JP4523757B2 - Laser processing apparatus and processing method - Google Patents

Laser processing apparatus and processing method Download PDF

Info

Publication number
JP4523757B2
JP4523757B2 JP2003003383A JP2003003383A JP4523757B2 JP 4523757 B2 JP4523757 B2 JP 4523757B2 JP 2003003383 A JP2003003383 A JP 2003003383A JP 2003003383 A JP2003003383 A JP 2003003383A JP 4523757 B2 JP4523757 B2 JP 4523757B2
Authority
JP
Japan
Prior art keywords
roll
laser
processing
pulse
machining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003003383A
Other languages
Japanese (ja)
Other versions
JP2004216386A (en
Inventor
敦史 杉橋
明彦 谷口
和式 若狭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2003003383A priority Critical patent/JP4523757B2/en
Publication of JP2004216386A publication Critical patent/JP2004216386A/en
Application granted granted Critical
Publication of JP4523757B2 publication Critical patent/JP4523757B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Laser Beam Processing (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、Qスイッチレーザ発振器にて、圧延ロールあるいは薄板連続鋳造用ドラムなどの円筒形状金属体表面に微小穴加工を行うレーザ加工装置および加工方法に関する。
【0002】
【従来の技術】
特許文献1に、2台のYAGレーザを用い圧延ロール表面の2カ所を同時並列的に加工する装置が開示されている。図1に特許文献1発明の装置構成図(該公報図1a)を示す。図1において、レンズFL1およびFL2は加工の進捗に合わせて等速にて、ロール軸方向に移動する。ここでレンズFL1にて加工する部位FP1が、レンズFL2にて加工を開始した部位FP2にまで加工が進捗した際に問題が発生する。すなわち、何らかの手段にて加工部FP1と加工部FP2に重複が発生しない様に、速やかに加工FP1を停止する必要が生じる。しかし該発明には、各レンズFL1、FL2にて加工されるの加工境界部においてどの様にレーザ発振を制御し、境界部での重複加工を防止するかについての具体的な記述は一切ない。
【0003】
図2、3は特許文献1の装置(図1)にて加工したロール表面をA−A′線にて展開した模式図である。ロールRの白塗り部1および斜線部2が、レンズFL1、FL2で集光した各ビームLBP1、LBP2によりダル加工した部位である。ロール上の点線部3が、レンズFL1、FL2で集光した各ビームLBP1、LBP2の加工境界になる。加工境界部3においてレーザ発振の制御が行われない場合は、加工開始時にLBP2により加工したダル穴部に、LBP1によるダル加工部が重ねて加工され、2重加工によるダル穴径の拡大が発生する(図2の点線部)。このダル穴加工の乱れは、圧延時に鋼板表面に転写され、鋼板の表面性状を著しく損なう原因になる。また2重加工を防止するために、LBP1ビームを早く停止させすぎると、図3の点線部3の様なロール上に未加工部が発生するため鋼板表面にダル穴転写がない領域が発生し、他の領域と粗度が異なる事が目視にて容易に観察され、やはり製品表面の不良となる。
【0004】
【特許文献1】
特公平04−40118号公報
【0005】
【発明が解決しようとする課題】
本発明は、上記の従来技術の問題点を解決し、複数台のレーザ発振器を用いて高速で圧延ロール表面に均一なダル加工を施すことができる加工装置および加工方法を提供する事を目的とする。
【0006】
【課題を解決するための手段】
本発明の要旨とするところは、
複数台のレーザと該レーザの光を集光する複数台の加工ヘッドを用いて、回転する圧延ロールに対し該加工ヘッドをロール軸方向に一軸上を移動しながら、該圧延ロール表面に該複数レーザ発振器からのレーザ光を該複数の加工ヘッドにて各々集光して照射し、圧延ロール表面に微小な凹凸模様を形成するロール加工装置において、
ロールの回転角度位置に応じてパルス信号を発生するロール回転角度検出器と、該ロール回転角度検出器からのパルス信号をトリガー信号として動作するレーザ発振制御装置と、該パルス信号を数えるパルスカウンター装置と、ロール軸方向に移動する該加工ヘッドの位置を検出する横行位置検出器と、該ロール回転角度検出器と該横行位置検出器の信号によりレーザ発振器のパルス発振を制御する制御装置と、該複数のレーザ光軸間隔を調整する機構を備え、
前記圧延ロールの直径をD、前記複数台のレーザのレーザ光軸間隔をS、前記圧延ロール表面のロール円周方向の照射ピッチをPL、ロールの軸方向の照射ピッチをPXとし、π×DはPLの整数倍、SはPXの整数倍であり、
レーザの照射パルス数が(π×D×S)/(PL×PX)であって、
Pを1から(π×D×S)/(PL×PX)までの正の整数とし、Nを前記複数台のレーザの台数として2以上の正の整数とし、kを1からNまでの正の整数とするとき、前記圧延ロール表面の位置をロールの軸方向の座標Txとロール回転角度位置θで指定して(Tx,θ)で表し、第kのレーザの第P発目のパルス光の照射位置が
((k−1)×S+X,θ)
但し θ=2×π×P×PL/(π×D)=2×P×PL/D
X=S×P/((π×D×S)/(PL×PX))
=P/((π×D)/(PL×PX))
であるようにレーザ光軸間隔を一定に保持して一軸上を加工ヘッドが移動してレーザ照射し、前記パルス信号数すなわちレーザパルス数をカウントしながら、前記照射パルス数のレーザ照射が終了したらレーザ発振を停止して、圧延ロール表面に2重加工あるいは未加工部の発生がない全ての穴が螺旋状に配列し以て円筒体のロール表面に離散的かつ規則的に配列した穴加工を施す事を特徴とするレーザ加工装置であり、
上記レーザ加工装置において、該ロール回転角度検出器のパルス信号を分周する分周器を備えたことを特徴とするレーザ加工装置である。
また、上記のレーザ加工装置を用いて、圧延ロールを回転させ、該加工ヘッドをロール軸方向に一軸上を移動しながら、該圧延ロール表面に該複数レーザ発振器からのレーザ光を該複数の加工ヘッドにて各々集光して照射し、圧延ロール表面に微小な凹凸模様を形成するダル加工方法において、
ロール回転角度検出器のパルス信号をトリガー信号としてレーザ発振器のパルス発振を制御しロール周方向にダル加工を行うロール加工方法であって、前記パルスカウント装置にて前記パルス信号すなわちレーザパルス数をカウントしながら穴加工を行い、
前記圧延ロールの直径をD,前記複数台のレーザのレーザ光軸間隔をS、前記圧延ロール表面のロール円周方向の照射ピッチをPL、ロールの軸方向の照射ピッチをPXとし、π×DはPLの整数倍、SはPXの整数倍であり、
レーザの照射パルス数が(π×D×S)/(PL×PX)であって、
Pを1から(π×D×S)/(PL×PX)までの正の整数とし、Nを前記複数台のレーザの台数として2以上の正の整数とし、kを1からNまでの正の整数とするとき、前記圧延ロール表面の位置をロールの軸方向の座標Txとロール回転角度位置θで指定して(Tx,θ)で表し、第kのレーザの照射位置が
((k−1)×S+X,θ)
但し θ=2×π×P×PL/(π×D)=2×P×PL/D
X=S×P/((π×D×S)/(PL×PX))
=P/((π×D)/(PL×PX))
であるようにレーザ光軸間隔を一定に保持して一軸上を加工ヘッドが移動してレーザ照射し、前記照射パルス数のレーザ照射が終了したらレーザ発振を停止して、圧延ロール表面に2重加工あるいは未加工部の発生がない全ての穴が螺旋状に配列して以て円筒体のロール表面に離散的かつ規則的に配列した穴加工を施すことを特徴とするロール加工方法。
およびロール径D(mm)、設定周方向加工ピッチPL(mm)、ロール回転角度検出器の1回転当たりのパルス数N(パルス/回転)とした場合に、ロール回転角度検出器からのパルス信号をn=N/(D×π/PL)で分周して、該分周信号をトリガー信号としてレーザ発振器をパルス発振させ、圧延ロール表面にダル加工を行うことを特徴とするロール加工方法。
および該複数台のレーザ光軸間隔Sを軸方向のロール加工ピッチPXの整数倍に調整し、ロール加工を行うことを特徴とするロール加工方法である。
【0007】
【発明の実施の形態】
図4は本発明のレーザ加工装置図である。本例では2台のQスイッチ-YAGレーザを用いているが、レーザ発振器の数を3台以上にしても何ら問題はない。各レーザ装置L1、L2には個別に加工光学系が備えられている。各加工光学系は、ビームエクスパンダEx1、Ex2、および加工ヘッドPH1、PH2で構成される。加工ヘッドPH1、PH2は集光レンズおよびレーザ光と同軸にエアーを噴出する加工ノズルから成る。レーザビームLB1、LB2の光軸間隔(=加工ヘッドPH1、PH2の間隔)はSである。図4はレーザ発振器本体がヘッドPH1、PH2と同じ横行テーブルTB上に設置される形態となっているが、レーザ発振器を別の場所に設置し、ミラーあるいはファイバーにて加工ヘッドPH1、PH2にレーザ光を伝送しても良い。レーザ発振器はパルス発振形態であれば、CO2レーザ、ファイバーレーザ、半導体レーザなどのレーザでも良い。
【0008】
横行テーブルTBをロールRの軸方向(図4→X方向)に移動させるとともに、ロールを回転させ、レーザパルスをロール表面に照射する事でロール表面にダル加工(レーザ穴加工)が行われる。ロールRの表面には、螺旋状の穴加工が施される。各加工ヘッドPH1、PH2は独立のテーブルT1、T2上に設置されている。テーブルT1、T2上には、ロール表面との距離を測定するセンサーSG1、SG2(図示しない)が設置されている。センサーは非接触式が望ましく、レーザ距離計あるいは渦流式距離計などが適している。圧延ロールには数十から数百μm程度のクラウンがついており、端部に対しロール中央部がやや太い形状となっている。このため加工中は、距離センサーSG1,SG2でロール表面までの距離を測定し、その距離が常に一定(=最適焦点時のギャップ)となる様に、テーブルT1、T2の位置を制御する。
【0009】
以下に、本発明の加工における各構成装置の働きについて説明する。図5は本発明の加工装置の制御系統図を模式化したものである。ロールRは回転速度Vr(rps)にて回転する。回転中のロール回転角度は検出器Srollにて検出される。検出器SrollはNパルス/回転のパルス信号を発生する。ロール回転角度検出器Srollは通常のNC装置サーボモータの位置制御などに使用されるエンコーダ方式センサーなどの、回転角度位置に応じてパルス信号を発振するもので良い。ロール回転角度検出器Srollからの該パルス信号はトリガー信号として、パルスカウンター装置Cに入力される。パルスカウンター装置Cは検出器Srollからの信号パルス数をカウントしながら、カウント中は検出器Srollからの信号をレーザ発振制御装置Lcへ送信する。レーザ発振器L1、L2はLcからの駆動信号Dvにより制御されパルス発振する。加工時間を短縮するため、レーザ発振は通常Qスイッチ発振であり、レーザ発振制御装置Lcは音響光学素子AOMの駆動を制御することでレーザ発振を制御する。パルスカウンター装置Cは、設定された数のパルスをカウント終了すると以降のパルス信号のレーザ発振制御装置Lcへの送信を停止する。つまりパルスカウンター装置Cは、設定されたパルス数に基づくゲート回路動作を行う事になる。パルスカウンター装置Cのカウント開始指令は、横行テーブルTBが加工開始位置Tx=0に到達した段階で、制御装置PCよりパルスカウンター装置Cに送信される。
【0010】
パルスカウンター装置に設定するパルス数は予め次の様に決定される。図6は本発明により加工されたロール表面を展開した図である。ロール加工開始位置はレーザ光LB1による加工(=加工ヘッドPH1による加工)では横行テーブルTBの位置Txおよび、ロール回転角度位置θにより(Tx、θ)=(0、θ)である。レーザ光LB2による加工(=加工ヘッドPH2による加工)加工ヘッドPH2では(Tx、θ)=(S、θ)である。ロール回転角度検出器Srollによりレーザ発振が制御されるため、各加工位置θk=1〜Ncは等角度に加工されている(kは整数)。周方向の加工穴数Nc(個)は、周方向の加工ピッチPL(mm)としてNc=π×D÷PLとなる。また軸方向の加工列数NL(列)は、軸方向の加工ピッチをPX(mm)とすると、各レーザ発振器L1、L2で加工される軸方向の加工列数NL1=NL2=N=S÷PXである。従って、(Tx、θ)=(0、θ)〜(S、θNc)までの範囲を加工するレーザ発振器L1による加工穴数N1、N2は、N1=N2=Nc×Nである。パルスカウンター装置Cに予めN1を設定し、レーザ発振器L1の発振を加工開始からN1パルス発振後に停止すれば2重加工や未加工などの加工不良は発生しない。
【0011】
仮に加工するロール径を500mm、周方向の加工ピッチを314μm、軸方向の加工ピッチを500μm、全加工巾を1000mm、加工ヘッドPH1とPH2の間隔を500mmとすると、ロール1周当たりの加工数Nc=500×π÷0.314=5000個、軸方向の加工列数は全巾でNL=1000÷0.5=2000列となる。1周当たりの加工穴数を決定する場合、ロールにクラウンがある場合、厳密にはロール端部とロール中央部のロール径は異なる。ただし通常ロールクラウンは数100μmオーダーの大きさでありロール径に対し、1/1000程度である。例えば、端部のロール径500mm、中央部のロール径500.2mmの場合、周方向の加工ピッチを端部で合わせて300μmとした場合でも、中央部付近での周方向加工ピッチは300.1μmとなり、その差は無視できるレベルである。本発明ではロール径としてロール端部の値を用いた。上記の例では、全加工穴数はNc×NL=5000×2000=107個となり、レーザ発振器L1、L2による加工穴数は半分の5×106個となる。従って、2つの加工ヘッドを用いてロール加工を行う場合、各加工ヘッドPH1、PH2が同時にロール加工を開始し、各々5×106個の穴加工を行った時点(パルスカウンター装置Cで5×1000をカウントした時点)で加工を終了すれば、加工境界部で加工点の2重加工あるいは未加工部の様な加工不良部の発生を防止できる。
【0012】
通常レーザによる圧延ロール表面のダル加工は、加工周波数が数kHz以上の速さで行われるため、各ダル穴加工の間の時間は1ms以下である。この様な高速で正確に加工の停止を行うには、停止位置を検出した後に(開閉時間が通常0.1secのオーダである)外部シャッタを停止したのでは、加工停止制御が間に合わない。電気的にレーザ発振を制御する場合でも、制御装置PCの処理時間が数10ms必要であるために、加工停止位置情報(Tx、θk)=(S、θNc)を検出器にて検出し、制御装置PCからレーザ発振制御装置に発振停止指令を出したのでは、やはり加工停止制御が間に合わず、ダル穴加工数にして数10個分の停止誤差が生じ、その領域では2重加工となる。本発明では、ロール寸法(ロール径、ロール長さ)および加工ピッチ(周方向ピッチおよび軸方向ピッチ)に基づいて、予め加工穴数を算出し、レーザパルス数をカウントしながら加工を行い、該算出したパルス数にてレーザ発振を停止する事が可能であるため、上記の様な境界部での加工不良域は発生しない。
【0013】
また、例で示した様に通常のロール加工においては、加工パルス数が5×106個という大量の加工数となる。仮にロール回転とレーザ発振が独立な場合(レーザ発振がロール回転とは無関係に制御されている場合)、パルスカウンター装置Cを用いて加工数を管理しても、ロール回転速度に変動が0.1%存在するだけで、累積された誤差の影響により、加工終了点付近の加工穴位置には5個オーダーの加工ピッチに相当するずれが生じる事になり、加工境界部での加工不良が発生する。本発明ではロール回転角度位置をレーザ発振のトリガー信号とする事で、こうした回転誤差の影響を受ける事がなく、ロール1回転を等分して穴加工が行われる。したがって、累積する誤差により加工境界部での加工不良が生じる事はない。
【0014】
加工境界部3においてレーザ光LB1とLB2による加工穴(=加工ヘッドPH1と加工ヘッドPH2による加工穴)が軸方向に等間隔で繋がるためには、加工ヘッド間隔S=m×PXでなければならない(m:整数)。任意の軸方向ピッチPXに対しては常に上記式の関係を満たすことはできない。そこで加工ヘッド間隔Sを可変にし、任意の軸方向加工ピッチPXに対しS=m×PX(m:整数)とする。例えば、図4のレーザ発振器L1からのレーザ光を2枚のミラーにて折り曲げるとともに、ミラーM2およびビームエキスパンダEx1をX軸方向のテーブルTM2により、加工ヘッドPH1の位置をX方向にテーブルTX1により稼働可能とし、加工ヘッド間距離Sを調整可能とすれば良い。
【0015】
ロール回転角度検出器の1回転当たりのパルス数N(パルス/回転)と、ロール1周当たりのダル穴加工数とは必ずしも一致しない。その場合は図5のロール回転角度検出器Srollとレーザ発振制御装置Lcとの間に分周器Dsを設け、ロール回転角度検出器Srollの信号を以下の様に分周する事により、ロール周上に等角度間隔でダル穴加工を行う事が可能となる(図7)。ロール径D(mm)、設定周方向加工ピッチPL(mm)、ロール回転角度検出器の1回転当たりのパルス数N(パルス/回転)をn=N/(D×π/PL)で分周して、該分周信号をトリガー信号としてレーザパルス発振させる。この場合、任意のロール径D、周方向加工ピッチPL、ロール回転角度検出器の1回転当たりのパルス数Nに対して、nは必ずしも整数値にはならない。しかし、分周器にて分周する場合にはnを整数値にする必要があり、誤差が発生する。誤差量を考慮した場合はn>5程度である様なロール1回転当たりのパルス数Nを持つ角度検出器Srollを使用することが望ましい。
【0016】
【実施例】
図4に記載の本加工装置を用いて、冷延材圧延用ワークロール表面にダル加工を行った。ロール直径500mm、クラウン200μmのロール表面に、ロール胴長1200mmの範囲にダル加工を行った。レーザは出力平均出力100WのQスイッチYAGレーザを2台使用し、加工対象範囲範囲1200mmを2等分した600mmづつを該2台のレーザで同時に加工した。各レーザの加工ヘッド距離は600mmにセットした。各レーザはロール回転角度検出器からのパルス信号に基づいて、約10kHzでQスイッチ発振した。横行テーブルの移動により、ロール表面に穴径80μm、深さ20μmのダル穴を、周方向ピッチ、軸方向ピッチとも200μmにて加工した。パルスカウント装置Pcには各レーザ発振器L1、L2の加工穴数として、ともに117805724パルスを設定し、加工開始とともにパルスカウンター装置によりレーザパルス数をカウントし、前記117805724までカウントアップした時点でレーザ発振を停止した。本方法により、レーザ発振器L1、L2にて加工したロールの加工境界部においても、加工ピッチに全く乱れのない均一な加工をロール全面に実施する事ができた。
【0017】
本ロールを用いて、0.8mm板厚の冷延鋼板に圧下率1%のスキンパス圧延を実施した。鋼板表面にはロール表面の模様を転写した直径80μm、高さ5μmの円筒状の均一な模様が発生した。しかし、ロール境界部にて圧延された部位を観察しても周辺部と模様の不均一を見出す事はなく、表面光沢が均一で良好な鋼板が製造できた。
【0018】
【発明の効果】
本発明により複数台のレーザ加工機を用いて、圧延ロール表面に微小凹凸模様を付与したダルロール加工においてもその境界部において、2重加工によるダル穴形状あるいはダル穴ピッチに乱れのない均一な加工を行う事ができる。本発明により加工した圧延ロールで鋼板圧延を行う事で鋼板表面の特定部位に不均一を発生させる事なく鋼板を圧延製造可能である。
【図面の簡単な説明】
【図1】特公平04−40118号公報に記載の発明を示す図である。
【図2】特公平04−40118号公報の発明により加工したロール表面図である。
【図3】特公平04−40118号公報の発明により加工したロール表面の展開図である。
【図4】本発明の装置模式図である。
【図5】本発明の制御系統図である。
【図6】本発明により加工したロール表面(展開図)
【図7】本発明の他の制御系統図である。
【符号の説明】
L1、L2:レーザ発振器
LB1:レーザ発振器L1のレーザ光
LB2:レーザ発振器L2のレーザ光
S:レーザ光軸間隔
Ex1、Ex2:ビームエクスパンダ
M1、M2:レーザ反射ミラー
PH1、PH2:加工ヘッド
TB:横行テーブル
Tx:横行テーブル位置
T1、T2:焦点調整用テーブル
TX1:加工ヘッドPH1用のX軸方向テーブル
TM2:ミラーM2、ビームエキスパンダーEx1用のX軸方向テーブル
R:ロール
D:ロール直径
Sroll:ロール回転角度検出器
θk:ロール回転角度位置
C::パルスカウンター装置
PL:周方向加工ピッチ
PX:軸方向加工ピッチ
Nc:1周あたりの穴個数
L:加工穴列数
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a laser processing apparatus and a processing method for performing microhole processing on the surface of a cylindrical metal body such as a rolling roll or a thin plate continuous casting drum with a Q switch laser oscillator.
[0002]
[Prior art]
Patent Document 1 discloses an apparatus that simultaneously processes two locations on the surface of a rolling roll using two YAG lasers. FIG. 1 shows an apparatus configuration diagram of the invention of Patent Document 1 (the publication FIG. 1a). In FIG. 1, the lenses FL1 and FL2 move in the roll axis direction at a constant speed in accordance with the progress of processing. Here, a problem occurs when the processing progresses from the part FP1 processed by the lens FL1 to the part FP2 where processing is started by the lens FL2. That is, it is necessary to stop the processing FP1 promptly so that the processing portion FP1 and the processing portion FP2 are not overlapped by any means. However, the invention has no specific description on how to control the laser oscillation at the processing boundary portions processed by the lenses FL1 and FL2 and prevent the overlapping processing at the boundary portions.
[0003]
2 and 3 are schematic views of the roll surface processed by the apparatus of Patent Document 1 (FIG. 1) developed along the line AA ′. The white coating portion 1 and the shaded portion 2 of the roll R are portions that are dulled by the beams LBP1 and LBP2 condensed by the lenses FL1 and FL2. A dotted line portion 3 on the roll becomes a processing boundary of the beams LBP1 and LBP2 condensed by the lenses FL1 and FL2. When laser oscillation control is not performed at the machining boundary 3, the dull hole formed by LBP1 is overlapped with the dull hole machined by LBP2 at the start of machining, and the diameter of the dull hole is increased by double machining. (Dotted line portion in FIG. 2). This disorder of the dull hole processing is transferred to the surface of the steel sheet during rolling, and causes the surface properties of the steel sheet to be significantly impaired. If the LBP1 beam is stopped too early in order to prevent double processing, an unprocessed part is generated on the roll as shown by the dotted line part 3 in FIG. The difference in roughness from other regions is easily observed with the naked eye, resulting in a defective product surface.
[0004]
[Patent Document 1]
Japanese Examined Patent Publication No. 04-40118 [0005]
[Problems to be solved by the invention]
An object of the present invention is to solve the above-described problems of the prior art and to provide a processing apparatus and a processing method capable of performing uniform dull processing on a rolling roll surface at high speed using a plurality of laser oscillators. To do.
[0006]
[Means for Solving the Problems]
The gist of the present invention is that
Using a plurality of lasers and a plurality of processing heads for condensing the light of the laser, the processing heads move on one axis in the roll axis direction with respect to the rotating rolling roll, In the roll processing apparatus that collects and irradiates the laser light from the laser oscillator with each of the plurality of processing heads, and forms a minute uneven pattern on the surface of the rolling roll,
A roll rotation angle detector that generates a pulse signal according to the rotation angle position of the roll, a laser oscillation control device that operates using the pulse signal from the roll rotation angle detector as a trigger signal, and a pulse counter device that counts the pulse signal A traverse position detector that detects the position of the machining head that moves in the roll axis direction, a control device that controls pulse oscillation of a laser oscillator based on signals from the roll rotation angle detector and the traverse position detector, A mechanism for adjusting a plurality of laser optical axis intervals is provided.
The diameter of the rolling roll is D, the laser optical axis interval of the plurality of lasers is S, the irradiation pitch in the roll circumferential direction on the surface of the rolling roll is PL, and the irradiation pitch in the axial direction of the roll is PX, and π × D Is an integer multiple of PL, S is an integer multiple of PX,
The number of laser irradiation pulses is (π × D × S) / (PL × PX),
P is a positive integer from 1 to (π × D × S) / (PL × PX), N is a positive integer greater than or equal to 2 as the number of the plurality of lasers, and k is a positive integer from 1 to N , The position of the rolling roll surface is designated by (Tx, θ), designated by the axial coordinate Tx of the roll and the roll rotation angle position θ, and the Pth pulse light of the kth laser. The irradiation position of
((K−1) × S + X, θ)
However, θ = 2 × π × P × PL / (π × D) = 2 × P × PL / D
X = S × P / ((π × D × S) / (PL × PX))
= P / ((π × D) / (PL × PX))
When the laser irradiation of the number of irradiation pulses is finished while counting the number of pulse signals, that is, the number of laser pulses, while the machining head moves on one axis while keeping the laser optical axis interval constant and laser irradiation is performed, stop the laser oscillation, the discrete and drilling periodically arrayed in all the holes no double processing or generation of the unprocessed portion in the rolling roll surface Te than arranged helically on the roll surface of the cylindrical body It is a laser processing device characterized by applying ,
In the laser processing apparatus, a frequency divider for dividing the pulse signal of the roll rotation angle detector is provided.
Further, using the laser processing apparatus, the rolling roll is rotated, and the laser beam from the plurality of laser oscillators is processed on the surface of the rolling roll while moving the processing head on one axis in the roll axis direction. In the dull processing method of forming a minute uneven pattern on the surface of the rolling roll, respectively condensing and irradiating with a head,
A roll rotation angle detector of the rolling method of controlling a pulsed laser oscillator pulse signal as a trigger signal performing dull processed into a roll circumferential direction, the number of pulse signals in the pulse counting device or the number of laser pulses Drill holes while counting,
The diameter of the rolling roll is D, the laser optical axis interval of the plurality of lasers is S, the irradiation pitch in the roll circumferential direction on the surface of the rolling roll is PL, and the irradiation pitch in the axial direction of the roll is PX, and π × D Is an integer multiple of PL, S is an integer multiple of PX,
The number of laser irradiation pulses is (π × D × S) / (PL × PX),
P is a positive integer from 1 to (π × D × S) / (PL × PX), N is a positive integer greater than or equal to 2 as the number of the plurality of lasers, and k is a positive integer from 1 to N The roll roll surface position is designated by (Tx, θ) by specifying the roll axis coordinate Tx and the roll rotation angle position θ, and the irradiation position of the kth laser is
((K−1) × S + X, θ)
However, θ = 2 × π × P × PL / (π × D) = 2 × P × PL / D
X = S × P / ((π × D × S) / (PL × PX))
= P / ((π × D) / (PL × PX))
As shown, the laser beam axis spacing is kept constant and the machining head moves on one axis to irradiate the laser, and when the laser irradiation of the number of irradiation pulses is completed, the laser oscillation is stopped and doubled on the surface of the rolling roll. A roll machining method characterized in that all holes that are free of machining or unmachined parts are arranged in a spiral manner so that holes are formed in a discrete and regular arrangement on the roll surface of a cylindrical body .
And the roll diameter D (mm), the set circumferential processing pitch PL (mm), and the pulse number N (pulse / rotation) per rotation of the roll rotation angle detector, the pulse signal from the roll rotation angle detector Is divided by n = N / (D × π / PL), a laser oscillator is pulse-oscillated using the divided signal as a trigger signal, and a dulling process is performed on the surface of the rolling roll.
And a roll machining method characterized in that the roll machining is performed by adjusting the interval S between the plurality of laser light axes to an integral multiple of the roll machining pitch PX in the axial direction.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 4 is a diagram of a laser processing apparatus according to the present invention. In this example, two Q-switch-YAG lasers are used, but there is no problem even if the number of laser oscillators is three or more. Each laser device L1, L2 is individually provided with a processing optical system. Each processing optical system includes a beam expander Ex1, Ex2 and processing heads PH1, PH2. The processing heads PH1 and PH2 are composed of a condenser lens and a processing nozzle that ejects air coaxially with the laser beam. The optical axis distance between the laser beams LB1 and LB2 (= the distance between the machining heads PH1 and PH2) is S. In FIG. 4, the laser oscillator main body is installed on the same traversing table TB as the heads PH1 and PH2, but the laser oscillator is installed in another place and lasers are applied to the processing heads PH1 and PH2 by mirrors or fibers. Light may be transmitted. The laser oscillator may be a laser such as a CO 2 laser, a fiber laser, or a semiconductor laser as long as it is a pulse oscillation type.
[0008]
The traversing table TB is moved in the axial direction of the roll R (FIG. 4 → X direction), the roll is rotated, and a laser pulse is applied to the roll surface to perform dull machining (laser hole machining) on the roll surface. On the surface of the roll R, a spiral hole is processed. Each processing head PH1, PH2 is installed on an independent table T1, T2. Sensors SG1 and SG2 (not shown) for measuring the distance to the roll surface are installed on the tables T1 and T2. The sensor is preferably a non-contact type, and a laser range finder or vortex range finder is suitable. The rolling roll has a crown of about several tens to several hundreds of μm, and the central part of the roll is slightly thicker than the end. For this reason, during processing, the distance to the roll surface is measured by the distance sensors SG1 and SG2, and the positions of the tables T1 and T2 are controlled so that the distance is always constant (= gap at the optimum focus).
[0009]
The operation of each component device in the processing of the present invention will be described below. FIG. 5 schematically shows a control system diagram of the processing apparatus of the present invention. The roll R rotates at a rotation speed Vr (rps). The roll rotation angle during rotation is detected by the detector Sroll. The detector Sroll generates a pulse signal of N pulses / rotation. The roll rotation angle detector Sroll may oscillate a pulse signal according to the rotation angle position, such as an encoder type sensor used for position control of a normal NC apparatus servomotor. The pulse signal from the roll rotation angle detector Sroll is input to the pulse counter device C as a trigger signal. While counting the number of signal pulses from the detector Sroll, the pulse counter device C transmits a signal from the detector Sroll to the laser oscillation control device Lc during the counting. The laser oscillators L1 and L2 are controlled by a drive signal Dv from Lc and oscillate in pulses. In order to shorten the processing time, the laser oscillation is usually Q-switch oscillation, and the laser oscillation control device Lc controls the laser oscillation by controlling the driving of the acousto-optic element AOM. When the pulse counter device C finishes counting the set number of pulses, the pulse counter device C stops transmitting the subsequent pulse signal to the laser oscillation control device Lc. That is, the pulse counter device C performs a gate circuit operation based on the set number of pulses. The count start command of the pulse counter device C is transmitted from the control device PC to the pulse counter device C when the traversing table TB reaches the machining start position Tx = 0.
[0010]
The number of pulses set in the pulse counter device is determined in advance as follows. FIG. 6 is a developed view of the roll surface processed according to the present invention. The roll processing start position is (Tx, θ) = (0, θ 1 ) by the position Tx of the traverse table TB and the roll rotation angle position θ in the processing by the laser beam LB1 (= processing by the processing head PH1). Processing with the laser beam LB2 (= processing with the processing head PH2) In the processing head PH2, (Tx, θ) = (S, θ 1 ). Since the laser oscillation is controlled by the roll rotation angle detector Sroll, each processing position θk = 1 to Nc is processed at an equal angle (k is an integer). The circumferential machining hole number Nc (pieces) is Nc = π × D ÷ PL as the circumferential machining pitch PL (mm). In addition, the number of machining rows NL (row) in the axial direction is the number of machining rows in the axial direction N L1 = N L2 = N L when the machining pitch in the axial direction is PX (mm). = S ÷ PX . Accordingly, the numbers of holes N1 and N2 by the laser oscillator L1 for processing the range from (Tx, θ) = (0, θ 1 ) to (S, θ Nc ) are N1 = N2 = Nc × N L. If N1 is set in the pulse counter device C in advance and the oscillation of the laser oscillator L1 is stopped after the N1 pulse oscillation from the start of machining, machining defects such as double machining and non-machining will not occur.
[0011]
If the roll diameter to be machined is 500 mm, the circumferential machining pitch is 314 μm, the axial machining pitch is 500 μm, the total machining width is 1000 mm, and the distance between the machining heads PH1 and PH2 is 500 mm, the number of machining per roll Nc = 500 × π ÷ 0.314 = 5000, and the number of machining rows in the axial direction is NL = 1000 ÷ 0.5 = 2000 rows in the total width. When determining the number of processing holes per round, when the roll has a crown, strictly speaking, the roll diameters of the roll end and the roll center are different. However, the roll crown is usually on the order of several hundred μm and is about 1/1000 of the roll diameter. For example, in the case of a roll diameter of 500 mm at the end and a roll diameter of 500.2 mm at the center, even if the circumferential processing pitch is set to 300 μm at the end, the circumferential processing pitch near the center is 300.1 μm. The difference is negligible. In the present invention, the value at the end of the roll is used as the roll diameter. In the above example, the total number of holes processed is Nc × NL = 5000 × 2000 = 10 7 , and the number of holes processed by the laser oscillators L 1 and L 2 is half, 5 × 10 6 . Therefore, when roll processing is performed using two processing heads, when each processing head PH1 and PH2 starts the roll processing simultaneously and 5 × 10 6 holes are processed each (5 × 5 with the pulse counter device C). If the machining is finished at the time of counting 1000), it is possible to prevent the occurrence of machining defects such as double machining of machining points or unmachined parts at machining boundaries.
[0012]
Usually, the dull processing on the surface of the rolling roll by laser is performed at a processing frequency of several kHz or more, so the time between each dull hole processing is 1 ms or less. In order to stop the machining accurately at such a high speed, if the external shutter is stopped after detecting the stop position (the opening / closing time is usually on the order of 0.1 sec), the machining stop control is not in time. Even when the laser oscillation is electrically controlled, the processing time of the control device PC needs several tens of ms. Therefore, the processing stop position information (Tx, θ k ) = (S, θ Nc ) is detected by the detector. When the oscillation stop command is issued from the control device PC to the laser oscillation control device, the machining stop control is not in time, and a stop error of several tens of dull hole machining occurs. Become. In the present invention, based on the roll dimensions (roll diameter, roll length) and machining pitch (circumferential pitch and axial pitch), the number of machining holes is calculated in advance, and machining is performed while counting the number of laser pulses, Since it is possible to stop laser oscillation with the calculated number of pulses, there is no processing defect area at the boundary as described above.
[0013]
Further, as shown in the example, in normal roll machining, the number of machining pulses is as large as 5 × 10 6 . If roll rotation and laser oscillation are independent (when laser oscillation is controlled independently of roll rotation), even if the number of processing is managed using the pulse counter device C, the fluctuation in roll rotation speed is 0. If only 1% exists, due to the effect of accumulated errors, the machining hole position near the machining end point will have a deviation corresponding to the machining pitch of the order of 5 pieces, resulting in machining defects at the machining boundary. To do. In the present invention, the roll rotation angle position is used as a laser oscillation trigger signal, so that there is no influence of such a rotation error, and the hole machining is performed by equally dividing one rotation of the roll. Therefore, there is no processing failure at the processing boundary due to the accumulated error.
[0014]
In order to connect the processing holes by the laser beams LB1 and LB2 (= the processing holes by the processing head PH1 and the processing head PH2) at equal intervals in the processing boundary 3, the processing head interval S must be S = m × PX. (M: integer). The relationship of the above formula cannot always be satisfied for an arbitrary axial pitch PX. Therefore, the machining head interval S is made variable, and S = m × PX (m: integer) with respect to an arbitrary axial machining pitch PX. For example, the laser beam from the laser oscillator L1 in FIG. 4 is bent by two mirrors, the mirror M2 and the beam expander Ex1 are set by the table TM2 in the X axis direction, and the position of the processing head PH1 is set by the table TX1 in the X direction. It is only necessary to enable operation and adjust the distance S between the machining heads.
[0015]
The number of pulses N (pulse / rotation) per rotation of the roll rotation angle detector does not necessarily match the number of dull holes processed per roll. In that case, a frequency divider Ds is provided between the roll rotation angle detector Sroll and the laser oscillation control device Lc in FIG. 5, and the roll rotation angle detector Sroll is divided as follows to divide the roll rotation angle detector Sroll. It is possible to perform dull hole machining at equal angular intervals on the top (FIG. 7). Divide the roll diameter D (mm), set circumferential machining pitch PL (mm), and the number of pulses N (pulse / rotation) per rotation of the roll rotation angle detector by n = N / (D x π / PL) Then, laser pulse oscillation is performed using the divided signal as a trigger signal. In this case, n is not necessarily an integer value with respect to an arbitrary roll diameter D, circumferential processing pitch PL, and the number N of pulses per rotation of the roll rotation angle detector. However, when dividing by a frequency divider, n must be an integer value, and an error occurs. When the amount of error is taken into consideration, it is desirable to use an angle detector Sroll having the number N of pulses per roll rotation such that n> 5.
[0016]
【Example】
Using this processing apparatus shown in FIG. 4, dull processing was performed on the surface of the work roll for cold rolling material rolling. On the roll surface having a roll diameter of 500 mm and a crown of 200 μm, dull processing was performed in a roll body length of 1200 mm. Two Q-switched YAG lasers with an average output power of 100 W were used as lasers, and 600 mm pieces obtained by equally dividing the processing target range range of 1200 mm into two parts were simultaneously processed by the two lasers. The processing head distance of each laser was set to 600 mm. Each laser oscillated Q-switched at about 10 kHz based on the pulse signal from the roll rotation angle detector. By moving the traversing table, a dull hole having a hole diameter of 80 μm and a depth of 20 μm was processed on the roll surface at a circumferential pitch and an axial pitch of 200 μm. In the pulse counting device Pc, 117805724 pulses are set as the number of machining holes of each of the laser oscillators L1 and L2, and the number of laser pulses is counted by the pulse counter device when machining is started. Stopped. By this method, even on the processing boundary portion of the roll processed by the laser oscillators L1 and L2, uniform processing without any disturbance in the processing pitch could be performed on the entire surface of the roll.
[0017]
Using this roll, skin pass rolling with a rolling reduction of 1% was performed on a cold-rolled steel sheet having a thickness of 0.8 mm. A cylindrical uniform pattern having a diameter of 80 μm and a height of 5 μm was generated on the surface of the steel sheet. However, even if the rolled part was observed at the roll boundary part, the peripheral part and the pattern were not found uneven, and a good steel sheet with uniform surface gloss could be produced.
[0018]
【The invention's effect】
Even in the dull roll processing in which a micro uneven pattern is provided on the surface of the rolling roll using a plurality of laser processing machines according to the present invention, at the boundary portion, the dull hole shape or the dull hole pitch by the double processing is not disturbed. Can be done. By rolling the steel sheet with the rolling roll processed according to the present invention, the steel sheet can be rolled and produced without causing non-uniformity at a specific portion on the surface of the steel sheet.
[Brief description of the drawings]
FIG. 1 is a diagram showing the invention described in Japanese Patent Publication No. 04-40118.
FIG. 2 is a surface view of a roll processed according to the invention of Japanese Patent Publication No. 04-40118.
FIG. 3 is a development view of a roll surface processed according to the invention of Japanese Patent Publication No. 04-40118.
FIG. 4 is a schematic view of an apparatus according to the present invention.
FIG. 5 is a control system diagram of the present invention.
FIG. 6 is a roll surface processed according to the present invention (development view).
FIG. 7 is another control system diagram of the present invention.
[Explanation of symbols]
L1, L2: Laser oscillator LB1: Laser light LB2 of the laser oscillator L1: Laser light of the laser oscillator L2 S: Laser beam axis interval Ex1, Ex2: Beam expander M1, M2: Laser reflection mirror PH1, PH2: Processing head TB: Row table Tx: Row table position T1, T2: Focus adjustment table TX1: X-axis direction table TM2 for machining head PH1: Mirror M2, X-axis direction table for beam expander Ex1 R: Roll D: Roll diameter Sroll: Roll Rotation angle detector θ k : Roll rotation angle position C :: Pulse counter device PL: Circumferential machining pitch PX: Axial machining pitch Nc: Number of holes per circumference N L : Number of machining hole rows

Claims (5)

複数台のレーザと該レーザの光を集光する複数台の加工ヘッドを用いて、回転する圧延ロールに対し該加工ヘッドをロール軸方向に一軸上を移動しながら、該圧延ロール表面に該複数レーザ発振器からのレーザ光を該複数の加工ヘッドにて各々集光して照射し、圧延ロール表面に微小な凹凸模様を形成するロール加工装置において、
ロールの回転角度位置に応じてパルス信号を発生するロール回転角度検出器と、該ロール回転角度検出器からのパルス信号をトリガー信号として動作するレーザ発振制御装置と、該パルス信号を数えるパルスカウンター装置と、ロール軸方向に移動する該加工ヘッドの位置を検出する横行位置検出器と、該ロール回転角度検出器と該横行位置検出器の信号によりレーザ発振器のパルス発振を制御する制御装置と、該複数のレーザ光軸間隔を調整する機構を備え、
前記圧延ロールの直径をD、前記複数台のレーザのレーザ光軸間隔をS、前記圧延ロール表面のロール円周方向の照射ピッチをPL、ロールの軸方向の照射ピッチをPXとし、π×DはPLの整数倍、SはPXの整数倍であり、
レーザの照射パルス数が(π×D×S)/(PL×PX)であって、
Pを1から(π×D×S)/(PL×PX)までの正の整数とし、Nを前記複数台のレーザの台数として2以上の正の整数とし、kを1からNまでの正の整数とするとき、前記圧延ロール表面の位置をロールの軸方向の座標Txとロール回転角度位置θで指定して(Tx,θ)で表し、第kのレーザの第P発目のパルス光の照射位置が
((k−1)×S+X,θ)
但し θ=2×π×P×PL/(π×D)=2×P×PL/D
X=S×P/((π×D×S)/(PL×PX))
=P/((π×D)/(PL×PX))
であるようにレーザ光軸間隔を一定に保持して一軸上を加工ヘッドが移動してレーザ照射し、前記パルス信号数すなわちレーザパルス数をカウントしながら、前記照射パルス数のレーザ照射が終了したらレーザ発振を停止して、圧延ロール表面に2重加工あるいは未加工部の発生がない全ての穴が螺旋状に配列し以て円筒体のロール表面に離散的かつ規則的に配列した穴加工を施すことを特徴とするレーザ加工装置。
Using a plurality of lasers and a plurality of machining heads for condensing the light of the lasers, moving the machining head on one axis in the roll axis direction with respect to the rotating rolling roll, In a roll processing apparatus that collects and irradiates laser light from a laser oscillator with each of the plurality of processing heads to form a minute uneven pattern on the surface of the rolling roll,
A roll rotation angle detector that generates a pulse signal according to the rotation angle position of the roll, a laser oscillation control device that operates using the pulse signal from the roll rotation angle detector as a trigger signal, and a pulse counter device that counts the pulse signal A traverse position detector that detects the position of the machining head that moves in the roll axis direction, a control device that controls pulse oscillation of a laser oscillator based on signals from the roll rotation angle detector and the traverse position detector, A mechanism for adjusting a plurality of laser optical axis intervals is provided.
The diameter of the rolling roll is D, the laser optical axis interval of the plurality of lasers is S, the irradiation pitch in the roll circumferential direction on the surface of the rolling roll is PL, and the irradiation pitch in the axial direction of the roll is PX, and π × D Is an integer multiple of PL, S is an integer multiple of PX,
The number of laser irradiation pulses is (π × D × S) / (PL × PX),
P is a positive integer from 1 to (π × D × S) / (PL × PX), N is a positive integer greater than or equal to 2 as the number of the plurality of lasers, and k is a positive integer from 1 to N The roll roll surface position is designated by the roll axial coordinate Tx and the roll rotation angle position θ and expressed by (Tx, θ), and the Pth pulse light of the kth laser. The irradiation position of
((K−1) × S + X, θ)
However, θ = 2 × π × P × PL / (π × D) = 2 × P × PL / D
X = S × P / ((π × D × S) / (PL × PX))
= P / ((π × D) / (PL × PX))
When the laser irradiation of the number of irradiation pulses is completed while the processing head moves on one axis and laser irradiation is performed while the laser beam axis interval is kept constant, and the number of pulse signals, that is, the number of laser pulses, is counted. stop the laser oscillation, the discrete and drilling periodically arrayed in all the holes no double processing or generation of the unprocessed portion in the rolling roll surface Te than arranged helically on the roll surface of the cylindrical body laser processing apparatus characterized by applying.
請求項1に記載のレーザ加工装置において、該ロール回転角度検出器のパルス信号を分周する分周器を備えたことを特徴とするレーザ加工装置。  The laser processing apparatus according to claim 1, further comprising a frequency divider that divides the pulse signal of the roll rotation angle detector. 請求項1または2に記載のレーザ加工装置を用いて、圧延ロールを回転させ、該加工ヘッドをロール軸方向に一軸上を移動しながら、該圧延ロール表面に該複数レーザ発振器からのレーザ光を該複数の加工ヘッドにて各々集光して照射し、圧延ロール表面に微小な凹凸模様を形成するダル加工方法において、
ロール回転角度検出器のパルス信号をトリガー信号としてレーザ発振器のパルス発振を制御しロール周方向にダル加工を行うロール加工方法であって、
前記パルスカウンター装置にて前記パルス信号すなわちレーザパルス数をカウントしながら穴加工を行い、
前記圧延ロールの直径をD、前記複数台のレーザのレーザ光軸間隔をS、前記圧延ロール表面のロール円周方向の照射ピッチをPL、ロールの軸方向の照射ピッチをPXとし、π×DはPLの整数倍、SはPXの整数倍であり、
レーザの照射パルス数が(π×D×S)/(PL×PX)であって、
Pを1から(π×D×S)/(PL×PX)までの正の整数とし、Nを前記複数台のレーザの台数として2以上の正の整数とし、kを1からNまでの正の整数とするとき、前記圧延ロール表面の位置をロールの軸方向の座標Txとロール回転角度位置θで指定して(Tx,θ)で表し、第kのレーザの第P発目のパルス光の照射位置が
((k−1)×S+X,θ)
但し θ=2×π×P×PL/(π×D)=2×P×PL/D
X=S×P/((π×D×S)/(PL×PX))
=P/((π×D)/(PL×PX))
であるようにレーザ光軸間隔を一定に保持して一軸上を加工ヘッドが移動してレーザ照射し、前記照射パルス数のレーザ照射が終了したらレーザ発振を停止して、圧延ロール表面に2重加工あるいは未加工部の発生がない全ての穴が螺旋状に配列して以て円筒体のロール表面に離散的かつ規則的に配列した穴加工を施すことを特徴とするロール加工方法。
Using the laser processing apparatus according to claim 1, the rolling roll is rotated, and the laser beam from the plurality of laser oscillators is applied to the surface of the rolling roll while moving the processing head on one axis in the roll axis direction. In the dull processing method of forming a minute concavo-convex pattern on the surface of the roll,
A roll processing method for controlling pulse oscillation of a laser oscillator using a pulse signal of a roll rotation angle detector as a trigger signal and performing dull processing in the roll circumferential direction,
Performs drilling while counting the number of pulse signals that is, the number of laser pulses at the pulse counter device,
The diameter of the rolling roll is D, the laser optical axis interval of the plurality of lasers is S, the irradiation pitch in the roll circumferential direction on the surface of the rolling roll is PL, and the irradiation pitch in the axial direction of the roll is PX, and π × D Is an integer multiple of PL, S is an integer multiple of PX,
The number of laser irradiation pulses is (π × D × S) / (PL × PX),
P is a positive integer from 1 to (π × D × S) / (PL × PX), N is a positive integer greater than or equal to 2 as the number of the plurality of lasers, and k is a positive integer from 1 to N , The position of the rolling roll surface is designated by (Tx, θ), designated by the axial coordinate Tx of the roll and the roll rotation angle position θ, and the Pth pulse light of the kth laser. The irradiation position of
((K−1) × S + X, θ)
However, θ = 2 × π × P × PL / (π × D) = 2 × P × PL / D
X = S × P / ((π × D × S) / (PL × PX))
= P / ((π × D) / (PL × PX))
As shown, the laser beam axis spacing is kept constant and the machining head moves on one axis to irradiate the laser, and when the laser irradiation of the number of irradiation pulses is completed, the laser oscillation is stopped and doubled on the surface of the rolling roll. A roll machining method characterized in that all holes that are free of machining or unmachined parts are arranged in a spiral manner so that holes are formed in a discrete and regular arrangement on the roll surface of a cylindrical body .
請求項3記載の加工方法において、ロール径D(mm)、設定周方向加工ピッチPL(mm)、ロール回転角度検出器の1回転当たりのパルス数N(パルス/回転)とした場合に、ロール回転角度検出器からのパルス信号をn=N/(D×π/PL)で分周して、該分周信号をトリガー信号としてレーザ発振器をパルス発振させ、圧延ロール表面にダル加工を行うことを特徴とするロール加工方法。  4. The processing method according to claim 3, wherein when the roll diameter D (mm), the set circumferential direction processing pitch PL (mm), and the number N of pulses per rotation of the roll rotation angle detector (pulse / rotation) are set, The pulse signal from the rotation angle detector is divided by n = N / (D × π / PL), and the laser oscillator is pulse-oscillated using the divided signal as a trigger signal to perform dull machining on the surface of the rolling roll. A roll processing method characterized by the above. 請求項3または請求項4の加工方法において、該複数台のレーザ光軸間隔Sを軸方向のロール加工ピッチPXの整数倍に調整し、ロール加工を行うことを特徴とするロール加工方法。  5. The roll processing method according to claim 3, wherein the plurality of laser beam axis intervals S are adjusted to an integral multiple of the roll processing pitch PX in the axial direction to perform the roll processing.
JP2003003383A 2003-01-09 2003-01-09 Laser processing apparatus and processing method Expired - Fee Related JP4523757B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003003383A JP4523757B2 (en) 2003-01-09 2003-01-09 Laser processing apparatus and processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003003383A JP4523757B2 (en) 2003-01-09 2003-01-09 Laser processing apparatus and processing method

Publications (2)

Publication Number Publication Date
JP2004216386A JP2004216386A (en) 2004-08-05
JP4523757B2 true JP4523757B2 (en) 2010-08-11

Family

ID=32894664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003003383A Expired - Fee Related JP4523757B2 (en) 2003-01-09 2003-01-09 Laser processing apparatus and processing method

Country Status (1)

Country Link
JP (1) JP4523757B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020090907A1 (en) * 2018-10-30 2020-05-07 浜松ホトニクス株式会社 Laser machining device
WO2020090896A1 (en) * 2018-10-30 2020-05-07 浜松ホトニクス株式会社 Laser machining device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009060569A1 (en) * 2007-11-05 2009-05-14 Panasonic Corporation Roller working method, and roller working apparatus
US7985941B2 (en) * 2007-11-16 2011-07-26 3M Innovative Properties Company Seamless laser ablated roll tooling
JP4911050B2 (en) * 2008-01-25 2012-04-04 パルステック工業株式会社 Laser processing apparatus and laser processing method
ITMI20112330A1 (en) * 2011-12-21 2013-06-22 Tenova Spa OPERATING MACHINE AND RELATIVE METHOD FOR THE SURFACE TREATMENT OF CYLINDERS
KR101795962B1 (en) * 2016-08-31 2017-11-09 주식회사 포스코 Treating surface method for casting roll
CN117190919B (en) * 2023-11-07 2024-02-13 湖南科天健光电技术有限公司 Pipeline straightness measuring method and measuring system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5913589A (en) * 1982-07-16 1984-01-24 Toshiba Corp Laser working device
JPH0798609A (en) * 1993-09-28 1995-04-11 Toyoda Mach Works Ltd Working allocation deciding device for two torch type laser beam machine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020090907A1 (en) * 2018-10-30 2020-05-07 浜松ホトニクス株式会社 Laser machining device
WO2020090896A1 (en) * 2018-10-30 2020-05-07 浜松ホトニクス株式会社 Laser machining device
JP2020069486A (en) * 2018-10-30 2020-05-07 浜松ホトニクス株式会社 Laser processing device
JPWO2020090896A1 (en) * 2018-10-30 2021-09-30 浜松ホトニクス株式会社 Laser processing equipment
JP7108517B2 (en) 2018-10-30 2022-07-28 浜松ホトニクス株式会社 Laser processing equipment
JP7311532B2 (en) 2018-10-30 2023-07-19 浜松ホトニクス株式会社 Laser processing equipment
TWI825210B (en) * 2018-10-30 2023-12-11 日商濱松赫德尼古斯股份有限公司 Laser processing equipment

Also Published As

Publication number Publication date
JP2004216386A (en) 2004-08-05

Similar Documents

Publication Publication Date Title
CN109079328B (en) Method for machining a workpiece by means of a laser beam, laser tool, laser machining machine, and machine control
US8847109B2 (en) Method and device for machining a workpiece
US7994452B2 (en) Laser beam machining apparatus
US9931712B2 (en) Laser drilling and trepanning device
US8466943B2 (en) Laser marking
JP6498553B2 (en) Laser processing equipment
KR100462358B1 (en) Laser Processing Apparatus with Polygon Mirror
Fornaroli et al. Laser-beam helical drilling of high quality micro holes
JP6006320B2 (en) Apparatus and method for forming a margin on a workpiece, in particular a cutting tool
US7094193B2 (en) High speed laser perforation of cigarette tipping paper
JPH1147965A (en) Laser beam machine
JP4523757B2 (en) Laser processing apparatus and processing method
JP2011098390A (en) Laser machining apparatus and method, for forming surface of half-finished product
KR20210145717A (en) Method and apparatus for laser cutting sheet metal blanks from continuously conveyed sheet metal strips
US11334047B2 (en) Device and method for the controlled processing of a workpiece with processing radiation
KR101856052B1 (en) Fine pattern mold manufacturing system
KR101186279B1 (en) Laser processing system and processing method thereof
CN112171053B (en) Method and system for machining threads on surface of hard and brittle material
JPS59179207A (en) Method for processing rolling roll
JP2017071134A (en) Laser punching method and device
JPH05212621A (en) Wire cut electric discharge machine
JPH0813430B2 (en) Laser processing equipment
JPH05318151A (en) Equipment and method for machining dimple of cooling roller for casting thin cast slab
JP2005046891A (en) Laser beam machining device
CN114799572A (en) Laser cutting machining method based on scanning path control energy distribution

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080715

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080916

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100528

R151 Written notification of patent or utility model registration

Ref document number: 4523757

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees