WO2020090907A1 - Laser machining device - Google Patents

Laser machining device Download PDF

Info

Publication number
WO2020090907A1
WO2020090907A1 PCT/JP2019/042614 JP2019042614W WO2020090907A1 WO 2020090907 A1 WO2020090907 A1 WO 2020090907A1 JP 2019042614 W JP2019042614 W JP 2019042614W WO 2020090907 A1 WO2020090907 A1 WO 2020090907A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser processing
laser
processing head
light
unit
Prior art date
Application number
PCT/JP2019/042614
Other languages
French (fr)
Japanese (ja)
Inventor
剛志 坂本
惇治 奥間
Original Assignee
浜松ホトニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浜松ホトニクス株式会社 filed Critical 浜松ホトニクス株式会社
Priority to CN201980071421.4A priority Critical patent/CN112955278B/en
Priority to KR1020217015674A priority patent/KR20210082485A/en
Publication of WO2020090907A1 publication Critical patent/WO2020090907A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • B23K26/53Working by transmitting the laser beam through or within the workpiece for modifying or reforming the material inside the workpiece, e.g. for producing break initiation cracks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/04Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
    • B23K26/042Automatically aligning the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head

Definitions

  • the present disclosure relates to a laser processing device.
  • Patent Document 1 describes a laser processing apparatus that includes a holding mechanism that holds a work, and a laser irradiation mechanism that irradiates the work held by the holding mechanism with laser light.
  • a laser irradiation mechanism having a condenser lens is fixed to a base, and movement of a work along a direction perpendicular to the optical axis of the condenser lens is performed by a holding mechanism. Be implemented.
  • a modified region is formed inside the work by irradiation with laser light and the work is cut using the modified region and a crack extending from the modified region.
  • a plurality of rows of modified regions may be formed in the thickness direction of the work in order to sufficiently propagate cracks extending from the modified region. Even in such processing, improvement in throughput is also desired.
  • the present disclosure aims to provide a laser processing apparatus capable of improving throughput.
  • a laser processing apparatus is movable along a first direction, and a support portion for supporting an object along a first direction and a second direction intersecting the first direction, and a first direction.
  • First laser processing head and second laser processing head for irradiating at least the inside of the object supported by the supporting portion with laser light to form a modified region, and a first laser processing head And a second laser processing head attached to the first mounting portion that is movable along a third direction that intersects the first direction and the second direction, and is movable along the third direction.
  • the movement of the second mounting portion, the first laser processing head, and the second A laser beam is emitted from the laser processing head, and a control unit that controls the laser beam irradiation is provided, and a plurality of lines extending in the first direction and arranged in the second direction are set on the object.
  • the control unit collects the laser light from the first laser processing head.
  • the second position is a position closer to the incident surface side of the laser light of the object than the first position in the third direction, and the control unit performs the first processing in the third processing. 2
  • the first scanning process and the laser beam focusing point of the laser beam from the laser processing head are separated from the laser beam focusing point of the first laser processing head by a distance L or more in the direction opposite to the first direction.
  • the second scan process is executed.
  • the first laser processing head and the second laser processing head can be arranged along the first direction.
  • the control unit uses the first scan processing using the first laser processing head and the second laser processing head in the first state in which the first laser processing head and the second laser processing head are arranged on the line.
  • the second scan process is performed.
  • the control unit scans the laser light from the first laser processing head in the first direction while setting the focal point of the laser light from the first laser processing head to the first position in the third direction. ..
  • the control unit sets the converging point of the laser light from the second laser processing head to the second position in the third direction, and first controls the laser light from the second laser processing head with respect to the line. Scan in the direction. Accordingly, two lines of modified regions can be formed at least inside the object at substantially the same time by using two laser processing heads for one line.
  • the position of the object is changed in the depth direction (third direction), and a plurality of scans are performed to change each position.
  • the crack extending from the quality region can be sufficiently propagated.
  • the throughput cannot be improved.
  • the converging points of the laser beams from the respective laser processing heads coincide with each other in the first direction. If so, the crack extending from the modified region is unlikely to propagate.
  • the condensing point of the laser light from the second laser processing head is located at a distance L or more from the converging point of the laser light from the first laser processing head in the direction opposite to the first direction.
  • the first scan process and the second scan process are executed while being separated from each other.
  • the laser from the second laser processing head that is scanned so as to follow the distance L while forming the modified region of the first row by scanning the laser beam from the preceding first laser processing head.
  • the light can sufficiently propagate the crack while forming the modified region in the second row. Therefore, according to this device, the throughput can be improved.
  • the control unit is configured such that, after the first processing, the first laser processing head and the second laser processing head are positioned on another line adjacent to one of the plurality of lines.
  • the laser beam from the first laser processing head is moved in the direction opposite to the first direction with respect to the line while the condensing point of the laser beam from the first laser processing head is located at the second position.
  • the laser light from the second laser processing head is positioned on the first position while the condensing point of the laser light from the second laser processing head is positioned at the first position.
  • a fourth scanning process of scanning in a direction opposite to the first direction and a second processing process of executing the second processing process are performed.
  • the control unit condenses a laser beam from the first laser processing head.
  • a position spaced apart in the first direction or the distance L than the focal point of the laser light from the second laser processing head may perform a third scan processing and the fourth scanning process.
  • the first laser processing head and the second laser processing head are the first laser processing head and the second laser processing head in the forward path (first processing process) and the backward path (second processing process) with respect to the object by the first laser processing head and the second laser processing head.
  • Laser processing can be preferably performed without changing the positions of the directions.
  • control unit may alternately and repeatedly execute the first processing and the second processing according to the number of lines.
  • the laser processing along all the lines can be performed by the reciprocating movement of the support portion along the first direction and the sequential movement of the first laser processing head and the second laser processing head in the second direction. It will be possible.
  • the distance L may be 300 ⁇ m. According to the knowledge of the present disclosure, by setting the distance L to 300 ⁇ m in this way, the crack can be more sufficiently propagated.
  • the first mounting portion and the second mounting portion are collectively mounted on the moving portion, and the moving portion moves the first mounting portion and the second mounting portion in the second direction. You may move. In this case, it becomes easy to move the first laser processing head and the second laser processing head in the second direction.
  • FIG. 4 It is a perspective view of the laser processing apparatus of one embodiment. It is a front view of a part of laser processing apparatus shown by FIG. It is a front view of the laser processing head of the laser processing apparatus shown by FIG. 4 is a side view of the laser processing head shown in FIG. 3.
  • FIG. It is a block diagram of the optical system of the laser processing head shown in FIG. It is a block diagram of the optical system of the laser processing head of a modification. It is a front view of a part of laser processing apparatus of a modification. It is a schematic top view which shows operation
  • the laser processing apparatus 1 includes a plurality of moving mechanisms 5 and 6, a supporting portion 7, and a pair of laser processing heads (first laser processing head, second laser processing head) 10A and 10B. And a light source unit 8 and a control unit 9.
  • the first direction will be referred to as the X direction
  • the second direction perpendicular to the first direction will be referred to as the Y direction
  • the third direction perpendicular to the first and second directions will be referred to as the Z direction.
  • the X direction and the Y direction are horizontal directions
  • the Z direction is a vertical direction.
  • the moving mechanism 5 has a fixed portion 51, a moving portion 53, and a mounting portion 55.
  • the fixed portion 51 is attached to the device frame 1a.
  • the moving unit 53 is attached to a rail provided on the fixed unit 51, and can move along the Y direction.
  • the attachment portion 55 is attached to a rail provided on the moving portion 53 and can move along the X direction.
  • the moving mechanism 6 includes a fixed part 61, a pair of moving parts (first moving part, second moving part) 63, 64, and a pair of mounting parts (first mounting part, second mounting part) 65, 66. And have.
  • the fixed portion 61 is attached to the device frame 1a.
  • Each of the pair of moving portions 63 and 64 is attached to a rail provided on the fixed portion 61, and each of them can move independently along the Y direction.
  • the attachment portion 65 is attached to a rail provided on the moving portion 63 and can move along the Z direction.
  • the attachment portion 66 is attached to a rail provided on the moving portion 64 and can move along the Z direction. That is, with respect to the device frame 1a, each of the pair of mounting portions 65 and 66 can move along the Y direction and the Z direction.
  • the support portion 7 is attached to a rotary shaft provided on the attachment portion 55 of the moving mechanism 5, and can rotate about an axis parallel to the Z direction as a center line. That is, the support part 7 can move along each of the X direction and the Y direction, and can rotate about the axis parallel to the Z direction as the center line.
  • the support unit 7 supports the object 100 along the X direction and the Y direction.
  • the object 100 is, for example, a wafer.
  • the laser processing head 10A (for example, the first laser processing head) is attached to the attachment portion 65 of the moving mechanism 6.
  • the laser processing head 10A is for irradiating the object 100 supported by the support 7 with laser light (first laser light) L1 while facing the support 7 in the Z direction.
  • the laser processing head 10B (for example, the second laser processing head) is attached to the attachment portion 66 of the moving mechanism 6.
  • the laser processing head 10B is for irradiating the object 100 supported by the support 7 with laser light (second laser light) L2 while facing the support 7 in the Z direction.
  • the light source unit 8 has a pair of light sources 81 and 82.
  • the light source 81 outputs laser light L1.
  • the laser light L1 is emitted from the emitting portion 81a of the light source 81 and guided to the laser processing head 10A by the optical fiber 2.
  • the light source 82 outputs laser light L2.
  • the laser light L2 is emitted from the emitting portion 82a of the light source 82, and is guided to the laser processing head 10B by another optical fiber 2.
  • the control unit 9 controls each unit of the laser processing apparatus 1 (a plurality of moving mechanisms 5, 6, a pair of laser processing heads 10A, 10B, a light source unit 8, etc.).
  • the control unit 9 is configured as a computer device including a processor, a memory, a storage, a communication device, and the like.
  • the software (program) read into the memory or the like is executed by the processor, and the reading and writing of data in the memory and the storage and the communication by the communication device are controlled by the processor. Thereby, the control unit 9 realizes various functions.
  • An example of processing by the laser processing apparatus 1 configured as above will be described.
  • An example of the processing is an example in which a modified region is formed inside the object 100 along each of a plurality of lines set in a grid pattern in order to cut the object 100, which is a wafer, into a plurality of chips. is there.
  • the moving mechanism 5 moves the supporting portion 7 along the X direction and the Y direction so that the supporting portion 7 supporting the object 100 faces the pair of laser processing heads 10A and 10B in the Z direction. To move. Then, the moving mechanism 5 rotates the support part 7 with the axis line parallel to the Z direction as the center line so that the plurality of lines extending in one direction on the object 100 are along the X direction.
  • the moving mechanism 6 moves the laser processing head 10A along the Y direction so that the focus point of the laser beam L1 is located on one line extending in one direction.
  • the moving mechanism 6 moves the laser processing head 10B along the Y direction so that the focal point of the laser light L2 is located on the other line extending in one direction.
  • the moving mechanism 6 moves the laser processing head 10A along the Z direction so that the focusing point of the laser beam L1 is located inside the object 100.
  • the moving mechanism 6 moves the laser processing head 10B along the Z direction so that the focal point of the laser beam L2 is located inside the object 100.
  • the light source 81 outputs the laser light L1 and the laser processing head 10A irradiates the object 100 with the laser light L1, and the light source 82 outputs the laser light L2 and the laser processing head 10B lasers the object 100.
  • the light L2 is emitted.
  • the condensing point of the laser light L1 relatively moves along one line extending in one direction (the laser light L1 is scanned), and the laser beam extends along another line extending in one direction.
  • the moving mechanism 5 moves the support portion 7 along the X direction so that the focal point of the light L2 moves relatively (the laser light L2 is scanned). In this way, the laser processing apparatus 1 forms the modified region inside the object 100 along each of the plurality of lines extending in one direction on the object 100.
  • the moving mechanism 5 rotates the support part 7 with the axis line parallel to the Z direction as the center line so that the plurality of lines extending in the other direction orthogonal to the one direction in the object 100 are along the X direction. ..
  • the moving mechanism 6 moves the laser processing head 10A along the Y direction so that the focus point of the laser light L1 is located on one line extending in the other direction.
  • the moving mechanism 6 moves the laser processing head 10B along the Y direction so that the focus point of the laser light L2 is located on another line extending in the other direction.
  • the moving mechanism 6 moves the laser processing head 10A along the Z direction so that the focusing point of the laser beam L1 is located inside the object 100.
  • the moving mechanism 6 moves the laser processing head 10B along the Z direction so that the focal point of the laser beam L2 is located inside the object 100.
  • the light source 81 outputs the laser light L1 and the laser processing head 10A irradiates the object 100 with the laser light L1, and the light source 82 outputs the laser light L2 and the laser processing head 10B lasers the object 100.
  • the light L2 is emitted.
  • the focal point of the laser light L1 relatively moves along one line extending in the other direction (the laser light L1 is scanned), and the laser beam extends along the other line extending in the other direction.
  • the moving mechanism 5 moves the support portion 7 along the X direction so that the focal point of the light L2 moves relatively (the laser light L2 is scanned). In this way, the laser processing apparatus 1 forms the modified region inside the object 100 along each of the plurality of lines extending in the other direction orthogonal to the one direction in the object 100.
  • the light source 81 outputs the laser light L1 that is transmissive to the target object 100, for example, by the pulse oscillation method, and the light source 82 outputs the laser light L1 to the target object 100, for example, by the pulse oscillation method.
  • the laser beam L2 having transparency is output.
  • the laser light is condensed inside the object 100, the laser light is particularly absorbed in a portion corresponding to the condensing point of the laser light, and a modified region is formed inside the object 100.
  • the modified region is a region where the density, refractive index, mechanical strength, and other physical properties are different from the surrounding unmodified region.
  • the modified region includes, for example, a melt-processed region, a crack region, a dielectric breakdown region, and a refractive index change region.
  • a plurality of modified spots are lined up. Are formed so as to be lined up in a row along the line.
  • One modified spot is formed by irradiation with one pulse of laser light.
  • the one-row reforming region is a set of a plurality of reforming spots arranged in one row. Adjacent modified spots may be connected to each other or may be separated from each other depending on the relative moving speed of the condensing point of the laser light with respect to the object 100 and the repetition frequency of the laser light.
  • the laser processing head 10A includes a casing (for example, a first casing) 11, an incident unit 12, an adjusting unit 13, and a condensing unit (for example, a first condensing unit). 14 and.
  • the housing 11 has a first wall portion 21 and a second wall portion 22, a third wall portion 23 and a fourth wall portion 24, and a fifth wall portion 25 and a sixth wall portion 26.
  • the first wall portion 21 and the second wall portion 22 face each other in the X direction.
  • the third wall portion 23 and the fourth wall portion 24 face each other in the Y direction.
  • the fifth wall portion 25 and the sixth wall portion 26 face each other in the Z direction.
  • the distance between the third wall portion 23 and the fourth wall portion 24 is smaller than the distance between the first wall portion 21 and the second wall portion 22.
  • the distance between the first wall portion 21 and the second wall portion 22 is smaller than the distance between the fifth wall portion 25 and the sixth wall portion 26.
  • the distance between the first wall portion 21 and the second wall portion 22 may be equal to the distance between the fifth wall portion 25 and the sixth wall portion 26, or alternatively, the fifth wall portion 25 and the sixth wall portion 26. It may be larger than the distance to the portion 26.
  • the first wall portion 21 is located on the fixed portion 61 side of the moving mechanism 6, and the second wall portion 22 is located on the opposite side to the fixed portion 61.
  • the third wall portion 23 is located on the mounting portion 65 side of the moving mechanism 6, and the fourth wall portion 24 is located on the side opposite to the mounting portion 65 and on the laser processing head 10B side (FIG. 2). That is, the fourth wall portion 24 is a facing wall portion that faces the housing (second housing) of the laser processing head 10B along the Y direction.
  • the fifth wall portion 25 is located on the side opposite to the support portion 7, and the sixth wall portion 26 is located on the support portion 7 side.
  • the housing 11 is configured such that the housing 11 is attached to the mounting portion 65 with the third wall portion 23 arranged on the mounting portion 65 side of the moving mechanism 6. Specifically, it is as follows.
  • the mounting portion 65 has a base plate 65a and a mounting plate 65b.
  • the base plate 65a is attached to a rail provided on the moving unit 63 (see FIG. 2).
  • the mounting plate 65b is erected on the end of the base plate 65a on the laser processing head 10B side (see FIG. 2).
  • the casing 11 is attached to the attachment portion 65 by screwing the bolt 28 to the attachment plate 65b via the pedestal 27 while the third wall portion 23 is in contact with the attachment plate 65b.
  • the pedestal 27 is provided on each of the first wall portion 21 and the second wall portion 22.
  • the housing 11 is attachable to and detachable from the mounting portion 65.
  • the incident part 12 is attached to the fifth wall part 25.
  • the incident unit 12 causes the laser light L1 to enter the housing 11.
  • the incident portion 12 is offset to the second wall portion 22 side (one wall portion side) in the X direction and is offset to the fourth wall portion 24 side in the Y direction. That is, the distance between the incident portion 12 and the second wall portion 22 in the X direction is smaller than the distance between the incident portion 12 and the first wall portion 21 in the X direction, and the incident portion 12 and the fourth wall portion 24 in the Y direction. Is smaller than the distance between the incident portion 12 and the third wall portion 23 in the X direction.
  • the incident portion 12 is configured so that the connection end portion 2a of the optical fiber 2 can be connected.
  • the connection end portion 2a of the optical fiber 2 is provided with a collimator lens that collimates the laser light L1 emitted from the emission end of the fiber, and is not provided with an isolator that suppresses return light.
  • the isolator is provided in the middle of the fiber on the light source 81 side with respect to the connection end portion 2a. As a result, the connection end portion 2a is downsized, and the incident portion 12 is downsized.
  • An isolator may be provided at the connection end 2a of the optical fiber 2.
  • the adjusting unit 13 is arranged in the housing 11.
  • the adjusting unit 13 adjusts the laser light L1 incident from the incident unit 12.
  • Each component of the adjusting unit 13 is attached to an optical base 29 provided inside the housing 11.
  • the optical base 29 is attached to the housing 11 so as to partition the area inside the housing 11 into an area on the third wall portion 23 side and an area on the fourth wall portion 24 side.
  • the optical base 29 is integrated with the housing 11.
  • the components included in the adjusting unit 13 are attached to the optical base 29 on the fourth wall 24 side. Details of each configuration of the adjustment unit 13 will be described later.
  • the light collector 14 is arranged on the sixth wall 26. Specifically, the light collecting section 14 is arranged in the sixth wall section 26 in a state of being inserted into the hole 26 a formed in the sixth wall section 26.
  • the condensing unit 14 condenses the laser light L1 adjusted by the adjusting unit 13 and emits it to the outside of the housing 11.
  • the light collecting section 14 is offset to the second wall section 22 side (one wall section side) in the X direction and is biased to the fourth wall section 24 side in the Y direction. That is, the light condensing unit 14 is arranged so as to be biased toward the fourth wall portion (opposing wall portion) 24 side of the housing 11 when viewed from the Z direction.
  • the distance between the light collecting section 14 and the second wall section 22 in the X direction is smaller than the distance between the light collecting section 14 and the first wall section 21 in the X direction, and the light collecting section 14 and the fourth wall in the Y direction are fourth.
  • the distance from the wall portion 24 is smaller than the distance between the light collecting portion 14 and the third wall portion 23 in the X direction.
  • the adjusting unit 13 has an attenuator 31, a beam expander 32, and a mirror 33.
  • the incident unit 12, the attenuator 31, the beam expander 32, and the mirror 33 of the adjusting unit 13 are arranged on a straight line (first straight line) A1 extending along the Z direction.
  • the attenuator 31 and the beam expander 32 are arranged between the incident part 12 and the mirror 33 on the straight line A1.
  • the attenuator 31 adjusts the output of the laser light L1 incident from the incident unit 12.
  • the beam expander 32 expands the diameter of the laser light L1 whose output is adjusted by the attenuator 31.
  • the mirror 33 reflects the laser light L1 whose diameter has been expanded by the beam expander 32.
  • the adjusting unit 13 further includes a reflective spatial light modulator 34 and an image forming optical system 35.
  • the reflective spatial light modulator 34 of the adjustment unit 13, the imaging optical system 35, and the condensing unit 14 are arranged on a straight line (second straight line) A2 extending along the Z direction.
  • the reflective spatial light modulator 34 modulates the laser light L1 reflected by the mirror 33.
  • the reflective spatial light modulator 34 is, for example, a reflective liquid crystal (LCOS: Liquid Crystal on Silicon) spatial light modulator (SLM: Spatial Light Modulator).
  • the image forming optical system 35 constitutes a double-sided telecentric optical system in which the reflecting surface 34a of the reflective spatial light modulator 34 and the entrance pupil surface 14a of the condensing unit 14 are in an image forming relationship.
  • the image forming optical system 35 is composed of three or more lenses.
  • the straight line A1 and the straight line A2 are located on a plane perpendicular to the Y direction.
  • the straight line A1 is located on the second wall portion 22 side (one wall portion side) with respect to the straight line A2.
  • the laser beam L1 enters the housing 11 from the incident part 12, travels on the straight line A1, is sequentially reflected by the mirror 33 and the reflective spatial light modulator 34, and then the straight line A2.
  • the light travels upward and is emitted from the light collecting unit 14 to the outside of the housing 11.
  • the order of arrangement of the attenuator 31 and the beam expander 32 may be reversed.
  • the attenuator 31 may be arranged between the mirror 33 and the reflective spatial light modulator 34.
  • the adjusting unit 13 may have other optical components (for example, a steering mirror arranged in front of the beam expander 32).
  • the laser processing head 10A further includes a dichroic mirror 15, a measurement unit 16, an observation unit 17, a drive unit 18, and a circuit unit 19.
  • the dichroic mirror 15 is arranged on the straight line A2 between the imaging optical system 35 and the condensing unit 14. That is, the dichroic mirror 15 is arranged in the housing 11 between the adjusting unit 13 and the light collecting unit 14. The dichroic mirror 15 is attached to the optical base 29 on the side of the fourth wall portion 24. The dichroic mirror 15 transmits the laser light L1. From the viewpoint of suppressing astigmatism, the dichroic mirror 15 may be, for example, a cube type or two plate types arranged so as to have a twist relationship.
  • the measuring unit 16 is arranged inside the housing 11 with respect to the adjusting unit 13 on the first wall 21 side (the side opposite to the one wall side).
  • the measuring unit 16 is attached to the optical base 29 on the fourth wall 24 side.
  • the measurement unit 16 outputs measurement light L10 for measuring the distance between the surface of the object 100 (for example, the surface on the side on which the laser light L1 is incident) and the light condensing unit 14, and through the light condensing unit 14.
  • the measurement light L10 reflected by the surface of the object 100 is detected. That is, the measurement light L10 output from the measurement unit 16 is applied to the surface of the object 100 via the light condensing unit 14, and the measurement light L10 reflected on the surface of the object 100 passes through the light condensing unit 14. And is detected by the measuring unit 16.
  • the measurement light L10 output from the measurement unit 16 is sequentially reflected by the beam splitter 20 and the dichroic mirror 15 attached to the optical base 29 on the side of the fourth wall 24, and then the light collection unit 14 outputs the light. It goes out of the housing 11.
  • the measurement light L10 reflected on the surface of the object 100 enters the housing 11 from the light condensing unit 14, is sequentially reflected by the dichroic mirror 15 and the beam splitter 20, enters the measuring unit 16, and then the measuring unit 16 Detected in.
  • the observing unit 17 is arranged in the housing 11 on the first wall 21 side (the side opposite to the one wall side) with respect to the adjusting unit 13.
  • the observation section 17 is attached to the optical base 29 on the side of the fourth wall section 24.
  • the observation unit 17 outputs the observation light L20 for observing the surface of the object 100 (for example, the surface on the side where the laser light L1 is incident), and is reflected by the surface of the object 100 via the light condensing unit 14.
  • the observation light L20 thus generated is detected. That is, the observation light L20 output from the observation unit 17 is applied to the surface of the object 100 via the light condensing unit 14, and the observation light L20 reflected by the surface of the object 100 passes through the light condensing unit 14. And is detected by the observation unit 17.
  • the observation light L20 output from the observation unit 17 passes through the beam splitter 20, is reflected by the dichroic mirror 15, and is emitted from the condensing unit 14 to the outside of the housing 11.
  • the observation light L20 reflected on the surface of the object 100 enters the housing 11 from the light condensing unit 14, is reflected by the dichroic mirror 15, passes through the beam splitter 20, and enters the observation unit 17, Detected at 17.
  • the wavelengths of the laser light L1, the measurement light L10, and the observation light L20 are different from each other (at least the respective central wavelengths are deviated from each other).
  • the drive section 18 is attached to the optical base 29 on the side of the fourth wall section 24.
  • the driving unit 18 moves the condensing unit 14 arranged on the sixth wall unit 26 along the Z direction by the driving force of the piezoelectric element, for example.
  • the circuit portion 19 is arranged on the third wall portion 23 side with respect to the optical base 29 in the housing 11. That is, the circuit unit 19 is arranged on the third wall 23 side with respect to the adjustment unit 13, the measurement unit 16, and the observation unit 17 in the housing 11.
  • the circuit unit 19 is, for example, a plurality of circuit boards.
  • the circuit unit 19 processes the signal output from the measurement unit 16 and the signal input to the reflective spatial light modulator 34.
  • the circuit unit 19 controls the drive unit 18 based on the signal output from the measurement unit 16.
  • the circuit unit 19 maintains the distance between the surface of the object 100 and the light condensing unit 14 constant based on the signal output from the measurement unit 16 (that is, the surface of the object 100).
  • the drive unit 18 is controlled so that the distance from the condensing point of the laser light L1 is kept constant).
  • the housing 11 is provided with a connector (not shown) to which wiring for electrically connecting the circuit unit 19 to the control unit 9 (see FIG. 1) and the like is connected.
  • the laser processing head 10B includes a housing (for example, a second housing) 11, an incident unit 12, an adjusting unit 13, and a light collecting unit (for example, a second light collecting unit) 14.
  • a dichroic mirror 15, a measurement unit 16, an observation unit 17, a drive unit 18, and a circuit unit 19 are provided.
  • each configuration of the laser processing head 10B is, as shown in FIG. 2, each configuration of the laser processing head 10A with respect to a virtual plane that passes through the midpoint between the pair of mounting portions 65 and 66 and is perpendicular to the Y direction. Are arranged so as to have a plane symmetry relationship with (this is an example as described later).
  • the fourth wall portion 24 is located on the laser processing head 10B side with respect to the third wall portion 23, and the sixth wall portion 26 is supported with respect to the fifth wall portion 25. It is attached to the attachment portion 65 so as to be located on the side of the portion 7.
  • the fourth wall portion 24 is located on the laser processing head 10A side with respect to the third wall portion 23, and the sixth wall portion 26 is with respect to the fifth wall portion 25. Is attached to the attachment portion 66 so as to be located on the support portion 7 side. That is, also in the laser processing head 10B, the fourth wall portion 24 is a facing wall portion that faces the housing of the laser processing head 10A along the Y direction.
  • the light converging portion 14 is arranged so as to be biased toward the fourth wall portion (opposing wall portion) 24 side of the housing 11 when viewed from the Z direction.
  • the housing 11 of the laser processing head 10B is configured such that the housing 11 is attached to the mounting portion 66 with the third wall portion 23 arranged on the mounting portion 66 side. Specifically, it is as follows.
  • the mounting portion 66 has a base plate 66a and a mounting plate 66b.
  • the base plate 66a is attached to a rail provided on the moving unit 63.
  • the mounting plate 66b is erected at the end of the base plate 66a on the laser processing head 10A side.
  • the housing 11 of the laser processing head 10B is attached to the attachment portion 66 with the third wall portion 23 in contact with the attachment plate 66b.
  • the housing 11 of the laser processing head 10B can be attached to and detached from the mounting portion 66. [Operation and effect of laser processing head]
  • the housing 11 since the light source that outputs the laser light L1 is not provided in the housing 11, the housing 11 can be downsized. Further, in the housing 11, the distance between the third wall portion 23 and the fourth wall portion 24 is smaller than the distance between the first wall portion 21 and the second wall portion 22, and the collection disposed on the sixth wall portion 26. The light portion 14 is biased toward the fourth wall portion 24 side in the Y direction. Thereby, when moving the housing 11 along the direction perpendicular to the optical axis of the light condensing unit 14, for example, it is assumed that another configuration (for example, the laser processing head 10B) is present on the fourth wall 24 side. Also, the condensing unit 14 can be brought close to the other configuration. Therefore, the laser processing head 10A may be suitable for moving the condensing unit 14 along the direction perpendicular to its optical axis.
  • the incident portion 12 is provided on the fifth wall portion 25 and is offset to the fourth wall portion 24 side in the Y direction.
  • the region such as disposing another configuration (for example, the circuit unit 19) in a region on the third wall 23 side with respect to the adjustment unit 13 in the region inside the housing 11. it can.
  • the condensing portion 14 is offset to the second wall portion 22 side in the X direction. Accordingly, when the housing 11 is moved along the direction perpendicular to the optical axis of the light condensing unit 14, for example, even if another configuration exists on the second wall 22 side, the other configuration is collected. The light unit 14 can be brought closer.
  • the incident portion 12 is provided on the fifth wall portion 25 and is offset to the second wall portion 22 side in the X direction.
  • other regions for example, the measuring unit 16 and the observing unit 17
  • the measuring unit 16 and the observing unit 17 are arranged in the region on the first wall 21 side with respect to the adjusting unit 13 in the region inside the housing 11, and the circuit unit 19 is
  • the dichroic mirror 15 is arranged on the side of the third wall portion 23 with respect to the adjustment unit 13 in the area inside the housing 11, and the dichroic mirror 15 is arranged between the adjustment unit 13 and the light collection unit 14 in the housing 11. ing. Thereby, the area in the housing 11 can be effectively used.
  • the laser processing apparatus 1 can perform processing based on the measurement result of the distance between the surface of the object 100 and the light condensing unit 14. Further, the laser processing apparatus 1 can perform processing based on the observation result of the surface of the object 100.
  • the circuit section 19 controls the drive section 18 based on the signal output from the measuring section 16. Thereby, the position of the condensing point of the laser beam L1 can be adjusted based on the measurement result of the distance between the surface of the object 100 and the condensing unit 14.
  • the incident section 12, the attenuator 31, the beam expander 32, and the mirror 33 of the adjusting section 13 are arranged on the straight line A1 extending along the Z direction, and the adjusting section 13 is provided.
  • the reflective spatial light modulator 34, the imaging optical system 35, the condensing unit 14, and the condensing unit 14 are arranged on a straight line A2 extending along the Z direction. Accordingly, the adjusting unit 13 including the attenuator 31, the beam expander 32, the reflective spatial light modulator 34, and the imaging optical system 35 can be configured compactly.
  • the straight line A1 is located closer to the second wall portion 22 than the straight line A2.
  • another optical system for example, the measuring unit 16 and the observing unit 17
  • the light condensing unit 14 is provided in the region on the first wall 21 side with respect to the adjusting unit 13 in the region in the housing 11.
  • the incident section 12, the adjusting section 13, and the light collecting section 14 may be arranged on a straight line A extending along the Z direction.
  • the adjusting unit 13 can be configured compactly.
  • the adjusting unit 13 may not include the reflective spatial light modulator 34 and the imaging optical system 35.
  • the adjusting unit 13 may include an attenuator 31 and a beam expander 32.
  • the adjusting unit 13 including the attenuator 31 and the beam expander 32 can be configured compactly. The order of arrangement of the attenuator 31 and the beam expander 32 may be reversed.
  • FIG. 7 is a front view of a part of the laser processing apparatus 1 in which the laser light L1 is guided by the mirror.
  • the mirror 3 that reflects the laser light L1 moves so as to face the emitting portion 81a of the light source unit 8 in the Y direction and face the incident portion 12 of the laser processing head 10A in the Z direction. It is attached to the moving portion 63 of the mechanism 6.
  • the mirror 3 may be attached to the moving unit 63 of the moving mechanism 6 so that at least one of the angle adjustment and the position adjustment can be performed. According to this, the laser light L1 emitted from the emission portion 81a of the light source unit 8 can be more reliably incident on the incidence portion 12 of the laser processing head 10A.
  • the light source unit 8 may have one light source. In that case, the light source unit 8 may be configured so that a part of the laser light output from one light source is emitted from the emitting portion 81a and the rest of the laser light is emitted from the emitting portion 82a. [About operation of laser processing equipment]
  • FIG. 8 is a schematic top view showing the operation of the laser processing apparatus.
  • a schematic interior of the laser processing heads 10A and 10B is shown.
  • the object 100 is supported by the support portion 7.
  • the symbol S in the figure represents an optical system other than the optical system related to the irradiation of the laser beams L1 and L2 for forming the modified region, such as the measurement unit 16 and the observation unit 17 described above. ing.
  • the laser processing apparatus 1 also includes a pair of alignment cameras AC having different magnifications.
  • the alignment camera AC is attached to the attachment portion 66 together with the laser processing head 10B.
  • the alignment camera AC images, for example, a device pattern or the like using light transmitted through the object 100. The image obtained by this is used for alignment of the irradiation positions of the laser beams L1 and L2 with respect to the object 100.
  • the laser processing head 10A and the laser processing head 10B are arranged along the X direction.
  • the mounting portions 65 and 66 are provided on the second wall portion 22 of the laser processing head 10A and the laser processing head 10B.
  • the mounting portions 65 and 66 are collectively mounted on the extension member (moving portion) EM via the moving portions 63 and 64.
  • the extension member EM is attached to the fixed portion 61.
  • the extension member EM is attached to a rail provided on the fixed portion 61 and can move along the Y direction. That is, here, the laser processing head 10A and the laser processing head 10B are configured to be movable in the Z direction independently of each other, while being configured to be collectively moved in the Y direction.
  • the target object 100 has a plurality of lines C extending along the X direction and arranged along the Y direction.
  • the line C is a virtual line, but may be an actually drawn line.
  • a plurality of lines extending along the Y direction and arranged along the X direction are also set in the object 100, the illustration thereof is omitted.
  • the laser processing device 1 performs laser processing along each line C under the control of the control unit 9.
  • the laser processing apparatus 1 can perform various kinds of laser processing, but here, the laser processing for forming the modified region at least inside the object 100 will be exemplified. That is, the laser processing heads 10A and 10B are used here to irradiate at least the inside of the object 100 supported by the support 7 with the laser beams L1 and L2 to form the modified region.
  • control section 9 moves the support section 7, the mounting section 65, the mounting section 66, and the extension member EM and irradiates the laser beams L1 and L2 from the laser processing head 10A and the laser processing head 10B.
  • control unit 9 executes the first processing process and the second processing process.
  • the first processing process includes a first scan process and a second scan process.
  • the second processing process includes a third scanning process and a fourth scanning process.
  • the first scanning process is a process of scanning one line C of the plurality of lines C with the laser light L1 from the laser processing head 10A in the X direction.
  • the second scanning process is a process of scanning the one line C with the laser beam L2 from the laser processing head 10B in the X direction.
  • the third scan process is a process of scanning another line C of the plurality of lines C with the laser beam L1 from the laser processing head 10A in a direction opposite to the X direction (X negative direction in the drawing).
  • the fourth scan process is a process of scanning the other line C with the laser beam L2 from the laser processing head 10B in a direction opposite to the X direction.
  • the control unit 9 scans the laser beams L1 and L2 in the X direction (or the opposite direction)
  • the laser processing heads 10A and 10B are moved in the Y direction and the Z direction via the mounting portions 65 and 66 and the extension member EM.
  • the laser light L1 and the laser light L2 are moved so that the focal points of the laser lights L1 and L2 are positioned on the respective lines C at positions inside the object 100.
  • the condensing points of the laser lights L1 and L2 are moved in the object 100 along the line C in the X direction (or the opposite direction). Is.
  • control unit 9 executes the first scan process and the second scan process, and the third scan process and the fourth scan process so that they overlap at least in part of the time. That is, the control unit 9 causes the state in which the laser beam L1 is scanned and the state in which the laser beam L2 is scanned to be realized at least partially at the same time. That is, the control unit 9 operates the laser processing head 10A and the laser processing head 10B in an overlapping manner. Thereby, the throughput can be clearly improved as compared with the processing using one laser processing head.
  • the control unit 9 first moves the laser processing heads 10A and 10B in the Y direction from the state shown in FIG. 8 to move the laser processing heads 10A and 10A.
  • the laser processing head 10B is in the first state in which it is arranged on one line C of the plurality of lines C.
  • one line C is a line C that is located at one end of the object 100 in the second direction among the plurality of lines C.
  • the modified region M is shown as a solid line for the sake of explanation, but it is not necessary that the modified region M is actually visible from the surface of the object 100.
  • the control unit 9 moves the laser processing head 10A in the Z direction as necessary, so that the condensing point P1 of the laser beam L1 from the laser processing head 10A is at the first position in the Z direction. Position it. Further, in the first state, the control unit 9 moves the laser processing head 10B in the Z direction as necessary, so that the condensing point P2 of the laser beam L2 from the laser processing head 10B is at the second position in the Z direction. Located in. The second position is a position closer to the incident surface 100a side of the laser light L1 and L2 of the object 100 than the first position in the Z direction.
  • the control unit 9 moves the support unit 7 in the direction opposite to the X direction to cause the laser beam L1 from the laser processing head 10A to move to the one line C.
  • the modified region M1 is formed in the region corresponding to the first position
  • the modified region M2 is formed in the region corresponding to the second position.
  • the control unit 9 sets the focus point P2 of the laser light L2 from the laser processing head 10B to a distance L or more from the focus point P1 of the laser light L1 from the laser processing head 10A.
  • the first scan process and the second scan process are performed while keeping the position (distance L in this case) away from the X direction (X negative direction: downstream side). Therefore, the modified region M1 is formed ahead of the modified region M2 by the distance L in the X direction.
  • the modified region M2 is formed so as to follow the modified region M1 by the distance L. As shown in FIG. 11, in this way, a sufficient amount of cracks are propagated due to the formation of the modified region M2.
  • the control unit 9 executes the second processing, which is the laser processing on another line C adjacent to the one line C among the plurality of lines C. That is, after the first processing, the control unit 9 first moves the laser processing heads 10A and 10B in the Y direction, so that the laser processing head 10A and the laser processing head 10B cause the laser processing head 10A and the laser processing head 10B to move among the plurality of lines C.
  • the second state is arranged on another line C.
  • control unit 9 moves the laser processing head 10A in the Z direction to position the condensing point P1 of the laser beam L1 from the laser processing head 10A at the second position.
  • control unit 9 moves the laser processing head 10B in the Z direction to position the condensing point P2 of the laser beam L2 from the laser processing head 10B at the first position. That is, in the second processing, the positions of the converging points P1 and P2 in the Z direction are exchanged with each other with respect to the first processing.
  • the control unit 9 moves the support unit 7 in the X direction (the direction opposite to the first processing process), so that the laser beam L1 from the laser processing head 10A.
  • the fourth scan process and the second processing process for executing the process are executed.
  • the modified region M is formed inside the object 100 in the regions corresponding to the first position and the second position.
  • the control unit 9 sets the focus point P1 of the laser beam L1 from the laser processing head 10A at a distance L or more from the focus point P2 of the laser beam L2 from the laser processing head 10B.
  • the third scan processing and the fourth scan processing are executed while the positions are separated in the X direction (upstream side) (here, the distance L). Therefore, the modified region M2 is formed ahead of the modified region M1 by the distance L in the X direction. In other words, the modified region M1 is formed so as to follow the modified region M2 by the distance L. By doing so, the amount of cracks developed by forming the modified region M1 becomes sufficient.
  • the control unit 9 alternately and repeatedly executes the above-described first machining process and second machining process a number of times (for all lines C) according to the number of the plurality of lines C.
  • the modified regions M1 and M2 are formed for all the lines C, and the cracks extending from the modified regions M1 and M2 can be sufficiently propagated.
  • the support portion 7 is rotated to set a line intersecting the line C so as to be along the X direction, and the above operation can be repeated.
  • the laser processing apparatus 1 is movable along the X direction, and the support portion 7 for supporting the object 100 along the X direction and the Y direction intersecting the X direction, and the X direction.
  • the laser processing head 10A is attached and the mounting portion 65 which is movable along the Z direction and the laser processing head 10B which is mounted so that the laser processing head 10A is movable along the Z direction.
  • a portion 66 and an extension member EM that moves the attachment portions 65 and 66 along the Y direction are provided.
  • the laser processing apparatus 1 controls the movement of the support portion 7, the extension member EM, the mounting portion 65, and the mounting portion 66, and the irradiation of the laser beams L1 and L2 from the laser processing heads 10A and 10B.
  • the controller 9 is provided.
  • a plurality of lines C extending along the X direction and arranged along the Y direction are set on the object 100.
  • the control unit 9 sets the focus point P1 of the laser light L1 from the laser processing head 10A in the Z direction.
  • the laser beam L1 from the laser processing head 10A is scanned in the X direction with respect to the one line C, and the laser beam from the laser processing head 10B is in the first state.
  • the second position is a position closer to the incident surface 100a side of the laser light L1 and L2 of the object 100 than the first position in the Z direction.
  • the control unit 9 sets the focus point P2 of the laser beam L2 from the laser processing head to a distance L or more in the X direction from the focus point P1 of the laser beam L1 from the laser processing head 10A.
  • the first scan process and the second scan process are executed while the positions are separated in the opposite direction.
  • the laser processing heads 10A and 10B can be arranged along the X direction. Then, the control unit 9 performs the first scan processing using the laser processing head 10A and the second scanning processing using the laser processing head 10B in the first state in which the laser processing heads 10A and 10B are arranged on the line C. And execute.
  • the control unit 9 scans the laser light L1 in the X direction while setting the focal point P1 of the laser light L1 from the laser processing head 10A at the first position in the Z direction.
  • the control unit 9 scans the laser beam L2 in the X direction with respect to the line C while setting the focal point P2 of the laser beam L2 from the laser processing head 10B to the second position in the Z direction.
  • two rows of the modified regions M can be formed at least inside the object 100 at substantially the same time by using the two laser processing heads 10A and 10B for one line C.
  • the position of the object is changed in the depth direction (Z direction) and scanning is performed a plurality of times, so that each modification is performed.
  • a crack extending from the area can be sufficiently propagated.
  • the throughput cannot be improved.
  • the laser beams L1 from the respective laser processing heads 10A and 10B when the converging points P1 and P2 of L2 are aligned in the X direction, the crack extending from the modified region M is unlikely to propagate.
  • the focus point P2 of the laser beam L2 from the laser processing head 10B is located at a distance L or more in the X direction from the focus point P1 of the laser beam L1 from the laser processing head 10A.
  • the first scan process and the second scan process are executed while being spaced apart in the opposite direction.
  • the laser from the laser processing head 10B that is scanned so as to follow the distance L while forming the modified region M1 in the first row by scanning the laser beam L1 from the preceding laser processing head 10A.
  • the light L2 can sufficiently propagate the crack while forming the modified region M2 in the second row. Therefore, according to the laser processing device 1, the throughput can be improved.
  • the control unit 9 in the second state in which the laser processing heads 10A and 10B are arranged on another line C after the first processing is in the second state, and the converging point P1 of the laser light L1.
  • the fourth processing for scanning the laser beam L2 in the direction opposite to the X direction with respect to the line C and the second processing for executing the second processing are performed.
  • the control unit 9 sets the condensing point P1 of the laser light L1 at a position separated from the condensing point P2 of the laser light L2 by a distance L or more in the X direction, while performing the third scanning process and the third 4 Scan processing is executed. Therefore, the laser processing heads 10A and 10B can be suitably used without switching the positions of the laser processing heads 10A and 10B in the X direction in the forward path (first processing process) and the backward path (second processing process) with respect to the object 100. Laser processing becomes possible.
  • control unit 9 alternately and repeatedly executes the first processing and the second processing according to the number of the plurality of lines C. Therefore, for example, the reciprocating operation of the support portion 7 along the X direction and the sequential movement of the laser processing heads 10A and 10B in the Y direction enable laser processing along all the lines C.
  • the distance L is 300 ⁇ m. According to the knowledge of the present inventor, by setting the distance L to 300 ⁇ m in this way, the crack can be more sufficiently propagated.
  • the mounting portions 65 and 66 are collectively mounted on the extension member EM, and the extension member EM moves the mounting portions 65 and 66 in the Y direction.
  • the laser processing heads 10A and 10B can be easily moved in the Y direction.
  • the laser processing head 10A is provided on the housing 11 and the sixth wall portion 26 of the housing 11 on the side of the support portion 7 and faces the object 100 supported by the support portion 7.
  • a condenser 14 for condensing the laser light L1.
  • the laser processing head 10B is also provided on the housing 11 and the sixth wall portion 26 of the housing 11 on the side of the support portion 7 and focuses the laser light L2 toward the object 100 supported by the support portion 7.
  • a light condensing unit 14 for Further, the attachment portions 65 and 66 are attached to the wall portions (here, the second wall portion 22) different from the fourth wall portion 24 (opposing wall portion) facing each other along the X direction in the housing 11. ing. Then, the light collecting units 14 are arranged so as to be biased toward the fourth wall portion 24 side of the housing 11 when viewed from the Z direction.
  • the mounting portions 65 and 66 are not interposed between the laser processing head 10A and the laser processing head 10B. Therefore, the laser processing head 10A and the laser processing head 10B can be closer to each other in the Y direction. Further, the light converging portions 14 of the laser processing heads 10A and 10B are arranged so as to be biased toward the fourth wall portions 24 of the respective casings 11 facing each other. Therefore, when the laser processing head 10A and the laser processing head 10B are brought close to each other, the distance between the condensing sections 14 can be further reduced. As a result, the degree of freedom in setting the distance L is improved. [Modification]
  • the laser processing apparatus according to the present disclosure is not limited to the laser processing apparatus 1 described above, and can be arbitrarily modified.
  • FIG. 12 to 15 are views showing modified examples of the mounting portion and the laser processing head.
  • the mounting portion 65 is provided on the first wall portion 21 of the housing 11 of the laser processing head 10A, while the mounting portion 66 is mounted on the first wall of the housing 11 of the laser processing head 10B. You may provide in the part 21.
  • the mounting portion 65 is provided on the third wall portion 23 of the housing 11 of the laser processing head 10A, the mounting portion 66 is mounted on the housing 11 of the laser processing head 10B.
  • the positions of the moving portions 63 and 64 in the attachment portions 65 and 66 may be staggered in the X direction. Further, as shown in FIG.
  • the mounting portion 65 is provided on the third wall portion 23 of the housing 11 of the laser processing head 10A, while the mounting portion 66 is mounted on the housing 11 of the laser processing head 10B.
  • the positions of the moving portions 63 and 64 in the attachment portions 65 and 66 in the Y direction may be changed.
  • the mounting portion 65 is provided on the fifth wall portion 25 of the housing 11 of the laser processing head 10A, while the mounting portion 66 is mounted on the housing 11 of the laser processing head 10B. It may be provided on the five wall portion 25.
  • the mounting portion 65 is provided on the sixth wall portion 26 of the housing 11 of the laser processing head 10A, while the mounting portion 66 is mounted on the sixth wall portion of the housing 11 of the laser processing head 10B. It may be provided on the six wall portion 26.
  • the attachment portions 65 and 66 may be attached to the wall portions different from the fourth wall portion 24 facing each other along the X direction. Further, as shown in (c) of FIG. 13, while increasing the distance between the first wall portion 21 and the second wall portion 22, the condensing portion 14 is provided in the central portion of the housing 11 in the Y direction. Good.
  • the laser processing apparatus 1 does not have to use the laser processing head 10A and the laser processing head 10B as the pair of laser processing heads. That is, in the laser processing apparatus 1, as shown in FIG. 14, a pair (one type) of laser processing head 10A is used, or as shown in FIG. 15, a pair of (another type) laser is used.
  • the processing head 10B can be used.
  • the laser processing heads 10A and 10B on one side are rotated by 180 ° about the Z-axis direction with respect to the laser processing heads 10A and 10B on the other side, respectively. They are arranged so that their center positions coincide with each other. In these cases, it is not necessary to prepare two types of laser processing heads. Even in these cases, as shown in the drawings of FIG. 14 and the drawings of FIG. 15, the mounting portions 65 and 66 are provided on the first wall portion 21 and the second wall portion 22, and the third wall portion is provided. You may provide in the wall part 23.
  • control unit 9 mechanically operates the laser processing heads 10A and 10B as a mode in which the focus points P1 and P2 of the laser beams L1 and L2 from the laser processing heads 10A and 10B are moved in the Z direction.
  • the control unit 9 controls the adjustment unit 13 (for example, the reflective spatial light modulator 34) to optically move the focal points P1 and P2 in the Z direction. It may be.
  • the moving unit may be the moving unit 53 of the moving mechanism 5 that moves the support unit 7 in the Y direction.
  • the control unit 9 processes the object 100 at the wavelengths different from each other by the laser beam L1 from the laser processing head 10A and the laser beam L2 from the laser processing head 10B, and at the converging position in the Z direction. You may make it perform a process (multi-wavelength processing).
  • the multi-wavelength processing is performed, for example, when processing a wafer in which silicon (Si) and glass are bonded (first case) or when a part of the laser beams L1 and L2 incident from the back surface side is absorbed by the device. This can be used, for example, when processing a wafer in which circuit damage may occur (second case).
  • both the light with a wavelength for processing silicon (for example, 1064 nm) and the light with a wavelength for processing glass (for example, 532 nm) need to reach the target material, so processing is performed from the glass side.
  • the converging position of the laser beam L1 from the laser processing head 10A is aligned in the silicon through the glass, and the converging position of the laser beam L2 from the laser processing head 10B is aligned in the glass, and processing is performed at the corresponding wavelength.
  • the wavelength for processing the lower part of the wavelength is the wavelength that transmits the upper base material. Need to be Here, since the multi-wavelength processing is performed using the pair of laser processing heads 10A and 10B, the throughput can be improved.
  • the focus position of the laser beam L1 from the laser processing head 10A is set near the device, and the focus position of the laser beam L2 from the laser processing head 10B is set at a position away from the device.
  • the wavelength of the laser light L1 is set to a wavelength (for example, 1064 nm) at which the base material has more absorption so that the amount of light passing to the device side is reduced, and the wavelength of the laser light L2 is set to a value even if some light is emitted.
  • the wavelength (for example, 1342 nm) longer than the wavelength of the laser beam L1 suitable for processing the base material can be set.
  • a laser processing device that can improve throughput is provided.
  • SYMBOLS 1 ... Laser processing device, 7 ... Support part, 9 ... Control part, 10A ... Laser processing head (1st laser processing head), 10B ... Laser processing head (2nd laser processing head), 65 ... Mounting part (1st mounting) Part), 66 ... Mounting part (second mounting part), 100 ... Object, C ... Line, L1, L2 ... Laser light, P1, P2 ... Focus point.

Abstract

This laser machining device executes: first scanning processing in which, in a first state in which a control unit of the laser machining device, a first laser machining head and a second machining head are arranged in a line, a laser beam from the first laser machining head is scanned in a first direction with respect to the line, while the focal point of the laser beam from the first laser machining head is positioned in a first position in a third direction; and second scanning processing in which, in the first state, a laser beam from the second laser machining head is scanned in the first direction with respect to the line, while the focal point of the laser beam from the second laser machining head is positioned in a second position in the third direction.

Description

レーザ加工装置Laser processing equipment
 本開示は、レーザ加工装置に関する。 The present disclosure relates to a laser processing device.
 特許文献1には、ワークを保持する保持機構と、保持機構に保持されたワークにレーザ光を照射するレーザ照射機構と、を備えるレーザ加工装置が記載されている。特許文献1に記載のレーザ加工装置では、集光レンズを有するレーザ照射機構が基台に対して固定されており、集光レンズの光軸に垂直な方向に沿ったワークの移動が保持機構によって実施される。 Patent Document 1 describes a laser processing apparatus that includes a holding mechanism that holds a work, and a laser irradiation mechanism that irradiates the work held by the holding mechanism with laser light. In the laser processing device described in Patent Document 1, a laser irradiation mechanism having a condenser lens is fixed to a base, and movement of a work along a direction perpendicular to the optical axis of the condenser lens is performed by a holding mechanism. Be implemented.
特許第5456510号公報Japanese Patent No. 5456510
 ところで、上述したようなレーザ加工装置にあっては、スループットの向上のためには、例えば、保持機構によるワークの移動速度を増大させることが考えられる。しかしながら、ワークの移動速度を増大させようとしても、ワークの移動が、目標の速度での等速移動に達するまでに要する加速時間も増大する。このため、ワークの移動速度の増大では、一定以上のスループットの向上が困難である。このように、上記技術分野においては、スループットの向上が望まれている。 By the way, in the above laser processing apparatus, in order to improve the throughput, for example, it is possible to increase the moving speed of the work by the holding mechanism. However, even if an attempt is made to increase the moving speed of the work, the acceleration time required for the movement of the work to reach the uniform speed movement at the target speed also increases. Therefore, it is difficult to improve the throughput above a certain level by increasing the moving speed of the work. Thus, in the above technical field, improvement of throughput is desired.
 一方、上記技術分野にあっては、レーザ光の照射によって、ワークの内部に改質領域を形成し、改質領域及び改質領域から延びる亀裂を利用してワークを切断する場合がある。特に、改質領域から延びる亀裂を十分に進展させるために、ワークの厚さ方向に複数列の改質領域を形成する場合がある。このような加工にあっても、同様にスループットの向上が望まれている。 On the other hand, in the above technical field, there is a case where a modified region is formed inside the work by irradiation with laser light and the work is cut using the modified region and a crack extending from the modified region. In particular, a plurality of rows of modified regions may be formed in the thickness direction of the work in order to sufficiently propagate cracks extending from the modified region. Even in such processing, improvement in throughput is also desired.
 本開示は、スループットを向上可能なレーザ加工装置を提供することを目的とする。 The present disclosure aims to provide a laser processing apparatus capable of improving throughput.
 本開示に係るレーザ加工装置は、第1方向に沿って移動可能とされ、第1方向及び第1方向に交差する第2方向に沿って対象物を支持するための支持部と、第1方向に沿って配列され、支持部に支持された対象物の少なくとも内部にレーザ光を照射して改質領域を形成するための第1レーザ加工ヘッド及び第2レーザ加工ヘッドと、第1レーザ加工ヘッドが取り付けられ、第1方向及び第2方向に交差する第3方向に沿って移動可能とされた第1取付部と、第2レーザ加工ヘッドが取り付けられ、第3方向に沿って移動可能とされた第2取付部と、第1取付部及び第2取付部、又は、支持部の少なくとも一方を第2方向に沿って移動する移動部と、支持部、移動部、第1取付部、及び、第2取付部の移動と、第1レーザ加工ヘッド及び第2レーザ加工ヘッドからのレーザ光の照射と、の制御を行う制御部を、を備え、対象物には、第1方向に沿って延びる共に第2方向に沿って配列された複数のラインが設定されており、制御部は、第1レーザ加工ヘッド及び第2レーザ加工ヘッドが複数のラインのうちの一のライン上に配列された第1状態において、第1レーザ加工ヘッドからのレーザ光の集光点を第3方向における第1位置に位置させつつ、第1レーザ加工ヘッドからのレーザ光を一のラインに対して第1方向にスキャンする第1スキャン処理と、第1状態において、第2レーザ加工ヘッドからのレーザ光の集光点を第3方向における第2位置に位置させつつ、第2レーザ加工ヘッドからのレーザ光を一のラインに対して第1方向にスキャンする第2スキャン処理と、を実行する第1加工処理を実行し、第2位置は、第3方向について第1位置よりも対象物のレーザ光の入射面側の位置であって、制御部は、第1加工処理においては、第2レーザ加工ヘッドからのレーザ光の集光点を、第1レーザ加工ヘッドからのレーザ光の集光点よりも距離L以上第1方向と反対方向に離間した位置としながら、第1スキャン処理及び第2スキャン処理を実行する。 A laser processing apparatus according to the present disclosure is movable along a first direction, and a support portion for supporting an object along a first direction and a second direction intersecting the first direction, and a first direction. First laser processing head and second laser processing head for irradiating at least the inside of the object supported by the supporting portion with laser light to form a modified region, and a first laser processing head And a second laser processing head attached to the first mounting portion that is movable along a third direction that intersects the first direction and the second direction, and is movable along the third direction. A second mounting part, a first mounting part and a second mounting part, or a moving part that moves at least one of the supporting parts along the second direction, a supporting part, a moving part, a first mounting part, and The movement of the second mounting portion, the first laser processing head, and the second A laser beam is emitted from the laser processing head, and a control unit that controls the laser beam irradiation is provided, and a plurality of lines extending in the first direction and arranged in the second direction are set on the object. In the first state in which the first laser processing head and the second laser processing head are arranged on one of the plurality of lines, the control unit collects the laser light from the first laser processing head. A first scanning process of scanning the laser beam from the first laser processing head in the first direction with respect to one line while locating the light spot at the first position in the third direction; A second scan process of scanning the laser light from the second laser processing head in the first direction with respect to one line while locating the condensing point of the laser light from the laser processing head at the second position in the third direction. And run The second position is a position closer to the incident surface side of the laser light of the object than the first position in the third direction, and the control unit performs the first processing in the third processing. 2 The first scanning process and the laser beam focusing point of the laser beam from the laser processing head are separated from the laser beam focusing point of the first laser processing head by a distance L or more in the direction opposite to the first direction. The second scan process is executed.
 この装置においては、第1レーザ加工ヘッド及び第2レーザ加工ヘッドが、第1方向に沿って配列され得る。そして、制御部が、第1レーザ加工ヘッド及び第2レーザ加工ヘッドがライン上に配列された第1状態において、第1レーザ加工ヘッドを用いた第1スキャン処理と、第2レーザ加工ヘッドを用いた第2スキャン処理とを実行する。第1スキャン処理においては、制御部は、第1レーザ加工ヘッドからのレーザ光の集光点を第3方向における第1位置としつつ第1レーザ加工ヘッドからのレーザ光を第1方向にスキャンする。第2スキャン処理においては、制御部は、第2レーザ加工ヘッドからのレーザ光の集光点を第3方向における第2位置としつつラインに対して第2レーザ加工ヘッドからのレーザ光を第1方向にスキャンする。これにより、1つのラインに対して、2つのレーザ加工ヘッドを用いて、対象物の少なくとも内部に2列の改質領域をほぼ同時に形成できる。 In this device, the first laser processing head and the second laser processing head can be arranged along the first direction. Then, the control unit uses the first scan processing using the first laser processing head and the second laser processing head in the first state in which the first laser processing head and the second laser processing head are arranged on the line. Then, the second scan process is performed. In the first scan processing, the control unit scans the laser light from the first laser processing head in the first direction while setting the focal point of the laser light from the first laser processing head to the first position in the third direction. .. In the second scan processing, the control unit sets the converging point of the laser light from the second laser processing head to the second position in the third direction, and first controls the laser light from the second laser processing head with respect to the line. Scan in the direction. Accordingly, two lines of modified regions can be formed at least inside the object at substantially the same time by using two laser processing heads for one line.
 ここで、本発明者らの知見によれば、1つのレーザ加工ヘッドを用いる場合、対象物の深さ方向(第3方向)に位置を違えて複数回のスキャンを行うことによって、それぞれの改質領域から延びる亀裂を十分に進展させることができる。しかしながら、この場合には、スループットの向上が図られない。これに対して、2つのレーザ加工ヘッドを用いて対象物の内部に2列の改質領域を形成する場合には、それぞれのレーザ加工ヘッドからのレーザ光の集光点を第1方向について一致させると、改質領域から延びる亀裂が進展しにくい。これに対して、この装置においては、第2レーザ加工ヘッドからのレーザ光の集光点を、第1レーザ加工ヘッドからのレーザ光の集光点よりも距離L以上第1方向と反対方向に離間して位置させつつ第1スキャン処理及び第2スキャン処理を実行する。これによれば、先行する第1レーザ加工ヘッドからのレーザ光のスキャンによって1列目の改質領域を形成しつつ、距離Lだけその後を追うようにスキャンされる第2レーザ加工ヘッドからのレーザ光によって、2列目の改質領域を形成しつつ十分に亀裂を進展させることが可能である。よって、この装置によれば、スループットを向上可能である。 Here, according to the knowledge of the present inventors, when one laser processing head is used, the position of the object is changed in the depth direction (third direction), and a plurality of scans are performed to change each position. The crack extending from the quality region can be sufficiently propagated. However, in this case, the throughput cannot be improved. On the other hand, when two rows of modified regions are formed inside the object using the two laser processing heads, the converging points of the laser beams from the respective laser processing heads coincide with each other in the first direction. If so, the crack extending from the modified region is unlikely to propagate. On the other hand, in this device, the condensing point of the laser light from the second laser processing head is located at a distance L or more from the converging point of the laser light from the first laser processing head in the direction opposite to the first direction. The first scan process and the second scan process are executed while being separated from each other. According to this, the laser from the second laser processing head that is scanned so as to follow the distance L while forming the modified region of the first row by scanning the laser beam from the preceding first laser processing head. The light can sufficiently propagate the crack while forming the modified region in the second row. Therefore, according to this device, the throughput can be improved.
 本開示に係るレーザ加工装置においては、制御部は、第1加工処理の後に、第1レーザ加工ヘッド及び第2レーザ加工ヘッドが複数のラインのうちの一のラインに隣接する別のライン上に配列された第2状態において、第1レーザ加工ヘッドからのレーザ光の集光点を第2位置に位置させつつ第1レーザ加工ヘッドからのレーザ光をラインに対して第1方向の反対方向にスキャンする第3スキャン処理と、第2状態において、第2レーザ加工ヘッドからのレーザ光の集光点を第1位置に位置させつつ第2レーザ加工ヘッドからのレーザ光を別のラインに対して第1方向の反対方向にスキャンする第4スキャン処理と、を実行する第2加工処理を実行し、制御部は、第2加工処理においては、第1レーザ加工ヘッドからのレーザ光の集光点を、第2レーザ加工ヘッドからのレーザ光の集光点よりも距離L以上第1方向に離間した位置としながら、第3スキャン処理及び第4スキャン処理を実行してもよい。この場合、第1レーザ加工ヘッド及び第2レーザ加工ヘッドの対象物に対する往路(第1加工処理)と復路(第2加工処理)とにおいて、第1レーザ加工ヘッド及び第2レーザ加工ヘッドの第1方向の位置を入れ替えることなく、好適にレーザ加工が可能となる。 In the laser processing apparatus according to the present disclosure, the control unit is configured such that, after the first processing, the first laser processing head and the second laser processing head are positioned on another line adjacent to one of the plurality of lines. In the arrayed second state, the laser beam from the first laser processing head is moved in the direction opposite to the first direction with respect to the line while the condensing point of the laser beam from the first laser processing head is located at the second position. In the third scanning process of scanning and in the second state, the laser light from the second laser processing head is positioned on the first position while the condensing point of the laser light from the second laser processing head is positioned at the first position. A fourth scanning process of scanning in a direction opposite to the first direction and a second processing process of executing the second processing process are performed. In the second processing process, the control unit condenses a laser beam from the first laser processing head. To While a position spaced apart in the first direction or the distance L than the focal point of the laser light from the second laser processing head may perform a third scan processing and the fourth scanning process. In this case, the first laser processing head and the second laser processing head are the first laser processing head and the second laser processing head in the forward path (first processing process) and the backward path (second processing process) with respect to the object by the first laser processing head and the second laser processing head. Laser processing can be preferably performed without changing the positions of the directions.
 本開示に係るレーザ加工装置においては、制御部は、複数のラインの本数に応じた回数だけ第1加工処理と第2加工処理とを交互に繰り返して実行してもよい。この場合、例えば、第1方向に沿った支持部の往復動作、及び、第1レーザ加工ヘッド及び第2レーザ加工ヘッドの第2方向への順次の移動によって、全てのラインに沿ったレーザ加工が可能となる。 In the laser processing apparatus according to the present disclosure, the control unit may alternately and repeatedly execute the first processing and the second processing according to the number of lines. In this case, for example, the laser processing along all the lines can be performed by the reciprocating movement of the support portion along the first direction and the sequential movement of the first laser processing head and the second laser processing head in the second direction. It will be possible.
 本開示に係るレーザ加工装置においては、距離Lは、300μmであってもよい。本開示者の知見によれば、このように距離Lを300μmと設定することにより、より十分に亀裂を進展させることができる。 In the laser processing apparatus according to the present disclosure, the distance L may be 300 μm. According to the knowledge of the present disclosure, by setting the distance L to 300 μm in this way, the crack can be more sufficiently propagated.
 本開示に係るレーザ加工装置においては、第1取付部及び第2取付部は、一括して移動部に取り付けられており、移動部は、第1取付部及び第2取付部を第2方向に移動してもよい。この場合、第1レーザ加工ヘッド及び第2レーザ加工ヘッドの第2方向の移動が容易となる。 In the laser processing apparatus according to the present disclosure, the first mounting portion and the second mounting portion are collectively mounted on the moving portion, and the moving portion moves the first mounting portion and the second mounting portion in the second direction. You may move. In this case, it becomes easy to move the first laser processing head and the second laser processing head in the second direction.
 本開示によれば、スループットを向上可能なレーザ加工装置を提供できる。 According to the present disclosure, it is possible to provide a laser processing device capable of improving throughput.
一実施形態のレーザ加工装置の斜視図である。It is a perspective view of the laser processing apparatus of one embodiment. 図1に示されるレーザ加工装置の一部分の正面図である。It is a front view of a part of laser processing apparatus shown by FIG. 図1に示されるレーザ加工装置のレーザ加工ヘッドの正面図である。It is a front view of the laser processing head of the laser processing apparatus shown by FIG. 図3に示されるレーザ加工ヘッドの側面図である。4 is a side view of the laser processing head shown in FIG. 3. FIG. 図3に示されるレーザ加工ヘッドの光学系の構成図である。It is a block diagram of the optical system of the laser processing head shown in FIG. 変形例のレーザ加工ヘッドの光学系の構成図である。It is a block diagram of the optical system of the laser processing head of a modification. 変形例のレーザ加工装置の一部分の正面図である。It is a front view of a part of laser processing apparatus of a modification. レーザ加工装置の動作を示す模式的な上面図である。It is a schematic top view which shows operation | movement of a laser processing apparatus. レーザ加工装置の動作を示す模式的な上面図である。It is a schematic top view which shows operation | movement of a laser processing apparatus. レーザ加工装置の動作を示す模式的な断面図である。It is a typical sectional view showing operation of a laser processing device. 亀裂量を示すグラフである。It is a graph which shows the amount of cracks. 取付部及びレーザ加工ヘッドの変形例を示す図である。It is a figure which shows the modification of an attachment part and a laser processing head. 取付部及びレーザ加工ヘッドの変形例を示す図である。It is a figure which shows the modification of an attachment part and a laser processing head. 取付部及びレーザ加工ヘッドの変形例を示す図である。It is a figure which shows the modification of an attachment part and a laser processing head. 取付部及びレーザ加工ヘッドの変形例を示す図である。It is a figure which shows the modification of an attachment part and a laser processing head.
 以下、一実施形態について、図面を参照して詳細に説明する。なお、各図において同一又は相当部分には同一符号を付し、重複する説明を省略する。
[レーザ加工装置の構成]
Hereinafter, one embodiment will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts will be denoted by the same reference symbols and redundant description will be omitted.
[Configuration of laser processing equipment]
 図1に示されるように、レーザ加工装置1は、複数の移動機構5,6と、支持部7と、1対のレーザ加工ヘッド(第1レーザ加工ヘッド、第2レーザ加工ヘッド)10A,10Bと、光源ユニット8と、制御部9と、を備えている。以下、第1方向をX方向、第1方向に垂直な第2方向をY方向、第1方向及び第2方向に垂直な第3方向をZ方向という。本実施形態では、X方向及びY方向は水平方向であり、Z方向は鉛直方向である。 As shown in FIG. 1, the laser processing apparatus 1 includes a plurality of moving mechanisms 5 and 6, a supporting portion 7, and a pair of laser processing heads (first laser processing head, second laser processing head) 10A and 10B. And a light source unit 8 and a control unit 9. Hereinafter, the first direction will be referred to as the X direction, the second direction perpendicular to the first direction will be referred to as the Y direction, and the third direction perpendicular to the first and second directions will be referred to as the Z direction. In this embodiment, the X direction and the Y direction are horizontal directions, and the Z direction is a vertical direction.
 移動機構5は、固定部51と、移動部53と、取付部55と、を有している。固定部51は、装置フレーム1aに取り付けられている。移動部53は、固定部51に設けられたレールに取り付けられており、Y方向に沿って移動することができる。取付部55は、移動部53に設けられたレールに取り付けられており、X方向に沿って移動することができる。 The moving mechanism 5 has a fixed portion 51, a moving portion 53, and a mounting portion 55. The fixed portion 51 is attached to the device frame 1a. The moving unit 53 is attached to a rail provided on the fixed unit 51, and can move along the Y direction. The attachment portion 55 is attached to a rail provided on the moving portion 53 and can move along the X direction.
 移動機構6は、固定部61と、1対の移動部(第1移動部、第2移動部)63,64と、1対の取付部(第1取付部、第2取付部)65,66と、を有している。固定部61は、装置フレーム1aに取り付けられている。1対の移動部63,64のそれぞれは、固定部61に設けられたレールに取り付けられており、それぞれが独立して、Y方向に沿って移動することができる。取付部65は、移動部63に設けられたレールに取り付けられており、Z方向に沿って移動することができる。取付部66は、移動部64に設けられたレールに取り付けられており、Z方向に沿って移動することができる。つまり、装置フレーム1aに対しては、1対の取付部65,66のそれぞれが、Y方向及びZ方向のそれぞれに沿って移動することができる。 The moving mechanism 6 includes a fixed part 61, a pair of moving parts (first moving part, second moving part) 63, 64, and a pair of mounting parts (first mounting part, second mounting part) 65, 66. And have. The fixed portion 61 is attached to the device frame 1a. Each of the pair of moving portions 63 and 64 is attached to a rail provided on the fixed portion 61, and each of them can move independently along the Y direction. The attachment portion 65 is attached to a rail provided on the moving portion 63 and can move along the Z direction. The attachment portion 66 is attached to a rail provided on the moving portion 64 and can move along the Z direction. That is, with respect to the device frame 1a, each of the pair of mounting portions 65 and 66 can move along the Y direction and the Z direction.
 支持部7は、移動機構5の取付部55に設けられた回転軸に取り付けられており、Z方向に平行な軸線を中心線として回転することができる。つまり、支持部7は、X方向及びY方向のそれぞれに沿って移動することができ、Z方向に平行な軸線を中心線として回転することができる。支持部7は、X方向及びY方向に沿って対象物100を支持する。対象物100は、例えば、ウェハである。 The support portion 7 is attached to a rotary shaft provided on the attachment portion 55 of the moving mechanism 5, and can rotate about an axis parallel to the Z direction as a center line. That is, the support part 7 can move along each of the X direction and the Y direction, and can rotate about the axis parallel to the Z direction as the center line. The support unit 7 supports the object 100 along the X direction and the Y direction. The object 100 is, for example, a wafer.
 図1及び図2に示されるように、レーザ加工ヘッド10A(例えば第1レーザ加工ヘッド)は、移動機構6の取付部65に取り付けられている。レーザ加工ヘッド10Aは、Z方向において支持部7と対向した状態で、支持部7に支持された対象物100にレーザ光(第1レーザ光)L1を照射するためのものである。レーザ加工ヘッド10B(例えば第2レーザ加工ヘッド)は、移動機構6の取付部66に取り付けられている。レーザ加工ヘッド10Bは、Z方向において支持部7と対向した状態で、支持部7に支持された対象物100にレーザ光(第2レーザ光)L2を照射するためのものである。 As shown in FIGS. 1 and 2, the laser processing head 10A (for example, the first laser processing head) is attached to the attachment portion 65 of the moving mechanism 6. The laser processing head 10A is for irradiating the object 100 supported by the support 7 with laser light (first laser light) L1 while facing the support 7 in the Z direction. The laser processing head 10B (for example, the second laser processing head) is attached to the attachment portion 66 of the moving mechanism 6. The laser processing head 10B is for irradiating the object 100 supported by the support 7 with laser light (second laser light) L2 while facing the support 7 in the Z direction.
 光源ユニット8は、1対の光源81,82を有している。光源81は、レーザ光L1を出力する。レーザ光L1は、光源81の出射部81aから出射され、光ファイバ2によってレーザ加工ヘッド10Aに導光される。光源82は、レーザ光L2を出力する。レーザ光L2は、光源82の出射部82aから出射され、別の光ファイバ2によってレーザ加工ヘッド10Bに導光される。 The light source unit 8 has a pair of light sources 81 and 82. The light source 81 outputs laser light L1. The laser light L1 is emitted from the emitting portion 81a of the light source 81 and guided to the laser processing head 10A by the optical fiber 2. The light source 82 outputs laser light L2. The laser light L2 is emitted from the emitting portion 82a of the light source 82, and is guided to the laser processing head 10B by another optical fiber 2.
 制御部9は、レーザ加工装置1の各部(複数の移動機構5,6、1対のレーザ加工ヘッド10A,10B、及び光源ユニット8等)を制御する。制御部9は、プロセッサ、メモリ、ストレージ及び通信デバイス等を含むコンピュータ装置として構成されている。制御部9では、メモリ等に読み込まれたソフトウェア(プログラム)が、プロセッサによって実行され、メモリ及びストレージにおけるデータの読み出し及び書き込み、並びに、通信デバイスによる通信が、プロセッサによって制御される。これにより、制御部9は、各種機能を実現する。 The control unit 9 controls each unit of the laser processing apparatus 1 (a plurality of moving mechanisms 5, 6, a pair of laser processing heads 10A, 10B, a light source unit 8, etc.). The control unit 9 is configured as a computer device including a processor, a memory, a storage, a communication device, and the like. In the control unit 9, the software (program) read into the memory or the like is executed by the processor, and the reading and writing of data in the memory and the storage and the communication by the communication device are controlled by the processor. Thereby, the control unit 9 realizes various functions.
 以上のように構成されたレーザ加工装置1による加工の一例について説明する。当該加工の一例は、ウェハである対象物100を複数のチップに切断するために、格子状に設定された複数のラインのそれぞれに沿って対象物100の内部に改質領域を形成する例である。 An example of processing by the laser processing apparatus 1 configured as above will be described. An example of the processing is an example in which a modified region is formed inside the object 100 along each of a plurality of lines set in a grid pattern in order to cut the object 100, which is a wafer, into a plurality of chips. is there.
 まず、対象物100を支持している支持部7がZ方向において1対のレーザ加工ヘッド10A,10Bと対向するように、移動機構5が、X方向及びY方向のそれぞれに沿って支持部7を移動させる。続いて、対象物100において一方向に延在する複数のラインがX方向に沿うように、移動機構5が、Z方向に平行な軸線を中心線として支持部7を回転させる。 First, the moving mechanism 5 moves the supporting portion 7 along the X direction and the Y direction so that the supporting portion 7 supporting the object 100 faces the pair of laser processing heads 10A and 10B in the Z direction. To move. Then, the moving mechanism 5 rotates the support part 7 with the axis line parallel to the Z direction as the center line so that the plurality of lines extending in one direction on the object 100 are along the X direction.
 続いて、一方向に延在する一のライン上にレーザ光L1の集光点が位置するように、移動機構6が、Y方向に沿ってレーザ加工ヘッド10Aを移動させる。その一方で、一方向に延在する他のライン上にレーザ光L2の集光点が位置するように、移動機構6が、Y方向に沿ってレーザ加工ヘッド10Bを移動させる。続いて、対象物100の内部にレーザ光L1の集光点が位置するように、移動機構6が、Z方向に沿ってレーザ加工ヘッド10Aを移動させる。その一方で、対象物100の内部にレーザ光L2の集光点が位置するように、移動機構6が、Z方向に沿ってレーザ加工ヘッド10Bを移動させる。 Next, the moving mechanism 6 moves the laser processing head 10A along the Y direction so that the focus point of the laser beam L1 is located on one line extending in one direction. On the other hand, the moving mechanism 6 moves the laser processing head 10B along the Y direction so that the focal point of the laser light L2 is located on the other line extending in one direction. Then, the moving mechanism 6 moves the laser processing head 10A along the Z direction so that the focusing point of the laser beam L1 is located inside the object 100. On the other hand, the moving mechanism 6 moves the laser processing head 10B along the Z direction so that the focal point of the laser beam L2 is located inside the object 100.
 続いて、光源81がレーザ光L1を出力してレーザ加工ヘッド10Aが対象物100にレーザ光L1を照射すると共に、光源82がレーザ光L2を出力してレーザ加工ヘッド10Bが対象物100にレーザ光L2を照射する。それと同時に、一方向に延在する一のラインに沿ってレーザ光L1の集光点が相対的に移動し(レーザ光L1がスキャンされ)且つ一方向に延在する他のラインに沿ってレーザ光L2の集光点が相対的に移動する(レーザ光L2がスキャンされる)ように、移動機構5が、X方向に沿って支持部7を移動させる。このようにして、レーザ加工装置1は、対象物100において一方向に延在する複数のラインのそれぞれに沿って、対象物100の内部に改質領域を形成する。 Subsequently, the light source 81 outputs the laser light L1 and the laser processing head 10A irradiates the object 100 with the laser light L1, and the light source 82 outputs the laser light L2 and the laser processing head 10B lasers the object 100. The light L2 is emitted. At the same time, the condensing point of the laser light L1 relatively moves along one line extending in one direction (the laser light L1 is scanned), and the laser beam extends along another line extending in one direction. The moving mechanism 5 moves the support portion 7 along the X direction so that the focal point of the light L2 moves relatively (the laser light L2 is scanned). In this way, the laser processing apparatus 1 forms the modified region inside the object 100 along each of the plurality of lines extending in one direction on the object 100.
 続いて、対象物100において一方向と直交する他方向に延在する複数のラインがX方向に沿うように、移動機構5が、Z方向に平行な軸線を中心線として支持部7を回転させる。 Then, the moving mechanism 5 rotates the support part 7 with the axis line parallel to the Z direction as the center line so that the plurality of lines extending in the other direction orthogonal to the one direction in the object 100 are along the X direction. ..
 続いて、他方向に延在する一のライン上にレーザ光L1の集光点が位置するように、移動機構6が、Y方向に沿ってレーザ加工ヘッド10Aを移動させる。その一方で、他方向に延在する他のライン上にレーザ光L2の集光点が位置するように、移動機構6が、Y方向に沿ってレーザ加工ヘッド10Bを移動させる。続いて、対象物100の内部にレーザ光L1の集光点が位置するように、移動機構6が、Z方向に沿ってレーザ加工ヘッド10Aを移動させる。その一方で、対象物100の内部にレーザ光L2の集光点が位置するように、移動機構6が、Z方向に沿ってレーザ加工ヘッド10Bを移動させる。 Subsequently, the moving mechanism 6 moves the laser processing head 10A along the Y direction so that the focus point of the laser light L1 is located on one line extending in the other direction. On the other hand, the moving mechanism 6 moves the laser processing head 10B along the Y direction so that the focus point of the laser light L2 is located on another line extending in the other direction. Then, the moving mechanism 6 moves the laser processing head 10A along the Z direction so that the focusing point of the laser beam L1 is located inside the object 100. On the other hand, the moving mechanism 6 moves the laser processing head 10B along the Z direction so that the focal point of the laser beam L2 is located inside the object 100.
 続いて、光源81がレーザ光L1を出力してレーザ加工ヘッド10Aが対象物100にレーザ光L1を照射すると共に、光源82がレーザ光L2を出力してレーザ加工ヘッド10Bが対象物100にレーザ光L2を照射する。それと同時に、他方向に延在する一のラインに沿ってレーザ光L1の集光点が相対的に移動し(レーザ光L1がスキャンされ)且つ他方向に延在する他のラインに沿ってレーザ光L2の集光点が相対的に移動する(レーザ光L2がスキャンされる)ように、移動機構5が、X方向に沿って支持部7を移動させる。このようにして、レーザ加工装置1は、対象物100において一方向と直交する他方向に延在する複数のラインのそれぞれに沿って、対象物100の内部に改質領域を形成する。 Subsequently, the light source 81 outputs the laser light L1 and the laser processing head 10A irradiates the object 100 with the laser light L1, and the light source 82 outputs the laser light L2 and the laser processing head 10B lasers the object 100. The light L2 is emitted. At the same time, the focal point of the laser light L1 relatively moves along one line extending in the other direction (the laser light L1 is scanned), and the laser beam extends along the other line extending in the other direction. The moving mechanism 5 moves the support portion 7 along the X direction so that the focal point of the light L2 moves relatively (the laser light L2 is scanned). In this way, the laser processing apparatus 1 forms the modified region inside the object 100 along each of the plurality of lines extending in the other direction orthogonal to the one direction in the object 100.
 なお、上述した加工の一例では、光源81は、例えばパルス発振方式によって、対象物100に対して透過性を有するレーザ光L1を出力し、光源82は、例えばパルス発振方式によって、対象物100に対して透過性を有するレーザ光L2を出力する。そのようなレーザ光が対象物100の内部に集光されると、レーザ光の集光点に対応する部分においてレーザ光が特に吸収され、対象物100の内部に改質領域が形成される。改質領域は、密度、屈折率、機械的強度、その他の物理的特性が周囲の非改質領域とは異なる領域である。改質領域としては、例えば、溶融処理領域、クラック領域、絶縁破壊領域、屈折率変化領域等がある。 In the example of the above-described processing, the light source 81 outputs the laser light L1 that is transmissive to the target object 100, for example, by the pulse oscillation method, and the light source 82 outputs the laser light L1 to the target object 100, for example, by the pulse oscillation method. On the other hand, the laser beam L2 having transparency is output. When such laser light is condensed inside the object 100, the laser light is particularly absorbed in a portion corresponding to the condensing point of the laser light, and a modified region is formed inside the object 100. The modified region is a region where the density, refractive index, mechanical strength, and other physical properties are different from the surrounding unmodified region. The modified region includes, for example, a melt-processed region, a crack region, a dielectric breakdown region, and a refractive index change region.
 パルス発振方式によって出力されたレーザ光が対象物100に照射され、対象物100に設定されたラインに沿ってレーザ光の集光点が相対的に移動させられると、複数の改質スポットがラインに沿って1列に並ぶように形成される。1つの改質スポットは、1パルスのレーザ光の照射によって形成される。1列の改質領域は、1列に並んだ複数の改質スポットの集合である。隣り合う改質スポットは、対象物100に対するレーザ光の集光点の相対的な移動速度及びレーザ光の繰り返し周波数によって、互いに繋がる場合も、互いに離れる場合もある。
[レーザ加工ヘッドの構成]
When the object 100 is irradiated with the laser light output by the pulse oscillation method and the condensing point of the laser light is relatively moved along the line set on the object 100, a plurality of modified spots are lined up. Are formed so as to be lined up in a row along the line. One modified spot is formed by irradiation with one pulse of laser light. The one-row reforming region is a set of a plurality of reforming spots arranged in one row. Adjacent modified spots may be connected to each other or may be separated from each other depending on the relative moving speed of the condensing point of the laser light with respect to the object 100 and the repetition frequency of the laser light.
[Configuration of laser processing head]
 図3及び図4に示されるように、レーザ加工ヘッド10Aは、筐体(例えば第1筐体)11と、入射部12と、調整部13と、集光部(例えば第1集光部)14と、を備えている。 As shown in FIGS. 3 and 4, the laser processing head 10A includes a casing (for example, a first casing) 11, an incident unit 12, an adjusting unit 13, and a condensing unit (for example, a first condensing unit). 14 and.
 筐体11は、第1壁部21及び第2壁部22、第3壁部23及び第4壁部24、並びに、第5壁部25及び第6壁部26を有している。第1壁部21及び第2壁部22は、X方向において互いに対向している。第3壁部23及び第4壁部24は、Y方向において互いに対向している。第5壁部25及び第6壁部26は、Z方向において互いに対向している。 The housing 11 has a first wall portion 21 and a second wall portion 22, a third wall portion 23 and a fourth wall portion 24, and a fifth wall portion 25 and a sixth wall portion 26. The first wall portion 21 and the second wall portion 22 face each other in the X direction. The third wall portion 23 and the fourth wall portion 24 face each other in the Y direction. The fifth wall portion 25 and the sixth wall portion 26 face each other in the Z direction.
 第3壁部23と第4壁部24との距離は、第1壁部21と第2壁部22との距離よりも小さい。第1壁部21と第2壁部22との距離は、第5壁部25と第6壁部26との距離よりも小さい。なお、第1壁部21と第2壁部22との距離は、第5壁部25と第6壁部26との距離と等しくてもよいし、或いは、第5壁部25と第6壁部26との距離よりも大きくてもよい。 The distance between the third wall portion 23 and the fourth wall portion 24 is smaller than the distance between the first wall portion 21 and the second wall portion 22. The distance between the first wall portion 21 and the second wall portion 22 is smaller than the distance between the fifth wall portion 25 and the sixth wall portion 26. The distance between the first wall portion 21 and the second wall portion 22 may be equal to the distance between the fifth wall portion 25 and the sixth wall portion 26, or alternatively, the fifth wall portion 25 and the sixth wall portion 26. It may be larger than the distance to the portion 26.
 レーザ加工ヘッド10Aでは、第1壁部21は、移動機構6の固定部61側に位置しており、第2壁部22は、固定部61とは反対側に位置している。第3壁部23は、移動機構6の取付部65側に位置しており、第4壁部24は、取付部65とは反対側であってレーザ加工ヘッド10B側に位置している(図2参照)。すなわち、第4壁部24は、レーザ加工ヘッド10Bの筐体(第2筐体)にY方向に沿って対向する対向壁部である。第5壁部25は、支持部7とは反対側に位置しており、第6壁部26は、支持部7側に位置している。 In the laser processing head 10A, the first wall portion 21 is located on the fixed portion 61 side of the moving mechanism 6, and the second wall portion 22 is located on the opposite side to the fixed portion 61. The third wall portion 23 is located on the mounting portion 65 side of the moving mechanism 6, and the fourth wall portion 24 is located on the side opposite to the mounting portion 65 and on the laser processing head 10B side (FIG. 2). That is, the fourth wall portion 24 is a facing wall portion that faces the housing (second housing) of the laser processing head 10B along the Y direction. The fifth wall portion 25 is located on the side opposite to the support portion 7, and the sixth wall portion 26 is located on the support portion 7 side.
 筐体11は、第3壁部23が移動機構6の取付部65側に配置された状態で筐体11が取付部65に取り付けられるように、構成されている。具体的には、次のとおりである。取付部65は、ベースプレート65aと、取付プレート65bと、を有している。ベースプレート65aは、移動部63に設けられたレールに取り付けられている(図2参照)。取付プレート65bは、ベースプレート65aにおけるレーザ加工ヘッド10B側の端部に立設されている(図2参照)。筐体11は、第3壁部23が取付プレート65bに接触した状態で、台座27を介してボルト28が取付プレート65bに螺合されることで、取付部65に取り付けられている。台座27は、第1壁部21及び第2壁部22のそれぞれに設けられている。筐体11は、取付部65に対して着脱可能である。 The housing 11 is configured such that the housing 11 is attached to the mounting portion 65 with the third wall portion 23 arranged on the mounting portion 65 side of the moving mechanism 6. Specifically, it is as follows. The mounting portion 65 has a base plate 65a and a mounting plate 65b. The base plate 65a is attached to a rail provided on the moving unit 63 (see FIG. 2). The mounting plate 65b is erected on the end of the base plate 65a on the laser processing head 10B side (see FIG. 2). The casing 11 is attached to the attachment portion 65 by screwing the bolt 28 to the attachment plate 65b via the pedestal 27 while the third wall portion 23 is in contact with the attachment plate 65b. The pedestal 27 is provided on each of the first wall portion 21 and the second wall portion 22. The housing 11 is attachable to and detachable from the mounting portion 65.
 入射部12は、第5壁部25に取り付けられている。入射部12は、筐体11内にレーザ光L1を入射させる。入射部12は、X方向においては第2壁部22側(一方の壁部側)に片寄っており、Y方向においては第4壁部24側に片寄っている。つまり、X方向における入射部12と第2壁部22との距離は、X方向における入射部12と第1壁部21との距離よりも小さく、Y方向における入射部12と第4壁部24との距離は、X方向における入射部12と第3壁部23との距離よりも小さい。 The incident part 12 is attached to the fifth wall part 25. The incident unit 12 causes the laser light L1 to enter the housing 11. The incident portion 12 is offset to the second wall portion 22 side (one wall portion side) in the X direction and is offset to the fourth wall portion 24 side in the Y direction. That is, the distance between the incident portion 12 and the second wall portion 22 in the X direction is smaller than the distance between the incident portion 12 and the first wall portion 21 in the X direction, and the incident portion 12 and the fourth wall portion 24 in the Y direction. Is smaller than the distance between the incident portion 12 and the third wall portion 23 in the X direction.
 入射部12は、光ファイバ2の接続端部2aが接続可能となるように構成されている。光ファイバ2の接続端部2aには、ファイバの出射端から出射されたレーザ光L1をコリメートするコリメータレンズが設けられており、戻り光を抑制するアイソレータが設けられていない。当該アイソレータは、接続端部2aよりも光源81側であるファイバの途中に設けられている。これにより、接続端部2aの小型化、延いては、入射部12の小型化が図られている。なお、光ファイバ2の接続端部2aにアイソレータが設けられていてもよい。 The incident portion 12 is configured so that the connection end portion 2a of the optical fiber 2 can be connected. The connection end portion 2a of the optical fiber 2 is provided with a collimator lens that collimates the laser light L1 emitted from the emission end of the fiber, and is not provided with an isolator that suppresses return light. The isolator is provided in the middle of the fiber on the light source 81 side with respect to the connection end portion 2a. As a result, the connection end portion 2a is downsized, and the incident portion 12 is downsized. An isolator may be provided at the connection end 2a of the optical fiber 2.
 調整部13は、筐体11内に配置されている。調整部13は、入射部12から入射したレーザ光L1を調整する。調整部13が有する各構成は、筐体11内に設けられた光学ベース29に取り付けられている。光学ベース29は、筐体11内の領域を第3壁部23側の領域と第4壁部24側の領域とに仕切るように、筐体11に取り付けられている。光学ベース29は、筐体11と一体となっている。調整部13が有する各構成は、第4壁部24側において光学ベース29に取り付けられている。調整部13が有する各構成の詳細については後述する。 The adjusting unit 13 is arranged in the housing 11. The adjusting unit 13 adjusts the laser light L1 incident from the incident unit 12. Each component of the adjusting unit 13 is attached to an optical base 29 provided inside the housing 11. The optical base 29 is attached to the housing 11 so as to partition the area inside the housing 11 into an area on the third wall portion 23 side and an area on the fourth wall portion 24 side. The optical base 29 is integrated with the housing 11. The components included in the adjusting unit 13 are attached to the optical base 29 on the fourth wall 24 side. Details of each configuration of the adjustment unit 13 will be described later.
 集光部14は、第6壁部26に配置されている。具体的には、集光部14は、第6壁部26に形成された孔26aに挿通された状態で、第6壁部26に配置されている。集光部14は、調整部13によって調整されたレーザ光L1を集光しつつ筐体11外に出射させる。集光部14は、X方向においては第2壁部22側(一方の壁部側)に片寄っており、Y方向においては第4壁部24側に片寄っている。すなわち、集光部14は、Z方向からみて、筐体11における第4壁部(対向壁部)24側に偏って配置されている。つまり、X方向における集光部14と第2壁部22との距離は、X方向における集光部14と第1壁部21との距離よりも小さく、Y方向における集光部14と第4壁部24との距離は、X方向における集光部14と第3壁部23との距離よりも小さい。 The light collector 14 is arranged on the sixth wall 26. Specifically, the light collecting section 14 is arranged in the sixth wall section 26 in a state of being inserted into the hole 26 a formed in the sixth wall section 26. The condensing unit 14 condenses the laser light L1 adjusted by the adjusting unit 13 and emits it to the outside of the housing 11. The light collecting section 14 is offset to the second wall section 22 side (one wall section side) in the X direction and is biased to the fourth wall section 24 side in the Y direction. That is, the light condensing unit 14 is arranged so as to be biased toward the fourth wall portion (opposing wall portion) 24 side of the housing 11 when viewed from the Z direction. That is, the distance between the light collecting section 14 and the second wall section 22 in the X direction is smaller than the distance between the light collecting section 14 and the first wall section 21 in the X direction, and the light collecting section 14 and the fourth wall in the Y direction are fourth. The distance from the wall portion 24 is smaller than the distance between the light collecting portion 14 and the third wall portion 23 in the X direction.
 図5に示されるように、調整部13は、アッテネータ31と、ビームエキスパンダ32と、ミラー33と、を有している。入射部12、並びに、調整部13のアッテネータ31、ビームエキスパンダ32及びミラー33は、Z方向に沿って延在する直線(第1直線)A1上に配置されている。アッテネータ31及びビームエキスパンダ32は、直線A1上において、入射部12とミラー33との間に配置されている。アッテネータ31は、入射部12から入射したレーザ光L1の出力を調整する。ビームエキスパンダ32は、アッテネータ31で出力が調整されたレーザ光L1の径を拡大する。ミラー33は、ビームエキスパンダ32で径が拡大されたレーザ光L1を反射する。 As shown in FIG. 5, the adjusting unit 13 has an attenuator 31, a beam expander 32, and a mirror 33. The incident unit 12, the attenuator 31, the beam expander 32, and the mirror 33 of the adjusting unit 13 are arranged on a straight line (first straight line) A1 extending along the Z direction. The attenuator 31 and the beam expander 32 are arranged between the incident part 12 and the mirror 33 on the straight line A1. The attenuator 31 adjusts the output of the laser light L1 incident from the incident unit 12. The beam expander 32 expands the diameter of the laser light L1 whose output is adjusted by the attenuator 31. The mirror 33 reflects the laser light L1 whose diameter has been expanded by the beam expander 32.
 調整部13は、反射型空間光変調器34と、結像光学系35と、を更に有している。調整部13の反射型空間光変調器34及び結像光学系35、並びに、集光部14は、Z方向に沿って延在する直線(第2直線)A2上に配置されている。反射型空間光変調器34は、ミラー33で反射されたレーザ光L1を変調する。反射型空間光変調器34は、例えば、反射型液晶(LCOS:Liquid Crystal on Silicon)の空間光変調器(SLM:Spatial Light Modulator)である。結像光学系35は、反射型空間光変調器34の反射面34aと集光部14の入射瞳面14aとが結像関係にある両側テレセントリック光学系を構成している。結像光学系35は、3つ以上のレンズによって構成されている。 The adjusting unit 13 further includes a reflective spatial light modulator 34 and an image forming optical system 35. The reflective spatial light modulator 34 of the adjustment unit 13, the imaging optical system 35, and the condensing unit 14 are arranged on a straight line (second straight line) A2 extending along the Z direction. The reflective spatial light modulator 34 modulates the laser light L1 reflected by the mirror 33. The reflective spatial light modulator 34 is, for example, a reflective liquid crystal (LCOS: Liquid Crystal on Silicon) spatial light modulator (SLM: Spatial Light Modulator). The image forming optical system 35 constitutes a double-sided telecentric optical system in which the reflecting surface 34a of the reflective spatial light modulator 34 and the entrance pupil surface 14a of the condensing unit 14 are in an image forming relationship. The image forming optical system 35 is composed of three or more lenses.
 直線A1及び直線A2は、Y方向に垂直な平面上に位置している。直線A1は、直線A2に対して第2壁部22側(一方の壁部側)に位置している。レーザ加工ヘッド10Aでは、レーザ光L1は、入射部12から筐体11内に入射して直線A1上を進行し、ミラー33及び反射型空間光変調器34で順次に反射された後、直線A2上を進行して集光部14から筐体11外に出射する。なお、アッテネータ31及びビームエキスパンダ32の配列の順序は、逆であってもよい。また、アッテネータ31は、ミラー33と反射型空間光変調器34との間に配置されていてもよい。また、調整部13は、他の光学部品(例えば、ビームエキスパンダ32の前に配置されるステアリングミラー等)を有していてもよい。 The straight line A1 and the straight line A2 are located on a plane perpendicular to the Y direction. The straight line A1 is located on the second wall portion 22 side (one wall portion side) with respect to the straight line A2. In the laser processing head 10A, the laser beam L1 enters the housing 11 from the incident part 12, travels on the straight line A1, is sequentially reflected by the mirror 33 and the reflective spatial light modulator 34, and then the straight line A2. The light travels upward and is emitted from the light collecting unit 14 to the outside of the housing 11. The order of arrangement of the attenuator 31 and the beam expander 32 may be reversed. Further, the attenuator 31 may be arranged between the mirror 33 and the reflective spatial light modulator 34. Further, the adjusting unit 13 may have other optical components (for example, a steering mirror arranged in front of the beam expander 32).
 レーザ加工ヘッド10Aは、ダイクロイックミラー15と、測定部16と、観察部17と、駆動部18と、回路部19と、を更に備えている。 The laser processing head 10A further includes a dichroic mirror 15, a measurement unit 16, an observation unit 17, a drive unit 18, and a circuit unit 19.
 ダイクロイックミラー15は、直線A2上において、結像光学系35と集光部14との間に配置されている。つまり、ダイクロイックミラー15は、筐体11内において、調整部13と集光部14との間に配置されている。ダイクロイックミラー15は、第4壁部24側において光学ベース29に取り付けられている。ダイクロイックミラー15は、レーザ光L1を透過させる。ダイクロイックミラー15は、非点収差を抑制する観点では、例えば、キューブ型、又は、ねじれの関係を有するように配置された2枚のプレート型とすることができる。 The dichroic mirror 15 is arranged on the straight line A2 between the imaging optical system 35 and the condensing unit 14. That is, the dichroic mirror 15 is arranged in the housing 11 between the adjusting unit 13 and the light collecting unit 14. The dichroic mirror 15 is attached to the optical base 29 on the side of the fourth wall portion 24. The dichroic mirror 15 transmits the laser light L1. From the viewpoint of suppressing astigmatism, the dichroic mirror 15 may be, for example, a cube type or two plate types arranged so as to have a twist relationship.
 測定部16は、筐体11内において、調整部13に対して第1壁部21側(一方の壁部側とは反対側)に配置されている。測定部16は、第4壁部24側において光学ベース29に取り付けられている。測定部16は、対象物100の表面(例えば、レーザ光L1が入射する側の表面)と集光部14との距離を測定するための測定光L10を出力し、集光部14を介して、対象物100の表面で反射された測定光L10を検出する。つまり、測定部16から出力された測定光L10は、集光部14を介して対象物100の表面に照射され、対象物100の表面で反射された測定光L10は、集光部14を介して測定部16で検出される。 The measuring unit 16 is arranged inside the housing 11 with respect to the adjusting unit 13 on the first wall 21 side (the side opposite to the one wall side). The measuring unit 16 is attached to the optical base 29 on the fourth wall 24 side. The measurement unit 16 outputs measurement light L10 for measuring the distance between the surface of the object 100 (for example, the surface on the side on which the laser light L1 is incident) and the light condensing unit 14, and through the light condensing unit 14. The measurement light L10 reflected by the surface of the object 100 is detected. That is, the measurement light L10 output from the measurement unit 16 is applied to the surface of the object 100 via the light condensing unit 14, and the measurement light L10 reflected on the surface of the object 100 passes through the light condensing unit 14. And is detected by the measuring unit 16.
 より具体的には、測定部16から出力された測定光L10は、第4壁部24側において光学ベース29に取り付けられたビームスプリッタ20及びダイクロイックミラー15で順次に反射され、集光部14から筐体11外に出射する。対象物100の表面で反射された測定光L10は、集光部14から筐体11内に入射してダイクロイックミラー15及びビームスプリッタ20で順次に反射され、測定部16に入射し、測定部16で検出される。 More specifically, the measurement light L10 output from the measurement unit 16 is sequentially reflected by the beam splitter 20 and the dichroic mirror 15 attached to the optical base 29 on the side of the fourth wall 24, and then the light collection unit 14 outputs the light. It goes out of the housing 11. The measurement light L10 reflected on the surface of the object 100 enters the housing 11 from the light condensing unit 14, is sequentially reflected by the dichroic mirror 15 and the beam splitter 20, enters the measuring unit 16, and then the measuring unit 16 Detected in.
 観察部17は、筐体11内において、調整部13に対して第1壁部21側(一方の壁部側とは反対側)に配置されている。観察部17は、第4壁部24側において光学ベース29に取り付けられている。観察部17は、対象物100の表面(例えば、レーザ光L1が入射する側の表面)を観察するための観察光L20を出力し、集光部14を介して、対象物100の表面で反射された観察光L20を検出する。つまり、観察部17から出力された観察光L20は、集光部14を介して対象物100の表面に照射され、対象物100の表面で反射された観察光L20は、集光部14を介して観察部17で検出される。 The observing unit 17 is arranged in the housing 11 on the first wall 21 side (the side opposite to the one wall side) with respect to the adjusting unit 13. The observation section 17 is attached to the optical base 29 on the side of the fourth wall section 24. The observation unit 17 outputs the observation light L20 for observing the surface of the object 100 (for example, the surface on the side where the laser light L1 is incident), and is reflected by the surface of the object 100 via the light condensing unit 14. The observation light L20 thus generated is detected. That is, the observation light L20 output from the observation unit 17 is applied to the surface of the object 100 via the light condensing unit 14, and the observation light L20 reflected by the surface of the object 100 passes through the light condensing unit 14. And is detected by the observation unit 17.
 より具体的には、観察部17から出力された観察光L20は、ビームスプリッタ20を透過してダイクロイックミラー15で反射され、集光部14から筐体11外に出射する。対象物100の表面で反射された観察光L20は、集光部14から筐体11内に入射してダイクロイックミラー15で反射され、ビームスプリッタ20を透過して観察部17に入射し、観察部17で検出される。なお、レーザ光L1、測定光L10及び観察光L20のそれぞれの波長は、互いに異なっている(少なくともそれぞれの中心波長が互いにずれている)。 More specifically, the observation light L20 output from the observation unit 17 passes through the beam splitter 20, is reflected by the dichroic mirror 15, and is emitted from the condensing unit 14 to the outside of the housing 11. The observation light L20 reflected on the surface of the object 100 enters the housing 11 from the light condensing unit 14, is reflected by the dichroic mirror 15, passes through the beam splitter 20, and enters the observation unit 17, Detected at 17. The wavelengths of the laser light L1, the measurement light L10, and the observation light L20 are different from each other (at least the respective central wavelengths are deviated from each other).
 駆動部18は、第4壁部24側において光学ベース29に取り付けられている。駆動部18は、例えば圧電素子の駆動力によって、第6壁部26に配置された集光部14をZ方向に沿って移動させる。 The drive section 18 is attached to the optical base 29 on the side of the fourth wall section 24. The driving unit 18 moves the condensing unit 14 arranged on the sixth wall unit 26 along the Z direction by the driving force of the piezoelectric element, for example.
 回路部19は、筐体11内において、光学ベース29に対して第3壁部23側に配置されている。つまり、回路部19は、筐体11内において、調整部13、測定部16及び観察部17に対して第3壁部23側に配置されている。回路部19は、例えば、複数の回路基板である。回路部19は、測定部16から出力された信号、及び反射型空間光変調器34に入力する信号を処理する。回路部19は、測定部16から出力された信号に基づいて駆動部18を制御する。一例として、回路部19は、測定部16から出力された信号に基づいて、対象物100の表面と集光部14との距離が一定に維持されるように(すなわち、対象物100の表面とレーザ光L1の集光点との距離が一定に維持されるように)、駆動部18を制御する。なお、筐体11には、回路部19を制御部9(図1参照)等に電気的に接続するための配線が接続されるコネクタ(図示省略)が設けられている。 The circuit portion 19 is arranged on the third wall portion 23 side with respect to the optical base 29 in the housing 11. That is, the circuit unit 19 is arranged on the third wall 23 side with respect to the adjustment unit 13, the measurement unit 16, and the observation unit 17 in the housing 11. The circuit unit 19 is, for example, a plurality of circuit boards. The circuit unit 19 processes the signal output from the measurement unit 16 and the signal input to the reflective spatial light modulator 34. The circuit unit 19 controls the drive unit 18 based on the signal output from the measurement unit 16. As an example, the circuit unit 19 maintains the distance between the surface of the object 100 and the light condensing unit 14 constant based on the signal output from the measurement unit 16 (that is, the surface of the object 100). The drive unit 18 is controlled so that the distance from the condensing point of the laser light L1 is kept constant). The housing 11 is provided with a connector (not shown) to which wiring for electrically connecting the circuit unit 19 to the control unit 9 (see FIG. 1) and the like is connected.
 レーザ加工ヘッド10Bは、レーザ加工ヘッド10Aと同様に、筐体(例えば第2筐体)11と、入射部12と、調整部13と、集光部(例えば第2集光部)14と、ダイクロイックミラー15と、測定部16と、観察部17と、駆動部18と、回路部19と、を備えている。ただし、レーザ加工ヘッド10Bの各構成は、図2に示されるように、1対の取付部65,66間の中点を通り且つY方向に垂直な仮想平面に関して、レーザ加工ヘッド10Aの各構成と面対称の関係を有するように、配置されている(なお、後述するように一例である)。 Similar to the laser processing head 10A, the laser processing head 10B includes a housing (for example, a second housing) 11, an incident unit 12, an adjusting unit 13, and a light collecting unit (for example, a second light collecting unit) 14. A dichroic mirror 15, a measurement unit 16, an observation unit 17, a drive unit 18, and a circuit unit 19 are provided. However, each configuration of the laser processing head 10B is, as shown in FIG. 2, each configuration of the laser processing head 10A with respect to a virtual plane that passes through the midpoint between the pair of mounting portions 65 and 66 and is perpendicular to the Y direction. Are arranged so as to have a plane symmetry relationship with (this is an example as described later).
 例えば、レーザ加工ヘッド10Aの筐体11は、第4壁部24が第3壁部23に対してレーザ加工ヘッド10B側に位置し且つ第6壁部26が第5壁部25に対して支持部7側に位置するように、取付部65に取り付けられている。これに対し、レーザ加工ヘッド10Bの筐体11は、第4壁部24が第3壁部23に対してレーザ加工ヘッド10A側に位置し且つ第6壁部26が第5壁部25に対して支持部7側に位置するように、取付部66に取り付けられている。すなわち、レーザ加工ヘッド10Bにおいても、第4壁部24は、レーザ加工ヘッド10Aの筐体にY方向に沿って対向する対向壁部である。またレーザ加工ヘッド10Bにおいても、集光部14は、Z方向からみて、その筐体11における第4壁部(対向壁部)24側に偏って配置されている。 For example, in the housing 11 of the laser processing head 10A, the fourth wall portion 24 is located on the laser processing head 10B side with respect to the third wall portion 23, and the sixth wall portion 26 is supported with respect to the fifth wall portion 25. It is attached to the attachment portion 65 so as to be located on the side of the portion 7. On the other hand, in the housing 11 of the laser processing head 10B, the fourth wall portion 24 is located on the laser processing head 10A side with respect to the third wall portion 23, and the sixth wall portion 26 is with respect to the fifth wall portion 25. Is attached to the attachment portion 66 so as to be located on the support portion 7 side. That is, also in the laser processing head 10B, the fourth wall portion 24 is a facing wall portion that faces the housing of the laser processing head 10A along the Y direction. Also in the laser processing head 10B, the light converging portion 14 is arranged so as to be biased toward the fourth wall portion (opposing wall portion) 24 side of the housing 11 when viewed from the Z direction.
 レーザ加工ヘッド10Bの筐体11は、第3壁部23が取付部66側に配置された状態で筐体11が取付部66に取り付けられるように、構成されている。具体的には、次のとおりである。取付部66は、ベースプレート66aと、取付プレート66bと、を有している。ベースプレート66aは、移動部63に設けられたレールに取り付けられている。取付プレート66bは、ベースプレート66aにおけるレーザ加工ヘッド10A側の端部に立設されている。レーザ加工ヘッド10Bの筐体11は、第3壁部23が取付プレート66bに接触した状態で、取付部66に取り付けられている。レーザ加工ヘッド10Bの筐体11は、取付部66に対して着脱可能である。
[レーザ加工ヘッドの作用及び効果]
The housing 11 of the laser processing head 10B is configured such that the housing 11 is attached to the mounting portion 66 with the third wall portion 23 arranged on the mounting portion 66 side. Specifically, it is as follows. The mounting portion 66 has a base plate 66a and a mounting plate 66b. The base plate 66a is attached to a rail provided on the moving unit 63. The mounting plate 66b is erected at the end of the base plate 66a on the laser processing head 10A side. The housing 11 of the laser processing head 10B is attached to the attachment portion 66 with the third wall portion 23 in contact with the attachment plate 66b. The housing 11 of the laser processing head 10B can be attached to and detached from the mounting portion 66.
[Operation and effect of laser processing head]
 レーザ加工ヘッド10Aでは、レーザ光L1を出力する光源が筐体11内に設けられていないため、筐体11の小型化を図ることができる。更に、筐体11において、第3壁部23と第4壁部24との距離が第1壁部21と第2壁部22との距離よりも小さく、第6壁部26に配置された集光部14がY方向において第4壁部24側に片寄っている。これにより、集光部14の光軸に垂直な方向に沿って筐体11を移動させる場合に、例えば、第4壁部24側に他の構成(例えば、レーザ加工ヘッド10B)が存在したとしても、当該他の構成に集光部14を近付けることができる。よって、レーザ加工ヘッド10Aは、集光部14をその光軸に垂直な方向に沿って移動させるのに適し得る。 In the laser processing head 10A, since the light source that outputs the laser light L1 is not provided in the housing 11, the housing 11 can be downsized. Further, in the housing 11, the distance between the third wall portion 23 and the fourth wall portion 24 is smaller than the distance between the first wall portion 21 and the second wall portion 22, and the collection disposed on the sixth wall portion 26. The light portion 14 is biased toward the fourth wall portion 24 side in the Y direction. Thereby, when moving the housing 11 along the direction perpendicular to the optical axis of the light condensing unit 14, for example, it is assumed that another configuration (for example, the laser processing head 10B) is present on the fourth wall 24 side. Also, the condensing unit 14 can be brought close to the other configuration. Therefore, the laser processing head 10A may be suitable for moving the condensing unit 14 along the direction perpendicular to its optical axis.
 また、レーザ加工ヘッド10Aでは、入射部12が、第5壁部25に設けられており、Y方向において第4壁部24側に片寄っている。これにより、筐体11内の領域のうち調整部13に対して第3壁部23側の領域に他の構成(例えば、回路部19)を配置する等、当該領域を有効に利用することができる。 Further, in the laser processing head 10A, the incident portion 12 is provided on the fifth wall portion 25 and is offset to the fourth wall portion 24 side in the Y direction. As a result, it is possible to effectively use the region such as disposing another configuration (for example, the circuit unit 19) in a region on the third wall 23 side with respect to the adjustment unit 13 in the region inside the housing 11. it can.
 また、レーザ加工ヘッド10Aでは、集光部14が、X方向において第2壁部22側に片寄っている。これにより、集光部14の光軸に垂直な方向に沿って筐体11を移動させる場合に、例えば、第2壁部22側に他の構成が存在したとしても、当該他の構成に集光部14を近付けることができる。 Further, in the laser processing head 10A, the condensing portion 14 is offset to the second wall portion 22 side in the X direction. Accordingly, when the housing 11 is moved along the direction perpendicular to the optical axis of the light condensing unit 14, for example, even if another configuration exists on the second wall 22 side, the other configuration is collected. The light unit 14 can be brought closer.
 また、レーザ加工ヘッド10Aでは、入射部12が、第5壁部25に設けられており、X方向において第2壁部22側に片寄っている。これにより、筐体11内の領域のうち調整部13に対して第1壁部21側の領域に他の構成(例えば、測定部16及び観察部17)を配置する等、当該領域を有効に利用することができる。 Further, in the laser processing head 10A, the incident portion 12 is provided on the fifth wall portion 25 and is offset to the second wall portion 22 side in the X direction. As a result, other regions (for example, the measuring unit 16 and the observing unit 17) are arranged in the region on the first wall 21 side with respect to the adjusting unit 13 in the region in the housing 11, and the region is effectively used. Can be used.
 また、レーザ加工ヘッド10Aでは、測定部16及び観察部17が、筐体11内の領域のうち調整部13に対して第1壁部21側の領域に配置されており、回路部19が、筐体11内の領域のうち調整部13に対して第3壁部23側に配置されており、ダイクロイックミラー15が、筐体11内において調整部13と集光部14との間に配置されている。これにより、筐体11内の領域を有効に利用することができる。更に、レーザ加工装置1において、対象物100の表面と集光部14との距離の測定結果に基づいた加工が可能となる。また、レーザ加工装置1において、対象物100の表面の観察結果に基づいた加工が可能となる。 Further, in the laser processing head 10A, the measuring unit 16 and the observing unit 17 are arranged in the region on the first wall 21 side with respect to the adjusting unit 13 in the region inside the housing 11, and the circuit unit 19 is The dichroic mirror 15 is arranged on the side of the third wall portion 23 with respect to the adjustment unit 13 in the area inside the housing 11, and the dichroic mirror 15 is arranged between the adjustment unit 13 and the light collection unit 14 in the housing 11. ing. Thereby, the area in the housing 11 can be effectively used. Further, the laser processing apparatus 1 can perform processing based on the measurement result of the distance between the surface of the object 100 and the light condensing unit 14. Further, the laser processing apparatus 1 can perform processing based on the observation result of the surface of the object 100.
 また、レーザ加工ヘッド10Aでは、回路部19が、測定部16から出力された信号に基づいて駆動部18を制御する。これにより、対象物100の表面と集光部14との距離の測定結果に基づいてレーザ光L1の集光点の位置を調整することができる。 In the laser processing head 10A, the circuit section 19 controls the drive section 18 based on the signal output from the measuring section 16. Thereby, the position of the condensing point of the laser beam L1 can be adjusted based on the measurement result of the distance between the surface of the object 100 and the condensing unit 14.
 また、レーザ加工ヘッド10Aでは、入射部12、並びに、調整部13のアッテネータ31、ビームエキスパンダ32及びミラー33が、Z方向に沿って延在する直線A1上に配置されており、調整部13の反射型空間光変調器34、結像光学系35及び集光部14、並びに、集光部14が、Z方向に沿って延在する直線A2上に配置されている。これにより、アッテネータ31、ビームエキスパンダ32、反射型空間光変調器34及び結像光学系35を有する調整部13をコンパクトに構成することができる。 Further, in the laser processing head 10A, the incident section 12, the attenuator 31, the beam expander 32, and the mirror 33 of the adjusting section 13 are arranged on the straight line A1 extending along the Z direction, and the adjusting section 13 is provided. The reflective spatial light modulator 34, the imaging optical system 35, the condensing unit 14, and the condensing unit 14 are arranged on a straight line A2 extending along the Z direction. Accordingly, the adjusting unit 13 including the attenuator 31, the beam expander 32, the reflective spatial light modulator 34, and the imaging optical system 35 can be configured compactly.
 また、レーザ加工ヘッド10Aでは、直線A1が、直線A2に対して第2壁部22側に位置している。これにより、筐体11内の領域のうち調整部13に対して第1壁部21側の領域において、集光部14を用いた他の光学系(例えば、測定部16及び観察部17)を構成する場合に、当該他の光学系の構成の自由度を向上させることができる。 Further, in the laser processing head 10A, the straight line A1 is located closer to the second wall portion 22 than the straight line A2. As a result, another optical system (for example, the measuring unit 16 and the observing unit 17) using the light condensing unit 14 is provided in the region on the first wall 21 side with respect to the adjusting unit 13 in the region in the housing 11. When configured, the degree of freedom in the configuration of the other optical system can be improved.
 以上の作用及び効果は、レーザ加工ヘッド10Bによっても同様に奏される。
[レーザ加工ヘッドの変形例]
The above-described actions and effects are similarly exhibited by the laser processing head 10B.
[Modification of laser processing head]
 図6に示されるように、入射部12、調整部13及び集光部14は、Z方向に沿って延在する直線A上に配置されていてもよい。これによれば、調整部13をコンパクトに構成することができる。その場合、調整部13は、反射型空間光変調器34及び結像光学系35を有していなくてもよい。また、調整部13は、アッテネータ31及びビームエキスパンダ32を有していてもよい。これによれば、アッテネータ31及びビームエキスパンダ32を有する調整部13をコンパクトに構成することができる。なお、アッテネータ31及びビームエキスパンダ32の配列の順序は、逆であってもよい。 As shown in FIG. 6, the incident section 12, the adjusting section 13, and the light collecting section 14 may be arranged on a straight line A extending along the Z direction. According to this, the adjusting unit 13 can be configured compactly. In that case, the adjusting unit 13 may not include the reflective spatial light modulator 34 and the imaging optical system 35. Further, the adjusting unit 13 may include an attenuator 31 and a beam expander 32. According to this, the adjusting unit 13 including the attenuator 31 and the beam expander 32 can be configured compactly. The order of arrangement of the attenuator 31 and the beam expander 32 may be reversed.
 また、光源ユニット8の出射部81aからレーザ加工ヘッド10Aの入射部12へのレーザ光L1の導光、及び光源ユニット8の出射部82aからレーザ加工ヘッド10Bの入射部12へのレーザ光L2の導光の少なくとも1つは、ミラーによって実施されてもよい。図7は、レーザ光L1がミラーによって導光されるレーザ加工装置1の一部分の正面図である。図7に示される構成では、レーザ光L1を反射するミラー3が、Y方向において光源ユニット8の出射部81aと対向し且つZ方向においてレーザ加工ヘッド10Aの入射部12と対向するように、移動機構6の移動部63に取り付けられている。 Further, the laser light L1 is guided from the emitting portion 81a of the light source unit 8 to the incident portion 12 of the laser processing head 10A, and the laser light L2 from the emitting portion 82a of the light source unit 8 to the incident portion 12 of the laser processing head 10B. At least one of the light guides may be implemented by a mirror. FIG. 7 is a front view of a part of the laser processing apparatus 1 in which the laser light L1 is guided by the mirror. In the configuration shown in FIG. 7, the mirror 3 that reflects the laser light L1 moves so as to face the emitting portion 81a of the light source unit 8 in the Y direction and face the incident portion 12 of the laser processing head 10A in the Z direction. It is attached to the moving portion 63 of the mechanism 6.
 図7に示される構成では、移動機構6の移動部63をY方向に沿って移動させても、Y方向においてミラー3が光源ユニット8の出射部81aと対向する状態が維持される。また、移動機構6の取付部65をZ方向に沿って移動させても、Z方向においてミラー3がレーザ加工ヘッド10Aの入射部12と対向する状態が維持される。したがって、レーザ加工ヘッド10Aの位置によらず、光源ユニット8の出射部81aから出射されたレーザ光L1を、レーザ加工ヘッド10Aの入射部12に確実に入射させることができる。しかも、光ファイバ2による導光が困難な高出力長短パルスレーザ等の光源を利用することもできる。 In the configuration shown in FIG. 7, even if the moving unit 63 of the moving mechanism 6 is moved along the Y direction, the state in which the mirror 3 faces the emitting unit 81a of the light source unit 8 in the Y direction is maintained. Further, even if the mounting portion 65 of the moving mechanism 6 is moved along the Z direction, the state in which the mirror 3 faces the incident portion 12 of the laser processing head 10A in the Z direction is maintained. Therefore, regardless of the position of the laser processing head 10A, the laser light L1 emitted from the emitting portion 81a of the light source unit 8 can be reliably incident on the incident portion 12 of the laser processing head 10A. Moreover, it is possible to use a light source such as a high output long / short pulse laser, which is difficult to be guided by the optical fiber 2.
 また、図7に示される構成では、ミラー3は、角度調整及び位置調整の少なくとも1つが可能となるように、移動機構6の移動部63に取り付けられていてもよい。これによれば、光源ユニット8の出射部81aから出射されたレーザ光L1を、レーザ加工ヘッド10Aの入射部12に、より確実に入射させることができる。 Further, in the configuration shown in FIG. 7, the mirror 3 may be attached to the moving unit 63 of the moving mechanism 6 so that at least one of the angle adjustment and the position adjustment can be performed. According to this, the laser light L1 emitted from the emission portion 81a of the light source unit 8 can be more reliably incident on the incidence portion 12 of the laser processing head 10A.
 また、光源ユニット8は、1つの光源を有するものであってもよい。その場合、光源ユニット8は、1つの光源から出力されたレーザ光の一部を出射部81aから出射させ且つ当該レーザ光の残部を出射部82aから出射させるように、構成されていればよい。
[レーザ加工装置の動作等について]
The light source unit 8 may have one light source. In that case, the light source unit 8 may be configured so that a part of the laser light output from one light source is emitted from the emitting portion 81a and the rest of the laser light is emitted from the emitting portion 82a.
[About operation of laser processing equipment]
 引き続いて、レーザ加工装置1の動作について説明する。図8は、レーザ加工装置の動作を示す模式的な上面図である。以降の図においては、レーザ加工ヘッド10A,10Bの模式化された内部を示す。図8に示されるように、支持部7には、対象物100が支持されている。なお、図中の符号Sは、上述した測定部16や観察部17といったように、改質領域を形成するためのレーザ光L1,L2の照射に係る光学系以外の光学系を代表して示している。 Next, the operation of the laser processing apparatus 1 will be described. FIG. 8 is a schematic top view showing the operation of the laser processing apparatus. In the following figures, a schematic interior of the laser processing heads 10A and 10B is shown. As shown in FIG. 8, the object 100 is supported by the support portion 7. The symbol S in the figure represents an optical system other than the optical system related to the irradiation of the laser beams L1 and L2 for forming the modified region, such as the measurement unit 16 and the observation unit 17 described above. ing.
 また、レーザ加工装置1は、倍率の異なる一対のアライメントカメラACを備えている。アライメントカメラACは、レーザ加工ヘッド10Bと共に取付部66に取り付けられている。アライメントカメラACは、例えば、対象物100を透過する光を用いたデバイスパターン等を撮像する。これにより得られる画像は、対象物100に対するレーザ光L1,L2の照射位置のアライメントに供される。 The laser processing apparatus 1 also includes a pair of alignment cameras AC having different magnifications. The alignment camera AC is attached to the attachment portion 66 together with the laser processing head 10B. The alignment camera AC images, for example, a device pattern or the like using light transmitted through the object 100. The image obtained by this is used for alignment of the irradiation positions of the laser beams L1 and L2 with respect to the object 100.
 なお、ここでは、レーザ加工ヘッド10Aとレーザ加工ヘッド10Bとは、X方向に沿って配列されている。レーザ加工ヘッド10A及びレーザ加工ヘッド10Bにおいては、それらの第2壁部22に対して取付部65,66が設けられている。そして、取付部65,66は、移動部63,64を介して延長部材(移動部)EMに一括して取り付けられている。延長部材EMは、固定部61に取り付けられている。延長部材EMは、固定部61に設けられたレールに取り付けられており、Y方向に沿って移動することができる。すなわち、ここでは、レーザ加工ヘッド10Aとレーザ加工ヘッド10Bとは、Z方向には互いに独立して移動可能とされる一方で、Y方向には一括して移動するように構成されている。 Incidentally, here, the laser processing head 10A and the laser processing head 10B are arranged along the X direction. In the laser processing head 10A and the laser processing head 10B, the mounting portions 65 and 66 are provided on the second wall portion 22 of the laser processing head 10A and the laser processing head 10B. The mounting portions 65 and 66 are collectively mounted on the extension member (moving portion) EM via the moving portions 63 and 64. The extension member EM is attached to the fixed portion 61. The extension member EM is attached to a rail provided on the fixed portion 61 and can move along the Y direction. That is, here, the laser processing head 10A and the laser processing head 10B are configured to be movable in the Z direction independently of each other, while being configured to be collectively moved in the Y direction.
 対象物100には、X方向に沿って延びると共にY方向に沿って配列された複数のラインCが設定されている。ラインCは、仮想的な線であるが、実際に描かれた線であってもよい。なお、対象物100には、Y方向に沿って延びると共にX方向に沿って配列された複数のラインも設定されているが、その図示が省略されている。 The target object 100 has a plurality of lines C extending along the X direction and arranged along the Y direction. The line C is a virtual line, but may be an actually drawn line. Although a plurality of lines extending along the Y direction and arranged along the X direction are also set in the object 100, the illustration thereof is omitted.
 レーザ加工装置1は、制御部9の制御のもとで各ラインCに沿ったレーザ加工を実施する。レーザ加工装置1によれば、種々のレーザ加工が可能であるが、ここでは、対象物100の少なくとも内部に改質領域を形成するレーザ加工について例示する。すなわち、レーザ加工ヘッド10A,10Bは、ここでは、支持部7に支持された対象物100の少なくとも内部にレーザ光L1,L2を照射して改質領域を形成するために用いられる。 The laser processing device 1 performs laser processing along each line C under the control of the control unit 9. The laser processing apparatus 1 can perform various kinds of laser processing, but here, the laser processing for forming the modified region at least inside the object 100 will be exemplified. That is, the laser processing heads 10A and 10B are used here to irradiate at least the inside of the object 100 supported by the support 7 with the laser beams L1 and L2 to form the modified region.
 制御部9は、ここでは、支持部7、取付部65、取付部66、及び、延長部材EMの移動と、レーザ加工ヘッド10A及びレーザ加工ヘッド10Bからのレーザ光L1,L2の照射と、を制御する。レーザ加工装置1にあっては、制御部9は、第1加工処理と第2加工処理とを実行する。第1加工処理は、第1スキャン処理と第2スキャン処理とを含む。第2加工処理は、第3スキャン処理と第4スキャン処理とを含む。 Here, the control section 9 moves the support section 7, the mounting section 65, the mounting section 66, and the extension member EM and irradiates the laser beams L1 and L2 from the laser processing head 10A and the laser processing head 10B. Control. In the laser processing device 1, the control unit 9 executes the first processing process and the second processing process. The first processing process includes a first scan process and a second scan process. The second processing process includes a third scanning process and a fourth scanning process.
 第1スキャン処理は、複数のラインCのうちの一のラインCに対してレーザ加工ヘッド10Aからのレーザ光L1をX方向にスキャンする処理である。第2スキャン処理は、当該一のラインCに対してレーザ加工ヘッド10Bからのレーザ光L2をX方向にスキャンする処理である。第3スキャン処理は、複数のラインCのうちの別のラインCに対してレーザ加工ヘッド10Aからのレーザ光L1をX方向と反対方向(図ではX負方向)にスキャンする処理である。第4スキャン処理は、当該別のラインCに対してレーザ加工ヘッド10Bからのレーザ光L2をX方向と反対方向にスキャンする処理である。 The first scanning process is a process of scanning one line C of the plurality of lines C with the laser light L1 from the laser processing head 10A in the X direction. The second scanning process is a process of scanning the one line C with the laser beam L2 from the laser processing head 10B in the X direction. The third scan process is a process of scanning another line C of the plurality of lines C with the laser beam L1 from the laser processing head 10A in a direction opposite to the X direction (X negative direction in the drawing). The fourth scan process is a process of scanning the other line C with the laser beam L2 from the laser processing head 10B in a direction opposite to the X direction.
 制御部9がレーザ光L1,L2をX方向(又はその反対方向)にスキャンするとは、まず、取付部65,66及び延長部材EMを介してレーザ加工ヘッド10A,10BをY方向及びZ方向に移動させて、レーザ光L1,L2の集光点を、それぞれのラインC上であって対象物100の内部となる位置に位置させた状態とする。そして、その状態において、支持部7をX方向に移動させることにより、対象物100内をラインCに沿ってX方向(又はその反対方向)にレーザ光L1,L2の集光点を移動させることである。 When the control unit 9 scans the laser beams L1 and L2 in the X direction (or the opposite direction), first, the laser processing heads 10A and 10B are moved in the Y direction and the Z direction via the mounting portions 65 and 66 and the extension member EM. The laser light L1 and the laser light L2 are moved so that the focal points of the laser lights L1 and L2 are positioned on the respective lines C at positions inside the object 100. Then, in that state, by moving the support portion 7 in the X direction, the condensing points of the laser lights L1 and L2 are moved in the object 100 along the line C in the X direction (or the opposite direction). Is.
 特に、ここでは、制御部9は、第1スキャン処理と第2スキャン処理と、及び、第3スキャン処理と第4スキャン処理とを、少なくとも一部の時間において重複するように実行する。すなわち、制御部9は、レーザ光L1がスキャンされている状態とレーザ光L2がスキャンされている状態とが、少なくとも部分的に同時に実現されるようにする。つまり、制御部9は、レーザ加工ヘッド10Aとレーザ加工ヘッド10Bとを重複して稼働する。これにより、1つのレーザ加工ヘッドを用いた加工に比べて明確にスループットの向上が図られる。 Particularly, here, the control unit 9 executes the first scan process and the second scan process, and the third scan process and the fourth scan process so that they overlap at least in part of the time. That is, the control unit 9 causes the state in which the laser beam L1 is scanned and the state in which the laser beam L2 is scanned to be realized at least partially at the same time. That is, the control unit 9 operates the laser processing head 10A and the laser processing head 10B in an overlapping manner. Thereby, the throughput can be clearly improved as compared with the processing using one laser processing head.
 引き続いて、レーザ加工装置1の動作について具体的に説明する。ここでは、制御部9は、まず、図8に示された状態から、図9及び図10に示されるように、レーザ加工ヘッド10A,10BをY方向に移動させることにより、レーザ加工ヘッド10A及びレーザ加工ヘッド10Bが、複数のラインCのうちの一のラインC上に配列された第1状態とする。ここでは、一例として、一のラインCは、複数のラインCのうち、対象物100の第2方向の一方の端部に位置するラインCである。なお、図9においては、説明の必要上から、改質領域Mを実線として示しているが、対象物100の表面から実際に改質領域Mが見えていることを要さない。 Next, the operation of the laser processing apparatus 1 will be specifically described. Here, the control unit 9 first moves the laser processing heads 10A and 10B in the Y direction from the state shown in FIG. 8 to move the laser processing heads 10A and 10A. The laser processing head 10B is in the first state in which it is arranged on one line C of the plurality of lines C. Here, as an example, one line C is a line C that is located at one end of the object 100 in the second direction among the plurality of lines C. In FIG. 9, the modified region M is shown as a solid line for the sake of explanation, but it is not necessary that the modified region M is actually visible from the surface of the object 100.
 制御部9は、その第1状態において、必要に応じてレーザ加工ヘッド10AをZ方向に移動させることにより、レーザ加工ヘッド10Aからのレーザ光L1の集光点P1をZ方向における第1位置に位置させる。また、制御部9は、第1状態において、必要に応じてレーザ加工ヘッド10BをZ方向に移動させることにより、レーザ加工ヘッド10Bからのレーザ光L2の集光点P2をZ方向における第2位置に位置させる。第2位置は、Z方向について第1位置よりも対象物100のレーザ光L1,L2の入射面100a側の位置である。 In the first state, the control unit 9 moves the laser processing head 10A in the Z direction as necessary, so that the condensing point P1 of the laser beam L1 from the laser processing head 10A is at the first position in the Z direction. Position it. Further, in the first state, the control unit 9 moves the laser processing head 10B in the Z direction as necessary, so that the condensing point P2 of the laser beam L2 from the laser processing head 10B is at the second position in the Z direction. Located in. The second position is a position closer to the incident surface 100a side of the laser light L1 and L2 of the object 100 than the first position in the Z direction.
 制御部9は、上記のように集光点P1,P2をセットした後に、支持部7をX方向と反対方向に移動させることにより、レーザ加工ヘッド10Aからのレーザ光L1を当該一のラインCに対してX方向にスキャンする第1スキャン処理と、レーザ加工ヘッド10Bからのレーザ光L2を当該一のラインCに対してX方向にスキャンする第2スキャン処理と、を実行する第1加工処理を実行する。これにより、対象物100の内部には、第1位置に相当する領域において改質領域M1が形成されると共に、第2位置に相当する領域において改質領域M2が形成される。 After setting the converging points P1 and P2 as described above, the control unit 9 moves the support unit 7 in the direction opposite to the X direction to cause the laser beam L1 from the laser processing head 10A to move to the one line C. A first scanning process for scanning in the X direction and a second scanning process for scanning the laser beam L2 from the laser processing head 10B in the X direction with respect to the one line C. To execute. As a result, inside the object 100, the modified region M1 is formed in the region corresponding to the first position, and the modified region M2 is formed in the region corresponding to the second position.
 ここで、制御部9は、第1加工処理においては、レーザ加工ヘッド10Bからのレーザ光L2の集光点P2を、レーザ加工ヘッド10Aからのレーザ光L1の集光点P1よりも距離L以上(ここでは距離L)、X方向と反対方向(X負方向:下流側)に離間した位置としながら、第1スキャン処理及び第2スキャン処理を実行する。したがって、改質領域M2に対して改質領域M1がX方向に距離Lだけ先行して形成されることとなる。換言すれば、改質領域M2が、距離Lだけ改質領域M1の後を追うように形成されていく。図11に示されるように、このようにすると、改質領域M2を形成したことによる亀裂の進展量が十分な量となる。 Here, in the first processing, the control unit 9 sets the focus point P2 of the laser light L2 from the laser processing head 10B to a distance L or more from the focus point P1 of the laser light L1 from the laser processing head 10A. The first scan process and the second scan process are performed while keeping the position (distance L in this case) away from the X direction (X negative direction: downstream side). Therefore, the modified region M1 is formed ahead of the modified region M2 by the distance L in the X direction. In other words, the modified region M2 is formed so as to follow the modified region M1 by the distance L. As shown in FIG. 11, in this way, a sufficient amount of cracks are propagated due to the formation of the modified region M2.
 制御部9は、当該一のラインCに対するレーザ加工が完了すると、複数のラインCのうちの、当該一のラインCに隣接する別のラインCに対するレーザ加工である第2加工処理を実行する。すなわち、制御部9は、第1加工処理の後に、まず、レーザ加工ヘッド10A,10BをY方向に移動させることにより、レーザ加工ヘッド10A及びレーザ加工ヘッド10Bが、複数のラインCのうちの当該別のラインC上に配列された第2状態とする。 When the laser processing on the one line C is completed, the control unit 9 executes the second processing, which is the laser processing on another line C adjacent to the one line C among the plurality of lines C. That is, after the first processing, the control unit 9 first moves the laser processing heads 10A and 10B in the Y direction, so that the laser processing head 10A and the laser processing head 10B cause the laser processing head 10A and the laser processing head 10B to move among the plurality of lines C. The second state is arranged on another line C.
 制御部9は、その第2状態において、レーザ加工ヘッド10AをZ方向に移動させることにより、レーザ加工ヘッド10Aからのレーザ光L1の集光点P1を第2位置に位置させる。また、制御部9は、第2状態において、レーザ加工ヘッド10BをZ方向に移動させることにより、レーザ加工ヘッド10Bからのレーザ光L2の集光点P2を第1位置に位置させる。すなわち、第2加工処理においては、第1加工処理に対して、集光点P1,P2のZ方向の位置を互いに入れ替える。 In the second state, the control unit 9 moves the laser processing head 10A in the Z direction to position the condensing point P1 of the laser beam L1 from the laser processing head 10A at the second position. In the second state, the control unit 9 moves the laser processing head 10B in the Z direction to position the condensing point P2 of the laser beam L2 from the laser processing head 10B at the first position. That is, in the second processing, the positions of the converging points P1 and P2 in the Z direction are exchanged with each other with respect to the first processing.
 制御部9は、上記のように集光点P1,P2をセットした後に、支持部7をX方向(第1加工処理と反対方向)に移動させることにより、レーザ加工ヘッド10Aからのレーザ光L1を当該別のラインCに対してX方向の反対方向にスキャンする第3スキャン処理と、レーザ加工ヘッド10Bからのレーザ光L2を当該別のラインCに対してX方向の反対方向にスキャンする第4スキャン処理と、を実行する第2加工処理を実行する。これにより、対象物100の内部には、第1位置及び第2位置に相当するそれぞれの領域において改質領域Mが形成される。 After setting the converging points P1 and P2 as described above, the control unit 9 moves the support unit 7 in the X direction (the direction opposite to the first processing process), so that the laser beam L1 from the laser processing head 10A. Scan processing for scanning the other line C in the opposite direction to the X direction, and scanning the laser beam L2 from the laser processing head 10B in the opposite direction to the other line C for the third line. The fourth scan process and the second processing process for executing the process are executed. As a result, the modified region M is formed inside the object 100 in the regions corresponding to the first position and the second position.
 ここで、制御部9は、第2加工処理においては、レーザ加工ヘッド10Aからのレーザ光L1の集光点P1を、レーザ加工ヘッド10Bからのレーザ光L2の集光点P2よりも距離L以上(ここでは距離L)、X方向(上流側)に離間した位置としながら、第3スキャン処理及び第4スキャン処理を実行する。したがって、改質領域M1に対して改質領域M2がX方向に距離Lだけ先行して形成されることとなる。換言すれば、改質領域M1が、距離Lだけ改質領域M2の後を追うように形成されていく。このようにすると、改質領域M1を形成したことによる亀裂の進展量が十分な量となる。 Here, in the second processing, the control unit 9 sets the focus point P1 of the laser beam L1 from the laser processing head 10A at a distance L or more from the focus point P2 of the laser beam L2 from the laser processing head 10B. The third scan processing and the fourth scan processing are executed while the positions are separated in the X direction (upstream side) (here, the distance L). Therefore, the modified region M2 is formed ahead of the modified region M1 by the distance L in the X direction. In other words, the modified region M1 is formed so as to follow the modified region M2 by the distance L. By doing so, the amount of cracks developed by forming the modified region M1 becomes sufficient.
 制御部9は、複数のラインCの本数に応じた回数だけ(全てのラインCに対して)上記の第1加工処理と第2加工処理とを交互に繰り返して実行する。これにより、全てのラインCに対して、改質領域M1,M2が形成されると共に、改質領域M1,M2から延びる亀裂を十分に進展させることができる。その後、必要に応じて、支持部7を回転させることによりラインCに交差するラインをX方向に沿うように設定し、上記の動作を繰り返すことができる。
[レーザ加工装置の作用及び効果]
The control unit 9 alternately and repeatedly executes the above-described first machining process and second machining process a number of times (for all lines C) according to the number of the plurality of lines C. As a result, the modified regions M1 and M2 are formed for all the lines C, and the cracks extending from the modified regions M1 and M2 can be sufficiently propagated. Thereafter, if necessary, the support portion 7 is rotated to set a line intersecting the line C so as to be along the X direction, and the above operation can be repeated.
[Operation and effect of laser processing apparatus]
 以上説明したように、レーザ加工装置1は、X方向に沿って移動可能とされ、X方向及びX方向に交差するY方向に沿って対象物100を支持するための支持部7と、X方向に沿って配列され、支持部7に支持された対象物100の少なくとも内部にレーザ光L1,L2を照射して改質領域Mを形成するためのレーザ加工ヘッド10A,10Bと、を備える。また、レーザ加工装置1は、レーザ加工ヘッド10Aが取り付けられ、Z方向に沿って移動可能とされた取付部65と、レーザ加工ヘッド10Bが取り付けられ、Z方向に沿って移動可能とされた取付部66と、取付部65,66をY方向に沿って移動する延長部材EMと、を備える。さらに、レーザ加工装置1は、支持部7、延長部材EM、取付部65、及び、取付部66の移動と、レーザ加工ヘッド10A,10Bからのレーザ光L1,L2の照射と、の制御を行う制御部9を、を備える。 As described above, the laser processing apparatus 1 is movable along the X direction, and the support portion 7 for supporting the object 100 along the X direction and the Y direction intersecting the X direction, and the X direction. Laser processing heads 10A and 10B for forming the modified region M by irradiating at least the inside of the object 100 supported by the support portion 7 with the laser beams L1 and L2. Further, in the laser processing apparatus 1, the laser processing head 10A is attached and the mounting portion 65 which is movable along the Z direction and the laser processing head 10B which is mounted so that the laser processing head 10A is movable along the Z direction. A portion 66 and an extension member EM that moves the attachment portions 65 and 66 along the Y direction are provided. Further, the laser processing apparatus 1 controls the movement of the support portion 7, the extension member EM, the mounting portion 65, and the mounting portion 66, and the irradiation of the laser beams L1 and L2 from the laser processing heads 10A and 10B. The controller 9 is provided.
 対象物100には、X方向に沿って延びる共にY方向に沿って配列された複数のラインCが設定されている。制御部9は、レーザ加工ヘッド10A,10Bが複数のラインCのうちの一のラインC上に配列された第1状態において、レーザ加工ヘッド10Aからのレーザ光L1の集光点P1をZ方向における第1位置に位置させつつ、レーザ加工ヘッド10Aドからのレーザ光L1を一のラインCに対してX方向にスキャンする第1スキャン処理と、第1状態において、レーザ加工ヘッド10Bからのレーザ光L2の集光点P2をZ方向における第2位置に位置させつつ、レーザ加工ヘッド10Bからのレーザ光L2を一のラインに対してX方向にスキャンする第2スキャン処理と、を実行する第1加工処理を実行する。第2位置は、Z方向について第1位置よりも対象物100のレーザ光L1,L2の入射面100a側の位置である。そして、制御部9は、第1加工処理においては、レーザ加工ヘッドからのレーザ光L2の集光点P2を、レーザ加工ヘッド10Aからのレーザ光L1の集光点P1よりも距離L以上X方向と反対方向に離間した位置としながら、第1スキャン処理及び第2スキャン処理を実行する。 A plurality of lines C extending along the X direction and arranged along the Y direction are set on the object 100. In the first state in which the laser processing heads 10A and 10B are arranged on one line C of the plurality of lines C, the control unit 9 sets the focus point P1 of the laser light L1 from the laser processing head 10A in the Z direction. In the first state, the laser beam L1 from the laser processing head 10A is scanned in the X direction with respect to the one line C, and the laser beam from the laser processing head 10B is in the first state. A second scan process of scanning the laser beam L2 from the laser processing head 10B in the X direction with respect to one line while locating the condensing point P2 of the light L2 at the second position in the Z direction. 1 Perform processing. The second position is a position closer to the incident surface 100a side of the laser light L1 and L2 of the object 100 than the first position in the Z direction. Then, in the first processing, the control unit 9 sets the focus point P2 of the laser beam L2 from the laser processing head to a distance L or more in the X direction from the focus point P1 of the laser beam L1 from the laser processing head 10A. The first scan process and the second scan process are executed while the positions are separated in the opposite direction.
 このレーザ加工装置1においては、レーザ加工ヘッド10A,10Bが、X方向に沿って配列され得る。そして、制御部9が、レーザ加工ヘッド10A,10BがラインC上に配列された第1状態において、レーザ加工ヘッド10Aを用いた第1スキャン処理と、レーザ加工ヘッド10Bを用いた第2スキャン処理とを実行する。第1スキャン処理においては、制御部9は、レーザ加工ヘッド10Aからのレーザ光L1の集光点P1をZ方向における第1位置としつつレーザ光L1をX方向にスキャンする。第2スキャン処理においては、制御部9は、レーザ加工ヘッド10Bからのレーザ光L2の集光点P2をZ方向における第2位置としつつラインCに対してレーザ光L2をX方向にスキャンする。これにより、1つのラインCに対して、2つのレーザ加工ヘッド10A,10Bを用いて、対象物100の少なくとも内部に2列の改質領域Mをほぼ同時に形成できる。 In this laser processing apparatus 1, the laser processing heads 10A and 10B can be arranged along the X direction. Then, the control unit 9 performs the first scan processing using the laser processing head 10A and the second scanning processing using the laser processing head 10B in the first state in which the laser processing heads 10A and 10B are arranged on the line C. And execute. In the first scan processing, the control unit 9 scans the laser light L1 in the X direction while setting the focal point P1 of the laser light L1 from the laser processing head 10A at the first position in the Z direction. In the second scan process, the control unit 9 scans the laser beam L2 in the X direction with respect to the line C while setting the focal point P2 of the laser beam L2 from the laser processing head 10B to the second position in the Z direction. As a result, two rows of the modified regions M can be formed at least inside the object 100 at substantially the same time by using the two laser processing heads 10A and 10B for one line C.
 ここで、本発明者らの知見によれば、1つのレーザ加工ヘッドを用いる場合、対象物の深さ方向(Z方向)に位置を違えて複数回のスキャンを行うことによって、それぞれの改質領域から延びる亀裂を十分に進展させることができる。しかしながら、この場合には、スループットの向上が図られない。これに対して、2つのレーザ加工ヘッド10A,10Bを用いて対象物100の内部に2列の改質領域Mを形成する場合には、それぞれのレーザ加工ヘッド10A,10Bからのレーザ光L1,L2の集光点P1,P2をX方向について一致させると、改質領域Mから延びる亀裂が進展しにくい。 Here, according to the knowledge of the present inventors, when one laser processing head is used, the position of the object is changed in the depth direction (Z direction) and scanning is performed a plurality of times, so that each modification is performed. A crack extending from the area can be sufficiently propagated. However, in this case, the throughput cannot be improved. On the other hand, when the two rows of modified regions M are formed inside the object 100 using the two laser processing heads 10A and 10B, the laser beams L1 from the respective laser processing heads 10A and 10B. When the converging points P1 and P2 of L2 are aligned in the X direction, the crack extending from the modified region M is unlikely to propagate.
 これに対して、このレーザ加工装置1においては、レーザ加工ヘッド10Bからのレーザ光L2の集光点P2を、レーザ加工ヘッド10Aからのレーザ光L1の集光点P1よりも距離L以上X方向と反対方向に離間して位置させつつ第1スキャン処理及び第2スキャン処理を実行する。これによれば、先行するレーザ加工ヘッド10Aからのレーザ光L1のスキャンによって1列目の改質領域M1を形成しつつ、距離Lだけその後を追うようにスキャンされるレーザ加工ヘッド10Bからのレーザ光L2によって、2列目の改質領域M2を形成しつつ十分に亀裂を進展させることが可能である。よって、このレーザ加工装置1によれば、スループットを向上可能である。 On the other hand, in the laser processing apparatus 1, the focus point P2 of the laser beam L2 from the laser processing head 10B is located at a distance L or more in the X direction from the focus point P1 of the laser beam L1 from the laser processing head 10A. The first scan process and the second scan process are executed while being spaced apart in the opposite direction. According to this, the laser from the laser processing head 10B that is scanned so as to follow the distance L while forming the modified region M1 in the first row by scanning the laser beam L1 from the preceding laser processing head 10A. The light L2 can sufficiently propagate the crack while forming the modified region M2 in the second row. Therefore, according to the laser processing device 1, the throughput can be improved.
 また、レーザ加工装置1においては、制御部9は、第1加工処理の後に、レーザ加工ヘッド10A,10Bが別のラインC上に配列された第2状態において、レーザ光L1の集光点P1を第2位置に位置させつつレーザ光L1をラインCに対してX方向の反対方向にスキャンする第3スキャン処理と、第2状態において、レーザ光L2の集光点P2を第1位置に位置させつつレーザ光L2をラインCに対してX方向の反対方向にスキャンする第4スキャン処理と、を実行する第2加工処理を実行する。制御部9は、第2加工処理においては、レーザ光L1の集光点P1を、レーザ光L2の集光点P2よりも距離L以上X方向に離間した位置としながら、第3スキャン処理及び第4スキャン処理を実行する。このため、レーザ加工ヘッド10A,10Bの対象物100に対する往路(第1加工処理)と復路(第2加工処理)とにおいて、レーザ加工ヘッド10A,10BのX方向の位置を入れ替えることなく、好適にレーザ加工が可能となる。 Further, in the laser processing apparatus 1, the control unit 9 in the second state in which the laser processing heads 10A and 10B are arranged on another line C after the first processing is in the second state, and the converging point P1 of the laser light L1. Scanning process in which the laser beam L1 is scanned in the direction opposite to the X direction with respect to the line C while the laser beam L1 is positioned at the second position, and the condensing point P2 of the laser beam L2 is positioned at the first position in the second state. While performing the above, the fourth processing for scanning the laser beam L2 in the direction opposite to the X direction with respect to the line C and the second processing for executing the second processing are performed. In the second processing, the control unit 9 sets the condensing point P1 of the laser light L1 at a position separated from the condensing point P2 of the laser light L2 by a distance L or more in the X direction, while performing the third scanning process and the third 4 Scan processing is executed. Therefore, the laser processing heads 10A and 10B can be suitably used without switching the positions of the laser processing heads 10A and 10B in the X direction in the forward path (first processing process) and the backward path (second processing process) with respect to the object 100. Laser processing becomes possible.
 また、レーザ加工装置1においては、制御部9は、複数のラインCの本数に応じた回数だけ第1加工処理と第2加工処理とを交互に繰り返して実行する。このため、例えば、X方向に沿った支持部7の往復動作、及び、レーザ加工ヘッド10A,10BのY方向への順次の移動によって、全てのラインCに沿ったレーザ加工が可能となる。 Further, in the laser processing apparatus 1, the control unit 9 alternately and repeatedly executes the first processing and the second processing according to the number of the plurality of lines C. Therefore, for example, the reciprocating operation of the support portion 7 along the X direction and the sequential movement of the laser processing heads 10A and 10B in the Y direction enable laser processing along all the lines C.
 また、レーザ加工装置1においては、距離Lは、300μmである。本発明者の知見によれば、このように距離Lを300μmと設定することにより、より十分に亀裂を進展させることができる。 Moreover, in the laser processing apparatus 1, the distance L is 300 μm. According to the knowledge of the present inventor, by setting the distance L to 300 μm in this way, the crack can be more sufficiently propagated.
 さらに、レーザ加工装置1においては、取付部65,66は、一括して延長部材EMに取り付けられており、延長部材EMは、取付部65,66をY方向に移動する。この場合、レーザ加工ヘッド10A,10BのY方向の移動が容易となる。 Further, in the laser processing apparatus 1, the mounting portions 65 and 66 are collectively mounted on the extension member EM, and the extension member EM moves the mounting portions 65 and 66 in the Y direction. In this case, the laser processing heads 10A and 10B can be easily moved in the Y direction.
 なお、レーザ加工装置1においては、レーザ加工ヘッド10Aは、筐体11と、筐体11における支持部7側の第6壁部26に設けられ、支持部7に支持された対象物100に向けてレーザ光L1を集光するための集光部14と、を有する。また、レーザ加工ヘッド10Bも、筐体11と、筐体11における支持部7側の第6壁部26に設けられ、支持部7に支持された対象物100に向けてレーザ光L2を集光するための集光部14と、を有する。さらに、取付部65,66は、それぞれ、筐体11におけるX方向に沿って互いに対向する第4壁部24(対向壁部)と異なる壁部(ここでは、第2壁部22)に取り付けられている。そして、集光部14は、それぞれ、Z方向からみて、筐体11における第4壁部24側に偏って配置されている。 In the laser processing apparatus 1, the laser processing head 10A is provided on the housing 11 and the sixth wall portion 26 of the housing 11 on the side of the support portion 7 and faces the object 100 supported by the support portion 7. And a condenser 14 for condensing the laser light L1. Further, the laser processing head 10B is also provided on the housing 11 and the sixth wall portion 26 of the housing 11 on the side of the support portion 7 and focuses the laser light L2 toward the object 100 supported by the support portion 7. And a light condensing unit 14 for Further, the attachment portions 65 and 66 are attached to the wall portions (here, the second wall portion 22) different from the fourth wall portion 24 (opposing wall portion) facing each other along the X direction in the housing 11. ing. Then, the light collecting units 14 are arranged so as to be biased toward the fourth wall portion 24 side of the housing 11 when viewed from the Z direction.
 このため、レーザ加工ヘッド10Aとレーザ加工ヘッド10Bとの間に、取付部65,66が介在しない。したがって、Y方向についてレーザ加工ヘッド10Aとレーザ加工ヘッド10Bとをより接近させることができる。さらに、レーザ加工ヘッド10A,10Bのそれぞれの集光部14が、それぞれの筐体11の互いに対向する第4壁部24側に偏って配置されている。このため、レーザ加工ヘッド10Aとレーザ加工ヘッド10Bとを接近させたときに、互いの集光部14同士の距離をより小さくできる。この結果、距離Lの設定の自由度が向上する。
[変形例]
Therefore, the mounting portions 65 and 66 are not interposed between the laser processing head 10A and the laser processing head 10B. Therefore, the laser processing head 10A and the laser processing head 10B can be closer to each other in the Y direction. Further, the light converging portions 14 of the laser processing heads 10A and 10B are arranged so as to be biased toward the fourth wall portions 24 of the respective casings 11 facing each other. Therefore, when the laser processing head 10A and the laser processing head 10B are brought close to each other, the distance between the condensing sections 14 can be further reduced. As a result, the degree of freedom in setting the distance L is improved.
[Modification]
 以上の実施形態は、レーザ加工装置の一実施形態を例示したものである。したがって、本開示に係るレーザ加工装置は、上記のレーザ加工装置1に限定されず、任意に変形され得る。 The above embodiment illustrates one embodiment of the laser processing apparatus. Therefore, the laser processing apparatus according to the present disclosure is not limited to the laser processing apparatus 1 described above, and can be arbitrarily modified.
 図12~図15は、取付部及びレーザ加工ヘッドの変形例を示す図である。図12の(a)に示されるように、取付部65をレーザ加工ヘッド10Aの筐体11の第1壁部21に設けつつ、取付部66をレーザ加工ヘッド10Bの筐体11の第1壁部21に設けてもよい。また、図12の(b)に示されるように、取付部65をレーザ加工ヘッド10Aの筐体11の第3壁部23に設けつつ、取付部66を、レーザ加工ヘッド10Bの筐体11の第3壁部23に設ける態様において、取付部65,66における移動部63,64の位置をX方向に互い違いにしてもよい。さらに、図12の(c)に示されるように、取付部65をレーザ加工ヘッド10Aの筐体11の第3壁部23に設けつつ、取付部66を、レーザ加工ヘッド10Bの筐体11の第3壁部23に設ける態様において、取付部65,66における移動部63,64のY方向の位置を変更してもよい。 12 to 15 are views showing modified examples of the mounting portion and the laser processing head. As shown in FIG. 12A, the mounting portion 65 is provided on the first wall portion 21 of the housing 11 of the laser processing head 10A, while the mounting portion 66 is mounted on the first wall of the housing 11 of the laser processing head 10B. You may provide in the part 21. Further, as shown in FIG. 12B, while the mounting portion 65 is provided on the third wall portion 23 of the housing 11 of the laser processing head 10A, the mounting portion 66 is mounted on the housing 11 of the laser processing head 10B. In the aspect provided in the third wall portion 23, the positions of the moving portions 63 and 64 in the attachment portions 65 and 66 may be staggered in the X direction. Further, as shown in FIG. 12C, the mounting portion 65 is provided on the third wall portion 23 of the housing 11 of the laser processing head 10A, while the mounting portion 66 is mounted on the housing 11 of the laser processing head 10B. In the aspect of providing the third wall portion 23, the positions of the moving portions 63 and 64 in the attachment portions 65 and 66 in the Y direction may be changed.
 また、図13の(a)に示されるように、取付部65をレーザ加工ヘッド10Aの筐体11の第5壁部25に設けつつ、取付部66をレーザ加工ヘッド10Bの筐体11の第5壁部25に設けてもよい。また、図13の(b)に示されるように、取付部65をレーザ加工ヘッド10Aの筐体11の第6壁部26に設けつつ、取付部66をレーザ加工ヘッド10Bの筐体11の第6壁部26に設けてもよい。以上のように、取付部65,66は、それぞれ、X方向に沿って互いに対向する第4壁部24と異なる壁部に取り付けられていればよい。さらに、図13の(c)に示されるように、第1壁部21と第2壁部22との間隔を拡大しつつ、Y方向について筐体11の中央部に集光部14を設けてもよい。 As shown in FIG. 13A, the mounting portion 65 is provided on the fifth wall portion 25 of the housing 11 of the laser processing head 10A, while the mounting portion 66 is mounted on the housing 11 of the laser processing head 10B. It may be provided on the five wall portion 25. Further, as shown in FIG. 13B, the mounting portion 65 is provided on the sixth wall portion 26 of the housing 11 of the laser processing head 10A, while the mounting portion 66 is mounted on the sixth wall portion of the housing 11 of the laser processing head 10B. It may be provided on the six wall portion 26. As described above, the attachment portions 65 and 66 may be attached to the wall portions different from the fourth wall portion 24 facing each other along the X direction. Further, as shown in (c) of FIG. 13, while increasing the distance between the first wall portion 21 and the second wall portion 22, the condensing portion 14 is provided in the central portion of the housing 11 in the Y direction. Good.
 また、以上の例のように、レーザ加工装置1においては、一対のレーザ加工ヘッドとして、レーザ加工ヘッド10Aとレーザ加工ヘッド10Bとを用いなくてもよい。すなわち、レーザ加工装置1においては、図14に示されるように、一対の(1種類の)レーザ加工ヘッド10Aを用いたり、図15に示されるように、一対の(別の1種類の)レーザ加工ヘッド10Bを用いたりすることができる。これらの場合には、一方のレーザ加工ヘッド10A,10Bに対して他方のレーザ加工ヘッド10A,10BをZ軸方向を中心に180°回転させた状態において、それぞれの集光部14のX方向の中心位置が一致するように配置される。これらの場合には、2種類のレーザ加工ヘッドを用意する必要がない。なお、これらの場合にあっても、図14の各図,図15の各図に示されるように、取付部65,66を第1壁部21や第2壁部22に設けたり、第3壁部23に設けたりしてもよい。 Further, as in the above example, the laser processing apparatus 1 does not have to use the laser processing head 10A and the laser processing head 10B as the pair of laser processing heads. That is, in the laser processing apparatus 1, as shown in FIG. 14, a pair (one type) of laser processing head 10A is used, or as shown in FIG. 15, a pair of (another type) laser is used. The processing head 10B can be used. In these cases, the laser processing heads 10A and 10B on one side are rotated by 180 ° about the Z-axis direction with respect to the laser processing heads 10A and 10B on the other side, respectively. They are arranged so that their center positions coincide with each other. In these cases, it is not necessary to prepare two types of laser processing heads. Even in these cases, as shown in the drawings of FIG. 14 and the drawings of FIG. 15, the mounting portions 65 and 66 are provided on the first wall portion 21 and the second wall portion 22, and the third wall portion is provided. You may provide in the wall part 23.
 なお、上記の例においては、レーザ加工ヘッド10A,10Bからのレーザ光L1,L2の集光点P1,P2をZ方向に移動する態様として、制御部9が機械的にレーザ加工ヘッド10A,10BをZ方向に移動させる例を挙げた。しかしながら、レーザ加工装置1においては、制御部9が調整部13(例えば反射型空間光変調器34)を制御することにより、光学的に、集光点P1,P2をZ方向に移動させる構成であってもよい。 In the above example, the control unit 9 mechanically operates the laser processing heads 10A and 10B as a mode in which the focus points P1 and P2 of the laser beams L1 and L2 from the laser processing heads 10A and 10B are moved in the Z direction. An example was given in which the is moved in the Z direction. However, in the laser processing apparatus 1, the control unit 9 controls the adjustment unit 13 (for example, the reflective spatial light modulator 34) to optically move the focal points P1 and P2 in the Z direction. It may be.
 また、上記の例においては、取付部65,66及び支持部7の少なくとも一方をY方向に沿って移動する移動部の例として、取付部65,66が一括して取り付けられた延長部材EMを挙げた。しかしながら、当該移動部としては、支持部7をY方向に移動する移動機構5の移動部53であってもよい。 Further, in the above example, as an example of the moving portion that moves at least one of the mounting portions 65 and 66 and the support portion 7 along the Y direction, the extension member EM to which the mounting portions 65 and 66 are collectively attached is used. Listed. However, the moving unit may be the moving unit 53 of the moving mechanism 5 that moves the support unit 7 in the Y direction.
 なお、制御部9は、レーザ加工ヘッド10Aからのレーザ光L1と、レーザ加工ヘッド10Bからのレーザ光L2とで、互に異なる波長、及びZ方向の集光位置において、対象物100を加工する処理(多波長加工)を実行するようにしてもよい。多波長加工は、例えば、シリコン(Si)とガラスとを貼り合わせたウェハを加工する場合(第1の場合)や、裏面側から入射したレーザ光L1,L2の一部がデバイスに吸収されることにより回路の破損が生じ得るウェハを加工する場合(第2の場合)等に使用できる。 The control unit 9 processes the object 100 at the wavelengths different from each other by the laser beam L1 from the laser processing head 10A and the laser beam L2 from the laser processing head 10B, and at the converging position in the Z direction. You may make it perform a process (multi-wavelength processing). The multi-wavelength processing is performed, for example, when processing a wafer in which silicon (Si) and glass are bonded (first case) or when a part of the laser beams L1 and L2 incident from the back surface side is absorbed by the device. This can be used, for example, when processing a wafer in which circuit damage may occur (second case).
 第1の場合、シリコンを加工する波長(例えば1064nm)の光とガラスを加工する波長(例えば532nm)の光とがいずれも対象材料に届く必要があるため、ガラス側から加工を実施する。レーザ加工ヘッド10Aからのレーザ光L1の集光位置をガラス越しにシリコン内に合わせ、レーザ加工ヘッド10Bからのレーザ光L2の集光位置をガラス内に併せて、対応する波長にて加工を実施する。このように異なる2種類の基材が貼り合されたウェハを多波長加工で加工するためには、その波長のうち、下側の記載を加工する波長は、上側の基材を透過する波長である必要がある。ここでは、一対のレーザ加工ヘッド10A,10Bを用いて多波長加工を行うためスループットの向上が図られる。 In the first case, both the light with a wavelength for processing silicon (for example, 1064 nm) and the light with a wavelength for processing glass (for example, 532 nm) need to reach the target material, so processing is performed from the glass side. The converging position of the laser beam L1 from the laser processing head 10A is aligned in the silicon through the glass, and the converging position of the laser beam L2 from the laser processing head 10B is aligned in the glass, and processing is performed at the corresponding wavelength. To do. In order to process a wafer in which two different kinds of base materials are bonded together by multi-wavelength processing, the wavelength for processing the lower part of the wavelength is the wavelength that transmits the upper base material. Need to be Here, since the multi-wavelength processing is performed using the pair of laser processing heads 10A and 10B, the throughput can be improved.
 一方、第2の場合、レーザ加工ヘッド10Aからのレーザ光L1の集光位置をデバイス近傍に設定し、且つ、レーザ加工ヘッド10Bからのレーザ光L2の集光位置をデバイスから離れた位置に設定する。レーザ光L1の波長は、デバイス側への抜け光が少なくなるように、より基材に吸収がある波長(例えば1064nm)とし、レーザ光L2の波長は、多少の抜け光が生じるとしても、より基材の加工に適したレーザ光L1の波長よりも長い波長(例えば1342nm)とすることができる。 On the other hand, in the second case, the focus position of the laser beam L1 from the laser processing head 10A is set near the device, and the focus position of the laser beam L2 from the laser processing head 10B is set at a position away from the device. To do. The wavelength of the laser light L1 is set to a wavelength (for example, 1064 nm) at which the base material has more absorption so that the amount of light passing to the device side is reduced, and the wavelength of the laser light L2 is set to a value even if some light is emitted. The wavelength (for example, 1342 nm) longer than the wavelength of the laser beam L1 suitable for processing the base material can be set.
 スループットを向上可能なレーザ加工装置が提供される。 A laser processing device that can improve throughput is provided.
 1…レーザ加工装置、7…支持部、9…制御部、10A…レーザ加工ヘッド(第1レーザ加工ヘッド)、10B…レーザ加工ヘッド(第2レーザ加工ヘッド)、65…取付部(第1取付部)、66…取付部(第2取付部)、100…対象物、C…ライン、L1,L2…レーザ光、P1,P2…集光点。 DESCRIPTION OF SYMBOLS 1 ... Laser processing device, 7 ... Support part, 9 ... Control part, 10A ... Laser processing head (1st laser processing head), 10B ... Laser processing head (2nd laser processing head), 65 ... Mounting part (1st mounting) Part), 66 ... Mounting part (second mounting part), 100 ... Object, C ... Line, L1, L2 ... Laser light, P1, P2 ... Focus point.

Claims (5)

  1.  第1方向に沿って移動可能とされ、前記第1方向及び前記第1方向に交差する第2方向に沿って対象物を支持するための支持部と、
     前記第1方向に沿って配列され、前記支持部に支持された前記対象物の少なくとも内部にレーザ光を照射して改質領域を形成するための第1レーザ加工ヘッド及び第2レーザ加工ヘッドと、
     前記第1レーザ加工ヘッドが取り付けられ、前記第1方向及び前記第2方向に交差する第3方向に沿って移動可能とされた第1取付部と、
     前記第2レーザ加工ヘッドが取り付けられ、前記第3方向に沿って移動可能とされた第2取付部と、
     前記第1取付部及び前記第2取付部、又は、前記支持部の少なくとも一方を前記第2方向に沿って移動する移動部と、
     前記支持部、前記移動部、前記第1取付部、及び、前記第2取付部の移動と、前記第1レーザ加工ヘッド及び前記第2レーザ加工ヘッドからの前記レーザ光の照射と、の制御を行う制御部と、を備え、
     前記対象物には、前記第1方向に沿って延びる共に前記第2方向に沿って配列された複数のラインが設定されており、
     前記制御部は、
     前記第1レーザ加工ヘッド及び前記第2レーザ加工ヘッドが前記複数のラインのうちの一のライン上に配列された第1状態において、前記第1レーザ加工ヘッドからの前記レーザ光の集光点を前記第3方向における第1位置に位置させつつ、前記第1レーザ加工ヘッドからの前記レーザ光を前記一のラインに対して前記第1方向にスキャンする第1スキャン処理と、
     前記第1状態において、前記第2レーザ加工ヘッドからの前記レーザ光の集光点を前記第3方向における第2位置に位置させつつ、前記第2レーザ加工ヘッドからの前記レーザ光を前記一のラインに対して前記第1方向にスキャンする第2スキャン処理と、を実行する第1加工処理を実行し、
     前記第2位置は、前記第3方向について前記第1位置よりも前記対象物の前記レーザ光の入射面側の位置であって、
     前記制御部は、前記第1加工処理においては、前記第2レーザ加工ヘッドからの前記レーザ光の集光点を、前記第1レーザ加工ヘッドからの前記レーザ光の集光点よりも距離L以上前記第1方向と反対方向に離間した位置としながら、前記第1スキャン処理及び前記第2スキャン処理を実行する、
     レーザ加工装置。
    A support unit configured to be movable along a first direction and supporting an object along the first direction and a second direction intersecting the first direction;
    A first laser processing head and a second laser processing head, which are arranged along the first direction and irradiate at least the inside of the object supported by the support portion with laser light to form a modified region; ,
    A first mounting portion to which the first laser processing head is mounted and which is movable along a third direction intersecting the first direction and the second direction;
    A second mounting portion to which the second laser processing head is mounted and which is movable along the third direction;
    A moving part that moves at least one of the first mounting part and the second mounting part, or the supporting part along the second direction;
    Control of movement of the support portion, the moving portion, the first mounting portion, and the second mounting portion, and irradiation of the laser light from the first laser processing head and the second laser processing head. And a control unit for performing,
    In the object, a plurality of lines extending along the first direction and arranged along the second direction are set,
    The control unit is
    In a first state in which the first laser processing head and the second laser processing head are arranged on one line of the plurality of lines, a converging point of the laser light from the first laser processing head is set. A first scanning process of scanning the laser beam from the first laser processing head in the first direction with respect to the one line while locating the laser beam at a first position in the third direction;
    In the first state, while the condensing point of the laser light from the second laser processing head is located at the second position in the third direction, the laser light from the second laser processing head is moved to the first position. A second scanning process for scanning the line in the first direction, and a first processing process for executing the second scanning process,
    The second position is a position closer to the incident surface side of the laser light of the object than the first position in the third direction,
    In the first processing, the control unit sets the focus point of the laser light from the second laser processing head to a distance L or more from the focus point of the laser light from the first laser processing head. The first scan process and the second scan process are performed while the positions are separated from each other in the direction opposite to the first direction.
    Laser processing equipment.
  2.  前記制御部は、前記第1加工処理の後に、前記第1レーザ加工ヘッド及び前記第2レーザ加工ヘッドが前記複数のラインのうちの前記一のラインに隣接する別のライン上に配列された第2状態において、前記第1レーザ加工ヘッドからの前記レーザ光の集光点を前記第2位置に位置させつつ前記第1レーザ加工ヘッドからの前記レーザ光を前記ラインに対して前記第1方向の反対方向にスキャンする第3スキャン処理と、
     前記第2状態において、前記第2レーザ加工ヘッドからの前記レーザ光の集光点を前記第1位置に位置させつつ前記第2レーザ加工ヘッドからの前記レーザ光を前記別のラインに対して前記第1方向の反対方向にスキャンする第4スキャン処理と、を実行する第2加工処理を実行し、
     前記制御部は、前記第2加工処理においては、前記第1レーザ加工ヘッドからの前記レーザ光の集光点を、前記第2レーザ加工ヘッドからの前記レーザ光の集光点よりも距離L以上前記第1方向に離間した位置としながら、前記第3スキャン処理及び前記第4スキャン処理を実行する、
     請求項1に記載のレーザ加工装置。
    The control unit is configured such that, after the first processing, the first laser processing head and the second laser processing head are arranged on another line adjacent to the one line of the plurality of lines. In the second state, while the condensing point of the laser light from the first laser processing head is located at the second position, the laser light from the first laser processing head is moved in the first direction with respect to the line. A third scan process that scans in the opposite direction,
    In the second state, the laser beam from the second laser processing head is moved to the another line while the focal point of the laser beam from the second laser processing head is positioned at the first position. A fourth scanning process of scanning in a direction opposite to the first direction, and a second processing process of performing
    In the second processing, the control unit sets the focus point of the laser light from the first laser processing head to a distance L or more from the focus point of the laser light from the second laser processing head. The third scan process and the fourth scan process are performed while the positions are separated in the first direction.
    The laser processing apparatus according to claim 1.
  3.  前記制御部は、前記複数のラインの本数に応じた回数だけ前記第1加工処理と前記第2加工処理とを交互に繰り返して実行する、
     請求項2に記載のレーザ加工装置。
    The control unit alternately and repeatedly executes the first processing processing and the second processing processing a number of times corresponding to the number of the plurality of lines.
    The laser processing apparatus according to claim 2.
  4.  前記距離Lは、300μmである、
     請求項1~3のいずれか一項に記載のレーザ加工装置。
    The distance L is 300 μm,
    The laser processing apparatus according to any one of claims 1 to 3.
  5.  前記第1取付部及び前記第2取付部は、一括して前記移動部に取り付けられており、
     前記移動部は、前記第1取付部及び前記第2取付部を前記第2方向に移動する、
     請求項1~4のいずれか一項に記載のレーザ加工装置。
    The first mounting portion and the second mounting portion are collectively mounted on the moving portion,
    The moving part moves the first mounting part and the second mounting part in the second direction,
    The laser processing apparatus according to any one of claims 1 to 4.
PCT/JP2019/042614 2018-10-30 2019-10-30 Laser machining device WO2020090907A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980071421.4A CN112955278B (en) 2018-10-30 2019-10-30 Laser processing device
KR1020217015674A KR20210082485A (en) 2018-10-30 2019-10-30 laser processing equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-203671 2018-10-30
JP2018203671A JP7108517B2 (en) 2018-10-30 2018-10-30 Laser processing equipment

Publications (1)

Publication Number Publication Date
WO2020090907A1 true WO2020090907A1 (en) 2020-05-07

Family

ID=70463756

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/042614 WO2020090907A1 (en) 2018-10-30 2019-10-30 Laser machining device

Country Status (5)

Country Link
JP (1) JP7108517B2 (en)
KR (1) KR20210082485A (en)
CN (1) CN112955278B (en)
TW (1) TWI825210B (en)
WO (1) WO2020090907A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6121901B2 (en) * 1980-04-30 1986-05-29 Sumitomo Rubber Ind
JP2650138B2 (en) * 1987-01-30 1997-09-03 パワーレーザス・リミティッド Means for improving laser processing efficiency of metal
JPH10156570A (en) * 1996-11-20 1998-06-16 Ibiden Co Ltd Laser beam machine, manufacturing device for multilayer printed circuit board and manufacture thereof
JP3357170B2 (en) * 1994-03-07 2002-12-16 ヤマザキマザック株式会社 Laser processing machine
JP4519560B2 (en) * 2004-07-30 2010-08-04 株式会社メディアプラス Additive manufacturing method
JP4523757B2 (en) * 2003-01-09 2010-08-11 新日本製鐵株式会社 Laser processing apparatus and processing method
JP2012004313A (en) * 2010-06-16 2012-01-05 Showa Denko Kk Laser processing method

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6551126B1 (en) * 2001-03-13 2003-04-22 3M Innovative Properties Company High bandwidth probe assembly
FR2823740B1 (en) * 2001-04-18 2004-02-06 Cezus Co Europ Zirconium PROCESS FOR SEPARATING ZIRCONIUM AND HAFNIUM TETRACHLORIDES
JP2006121901A (en) * 2004-10-26 2006-05-18 Ask:Kk Label for repelling bird
JP5456510B2 (en) 2010-02-23 2014-04-02 株式会社ディスコ Laser processing equipment
TWI446984B (en) * 2010-06-28 2014-08-01 Mitsuboshi Diamond Ind Co Ltd Processing method for a workpiece, dividing method for a workpiece, and laser processing apparatus
JP6121901B2 (en) 2010-07-12 2017-04-26 ロフィン−シナー テクノロジーズ インコーポレーテッド Material processing by laser filament formation
JP5808267B2 (en) * 2012-02-20 2015-11-10 住友重機械工業株式会社 Laser processing apparatus and laser processing method
US9828278B2 (en) * 2012-02-28 2017-11-28 Electro Scientific Industries, Inc. Method and apparatus for separation of strengthened glass and articles produced thereby
KR20130134703A (en) * 2012-05-31 2013-12-10 참엔지니어링(주) Laser processing system and method
CN103537805B (en) * 2012-07-17 2016-05-25 大族激光科技产业集团股份有限公司 Wafer laser cutting method and wafer processing method
JP6272145B2 (en) * 2014-05-29 2018-01-31 浜松ホトニクス株式会社 Laser processing apparatus and laser processing method
CN108515273B (en) * 2018-03-29 2020-10-13 大族激光科技产业集团股份有限公司 Cutting device and cutting method for LED wafer

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6121901B2 (en) * 1980-04-30 1986-05-29 Sumitomo Rubber Ind
JP2650138B2 (en) * 1987-01-30 1997-09-03 パワーレーザス・リミティッド Means for improving laser processing efficiency of metal
JP3357170B2 (en) * 1994-03-07 2002-12-16 ヤマザキマザック株式会社 Laser processing machine
JPH10156570A (en) * 1996-11-20 1998-06-16 Ibiden Co Ltd Laser beam machine, manufacturing device for multilayer printed circuit board and manufacture thereof
JP4523757B2 (en) * 2003-01-09 2010-08-11 新日本製鐵株式会社 Laser processing apparatus and processing method
JP4519560B2 (en) * 2004-07-30 2010-08-04 株式会社メディアプラス Additive manufacturing method
JP2012004313A (en) * 2010-06-16 2012-01-05 Showa Denko Kk Laser processing method

Also Published As

Publication number Publication date
KR20210082485A (en) 2021-07-05
JP7108517B2 (en) 2022-07-28
CN112955278B (en) 2022-12-20
TWI825210B (en) 2023-12-11
JP2020069486A (en) 2020-05-07
TW202035055A (en) 2020-10-01
CN112955278A (en) 2021-06-11

Similar Documents

Publication Publication Date Title
WO2020090907A1 (en) Laser machining device
JP5230240B2 (en) Laser processing equipment
JP7368373B2 (en) laser processing equipment
JP7219590B2 (en) Laser processing equipment
JP7402814B2 (en) Laser processing head and laser processing equipment
WO2020090893A1 (en) Laser processing method
WO2021221061A1 (en) Laser processing head and laser processing device
WO2020090915A1 (en) Laser machining device
TWI834747B (en) Laser processing equipment
JP7438009B2 (en) laser processing equipment
TWI837204B (en) Laser processing equipment
CN115461187A (en) Laser processing apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19879896

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217015674

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19879896

Country of ref document: EP

Kind code of ref document: A1