量信号。而且4G基站可根据自己的配置情况(例如遥感RS,天线角度等查询)获取小区覆盖情况,4G基站具有覆盖计算功能,计算出小区的覆盖范围,也即准确的一个扇区大小。RRU将RRU的地理位置信息和终端与RRU的距离发送给BBU之后,BBU根据RRU的地理位置信息和终端与RRU的距离确定该终端的地理位置信息。BBU如何根据RRU的地理位置信息和终端与RRU的距离确定终端的地理位置信息请参见实施例二。进一步地,还可以将终端与定位相关的数据存储在BBU中,例如甲骨文(ORCLE)数据库,可方便用户进行调用。
在上述步骤S103中,空口帧频可以为10ms帧频信号。RRU将北斗时钟作为参考时钟与10ms帧频信号进行鉴相计数,得到第一鉴相值,将该第一鉴相值和10ms帧频信号回传给BBU,BBU就可以根据这两个信息对自身的系统时钟进行鉴相计数,得到第二鉴相值,根据第二鉴相值对系统时钟进行调整,可使其同步于北斗时钟。在RRU内,采用北斗时钟作为其工作的时钟,并对其进行时钟锁定。这样,BBU内的时钟同步于北斗时钟,而RRU内的时钟又是采用的北斗时钟,从而实现了BBU和RRU之间的时钟同步。
在上述步骤S104中,RRU可利用通用公共无线接口(Common Public Radio Interface,简称为CPRI)/红外线(Infrared,简称为Ir)接口将第一鉴相值和空口帧频的帧号回传给BBU。如果RRU需要将地理位置信息也发送给BBU,则可将第一鉴相值、空口帧频和地理位置信息进行打包,然后走信令流发送给BBU。
实施例二:
本实施例提供了一种时钟同步方法,请参见图3,该方法包括如下步骤:
步骤S301:基带处理单元将空口帧频发送给射频拉远单元;
步骤S302:基带处理单元接收射频拉远单元回传的以北斗时钟为参考时钟与空口帧频进行鉴相计数和时钟锁定得到的第一鉴相值,以及空口帧频的帧号;
步骤S303:基带处理单元根据第一鉴相值和空口帧频的帧号对本地系统时钟进行鉴相计数,得到第二鉴相值;
步骤S304:基带处理单元根据第二鉴相值调整系统时钟使其与北斗时钟同步。
在本实施例中,北斗时钟可以为PP1S时钟;空口帧频可以为10ms帧频信号。
在上述步骤303可采用以下方式得到第二鉴相值:BBU解析RRU发送的空口帧频的帧号和第一鉴相值,并恢复出北斗时钟,这里以PP1S为例,将恢复出的PP1S作为参考信号输出给BBU的时钟鉴相模块进行鉴相计数处理,从而得到第二鉴相值。在BBU中,主要是由CC板(时钟和控制单元)完成对时钟的处理。
上述步骤S304可采用PID算法调整系统时钟与北斗时钟的同步:将第二鉴相值转换成电压值,DAC部分调整本地晶振OCXO的输出,如此形成闭环锁相过程,达到系统时钟和北斗时钟的同步。
在本实施例中,北斗信息还可包括RRU的地理位置信息,基站处理单元可根据RRU的地理位置信息确定请求定位的终端的地理位置信息。BBU确定终端的地理位置信息可包括:基带处理单元接收至少三个射频拉远单元发送的地理位置信息及其与同一个终端的距离;基带处理单元以各射频拉远单元为中心,射频拉远单元与同一个终端之间的距离为半径做球面,确定至少三个球面的交点,根据射频拉远单元的地理位置信息及交点确定终端的地理位置信息。
实施例三:
本实施例提供了一种时钟同步方法,请参见图4,该方法包括如下步骤:
步骤S401:基带处理单元将空口帧频发送给射频拉远单元;
步骤S402:射频拉远单元接收北斗卫星发送的北斗信息,对其进行处理后提取北斗时钟;
步骤S403:射频拉远单元接收基带处理单元发送的空口帧频;
步骤S404:射频拉远单元将北斗时钟作为参考时钟与空口帧频进行鉴相计数和时钟锁定,得到第一鉴相值,并将第一鉴相值及空口帧频的帧号回传给基带处理单元;
步骤S405:基带处理单元接收第一鉴相值和空口帧频的帧号;
步骤S406:基带处理单元根据第一鉴相值和空口帧频的帧号对基带处理单元的系统时钟进行鉴相计数,得到第二鉴相值;
步骤S407:基带处理单元根据第二鉴相值调整系统时钟使其与北斗时钟同步。
本实施例中,北斗时钟可以为PP1S时钟;空口帧频为10ms帧频信号。
本实施例中,北斗信息还可包括RRU的地理位置信息;RRU可根据该地理位置信息对终端进行定位。例如:射频拉远单元接收终端发送的定位请求,并确定终端与射频拉远单元的距离;射频拉远单元将其地理位置信息和距离发送给基带处理单元;基带处理单元以各射频拉远单元为中心,射频拉远单元与同一个终端之间的距离为半径做球面,确定至少三个球面的交点,根据射频拉远单元的地理位置信息及交点确定终端的地理位置信息,并将其发送给射频拉远单元;射频拉远单元接收终端的地理位置信息,并将其发送给终端。
为更形象地说明本实施例提供的时钟同步方法,请参考图5,在图5中RRU在接收到终端的定位请求及北斗信息后,对TOD信息和北斗时钟PP1S进行鉴相计数处理之后,通过光纤回传给BBU的LTE基带处理板,基带处理板对接收的信息进行处理之后,将RRU回传的北斗时钟信息发送给BBU的FPGA模块,对北斗时钟信息进行鉴相计数处理、时钟检测处理等,然后得到内部同步信号,进行时钟同步。而对于TOD信息,FPGA模块将其发送给CPU模块,由北斗通信信息处理模块、用户小区信息处理模块、LTE参考信号测量处理模块根据该TOD信息确定请求定位的终端的地理位置信息。
实施例四:
本实施例提供了一种射频拉远单元,请参见图6,该射频拉远单元包括:北斗信息接收模块601、空口帧频接收模块602、第一鉴相模块603和鉴相值发送模块604;北斗信息接收模块601设置为接收北斗卫星发送的北斗信息,北斗信息包括北斗时钟;空口帧频接收模块602设置为接收基带处理单元发送的空口帧频;第一鉴相模块603设置为将北斗时钟作为参考时钟与空口帧频进行鉴相计数和时钟锁定,得到第一鉴相值;鉴相值发送模块604设置为将第一鉴相值及空口帧频的帧号回传给基带处理单元用于时钟同步。
本实施例还提供了另一种射频拉远单元,请参见图7,射频拉远单元接收到的北斗信息中还包括射频拉远单元的地理位置信息;射频拉远单元除了包括北斗信息接收模块701、空口帧频接收单元702、第一鉴相模块703和鉴相值发送模块704之外,还包括定位请求接收模块705、距离确定模块706、地理信息发送模块707和地理信息接收模块708;定位请求确定模块705设置为接收终端发送的定位请求;距离确定模块706设置为确定终端与射频拉远单元之间的距离;地理信息发送模块707设置为将地 理位置信息和距离发送给基带处理单元;地理信息接收模块708设置为接收基带处理单元发送的终端的地理位置信息,并将其发送给终端。
进一步地,距离确定模块包括第一距离确定模块或第二距离确定模块:第一距离确定模块设置为根据终端的上下行通信信号的强度、时延,采用无线信道模型计算终端与射频拉远单元的距离;第二距离确定模块设置为根据终端所在的小区标示号、所在小区的信号中心以及信号覆盖半径确定终端与射频拉远单元的距离。
实施例五:
本实施例提供了一种基带处理模块,请参见图8,该基带处理单元包括:空口帧频发送模块801、鉴相值接收模块802、第二鉴相模块803和同步模块804;空口帧频发送模块801设置为将空口帧频发送给射频拉远单元;鉴相值接收模块802设置为接收射频拉远单元回传的以北斗时钟为参考时钟与空口帧频进行鉴相计数和时钟锁定得到的第一鉴相值,以及空口帧频的帧号;第二鉴相模块803设置为根据第一鉴相值和空口帧频的帧号对本地系统时钟进行鉴相计数得到第二鉴相值;同步模块804设置为根据第二鉴相值调整系统时钟使其与北斗时钟同步。
本实施例还提供了另一种基带处理基带,请参见图9,该基带处理单元除了包括空口帧频发送模块901、鉴相值接收模块902、第二鉴相模块903和同步模块904之外,还包括距离接收模块905、地理位置确定模块906;距离接收模块905设置为接收至少三个射频拉远单元发送的地理位置信息及其与同一个终端的距离;地理位置确定模块906设置为以各射频拉远单元为中心,射频拉远单元与同一个终端之间的距离为半径做球面,确定至少三个球面的交点,根据射频拉远单元的地理位置信息及交点确定终端的地理位置信息。
实施例六:
本实施例提供了一种基站,该基站包括至少一个上述实施例四中提供的射频拉远单元和如上述实施例五中提供的基带处理单元。请参见图10,图10所示的为本实施例提供的一种基站,该基站中包括3个上述实施例四中提供的射频拉远单元1001、1002、1003和一个上述实施例五中提供的基带处理单元1004。该射频拉远单元包括:北斗信息接收模块、空口帧频接收单元、第一鉴相模块和鉴相值发送模块;北斗信息接收模块设置为接收北斗卫星发送的北斗信息,北斗信息包括北斗时钟;空口帧频接收模块设置为接收基带处理单元发送的空口帧频;第一鉴相模块设置为将北斗时钟作为参考时钟与空口帧频进行鉴相计数和时钟锁定,得到第一鉴相值;鉴相值发送模块设置为将第一鉴相值及空口帧频的帧号回传给基带处理单元用于时钟同步。基带处理 单元包括:空口帧频发送模块、鉴相值接收模块、第二鉴相模块和同步模块;空口帧频发送模块设置为将空口帧频发送给射频拉远单元;鉴相值接收模块设置为接收射频拉远单元回传的以北斗时钟为参考时钟与空口帧频进行鉴相计数和时钟锁定得到的第一鉴相值,以及空口帧频的帧号;第二鉴相模块设置为根据第一鉴相值和空口帧频的帧号对本地系统时钟进行鉴相计数得到第二鉴相值;同步模块设置为根据第二鉴相值调整系统时钟使其与北斗时钟同步。
进一步地,该基站还可根据北斗信息进行导航,在RRU接收的北斗信息中还包括该RRU的地理位置。射频拉远单元接收到的北斗信息中还包括定位请求接收模块、距离确定模块、地理信息发送模块和地理信息接收模块;定位请求确定模块设置为接收终端发送的定位请求;距离确定模块设置为确定终端与射频拉远单元之间的距离;地理信息发送模块设置为将地理位置信息和距离发送给基带处理单元;地理信息接收模块设置为接收基带处理单元发送的终端的地理位置信息,并将其发送给终端。基带处理单元还包括距离接收模块、地理位置确定模块;距离接收模块设置为接收至少三个射频拉远单元发送的地理位置信息及其与同一个终端的距离;地理位置确定模块设置为以各射频拉远单元为中心,射频拉远单元与同一个终端之间的距离为半径做球面,确定至少三个球面的交点,根据射频拉远单元的地理位置信息及交点确定终端的地理位置信息。
以上内容是结合具体的实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。
工业实用性
本发明实施例提供的上述技术方案,主要通过将北斗时钟作为参考时钟进行射频拉远单元和基带处理单元之间的时钟同步,因北斗系统为本国开发的系统,对北斗时钟的使用不会产生太高的费用,从而降低了射频拉远单元和基带处理单元之间的时钟同步的成本。

Claims (14)

  1. 一种时钟同步方法,包括:
    射频拉远单元接收北斗卫星发送的北斗信息,对其进行处理后提取北斗时钟;
    所述射频拉远单元接收基带处理单元发送的空口帧频;
    所述射频拉远单元将所述北斗时钟作为参考时钟与所述空口帧频进行鉴相计数和时钟锁定,得到第一鉴相值;
    所述射频拉远单元将所述第一鉴相值及所述空口帧频的帧号回传给所述基带处理单元用于时钟同步。
  2. 如权利要求1所述的时钟同步方法,其中,所述北斗时钟为秒脉冲PP1S时钟;所述空口帧频为10ms帧频信号。
  3. 如权利要求1或2所述的时钟同步方法,其中,所述北斗信息还包括所述射频拉远单元的地理位置信息;该方法还包括:
    所述射频拉远单元接收终端发送的定位请求,并确定所述终端与所述射频拉远单元之间的距离;
    所述射频拉远单元将所述地理位置信息和所述距离发送给基带处理单元;
    所述射频拉远单元接收所述基带处理单元发送的所述终端的地理位置信息,并将其发送给所述终端。
  4. 如权利要求3所述的时钟同步方法,其中,采用以下方式中的一种确定所述终端与所述射频拉远单元之间的距离:
    根据所述终端的上下行通信信号的强度、时延,采用无线信道模型计算所述终端与所述射频拉远单元的距离;
    根据所述终端所在的小区标示号、所在小区的信号中心以及信号覆盖半径确定所述终端与所述射频拉远单元的距离。
  5. 一种时钟同步方法,包括:
    基带处理单元将空口帧频发送给射频拉远单元;
    所述基带处理单元接收所述射频拉远单元回传的以北斗时钟为参考时钟与所述空口帧频进行鉴相计数和时钟锁定得到的第一鉴相值,以及所述空口帧频的帧号;
    所述基带处理单元根据所述第一鉴相值和所述空口帧频的帧号对本地系统时钟进行鉴相计数,得到第二鉴相值;
    所述基带处理单元根据所述第二鉴相值调整所述系统时钟使其与北斗时钟同步。
  6. 如权利要求5所述的时钟同步方法,其中,所述北斗时钟为PP1S时钟;所述空口帧频为10ms帧频信号。
  7. 如权利要求5或6所述的时钟同步方法,其中,还包括:
    所述基带处理单元接收至少三个射频拉远单元发送的地理位置信息及其与同一个终端的距离;
    所述基带处理单元以各射频拉远单元为中心,射频拉远单元与同一个终端之间的距离为半径做球面,确定至少三个球面的交点,根据所述射频拉远单元的地理位置信息及所述交点确定所述终端的地理位置信息。
  8. 一种时钟同步方法,包括:
    基带处理单元将空口帧频发送给射频拉远单元;
    所述射频拉远单元接收北斗卫星发送的北斗信息,对其进行处理后提取北斗时钟;所述射频拉远单元接收所述基带处理单元发送的空口帧频;
    所述射频拉远单元将所述北斗时钟作为参考时钟与所述空口帧频进行鉴相计数和时钟锁定,得到第一鉴相值,并将所述第一鉴相值及所述空口帧频的帧号回传给所述基带处理单元;
    所述基带处理单元接收所述第一鉴相值和所述空口帧频的帧号;
    所述基带处理单元根据所述第一鉴相值和所述空口帧频的帧号对所述基带处理单元的系统时钟进行鉴相计数,得到第二鉴相值;
    所述基带处理单元根据所述第二鉴相值调整所述系统时钟使其与北斗时钟同步。
  9. 如权利要求8所述的时钟同步方法,其中,所述北斗信息还包括所述射频拉远单元的地理位置信息;该方法还包括:
    所述射频拉远单元接收终端发送的定位请求,并确定所述终端与所述射频拉远单元的距离;
    所述射频拉远单元将其地理位置信息和所述距离发送给基带处理单元;
    所述基带处理单元以各射频拉远单元为中心,射频拉远单元与同一个终端之间的距离为半径做球面,确定至少三个球面的交点,根据所述射频拉远单元的地理位置信息及所述交点确定所述终端的地理位置信息,并将其发送给所述射频拉远单元;
    所述射频拉远单元接收所述终端的地理位置信息,并将其发送给所述终端。
  10. 一种射频拉远单元,包括:北斗信息接收模块、空口帧频接收模块、第一鉴相模块和鉴相值发送模块;
    所述北斗信息接收模块设置为接收北斗卫星发送的北斗信息,并对其进行处理后提取北斗时钟;
    所述空口帧频接收模块设置为接收基带处理单元发送的空口帧频;
    所述第一鉴相模块设置为将所述北斗时钟作为参考时钟与所述空口帧频进行鉴相计数和时钟锁定,得到第一鉴相值;
    所述鉴相值发送模块设置为将所述第一鉴相值及所述空口帧频的帧号回传给所述基带处理单元用于时钟同步。
  11. 如权利要求10所述的射频拉远单元,其中,所述北斗信息还包括所述射频拉远单元的地理位置信息;所述射频拉远单元还包括定位请求接收模块、距离确定模块、地理信息发送模块和地理信息接收模块;
    所述定位请求接收模块设置为接收终端发送的定位请求;
    所述距离确定模块设置为确定所述终端与所述射频拉远单元之间的距离;
    所述地理信息发送模块设置为将所述射频拉远单元的地理位置信息和所述距离发送给基带处理单元;
    所述地理信息接收模块设置为接收所述基带处理单元发送的所述终端的地理位置信息,并将其发送给所述终端。
  12. 一种基带处理单元,包括:空口帧频发送模块、鉴相值接收模块、第二鉴相模块和同步模块;
    所述空口帧频发送模块设置为将空口帧频发送给射频拉远单元;
    所述鉴相值接收模块设置为接收所述射频拉远单元回传的以北斗时钟为参考时钟与所述空口帧频进行鉴相计数和时钟锁定得到的第一鉴相值,以及所述空口帧频的帧号;
    所述第二鉴相模块设置为根据所述第一鉴相值和所述空口帧频的帧号对本地系统时钟进行鉴相计数得到第二鉴相值;
    所述同步模块设置为根据所述第二鉴相值调整所述系统时钟使其与北斗时钟同步。
  13. 如权利要求12所述的基带处理单元,其中,还包括距离接收模块、地理位置确定模块;
    所述距离接收模块设置为接收至少三个射频拉远单元发送的地理位置信息及其与同一个终端的距离;
    所述地理位置确定模块设置为以各射频拉远单元为中心,射频拉远单元与同一个终端之间的距离为半径做球面,确定至少三个球面的交点,根据所述射频拉远单元的地理位置信息及所述交点确定所述终端的地理位置信息。
  14. 一种基站,包括:至少一个如权利要求10所述的射频拉远单元和如权利要求12所述的基带处理单元。
PCT/CN2014/090635 2014-06-26 2014-11-07 时钟同步方法、射频拉远单元、基带处理单元及基站 WO2015196696A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410298675.9 2014-06-26
CN201410298675.9A CN105207765A (zh) 2014-06-26 2014-06-26 时钟同步方法、射频拉远单元、基带处理单元及基站

Publications (1)

Publication Number Publication Date
WO2015196696A1 true WO2015196696A1 (zh) 2015-12-30

Family

ID=54936635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/090635 WO2015196696A1 (zh) 2014-06-26 2014-11-07 时钟同步方法、射频拉远单元、基带处理单元及基站

Country Status (2)

Country Link
CN (1) CN105207765A (zh)
WO (1) WO2015196696A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106685508A (zh) * 2017-02-10 2017-05-17 京信通信技术(广州)有限公司 一种数据传输方法及装置
CN113498114A (zh) * 2020-04-07 2021-10-12 富华科精密工业(深圳)有限公司 基于5g小基站嗅探器通道的信号同步方法及装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109391383A (zh) * 2017-08-11 2019-02-26 电信科学技术第五研究所有限公司 最大时间间隔误差测量方法
CN107367925A (zh) * 2017-09-19 2017-11-21 电信科学技术第五研究所有限公司 一种多路铷钟自动检测系统及方法
CN108966339B (zh) * 2018-07-20 2020-11-10 京信通信系统(中国)有限公司 基站时钟同步方法、装置、设备及计算机可读存储介质
CN111123297B (zh) * 2019-12-13 2022-03-15 中航光电科技股份有限公司 一种适用于北斗卫星导航信号的拉远系统
CN111867045B (zh) * 2020-06-19 2022-07-26 联想(北京)有限公司 一种小区间时钟同步的方法、装置及系统
CN111954298B (zh) * 2020-08-25 2022-07-12 电子科技大学 一种适用于毫米波射频拉远模块的时钟同步装置及系统
CN114554515B (zh) * 2022-04-21 2022-07-19 广州世炬网络科技有限公司 一种5g基站时间同步的判断方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101267251A (zh) * 2008-04-30 2008-09-17 中兴通讯股份有限公司 分布式基站时钟同步方法和系统
CN102300311A (zh) * 2010-06-23 2011-12-28 中国科学院国家天文台 用地图高程修正地面移动通信网的定位方法
CN102624512A (zh) * 2012-02-22 2012-08-01 中兴通讯股份有限公司 一种实现时钟同步的方法和系统
CN103686990A (zh) * 2013-12-10 2014-03-26 北京北方烽火科技有限公司 实现时钟同步的装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101267251A (zh) * 2008-04-30 2008-09-17 中兴通讯股份有限公司 分布式基站时钟同步方法和系统
CN102300311A (zh) * 2010-06-23 2011-12-28 中国科学院国家天文台 用地图高程修正地面移动通信网的定位方法
CN102624512A (zh) * 2012-02-22 2012-08-01 中兴通讯股份有限公司 一种实现时钟同步的方法和系统
CN103686990A (zh) * 2013-12-10 2014-03-26 北京北方烽火科技有限公司 实现时钟同步的装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106685508A (zh) * 2017-02-10 2017-05-17 京信通信技术(广州)有限公司 一种数据传输方法及装置
CN113498114A (zh) * 2020-04-07 2021-10-12 富华科精密工业(深圳)有限公司 基于5g小基站嗅探器通道的信号同步方法及装置

Also Published As

Publication number Publication date
CN105207765A (zh) 2015-12-30

Similar Documents

Publication Publication Date Title
WO2015196696A1 (zh) 时钟同步方法、射频拉远单元、基带处理单元及基站
CN110012536B (zh) 用于终端设备的定位方法、装置及系统
US20180048442A1 (en) System and Method for User Equipment Operations Management
EP3593507A1 (en) System and method for beam management in high frequency multi-carrier operations with spatial quasi co-locations
WO2013097560A1 (zh) 一种室内定位方法、设备及系统
JP2020526077A (ja) 電子機器、無線通信装置、及び無線通信方法
WO2021088797A1 (zh) 网络侧设备、终端侧设备、通信方法、通信装置以及介质
CN109039437B (zh) 一种无人机区域组网系统
EP2934046B1 (en) Wireless network scanning strategies
US20200336184A1 (en) Electronic device in wireless communication system, method, and computer readable storage medium
US20210051489A1 (en) Beam training method, related apparatus, and system
US20230138181A1 (en) Positioning information determining method and communication apparatus
WO2019105302A1 (zh) 信号测量方法、相关装置及系统
CN113167850A (zh) 基于波束的定位测量和测量报告
CN111566498A (zh) 无线通信系统中的用户设备、电子设备、方法及存储介质
CN116097807A (zh) 测量的方法、终端设备及网络设备
JP2017028450A (ja) ユーザ装置、基地局及び通信方法
US20220338023A1 (en) Electronic device, wireless communication method, and computer readable storage medium
US9979083B2 (en) Radio equipment positioning
CN104104461A (zh) 时间同步系统及时间同步方法
WO2021012118A1 (zh) 通信方法、装置、设备、系统及存储介质
EP3493597B1 (en) Handover between an lte cell and a hyper cell
CN112218326B (zh) 测量方法、装置及设备
CN109995407A (zh) 信号传输方法、相关装置及系统
US20220286214A1 (en) Electronic device, wireless communication method and computer-readable storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14896155

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14896155

Country of ref document: EP

Kind code of ref document: A1