WO2020091528A1 - 실링 유리 조성물 및 이를 이용한 고체산화물 연료 전지 - Google Patents

실링 유리 조성물 및 이를 이용한 고체산화물 연료 전지 Download PDF

Info

Publication number
WO2020091528A1
WO2020091528A1 PCT/KR2019/014753 KR2019014753W WO2020091528A1 WO 2020091528 A1 WO2020091528 A1 WO 2020091528A1 KR 2019014753 W KR2019014753 W KR 2019014753W WO 2020091528 A1 WO2020091528 A1 WO 2020091528A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass composition
sealing
sealing glass
present
solid oxide
Prior art date
Application number
PCT/KR2019/014753
Other languages
English (en)
French (fr)
Inventor
김남진
김영석
임상혁
Original Assignee
엘지전자 주식회사
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사, 주식회사 엘지화학 filed Critical 엘지전자 주식회사
Priority to EP19878795.4A priority Critical patent/EP3875439B1/en
Priority to US17/290,617 priority patent/US20220033296A1/en
Publication of WO2020091528A1 publication Critical patent/WO2020091528A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/068Glass compositions containing silica with less than 40% silica by weight containing boron containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/066Glass compositions containing silica with less than 40% silica by weight containing boron containing zinc
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/24Fusion seal compositions being frit compositions having non-frit additions, i.e. for use as seals between dissimilar materials, e.g. glass and metal; Glass solders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/028Sealing means characterised by their material
    • H01M8/0282Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a glass composition that can be used as a sealing material and a solid oxide fuel cell using the same.
  • a solid oxide fuel cell is a chemical cell that generates electricity by receiving oxidizing gases such as air and reducing fuel gases such as H 2 , CO, and CH 4 at high temperatures, respectively.
  • SOFC has advantages such as high thermal efficiency and low dependence on expensive catalysts due to its high operating temperature.
  • SOFC is composed of a unit cell composed of a cathode, a solid electrolyte, and an anode, and a planar design according to the type of interconnects connecting the unit cells to each other. ), Cylindrical design and flat tube design. In the flat type SOFC, it is essential to develop a sealing material to prevent mixing between fuels and to bond between components in the unit cell.
  • the low temperature solid oxide fuel cell operating at 600 ° C to 800 ° C has many advantages over the existing high temperature solid oxide fuel cell operating at 800 ° C to 1000 ° C.
  • the connector In the case of a high-temperature solid oxide fuel cell, the connector must be used as a ceramic due to the problem of metal oxidation, but the manufacturing cost can be lowered because the metal connector can be used when the operating temperature falls below 700 ° C, and the cost of the solid oxide fuel cell system is 50.
  • BOP balance of plant
  • the flat plate type In the case of the flat plate type, it exhibits excellent characteristics in terms of efficiency and power density compared to a cylindrical shape due to a short current path, but since most of the materials constituting it are ceramic composite monoliths, there is a problem of brittle fracture and technical problems according to a complicated manufacturing process. In particular, it is essential to develop a sealing glass material as a sealing material for bonding between constituent layers. If the mixture of fuel gas and air gas occurs at a high temperature, the operation of the SOFC stack structure is damaged due to heat generation or explosion due to oxidation of the fuel gas by air, and operation is stopped. In addition, when the partial pressure of each gas in the anode and the cathode is lowered by the mixing of the two gases, the electromotive force is reduced and normal electricity production is not achieved.
  • the sealing material applied to the solid oxide fuel cell operating at 800 ° C to 1000 ° C is heat-treated at least 850 ° C or higher, it is difficult to be used in a low temperature solid oxide fuel cell. Accordingly, it is required to develop a sealing material that can be used in a low-temperature solid oxide fuel cell and has excellent sealing adhesive strength even after long-term use.
  • the existing sealing material contains a certain amount of components to improve the fluidity of the glass, but does not have an appropriate component and composition ratio that can match the coefficient of thermal expansion with the base material, so there is a problem such as cracking during long-time operation of SOFC. .
  • sealing glass composition having excellent chemical durability and heat resistance under SOFC operating conditions of 600 to 700 ° C. while heat treatment is performed at 800 ° C. or less.
  • An object of the present invention is to provide a new sealing glass composition suitable for use in a solid oxide fuel cell operating at a medium to low temperature of 600 to 700 ° C and having excellent sealing adhesive strength even after long-term use.
  • an object of the present invention is to provide a new sealing glass composition having excellent durability without improving peeling or breakage by matching the coefficient of thermal expansion with the base material while improving the high-temperature fluidity of the glass.
  • an object of the present invention is to provide a new sealing glass composition excellent in chemical durability and heat resistance under SOFC operating conditions of 600 to 700 ° C while heat treatment is performed at 800 ° C or lower.
  • the sealing glass composition according to the present invention is SiO 2 10-35 wt%, B 2 O 3 3 to 35 wt%, BaO 30 to 65 wt%, CaO 0.1 to 15 wt%, NiO 0.1 to 3 wt% and CuO 0.1 to 3 wt%.
  • the sealing glass composition according to the present invention has a content of SiO 2
  • the content of BaO may be 1/2 or less
  • the content of CaO may be less than the content of B 2 O 3 .
  • Al 2 O 3 , ZrO 2 , La 2 O 3 , SrO and MgO in order to provide a new sealing glass composition excellent in chemical durability and heat resistance under SOFC operation conditions of 600 to 700 ° C., while heat treatment is performed at 800 ° C. or lower. It may further include one or more.
  • the sealing glass composition according to the present invention has a new component system including SiO 2 , B 2 O 3 , BaO, and CaO along with a specific composition ratio of NiO and CuO, and is suitable to operate at a low temperature unlike the conventional sealing material glass composition. Even after long-term use, there is an excellent effect of minimizing the decrease in sealing adhesive strength.
  • the sealing glass composition according to the present invention may have an optimal ratio of SiO 2 and BaO, and may also have an optimal ratio of CaO and B 2 O 3 , thereby improving the high temperature fluidity of the glass and thermal expansion coefficient with the base material. Is matched, and there is an effect that no delamination or damage phenomenon occurs.
  • the sealing glass composition according to the present invention further includes one or more of Al 2 O 3 , ZrO 2 , La 2 O 3 , SrO, and MgO, while SOFC operating conditions of 600 to 700 ° C. are performed while heat treatment is performed at 800 ° C. or less. It has an excellent effect in chemical durability and heat resistance.
  • FIG. 1 is a cross-sectional view showing a schematic structure of a flat-type solid oxide fuel cell.
  • sealing glass composition suitable for use in a low-temperature solid oxide fuel cell that is operated at a temperature condition of about 600 to 700 ° C. Accordingly, the present inventors have completed a novel sealing glass composition that is particularly suitable for a heat treatment process (sealing process) at 800 ° C. or lower, and is excellent in durability even when applied to a low-temperature solid oxide fuel cell for a long time, and has particularly excellent adhesion strength at an interface with a base material Did.
  • the sealing glass composition according to the present invention is SiO 2 10 ⁇ 35 wt%, B 2 O 3 3 ⁇ 35 wt%, BaO 30 ⁇ 65 wt%, CaO 0.1 ⁇ 15 wt%, NiO 0.1 ⁇ 3 wt%, CuO 0.1 ⁇ 3% by weight.
  • the sealing glass composition according to the present invention includes the SiO 2 in a range of 10 to 35% by weight. If the SiO 2 is contained in less than 10% by weight, crystallization of the glass is easily generated, and thus the sealing itself is difficult. If the SiO 2 is included in excess of 35% by weight, the fusion flow at a high temperature rapidly increases. Accordingly, there is a problem that sufficient sealing cannot be achieved between the component parts.
  • B 2 O 3 acts as a glass forming agent to enable sufficient vitrification along with SiO 2 and corresponds to a component that lowers the melting temperature, softening temperature, and high temperature viscosity of the glass and reduces the crystallization amount of the glass composition.
  • the sealing glass composition according to the present invention contains 3 to 35% by weight of the B 2 O 3 .
  • the B 2 O 3 is included in an amount of less than 3% by weight, the softening point increases, and thus the viscosity at high temperature may be high, and airtightness may be deteriorated.
  • the B 2 O 3 is included in excess of 35% by weight, the water resistance of the sealing material is weakened, and above all, there is a problem that material deterioration may occur during long-time operation of the low-temperature SOFC.
  • BaO suppresses devitrification of glass and is a component that can improve fluidity by lowering the high temperature viscosity.
  • the sealing glass composition according to the present invention contains 30 to 65% by weight of the BaO. When the BaO is contained in less than 30% by weight, a problem in that the fluidity of the glass is lowered may occur. In addition, when the BaO is contained in excess of 65% by weight, the Ba component in the glass composition reacts with the Cr component from the base material (connection material) formed of stainless steel, thereby generating BaCrO4, thereby giving a large change in the coefficient of thermal expansion of the sealing material. When the SOFC is operated for a long time, there is a problem that cracks may occur in the base material and the sealing material.
  • CaO corresponds to a component that can control the thermal expansion coefficient of the sealing glass composition and improve the durability of the sealing material.
  • the sealing glass composition according to the present invention contains 0.1 to 15% by weight of the CaO.
  • the CaO is included in an amount of less than 0.1% by weight, a problem may occur in that the required thermal expansion coefficient is not obtained and the fluidity of the glass is lowered.
  • the CaO is contained in excess of 15% by weight, devitrification of the glass may occur, and there is a problem that high temperature fluidity may be deteriorated.
  • the sealing glass composition according to the present invention reduces the reaction between Ba and the Cr component from the base material (connecting material) in the glass composition and prevents the adhesion strength of the sealing material from dropping rapidly even after SOFC is operated for a long time. It includes.
  • the sealing glass composition according to the present invention includes NiO and CuO, 2Cr + 3NiO-> Cr 2 O 3 + 3Ni, 2Cr + 6CuO-> 3CuO 2 + Cr 2 O 3 reaction is induced in the sealing material.
  • the sealing glass composition according to the present invention contains 0.1 to 3% by weight of the NiO and 0.1 to 3% by weight of the CuO. If the NiO and CuO are included below a minimum component, a problem in that the adhesive strength of the sealing material falls rapidly may occur. In addition, when the NiO and CuO are included in excess of the maximum component, relatively few other components are included, and thus there is a problem that the required durability or the required thermal expansion coefficient of the sealing material is not obtained.
  • the content of the SiO 2 may be adjusted to 1/2 or less of the content of the BaO.
  • the BaO component corresponds to a component that improves fluidity, and is particularly preferably contained at least twice the content of SiO 2 in order to impart proper fluidity in the component system of the sealing glass composition according to the present invention.
  • the content of SiO 2 exceeds 1/2 of the content of BaO, there is a problem in that the fluidity of the glass is lowered and sealing is poor.
  • the sealing glass composition according to the present invention can preferably be adjusted so that the content of CaO is less than the content of B 2 O 3 in order to match the coefficient of thermal expansion with the base material.
  • the sealing glass composition according to the present invention may be advantageous in matching the thermal expansion coefficient with the base material while securing the fluidity of the glass due to the CaO being contained below the content of B 2 O 3 .
  • the sealing glass composition according to the present invention may further include at least one of Al 2 O 3 , ZrO 2 , La 2 O 3 , SrO and MgO to improve the chemical durability and heat resistance of the sealing material, preferably It may be included in the range of 0.1 to 20% by weight.
  • Al 2 O 3 , ZrO 2 , La 2 O 3 , SrO and MgO is included in less than 0.1% by weight, the effect of improving chemical durability and heat resistance may be insignificant, and when it is included in excess of 20% by weight, There is a problem that devitrification of glass may occur.
  • the sealing glass composition according to the present invention may further include one or more of ZnO and LiO 2 to improve fusion flow and maintain proper spreadability under sealing conditions, and preferably included in a range of 0.1 to 10% by weight Can be. If at least one of the ZnO and LiO 2 is contained in less than 0.1% by weight, the sealing material may not maintain proper spreadability under sealing conditions, and if it is included in excess of 10% by weight, crystallization of the glass is easily generated and sealing There is a difficult problem.
  • the sealing glass composition according to the present invention may preferably have a hemisphere temperature of 800 ° C. or less so as to be suitable for a heat treatment process (seal process) of 800 ° C. or less.
  • the hemispherical temperature can be measured by a microscopic method using a high-temperature microscope, and means a temperature at which cylindrical test specimens fuse with each other to form a hemispherical mass.
  • the sealing glass composition according to the present invention has a hemispherical temperature of 800 ° C. or less, thereby ensuring sufficient airtightness at a temperature of about 600 to 700 ° C.
  • the present invention provides a solid oxide fuel cell comprising a sealing material formed of the aforementioned sealing glass composition. More preferably, the solid oxide fuel cell may be a mesophilic solid oxide fuel cell operating in a temperature range of 600 to 700 ° C.
  • the solid oxide fuel cell may include a cathode and an anode, an electrolyte provided between the cathode and the anode, an interconnector, and a frame, and the structure is not particularly limited.
  • the solid oxide fuel cell prevents gas mixing between the positive electrode and the negative electrode, and a perfect seal is required for electrical insulation at the edges of the electrodes, electrolytes, and interconnectors of each cell.
  • the sealing material formed of the sealing glass composition according to the present invention can be applied to seal between each electrode and the interconnector, between the electrolyte and the interconnector, between the cell stack and the frame.
  • sealing material formed of the sealing glass composition according to the present invention can be applied to various parts depending on the structure of the solid oxide fuel cell.
  • the sealing method of the solid oxide fuel cell according to the present invention is performed through a process (sealing process) of applying a sealing glass composition according to the present invention to a portion requiring sealing, and heat-treating at a temperature of 800 ° C. or lower. .
  • a sealing glass composition having a composition ratio shown in Table 1 below was prepared.
  • BaCO 3 , CaCO 3, and SrCO 3 were used as raw materials of BaO, CaO, and SrO, respectively, and the same components as the components listed in Table 1 below were used.
  • the prepared glass composition was melted in an electric furnace at a temperature range of 1200 to 1350 ° C. and then quenched dry using a twin roll.
  • the cullet obtained by quenching was pulverized with a dry grinder and passed through a 230 mesh sieve to prepare glass powder having a D 50 particle diameter of 15 to 25 ⁇ m.
  • Example Comparative example One 2 3 4 5 One 2 SiO 2 19.6 24.9 25 22.4 24.4 18.7 39.8 B 2 O 3 15.9 10.1 8.9 14.8 13.9 11.2 9.1 BaO 50.5 50.8 50.1 48.2 50.1 51.5 38.3 CaO 12.3 7.5 13.1 12.3 12.3 8.2 0.9 Al 2 O 3 0.8 2.5 2.7 0.6 0.6 7.9 4.9 ZrO 2 - One - 0.2 - 0.3 - La 2 O 3 - - - 0.4 - 2 7 SrO 0.2 0.8 - 0.2 0.2 - - MgO 0.2 One - 0.2 0.2 0.2 - ZnO - One - 0.2 - - - Li 2 O 0.2 0.2 - 0.2 - - NiO 0.15 0.1 0.1 0.15 0.4 - - CuO 0.15 0.1 0.1 0.15 0.3 - -
  • the powders prepared from the above Examples and Comparative Examples were prepared as pellets, maintained at 750 ° C., and after thermal cooling, thermal expansion coefficients were measured using a TMA equipment (TMA-Q400 TA instrument).
  • the glass powders produced by Examples 1 to 5 were manufactured into pellets, and then placed on stainless steel (SUS441) and heat-treated at 750 ° C for 5 hours. After the heat treatment was completed, exposure was performed at 680 ° C. for 50 hours to examine the change of the sealing material.
  • Example Comparative example One 2 3 4 5 One 2 Coefficient of thermal expansion (CTE (x 0 -7 / °C) 107.3 104.2 105.5 106.9 108.1 106.7 87.4
  • Examples 1 to 5 have a coefficient of thermal expansion within a range of 103 to 114 (x10 -7 / ° C). Since the bonding base material is stainless steel (SUS441), its thermal expansion coefficient corresponds to about 115 (x10 -7 / ° C), and it can be seen that Examples 1 to 5 and Comparative Example 1 match the thermal expansion coefficient to the bonding base material. . However, in Comparative Example 2, the thermal expansion coefficient corresponds to a range of 85 to 95 (x10 -7 / ° C), so it can be confirmed that the bonding base material and the thermal expansion coefficient do not match.
  • the adhesive strength was observed by measuring the shear tensile stress between the sealing material and the base material.
  • the shear tensile stress was determined by fixing both ends of the sample to a measuring device (all-purpose material testing machine) and pulling the stainless steel (SUS441) and sealing material on both sides to test the adhesion.
  • the shear tensile stress measurement results of Examples 1 to 5 and Comparative Example 1 are shown in Table 3 below.
  • Example Comparative example One 2 3 4 5 One Shear stress before heat treatment (kgf) 103.5 103.1 103.2 103.7 102.9 102.7 Shear tensile stress (kgf) after heat treatment at 650 °C for 5 hours 96.5 96.2 96.4 97.0 96.0 82.7
  • the sealing material according to the embodiment containing a certain amount of NiO and CuO can be confirmed that the reaction between the BaO component of the sealing material and the Cr component of the base material is suppressed and thus the reduction in shear tensile stress is minimized.
  • the sealing material according to the comparative example it can be seen that after the heat treatment, the BaO component and the Cr component of the base material react, resulting in a rapid decrease in shear tensile stress.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Glass Compositions (AREA)
  • Fuel Cell (AREA)

Abstract

본 발명은 실링재로 사용할 수 있는 유리 조성물 및 이를 이용한 고체산화물 연료전지에 관한 것이다. 본 발명에 따른 실링 유리 조성물은 SiO2 10~35 중량%, B2O3 3~35 중량%, BaO 30~65 중량%, CaO 0.1~15 중량%, NiO 0.1~3 중량% 및 CuO 0.1~3 중량%를 포함하여, 종래의 실링재 유리 조성물과 달리 중저온에서 작동하는 고체산화물 연료전지에 적합하게 사용 가능하고 특히 장기간 사용 후에도 실링 접착강도의 저하가 최소화되는 우수한 효과가 있다.

Description

실링 유리 조성물 및 이를 이용한 고체산화물 연료 전지
본 발명은 실링재로 사용할 수 있는 유리 조성물 및 이를 이용한 고체산화물 연료전지에 관한 것이다.
고체산화물 연료전지(Solid Oxide Fuel Cell; SOFC)는 공기와 같은 산화성 가스와 H2, CO, CH4와 같은 환원성 연료가스를 각각 고온에서 공급받아 전기를 발생시키는 화학전지이다. SOFC는 높은 운전온도로 인하여 높은 열효율, 고가 촉매에 대한 낮은 의존도 등의 장점이 있다.
그러나, SOFC에서는 구성재료가 고온에 노출되므로 전지 구성재료의 내구성이 큰 문제가 된다. 그 때문에 실용화를 앞두고 작동온도 중저온용 재료나 전지 구성 등에 대한 기초적인 연구를 필요로 하고 있다.
SOFC는 양극(cathode), 고체전해질(solid electrolyte), 음극(anode)으로 이루어진 단위전지(unit cell)로 구성되어 있으며, 단위전지를 서로 연결시키는 접속자(interconnect)의 형태에 따라 평판형(planar design), 원통형(tubular design) 및 평관형(plat tube design)이 있으며 평판형 SOFC에는 연료간의 혼합을 막고 단위전지 내의 구성요소 사이의 접합을 위해 실링재의 개발이 필수적이다.
최근에 중저온 SOFC의 실용화를 위해 많은 연구가 진행 중이다. 600℃~800℃에서 작동하는 중저온 고체산화물 연료전지의 경우 800℃~1000℃에서 작동하는 기존의 고온 고체산화물 연료전지에 비해 많은 장점을 가지고 있다. 고온 고체산화물 연료전지의 경우는 금속 산화 문제로 인하여 접속자를 세라믹으로 써야 하지만 작동온도가 700℃ 이하로 내려가면 금속 접속자를 사용할 수 있기 때문에 제조원가를 낮출 수 있고, 고체산화물 연료전지 시스템의 가격의 50% 정도를 차지하는 BOP (balance of plant)의 디자인과 재료선택에 있어서 선택의 폭이 넓어져 제조 원가를 혁신적으로 낮출 수 있다. 또한 저온에 작동할수록 스타트업(start up)과 셧다운(shut down)등의 열사이클 대응이 용이하며 내구성을 증가시킬 수 있다.
평판형의 경우는 짧은 전류경로로 인해 원통형에 비해 효율성 및 전력밀도면에서 우수한 특성을 보이지만 이를 구성하는 재료 대부분이 세라믹 복합 단일체이므로 취성 파괴의 문제점과 더불어 복잡한 제조공정에 따른 기술적 문제가 있다. 특히 구성층 사이를 접합하기 위한 밀봉 재료로서 실링 유리재의 개발이 필수적이다. 만약, 고온에서 연료가스와 공기가스가 혼합이 일어나는 경우에는 공기에 의한 연료가스의 산화반응에 의해 발열 또는 폭발에 따라 SOFC 스택 구조의 손상을 초래하여 운전이 정지된다. 또한 두 가스의 혼합에 의해 연료극과 공기극에서 각 가스 분압이 낮아지면, 기전력이 감소되어 정상적인 전기 생산이 이루어지지 않는다.
현재 평판형 SOFC에서 요구되는 장기 밀봉 성능과 소재에 대한 신뢰성 모두를 만족할 수 있는 적합한 밀봉 방법과 실링재에 대하여 많은 기술개발이 수행되고 있으나 SOFC의 실용화 및 상용화가 가능한 정도의 기술 개발이 이루어지지 못하고 있는 실정이다.
이와 관련하여 800℃~1000℃에서 작동하는 고체산화물 연료전지에 적용되는 실링 유리 조성물이 널리 알려져 있다.
그러나, 800℃~1000℃에서 작동하는 고체산화물 연료전지에 적용되는 실링재는 최소 850℃ 이상에서 열처리가 행해지기 때문에 중저온 고체산화물 연료전지에 사용되기 어려운 문제점이 있다. 이에 따라 중저온 고체산화물 연료전지에 사용 가능하고 장기간 사용 후에도 실링 접착강도가 우수한 실링재의 개발이 요구되고 있다.
또한, 기존의 실링재는 유리의 유동성을 향상시키기 위한 성분을 일정량 포함하지만, 모재와의 열팽창 계수를 매칭할 수 있는 적절한 성분 및 조성비를 갖지 못하여 SOFC의 장시간 운전 시 균열이 발생하는 등의 문제점이 있다.
또한, 기존의 실링재와는 달리 800 ℃ 이하에서 열처리가 행해지면서도 600 ~ 700 ℃의 SOFC 운전 조건에서 화학적 내구성 및 내열성이 우수한 실링 유리 조성물의 개발이 요구되고 있다.
본 발명은 600~700℃의 중저온에서 작동하는 고체산화물 연료전지에 사용되기 적합하고 장기간 사용 후에도 실링 접착강도가 우수한 새로운 실링 유리 조성물을 제공하는 것을 목적으로 한다.
또한 본 발명은, 유리의 고온 유동성을 향상시킴과 더불어 모재와의 열팽창 계수가 매칭되어 박리 내지는 파손 현상이 발생하지 않고 내구성이 우수한 새로운 실링 유리 조성물을 제공하는 것을 목적으로 한다.
또한 본 발명은, 800 ℃ 이하에서 열처리가 행해지면서도 600 ~ 700 ℃의 SOFC 운전 조건에서 화학적 내구성 및 내열성이 우수한 새로운 실링 유리 조성물을 제공하는 것을 목적으로 한다.
중저온에서 작동하는 고체산화물 연료전지에 사용되기 적합하고 장기간 사용 후에도 실링 접착강도가 우수한 실링 유리 조성물을 제공하기 위해, 본 발명에 따른 실링 유리 조성물은 SiO2 10~35 중량%, B2O3 3~35 중량%, BaO 30~65 중량%, CaO 0.1~15 중량%, NiO 0.1~3 중량% 및 CuO 0.1~3 중량%를 포함한다.
아울러, 유리의 고온 유동성을 향상시킴과 더불어 모재와의 열팽창 계수가 매칭되어 박리 내지는 파손 현상이 발생하지 않는 새로운 실링 유리 조성물을 제공하기 위해, 본 발명에 따른 실링 유리 조성물은 SiO2의 함량이 상기 BaO의 함량의 1/2 이하일 수 있고, 또한 CaO의 함량은 B2O3의 함량 미만일 수 있다.
아울러, 800 ℃ 이하에서 열처리가 행해지면서도 600 ~ 700 ℃의 SOFC 운전 조건에서 화학적 내구성 및 내열성이 우수한 새로운 실링 유리 조성물을 제공하기 위해 Al2O3, ZrO2, La2O3, SrO 및 MgO 가운데 1종 이상을 더 포함할 수 있다.
본 발명에 따른 실링 유리 조성물은 SiO2, B2O3, BaO 및 CaO와 더불어 NiO와 CuO를 특유의 조성비로 포함한 새로운 성분계를 가짐으로써, 종래의 실링재 유리 조성물과 달리 중저온에서 작동하기 적합하고 장기간 사용 후에도 실링 접착강도의 저하가 최소화되는 우수한 효과가 있다.
아울러, 본 발명에 따른 실링 유리 조성물은 SiO2와 BaO의 최적비를 가질 수 있으며, 또한 CaO와 B2O3의 최적비를 가질 수 있어 유리의 고온 유동성을 향상시킴과 더불어 모재와의 열팽창 계수가 매칭되어 박리 내지는 파손 현상이 발생하지 않는 효과가 있다.
더 나아가 본 발명에 따른 실링 유리 조성물은 Al2O3, ZrO2, La2O3, SrO 및 MgO 가운데 1종 이상을 더 포함하여 800 ℃ 이하에서 열처리가 행해지면서도 600 ~ 700 ℃의 SOFC 운전 조건에서 화학적 내구성 및 내열성이 우수한 효과가 있다.
도 1은 평판형 고체산화물 연료전지의 개략적인 구조를 도시한 단면도이다.
전술한 목적, 특징 및 장점은 상세하게 후술되며, 이에 따라 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명의 기술적 사상을 용이하게 실시할 수 있을 것이다. 본 발명을 설명함에 있어서 본 발명과 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 상세한 설명을 생략한다. 이하, 본 발명에 따른 바람직한 실시예를 상세히 설명하기로 한다.
본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예는 본 발명의 개시가 완전하도록 하며 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위하여 제공되는 것이다.
이하, 본 발명에 따른 실링 유리 조성물 및 이를 이용한 고체산화물 연료전지에 대해 상세히 설명하기로 한다.
<실링 유리 조성물>
약 600~700℃에서 온도조건에서 구동되는 중저온 고체산화물 연료전지에 적용되기 적합한 실링 유리 조성물의 개발이 요구되고 있다. 이에 본 발명자들은 특히 800℃ 이하에서 열처리 공정(실링 공정)에 적합하며 중저온 고체산화물 연료전지에 장시간 적용되어도 내구성이 우수하고 특히 모재와의 접착 계면에서 접착강도가 우수한 신규의 실링 유리 조성물을 완성하였다.
본 발명에 따른 실링 유리 조성물은 SiO2 10~35 중량%, B2O3 3~35 중량%, BaO 30~65 중량%, CaO 0.1~15 중량%, NiO 0.1~3 중량% 및 CuO 0.1~3 중량%를 포함한다.
SiO2는 유리형성능력을 향상시키며 유리의 망목구조를 형성하기 위한 성분에 해당한다. 본 발명에 따른 실링 유리 조성물은 상기 SiO2를 10~35 중량%의 범위로 포함한다. 상기 SiO2가 10 중량% 미만으로 포함되면 유리의 결정화가 쉽게 발생되어 실링 자체가 어려운 문제가 있고 상기 SiO2가 35 중량%를 초과하여 포함되면 고온에서의 융합 흐름(fusion flow)이 급격히 높아짐에 따라 구성 부품간에 충분한 실링이 이루어지지 못하는 문제점이 있다.
B2O3는 SiO2와 더불어 충분한 유리화가 가능하도록 유리 형성제로서의 역할을 하며 유리의 용융 온도, 연화 온도, 고온 점도를 낮추고 유리 조성물의 결정화 양을 감소시키는 성분에 해당한다. 본 발명에 따른 실링 유리 조성물은 상기 B2O3를 3~35 중량% 포함한다. 상기 B2O3가 3 중량% 미만으로 포함되면 연화점이 상승하여 고온에서의 점도가 높아 기밀성이 저하될 수 있다. 또한 상기 B2O3가 35 중량%를 초과하여 포함되면 실링재의 내수성이 약해지고 무엇보다 중저온 SOFC의 장시간 운전시 재료의 열화가 발생할 수 있는 문제가 있다.
BaO는 유리의 실투를 억제시키며 고온 점도를 낮추어 유동성을 향상시킬 수 있는 성분에 해당한다. 본 발명에 따른 실링 유리 조성물은 상기 BaO를 30~65 중량% 포함한다. 상기 BaO가 30 중량% 미만으로 포함되면 유리의 유동성이 저하되는 문제점이 발생할 수 있다. 또한 상기 BaO가 65 중량%를 초과하여 포함되면 유리 조성물 내의 Ba 성분이 특히 스테인리스 강으로 형성된 모재(연결재)에서 나온 Cr 성분과 반응하여 BaCrO4를 생성하게 되며 이를 통해 실링재의 열팽창계수에 큰 변화를 주어 SOFC의 장시간 작동 시 모재와 실링재에 크랙이 발생될 수 있는 문제가 있다.
CaO는 실링 유리 조성물의 열팽창계수를 제어하고 실링재의 내구성을 향상시킬 수 있는 성분에 해당한다. 본 발명에 따른 실링 유리 조성물은 상기 CaO를 0.1~15 중량% 포함한다. 상기 CaO가 0.1 중량% 미만으로 포함되면 요구되는 열팽창계수를 얻지 못하고 유리의 유동성이 저하되는 문제점이 발생할 수 있다. 또한 상기 CaO가 15 중량%를 초과하여 포함되면 유리의 실투가 발생할 수 있고 또한 고온 유동성이 저하될 수 있는 문제가 있다.
다음으로 본 발명에 따른 실링 유리 조성물은 유리 조성물 내에서 Ba과 모재(연결재)에서 나온 Cr 성분과의 반응을 감소시키고 SOFC가 장시간 운전 후에도 실링재의 접착강도가 급격하게 떨어지는 것을 방지하기 위해서 NiO와 CuO 를 포함한다. 본 발명에 따른 실링 유리 조성물이 NiO와 CuO를 포함함으로써 실링재에서는 2Cr + 3NiO -> Cr2O3 + 3Ni, 2Cr + 6CuO -> 3CuO2 + Cr2O3 반응이 유도된다. 본 발명에 따른 실링 유리 조성물은 상기 NiO를 0.1~3 중량% 포함하고 상기 CuO를 0.1~3 중량% 포함한다. 상기 NiO와 CuO가 최소 성분 미만으로 포함되면 실링재의 접착강도가 급격하게 떨어지는 문제가 발생할 수 있다. 또한 상기 NiO와 CuO가 최대 성분을 초과하여 포함되면 비교적 다른 성분이 적게 포함되어 실링재의 요구되는 내구성이나 요구되는 열팽창계수를 얻지 못하는 문제가 있다.
보다 바람직하게는, 본 발명에 따른 실링 유리 조성물은 상기 상기 SiO2의 함량이 상기 BaO의 함량의 1/2 이하로 조절될 수 있다. BaO 성분은 앞서 언급한 바와 같이 유동성을 향상시키는 성분에 해당하며 특히 본 발명에 따른 실링 유리 조성물의 성분계에서 적절한 유동성을 부여하기 위해 SiO2의 함량의 2배 이상 함유되는 것이 바람직하다. 반대로 SiO2의 함량이 BaO의 함량의 1/2을 초과하여 함유되면 유리의 유동성이 저하되어 실링이 잘 이루어지지 않는 문제가 있다.
또한 본 발명에 따른 실링 유리 조성물은 바람직하게는 모재와의 열팽창계수를 매칭하기 위해서 상기 CaO의 함량이 B2O3의 함량 미만이 되도록 조절할 수 있다. 본 발명에 따른 실링 유리 조성물은 CaO가 B2O3의 함량 미만으로 포함됨으로 인해 유리의 유동성을 확보함과 동시에 모재와의 열팽창계수 매칭에 유리할 수 있다.
다음으로, 본 발명에 따른 실링 유리 조성물은 실링재의 화학적 내구성과 내열성 향상을 위해 Al2O3, ZrO2, La2O3, SrO 및 MgO 가운데 1종 이상을 더 포함할 수 있고, 바람직하게는 0.1 ~ 20 중량%의 범위로 포함될 수 있다. 상기 Al2O3, ZrO2, La2O3, SrO 및 MgO 가운데 1종 이상이 0.1 중량% 미만으로 포함되면 화학적 내구성과 내열성 향상 효과가 미미할 수 있고, 또한 20 중량%를 초과하여 포함되면 오히려 유리의 실투가 발생할 수 있는 문제가 있다.
아울러 본 발명에 따른 실링 유리 조성물은 Fusion flow를 향상시켜 실링 조건에서 적절한 퍼짐성을 유지할 수 있도록 ZnO 및 LiO2 가운데 1종 이상을 더 포함할 수 있고, 바람직하게는 0.1 ~ 10 중량%의 범위로 포함될 수 있다. 상기 ZnO 및 LiO2 가운데 1종 이상이 0.1 중량% 미만으로 포함되면 실링재가 실링 조건에서 적절한 퍼짐성이 유지되지 않을 수 있고, 또한 10 중량%를 초과하여 포함되면 오히려 유리의 결정화가 쉽게 발생되어 실링이 어려워지는 문제가 있다.
또한 본 발명에 따른 실링 유리 조성물은 800 ℃ 이하의 열처리 공정(실링 공정)에 적합할 수 있도록 바람직하게는 800 ℃ 이하의 반구형 온도 (hemisphere temperature)를 가질 수 있다. 상기 반구형 온도는 고온 현미경을 이용하여 현미경 방법으로 측정할 수 있으며, 원통형인 시험 시편이 서로 융합하여 반구형 매스를 형성하는 온도를 의미한다. 본 발명에 따른 실링 유리 조성물이 800 ℃ 이하의 반구형 온도를 가짐으로써 약 600 ~ 700 ℃의 온도에서 충분한 기밀성을 확보할 수 있다.
<고체산화물 연료전지 및 이의 실링 방법>
본 발명은 앞서 언급한 실링 유리 조성물로 형성되는 실링재를 포함한 고체산화물 연료전지를 제공한다. 보다 바람직하게는 상기 고체산화물 연료전지는 600 ~ 700 ℃ 온도 범위에서 작동하는 중저온 고체산화물 연료전지일 수 있다.
도 1을 참조하면, 고체산화물 연료전지는 음극과 양극, 상기 음극와 양극 사이에 구비된 전해질, 인터커넥터 및 프레임을 포함할 수 있으며, 그 구조가 특별히 제한되는 것은 아니다.
고체산화물 연료전지는 상기 양극와 음극의 가스 혼합을 방지하고, 각 셀의 전극, 전해질 및 인터커넥터의 가장자리에 전기적 절연을 위해서 완벽한 밀봉이 요구된다.
이를 위해 본 발명에 따른 실링 유리 조성물로 형성된 실링재는 각 전극과 인터커넥터 사이, 전해질과 인터커넥터 사이, 셀 스택과 프레임 사이를 밀봉하도록 적용될 수 있다.
또한, 본 발명에 따른 실링 유리 조성물로 형성된 실링재는 고체산화물 연료전지의 구조에 따라 여러 부분에 적용될 수 있다.
본 발명에 따른 고체산화물 연료전지의 실링 방법은 실링이 필요한 부분에 본 발명에 따른 실링 유리 조성물을 도포하는 등의 방식으로 적용하고 800 ℃ 이하의 온도에서 열처리하는 공정(실링 공정)을 통해 수행된다.
이하, 이하, 실시예를 통해 본 발명의 구체적인 태양을 살펴보기로 한다.
< 실시예 >
<실링 유리 조성물의 제조>
하기 표 1에 기재된 조성비를 갖는 실링 유리 조성물을 제조하였다. 각 성분 가운데 BaO, CaO 및 SrO의 원재료는 각각 BaCO3, CaCO3 및 SrCO3를 사용하였고 나머지 성분은 하기 표 1에 기재된 성분과 동일한 성분을 사용하였다. 제조된 유리 조성물을 전기로에서 1200 ~ 1350 ℃의 온도 범위에서 용융시킨 후 트윈롤을 이용하여 건식으로 급냉하였다. 급냉하여 얻은 컬릿을 건식분쇄기로 분쇄 후 230 메쉬 시브에 통과시켜 D50 입경이 15 ~ 25 ㎛인 유리 분말을 제조하였다.
성분(중량%) 실시예 비교예
1 2 3 4 5 1 2
SiO2 19.6 24.9 25 22.4 24.4 18.7 39.8
B2O3 15.9 10.1 8.9 14.8 13.9 11.2 9.1
BaO 50.5 50.8 50.1 48.2 50.1 51.5 38.3
CaO 12.3 7.5 13.1 12.3 12.3 8.2 0.9
Al2O3 0.8 2.5 2.7 0.6 0.6 7.9 4.9
ZrO2 - 1 - 0.2 - 0.3 -
La2O3 - - - 0.4 - 2 7
SrO 0.2 0.8 - 0.2 0.2 -  -
MgO 0.2 1 - 0.2 0.2 0.2 -
ZnO - 1 - 0.2 - - -
Li2O 0.2 0.2 - 0.2 0.2 - -
NiO 0.15 0.1 0.1 0.15 0.4 - -
CuO 0.15 0.1 0.1 0.15 0.3 -  -
< 실험예 >
상기 실시예 및 비교예에 의해 제조된 실링 유리 조성물에 대해 열팽창계수를 측정하고 시편을 제작하여 모재(스테인리스강)와의 반응성을 검토하였다. 물성 측정 및 반응성에 대한 결과는 하기 표 2에 정리하였다.
1. 열팽창계수(CTE(x10-7/℃)) 측정
상기 실시예 및 비교예로부터 제작한 분말을 펠릿으로 제작한 후 750℃에서 유지하고 노냉(furnace cooling) 후 TMA 장비(TMA-Q400 TA instrument)를 이용하여 열팽창계수를 측정하였다.
2. 실링재와 모재의 반응성 검토
실시예 1 내지 5에 의해 제작된 유리 분말을 펠릿으로 제작하고 스테인리스 강(SUS441) 위에 올린 후 750℃에서 5시간 열처리 하였다. 열처리를 끝낸 이후 680℃에서 50시간 노출하고 실링재의 변화를 검토하였다.
실시예 비교예
1 2 3 4 5 1 2
열팽창계수(CTE(x 0-7/℃) 107.3 104.2 105.5 106.9 108.1 106.7 87.4
상기 표 2에 기재된 바와 같이, 본 발명에 따른 실시예 1~5는 열팽창 계수가 103 ~ 114 (x10-7/℃) 의 범위 내에 속한다. 접합 모재는 스테인리스 강(SUS441)으로서 이의 열팽창계수는 약 115 (x10-7/℃)에 해당하는 바, 실시예 1~5와 비교예 1은 접합 모재와 열팽창계수가 매칭이 되는 것을 알 수 있다. 그러나, 비교예 2는 열팽창 계수가 85 ~ 95 (x10-7/℃)의 범위에 해당하여 접합 모재와 열팽창계수가 매칭이 되지 않는 것을 확인할 수 있다.
다음으로, 실시예 1 내지 5로부터 제작된 실링재와 비교예 1로부터 제작된 실링재를 스테인리스 강(SUS441) 위에 올린 후 650℃에서 5시간 열처리한 이후 접착강도 특성을 관찰하였다. 비교예 2는 모재와 접착이 불가능하여 접착 강도 특성을 관찰할 수 없었다.
접착 강도는 실링재와 모재와의 전단인장응력을 측정하여 관찰하였다. 상기 전단인장응력은 상기 샘플의 양끝단을 측정장치(만능재료시험기)에 고정시키고 스테인리스 강(SUS441)과 실링재를 양쪽으로 당겨서 접착력을 시험하는 방법에 의하였다. 실시예 1 내지 5와 비교예 1의 전단인장응력 측정 결과는 하기 표 3에 기재하였다.
실시예 비교예
1 2 3 4 5 1
열처리 전 전단응력(kgf) 103.5 103.1 103.2 103.7 102.9 102.7
650℃에서 5시간 열처리 후 전단인장응력(kgf) 96.5 96.2 96.4 97.0 96.0 82.7
표 3에 나타난 바와 같이, NiO와 CuO가 일정량 포함된 실시예에 따른 실링재는 열처리 후에도 실링재의 BaO 성분과 모재의 Cr 성분의 반응이 억제되어 전단인장응력의 감소가 최소화되는 것을 확인할 수 있다. 이와 달리 비교예에 따른 실링재는 열처리 후 BaO 성분과 모재의 Cr 성분이 반응하여 전단인장응력이 급격히 감소함을 알 수 있다
이상과 같이 본 발명에 대해 설명하였으나, 본 명세서에 개시된 실시예에 의해 본 발명이 한정되는 것은 아니며, 본 발명의 기술사상의 범위 내에서 통상의 기술자에 의해 다양한 변형이 이루어질 수 있음은 자명하다. 아울러 앞서 본 발명의 실시예를 설명하면서 본 발명의 구성에 따른 작용 효과를 명시적으로 기재하여 설명하지 않았을 지라도, 해당 구성에 의해 예측 가능한 효과 또한 인정되어야 함은 당연하다.

Claims (10)

  1. SiO2 10~35 중량%,
    B2O3 3~35 중량%,
    BaO 30~65 중량%,
    CaO 0.1~15 중량%,
    NiO 0.1~3 중량% 및
    CuO 0.1~3 중량%를 포함하는
    실링 유리 조성물.
  2. 제 1항에 있어서,
    상기 SiO2의 함량은 상기 BaO의 함량의 1/2 이하인 것을 특징으로 하는
    실링 유리 조성물.
  3. 제 1항에 있어서,
    상기 CaO의 함량은 B2O3의 함량 미만인 것을 특징으로 하는
    실링 유리 조성물.
  4. 제 1항에 있어서,
    Al2O3, ZrO2, La2O3, SrO 및 MgO 가운데 1종 이상을 더 포함하는 것을 특징으로 하는
    실링 유리 조성물.
  5. 제 4항에 있어서,
    상기 Al2O3, ZrO2, La2O3 , SrO 및 MgO 가운데 1종 이상이
    0.1 ~ 20 중량%의 범위로 포함되는 것을 특징으로 하는
    실링 유리 조성물.
  6. 제 1항에 있어서,
    ZnO 및 LiO2 가운데 1종 이상을 더 포함하는 것을 특징으로 하는
    실링 유리 조성물.
  7. 제 6항에 있어서,
    상기 ZnO 및 LiO2 가운데 1종 이상이
    0.1 ~ 10 중량%의 범위로 포함되는 것을 특징으로 하는 실링 유리 조성물.
  8. 제 1항에 있어서,
    반구형 온도가 800 ℃ 이하인 것을 특징으로 하는 실링 유리 조성물.
  9. 제1항 내지 제8항 가운데 어느 한 항에 기재된 실링 유리 조성물로 형성된 실링재를 포함하는 고체 산화물 연료전지.
  10. 제1항 내지 제8항 가운데 어느 한 항에 기재된 실링 유리 조성물을 800 ℃ 이하에서 열처리하는 공정을 포함하는 고체 산화물 연료전지의 실링 방법.
PCT/KR2019/014753 2018-11-02 2019-11-01 실링 유리 조성물 및 이를 이용한 고체산화물 연료 전지 WO2020091528A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19878795.4A EP3875439B1 (en) 2018-11-02 2019-11-01 Sealing glass composition and solid oxide fuel cell using same
US17/290,617 US20220033296A1 (en) 2018-11-02 2019-11-01 Sealing glass composition and solid oxide fuel cell using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0133551 2018-11-02
KR1020180133551A KR102217226B1 (ko) 2018-11-02 2018-11-02 실링 유리 조성물 및 이를 이용한 고체산화물 연료 전지

Publications (1)

Publication Number Publication Date
WO2020091528A1 true WO2020091528A1 (ko) 2020-05-07

Family

ID=70461868

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/014753 WO2020091528A1 (ko) 2018-11-02 2019-11-01 실링 유리 조성물 및 이를 이용한 고체산화물 연료 전지

Country Status (4)

Country Link
US (1) US20220033296A1 (ko)
EP (1) EP3875439B1 (ko)
KR (1) KR102217226B1 (ko)
WO (1) WO2020091528A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112645598A (zh) * 2020-12-27 2021-04-13 西安赛尔电子材料科技有限公司 用于锂-二氧化锰电池盖组封接玻璃材料的制备方法及封装工艺

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990049582A (ko) * 1997-12-13 1999-07-05 명호근 고체 전해질 연료전지용 유리 밀봉체의 조성과 제조방법 및 그 적용방법
KR20090052566A (ko) * 2007-11-21 2009-05-26 명지대학교 산학협력단 고체산화물 연료전지용 알루미나 입자 함유 고온 밀봉재조성물
KR101182379B1 (ko) * 2011-03-04 2012-09-12 주식회사 휘닉스소재 고체 산화물 연료 전지용 밀봉재 조성물, 이의 제조 방법 및 이를 포함하는 고체 산화물 연료 전지 스택
KR20150052017A (ko) * 2012-07-23 2015-05-13 엠오-싸이 코포레이션 고체 산화물 연료 전지용 점성 밀봉 유리 조성물
KR20150065739A (ko) * 2012-09-28 2015-06-15 덴마크스 텍니스케 유니버시테트 실런트용 유리 조성물

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6402156B1 (en) * 1999-04-16 2002-06-11 Eltron Research, Inc. Glass-ceramic seals for ceramic membrane chemical reactor application
US20100086825A1 (en) * 2007-04-12 2010-04-08 Lisa Ann Lamberson Sealing Materials, Devices Utilizing Such Materials and a Method of Making Such Devices
JP5128203B2 (ja) * 2007-08-22 2013-01-23 日本山村硝子株式会社 封着用ガラス組成物
US7964523B2 (en) * 2008-06-19 2011-06-21 Nihon Yamamura Glass Co., Ltd. Composition for sealing glass
US9296644B2 (en) * 2010-02-15 2016-03-29 Schott Ag High-temperature glass solder and its uses
DE102011011107B4 (de) * 2011-02-12 2013-07-11 Schott Ag Sperrschicht aus Glas auf Metall, Verbundsystem, Brennstoffzelle mit der Sperrschicht, Verfahren zum Versehen von Metallen mit einer Sperrschicht sowie zum Herstellen eines Brennstoffzellenstapels
JP6328566B2 (ja) * 2012-12-25 2018-05-23 日本山村硝子株式会社 封着用ガラス組成物
CA2897879C (en) * 2013-01-21 2021-06-22 Flexitallic Investments, Inc. Gasket for fuel cells
KR101989499B1 (ko) * 2015-09-15 2019-06-14 주식회사 엘지화학 고체산화물 연료전지 실링재용 조성물, 이를 이용한 실링재 및 이의 제조방법
JP6966461B2 (ja) * 2016-10-07 2021-11-17 日本山村硝子株式会社 結晶化ガラス封着材

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990049582A (ko) * 1997-12-13 1999-07-05 명호근 고체 전해질 연료전지용 유리 밀봉체의 조성과 제조방법 및 그 적용방법
KR20090052566A (ko) * 2007-11-21 2009-05-26 명지대학교 산학협력단 고체산화물 연료전지용 알루미나 입자 함유 고온 밀봉재조성물
KR101182379B1 (ko) * 2011-03-04 2012-09-12 주식회사 휘닉스소재 고체 산화물 연료 전지용 밀봉재 조성물, 이의 제조 방법 및 이를 포함하는 고체 산화물 연료 전지 스택
KR20150052017A (ko) * 2012-07-23 2015-05-13 엠오-싸이 코포레이션 고체 산화물 연료 전지용 점성 밀봉 유리 조성물
KR20150065739A (ko) * 2012-09-28 2015-06-15 덴마크스 텍니스케 유니버시테트 실런트용 유리 조성물

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3875439A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112645598A (zh) * 2020-12-27 2021-04-13 西安赛尔电子材料科技有限公司 用于锂-二氧化锰电池盖组封接玻璃材料的制备方法及封装工艺

Also Published As

Publication number Publication date
US20220033296A1 (en) 2022-02-03
KR20200050658A (ko) 2020-05-12
EP3875439A4 (en) 2022-09-14
EP3875439B1 (en) 2024-05-22
EP3875439A1 (en) 2021-09-08
KR102217226B1 (ko) 2021-02-18

Similar Documents

Publication Publication Date Title
US7258942B2 (en) Multilayer compressive seal for sealing in high temperature devices
US8163436B2 (en) Solid oxide fuel cell stack having a glass sealant composition
US8497047B2 (en) Fuel cell stack
Smeacetto et al. New glass and glass–ceramic sealants for planar solid oxide fuel cells
US6541146B1 (en) Composite sealant materials based on reacting fillers for solid oxide fuel cells
CN101072676A (zh) 玻璃和玻璃-陶瓷密封剂组合物
WO1996005626A1 (en) Compliant sealants for solid oxide fuel cells and other ceramics
WO1996005626A9 (en) Compliant sealants for solid oxide fuel cells and other ceramics
WO2015016599A1 (ko) 고체 산화물 연료전지 및 이의 제조방법
JP2015513512A (ja) 高温用途用のガラスはんだの製造用の組成物と、その利用
WO2020091528A1 (ko) 실링 유리 조성물 및 이를 이용한 고체산화물 연료 전지
WO2020111837A1 (ko) 실링 유리 조성물 및 이를 이용한 고체산화물 연료 전지
Kumar et al. Stacking designs and sealing principles for IT-solid oxide fuel cell
Wang et al. Physical and sealing properties of BaO–Al2O3–SiO2–CaO–V2O5 glasses for solid oxide fuel cell applications
Ohara et al. A new sealant material for solid oxide fuel cells using glass-ceramic
WO2019212273A1 (ko) 실링 유리 조성물 및 이를 이용한 고체산화물 연료 전지
WO2017047995A1 (ko) 고체산화물 연료전지 실링재용 조성물, 이를 이용한 실링재 및 이의 제조방법
KR101013845B1 (ko) 중저온 평판형 고체산화물 연료전지용 밀봉유리 제조방법
KR19990049582A (ko) 고체 전해질 연료전지용 유리 밀봉체의 조성과 제조방법 및 그 적용방법
WO2017047994A1 (ko) 고체산화물 연료전지 실링재용 조성물, 이를 이용한 실링재 및 이의 제조방법
KR20050028069A (ko) 고체산화물 연료전지용 밀봉유리 조성물
KR101598268B1 (ko) 고체산화물 연료전지용 밀봉재 및 이의 제조방법
WO2021261692A1 (ko) 알칼리 기반 프로모터가 도입된 연료극을 포함하는 고체 산화물 연료전지
JP5290088B2 (ja) 固体酸化物形燃料電池用接合材およびその製造方法
WO2024130327A1 (en) Glass composition for protective coating

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19878795

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019878795

Country of ref document: EP

Effective date: 20210602