WO2020093682A1 - 多层磁性隧道结刻蚀方法和mram器件 - Google Patents

多层磁性隧道结刻蚀方法和mram器件 Download PDF

Info

Publication number
WO2020093682A1
WO2020093682A1 PCT/CN2019/088104 CN2019088104W WO2020093682A1 WO 2020093682 A1 WO2020093682 A1 WO 2020093682A1 CN 2019088104 W CN2019088104 W CN 2019088104W WO 2020093682 A1 WO2020093682 A1 WO 2020093682A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
etching
sample
tunnel junction
layer
Prior art date
Application number
PCT/CN2019/088104
Other languages
English (en)
French (fr)
Inventor
王珏斌
蒋中原
刘自明
车东晨
崔虎山
胡冬冬
陈璐
韩大健
邹志文
许开东
Original Assignee
江苏鲁汶仪器有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏鲁汶仪器有限公司 filed Critical 江苏鲁汶仪器有限公司
Priority to KR1020217015883A priority Critical patent/KR102496578B1/ko
Priority to US17/289,753 priority patent/US12063866B2/en
Publication of WO2020093682A1 publication Critical patent/WO2020093682A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/01Manufacture or treatment
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/161Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • H10N50/85Magnetic active materials

Definitions

  • the invention relates to the technical field of semiconductors, in particular to a method for etching a multilayer magnetic tunnel junction and an MRAM device.
  • Magnetic memory is an important part of the computer architecture, which has a decisive influence on the speed, integration and power consumption of the computer.
  • the current memory is difficult to take into account various performance indicators at the same time.
  • the storage capacity of the hard disk is high (up to 1.3Tb / in2), but the access speed is extremely slow (usually in the order of microseconds).
  • the advantages of various types of memory to be used a typical computer storage system uses a hierarchical structure.
  • Non-Volatile cache and main memory An effective way to solve this problem is to build a non-volatile (Non-Volatile) cache and main memory, so that the system can work in sleep mode without losing data, thereby eliminating leakage current and static power consumption, and non-volatile
  • the memory can be directly integrated with the CMOS circuit through a back-of-end-line process, reducing interconnection delay.
  • STT-MRAM can achieve a good compromise in speed, area, number of writes and power consumption, so it is considered by the industry as the ideal device for building the next generation of non-volatile cache and main memory.
  • the core part of the magnetic tunnel junction is a sandwich structure formed by sandwiching a tunneling barrier layer between two ferromagnetic metal layers, one of which is called a reference layer (Reference Layer) or a fixed layer (Pinned) Layer), its magnetization is fixed along the easy-axis direction (Easy-Axis).
  • the other ferromagnetic layer is called the free layer (Free Layer), and its magnetization has two stable orientations, which are parallel or antiparallel to the fixed layer, which will make the magnetic tunnel junction in a low resistance state or a high resistance state. This phenomenon is called the tunneling magnetoresistance effect (TMR).
  • TMR tunneling magnetoresistance effect
  • the main method of MTJ patterning still needs to be etched, because the MTJ material is difficult to dry etch materials Fe, Co, Mg, etc., it is difficult to form volatile products, and corrosive gases (Cl 2 etc.) cannot be used, otherwise It will affect the performance of MTJ, so it needs a more complicated etching method to achieve it.
  • the etching process is very difficult and challenging.
  • Traditional large-size MTJ etching is done by ion beam etching. Since the ion beam etching uses an inert gas, basically no chemically etched components are introduced into the reaction chamber, so that the sidewall of the MTJ is not eroded by the chemical reaction.
  • ion beam etching can obtain relatively perfect MTJ side walls: clean and free from chemical damage.
  • ion beam etching also has its imperfect aspects.
  • one principle that ion beam etching can achieve is to use a higher physical bombardment force, and excessive physical bombardment force will cause the atomic layer order of the MTJ sidewalls, especially the isolation layer and the nearby core layer to be disturbed. Thereby destroying the magnetic characteristics of MTJ.
  • ion beam etching uses a certain angle to achieve etching, which brings limitations for ion beam etching.
  • the aspect ratio of MTJ devices entering 30 nanometers and below is generally above 2: 1 .
  • This aspect ratio prevents the angle commonly used in ion beam etching from reaching the bottom of the magnetic tunnel junction, thereby failing to meet the requirements for the separation of the magnetic tunnel junction device, making the patterning fail.
  • the ion beam etching time is relatively long, and the yield of each device is limited.
  • the etching device used includes a sample loading chamber, a vacuum transition chamber, a reactive ion plasma etching chamber, and an ion beam etching chamber Chamber, coating chamber and vacuum transmission chamber, the vacuum transition chamber is connected to the sample loading chamber and the vacuum transmission chamber in a communicable manner, the reactive ion plasma etching chamber , The ion beam etching chamber and the coating chamber are connected to the vacuum transmission chamber in a communicable manner, and the sample is processed without interrupting the vacuum, and the reaction is used at least once
  • the ion plasma etching chamber and the ion beam etching chamber include the following steps: a sample preparation step, a sample loading step, loading a sample into the sample loading chamber, and passing the sample through the vacuum transition A chamber into the vacuum transfer chamber, wherein the sample is formed on a semiconductor substrate, including a bottom electrode, a magnetic tunnel junction, a cap layer, and a mask layer
  • the sample is etched, when the etching reaches the bottom electrode metal layer, the etching is stopped, and then the sample is returned to the vacuum transmission chamber; the final cleaning step allows the sample to enter the ion beam etching chamber Chamber or the reactive ion plasma etching chamber to perform metal residue removal and sample surface treatment to completely remove the metal contamination and sidewall damage layer formed in the final etching step, and then the sample Return to the vacuum transmission chamber; the final dielectric coating step, so that the sample enters the coating chamber for coating protection, forming a final on the upper surface and the periphery of the sample Thin film, and then return the sample to the vacuum transfer chamber; and a sample removal step, the sample is transferred from the vacuum transfer chamber, through the vacuum transition chamber, to the sample loading chamber .
  • the gas used is an inert gas, nitrogen, oxygen, Fluorine-based gas, NH 3 , amino gas, CO, CO 2 , alcohol or a combination thereof, the gas, power, gas flow, and pressure used in different steps may be the same or different.
  • the gas used is an inert gas, nitrogen, oxygen, or a combination thereof.
  • the gas used in different steps, the angle of the ion beam, the energy of the ion beam, and the density of the ion beam may be the same or different.
  • the first dielectric thin film material and the final thin film material may be the same or different, and the first dielectric thin film material and the final thin film material are Group IV oxide, Group IV nitride, Group IV oxynitride, transition metal oxide, transition metal nitride, transition metal oxynitride, alkaline earth metal oxide, alkaline earth metal nitride, alkaline earth metal oxynitride or combinations thereof
  • the materials of the first dielectric thin film may be the same or different.
  • An MRAM device comprising a multi-layer magnetic tunnel junction prepared by the multi-layer magnetic tunnel junction etching method according to claim 1, each isolation layer of the multi-layer magnetic tunnel junction presenting a free layer on it Step structure.
  • the etching device used includes a sample loading chamber, a vacuum transition chamber, a reactive ion plasma etching chamber, an ion beam etching chamber, a coating chamber, and vacuum transmission Chamber, the vacuum transition chamber is respectively connected to the sample loading chamber, the vacuum transmission chamber in a communicable manner, the reactive ion plasma etching chamber, the ion beam etching chamber The chamber and the coating chamber are respectively connected to the vacuum transfer chamber in a communicable manner, and the sample is processed without interrupting the vacuum, and the reactive ion plasma etching chamber and
  • the ion beam etching chamber includes the following steps: a sample loading step, loading the sample into the sample loading chamber, and passing the sample through the vacuum transition chamber into the vacuum transfer chamber , Wherein the sample is formed on a semiconductor substrate and includes a bottom electrode, a magnetic tunnel junction, a cap layer, and a mask layer, and the magnetic tunnel junction includes a fixed layer, an isolation layer, and a free layer, The isolation
  • the first cleaning step enter the sample into the reactive ion plasma etching chamber or the ion beam etching Etching chamber, metal residue removal and sample surface treatment to completely remove the metal contamination and sidewall damage layer formed in the first etching step, and then return the sample to the vacuum transfer chamber ;
  • the first dielectric coating step so that the sample enters the coating chamber, a first dielectric film is formed on the upper surface and the periphery of the sample, and then the sample is returned to the vacuum transmission chamber; the first medium
  • the film opening step allows the sample to enter the reactive ion plasma etching chamber or ion beam etching chamber, opens the first dielectric film above and at the bottom of the device, and retains the device side Part of the first dielectric film, stop etching, and then return the sample to the vacuum transfer chamber;
  • the second etching step the sample into the reactive ion plasma etching chamber or The ion beam etching chamber, etching
  • the angle of etching or cleaning in the ion beam etching chamber is 10 degrees to 80 degrees, and the angle is the ion beam and sample stage method Angle to the face.
  • the thickness of the first dielectric film is 0.5 nm to 5 nm, and the thickness of the second dielectric film is 1 nm to 500 nm.
  • the side walls of the magnetic tunnel junction with a thickness of 0.1 nm to 10.0 nm are removed, respectively.
  • An MRAM device comprising a multilayer magnetic tunnel junction prepared by the multilayer magnetic tunnel junction etching method of claim 6, wherein the first etching step of the multilayer magnetic tunnel junction is etch-stopped The layer and the free layer above it have a step structure.
  • the processing process of the multilayer magnetic tunnel junction of the present invention is always in a vacuum environment, avoiding the influence of the external environment on the etching.
  • the device structure maintains a good steepness, and greatly reduces the metal contamination and damage of the magnetic tunnel junction layer structure, which greatly improves the performance and reliability of the device.
  • the combined use of the ion beam etching chamber and the reactive ion etching chamber overcomes the technical problems of the existing single etching method, and improves the production efficiency and the etching process accuracy.
  • FIG. 1 is a functional block diagram of an etching device used in the magnetic tunnel junction etching method of the present invention.
  • Fig. 2 is a schematic diagram of a sample structure including a multilayer magnetic tunnel junction.
  • FIG. 3 is a flowchart of an embodiment of a magnetic tunnel junction etching method.
  • FIG. 4 is a schematic diagram of a device structure formed after being etched into the first isolation layer and cleaned.
  • FIG. 5 is a schematic diagram of a device structure formed after performing the first dielectric coating step.
  • FIG. 6 is a schematic diagram of a device structure formed after being etched into the second isolation layer and cleaned.
  • FIG. 7 is a schematic diagram of a device structure formed after repeatedly performing the first dielectric coating step.
  • FIG. 8 is a schematic diagram of a device structure formed after being etched to the lowest isolation layer and cleaned.
  • FIG. 9 is a schematic diagram of a device structure formed after etching and cleaning the bottom electrode metal layer.
  • FIG. 10 is a schematic diagram of a device structure formed after the final dielectric coating step.
  • FIG. 11 is a flowchart of another embodiment of a magnetic tunnel junction etching method.
  • FIG. 12 is a schematic view of the structure of the device formed after the first cleaning step.
  • FIG. 13 is a schematic diagram of a device structure formed after performing the first dielectric coating step.
  • FIG. 14 is a schematic diagram of a device structure formed after the first dielectric film opening step is performed.
  • 15 is a schematic diagram of the structure of the device formed after the second cleaning step.
  • 16 is a schematic diagram of a device structure formed after performing a second dielectric coating step.
  • FIG. 1 is a functional block diagram of an etching device used in the magnetic tunnel junction etching method of the present invention.
  • the etching apparatus includes a reactive ion plasma etching chamber 10, an ion beam etching (IBE) chamber 11, a coating chamber 12, a vacuum transfer chamber 13, a vacuum transition chamber 14, and sample loading ⁇ 15 ⁇ Chamber 15.
  • the vacuum transition chamber 14 is connected to the sample loading chamber 15 and the vacuum transfer chamber 13 in a communicable manner.
  • the reactive ion plasma etching chamber 10, the ion beam etching chamber 11, and the coating chamber 12 are respectively connected to the vacuum transmission chamber 13 in a communicable manner.
  • each of the above-mentioned chambers may be plural.
  • the reactive ion plasma etching chamber 10 may be an inductively coupled plasma (ICP) chamber, a capacitively coupled plasma (CCP) chamber, a spiral wave plasma chamber, or the like.
  • the ion beam etching (IBE) chamber 11 may be an ion beam etching, neutral particle beam etching cavity, or the like.
  • the coating chamber 12 may be a physical vapor deposition (PVD) coating chamber, or a pulsed chemical vapor deposition (Pulsed CVD) coating chamber, a plasma enhanced chemical vapor deposition (PECVD) coating chamber, an inductively coupled plasma enhanced chemical vapor phase Deposition (ICP-PECVD) coating chamber, atomic layer (ALD) coating chamber and other chemical vapor deposition (CVD) coating chamber.
  • PVD physical vapor deposition
  • Pulsed CVD pulsed chemical vapor deposition
  • PECVD plasma enhanced chemical vapor deposition
  • ICP-PECVD inductively coupled plasma enhanced chemical vapor phase Deposition
  • ALD
  • the etching device also includes a sample transfer system for transferring the sample in each chamber, a control system for controlling each chamber and the sample transfer system, etc., and a vacuum required for each chamber
  • the functional unit included in conventional etching equipment such as vacuum extraction system and cooling system.
  • FIG. 2 shows a schematic diagram of the structure of the device to be etched containing multiple layers of magnetic tunnel junctions.
  • the structure to be etched includes a bottom electrode metal layer 100, a magnetic tunnel junction, a cap layer 104, and a hard mask layer 105, wherein the magnetic tunnel junction includes a fixed layer 101, an isolation layer 102, and a free layer 103.
  • the layer 102 and the free layer 103 are multiple layers, and the isolation layer 102 and the free layer 103 are alternately formed on the fixed layer 101 in this order.
  • the thickness of each layer, the number of layers and the materials used are selected according to actual needs. For ease of explanation, in the following, each isolation layer 102 will be described as a first isolation layer, a second isolation layer ... a bottom isolation layer from top to bottom.
  • FIG. 3 is a flowchart of an embodiment of an etching method of a multilayer magnetic tunnel junction. As shown in FIG. 3, in the sample loading step S11, the sample is loaded into the sample loading chamber 15, and the sample is passed through the vacuum transition chamber 14 into the vacuum transfer chamber 13.
  • the sample is entered into the reactive ion plasma etching chamber 10, and the sample is etched using the reactive ion plasma.
  • the etching is stopped.
  • the sample is returned to the vacuum transfer chamber 13.
  • the gas used in the reactive ion plasma etching chamber may be an inert gas, nitrogen, oxygen, fluorine-based gas, NH 3 , amino gas, CO, CO 2 , alcohol, etc. The etching process should achieve the separation of the device and the steepness required by the device.
  • the sample is entered into the ion beam etching chamber 11, and the metal residue is removed and the sample surface treatment is performed using the ion beam. After that, the sample is returned to the vacuum transfer chamber 13.
  • the gas used in the ion beam etching chamber may be inert gas, nitrogen, oxygen, etc.
  • the angle used for ion beam etching is preferably 10 degrees to 80 degrees. This angle refers to the angle between the ion beam and the normal surface of the wafer.
  • FIG. 4 shows a schematic diagram of a device structure formed after performing the first cleaning step.
  • the plated first dielectric film 106 is a dielectric material that separates adjacent magnetic tunnel junction devices.
  • it may be Group IV oxide, Group IV nitride, Group IV oxynitride, transition metal oxide, transition metal nitride, transition metal oxynitride, alkaline earth metal oxide, alkaline earth metal nitride, alkaline earth metal oxynitride Things.
  • the thickness of the first dielectric film may be 0.5 nm or more and 50 nm or less.
  • the above-described coated sample is entered into the reactive ion plasma etching chamber 10, and the first dielectric thin film 106 is etched using the reactive ion plasma, and the top and bottom of the device The first dielectric film is etched away. Since the thickness of the first dielectric film formed on the sidewall of the magnetic tunnel junction is greater than the thickness of the first dielectric film on the horizontal surface, a portion of the first dielectric film 106 remains on the sidewall of the magnetic tunnel junction.
  • the sample is kept in the reactive ion plasma etching chamber 10, the first etching step S12 is repeated, the sample is etched using the reactive ion plasma, and the etching is stopped when the etching reaches the second isolation layer. Then, repeat the first cleaning step S13 to remove metal contamination and sidewall damage.
  • the resulting structure is shown in FIG. 6.
  • the first dielectric coating step S14 is repeated to form a first dielectric thin film on the above structure that has been etched and cleaned for the second time, and the resulting structure is shown in FIG. 7.
  • the first dielectric thin film opening step S15 is continued, and a part of the dielectric remains on the side wall of the etched magnetic tunnel junction, which can prevent the side wall of the opened magnetic tunnel junction from being damaged by plasma in the subsequent etching process. Then, continue to repeat steps S12 to S15 until the etching reaches the bottommost isolation layer, as shown in FIG. 8.
  • a final etching step S16 is performed, the magnetic tunnel junction continues to be etched in the reactive ion plasma etching chamber 10, and the etching is stopped when the etching reaches the bottom electrode metal layer 100.
  • the gas used may be an inert gas, nitrogen, oxygen, fluorine-based gas, NH 3 , amino gas, CO, CO 2 , alcohol, etc. Since the opened magnetic tunnel junction is protected by the first dielectric film 106, the subsequent etching gas can no longer worry about the damage to the film layer of the protected magnetic tunnel junction, and the gas range used is wider.
  • the sample is entered into the ion beam etching chamber 11, the metal residue is removed by the ion beam and the surface of the sample is treated, so that the metal contamination and sidewall damage formed in the above etching step are damaged
  • the layer is completely removed.
  • the sample is returned to the vacuum transfer chamber 13.
  • the gas used in the ion beam etching chamber may be an inert gas, nitrogen, oxygen, or the like.
  • the angle used for ion beam etching is preferably 10 degrees to 80 degrees.
  • the side wall of the magnetic tunnel junction of 0.1 nm to 10.0 nm is removed. After the device undergoes the above-mentioned etching and cleaning steps, the side walls of the device are clean and completely separated.
  • FIG. 9 shows a schematic diagram of the device structure formed after the final cleaning step.
  • the above sample is entered into the coating chamber 12 for coating protection, a final dielectric film 107 is formed on the upper surface and the periphery of the sample, and then the sample is returned to the vacuum transfer chamber 13.
  • the material of the final dielectric film can be Group IV oxide, Group IV nitride, Group IV oxynitride, transition metal oxide, transition metal nitride, transition metal oxynitride, alkaline earth metal oxide, alkaline earth metal nitride, alkaline earth Dielectric materials such as metal oxynitride can separate adjacent magnetic tunnel junction devices.
  • the thickness of the final dielectric coating may be 1 nm or more and 500 nm or less.
  • FIG. 10 shows a schematic diagram of the device structure formed after the final dielectric coating step.
  • the sample is returned from the vacuum transfer chamber 13, through the vacuum transition chamber 14, and back to the sample loading chamber 15.
  • the first etching step, the final etching step, and the first dielectric film opening step may also be etched by ion beam
  • the ion beam is used to complete the etching in the chamber.
  • the first cleaning step and the final cleaning step can also be cleaned using reactive ion plasma in the reactive ion plasma etching chamber.
  • the gas used in different steps may be the same or different.
  • the gas, power, gas flow, and pressure used in different steps may be the same or different.
  • the processing process of the magnetic tunnel junction has been kept in a vacuum environment to avoid the influence of the external environment on the etching, and each isolation layer and free layer are etched, cleaned and coated in steps.
  • the metal contamination and damage of the magnetic tunnel junction layer structure are greatly reduced, and the performance and reliability of the device are greatly improved.
  • the combined use of the ion beam etching chamber and the reactive ion etching chamber overcomes the problems caused by the use of a single etching method in the prior art, and improves production efficiency and etching process accuracy.
  • the magnetic tunnel junction formed according to the above embodiment of the multi-layer magnetic tunnel junction etching method has a stepped structure between each isolation layer 102 and the free layer 103 located thereon. Accordingly, the MRAM device including the multilayer magnetic tunnel junction also has this feature.
  • FIG. 11 is a flowchart of another embodiment of an etching method of a multilayer magnetic tunnel junction.
  • the sample is loaded into the sample loading chamber 15, and the sample is passed through the vacuum transition chamber 14 into the vacuum transfer chamber 13.
  • the sample is brought into the ion beam etching chamber 11, and etching is performed using the ion beam, and the etching is stopped when the etching reaches the second isolation layer. After that, the sample is returned to the vacuum transfer chamber 13.
  • the gas used in the ion beam etching chamber may be inert gas, nitrogen, oxygen, etc.
  • the angle used for ion beam etching is preferably 10 degrees to 80 degrees.
  • the sample is entered into the reactive ion plasma etching chamber 10, and the sample is cleaned using the reactive ion plasma to remove metal contamination and sidewall damage.
  • the resulting structure is shown in FIG. 12 .
  • the sample is returned to the vacuum transfer chamber 13.
  • the side walls of the magnetic tunnel junction with a thickness of 0.1 nm to 10.0 nm are cleaned and removed, so that metal contamination and side wall damage are completely removed.
  • the gas used in the reactive ion plasma etching chamber may be an inert gas, nitrogen, oxygen, fluorine-based gas, NH 3 , amino gas, CO, CO 2 , alcohol, etc.
  • the plated first dielectric film 106 is a dielectric material that separates adjacent magnetic tunnel junction devices.
  • it may be Group IV oxide, Group IV nitride, Group IV oxynitride, transition metal oxide, transition metal nitride, transition metal oxynitride, alkaline earth metal oxide, alkaline earth metal nitride, alkaline earth metal oxynitride Things.
  • the thickness of the first dielectric film may be 0.5 nm or more and 50 nm or less.
  • the above-described coated sample is introduced into the reactive ion plasma etching chamber 10, and the first dielectric thin film is etched using the reactive ion plasma.
  • the first dielectric film above and at the bottom of the device is etched away. Since the thickness of the first dielectric film formed on the side wall of the magnetic tunnel junction is greater than the thickness of the first dielectric film on the horizontal surface, a portion of the first dielectric film 106 remains on the side wall of the magnetic tunnel junction.
  • a second etching step S26 is performed, the multilayer magnetic tunnel junction continues to be etched in the reactive ion plasma etching chamber 10, and the etching is stopped when the etching reaches the bottom electrode metal layer 100.
  • the gas used may be an inert gas, nitrogen, oxygen, fluorine-based gas, NH 3 , amino gas, CO, CO 2 , alcohol, etc.
  • the gas used in this step may be the same as or different from the gas used in the first etching step. Since the opened magnetic tunnel junction is protected by the first dielectric film 108, the subsequent etching gas can no longer worry about the damage to the film layer of the protected magnetic tunnel junction, and the available gas range is wider.
  • the sample is entered into the ion beam etching chamber 11, the metal residue is removed by the ion beam and the surface of the sample is treated, so that the metal formed in the above etching step is contaminated and the sidewall The damaged layer is completely removed.
  • the sample is returned to the vacuum transfer chamber 13.
  • the gas used in the ion beam etching chamber may be an inert gas, nitrogen, oxygen, or the like.
  • the angle used for ion beam etching is preferably 10 degrees to 80 degrees.
  • the side wall of the magnetic tunnel junction of 0.1 nm to 10.0 nm is removed. After the device undergoes the etching and cleaning steps described above, the side walls of the device are clean and completely separated.
  • FIG. 15 shows a schematic diagram of a device structure formed after performing the second cleaning step.
  • the above sample is introduced into the coating chamber 12 for coating protection, a second dielectric film 107 is formed on the upper surface and the periphery of the sample, and then the sample is returned to the vacuum transfer chamber 13.
  • the material of the second dielectric film may be Group IV oxide, Group IV nitride, Group IV oxynitride, transition metal oxide, transition metal nitride, transition metal oxynitride, alkaline earth metal oxide, alkaline earth metal nitride, Dielectric materials such as alkaline earth metal oxynitride that can separate adjacent magnetic tunnel junction devices.
  • the thickness of the second dielectric plating film may be 1 nm or more and 500 nm or less.
  • FIG. 16 shows a schematic diagram of the device structure formed after performing the second dielectric coating step.
  • the sample is returned from the vacuum transfer chamber 13, through the vacuum transition chamber 14, and back to the sample loading chamber 15.
  • the first etching step may also stop any other isolation layers, such as the first isolation layer, the third isolation layer, The fourth isolation layer.
  • the first etching step may also be performed in the reactive ion etching chamber, and the second etching step may also be performed in the ion beam etching chamber.
  • the steps of etching or cleaning are performed in the ion beam etching chamber.
  • the gas used in different steps, the angle of the ion beam, the energy of the ion beam, and the density of the ion beam may be the same or different.
  • the gas, power, gas flow, and pressure used in different steps may be the same or different.
  • the processing of the multilayer magnetic tunnel junction is always in a vacuum environment to avoid the influence of the external environment on the etching.
  • the device structure maintains a good steepness, and greatly reduces the metal contamination and damage of the magnetic tunnel junction layer structure, which greatly improves the performance and reliability of the device.
  • the combined use of the ion beam etching chamber and the reactive ion etching chamber overcomes the technical problems of the existing single etching method, and improves the production efficiency and the etching process accuracy.
  • the second isolation layer 102 and the free layer 103 located thereon have a stepped structure. Accordingly, the MRAM device including the multilayer magnetic tunnel junction also has this feature.
  • the present invention is not limited to this.
  • the isolation layer and the free layer thereon have a stepped structure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Hall/Mr Elements (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

一种多层磁性隧道结刻蚀方法和MRAM器件。在不中断真空的情况下依据特定的步骤对晶圆进行加工,至少分别使用一次反应离子等离子体刻蚀腔室(10)和离子束刻蚀腔室(11)。对多层磁性隧道结的加工过程一直处在真空环境中,避免了外界环境对刻蚀的影响。通过刻蚀和清洗结合的工艺使器件结构维持了较好的陡直度,并且大幅度降低了磁性隧道结膜层结构的金属沾污及损伤,极大的提高了器件的性能和可靠性。另外,离子束刻蚀腔室(11)和反应离子等离子体刻蚀腔室(10)结合使用,克服了现有的单一刻蚀方法存在的技术问题,提高了生产效率和刻蚀工艺精度。

Description

多层磁性隧道结刻蚀方法和MRAM器件 技术领域
本发明涉及半导体技术领域,具体涉及一种多层磁性隧道结刻蚀方法和MRAM器件。
背景技术
磁存储器是计算机体系结构中的重要组成部分,对计算机的速度,集成度和功耗等都有决定性的影响。然而,目前的存储器难以同时兼顾各项性能指标,例如,硬盘的存储容量较高(可达1.3Tb/in2),但访问速度极其慢(通常为微秒级),缓存则相反,具有高速和低集成度的特点。为允许发挥各类存储器的优势,典型的计算机存储系统采用分级结构,一方面,频繁使用的指令与数据存于缓存(Cache)和主存(Main Memory)中,能够以较快的速度与中央处理器交互;另一方面,大量的非频繁使用的系统程序与文档被存于高密度的硬盘(HDD或者SSD)中,这样的分级结构是存储系统兼具高速和大容量的优点。但是,随着半导体工艺特征尺寸的不断缩小,传统的基于互补金属氧化物半导体工艺的缓存和主存遭遇到了性能瓶颈。在功耗方面,由于CMOS晶体管的漏电流随着工艺尺寸的减小而增大,因此,SRAM和DRAM的静态功耗日益加剧;在速度方面,处理器与存储器的互联延迟限制了系统的主频。解决该问题的一个有效途径是构建非易失性(Non-Volatile)的缓存和主存,使系统可工作于休眠模式而不丢失数据,从而消除漏电流和静态功耗,而且非易失性存储器可通过后道工艺(Back-of-End-Line)直接集成与CMOS电路上,减少了互联延迟。STT-MRAM在速度、面积、写入次数和功耗方面能够达到较好的折中,因此被业界认为是构建下一代非易失性缓存和主存的理想器件。
磁性隧道结(MTJ)的核心部分是由两个铁磁金属层夹着一个隧穿势垒层而形成的三明治结构,其中一个铁磁层被称为参考层(Reference Layer)或者 固定层(Pinned Layer),它的磁化沿易磁化轴方向(Easy-Axis)固定不变。另一个铁磁层被称为自由层(Free Layer),它的磁化有两个稳定的取向,分别与固定层平行或者反平行,这将使磁性隧道结处于低阻态或者高阻态,该现象被称为隧穿磁阻效应(TMR)。这两种阻态可分别代表二进制数据中的“0”和“1”。
MTJ图形化的主要方法还是需要通过刻蚀的方法,因为MTJ的材料是难于干法刻蚀的材料Fe,Co,Mg等,难以形成挥发产物,且不能采用腐蚀气体(Cl 2等),否则会影响MTJ的性能,所以需要用到比较复杂的刻蚀方法才能实现,刻蚀工艺非常具有难度和挑战。传统的大尺寸MTJ刻蚀都是通过离子束刻蚀完成的。由于离子束刻蚀采用惰性气体,基本上没有引入化学刻蚀的成分进入反应腔室,从而使得MTJ的侧壁不受化学反应的侵蚀。在保证侧壁干净的情况下,离子束刻蚀可以获得比较完美的MTJ侧壁:干净并且没有受到化学破坏。但是,离子束刻蚀也有其不完美的一面。一方面,离子束刻蚀能够实现的一个原理是采用较高的物理轰击力,而过大的物理轰击力会导致MTJ侧壁,尤其是隔离层以及附近的核心层的原子层排序受到干扰,从而破坏MTJ的磁性特征。另一方面,离子束刻蚀都采用一定的角度实现刻蚀,这个为离子束刻蚀带来了局限性。随着MTJ器件尺寸做的越来越小,MTJ本身膜层的厚度以及掩膜的厚度不能无止境的被压缩,进入30纳米以及以下的MTJ器件的高宽比一般都是在2∶1以上。磁性隧道结尺寸越小时,这个高宽比越高。这个高宽比使得离子束刻蚀常用的角度不能达到磁性隧道结的底部,从而达不到磁性隧道结器件分离的需求,使得图形化失败。再者,离子束刻蚀的时间相对较长,每台设备的产率有限。
发明内容
为了解决上述问题,本发明公开一种多层磁性隧道结刻蚀方法,所使用的刻蚀装置包括样品装载腔室、真空过渡腔室、反应离子等离子体刻蚀腔室、离子束刻蚀腔室、镀膜腔室以及真空传输腔室,所述真空过渡腔室分别与所述样品装载腔室、所述真空传输腔室以可联通的方式相连接,所述反应离子等离子体刻蚀腔室、所述离子束刻蚀腔室、所述镀膜腔室分别与所述真空传 输腔室以可联通的方式相连接,在不中断真空的情况下对样品进行加工,至少分别使用一次所述反应离子等离子体刻蚀腔室和所述离子束刻蚀腔室,包括以下步骤:样品准备步骤,样品装载步骤,将样品装载到所述样品装载腔室,并使所述样品通过所述真空过渡腔室,进入所述真空传输腔室,其中,所述样品形成在半导体衬底上,包括底电极、磁性隧道结、帽层和掩膜层,所述磁性隧道结包括固定层、隔离层和自由层,所述隔离层和自由层为多层;第一刻蚀步骤,使所述样品进入到所述反应离子等离子体刻蚀腔室或者所述离子束刻蚀腔室,完成对帽层和自由层的刻蚀,达到第一隔离层时停止刻蚀,之后使所述样品返回到所述真空传输腔室;第一清洗步骤,使所述样品进入到所述离子束刻蚀腔室或者所述反应离子等离子体刻蚀腔室,进行金属残留物去除以及样品表面处理,使所述第一刻蚀步骤中所形成的金属沾污以及侧壁损伤层完全去除,之后使所述样品返回到所述真空传输腔室;第一介质镀膜步骤,使所述样品进入到所述镀膜腔室,在所述样品上表面和周边形成第一介质薄膜,之后使所述样品返回到所述真空传输腔室;第一介质薄膜打开步骤,使所述样品进入到所述反应离子等离子体刻蚀腔室或者离子束刻蚀腔室,打开器件上方及底部的所述第一介质薄膜,并且保留器件侧壁处的部分第一介质薄膜,停止刻蚀,之后使所述样品返回到所述真空传输腔室;重复上述步骤,每刻蚀一次都停止在下一隔离层,直到刻蚀达到最底层隔离层,最终刻蚀步骤,使所述样品进入到所述反应离子等离子体刻蚀腔室或者所述离子束刻蚀腔室,对所述样品进行刻蚀,当刻蚀达到底电极金属层时,停止刻蚀,之后使所述样品返回到所述真空传输腔室;最终清洗步骤,使所述样品进入到所述离子束刻蚀腔室或所述反应离子等离子体刻蚀腔室,进行金属残留物去除以及样品表面处理,使所述最终刻蚀步骤中所形成的金属沾污、侧壁损伤层完全去除,之后使所述样品返回到所述真空传输腔室;最终介质镀膜步骤,使所述样品进入到所述镀膜腔室进行镀膜保护,在所述样品上表面和周边形成最终介质薄膜,之后使所述样品返回到所述真空传输腔室;以及样品取出步骤,将所述样品从所述真空传输腔室,通过所述真空过渡腔室,返回到所述样品装载腔室。
本发明的的多层磁性隧道结刻蚀方法中,优选为,在所述反应离子等离子 体刻蚀腔室中进行刻蚀或者清洗的步骤中,所使用的气体为惰性气体、氮气、氧气、氟基气体、NH 3、氨基气体、CO、CO 2、醇类或其组合,不同步骤中所使用的气体、功率、气流、压力可以相同或者不同。
本发明的的多层磁性隧道结刻蚀方法中,优选为,在所述离子束刻蚀腔中进行刻蚀或者清洗的步骤中,所使用的气体为惰性气体、氮气、氧气或其组合,不同步骤所使用的气体、离子束的角度、离子束的能量以及离子束的密度可以相同或者不同。
本发明的的多层磁性隧道结刻蚀方法中,优选为,所述第一介质薄膜材料和所述最终薄膜材料可以相同也可以不同,所述第一介质薄膜材料、所述最终薄膜材料为四族氧化物、四族氮化物、四族氮氧化物、过渡金属氧化物、过渡金属氮化物、过渡金属氮氧化物、碱土金属氧化物、碱土金属氮化物、碱土金属氮氧化物或其组合,在不同的第一介质薄膜镀膜步骤中,所述第一介质薄膜材料可以相同也可以不同。
一种MRAM器件,包括根据权利要求1所述的多层磁性隧道结刻蚀方法制备形成的多层磁性隧道结,所述多层磁性隧道结的每层隔离层与位于其上的自由层呈台阶结构。
一种多层磁性隧道结刻蚀方法,所使用的刻蚀装置包括样品装载腔室、真空过渡腔室、反应离子等离子体刻蚀腔室、离子束刻蚀腔室、镀膜腔室以及真空传输腔室,所述真空过渡腔室分别与所述样品装载腔室、所述真空传输腔室以可联通的方式相连接,所述反应离子等离子体刻蚀腔室、所述离子束刻蚀腔室、所述镀膜腔室分别与所述真空传输腔室以可联通的方式相连接,在不中断真空的情况下对样品进行加工,至少分别使用一次所述反应离子等离子体刻蚀腔室和所述离子束刻蚀腔室,包括以下步骤:样品装载步骤,将所述样品装载到所述样品装载腔室,并使所述样品通过所述真空过渡腔室,进入所述真空传输腔室,其中,所述样品形成在半导体衬底上,包括底电极、磁性隧道结、帽层和掩膜层,所述磁性隧道结包括固定层、隔离层和自由层, 所述隔离层和自由层为多层;第一刻蚀步骤,使所述样品进入到所述离子束刻蚀腔室或者反应离子等离子体刻蚀腔室,对样品进行刻蚀,当刻蚀到某一隔离层时,停止刻蚀,之后使所述样品返回到所述真空传输腔室;第一清洗步骤,使所述样品进入到所述反应离子等离子体刻蚀腔室或者所述离子束刻蚀腔室,进行金属残留物去除以及样品表面处理,使所述第一刻蚀步骤中所形成的金属沾污以及侧壁损伤层完全去除,之后使所述样品返回到所述真空传输腔室;第一介质镀膜步骤,使所述样品进入到所述镀膜腔室,在所述样品上表面和周边形成第一介质薄膜,之后使所述样品返回到所述真空传输腔室;第一介质薄膜打开步骤,使所述样品进入到所述反应离子等离子体刻蚀腔室或者离子束刻蚀腔室,打开器件上方及底部的所述第一介质薄膜,并且保留器件侧墙处的部分第一介质薄膜,停止刻蚀,之后使所述样品返回到所述真空传输腔室;第二刻蚀步骤,使所述样品进入到所述反应离子等离子体刻蚀腔室或者所述离子束刻蚀腔室,对所述样品的剩余各层进行刻蚀,当刻蚀达到底电极金属层时,停止刻蚀,之后使所述样品返回到所述真空传输腔室;第二清洗步骤,使所述样品进入到所述离子束刻蚀腔室或所述反应离子等离子体刻蚀腔室,进行金属残留物去除以及样品表面处理,使所述第二刻蚀步骤中所形成的金属沾污、侧壁损伤层完全去除,之后使所述样品返回到所述真空传输腔室;第二介质镀膜步骤,使所述样品进入到所述镀膜腔室进行镀膜保护,在所述样品上表面和周边形成第二介质薄膜,之后使所述样品返回到所述真空传输腔室;以及样品取出步骤,将所述样品从所述真空传输腔室,通过所述真空过渡腔室,返回到所述样品装载腔室。
本发明的多层磁性隧道结刻蚀方法中,优选为,在所述离子束刻蚀腔室中进行刻蚀或者清洗的角度为10度到80度,所述角度为离子束与样品台法向面的夹角。
本发明的多层磁性隧道结刻蚀方法中,所述第一介质薄膜的厚度为0.5nm~5nm,所述第二介质薄膜的厚度为1nm~500nm。
本发明的多层磁性隧道结刻蚀方法中,在所述第一清洗步骤和所述第二清 洗步骤中,分别去除厚度为0.1nm~10.0nm的磁性隧道结的侧壁。
一种MRAM器件,包括根据权利要求6所述的多层磁性隧道结刻蚀方法制备形成的多层磁性隧道结,所述多层磁性隧道结的所述第一刻蚀步骤刻蚀停止的隔离层与位于其上的自由层呈台阶结构。
本发明对多层磁性隧道结的加工过程一直处在真空环境中,避免了外界环境对刻蚀的影响。通过刻蚀和清洗结合的工艺使器件结构维持了较好的陡直度,并且大幅度降低了磁性隧道结膜层结构的金属沾污及损伤,极大的提高了器件的性能和可靠性。另外,离子束刻蚀腔室和反应离子刻蚀腔室结合使用,克服了现有的单一刻蚀方法存在的技术问题,提高了生产效率和刻蚀工艺精度。
附图说明
图1是本发明的磁隧道结刻蚀方法所使用刻蚀装置的功能框图。
图2是包含多层磁隧道结的样品结构示意图。
图3是磁隧道结刻蚀方法的一个实施例的流程图。
图4是刻蚀到第一隔离层并进行清洗后所形成的器件结构示意图。
图5是进行第一介质镀膜步骤后所形成的器件结构示意图。
图6是刻蚀到第二隔离层并进行清洗后所形成的器件结构示意图。
图7是重复执行第一介质镀膜步骤后所形成的器件结构示意图。
图8是刻蚀到最底层隔离层并进行清洗后所形成的器件结构示意图。
图9是刻蚀到底电极金属层并进行清洗后所形成的器件结构示意图。
图10进行最终介质镀膜步骤后所形成的器件结构示意图。
图11是磁隧道结刻蚀方法的另一实施例的流程图。
图12是进行第一清洗步骤后所形成的器件结构示意图。
图13是进行第一介质镀膜步骤后所形成的器件结构示意图。
图14是进行第一介质薄膜打开步骤后所形成的器件结构示意图。
图15是进行第二清洗步骤后所形成的器件结构示意图。
图16是进行第二介质镀膜步骤后所形成的器件结构示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
在本发明的描述中,需要说明的是,术语“上”、“下”、“垂直”“水平”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。
此外,在下文中描述了本发明的许多特定的细节,例如器件的结构、材料、尺寸、处理工艺和技术,以便更清楚地理解本发明。但正如本领域的技术人员能够理解的那样,可以不按照这些特定的细节来实现本发明。除非在下文中特别指出,器件中的各个部分可以由本领域的技术人员公知的材料构成,或者可以采用将来开发的具有类似功能的材料。
以下结合附图针对本发明的磁性隧道结刻蚀方法所使用的装置进行说明。图1是本发明的磁性隧道结刻蚀方法所使用的刻蚀装置的功能框图。如图1所示,刻蚀装置包括反应离子等离子体刻蚀腔室10、离子束刻蚀(IBE)腔室11、镀膜腔室12、真空传输腔室13、真空过渡腔室14和样品装载腔室15。其中,真空过渡腔室14分别与样品装载腔室15和真空传输腔室13以可联通的方式相连接。反应离子等离子体刻蚀腔室10、离子束刻蚀腔室11、镀膜腔室12分别与真空传输腔室13以可联通的方式相连接。此外,上述各腔室也可以为多个。
反应离子等离子体刻蚀腔室10可以是电感耦合等离子体(ICP)腔室、电容耦式等离子体(CCP)腔室、螺旋波等离子体腔室等反应离子等离子体刻蚀腔室。离子束刻蚀(IBE)腔室11可以是离子束刻蚀、中性粒子束刻蚀腔体等。镀膜腔室12可以是物理气相沉积(PVD)镀膜腔室,或者是脉冲化学气相沉积(Pulsed CVD)镀膜腔室、等离子体增强化学气相沉积(PECVD)镀膜腔室、电感耦合等离子体增强化学气相沉积(ICP-PECVD)镀膜腔室、原子层(ALD)镀膜腔室等化学气相沉积(CVD)镀膜腔室。
此外,刻蚀装置还包括用于实现样品在各腔室的传递的样品传输系统、用于对各腔室及样品传输系统等进行控制的控制系统、用于实现各腔室所需的真空度的真空抽气系统、以及冷却系统等常规刻蚀装置所包含的功能单元。这些装置结构均可以由本领域技术人员利用现有技术加以实现。
在进行多层磁性隧道结刻蚀前,首先在半导体衬底上形成包含多层磁性隧道结的待刻蚀结构。在图2中示出了包含多层磁性隧道结的待刻蚀器件结构示意图。如图2所示,待刻蚀结构包括底电极金属层100、磁性隧道结、帽层104以及硬掩膜层105,其中,磁性隧道结包括固定层101、隔离层102和自由层103,隔离层102和自由层103为多层,隔离层102和自由层103依次交替形成在固定层101上。各层的厚度、层数和所采用的材料根据实际需要进行选择。为了便于说明,在下文中将各隔离层102自上而下描述为第一隔离层、第二隔离层......底层隔离层。
图3是多层磁性隧道结刻蚀方法的一个实施例的流程图。如图3所示,在样品装载步骤S11中,将样品装载到样品装载腔室15,并使样品通过真空过渡腔室14,进入真空传输腔室13。
接下来,在第一刻蚀步骤S12中,使样品进入到反应离子等离子体刻蚀腔室10,利用反应离子等离子体对样品进行刻蚀。当刻蚀达到第一隔离层时,停止刻蚀。之后使样品返回到真空传输腔室13。在反应离子等离子体刻蚀腔室里所使用的气体可以是惰性气体、氮气、氧气、氟基气体、NH 3、氨基气体、 CO、CO 2、醇类等。刻蚀过程要实现器件的分离以及器件所需的陡直度。
由于在刻蚀过程中会产生极微量的如小于1nm的金属沾污,并且可能会形成磁性隧道结侧壁的纳米级的损伤层。因此,接下来,在第一清洗步骤S13中,使样品进入到离子束刻蚀腔室11,利用离子束进行金属残留物去除以及样品表面处理。之后使样品返回到真空传输腔室13。在离子束刻蚀腔室里使用的气体可以是惰性气体、氮气、氧气等。离子束刻蚀使用的角度优选为10度到80度。该角度是指离子束与晶圆法向面的夹角。优选地,将0.1nm~10.0nm的磁性隧道结的侧壁去除,使第一刻蚀步骤中形成的金属沾污以及侧壁损伤层完全去除。在图4中示出了进行第一清洗步骤后所形成的器件结构示意图。
接下来,在第一介质镀膜步骤S14中,使样品进入到镀膜腔室12,在完成上述刻蚀的样品上表面和周边进行形成第一介质薄膜106,之后使样品返回到真空传输腔室13。在图5中示出了进行第一介质镀膜步骤后的器件结构示意图。其中,所镀第一介质薄膜106为使相邻磁性隧道结器件分离的介质材料。例如,可以是四族氧化物、四族氮化物、四族氮氧化物、过渡金属氧化物、过渡金属氮化物、过渡金属氮氧化物、碱土金属氧化物、碱土金属氮化物、碱土金属氮氧化物等。第一介质薄膜的厚度可以是在0.5nm以上,50nm以下。通过第一介质镀膜步骤,能够防止已经打开的磁性隧道结侧壁在后续刻蚀过程中被等离子体破坏。
接下来,在第一介质薄膜打开步骤S15中,使上述镀膜后的样品进入到反应离子等离子体刻蚀腔室10,利用反应离子等离子体刻蚀第一介质薄膜106,将器件上方及底部的第一介质薄膜刻蚀掉。由于磁性隧道结的侧壁上形成的第一介质薄膜厚度大于水平表面上的第一介质薄膜厚度,因此磁性隧道结的侧壁上仍然留有部分第一介质薄膜106。
使样品继续停留在反应离子等离子体刻蚀腔室10,重复第一刻蚀步骤S12,利用反应离子等离子体对样品进行刻蚀,当刻蚀达到第二隔离层时停止刻蚀。然后,重复步骤第一清洗步骤S13,去除金属沾污和侧壁损伤,所得结构如图 6所示。重复第一介质镀膜步骤S14,在上述完成了第二次刻蚀和清洗的结构上形成第一介质薄膜,所得结构如图7所示。接下来,继续执行第一介质薄膜打开步骤S15,在已刻蚀的磁性隧道结的侧壁保留部分介质,能够防止已经打开的磁性隧道结侧壁在后续刻蚀过程中被等离子体破坏。而后,继续重复步骤S12~S15,直到刻蚀到达最底层隔离层,如图8所示。
之后,进行最终刻蚀步骤S16,磁性隧道结在反应离子等离子体刻蚀腔室10中继续刻蚀,当刻蚀达到底电极金属层100时停止刻蚀。所使用的气体可以是惰性气体、氮气、氧气、氟基气体、NH 3、氨基气体、CO、CO 2、醇类等。由于已经打开的磁性隧道结被第一介质薄膜106保护,后续的刻蚀气体可以不再顾虑对被保护的磁性隧道结的膜层的破坏了,使用的气体范围更广泛一些。
接下来,在最终清洗步骤S17中,使样品进入到离子束刻蚀腔室11,利用离子束进行金属残留物去除以及样品表面处理,使上述刻蚀步骤中形成的金属沾污以及侧壁损伤层完全去除。之后,使样品返回到真空传输腔室13。离子束刻蚀腔室中使用的气体可以是惰性气体、氮气、氧气等。离子束刻蚀使用的角度优选为10度到80度。优选为,将0.1nm~10.0nm的磁性隧道结的侧壁去除。器件经过上述的刻蚀和清洗步骤后,器件的侧壁干净并且实现了完全分离。在图9中示出了进行最终清洗步骤后所形成的器件结构示意图。
接下来,在最终介质镀膜步骤S18中,使上述样品进入到镀膜腔室12进行镀膜保护,在样品上表面和周边形成最终介质薄膜107,之后使样品返回到真空传输腔室13。最终介质薄膜的材料可以是四族氧化物、四族氮化物、四族氮氧化物、过渡金属氧化物、过渡金属氮化物、过渡金属氮氧化物、碱土金属氧化物、碱土金属氮化物、碱土金属氮氧化物等可以实现相邻磁性隧道结器件分离的介质材料。最终介质镀膜的厚度可以是1nm以上,500nm以下。通过最终介质镀膜步骤,能够防止器件在后续的工艺中因裸露在大气环境中而受到破坏,同时实现器件与器件的完全绝缘隔离。图10中示出了进行最终介质镀膜步骤后所形成的器件结构示意图。
最后,在样品取出步骤S19中,将样品从真空传输腔室13,通过真空过渡腔室14,返回到样品装载腔室15。
以上仅是本发明的多层磁性隧道结刻蚀方法的一个具体实施例。但是本发明不限定于此,在本发明的多层磁性隧道结刻蚀方法的其他实施例中,第一刻蚀步骤、最终刻蚀步骤以及第一介质薄膜打开步骤也可以在离子束刻蚀腔室中利用离子束完成刻蚀。第一清洗步骤、最终清洗步骤也可以在反应离子等离子体刻蚀腔室中利用反应离子等离子体进行清洗。也就是说针对每个刻蚀和清洗步骤都可以选择在反应离子等离子体刻蚀腔室或离子束刻蚀腔室中进行,这样就有多种可能的工艺流程,这些工艺流程均涵盖在本发明的保护范围内。但是,从生产效率以及刻蚀工艺精度的角度考虑,对于上述所有的刻蚀和清洗步骤均在单一腔室(离子束刻蚀腔室或反应离子等离子体刻蚀腔室)中进行的情况,本发明不采用。换句话说,本发明的磁性隧道结刻蚀方法中反应离子等离子体刻蚀腔室和离子束刻蚀腔室至少都要被利用一次。另外,各步骤的具体实施方式根据情况可以不同。对于在离子束刻蚀腔中进行刻蚀或者清洗的步骤,不同步骤所使用的气体、离子束的角度、离子束的能量以及离子束的密度可以相同或者不同。对于在反应离子等离子体刻蚀腔中进行刻蚀或者清洗的步骤,不同步骤所使用的气体、功率、气流、压力可以相同或者不同。
本实施例中,对磁性隧道结的加工过程一直处在真空环境中,避免了外界环境对刻蚀的影响,并且对每层隔离层和自由层都分步进行了刻蚀、清洗和镀膜保护,从而大幅度降低了磁性隧道结膜层结构的金属沾污及损伤,极大的提高了器件的性能和可靠性。另外,离子束刻蚀腔室和反应离子刻蚀腔室结合使用,克服了现有技术中由于采用单一刻蚀方法而导致的问题,提高了生产效率和刻蚀工艺精度。
另外,根据上述多层磁隧道结刻蚀方法的实施例形成的磁隧道结,如图10所示,每层隔离层102与位于其上的自由层103均呈台阶结构。相应得,对于包含该多层磁性隧道结的MRAM器件也具有该特征。
图11是多层磁性隧道结刻蚀方法的另一实施例的流程图。接下来,在样品装载步骤S21中,将样品装载到样品装载腔室15,并使样品通过真空过渡腔室14,进入真空传输腔室13。
在第一刻蚀步骤S22中,使样品进入到到离子束刻蚀腔室11,利用离子束进行刻蚀,当刻蚀到达第二隔离层时停止刻蚀。之后使样品返回到真空传输腔室13。在离子束刻蚀腔室里使用的气体可以是惰性气体、氮气、氧气等。离子束刻蚀使用的角度优选为10度到80度。
接下来,在第一清洗步骤S23中,使样品进入反应离子等离子体刻蚀腔室10,利用反应离子等离子体对样品进行清洗,去除金属沾污和侧壁损伤,所得结构如图12所示。之后使样品返回到真空传输腔室13。优选清洗去除厚度为0.1nm~10.0nm的磁性隧道结的侧壁,以使得金属沾污和侧壁损伤被完全去除。在反应离子等离子体刻蚀腔室里所使用的气体可以是惰性气体、氮气、氧气、氟基气体、NH 3、氨基气体、CO、CO 2、醇类等。
接下来,在第一介质镀膜步骤S24中,使样品进入到镀膜腔室12,在完成上述刻蚀的样品上表面和周边形成第一介质薄膜106,之后使样品返回到真空传输腔室13。在图13中示出了进行第一介质镀膜步骤后的器件结构示意图。其中,所镀第一介质薄膜106为使相邻磁性隧道结器件分离的介质材料。例如,可以是四族氧化物、四族氮化物、四族氮氧化物、过渡金属氧化物、过渡金属氮化物、过渡金属氮氧化物、碱土金属氧化物、碱土金属氮化物、碱土金属氮氧化物等。第一介质薄膜的厚度可以是在0.5nm以上,50nm以下。通过第一介质镀膜步骤,能够防止已经打开的磁性隧道结侧壁在后续刻蚀过程中被等离子体破坏。
接下来,在第一介质薄膜打开步骤S25中,使上述镀膜后的样品进入到反应离子等离子体刻蚀腔室10,利用反应离子等离子体刻蚀第一介质薄膜。器件上方及底部的第一介质薄膜被刻蚀掉。由于磁性隧道结的侧壁上形成的 第一介质薄膜厚度大于水平表面上的第一介质薄膜厚度,因此磁性隧道结的侧壁上仍然留有部分第一介质薄膜106。该第一介质薄膜的刻蚀终点依靠反应离子等离子体刻蚀腔室中的自动光学终点检测仪定义。图14是在第一介质薄膜打开步骤后所形成的器件结构示意图。
之后,进行第二刻蚀步骤S26,多层磁性隧道结在反应离子等离子体刻蚀腔室10中继续刻蚀,当刻蚀达到底电极金属层100时停止刻蚀。所使用的气体可以是惰性气体、氮气、氧气、氟基气体、NH 3、氨基气体、CO、CO 2、醇类等。本步骤中所使用的气体可以与第一刻蚀步骤中所使用的气体相同或者不同。由于已经打开的磁性隧道结被第一介质薄膜108保护,后续的刻蚀气体可以不再顾虑对被保护的磁性隧道结的膜层的破坏了,可使用的气体范围更广泛一些。
接下来,在第二清洗步骤S27中,使样品进入到离子束刻蚀腔室11,利用离子束进行金属残留物去除以及样品表面处理,使上述刻蚀步骤中形成的金属沾污以及侧壁损伤层完全去除。之后,使样品返回到真空传输腔室13。离子束刻蚀腔室中使用的气体可以是惰性气体、氮气、氧气等。离子束刻蚀使用的角度优选为10度到80度。优选为,将0.1nm~10.0nm的磁性隧道结的侧壁去除。在器件经过上述的刻蚀和清洗步骤后,器件的侧壁干净并且实现了完全分离。在图15中示出了进行第二清洗步骤后所形成的器件结构示意图。
接下来,在第二介质镀膜步骤S28中,使上述样品进入到镀膜腔室12进行镀膜保护,在样品上表面和周边形成第二介质薄膜107,之后使样品返回到真空传输腔室13。第二介质薄膜的材料可以是四族氧化物、四族氮化物、四族氮氧化物、过渡金属氧化物、过渡金属氮化物、过渡金属氮氧化物、碱土金属氧化物、碱土金属氮化物、碱土金属氮氧化物等可以实现相邻磁性隧道结器件分离的介质材料。第二介质镀膜的厚度可以是1nm以上,500nm以下。通过第二介质镀膜步骤,能够防止器件在后续的工艺中因裸露在大气环境中而受到破坏,同时实现器件与器件的完全绝缘隔离。图16中示出了进行第二介质镀膜步骤后所形成的器件结构示意图。
最后,在样品取出步骤S29中,将样品从真空传输腔室13,通过真空过渡腔室14,返回到样品装载腔室15。
以上仅是本发明的多层磁性隧道结刻蚀方法的一个具体实施例。但是本发明不限定于此,在本发明的多层磁性隧道结刻蚀方法的其他实施例中,第一刻蚀步骤还可以停止其他任意隔离层,如第一隔离层、第三隔离层、第四隔离层等。另外,第一刻蚀步骤也可以在反应离子刻蚀腔室中进行,而第二刻蚀步骤也可以在离子束刻蚀腔室中进行。也就是说针对每个刻蚀和清洗步骤都可以选择在反应离子等离子体刻蚀腔室或离子束刻蚀腔室中进行,这样就有多种可能的工艺流程,这些工艺流程均涵盖在本发明的保护范围内。但是,从生产效率以及刻蚀工艺精度的角度考虑,对于上述所有的刻蚀和清洗步骤均在单一腔室(离子束刻蚀腔室或反应离子等离子体刻蚀腔室)中进行的情况,本发明不采用。换句话说,本发明的多层磁性隧道结刻蚀方法中反应离子等离子体刻蚀腔室和离子束刻蚀腔室至少要被利用一次。另外,各步骤的具体实施方式根据情况可以不同。在离子束刻蚀腔中进行刻蚀或者清洗的步骤,不同步骤所使用的气体、离子束的角度、离子束的能量以及离子束的密度可以相同或者不同。对于在反应离子等离子体刻蚀腔中进行刻蚀或者清洗的步骤,不同步骤所使用的气体、功率、气流、压力可以相同或者不同。
本实施例中,对多层磁性隧道结的加工过程一直处在真空环境中,避免了外界环境对刻蚀的影响。通过刻蚀和清洗结合的工艺使器件结构维持了较好的陡直度,并且大幅度降低了磁性隧道结膜层结构的金属沾污及损伤,极大的提高了器件的性能和可靠性。另外,离子束刻蚀腔室和反应离子刻蚀腔室结合使用,克服了现有的单一刻蚀方法存在的技术问题,提高了生产效率和刻蚀工艺精度。
另外,根据上述多层磁隧道结刻蚀方法的实施例形成的磁隧道结,如图16所示,第二隔离层102与位于其上的自由层103呈台阶结构。相应得,对于包含该多层磁性隧道结的MRAM器件也具有该特征。当然,本发明不限定于此,对 于第一刻蚀步骤停止在其他隔离层,如第三隔离层、第四隔离层等,则该隔离层与其上的自由层呈台阶结构。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。

Claims (10)

  1. 一种多层磁性隧道结刻蚀方法,所使用的刻蚀装置包括样品装载腔室、真空过渡腔室、反应离子等离子体刻蚀腔室、离子束刻蚀腔室、镀膜腔室以及真空传输腔室,所述真空过渡腔室分别与所述样品装载腔室、所述真空传输腔室以可联通的方式相连接,所述反应离子等离子体刻蚀腔室、所述离子束刻蚀腔室、所述镀膜腔室分别与所述真空传输腔室以可联通的方式相连接,其特征在于,在不中断真空的情况下对样品进行加工,至少分别使用一次所述反应离子等离子体刻蚀腔室和所述离子束刻蚀腔室,包括以下步骤:
    样品准备步骤,样品装载步骤,将样品装载到所述样品装载腔室,并使所述样品通过所述真空过渡腔室,进入所述真空传输腔室,其中,所述样品形成在半导体衬底上,包括底电极、磁性隧道结、帽层和掩膜层,所述磁性隧道结包括固定层、隔离层和自由层,所述隔离层和自由层为多层;
    第一刻蚀步骤,使所述样品进入到所述反应离子等离子体刻蚀腔室或者所述离子束刻蚀腔室,完成对帽层和自由层的刻蚀,达到第一隔离层时停止刻蚀,之后使所述样品返回到所述真空传输腔室;
    第一清洗步骤,使所述样品进入到所述离子束刻蚀腔室或者所述反应离子等离子体刻蚀腔室,进行金属残留物去除以及样品表面处理,使所述第一刻蚀步骤中所形成的金属沾污以及侧壁损伤层完全去除,之后使所述样品返回到所述真空传输腔室;
    第一介质镀膜步骤,使所述样品进入到所述镀膜腔室,在所述样品上表面和周边形成第一介质薄膜,之后使所述样品返回到所述真空传输腔室;
    第一介质薄膜打开步骤,使所述样品进入到所述反应离子等离子体刻蚀腔室或者离子束刻蚀腔室,打开器件上方及底部的所述第一介质薄膜,并且保留器件侧壁处的部分第一介质薄膜,停止刻蚀,之后使所述样品返回到所述真空传输腔室;
    重复上述步骤,每刻蚀一次都停止在下一隔离层,直到刻蚀达到最底层隔离层,
    最终刻蚀步骤,使所述样品进入到所述反应离子等离子体刻蚀腔室或者所述离子束刻蚀腔室,对所述样品进行刻蚀,当刻蚀达到底电极金属层时, 停止刻蚀,之后使所述样品返回到所述真空传输腔室;
    最终清洗步骤,使所述样品进入到所述离子束刻蚀腔室或所述反应离子等离子体刻蚀腔室,进行金属残留物去除以及样品表面处理,使所述最终刻蚀步骤中所形成的金属沾污、侧壁损伤层完全去除,之后使所述样品返回到所述真空传输腔室;
    最终介质镀膜步骤,使所述样品进入到所述镀膜腔室进行镀膜保护,在所述样品上表面和周边形成最终介质薄膜,之后使所述样品返回到所述真空传输腔室;
    样品取出步骤,将所述样品从所述真空传输腔室,通过所述真空过渡腔室,返回到所述样品装载腔室。
  2. 根据权利要求1所述的多层磁性隧道结刻蚀方法,其特征在于,
    在所述反应离子等离子体刻蚀腔室中进行刻蚀或者清洗的步骤中,所使用的气体为惰性气体、氮气、氧气、氟基气体、NH 3、氨基气体、CO、CO 2、醇类或其组合,不同步骤中所使用的气体、功率、气流、压力可以相同或者不同。
  3. 根据权利要求1所述的多层磁性隧道结刻蚀方法,其特征在于,
    在所述离子束刻蚀腔中进行刻蚀或者清洗的步骤中,所使用的气体为惰性气体、氮气、氧气或其组合,不同步骤所使用的气体、离子束的角度、离子束的能量以及离子束的密度可以相同或者不同。
  4. 根据权利要求1所述的多层磁性隧道结刻蚀方法,其特征在于,
    所述第一介质薄膜材料和所述最终薄膜材料可以相同也可以不同,所述第一介质薄膜材料、所述最终薄膜材料为四族氧化物、四族氮化物、四族氮氧化物、过渡金属氧化物、过渡金属氮化物、过渡金属氮氧化物、碱土金属氧化物、碱土金属氮化物、碱土金属氮氧化物或其组合,在不同的第一介质薄膜镀膜步骤中,所述第一介质薄膜材料可以相同也可以不同。
  5. 一种MRAM器件,包括根据权利要求1所述的多层磁性隧道结刻蚀 方法制备形成的多层磁性隧道结,其特征在于,
    所述多层磁性隧道结的每层隔离层与位于其上的自由层呈台阶结构。
  6. 一种多层磁性隧道结刻蚀方法,所使用的刻蚀装置包括样品装载腔室、真空过渡腔室、反应离子等离子体刻蚀腔室、离子束刻蚀腔室、镀膜腔室以及真空传输腔室,所述真空过渡腔室分别与所述样品装载腔室、所述真空传输腔室以可联通的方式相连接,所述反应离子等离子体刻蚀腔室、所述离子束刻蚀腔室、所述镀膜腔室分别与所述真空传输腔室以可联通的方式相连接,其特征在于,在不中断真空的情况下对样品进行加工,至少分别使用一次所述反应离子等离子体刻蚀腔室和所述离子束刻蚀腔室,
    包括以下步骤:
    样品装载步骤,将所述样品装载到所述样品装载腔室,并使所述样品通过所述真空过渡腔室,进入所述真空传输腔室,其中,所述样品形成在半导体衬底上,包括底电极、磁性隧道结、帽层和掩膜层,所述磁性隧道结包括固定层、隔离层和自由层,所述隔离层和自由层为多层;
    第一刻蚀步骤,使所述样品进入到所述离子束刻蚀腔室或者所述反应离子等离子体刻蚀腔室,对所述样品进行刻蚀,当刻蚀到某一隔离层时,停止刻蚀,之后使所述样品返回到所述真空传输腔室;
    第一清洗步骤,使所述样品进入到所述反应离子等离子体刻蚀腔室或者所述离子束刻蚀腔室,进行金属残留物去除以及样品表面处理,使所述第一刻蚀步骤中所形成的金属沾污以及侧壁损伤层完全去除,之后使所述样品返回到所述真空传输腔室;
    第一介质镀膜步骤,使所述样品进入到所述镀膜腔室,在所述样品上表面和周边形成第一介质薄膜,之后使所述样品返回到所述真空传输腔室;
    第一介质薄膜打开步骤,使所述样品进入到所述反应离子等离子体刻蚀腔室或者离子束刻蚀腔室,打开器件上方及底部的所述第一介质薄膜,并且保留器件侧墙处的部分第一介质薄膜,停止刻蚀,之后使所述样品返回到所述真空传输腔室;
    第二刻蚀步骤,使所述样品进入到所述反应离子等离子体刻蚀腔室或者所述离子束刻蚀腔室,对所述样品的剩余各层进行刻蚀,当刻蚀达到底电极 金属层时,停止刻蚀,之后使所述样品返回到所述真空传输腔室;
    第二清洗步骤,使所述样品进入到所述离子束刻蚀腔室或所述反应离子等离子体刻蚀腔室,进行金属残留物去除以及样品表面处理,使所述第二刻蚀步骤中所形成的金属沾污、侧壁损伤层完全去除,之后使所述样品返回到所述真空传输腔室;
    第二介质镀膜步骤,使所述样品进入到所述镀膜腔室进行镀膜保护,在所述样品上表面和周边形成第二介质薄膜,之后使所述样品返回到所述真空传输腔室;
    样品取出步骤,将所述样品从所述真空传输腔室,通过所述真空过渡腔室,返回到所述样品装载腔室。
  7. 根据权利要求6所述的多层磁性隧道结刻蚀方法,其特征在于,
    在所述离子束刻蚀腔室中进行刻蚀或者清洗的角度为10度到80度,所述角度为离子束与样品台法向面的夹角。
  8. 根据权利要求6所述的多层磁性隧道结刻蚀方法,其特征在于,
    所述第一介质薄膜的厚度为0.5nm~5nm,所述第二介质薄膜的厚度为1nm~500nm。
  9. 根据权利要求6所述的多层磁性隧道结刻蚀方法,其特征在于,
    在所述第一清洗步骤和所述第二清洗步骤中,分别去除厚度为0.1nm~10.0nm的磁性隧道结的侧壁。
  10. 一种MRAM器件,包括根据权利要求6所述的多层磁性隧道结刻蚀方法制备形成的多层磁性隧道结,其特征在于,
    所述多层磁性隧道结的所述第一刻蚀步骤刻蚀停止的隔离层与位于其上的自由层呈台阶结构。
PCT/CN2019/088104 2018-11-08 2019-05-23 多层磁性隧道结刻蚀方法和mram器件 WO2020093682A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020217015883A KR102496578B1 (ko) 2018-11-08 2019-05-23 다층 자기터널접합 에칭 방법 및 mram 디바이스
US17/289,753 US12063866B2 (en) 2018-11-08 2019-05-23 Multilayer magnetic tunnel junction etching method and MRAM device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811325940.2A CN111162005A (zh) 2018-11-08 2018-11-08 多层磁性隧道结刻蚀方法和mram器件
CN201811325940.2 2018-11-08

Publications (1)

Publication Number Publication Date
WO2020093682A1 true WO2020093682A1 (zh) 2020-05-14

Family

ID=70554912

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/088104 WO2020093682A1 (zh) 2018-11-08 2019-05-23 多层磁性隧道结刻蚀方法和mram器件

Country Status (5)

Country Link
US (1) US12063866B2 (zh)
KR (1) KR102496578B1 (zh)
CN (1) CN111162005A (zh)
TW (1) TWI702676B (zh)
WO (1) WO2020093682A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11765980B2 (en) * 2020-08-31 2023-09-19 Taiwan Semiconductor Manufacturing Company, Ltd. Method for forming a hard mask with a tapered profile
CN114530550A (zh) * 2020-11-23 2022-05-24 江苏鲁汶仪器有限公司 一种mram磁隧道结的刻蚀方法
CN114694705A (zh) * 2020-12-29 2022-07-01 浙江驰拓科技有限公司 一种磁性存储单元及磁性存储器
CN116568120A (zh) * 2022-01-28 2023-08-08 北京超弦存储器研究院 一种磁性隧道结阵列及其制备方法
KR102673888B1 (ko) 2022-06-20 2024-06-11 한국과학기술원 반대 상태를 가지는 한 쌍의 자기 터널 접합을 구비한 mram 셀, 및 그를 이용한 메모리 장치

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103985672A (zh) * 2013-02-08 2014-08-13 台湾积体电路制造股份有限公司 从半导体器件去除膜的方法
US20150255507A1 (en) * 2014-03-07 2015-09-10 Applied Materials, Inc. Method of forming magnetic tunneling junctions
CN106067513A (zh) * 2015-04-20 2016-11-02 朗姆研究公司 图案化mram堆栈的干法等离子体蚀刻法
CN106676532A (zh) * 2015-11-10 2017-05-17 江苏鲁汶仪器有限公司 金属刻蚀装置及方法
CN107610994A (zh) * 2017-08-10 2018-01-19 江苏鲁汶仪器有限公司 一种离子束刻蚀系统
CN109065480A (zh) * 2018-08-03 2018-12-21 江苏鲁汶仪器有限公司 一种磁隧道结刻蚀方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5575198B2 (ja) * 2012-09-25 2014-08-20 株式会社東芝 磁気抵抗効果素子の製造方法及び磁気抵抗効果素子の製造装置
US9263667B1 (en) * 2014-07-25 2016-02-16 Spin Transfer Technologies, Inc. Method for manufacturing MTJ memory device
US20170200884A1 (en) * 2014-08-05 2017-07-13 Intel Corporation Configurations and techniques to increase interfacial anisotropy of magnetic tunnel junctions
WO2016068182A1 (ja) * 2014-10-31 2016-05-06 富士フイルム株式会社 Mramドライエッチング残渣除去組成物、磁気抵抗メモリの製造方法、及び、コバルト除去組成物
US9362490B1 (en) * 2015-07-09 2016-06-07 Rongfu Xiao Method of patterning MTJ cell without sidewall damage
CN107623069B (zh) * 2016-07-14 2020-10-09 上海磁宇信息科技有限公司 一种刻蚀磁性隧道结及其底电极的方法
CN107623014A (zh) * 2016-07-14 2018-01-23 上海磁宇信息科技有限公司 一种磁性随机存储器的制备方法
CN108242502B (zh) * 2016-12-27 2021-04-27 上海磁宇信息科技有限公司 一种制备磁性隧道结的方法
US10446742B2 (en) * 2018-01-09 2019-10-15 Spin Memory, Inc. Method for manufacturing a magnetic memory element array using high angle side etch to open top electrical contact

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103985672A (zh) * 2013-02-08 2014-08-13 台湾积体电路制造股份有限公司 从半导体器件去除膜的方法
US20150255507A1 (en) * 2014-03-07 2015-09-10 Applied Materials, Inc. Method of forming magnetic tunneling junctions
CN106067513A (zh) * 2015-04-20 2016-11-02 朗姆研究公司 图案化mram堆栈的干法等离子体蚀刻法
CN106676532A (zh) * 2015-11-10 2017-05-17 江苏鲁汶仪器有限公司 金属刻蚀装置及方法
CN107610994A (zh) * 2017-08-10 2018-01-19 江苏鲁汶仪器有限公司 一种离子束刻蚀系统
CN109065480A (zh) * 2018-08-03 2018-12-21 江苏鲁汶仪器有限公司 一种磁隧道结刻蚀方法

Also Published As

Publication number Publication date
CN111162005A (zh) 2020-05-15
KR102496578B1 (ko) 2023-02-07
US20210376232A1 (en) 2021-12-02
US12063866B2 (en) 2024-08-13
TWI702676B (zh) 2020-08-21
TW202018842A (zh) 2020-05-16
KR20210082499A (ko) 2021-07-05

Similar Documents

Publication Publication Date Title
WO2020093682A1 (zh) 多层磁性隧道结刻蚀方法和mram器件
WO2020024668A1 (zh) 一种磁隧道结刻蚀方法
US8828742B2 (en) Method of manufacturing magnetoresistive effect element that includes forming insulative sidewall metal oxide layer by sputtering particles of metal material from patterned metal layer
TWI719642B (zh) 磁隧道結刻蝕方法
TWI728471B (zh) 一種半導體器件製作方法
JP2010103224A (ja) 磁気抵抗素子、及び磁気メモリ
US20200168791A1 (en) Method of making magnetoresistive random access memory device
US11283009B2 (en) Method for manufacturing memory device having protection spacer
WO2020087916A1 (zh) 一种单隔离层磁隧道结刻蚀方法
US11569443B2 (en) Semiconductor device and method for fabricating the same
WO2020087917A1 (zh) 一种磁隧道结制作方法
JP2023543889A (ja) Mram磁気トンネル接合のエッチング方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19881953

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217015883

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19881953

Country of ref document: EP

Kind code of ref document: A1