WO2020093532A1 - 一种固定翼无人机起降系统及其起降方法 - Google Patents

一种固定翼无人机起降系统及其起降方法 Download PDF

Info

Publication number
WO2020093532A1
WO2020093532A1 PCT/CN2018/121909 CN2018121909W WO2020093532A1 WO 2020093532 A1 WO2020093532 A1 WO 2020093532A1 CN 2018121909 W CN2018121909 W CN 2018121909W WO 2020093532 A1 WO2020093532 A1 WO 2020093532A1
Authority
WO
WIPO (PCT)
Prior art keywords
rope
take
blocking
base
fixed
Prior art date
Application number
PCT/CN2018/121909
Other languages
English (en)
French (fr)
Inventor
王琨
郑智磊
王诚意
李可
张秋菊
Original Assignee
江南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江南大学 filed Critical 江南大学
Priority to AU2018420078A priority Critical patent/AU2018420078B2/en
Priority to SG11202008018XA priority patent/SG11202008018XA/en
Publication of WO2020093532A1 publication Critical patent/WO2020093532A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F1/00Ground or aircraft-carrier-deck installations
    • B64F1/04Ground or aircraft-carrier-deck installations for launching aircraft
    • B64F1/06Ground or aircraft-carrier-deck installations for launching aircraft using catapults
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F1/00Ground or aircraft-carrier-deck installations
    • B64F1/02Ground or aircraft-carrier-deck installations for arresting aircraft, e.g. nets or cables
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to the technical field of UAV take-off and landing devices, in particular to a fixed-wing UAV take-off and landing system and its take-off and landing method.
  • UAV recovery is a more complicated It is also a stage where failures are more likely to occur.
  • the ability to safely land has become an important indicator for evaluating the performance of drones.
  • the current recovery methods of drones mainly include parachute recovery, crash net recovery, landing gear pulley landing, and air hook. Take recycling, etc.
  • the applicant provides a fixed-wing UAV take-off and landing system with a reasonable structure and its take-off and landing method, so as to meet the different sizes of fixed-wing UAV takeoff and Landing requirements, in order to improve the efficiency of unattended attendance and reduce the space occupied by UAV landing gear.
  • a fixed-wing UAV take-off and landing system includes a base, an energy storage device is installed at a front end of the base through a boss, and the energy storage device includes an outer sleeve, which is fixedly installed on the upper surface of the boss, and the outer sleeve A catapult piece sliding along it is nested inside.
  • An adjustable launching rack is installed at the front end of the catapulting piece.
  • the adjustable launching rack includes a launching stand. The two sides are respectively connected to the adjusting racks by rotation.
  • UAV bracket the top of the rear side of each adjusting frame is installed with a limit frame; a rear part of the outer sleeve is provided with a central opening A baffle with a round hole, a groove frame installed along the rear surface of the boss is butted below the baffle plate, a locking mechanism is installed on the groove frame, the ejection piece is connected to the baffle plate through a spring, and the end of the ejection piece passes through the circle of the baffle plate Hole and snap into the locking mechanism;
  • the end face of the projectile is connected to a drive control mechanism through a rope
  • the drive control mechanism includes a take-up reel, which is driven by a servo motor installed in the middle of the upper surface of the base, and is opened along the circumference of the take-up disc.
  • a main wire groove wound around the rope 1 a secondary wire groove concentric with the main wire groove extends axially on the outer end surface of the take-up disc, and a rope two is wound around it, and the other end of the rope two is connected to the lock Stop agency
  • the end face of the projectile is connected to the blocking and recovery mechanism by a rope three.
  • the blocking and recovery mechanism includes inclined brackets connected to both sides of the rear of the base, and a light pulley is installed at the upper end of the inclined bracket through the rotating shaft, and two inclined brackets are each installed below There is a supporting leg, two supporting legs and a light-weight pulley wound with a blocking rope, and arranging it into a triangular shape, the end of the blocking rope is connected with a tension sensor, and the other end of the tension sensor is connected with the rope three;
  • a blocking net is hoisted on the bottom surface of the boss, and a signal transmission and control device is installed on the upper surface of the center of the base.
  • the signal transmission and control device includes a servo driver installed on the upper surface of the center of the base to control the rotation of the servo motor.
  • a host computer that transmits power parameters, and a motion control card that receives the motion control program of the host computer and transmits signals to the servo drive.
  • the structure of the locking mechanism includes: two oppositely installed locking blocks, the lower ends of the two locking blocks are respectively fixed on the groove frame through a rotating pair, and the middle parts of the two locking blocks are connected by a tension spring
  • the upper ends of the two locking blocks form a ring communicating with the circular hole on the baffle, and the end of the ejection piece passes through the circular hole of the baffle and snaps into the ring.
  • the trough frame is L-shaped, including a vertical surface, the bottom of which extends with a horizontal plane, two locking blocks are installed in the middle of the vertical surface, and a wire wheel is installed at the four corners of the vertical surface, spaced on the horizontal surface
  • Two wire passing wheels are installed, the tops of the two locking blocks are respectively fixed with two joints of the rope two through the bolts with holes, and the two joints pass around the wire passing wheels on the vertical plane from both sides, and then After passing around the two wire passing wheels on the horizontal plane respectively, they are combined into a single rope through a lock and wound into the auxiliary wire groove.
  • a take-off and landing method of a fixed-wing UAV take-off and landing system, the process of ejecting the UAV includes the following steps:
  • the first step adjust the angle of the two adjusting frames with respect to the launching stand, adjust the horizontal distance between the two limit stands installed on the adjusting stand, and place the drone to be taken off on the launching stand ;
  • the second step the servo motor drives the take-up reel to rotate, so that the main reel of the take-up reel releases the rope one. After the release, the auxiliary wire trough continues to draw the rope two, and the rope is divided into two branches to bypass the trough respectively After passing the upper reel, pull the two locking blocks to both sides to release the ejection piece;
  • the third step the compression spring on the outer wall of the ejector pushes the ejector forward along the inner wall of the outer sleeve, and simultaneously drives the adjustable launcher and the drone to eject forward together;
  • the process of recovering the drone includes the following steps:
  • the first step the tail hook on the back of the drone hooks the blocking rope wound in the support wire groove, so that the blocking rope pulls the tension sensor and the rope three;
  • the second step the rope three pulls the ejection piece and compresses the spring to absorb the kinetic energy of the drone, while the drone pulls the blocking rope and generates an inertia that moves upward around the lightweight pulley, and then hits the blocking net, which is completed Recycling process.
  • the present invention can achieve a fixed-wing unmanned aerial vehicle ejection takeoff and a stable block landing, with a good concealment, economy and adaptability of the projectile and other advantages.
  • the present invention changes the horizontal distance between the two limiting parts of the UAV by changing the inclination angle of the adjusting frame with respect to the launch platform, thereby achieving the ejection of fixed-wing UAVs of different sizes.
  • the energy storage device of the present invention can not only provide a source of power for the fixed-wing UAV during catapult take-off, but also absorb energy for the fixed-wing UAV during blocking and recovery, unifying the take-off and recovery systems in the same system, without Two independent sets of equipment are set up independently to achieve fast catapult take-off of fixed-wing UAVs and smooth blocking of collision net recovery, which reduces costs and improves system utilization.
  • the present invention saves the space for the unmanned aerial vehicles to take off and land, and can better adapt to the auxiliary needs of fixed-wing unmanned aerial vehicles in the environment of ships, mountains and deserts.
  • FIG. 1 is a schematic view of a three-dimensional structure of the present invention.
  • FIG. 2 is a schematic view of the stereoscopic structure of the present invention (another perspective).
  • FIG. 3 is an enlarged view of part A in FIG. 1.
  • FIG. 4 is a schematic structural view of the present invention after removing the outer sleeve.
  • FIG. 5 is a schematic diagram of the present invention in a catapult take-off state.
  • FIG. 6 is a schematic diagram of the present invention in the retracted state.
  • the fixed-wing UAV take-off and landing system of this embodiment includes a base 1, an energy storage device is installed at the end of the base 1 through a boss 2, and the energy storage device includes an external
  • the sleeve 3 is fixedly installed on the upper surface of the boss 2, and the ejector 4 sliding along it is nested inside the outer sleeve 3.
  • the front end of the ejector 4 is equipped with an adjustable launching rack, which includes a fixed launching The launching platform 5 whose upper surface is parallel to the upper surface of the component 4 is connected to the adjusting frame 6 on both sides, and the inner side of each adjusting frame 6 is fixedly connected to the drone bracket 7 and the top of the rear side of each adjusting frame 6 Install the limit bracket 8; a baffle 9 with a round hole in the middle is provided at the rear end surface of the outer sleeve 3, and a groove frame 10 installed along the rear surface of the boss 2 is connected below the baffle plate 9, and the groove frame 10 is provided with A locking mechanism, the end of the projectile 4 passes through the circular hole of the baffle 9 and snaps into the locking mechanism;
  • the end face of the ejection member 4 is connected to a drive control mechanism through a rope 11;
  • the drive control mechanism includes a take-up reel, which is driven by a servo motor 13 installed in the middle of the upper surface of the base 1, along the circumference of the take-up disc.
  • a main wire groove 12 wound with a rope 11 is encircled, and an auxiliary wire groove 14 concentric with the main wire groove 12 extends axially on the outer end surface of the take-up disc, on which a rope two 15 is wound and another wire 15 is wound
  • One end is connected to the locking mechanism; the end end surface of the ejection piece 4 is connected to the blocking and recycling mechanism through a rope three 16.
  • the blocking and recycling mechanism includes a tilting bracket 17 connected to the rear portion of the base 1, and a light pulley 33 is installed on the upper end of the tilting bracket 17. Below the bracket 17, two legs 18 are installed on both sides. A blocking rope 19 is wound on the leg 18 and the light pulley 33. The end of the blocking rope 19 is connected with a tension sensor 20, and the other end of the tension sensor 20 is connected with the rope three 16; also includes The blocking net 21 is hoisted on the bottom surface of the boss 2; a signal transmission and control device is also installed in the middle of the upper surface of the base 1.
  • Each adjusting frame 6 has a trapezoidal structure, and a round rod is provided at the top of the round rod.
  • the lower ends of the round rod are hingedly connected to the launch platform 5 through two inclined rods, and the front end of the round rod is fixedly connected to the UAV support.
  • Frame 7, the UAV bracket 7 has an L-shaped structure, and is located on the same horizontal plane as the round rod, and the rear end of the round rod is connected to the limit frame 8 through the rotation pair, and the limit frame 8 is L-shaped and located on the same vertical as the round rod Straight face;
  • the two rear end faces of the limit brackets 8 of the two adjusting brackets 6 are jointly connected with a fixing rod 23 with a sliding groove.
  • the structure of the locking mechanism is: it includes two oppositely installed locking blocks 27, the lower ends of the two locking blocks 27 are respectively fixed on the groove frame 10 by a rotating pair, and two locks
  • the middle of the stopper 27 is connected by a tension spring 28, the upper ends of the two locking blocks 27 form a ring that communicates with the circular hole on the baffle 9, and the end of the ejector 4 passes through the circular hole of the baffle 9 and snaps in Inside the ring.
  • the trough frame 10 is L-shaped, including a vertical surface, the bottom of which extends a horizontal plane, two locking blocks 27 are installed in the middle of the vertical surface, and four wire corners 29 are respectively installed at four corners of the vertical surface.
  • Two line-over wheels 29 are installed at intervals on the horizontal plane, and the tops of the two locking blocks 27 are respectively fixed with two joints of the rope two 15 through the bolts with holes, and the two joints pass through the vertical plane from both sides.
  • the spool 29 then circumvents the two spools 29 on the horizontal plane respectively, passes through the lock and merges into a single rope, and then is wound into the sub-slot 14.
  • the blocking net 21 is made of an elastic mesh surface material, and is hoisted on the bottom surface of the boss 2 through a connecting member 22.
  • the radius of the main line slot 12 is larger than the radius of the auxiliary line slot 14.
  • the signal transmission and control device includes a servo driver 26 installed on the upper surface of the base 1 to control the rotation of the servo motor 13, an upper computer 24 that calculates and transmits power parameters, and a motion control program that receives the upper computer 24 and sends it to the servo driver 26 The transmission signal of the motion control card 25.
  • the ejection member 4 has a cylindrical shape as a whole, and a plurality of compression springs 30 are axially installed along the outer wall thereof.
  • One end of the compression spring 30 is fixed on the outer wall of the ejection member 4 and the other end is fixed on the baffle 9
  • On the inner wall a plurality of slots for accommodating the compression spring 30 are opened in the axial direction on the inner wall surface of the outer sleeve 3; the end of the ejection member 4 extends with a conical structure and cooperates with the round hole of the baffle 9.
  • the process of ejecting the UAV 31 includes the following steps:
  • the first step adjust the angles of the two adjusting frames 6 relative to the launching stand 5, adjust the horizontal distance between the two limiting frames 8 on the adjusting frame 6, and place the unmanned aerial vehicle 31 to be launched at the launch On stand 5;
  • the second step the servo motor 13 drives the take-up reel to rotate, so that the main line slot 12 of the take-up reel releases the rope 11 After bypassing the line passing wheel 29 on the trough frame 10 respectively, the two locking blocks 27 are pulled to both sides, thereby releasing the ejection piece 4;
  • the third step the ejector 4
  • the compression spring 30 on the outer wall pushes the ejector 4 to move forward along the inner wall of the outer sleeve 3, and at the same time drives the adjustable launcher and the drone 31 to eject forward;
  • the process of recovering the drone 31 includes the following steps:
  • the first step the tail hook 32 on the back of the drone 31 hooks the blocking rope 19 wound in the line groove of the foot 18, so that the blocking rope 19 pulls the tension sensor 20 and the rope three 16;
  • the second step the rope three 16 pulls the ejector 4 and compresses the spring 30 to absorb the kinetic energy of the drone 31, and the drone 31 pulls the blocking rope 19 while generating an inertia that moves upward around the lightweight pulley 33, Then, it hits the blocking net 21, and the recycling process is completed.
  • the drone 31 Before the hook rope 19 catches the tail hook 32 of the drone, the drone 31 transmits its own parameters such as speed V, height h, and equivalent mass M to the upper computer 24 through the wireless transmission module built in it, Based on the dynamic parameters of the UAV 31, the aircraft 24 calculates the kinetic energy difference AE and the potential energy difference AP during landing, and then establishes a dynamic model of the fixed-wing UAV blocking system:
  • R is the radius of the main wire groove 12 of the take-up reel
  • cp (t) is the angular displacement compensation function of the servo motor 13.
  • the tension sensor 20 measures the tension in the blocking rope 19 and feeds back To the motion control card 25, if the tension value exceeds the predetermined range, the motion control card 25 starts to execute the motion control program and sends a pulse to the servo driver 26 to drive the servo motor 13, so that the servo motor 13 drives the take-up reel to rotate, and Pulling the ejection piece 4 through the rope 11 wrapped in the main line slot 12, thereby reducing the tension value of the blocking rope 19 to a predetermined range, so as to achieve a stable blocking landing of the fixed-wing UAV 31

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Toys (AREA)
  • Forklifts And Lifting Vehicles (AREA)

Abstract

一种固定翼无人机起降系统及其起降方法,包括基座(1),基座(1)前端安装有能量储存装置,能量储存装置包括外套筒(3),其内部嵌套有沿其滑动的弹射件(4),弹射件(4)前端安装有可调式发射架,外套筒(3)后端面处设有一块挡板(9),其外端面的槽架(10)上安装有锁止机构,弹射件(4)的末端穿过挡板(9)并卡入锁止机构;弹射件(4)末端面上通过绳索一(11)与驱动控制机构连接,通过绳索三(16)连接阻拦回收机构;基座(1)上表面中部还安装有信号传输及控制装置,基座(1)前端下方吊装有阻拦网(21)。起降系统结构紧凑、合理,操作方便,可以实现多种尺寸的固定翼无人机弹射起飞和平稳阻拦降落,具备弹良好的隐蔽性、经济性和适应性等优点。

Description

一种固定翼无人机起降系统及其起降方法 技术领域
[0001] 本发明涉及的是无人机起降装置技术领域, 具体说是一种固定翼无人机起降系 统及其起降方法。
背景技术
[0002] 目前, 固定翼无人机常见的起飞方式有滑行起飞, 垂直起飞, 空中抛投, 弹道 弹射起飞和手抛等方式; 而相比于起飞, 无人机的回收是一个更为复杂, 也是 更容易出现故障的阶段, 能否安全着陆已经成为评价无人机性能的一项重要指 标, 目前无人机的回收方式主要有伞降回收、 撞网回收、 起落架滑轮着陆、 空 中勾取回收等。
发明概述
技术问题
[0003] 在现有技术中, 固定翼无人机的起飞和回收通常为相互独立的系统, 且一种起 飞装置或回收系统只能满足单一型号的固定翼无人机使用, 使用成本较高, 适 配性较低, 难以满足当前固定翼无人机起降的辅助需求。
问题的解决方案
技术解决方案
[0004] 本申请人针对上述现有生产技术中的缺点, 提供一种结构合理的固定翼无人机 起降系统及其起降方法, 从而满足不同尺寸型号的固定翼无人机的起飞和降落 要求, 以便于提高无人的出勤效率, 降低无人机起降装置的占用空间。
[0005] 本发明所采用的技术方案如下:
[0006] 一种固定翼无人机起降系统, 包括基座, 基座前端通过凸台安装有能量储存装 置, 能量储存装置包括外套筒, 其固定安装在凸台上表面, 外套筒内部嵌套有 沿其滑动的弹射件, 弹射件前端安装有可调式发射架, 可调式发射架包括发射 台架, 其两侧分别转动连接有调节架, 每个调节架的内侧分别固定连接有无人 机托架, 每个调节架后侧顶部安装有限位架; 外套筒后端面处设有一块中部开 有圆孔的挡板, 挡板下方对接有沿凸台后端面安装的槽架, 槽架上安装有锁止 机构, 弹射件通过弹簧与挡板连接, 弹射件的末端穿过挡板的圆孔并卡入所述 锁止机构;
[0007] 弹射件末端端面上通过绳索一与驱动控制机构连接, 所述驱动控制机构包括收 线盘, 其通过安装在基座上表面中部的伺服电机驱动, 沿收线圆盘圆周一圈开 有卷绕所述绳索一的主线槽, 收线圆盘外端面上沿轴向延伸有与主线槽同心的 副线槽, 其上绕卷有绳索二, 绳索二的另一端连接至所述锁止机构;
[0008] 弹射件的末端端面通过绳索三与阻拦回收机构连接, 阻拦回收机构包括连接在 基座尾部两侧的倾斜支架, 倾斜支架上端通过转轴安装有轻质滑轮, 两根倾斜 支架下方各安装有一根支脚, 两个支脚及轻质滑轮上缠绕阻拦绳索, 并将其布 成三角形状, 阻拦绳索的末端连接有拉力传感器, 拉力传感器的另一端连接所 述绳索三;
[0009] 凸台底面上吊装有阻拦网, 基座中部上表面安装有信号传输及控制装置, 所述 信号传输及控制装置包括安装在基座中部上表面控制伺服电机转动的伺服驱动 器、 计算并传输动力参数的上位机、 以及接收上位机运动控制程序并向伺服驱 动器传输信号的运动控制卡。
[0010] 所述锁止机构的结构为: 包括两个相对安装的锁止块, 两个锁止块的下端分别 通过转动副固定在槽架上, 两个锁止块的中部通过拉簧连接, 两个锁止块的上 端构成与所述挡板上的圆孔相连通的圆环, 弹射件的末端穿过挡板的圆孔并卡 入圆环内。
[0011] 槽架成 L型, 包括竖直面, 其底部延伸有水平面, 两个锁止块安装在竖直面的 中部, 竖直面的四角处分别安装有一个过线轮, 水平面上间隔安装有两个所述 过线轮, 两个锁止块的顶端分别通过带孔螺栓固定有绳索二的两个接头, 两个 接头从两侧分别绕经竖直面上的过线轮, 再分别绕过水平面上的两个过线轮后 , 经过锁扣汇合成单条绳索后卷绕至所述副线槽内。
[0012] 一种固定翼无人机起降系统的起降方法, 其弹射无人机的过程包括如下步骤:
[0013] 第一步: 调整两个调节架相对于发射台架的角度, 调整调节架上安装的两个限 位架之间的水平距离, 将待起飞的无人机放置在发射台架上; [0014] 第二步: 伺服电机驱动收线盘旋转, 使收线盘的主线槽释放绳索一, 释放完毕 后, 副线槽对绳索二继续进行牵引, 绳索二分成两支分别绕过槽架上的过线轮 后, 向两侧拉动两个锁止块, 进而释放弹射件;
[0015] 第三步: 弹射件外壁上的压缩弹簧推动弹射件沿外套筒内壁向前运动, 同时带 动可调式发射架及无人机一起向前弹射;
[0016] 其收回无人机的过程包括如下步骤:
[0017] 第一步: 无人机背部的尾钩勾住绕在支脚线槽内的阻拦绳索, 使阻拦绳索拉动 拉力传感器和绳索三;
[0018] 第二步: 绳索三拉动弹射件并压缩弹簧以吸收无人机的动能, 无人机拉动阻拦 绳索的同时产生环绕着轻质滑轮向上运动的惯性, 进而撞向阻拦网, 即完成回 收过程。
发明的有益效果
有益效果
[0019] 本发明可以实现多种尺寸的固定翼无人机弹射起飞和平稳阻拦降落,具备弹良好 的隐蔽性、 经济性和适应性等优点。
[0020] 本发明通过改变调节架相对发射台架的倾角, 来改变无人机的两个限位件之间 的水平距离, 进而实现弹射不同尺寸的固定翼无人机。
[0021] 本发明能量储存装置既能为固定翼无人机的弹射起飞时提供动力来源, 又能为 固定翼无人机阻拦回收时吸收能量, 将起飞和回收系统统一于同一系统中, 无 需独立设置两套独立的设备, 实现固定翼无人机的快速弹射起飞和平稳阻拦撞 网回收, 降低了成本, 提高了系统的使用率。
[0022] 本发明节约了无人机起降的空间, 更能适应在舰船、 山区和沙漠环境中的固定 翼无人机起降辅助需求。
对附图的简要说明
附图说明
[0023] 图 1为本发明的立体结构示意图。
[0024] 图 2为本发明立体结构示意图 (另一视角) 。
[0025] 图 3为图 1中 A部的放大图。 [0026] 图 4为本发明拆去外套筒后的结构示意图。
[0027] 图 5的本发明在弹射起飞状态时的示意图。
[0028] 图 6为本发明在收回状态的示意图。
发明实施例
本发明的实施方式
[0029] 如图 1和图 2所不, 本实施例的固定翼无人机起降系统, 包括基座 1, 基座 1刖端 通过凸台 2安装有能量储存装置, 能量储存装置包括外套筒 3 , 其固定安装在凸 台 2上表面, 外套筒 3内部嵌套有沿其滑动的弹射件 4, 弹射件 4前端安装有可调 式发射架, 可调式发射架包括固定安装在弹射件 4上表面与其平行的发射台架 5 , 其两侧分别转动连接有调节架 6 , 每个调节架 6的内侧分别固定连接有无人机 托架 7 , 每个调节架 6的后侧顶部安装有限位架 8 ; 外套筒 3后端面处设有一块中 部开有圆孔的挡板 9 , 挡板 9下方连接有沿凸台 2后端面安装的槽架 10, 槽架 10上 设有锁止机构, 弹射件 4的末端穿过挡板 9的圆孔并卡入锁止机构;
[0030] 弹射件 4末端端面上通过绳索一 11与驱动控制机构连接, 驱动控制机构包括收 线盘, 其通过安装在基座 1上表面中部的伺服电机 13驱动, 沿收线圆盘圆周一圈 开有卷绕绳索一 11的主线槽 12, 收线圆盘外端面上沿轴向延伸有与主线槽 12同 心的副线槽 14, 其上绕卷有绳索二 15 , 绳索二 15的另一端连接至锁止机构; 弹 射件 4的末端端面通过绳索三 16与阻拦回收机构连接, 阻拦回收机构包括与基座 1尾部连接的倾斜支架 17 , 倾斜支架 17上端安装有轻质滑轮 33 , 倾斜支架 17下方 安装两侧安装有支脚 18 , 支脚 18上及轻质滑轮 33上缠绕有阻拦绳索 19 , 阻拦绳 索 19的末端连接有拉力传感器 20, 拉力传感器 20的另一端连接绳索三 16; 还包 括阻拦网 21, 其吊装在凸台 2底面上; 基座 1上表面中部还安装有信号传输及控 制装置。
[0031] 每个调节架 6均成梯形结构, 其顶部设有一圆杆, 圆杆下侧两端分别通过两根 斜杆与发射台架 5铰链连接, 圆杆前端面固定连接无人机托架 7 , 无人机托架 7成 L形结构, 并与圆杆位于同一水平面, 圆杆后端通过转动副连接限位架 8 , 限位 架 8成 L形, 并与圆杆位于同一竖直面; 两个调节架 6的限位架 8后端面上共同连 接有一根带滑槽的固定杆 23。 [0032] 如图 3所示, 锁止机构的结构为: 包括两个相对安装的锁止块 27, 两个锁止块 2 7的下端分别通过转动副固定在槽架 10上, 两个锁止块 27的中部通过拉簧 28连接 , 两个锁止块 27的上端构成与挡板 9上的圆孔相连通的圆环, 弹射件 4的末端穿 过挡板 9的圆孔并卡入圆环内。
[0033] 槽架 10成 L型, 包括竖直面, 其底部延伸有水平面, 两个锁止块 27安装在竖直 面的中部, 竖直面的四角处分别安装有一个过线轮 29 , 水平面上间隔安装有两 个过线轮 29 , 两个锁止块 27的顶端分别通过带孔螺栓固定有绳索二 15的两个接 头, 两个接头从两侧分别绕经竖直面上的过线轮 29 , 再分别绕过水平面上的两 个过线轮 29后, 经过锁扣汇合成单条绳索后卷绕至副线槽 14内。
[0034] 倾斜支架 17有两根, 通过螺栓连接固定在基座 1的尾端, 两根倾斜支架 17上端 通过转轴及止推轴承套座安装轻质滑轮 33 , 支脚 18有两根, 且成倒 V形对称安装 在两根倾斜支架 17下方, 两根支脚 18的上端分别通过铰链结构与两根倾斜支架 1 7连接, 两根支脚 18底端支撑在地面上, 且开有线槽, 阻拦绳索 19从拉力传感器 20的一端伸出绕经轻质滑轮 33后, 分成两股绕经两个支脚 18的线槽后汇合, 将 阻拦绳索 19布成等腰三角形状的线网。
[0035] 阻拦网 21采用弹性网面材质, 通过连接件 22吊装在凸台 2底面上。
[0036] 主线槽 12的半径大于副线槽 14的半径。
[0037] 信号传输及控制装置包括安装在基座 1中部上表面控制伺服电机 13转动的伺服 驱动器 26、 计算并传输动力参数的上位机 24、 以及接收上位机 24运动控制程序 并向伺服驱动器 26传输信号的运动控制卡 25。
[0038] 如图 4所示, 弹射件 4整体成圆柱状, 沿其外壁轴向安装有多个压缩弹簧 30, 压 缩弹簧 30的一端固定在弹射件 4外壁上, 另一端固定在挡板 9内壁上, 外套筒 3内 壁面上沿轴向开有多个容纳压缩弹簧 30的槽孔; 弹射件 4末端延伸有圆锥状结构 , 并与挡板 9的圆孔相配合。
[0039] 如图 5和图 6所示, 本实施例的固定翼无人机起降系统的起降方法, 其弹射无人 机 31的过程包括如下步骤:
[0040] 第一步: 调整两各调节架 6相对于发射台架 5的角度, 调整调节架 6上两个限位 架 8之间的水平距离, 将待起飞的无人机 31放置在发射台架 5上; [0041] 第二步: 伺服电机 13驱动收线盘旋转, 使收线盘的主线槽 12释放绳索一 11, 释 放完毕后, 副线槽 14对绳索二 15继续进行牵引, 绳索二 15分成两支分别绕过槽 架 10上的过线轮 29后, 向两侧拉动两个锁止块 27 , 进而释放弹射件 4;
[0042] 第三步: 弹射件 4外壁上的压缩弹簧 30推动弹射件 4沿外套筒 3内壁向前运动, 同时带动可调式发射架及无人机 31—起向前弹射;
[0043] 其收回无人机 31的过程包括如下步骤:
[0044] 第一步: 无人机 31背部的尾钩 32勾住绕在支脚 18线槽内的阻拦绳索 19 , 使阻拦 绳索 19拉动拉力传感器 20和绳索三 16 ;
[0045] 第二步: 绳索三 16拉动弹射件 4并压缩弹簧 30以吸收无人机 31的动能, 无人机 3 1拉动阻拦绳索 19的同时产生环绕着轻质滑轮 33向上运动的惯性, 进而撞向阻拦 网 21, 即完成回收过程。
[0046] 本实施例的固定翼无人机起降系统的驱动控制方式:
[0047] 阻拦绳索 19在勾住无人机尾钩 32之前, 无人机 31通过自身内置的无线传输模块 将自身的速度 V, 高度 h和等效质量 M等参数传递给上位机 24 , 上位机 24根据无人 机 31的动力参数, 计算出降落时动能差 AE和势能差 AP, 进而建立固定翼无人机 阻拦系统的动力学模型:
[0048]
Figure imgf000008_0001
[0049] 其中 1为无人机勾住阻拦绳索 19后拉力传感器的位移变化, 0为阻拦绳索 19的在 轻质滑轮 33及两个支脚 18之间布成的等腰三角形状线网的底角, L为拉力传感器 20的最大水平位移; 求解出无人机阻拦降落的运动学方程:
[0050]
Figure imgf000008_0002
[0051] 进而根据该运动学方程求解所需阻拦绳索的张力 T(t)和伺服电机转速 co(t):
Figure imgf000009_0001
[0053] 其中 R为收线盘主线槽 12的半径, cp(t)为伺服电机 13的角位移补偿函数。 进而根 据伺服电机 13转速变化函数自动生成运动控制程序,并下载到运动控制卡 25 , 当 阻拦绳索 19勾住无人机尾钩 32时, 拉力传感器 20测得阻拦绳索 19中的张力, 并 反馈到运动控制卡 25 , 若该张力的值超出预定范围后, 运动控制卡 25开始执行 运动控制程序, 并向伺服驱动器 26发送脉冲以驱动伺服电机 13 , 使伺服电机 13 带动收线盘转动, 并通过缠绕在主线槽 12中的绳索一 11拉动弹射件 4, 进而将阻 拦绳索 19的张力值降低到预定范围内, 以实现固定翼无人机 31的平稳阻拦降落

Claims

权利要求书
[权利要求 1] 一种固定翼无人机起降系统, 其特征在于: 包括基座 (i) , 基座 (i ) 前端通过凸台 (2) 安装有能量储存装置, 能量储存装置包括外套 筒 (3) , 其固定安装在凸台 (2) 上表面, 外套筒 (3) 内部嵌套有 沿其滑动的弹射件 (4) , 弹射件 (4) 前端安装有可调式发射架, 可 调式发射架包括发射台架 (5) , 其两侧分别转动连接有调节架 (6)
, 每个调节架 (6) 的内侧分别固定连接有无人机托架 (7) , 每个调 节架 (6) 后侧顶部安装有限位架 (8) ; 外套筒 (3) 后端面处设有 一块中部开有圆孔的挡板 (9) , 挡板 (9) 下方对接有沿凸台 (2) 后端面安装的槽架 (10) , 槽架 (10) 上安装有锁止机构, 弹射件 ( 4) 通过弹簧与挡板 (9) 连接, 弹射件 (4) 的末端穿过挡板 (9) 的 圆孔并卡入所述锁止机构;
弹射件 (4) 末端端面上通过绳索一 (11) 与驱动控制机构连接, 所 述驱动控制机构包括收线盘, 其通过安装在基座 (1) 上表面中部的 伺服电机 (13) 驱动, 沿收线圆盘圆周一圈开有卷绕所述绳索一 (11 ) 的主线槽 (12) , 收线圆盘外端面上沿轴向延伸有与主线槽 (12) 同心的副线槽 (14) , 其上绕卷有绳索二 (15) , 绳索二 (15) 的另 一端连接至所述锁止机构;
弹射件 (4) 的末端端面通过绳索三 (16) 与阻拦回收机构连接, 阻 拦回收机构包括连接在基座 (1) 尾部两侧的倾斜支架 (17) , 倾斜 支架 (17) 上端通过转轴安装有轻质滑轮 (33) , 两根倾斜支架 (17 ) 下方各安装有一根支脚 (18) , 两个支脚 (18) 及轻质滑轮 (33) 上缠绕阻拦绳索 (19) , 并将其布成三角形状, 阻拦绳索 (19) 的末 端连接有拉力传感器 (20) , 拉力传感器 (20) 的另一端连接所述绳 索三 (16) ;
凸台 (2) 底面上吊装有阻拦网 (21) , 基座 (1) 中部上表面安装有 信号传输及控制装置, 所述信号传输及控制装置包括安装在基座 (1 ) 中部上表面控制伺服电机 (13) 转动的伺服驱动器 (26) 、 计算并 传输动力参数的上位机 (24) 、 以及接收上位机 (24) 运动控制程序 并向伺服驱动器 (26) 传输信号的运动控制卡 (25) 。
[权利要求 2] 如权利要求 1所述的一种固定翼无人机起降系统, 其特征在于: 所述 锁止机构的结构为: 包括两个相对安装的锁止块 (27) , 两个锁止块 (27) 的下端分别通过转动副固定在槽架 (10) 上, 两个锁止块 (27 ) 的中部通过拉簧 (28) 连接, 两个锁止块 (27) 的上端构成与所述 挡板 (9) 上的圆孔相连通的圆环, 弹射件 (4) 的末端穿过挡板 (9 ) 的圆孔并卡入圆环内。
[权利要求 3] 如权利要求 2所述的一种固定翼无人机起降系统, 其特征在于: 槽架
(10) 成 L型, 包括竖直面, 其底部延伸有水平面, 两个锁止块 (27 ) 安装在竖直面的中部, 竖直面的四角处分别安装有一个过线轮 (29 ) , 水平面上间隔安装有两个所述过线轮 (29) , 两个锁止块 (27) 的顶端分别通过带孔螺栓固定有绳索二 (15) 的两个接头, 两个接头 从两侧分别绕经竖直面上的过线轮 (29) , 再分别绕过水平面上的两 个过线轮 (29) 后, 经过锁扣汇合成单条绳索后卷绕至所述副线槽 ( 14) 内。
[权利要求 4] 一种利用权利要求 1所述的固定翼无人机起降系统的起降方法, 其特 征在于: 其弹射无人机 (31) 的过程包括如下步骤: 第一步: 调整两个调节架 (6) 相对于发射台架 (5) 的角度, 调整调 节架 (6) 上安装的两个限位架 (8) 之间的水平距离, 将待起飞的无 人机 (31) 放置在发射台架 (5) 上;
第二步: 伺服电机 (13) 驱动收线盘旋转, 使收线盘的主线槽 (12) 释放绳索一 (11) , 释放完毕后, 副线槽 (14) 对绳索二 (15) 继续 进行牵引, 绳索二 (15) 分成两支分别绕过槽架 (10) 上的过线轮 ( 29) 后, 向两侧拉动两个锁止块 (27) , 进而释放弹射件 (4) ; 第三步: 弹射件 (4) 外壁上的压缩弹簧 (30) 推动弹射件 (4) 沿外 套筒 (3) 内壁向前运动, 同时带动可调式发射架及无人机 (31) — 起向前弹射; 其收回无人机 (31) 的过程包括如下步骤:
第一步: 无人机 (31) 背部的尾钩 (32) 勾住绕在支脚 (18) 线槽内 的阻拦绳索 (19) , 使阻拦绳索 (19) 拉动拉力传感器 (20) 和绳索 三 (16) ;
第二步: 绳索三 (16) 拉动弹射件 (4) 并压缩弹簧 (30) 以吸收无 人机 (31) 的动能, 无人机 (31) 拉动阻拦绳索 (19) 的同时产生环 绕着轻质滑轮 (33) 向上运动的惯性, 进而撞向阻拦网 (21) , 即完 成回收过程。
PCT/CN2018/121909 2018-11-06 2018-12-19 一种固定翼无人机起降系统及其起降方法 WO2020093532A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2018420078A AU2018420078B2 (en) 2018-11-06 2018-12-19 Fixed-wing unmanned aerial vehicle take-off and landing system and method thereof
SG11202008018XA SG11202008018XA (en) 2018-11-06 2018-12-19 Fixed-wing unmanned aerial vehicle take-off and landing system and method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811310746.7 2018-11-06
CN201811310746.7A CN109592060B (zh) 2018-11-06 2018-11-06 一种固定翼无人机起降系统及其起降方法

Publications (1)

Publication Number Publication Date
WO2020093532A1 true WO2020093532A1 (zh) 2020-05-14

Family

ID=65957641

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/121909 WO2020093532A1 (zh) 2018-11-06 2018-12-19 一种固定翼无人机起降系统及其起降方法

Country Status (4)

Country Link
CN (1) CN109592060B (zh)
AU (1) AU2018420078B2 (zh)
SG (1) SG11202008018XA (zh)
WO (1) WO2020093532A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113815886A (zh) * 2021-10-24 2021-12-21 北京航空航天大学 细长机翼无人机起飞系统
CN114212268A (zh) * 2021-12-27 2022-03-22 西安现代控制技术研究所 一种筒内发射飞行器旋转偏心轮式电气保险开关机构
CN114379447A (zh) * 2022-03-01 2022-04-22 江西翱翔星云科技有限公司 一种无人机运载车用便于收纳的发射架及收纳方法
CN114527775A (zh) * 2022-02-25 2022-05-24 哈尔滨工业大学 面向小型舰船的无人机着陆制动装置
CN115338069A (zh) * 2022-06-30 2022-11-15 江西昊宇重工有限公司 一种钢制烟囱的防腐处理装置
CN116923716A (zh) * 2023-09-15 2023-10-24 北京星河动力装备科技有限公司 巡航靶标用发射装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110803291A (zh) * 2019-12-09 2020-02-18 航天时代飞鸿技术有限公司 一种基于无刷电机的绳钩回收阻尼系统
CN112498728A (zh) * 2020-12-09 2021-03-16 航天时代飞鸿技术有限公司 一种无刷电机驱动的电磁弹射器及方法
CN112829959B (zh) * 2021-02-10 2023-04-07 成都两江前沿科技有限公司 一种固定翼无人机移动发射回收一体化平台
CN114537692B (zh) * 2022-02-25 2022-08-23 哈尔滨工业大学 无人机在小型舰船着陆的双弧结构制动装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040232282A1 (en) * 2003-01-17 2004-11-25 Dennis Brian D. Methods and apparatuses for capturing and recovering unmanned aircraft, including a cleat for capturing aircraft on a line
KR100954276B1 (ko) * 2009-05-19 2010-04-23 한국항공우주산업 주식회사 무인 항공기용 발사 장비의 충격 흡수 장치
CN202848037U (zh) * 2012-10-23 2013-04-03 成都纵横自动化技术有限公司 一种挂索式无人机回收装置
CN103693206A (zh) * 2013-12-31 2014-04-02 东北大学 一种无人机的自主循环发射、回收装置
CN105109685A (zh) * 2015-09-29 2015-12-02 东北大学 一种无人机发射与回收装置及其方法
CN205256690U (zh) * 2015-12-08 2016-05-25 东北大学 一种无人机发射与回收装置
CN106697317A (zh) * 2016-11-30 2017-05-24 深圳市优鹰科技有限公司 一种固定翼无人机单轨弹射架
CN209097029U (zh) * 2018-11-06 2019-07-12 苏州璨辰智能科技有限公司 一种固定翼无人机起降系统

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6851647B1 (en) * 2003-04-03 2005-02-08 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Portable catapult launcher for small aircraft
US7335067B2 (en) * 2005-07-27 2008-02-26 Physical Optics Corporation Connector for harsh environments
IL177185A0 (en) * 2006-07-31 2007-07-04 Elbit Systems Ltd An unmanned aerial vehicle launching and landing system
US20120080556A1 (en) * 2010-10-05 2012-04-05 Lockheed Martin Corporation Systems and Methods for Autonomous Operations of Unmanned Aerial Vehicles
JP2016531799A (ja) * 2013-08-27 2016-10-13 エンジニアード・アレスティング・システムズ・コーポレーションEngineered Arresting Systems Corporation 無人航空機の電動発射装置
CN204737043U (zh) * 2015-04-28 2015-11-04 碳基科技股份有限公司 车载弹射架
CN105799948A (zh) * 2016-03-18 2016-07-27 北京理工大学 飞轮式高速无人机弹射器
CN205801542U (zh) * 2016-07-12 2016-12-14 福建工程学院 一种拆装式小型无人机弹射架
CN108557106B (zh) * 2018-04-26 2021-02-05 东北大学 一种具有储存和补给功能的无人机集群发射回收装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040232282A1 (en) * 2003-01-17 2004-11-25 Dennis Brian D. Methods and apparatuses for capturing and recovering unmanned aircraft, including a cleat for capturing aircraft on a line
KR100954276B1 (ko) * 2009-05-19 2010-04-23 한국항공우주산업 주식회사 무인 항공기용 발사 장비의 충격 흡수 장치
CN202848037U (zh) * 2012-10-23 2013-04-03 成都纵横自动化技术有限公司 一种挂索式无人机回收装置
CN103693206A (zh) * 2013-12-31 2014-04-02 东北大学 一种无人机的自主循环发射、回收装置
CN105109685A (zh) * 2015-09-29 2015-12-02 东北大学 一种无人机发射与回收装置及其方法
CN205256690U (zh) * 2015-12-08 2016-05-25 东北大学 一种无人机发射与回收装置
CN106697317A (zh) * 2016-11-30 2017-05-24 深圳市优鹰科技有限公司 一种固定翼无人机单轨弹射架
CN209097029U (zh) * 2018-11-06 2019-07-12 苏州璨辰智能科技有限公司 一种固定翼无人机起降系统

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113815886A (zh) * 2021-10-24 2021-12-21 北京航空航天大学 细长机翼无人机起飞系统
CN114212268A (zh) * 2021-12-27 2022-03-22 西安现代控制技术研究所 一种筒内发射飞行器旋转偏心轮式电气保险开关机构
CN114212268B (zh) * 2021-12-27 2023-10-31 西安现代控制技术研究所 一种筒内发射飞行器旋转偏心轮式电气保险开关机构
CN114527775A (zh) * 2022-02-25 2022-05-24 哈尔滨工业大学 面向小型舰船的无人机着陆制动装置
CN114379447A (zh) * 2022-03-01 2022-04-22 江西翱翔星云科技有限公司 一种无人机运载车用便于收纳的发射架及收纳方法
CN115338069A (zh) * 2022-06-30 2022-11-15 江西昊宇重工有限公司 一种钢制烟囱的防腐处理装置
CN115338069B (zh) * 2022-06-30 2024-02-06 江西昊宇重工有限公司 一种钢制烟囱的防腐处理装置
CN116923716A (zh) * 2023-09-15 2023-10-24 北京星河动力装备科技有限公司 巡航靶标用发射装置
CN116923716B (zh) * 2023-09-15 2024-02-23 北京星河动力装备科技有限公司 巡航靶标用发射装置

Also Published As

Publication number Publication date
AU2018420078B2 (en) 2021-02-11
CN109592060A (zh) 2019-04-09
SG11202008018XA (en) 2020-09-29
AU2018420078A1 (en) 2020-05-21
CN109592060B (zh) 2023-04-18

Similar Documents

Publication Publication Date Title
WO2020093532A1 (zh) 一种固定翼无人机起降系统及其起降方法
US10899441B1 (en) Multicopter-assisted system and method for launching and retrieving a fixed-wing aircraft
US11299264B2 (en) Multicopter-assisted system and method for launching and retrieving a fixed-wing aircraft
US9873525B2 (en) Aircraft retrieval device
CN110626516A (zh) 用于垂直起降飞行器的着舰装置及舰船
CN210214608U (zh) 一种无人机监管平台
CN113306738B (zh) 弹射起飞的共轴折叠桨无人机的工作方法
CN110949685A (zh) 一种旋转式无人机发射装置
CN109747830B (zh) 一种单组轮连杆式无人机投放装置及投放方法
CN216070567U (zh) 弹射起飞的共轴折叠桨无人机
CN115042974A (zh) 一种固定翼无人机的空中起降方法及其装置
CN110386257A (zh) 用于垂直升降飞行器的着舰装置及舰船

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018420078

Country of ref document: AU

Date of ref document: 20181219

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18939675

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18939675

Country of ref document: EP

Kind code of ref document: A1