WO2020090417A1 - コーティング方法 - Google Patents

コーティング方法 Download PDF

Info

Publication number
WO2020090417A1
WO2020090417A1 PCT/JP2019/040158 JP2019040158W WO2020090417A1 WO 2020090417 A1 WO2020090417 A1 WO 2020090417A1 JP 2019040158 W JP2019040158 W JP 2019040158W WO 2020090417 A1 WO2020090417 A1 WO 2020090417A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
coating method
film
lens surface
hydrophilic film
Prior art date
Application number
PCT/JP2019/040158
Other languages
English (en)
French (fr)
Inventor
山本 明典
加本 貴則
小百合 中川
秀 塩原
ジェニファー トレス ダマスコティ
友啓 渡邉
Original Assignee
日本電産サンキョー株式会社
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産サンキョー株式会社, 日本電産株式会社 filed Critical 日本電産サンキョー株式会社
Publication of WO2020090417A1 publication Critical patent/WO2020090417A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • G02B1/115Multilayers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses

Definitions

  • the present invention relates to a coating method for coating a transparent member with a functional film.
  • a technique for coating a hydrophilic film on one surface of the lens for example, a technique for coating a hydrophilic film on one surface of the lens can be exemplified.
  • the lens surface of the imaging lens has low hydrophilicity, when water adheres to the lens surface, fine water droplets adhere to the lens surface.
  • a hydrophilic film by vacuum deposition on the lens surface, forming a silicon oxide film on the lens surface, and then applying a treatment liquid for hydrophilization to the lens surface by rotating puffing, spraying, etc. It has been proposed (see Patent Document 1). According to this technique, even if water adheres to the first lens surface, the water forms a film, so that it is possible to prevent the quality of the image from being significantly deteriorated.
  • the method of applying the treatment liquid by a rotary puff or spraying has a problem that the treatment liquid application area and the application thickness cannot be properly controlled.
  • an object of the present invention is to provide a coating method capable of appropriately coating the functional film on the first surface of the translucent member.
  • one embodiment of the present invention is a coating method for coating a functional film on one surface of a translucent member, in which the one surface is immersed in a treatment liquid for forming the functional film.
  • a step a step of pulling up the one surface from the treatment liquid, and a state in which the one surface is facing downward, by rotating the translucent member around an axis passing through the one surface and intersecting the one surface. It is characterized by including a liquid removal step of separating excess processing liquid from the one surface by centrifugal force, and a drying step of drying the processing liquid applied to the one surface to form the functional film.
  • one surface of the translucent member is pulled out of the treatment liquid in the pulling step, and then in the liquid removing step, The member is rotated with one surface facing downward, and the surplus processing liquid is separated from the one surface of the translucent member by centrifugal force. Therefore, the range to which the treatment liquid is applied and the thickness of the treatment liquid can be controlled by the immersion depth of the one surface of the member in the treatment liquid in the immersion process, the rotation speed of the member in the liquid removal process, and the like. Therefore, one surface of the translucent member can be properly coated with the functional film.
  • the translucent member may be a lens
  • the one surface may be a first lens surface
  • the functional film may be a hydrophilic film
  • the lens in the liquid removing step, a mode in which the lens is rotated around the central optical axis of the lens can be adopted.
  • the range where the treatment liquid is applied and the thickness of the treatment liquid can be controlled around the central optical axis.
  • a mode in which plasma treatment is performed on the lens from the first lens surface side before coating the hydrophilic film can be adopted.
  • the hydrophilicity of the lower ground when coating the hydrophilic film can be enhanced, so that the treatment liquid can be appropriately applied. Therefore, the lens surface can be properly coated with the hydrophilic film.
  • the present invention it is possible to adopt a mode in which an antireflection film is formed on the first lens surface and the surface of the antireflection film is coated with the hydrophilic film. According to this aspect, it is possible to suppress the generation of a ghost due to the reflection on the first lens surface.
  • the present invention it is possible to adopt a mode in which the first lens surface is a convex curved surface.
  • the lens includes a flange portion between the second lens surface opposite to the first lens surface and the first lens surface, and the flange portion extends from an outer edge of the first lens surface.
  • a first side surface portion that extends toward the second lens surface side; a second lens surface side from the first side surface portion; and a first side surface portion from the first lens surface side that is radially outside the first side surface portion. 2 a second side surface portion extending toward the lens surface side, an end portion of the first side surface portion on the second lens surface side, and an end portion of the second side surface portion on the first lens surface side are connected.
  • a coupling surface, and in the dipping step a mode may be adopted in which the dipping is performed to the outside in the radial direction from the effective area of the first lens surface and to the inside in the radial direction from the first side surface portion. it can. According to this aspect, it is easy to coat the entire area of the effective area of the first lens surface with the hydrophilic film.
  • the hydrophilic film can adopt a mode including particles of silicon oxide and particles of titanium oxide. According to this aspect, while the hydrophilicity is enhanced by the particles of silicon oxide, the photocatalytic action of the titanium oxide particles can decompose the stains made of the organic matter attached to the first lens surface side.
  • the coating method according to the present invention after immersing one surface of the translucent member in the treatment liquid in the dipping step, one surface is pulled out from the treatment liquid in the pulling step, and then, in the liquid removing step, one surface is faced downward. In this state, the translucent member is rotated to remove excess processing liquid from one surface by centrifugal force. Therefore, the range to which the treatment liquid is applied and the thickness of the treatment liquid can be controlled by the immersion depth of the one surface in the treatment liquid in the immersion process and the rotation speed of the translucent member in the liquid removal process. Therefore, one surface can be properly coated with the functional film.
  • Sectional drawing which shows the one aspect
  • Sectional drawing which expands and shows the flange part etc. of the 1st lens shown in FIG.
  • Explanatory drawing which shows the effect of the hydrophilic film shown in FIG.
  • the graph which shows the relationship of the conditions of the plasma irradiation process shown in FIG. 4, and the contact angle of water on the 1st lens surface side.
  • FIG. 1 is a cross-sectional view showing one mode of a lens unit 1 to which the present invention is applied, and the lens unit 1 has a substantially similar configuration over the entire optical axis L.
  • the lens unit 1 shown in FIG. 1 includes a wide-angle lens 10 in which a plurality of lenses are arranged in the optical axis L direction, and a cylindrical holder 7 that holds the wide-angle lens 10 inside, and is used in an imaging device or the like. Used in optical devices.
  • the holder 7 is made of light-shielding resin.
  • the wide-angle lens 10 has, for example, a lens configuration of 6 elements in 5 groups. More specifically, the wide-angle lens 10 includes a first lens 11 having negative power, a second lens 12 having negative power, from the object side La (subject side / front side) toward the image side Lb. It has a third lens 13 having positive or negative power, a fourth lens 14 having positive power, and a cemented lens 17 (fifth lens 15 and sixth lens 16) having positive power.
  • the second lens 12 and the third lens 13 are plastic lenses.
  • the fourth lens 14 is a glass lens.
  • the cemented lens 17 is a cemented lens of a fifth lens 15 which is a plastic lens having a negative power and a sixth lens 16 which is a plastic lens having a positive power.
  • the lens unit 1 has an annular light shielding sheet 2 between the second lens 12 and the third lens 13, and an annular diaphragm 3 between the third lens 13 and the fourth lens 14. There is. Further, the lens unit 1 has an infrared cut filter 4 on the image side Lb side of the cemented lens 17.
  • the first lens 11 is a glass lens or a plastic lens, and in the present embodiment, the first lens 11 is a glass lens.
  • the first lens 11 is a meniscus lens. More specifically, in the first lens 11, the first lens surface 11a on the object side La is a convex curved surface protruding toward the object side La, and the second lens surface 11b on the image side Lb is the object side. It has a concave curved surface that is concave toward La, and the first lens surface 11a and the second lens surface 11b are connected by a flange portion 11c.
  • the first lens surface 11a is a convex spherical surface having a radius of curvature of 10 mm or more and 15 mm or less.
  • the entire first surface 111 on the object side La is the first lens surface 11a
  • the second surface 112 on the image side Lb is the second lens surface only in the central portion through which the optical axis L passes. It is 11b. Therefore, a portion of the second surface 112 located on the outer peripheral side of the second lens surface 11b is a surface on the image side Lb of the flange portion 11c orthogonal to the optical axis L.
  • the radially outermost outermost peripheral surface 115 of the first lens 11 in the radial direction is a second side surface portion 117, which will be described later, of the side surface portion 110 of the flange portion 11c.
  • the first lens 11 has a larger outer diameter than the second lens 12, the third lens 13, the fourth lens 14, and the cemented lens 17.
  • the second lens 12, the third lens 13, and the cemented lens 17 have substantially the same outer diameter, and in the cemented lens 17, the fifth lens 15 has a larger outer shape than the sixth lens 16.
  • the outer diameter of the fourth lens 14 is smaller than that of the second lens 12 and the like.
  • the holder 7 extends from the first lens holding tubular portion 70 toward the image side Lb, and the first lens holding tubular portion 70 that surrounds the first lens 11 on the most object side La.
  • the first lens holding tubular portion 70 overlaps the radially outermost outermost peripheral surface 115 of the first lens 11 from the radially outer side.
  • An annular recess 720 for stealing meat is formed in the second tubular portion 72.
  • the inner diameters of the first tubular portion 71 and the second tubular portion 72 are equal, and the inner diameter of the first lens holding tubular portion 70 is larger than that of the first tubular portion 71 and the second tubular portion 72. Therefore, an annular step portion 74 facing the object side La is formed between the inner circumferential surface of the first lens holding tubular portion 70 and the inner circumferential surface of the first tubular portion 71.
  • An annular groove 740 is formed in the step portion 74, and the annular seal member 5 is arranged inside the groove 740.
  • An annular step portion 721 is formed on the inner peripheral surface of the second tubular portion 72 so as to project radially inward at an intermediate position in the optical axis L direction and face the object side La.
  • the flange portion 155 of the fifth lens 15 is in contact with the step portion 721 from the object side La.
  • the fourth lens 14 is held by the lens barrel 6, and the lens barrel 6 is in contact with the flange portion 155 of the fifth lens 15 from the object side La.
  • the flange portion 135 of the third lens 13 is in contact with the lens barrel 6 from the object side La via the diaphragm 3.
  • the flange portion 125 of the second lens 12 is in contact with the flange portion 135 of the third lens 13 from the object side La via the light shielding sheet 2.
  • the flange portion 125 of the second lens 12 is covered with a caulking portion 75 formed by plastically deforming the end portion of the inner peripheral surface of the first cylindrical portion 71 on the object side La inward in the radial direction from the object side La. Is restricted from moving to the object side La.
  • the second lens 12, the light shielding sheet 2, the third lens 13, the diaphragm 3, the fourth lens 14, and the cemented lens 17 are held inside the first tubular portion 71 and the second tubular portion 72.
  • FIG. 2 is an enlarged cross-sectional view showing the flange portion 11c and the like of the first lens 11 shown in FIG. 1, and the first lens 11 has a substantially similar configuration over the entire optical axis L.
  • the holder 7 has a caulking portion 75 that fixes the first lens 11 inside the first lens holding tubular portion 70.
  • the caulking portion 75 heats an annular rib (not shown) formed at the end portion of the first lens holding tubular portion 70 on the object side La, and moves to the object side La on the outer peripheral side of the first lens 11. It is a portion that is plastically deformed inward in the radial direction so as to cover the facing outer peripheral end 119 from the object side La.
  • the second surface 112 which is the image-side Lb surface of the first lens 11, abuts on the step portion 74 and is positioned in the optical axis L direction.
  • the second surface 112 of the first lens 11 abuts the annular seal member 5 from the object side La, and the seal member 5 seals between the second surface 112 of the first lens 11 and the holder 7.
  • a light blocking layer (not shown) is formed on the second surface 112 of the first lens 11 on the outer peripheral side of the second lens surface 11b.
  • the flange portion 11c of the first lens 11 includes the first side surface portion 116 extending from the outer edge of the first lens surface 11a toward the image side Lb, and the first side surface.
  • a second side surface portion 117 extending from the object side La toward the image side Lb on the image side Lb side of the portion 116 and radially outward of the first side surface portion 116, and an image side end portion 116b of the first side surface portion 116.
  • a connection surface 118 that connects the object-side end 117a of the second side surface 117 to each other.
  • the connecting surface 118 is an outer peripheral side end 119 that the caulking portion 75 covers from the object side La, and the second side surface portion 117 is the outermost periphery of the first lens 11 where the first lens holding tubular portion 70 overlaps from the radially outer side. This is the surface 115.
  • the first side surface portion 116 and the second side surface portion 117 extend substantially parallel to the optical axis L, and the first lens holding cylinder portion 70 surrounds the second side surface portion 117.
  • the connecting surface 118 is an inclined surface that is inclined to form an angle of 30 ° to 70 ° with respect to the optical axis L.
  • the caulking portion 75 is formed so as to incline radially inward so as to cover the coupling surface 118 from the end on the object side La of the first lens holding tubular portion 70 over the entire circumference. It is covered from the object side La.
  • the radial inner end 750 of the crimped portion 75 is a virtual extension obtained by extending the surface (first surface 111) of the first lens 11 on the object side La to the radial outer side at any position in the circumferential direction. It is located on the image side Lb with respect to the surface S.
  • the radially inner end 750 of the caulking portion 75 partially covers the first side surface portion 116 over the entire circumference.
  • the radially inner end 750 of the caulking portion 75 has a protruding portion 751 that protrudes toward the object side La along the first side surface portion 116 and covers the first side surface portion 116 from the radially outer side.
  • the projecting portion 751 covers the position of the first side surface portion 116 away from the object side end portion 116a toward the image side Lb.
  • the projecting portion 751 partially overlaps the first side surface portion 116 over the entire circumference, and the portion 116c of the first side surface portion 116 located on the object side La with respect to the projecting portion 751 is separated from the caulking portion 75. Exposed.
  • the antireflection film 8 is laminated over the entire area of the first lens surface 11 a (first surface 111) of the first lens 11. Therefore, it is possible to suppress the occurrence of a ghost due to the reflection on the first lens surface 11a in the image captured by the lens unit 1.
  • the antireflection film 8 is composed of a dielectric multilayer film in which dielectric layers having different refractive indexes are alternately laminated.
  • the antireflection film 8 is, for example, a laminated film in which a silicon oxide film and a titanium oxide film are alternately deposited, and the most object side La is a silicon oxide film.
  • the silicon oxide film has a refractive index of 1.4611 for light with a wavelength of 530 nm
  • the titanium oxide film has a refractive index of 2.3466 for light with a wavelength of 530 nm.
  • the antireflection film 8 is a film formed in the state of the first lens 11 alone, and is not formed on the holder 7. Although the antireflection film 8 is formed over the entire area of the first lens surface 11a (first surface 111) of the first lens 11, the side surface portion 110 (first side surface portion 116, second side surface portion 117) of the flange portion 11c is formed. , And the connecting surface 118) and the second surface 112 are not formed.
  • FIG. 3 is an explanatory diagram showing the effect of the hydrophilic film 9 shown in FIG. 2, and is an image (a) of the first lens surface 11 a when the hydrophilic film 9 is not formed and a first image when the hydrophilic film 9 is formed. An image (b) of the lens surface 11a is shown.
  • the surface of the antireflection film 8 on the object side La is coated with a hydrophilic film 9.
  • the hydrophilic film 9 since the hydrophilic film 9 is laminated on the antireflection film 8, it constitutes a part of the dielectric multilayer film together with the antireflection film 8. Therefore, the refractive index and the film thickness are set so that the hydrophilic film 9 does not deteriorate the characteristics of the antireflection film 8.
  • the hydrophilic film 9 has a refractive index of 1.5 to 1.7 for light having a wavelength of 530 nm and a film thickness of 30 nm to 100 nm.
  • the hydrophilic film 9 is, for example, a coating layer containing silicon oxide particles and titanium oxide particles. Therefore, the hydrophilic silanol group of the silicon oxide particles enhances the hydrophilicity of the first lens surface 11a, while the photocatalytic action of the titanium oxide particles decomposes the organic contaminants adhering to the first lens surface 11a. You can
  • the hydrophilic film 9 contains silica particles, titanium oxide particles, and silica fine particles.
  • the average particle size of the silica fine particles is smaller than the average particle size of the silica particles.
  • the silica particles, the titanium oxide particles and the silica fine particles are dispersed and attached to the surface of the antireflection film 8.
  • the hydrophilic film 9 contains silica particles and titanium oxide particles, and thus exhibits high hydrophilicity.
  • the hydrophilicity of the hydrophilic film 9 can be recovered by irradiating the hydrophilic film 9 with light (ultraviolet light). Further, since the hydrophilic film 9 contains silica fine particles, the surface roughness of the hydrophilic film 9 can be reduced and the wear resistance of the first lens 11 can be improved.
  • the average particle size of silica particles is 1 nm or more and 200 nm or less
  • the average particle size of titanium oxide particles is 1 nm or more and 100 nm or less
  • the average particle size of silica fine particles is 0.5 nm or more and 10 nm or less.
  • the silica particles preferably include hollow silica particles or porous silica particles. Since the silica particles include the hollow silica particles or the porous silica particles, the contact angle of the water droplet with respect to the hydrophilic film 9 can be maintained at 10 ° or less for a long period of time. In this way, the hydrophilicity of the hydrophilic film 9 can be further improved by containing the hollow silica particles or the porous silica particles in the silica particles.
  • hollow silica particles have a space inside.
  • the hollow silica particles can be formed by dissolving the core particles after coating the core particles with silica by a sol-gel method.
  • hollow silica particles can be formed by coating core particles made of calcium carbonate with silica and then dissolving the core particles with an acid.
  • the porous silica particles have mesopores. The size of the mesopores is 0.1 nm or more and 119 nm or less.
  • porous silica particles are formed by a sol-gel reaction.
  • the hydrophilic film 9 contains silica particles, titanium oxide particles, and niobium compound particles.
  • the silica particles, the titanium oxide particles, and the niobium compound particles are dispersed and attached to the surface of the antireflection film 8.
  • the hydrophilic film 9 contains silica particles and titanium oxide particles, and thus exhibits high hydrophilicity. Further, even if the hydrophilicity of the hydrophilic film 9 is lowered by use, the hydrophilicity of the hydrophilic film 9 can be recovered by irradiating the hydrophilic film 9 with light (ultraviolet light).
  • the hydrophilic film 9 contains the niobium compound particles, the wear resistance of the first lens 11 can be improved.
  • the silica particles preferably include hollow silica particles or porous silica particles. Since the silica particles include the hollow silica particles or the porous silica particles, the contact angle of the water droplet with respect to the hydrophilic film 9 can be maintained at 10 ° or less for a long period of time.
  • the average particle size of silica particles is 1 nm or more and 200 nm or less, and the average particle size of titanium oxide particles is 1 nm or more and 100 nm or less.
  • the hydrophilic film 9 When the hydrophilic film 9 is not provided, as can be seen from the image (a) in FIG. 3, when water adheres to the first lens surface 11a side, fine water droplets adhere to the first lens surface 11a, and The quality of the image captured by the unit 1 is significantly deteriorated.
  • the hydrophilic film 9 since the hydrophilic film 9 is provided on the first lens surface 11a, when water adheres to the first lens surface 11a side, as can be seen from the image (b) of FIG. Since the water becomes a thin film, it is possible to prevent the quality of the image captured by the lens unit 1 from being significantly deteriorated.
  • the hydrophilic film 9 is a film formed in the state of the first lens 11 alone, and is not coated on the holder 7. Further, the hydrophilic film 9 is coated on the entire area of the first lens surface 11a and on the second surface 112 including the second lens surface 11b and the area excluding the outermost peripheral surface 115. That is, the hydrophilic film 9 is coated on the entire area of the first lens surface 11a, but is not coated on the second surface 112 including the second lens surface 11b and the outermost peripheral surface 115. Further, the hydrophilic film 9 is not formed on the connecting surface 118 either. However, the hydrophilic film 9 is provided on a part of the first side surface portion 116. More specifically, the hydrophilic film 9 is also provided on the portion 116c of the first side surface portion 116 exposed from the radially inner end 750 of the caulking portion 75.
  • the hydrophilic film 9 is formed in the state of the first lens 11 alone, for example, even if a defective product is generated in the process of forming the hydrophilic film 9, the lens unit 1 is discarded. You don't have to.
  • the hydrophilic film 9 is not provided on the outermost peripheral surface 115 of the first lens 11, the hydrophilic film 9 is formed thicker than the outermost peripheral surface 115 of the first lens 11, so that Even if the first lens 11 cannot be inserted into the first lens holding tubular portion 70, or even if the first lens 11 can be inserted into the first lens holding tubular portion 70 of the holder 7, the outer peripheral side of the first lens 11 It is unlikely that the size in which the crimped portion 75 overlaps the end portion 119 becomes small. Therefore, even when the hydrophilic film 9 is provided on the first lens surface 11a of the first lens 11, the first lens 11 can be properly fixed inside the holder 7.
  • the hydrophilic film 9 is provided from the first lens surface 11a to a part of the first side surface portion 116, the hydrophilic film 9 can be formed over the entire area of the first lens surface 11a. Therefore, the image captured by the lens unit 1 is caused by the difference in reflectance or transmittance between the region of the first lens surface 11a where the hydrophilic film 9 is present and the region of the first lens surface 11a where the hydrophilic film 9 is not present. It is unlikely that the quality of the product will deteriorate. Even in this case, since the hydrophilic film 9 is provided on the portion of the first side surface portion 116 exposed from the radially inner end 750 of the caulking portion 75, the presence of the hydrophilic film 9 may cause insufficient caulking or the like. It is possible to suppress the occurrence. Therefore, it is possible to prevent the fixing strength of the first lens 11 from decreasing and the intrusion of water from the inside of the caulking portion 75.
  • FIG. 4 is an explanatory view showing one aspect of the coating method according to the present invention.
  • FIG. 5 is a graph showing the relationship between the conditions of the plasma irradiation step ST1 shown in FIG. 4 and the contact angle of water on the first lens surface 11a side.
  • FIG. 6 is an explanatory diagram of the immersion depth of the first lens 11 in the immersion step ST3 shown in FIG.
  • the antireflection film 8 when coating the hydrophilic film 9 on the first lens 11, first, the antireflection film 8 is formed on the first lens surface 11a of the first lens 11, and then the hydrophilic film 9 is formed.
  • Each step shown in is performed.
  • the plasma irradiation step ST1 the surface of the antireflection film 8 is irradiated with plasma P, and the antireflection film 8 is hydrophilized.
  • the antireflection film 8 has high hydrophilicity immediately after film formation, but since the hydrophilicity decreases with time, the hydrophilicity of the surface of the antireflection film 8 is increased by irradiating the plasma P.
  • the plasma P is oxygen plasma or nitrogen plasma.
  • the irradiation of the plasma P increases the hydrophilicity of the entire surface of the antireflection film 8.
  • the plasma P is irradiated from the direction along the optical axis L, the plasma P is less likely to be irradiated on the first side surface portion 116, and the increase in hydrophilicity of the first side surface portion 116 can be suppressed.
  • the plasma P is generated in a band shape, the plasma P and the first lens 11 are relatively moved, and the first lens surface 11a is scanned with the plasma P as indicated by an arrow D. Therefore, a value obtained by multiplying the scanning speed of the plasma P and the number of scans is the irradiation amount of the plasma P, and the hydrophilicity of the surface of the antireflection film 8 changes depending on the irradiation amount of the plasma P as shown in FIG. To do.
  • a solid line P1 shows a contact angle between water and the surface of the antireflection film 8 when the scanning speed is set to 200 mm / s and the number of times of scanning is changed. Further, in FIG. 5, the contact angle between water and the surface of the antireflection film 8 when the scanning speed is set to 60 mm / s is shown by a solid line P2.
  • the contact angle decreases as the number of times of scanning increases, and if the number of times of scanning is 4, the contact angle becomes 20 ° or less of the target. ..
  • the scanning speed is set to 60 mm / s, the number of times of scanning is 1 and the contact angle is 20 ° or less which is the target.
  • the treatment liquid 90 for forming the hydrophilic film 9 with the first lens 11 held by the chucking head 200 from the second lens surface 11b side and the first lens surface 11a facing downward. are transported to a position above the processing tank 100 in which The treatment liquid 90 is water-based, alcohol-based, or water-alcohol-based. In the present embodiment, the treatment liquid 90 is aqueous.
  • the processing bath 100 and the chucking head 200 are moved relative to each other in the vertical direction to immerse the first lens surface 11a side of the first lens 11 in the processing liquid 90.
  • the first lens 11 is treated with the treatment liquid 90 until the first lens 11 is radially outside the effective area 11e of the first lens surface 11a and radially inward of the first side surface portion 116. Soak in. That is, in the first lens 11, the effective area 11e or more of the first lens surface 11a is immersed in the treatment liquid 90, but the first side surface portion 116 is not immersed in the treatment liquid 90.
  • the effective area 11e of the first lens surface 11a is the effective diameter of the first lens surface 11a as a lens.
  • the processing bath 100 and the chucking head 200 are moved relative to each other in the vertical direction to pull up the first lens surface 11a of the first lens 11 from the processing liquid 90.
  • the first lens 11 is rotated around the axis L0 extending along the optical axis L through the first lens surface 11a,
  • the surplus processing liquid 95 is separated from the first lens surface 11a by the centrifugal force.
  • the first lens 11 is rotated around the optical axis L of the first lens 11 (the central optical axis of the first lens 11).
  • the treatment liquid 90 applied to the first lens surface 11a is dried to form the hydrophilic film 9.
  • the first lens surface 11a can be appropriately coated with the hydrophilic film 9.
  • the first lens surface 11a side of the first lens 11 is immersed in the treatment liquid 90, the first lens 11 is radially outside the effective area 11e of the first lens surface 11a, and the first side surface.
  • the first lens 11 is immersed in the treatment liquid 90 to the inside of the portion 116 in the radial direction. Therefore, since the treatment liquid 90 can be applied to the entire area of the first lens surface 11a including the effective area 11e, the hydrophilic film 9 can be applied to the entire area of the first lens surface 11a including the effective area 11e.
  • the treatment liquid 90 may go over the end portion on the first lens surface 11a side (object side end portion 116a) of the first side surface portion 116, the first side surface portion 116 of the first lens surface 11a.
  • the treatment liquid 90 is not applied to the portion of the first side surface portion 116 covered by the caulking portion 75 or the second side surface portion 117. Therefore, it is possible to prevent the hydrophilic film 9 from being coated on the portion of the first side surface portion 116 covered by the caulking portion 75 and the second side surface portion 117.
  • the hydrophilic film 9 is formed such that the film thickness of the side surface portion 110 is thicker than the film thickness of the first lens surface 11a.
  • the hydrophilic film 9 is formed on the side surface portion 110 to have a film thickness that is 2 to 5 times that of the first lens surface 11a. Further, since the treatment liquid is likely to remain at the corner between the first side surface portion 116 and the connecting surface 118, the hydrophilic film 9 is thickly formed at the outer peripheral side end portion 119.
  • the liquid removing step ST5 since the first lens 11 is rotated around the optical axis L passing through the top of the first lens 11, the range in which the processing liquid 90 is applied and the thickness of the processing liquid 90 are applied. Can be controlled around the optical axis L.
  • the treatment liquid 90 can be properly applied, and thus the first lens surface 11 a can be properly coated with the hydrophilic film 9.
  • the first lens surface 11a is a convex spherical surface having a radius of curvature of 10 mm or more and 15 mm or less, even when plasma processing is performed on the first lens surface 11a, plasma is applied to the entire area of the first lens surface 11a. Easy to process.
  • the hydrophilic film 9 is formed on the object-side La surface of the antireflection film 8.
  • the antireflection film 8 is formed on the first lens surface 11a.
  • the present invention may be applied to the case where the hydrophilic film 9 is directly coated on the first lens surface 11a without forming the film 8.
  • the present invention is applied to the lens unit 1 having a lens configuration of 5 groups and 6 elements, but a lens configuration of 3 elements in 3 groups, 4 elements in 4 groups, 5 elements in 6 groups, or 7 elements in 6 groups
  • the present invention may be applied to the lens unit 1 having, for example, and is not limited to the lens configuration or the number of lenses.
  • the functional film is a hydrophilic film
  • the member to which the functional film is applied is the first lens 11
  • the first surface of the member to which the functional film is applied is the first lens of the first lens 11.
  • the present invention may be applied when a functional film is coated on a translucent member other than the lens, for example, a translucent cover member that covers the lens unit. Further, the present invention may be applied not only when coating a hydrophilic film as a functional film, but also when coating a water repellent film or a protective film as a functional film.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Lens Barrels (AREA)

Abstract

透光性部材の第1面に機能膜を適正にコーティングすることのできるコーティング方法を提供すること。第1レンズ11の第1レンズ面11aに反射防止膜8を形成した後、反射防止膜8の表面に親水膜をコーティングするにあたって、反射防止膜8の表面にプラズマPを照射して親水性を高める。次に、浸漬工程ST3において第1レンズ面11aを水系の処理液90に浸漬した後、第1レンズ面11aを引き上げ、その後、脱液工程ST5では、第1レンズ面11aを下向きにした状態で第1レンズ11を回転させ、余剰な処理液95を第1レンズ面11aから離脱させる。従って、浸漬工程ST2における第1レンズ面11aの浸漬深さ、および脱液工程ST5における第1レンズ11の回転速度等によって、処理液90が塗布される範囲や処理液90の厚さを制御することができる。

Description

コーティング方法
 本発明は、透光性部材に対して機能膜をコーティングするコーティング方法に関するものである。
 透光性部材の一方面に機能膜をコーティングする技術としては、例えば、レンズの一方面に親水膜をコーティングする技術を例示することができる。具体的には、撮像用のレンズのレンズ面の親水性が低いと、レンズ面に水が付着した際、レンズ面に細かな水滴が付着してしまう。その結果、レンズユニットを撮像した際、画像の品位が著しく低下してしまう。そこで、レンズ面に真空蒸着を行い、レンズ面にシリコン酸化膜等を成膜した後、親水化のための処理液を回転パフ、霧吹き等によってレンズ面に塗布し、親水膜を形成する技術が提案されている(特許文献1参照)。かかる技術によれば、第1レンズ面に水が付着しても、水が膜となるので、画像の品位が著しく低下することを抑制することができる。
特開2015-231216号公報
 しかしながら、回転パフや霧吹き等によって処理液を塗布する方法では、処理液の塗布領域や塗布厚を適正に制御できないという問題点がある。
 以上の問題点に鑑みて、本発明の課題は、透光性部材の第1面に機能膜を適正にコーティングすることのできるコーティング方法を提供することにある。
 上記課題を解決するために、本発明の一態様は、透光性部材の一方面に機能膜をコーティングするコーティング方法において、前記機能膜を形成するための処理液に前記一方面を浸漬する浸漬工程と、前記一方面を前記処理液から引き上げる引き上げ工程と、前記一方面を下向きにした状態で、前記一方面を通って前記一方面に交差する軸線周りに前記透光性部材を回転させて余剰な処理液を遠心力によって前記一方面から離脱させる脱液工程と、前記一方面に塗布された前記処理液を乾燥させて前記機能膜とする乾燥工程と、を有することを特徴とする。
 本発明では、浸漬工程において透光性部材の一方面を処理液に浸漬した後、引き上げ工程において透光性部材の一方面を処理液から引き上げ、その後、脱液工程では、透光性部材の一方面を下向きにした状態で部材を回転させて余剰な処理液を遠心力によって透光性部材の一方面から離脱させる。このため、浸漬工程における部材の一方面の処理液への浸漬深さ、および脱液工程における部材の回転速度等によって、処理液が塗布される範囲や処理液の厚さを制御することができるので、透光性部材の一方面を機能膜によって適正にコーティングすることができる。
 本発明において、コーティング方法において、前記透光性部材はレンズであり、前記一方面は第1レンズ面であり、前記機能膜は親水膜である態様を採用することができる。
 本発明において、前記脱液工程では、前記レンズの中心光軸周りに前記レンズを回転させる態様を採用することができる。かかる態様によれば、処理液が塗布される範囲や処理液の厚さを中心光軸周りに制御することができる。
 本発明において、前記親水膜をコーティングする前に前記第1レンズ面側から前記レンズにプラズマ処理を行う態様を採用することができる。かかる態様によれば、親水膜をコーティングする際の下地面の親水性を高めることができるので、処理液を適正に塗布することができる。それ故、レンズ面を親水膜によって適正にコーティングすることができる。
 本発明において、前記第1レンズ面には反射防止膜が形成されており、前記反射防止膜の表面に前記親水膜をコーティングする態様を採用することができる。かかる態様によれば、第1レンズ面での反射に起因するゴーストの発生を抑制することができる。
 本発明において、前記第1レンズ面は凸曲面である態様を採用することができる。
 本発明において、前記レンズは、前記第1レンズ面とは反対側の第2レンズ面と前記第1レンズ面との間にフランジ部を備え、前記フランジ部は、前記第1レンズ面の外縁から前記第2レンズ面側に延在する第1側面部と、前記第1側面部より前記第2レンズ面側、かつ、前記第1側面部より径方向外側で前記第1レンズ面側から前記第2レンズ面側に向けて延在する第2側面部と、前記第1側面部の前記第2レンズ面側の端部と前記第2側面部の前記第1レンズ面側の端部とを繋ぐ連結面と、を有し、前記浸漬工程では、前記第1レンズ面の有効領域より径方向外側、かつ、前記第1側面部より径方向内側まで前記処理液に浸漬する態様を採用することができる。かかる態様によれば、第1レンズ面の有効領域の全域に親水膜をコーティングしやすい。
 本発明において、前記親水膜をコーティングする前に、前記第1レンズ面側の全域、および前記第1側面部のうち、前記第1レンズ面側の端部にプラズマ処理を行う態様を採用することができる。
 本発明において、前記親水膜は、酸化シリコンの粒子、および酸化チタン粒子を含む態様を採用することができる。かかる態様によれば、酸化シリコンの粒子によって親水性を高める一方、酸化チタン粒子の光触媒作用によって、第1レンズ面側に付着した有機物からなる汚れを分解することができる。
 本発明に係るコーティング方法では、浸漬工程において透光性部材の一方面を処理液に浸漬した後、引き上げ工程において一方面を処理液から引き上げ、その後、脱液工程では、一方面を下向きにした状態で透光性部材を回転させて余剰な処理液を遠心力によって一方面から離脱させる。このため、浸漬工程における一方面の処理液への浸漬深さ、および脱液工程における透光性部材の回転速度によって、処理液が塗布される範囲や処理液の厚さを制御することができるので、一方面を機能膜によって適正にコーティングすることができる。
本発明を適用したレンズユニットの一態様を示す断面図。 図1に示す第1レンズのフランジ部等を拡大して示す断面図。 図2に示す親水膜の効果を示す説明図。 本発明に係るコーティング方法の一態様を示す説明図。 図4に示すプラズマ照射工程の条件と、第1レンズ面側における水の接触角との関係を示すグラフ。 図4に示す浸漬工程における第1レンズの浸漬深さの説明図。
 図面を参照して、本発明の実施の形態を説明する。なお、以下の説明で参照する図においては、各部材を図面上で認識可能な程度の大きさとするため、各部材の数や縮尺を異ならしめてある。また、以下の説明では、光軸Lが延在している方向において、物体側にLaを付し、像側にLbを付して説明する。また、以下の説明では、「機能膜」が親水膜9であって、機能膜が塗布される「透光性部材」が第1レンズ11であって、機能膜が塗布される部材の「第1面」が第1レンズ11の第1レンズ面11aである場合を中心に説明する。
(レンズユニットの構成)
 図1は、本発明を適用したレンズユニット1の一態様を示す断面図であり、レンズユニット1は、光軸L周りの全体にわたって略同様な構成を有している。図1に示すレンズユニット1は、光軸L方向に複数のレンズが配置された広角レンズ10と、広角レンズ10を内側に保持する筒状のホルダ7とを有しており、撮像装置等の光学装置に用いられる。本実施形態において、ホルダ7は遮光性樹脂製である。
 広角レンズ10は、例えば、5群6枚のレンズ構成を備えている。より具体的には、広角レンズ10は、物体側La(被写体側/前側)から像側Lbに向けて、負のパワーを持つ第1レンズ11と、負のパワーを持つ第2レンズ12と、正または負のパワーを持つ第3レンズ13と、正のパワーを有する第4レンズ14と、正のパワーを有する接合レンズ17(第5レンズ15および第6レンズ16)とを有している。
 第2レンズ12および第3レンズ13はプラスチックレンズである。第4レンズ14はガラスレンズである。接合レンズ17は、負のパワーを有するプラスチックレンズである第5レンズ15と、正のパワーを有するプラスチックレンズである第6レンズ16との接合レンズである。レンズユニット1は、第2レンズ12と第3レンズ13との間に円環状の遮光シート2を有し、第3レンズ13と第4レンズ14との間に円環状の絞り3を有している。また、レンズユニット1は、接合レンズ17より像側Lbに赤外線カットフィルタ4を有している。
(第1レンズ11の構成)
 第1レンズ11はガラスレンズまたはプラスチックレンズであり、本実施形態において、第1レンズ11はガラスレンズである。第1レンズ11は、メニスカスレンズである。より具体的には、第1レンズ11は、物体側Laの第1レンズ面11aが物体側Laに向けて突出した凸曲面になっており、像側Lbの第2レンズ面11bは、物体側Laに向けて凹んだ凹曲面になっており、第1レンズ面11aと第2レンズ面11bとはフランジ部11cによって繋がっている。本実施形態において、第1レンズ面11aは、曲率半径が10mm以上、かつ、15mm以下の凸状の球面である。
 第1レンズ11では、物体側Laの第1面111の全体が第1レンズ面11aになっており、像側Lbの第2面112は、光軸Lが通る中央部分のみが第2レンズ面11bになっている。従って、第2面112のうち、第2レンズ面11bの外周側に位置する部分では、光軸Lに直交するフランジ部11cの像側Lbの面になっている。第1レンズ11の径方向の最も径方向外側の最外周面115は、フランジ部11cの側面部110のうち、後述する第2側面部117である。
(ホルダ7等の構成)
 第1レンズ11は、第2レンズ12、第3レンズ13、第4レンズ14、および接合レンズ17より外径が大きい。第2レンズ12、第3レンズ13および接合レンズ17は外径が略等しく、接合レンズ17において、第5レンズ15は、第6レンズ16より外形が大きい。第4レンズ14は、第2レンズ12等より外径が小さい。
 かかる形状に対応して、ホルダ7は、最も物体側Laで第1レンズ11の周りを囲む第1レンズ保持用筒部70と、第1レンズ保持用筒部70から像側Lbに向けて延在する第1筒部71と、第1筒部71から像側Lbに向けて延在する第2筒部72と、第2筒部72の像側Lbの端部で径方向内側に張り出した張出部73とを有している。第1レンズ保持用筒部70は、第1レンズ11の径方向の最も径方向外側の最外周面115に径方向外側から重なっている。第2筒部72には、肉盗み用の環状の凹部720が形成されている。
 第1筒部71と第2筒部72とは内径が等しく、第1レンズ保持用筒部70は、第1筒部71および第2筒部72より内径が大きい。従って、第1レンズ保持用筒部70の内周面と第1筒部71の内周面との間には、物体側Laに向いた環状の段部74が形成されている。段部74には環状の溝740が形成されており、溝740の内側に環状のシール部材5が配置されている。第2筒部72の内周面には、光軸L方向の途中位置で径方向内側に張り出して物体側Laに向いた環状の段部721が形成されている。
 かかる構成のホルダ7に対して、第5レンズ15のフランジ部155は、段部721に物体側Laから当接している。第4レンズ14は、レンズバレル6に保持されており、レンズバレル6は、第5レンズ15のフランジ部155に物体側Laから当接している。第3レンズ13のフランジ部135は、レンズバレル6に絞り3を介して物体側Laから当接している。第2レンズ12のフランジ部125は、第3レンズ13のフランジ部135に遮光シート2を介して物体側Laから当接している。
 第2レンズ12のフランジ部125には、第1筒部71の内周面の物体側Laの端部を径方向内側に塑性変形させたカシメ部75が物体側Laから被さって第2レンズ12の物体側Laへの移動が規制されている。その結果、第2レンズ12、遮光シート2、第3レンズ13、絞り3、第4レンズ14、および接合レンズ17が第1筒部71および第2筒部72の内部に保持されている。
(第1レンズ1の固定構造)
 図2は、図1に示す第1レンズ11のフランジ部11c等を拡大して示す断面図であり、第1レンズ11は、光軸L周りの全体にわたって略同様な構成を有している。図2に示すように、ホルダ7は、第1レンズ保持用筒部70の内側に第1レンズ11を固定するカシメ部75を有している。カシメ部75は、第1レンズ保持用筒部70の物体側Laの端部に形成されていた環状のリブ(図示せず)を加熱して、第1レンズ11の外周側で物体側Laに向く外周側端部119に物体側Laから被さるように径方向内側に塑性変形させた部分である。この状態で、第1レンズ11の像側Lbの面である第2面112は、段部74に当接し、光軸L方向で位置決めされている。また、第1レンズ11の第2面112は、環状のシール部材5に物体側Laから当接し、第1レンズ11の第2面112とホルダ7との間がシール部材5によってシールされる。本実施形態では、第1レンズ11の第2面112には、第2レンズ面11bの外周側に遮光層(図示せず)が形成されている。
 カシメ部75を利用した固定構造を採用するにあたって、第1レンズ11のフランジ部11cは、第1レンズ面11aの外縁から像側Lbに向けて延在する第1側面部116と、第1側面部116より像側Lb、かつ、第1側面部116より径方向外側で物体側Laから像側Lbに向けて延在する第2側面部117と、第1側面部116の像側端部116bと第2側面部117の物体側端部117aとを繋げる連結面118とが設けられている。連結面118は、カシメ部75が物体側Laから被さる外周側端部119であり、第2側面部117は、第1レンズ保持用筒部70が径方向外側から重なる第1レンズ11の最外周面115である。
 第1側面部116および第2側面部117は、光軸Lに略平行に延在しており、第2側面部117の周りを第1レンズ保持用筒部70が囲んでいる。連結面118は、光軸Lに対して30°から70°の角度を成すように傾いた傾斜面からなる。
 カシメ部75は、全周にわたって、第1レンズ保持用筒部70の物体側Laの端部から連結面118に被さるように径方向内側に斜めに傾くように形成されており、連結面118に物体側Laから被さっている。ここで、カシメ部75の径方向内側端部750は、周方向のいずれの個所でも、第1レンズ11の物体側Laの面(第1面111)を径方向外側に延長させた仮想の延長面Sより像側Lbに位置する。
 本実施形態において、カシメ部75の径方向内側端部750は、全周にわたって、第1側面部116を部分的に被さっている。本実施形態において、カシメ部75の径方向内側端部750は、第1側面部116に沿うように物体側Laに突出して第1側面部116に径方向外側から被さった突出部751を有しており、突出部751は、第1側面部116の物体側端部116aから像側Lbに離間する位置に被さっている。このため、突出部751は、全周にわたって第1側面部116に部分的に重なっており、第1側面部116のうち、突出部751より物体側Laに位置する部分116cは、カシメ部75から露出している。
(反射防止膜8の構成)
 図2に示すように、第1レンズ11の第1レンズ面11a(第1面111)には、全域にわたって反射防止膜8が積層されている。従って、レンズユニット1で撮像した画像に、第1レンズ面11aでの反射に起因するゴーストが発生することを抑制することができる。
 反射防止膜8は、屈折率が異なる誘電体層が交互に積層された誘電体多層膜からなる。本実施形態において、反射防止膜8は、例えば、酸化シリコン膜と酸化チタン膜とが交互に蒸着された積層膜であり、最も物体側Laは酸化シリコン膜からなる。酸化シリコン膜は、波長530nmの光に対する屈折率が1.4611であり、酸化チタン膜は、波長530nmの光に対する屈折率が2.3466である。
 本実施形態において、反射防止膜8は、第1レンズ11単体の状態で形成された膜であり、ホルダ7には形成されていない。反射防止膜8は、第1レンズ11の第1レンズ面11a(第1面111)の全域にわたって形成されているが、フランジ部11cの側面部110(第1側面部116、第2側面部117、および連結面118)、および第2面112には形成されていない。
(親水膜9の構成)
 図3は、図2に示す親水膜9の効果を示す説明図であり、親水膜9を形成しない場合の第1レンズ面11aの画像(a)、および親水膜9を形成した場合の第1レンズ面11aの画像(b)を示してある。
 図2に示すように、反射防止膜8の物体側Laの面には親水膜9がコーティングされている。本実施形態において、親水膜9は、反射防止膜8に積層されていることから、反射防止膜8とともに誘電体多層膜の一部を構成する。従って、親水膜9が反射防止膜8の特性を低下しないように屈折率や膜厚が設定される。本実施形態において、親水膜9は、波長530nmの光に対する屈折率が1.5から1.7であり、膜厚は30nmから100nmである。
 親水膜9は、例えば、酸化シリコンの粒子、および酸化チタン粒子を含むコーティング層である。従って、酸化シリコンの粒子が有する親水性のシラノール基によって第1レンズ面11aの親水性を高める一方、酸化チタン粒子の光触媒作用によって、第1レンズ面11aに付着した有機物からなる汚れを分解することができる。
 他の親水膜9の構成例として、例えば、親水膜9は、シリカ粒子と、酸化チタン粒子と、シリカ微粒子とを含有する。シリカ微粒子の平均粒径は、シリカ粒子の平均粒径よりも小さい。本実施形態の第1レンズ11において、シリカ粒子、酸化チタン粒子およびシリカ微粒子は、反射防止膜8の表面に互いに分散して付着している。本実施形態の第1レンズ11において、親水膜9は、シリカ粒子および酸化チタン粒子を含有するため、高い親水性を示す。また、使用によって親水膜9の親水性が低下しても、親水膜9に光(紫外光)を照射することにより、親水膜9の親水性を回復できる。さらに、親水膜9はシリカ微粒子を含有するため、親水膜9の表面粗さを低減でき、第1レンズ11の耐摩耗性を向上できる。例えば一例として、シリカ粒子の平均粒径は1nm以上200nm以下、酸化チタン粒子の平均粒径は1nm以上かつ100nm以下、シリカ微粒子の平均粒径は0.5nm以上かつ10nm以下である。
 また、シリカ粒子は、中空シリカ粒子またはポーラスシリカ粒子を含むことが好ましい。シリカ粒子が中空シリカ粒子またはポーラスシリカ粒子を含むことにより、親水膜9に対する水滴の接触角を長期間にわたって10°以下に維持できる。このように、シリカ粒子が中空シリカ粒子またはポーラスシリカ粒子を含むことにより、親水膜9の親水性をさらに向上できる。例えば、中空シリカ粒子は、内部に空間を有する。中空シリカ粒子は、コア粒子をゾルゲル法でシリカコーティングした後でコア粒子を溶解させることで形成できる。一例としては、炭酸カルシウムからなるコア粒子をシリカでコーティングした後で、酸でコア粒子を溶解させることにより、中空シリカ粒子を形成できる。また、ポーラスシリカ粒子は、メソ孔を有する。メソ孔の大きさは0.1nm以上かつ119nm以下である。例えば、ポーラスシリカ粒子は、ゾルゲル反応によって形成される。
 さらに、他の親水膜9の構成例として、例えば、親水膜9は、シリカ粒子と、酸化チタン粒子と、ニオブ化合物粒子とを含有する。本実施形態の第1レンズ11において、シリカ粒子、酸化チタン粒子およびニオブ化合物粒子は、反射防止膜8の表面に互いに分散して付着している。本実施形態の第1レンズ11において、親水膜9は、シリカ粒子および酸化チタン粒子を含有するため、高い親水性を示す。また、使用によって親水膜9の親水性が低下しても、親水膜9に光(紫外光)を照射することにより、親水膜9の親水性を回復できる。さらに、親水膜9はニオブ化合物粒子を含有するため、第1レンズ11の耐摩耗性を向上できる。この場合であっても、シリカ粒子は、中空シリカ粒子またはポーラスシリカ粒子を含むことが好ましい。シリカ粒子が中空シリカ粒子またはポーラスシリカ粒子を含むことにより、親水膜9に対する水滴の接触角を長期間にわたって10°以下に維持できる。例えば一例として、シリカ粒子の平均粒径は1nm以上かつ200nm以下、酸化チタン粒子の平均粒径は1nm以上かつ100nm以下である。
 親水膜9を設けない場合、図3の画像(a)から分かるように、第1レンズ面11a側に水が付着した際に、第1レンズ面11aに細かな水滴が付着してしまい、レンズユニット1で撮像した画像の品位が著しく低下してしまう。これに対して、本実施形態では、第1レンズ面11aに親水膜9が設けられているため、図3の画像(b)から分かるように、第1レンズ面11a側に水が付着した際、水が薄い膜となるため、レンズユニット1によって撮像した画像の品位が著しく低下することを抑制することができる。
 親水膜9は、第1レンズ11単体の状態で形成された膜であり、ホルダ7にはコーティングされていない。また、親水膜9は、第1レンズ面11aの全域を含み、第2レンズ面11bを含む第2面112、および最外周面115を除く領域にコーティングされている。すなわち、親水膜9は、第1レンズ面11aの全域にコーティングされているが、第2レンズ面11bを含む第2面112、および最外周面115にはコーティングされていない。また、親水膜9は、連結面118にも形成されていない。但し、親水膜9は、第1側面部116の一部には設けられている。より具体的には、親水膜9は、第1側面部116においてカシメ部75の径方向内側端部750から露出している部分116cにも設けられている。
 このように本実施形態では、親水膜9が第1レンズ11単体の状態で形成されるため、例えば、親水膜9の形成工程で不具合品が発生した場合でも、レンズユニット1の廃棄等を行わなくてもよい。また、親水膜9が第1レンズ11の最外周面115に設けられていないため、親水膜9が第1レンズ11の最外周面115に対して分厚く形成されることが原因で、ホルダ7の第1レンズ保持用筒部70に第1レンズ11を挿入できなくなるという事態や、ホルダ7の第1レンズ保持用筒部70に第1レンズ11を挿入できても、第1レンズ11の外周側端部119に対してカシメ部75が重なる寸法が小さくなるという事態が発生しにくい。それ故、第1レンズ11の第1レンズ面11aに親水膜9を設けた場合でも、第1レンズ11をホルダ7の内側に適正に固定することができる。
 また、親水膜9は、第1レンズ面11aから第1側面部116の一部まで設けられているため、第1レンズ面11aの全域に親水膜9を形成することができる。従って、第1レンズ面11aの親水膜9が存在する領域と、第1レンズ面11aの親水膜9が存在しない領域とにおける反射率や透過率の差が原因で、レンズユニット1によって撮像した画像の品位が低下するという事態が発生しにくい。この場合でも、親水膜9は、第1側面部116のうち、カシメ部75の径方向内側端部750から露出している部分に設けられているため、親水膜9の存在によってカシメ不足等が発生することを抑制することができる。それ故、第1レンズ11の固定強度の低下や、カシメ部75の内側からの水の侵入等を抑制することができる。
(親水膜9のコーティング方法)
 図4は、本発明に係るコーティング方法の一態様を示す説明図である。図5は、図4に示すプラズマ照射工程ST1の条件と、第1レンズ面11a側における水の接触角との関係を示すグラフである。図6は、図4に示す浸漬工程ST3における第1レンズ11の浸漬深さの説明図である。
 本実施形態では、図2に示すように、第1レンズ11に親水膜9をコーティングするにあたっては、まず、第1レンズ11の第1レンズ面11aに反射防止膜8を形成した後、図4に示す各工程を行う。まず、プラズマ照射工程ST1において、反射防止膜8の表面に対してプラズマPを照射し、反射防止膜8に親水化処理を行う。反射防止膜8は、成膜直後は、親水性が高いが、時間と経過とともに親水性が低下するため、プラズマPを照射することによって、反射防止膜8の表面の親水性を高める。プラズマPは、酸素プラズマあるいは窒素プラズマである。本実施形態では、プラズマPの照射によって、反射防止膜8の表面の全域の親水性を高める。本実施形態では、プラズマPを光軸Lに沿う方向から照射するため、プラズマPは、第1側面部116に照射されにくく、第1側面部116における親水性の上昇を抑制することができる。
 本実施形態では、プラズマPを帯状に発生させ、プラズマPと第1レンズ11とを相対移動させ、矢印Dで示すように、第1レンズ面11aにプラズマPを走査する。従って、プラズマPの走査速度と走査回数とを乗じた値がプラズマPの照射量であり、プラズマPの照射量によって、反射防止膜8の表面の親水性は、図5に示すように、変化する。
 図5には、走査速度を200mm/sに設定し、走査回数を変化させた際の水と反射防止膜8の表面との接触角を実線P1で示してある。また、図5には、走査速度を60mm/sに設定した場合の水と反射防止膜8の表面との接触角を実線P2で示してある。
 図5から分かるように、走査速度を200mm/sに設定した場合、走査回数が増えるに伴い、接触角が低下し、走査回数を4回とすれば、接触角が目標の20°以下となる。これに対して、走査速度を60mm/sに設定した場合、走査回数が1回で接触角が目標の20°以下となる。
 次に、搬送工程ST2では、第1レンズ11をチャッキングヘッド200によって第2レンズ面11bの側から保持し、第1レンズ面11aを下向きにして、親水膜9を形成するための処理液90が貯留された処理槽100の上方位置に搬送する。処理液90は、水系、アルコール系、水-アルコ-ル系である。本実施形態において、処理液90は水系である。
 次に、浸漬工程ST3では、処理槽100とチャッキングヘッド200とを上下方向に相対移動させて、第1レンズ11の第1レンズ面11a側を処理液90に浸漬させる。その際、図6に示すように、第1レンズ11を第1レンズ面11aの有効領域11eより径方向外側、かつ、第1側面部116より径方向内側まで、第1レンズ11を処理液90に浸漬する。つまり、第1レンズ11は、第1レンズ面11aの有効領域11e以上を処理液90に浸漬させるが、第1側面部116は処理液90に浸漬させない。なお、第1レンズ面11aの有効領域11eとは、第1レンズ面11aのレンズとしての有効径である。
 次に、引き上げ工程ST4では、処理槽100とチャッキングヘッド200とを上下方向に相対移動させて、第1レンズ11の第1レンズ面11aを処理液90から引き上げる。
 次に、脱液工程ST5では、第1レンズ面11aを下向きにした状態で、第1レンズ面11aを通って光軸Lに沿って延在する軸線L0周りに第1レンズ11を回転させ、余剰な処理液95を遠心力によって第1レンズ面11aから離脱させる。本実施形態では、第1レンズ11の光軸L(第1レンズ11の中心光軸)周りに第1レンズ11を回転させる。
 次に、乾燥工程では、第1レンズ面11aに塗布された処理液90を乾燥させて親水膜9とする。
 このようなコーティング方法によれば、浸漬工程ST3における第1レンズ面11aの処理液90への浸漬深さ、および脱液工程ST5における第1レンズ11の回転速度等によって、第1レンズ11に対して処理液90が塗布される範囲や処理液90の厚さを制御することができるので、第1レンズ面11aを親水膜9によって適正にコーティングすることができる。
 より具体的には、第1レンズ11の第1レンズ面11a側を処理液90に浸漬する際、第1レンズ11を第1レンズ面11aの有効領域11eより径方向外側、かつ、第1側面部116より径方向内側まで、第1レンズ11を処理液90に浸漬する。このため、有効領域11eを含む第1レンズ面11aの全域に処理液90を塗布することができるので、有効領域11eを含む第1レンズ面11aの全域に親水膜9をコーティングすることができる。また、処理液90は、第1側面部116のうち、第1レンズ面11a側の端部(物体側端部116a)を乗り越えることはあっても、第1レンズ面11aの第1側面部116の全域までは塗布されない。従って、第1側面部116のうち、カシメ部75が被さる部分や、第2側面部117には処理液90が塗布されない。従って、第1側面部116のうち、カシメ部75が被さる部分や、第2側面部117に親水膜9がコーティングされることを抑制することができる。
 これに対して、第1レンズ面11aの側面部110の全域まで処理液90を浸漬すると、脱液工程ST5において、第1レンズ11を回転させて余剰な処理液95を遠心力によって離脱させても、親水膜9は、第1レンズ面11aの膜厚よりも側面部110の膜厚の方が分厚く形成される。例えば、親水膜9は、側面部110では第1レンズ面11aよりも2倍から5倍の膜厚で形成される。また、第1側面部116と連結面118と間の角部に処理液が残りやすいため、外周側端部119に親水膜9が分厚く形成されてしまう。その結果、ホルダ7の第1レンズ保持用筒部70に第1レンズ11を挿入しにくくなるという事態や、挿入できなくなるという事態が発生してしまう。また、ホルダ7の第1レンズ保持用筒部70に第1レンズ11を挿入できても、第1レンズ11の外周側端部に対してカシメ部75が重なる寸法が小さくなるため、カシメ不足になる虞がある。
 また、本実施形態では、脱液工程ST5において、第1レンズ11の頂部を通る光軸L周りに第1レンズ11を回転させるので、処理液90が塗布される範囲や処理液90の厚さを光軸L周りに制御することができる。
 また、親水膜9をコーティングする前に第1レンズ面11a側から第1レンズ11にプラズマ処理を行うため、親水膜9をコーティングする際の下地面となる反射防止膜8の親水性を高めることができる。従って、処理液90を適正に塗布することができるので、第1レンズ面11aを親水膜9によって適正にコーティングすることができる。また、第1レンズ面11aは、曲率半径が10mm以上、かつ、15mm以下の凸状の球面であるため、第1レンズ面11aにプラズマ処理を行う場合でも、第1レンズ面11aの全域にプラズマ処理を行いやすい。
[他の実施形態]
 上記実施形態では、第1レンズ面11aに反射防止膜8が形成されているため、反射防止膜8の物体側Laの面に親水膜9を形成したが、第1レンズ面11aに反射防止膜8が形成されておらず、第1レンズ面11aに親水膜9を直接、コーティングする場合に本発明を適用してもよい。
 また、上記実施形態では、5群6枚のレンズ構成を有するレンズユニット1に本発明を適用したが、3群3枚、4群4枚、5群6枚、あるいは6群7枚のレンズ構成等を有するレンズユニット1に本発明を適用してもよく、レンズ構成やレンズ枚数に限定されない。
 上記実施形態では、機能膜が親水膜であって、機能膜が塗布される部材が第1レンズ11であって、機能膜が塗布される部材の第1面が第1レンズ11の第1レンズ面11aであったが、レンズ以外の透光性部材、例えばレンズユニットを覆う透光性のカバー部材等に機能膜をコーティングする場合に本発明を適用してもよい。また、機能膜として親水膜をコーティングする場合に限らず、撥水膜や保護膜等を機能膜としてコーティングする場合に本発明を適用してもよい。
1…レンズユニット、7…ホルダ、8…反射防止膜、9…親水膜、10…広角レンズ、11…第1レンズ、11a…第1レンズ面、11b…第2レンズ面、11c…フランジ部、11e…有効領域、12…第2レンズ、13…第3レンズ、14…第4レンズ、15…第5レンズ、16…第6レンズ、70…第1レンズ保持用筒部、75…カシメ部、90、95…処理液、100…処理槽、110…側面部、111…第1面、112…第2面、115…最外周面、116…第1側面部、117…第2側面部、118…連結面、119…外周側端部、200…チャッキングヘッド、L…光軸、L0…軸線、P…プラズマ、La…物体側、Lb…像側、ST1…プラズマ照射工程、ST2…搬送工程、ST3…浸漬工程、ST4…引き上げ工程、ST5…脱液工程

Claims (9)

  1.  透光性部材の一方面に機能膜をコーティングするコーティング方法において、
     前記機能膜を形成するための処理液に前記一方面を浸漬する浸漬工程と、
     前記一方面を前記処理液から引き上げる引き上げ工程と、
     前記一方面を下向きにした状態で、前記一方面を通って前記一方面に交差する軸線周りに前記透光性部材を回転させて余剰な処理液を遠心力によって前記一方面から離脱させる脱液工程と、
     前記一方面に塗布された前記処理液を乾燥させて前記機能膜とする乾燥工程と、
     を有することを特徴とするコーティング方法。
  2.  請求項1に記載のコーティング方法において、
     前記透光性部材は、レンズであり、
     前記一方面は第1レンズ面であり、
     前記機能膜は、親水膜であることを特徴とするコーティング方法。
  3.  請求項2に記載のコーティング方法において、
     前記脱液工程では、前記レンズの中心光軸周りに前記レンズを回転させることを特徴とするコーティング方法。
  4.  請求項2または3に記載のコーティング方法において、
     前記親水膜をコーティングする前に前記第1レンズ面側から前記レンズにプラズマ処理を行うことを特徴とするコーティング方法。
  5.  請求項2から4までの何れか一項に記載のコーティング方法において、
     前記第1レンズ面には反射防止膜が形成されており、
     前記反射防止膜の表面に前記親水膜をコーティングすることを特徴とするコーティング方法。
  6.  請求項2から5までの何れか一項に記載のコーティング方法において、
     前記第1レンズ面は凸曲面であることを特徴とするコーティング方法。
  7.  請求項5に記載のコーティング方法において、
     前記レンズは、前記第1レンズ面とは反対側の第2レンズ面と前記第1レンズ面との間にフランジ部を備え、
     前記フランジ部は、前記第1レンズ面の外縁から前記第2レンズ面側に延在する第1側面部と、前記第1側面部より前記第2レンズ面側、かつ、前記第1側面部より径方向外側で前記第1レンズ面側から前記第2レンズ面側に向けて延在する第2側面部と、前記第1側面部の前記第2レンズ面側の端部と前記第2側面部の前記第1レンズ面側の端部とを繋ぐ連結面と、を有し、
     前記浸漬工程では、前記第1レンズ面の有効領域より径方向外側、かつ、前記第1側面部より径方向内側まで前記処理液に浸漬することを特徴とするコーティング方法。
  8.  請求項7に記載のコーティング方法において、
     前記親水膜をコーティングする前に、前記第1レンズ面側の全域、および前記第1側面部のうち、前記第1レンズ面側の端部にプラズマ処理を行うことを特徴とするコーティング方法。
  9.  請求項2から8までの何れか一項に記載のコーティング方法において、
     前記親水膜は、酸化シリコンの粒子、および酸化チタン粒子を含むことを特徴とするコーティング方法。
PCT/JP2019/040158 2018-10-31 2019-10-11 コーティング方法 WO2020090417A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-204773 2018-10-31
JP2018204773A JP2020071359A (ja) 2018-10-31 2018-10-31 コーティング方法

Publications (1)

Publication Number Publication Date
WO2020090417A1 true WO2020090417A1 (ja) 2020-05-07

Family

ID=70462276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/040158 WO2020090417A1 (ja) 2018-10-31 2019-10-11 コーティング方法

Country Status (2)

Country Link
JP (1) JP2020071359A (ja)
WO (1) WO2020090417A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023189574A1 (ja) * 2022-03-31 2023-10-05 ニデックインスツルメンツ株式会社 レンズユニット
WO2023189575A1 (ja) * 2022-03-31 2023-10-05 ニデックインスツルメンツ株式会社 レンズユニット

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006313312A (ja) * 2005-04-08 2006-11-16 Murakami Corp 光学装置、防曇装置および防曇ミラー装置
JP2009265473A (ja) * 2008-04-28 2009-11-12 Konica Minolta Opto Inc レンズ、撮像レンズ及び撮像装置
WO2013115159A1 (ja) * 2012-01-31 2013-08-08 Hoya株式会社 眼鏡レンズの製造方法、およびレンズ保持具
JP2014237586A (ja) * 2014-08-13 2014-12-18 Hoya株式会社 車載カメラ用レンズ
JP2015231216A (ja) * 2014-06-06 2015-12-21 株式会社タムロン 光学ユニット及び車載用撮像装置
WO2018079638A1 (ja) * 2016-10-28 2018-05-03 パナソニックIpマネジメント株式会社 カバー部材、カメラ、及び、カバー部材の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006313312A (ja) * 2005-04-08 2006-11-16 Murakami Corp 光学装置、防曇装置および防曇ミラー装置
JP2009265473A (ja) * 2008-04-28 2009-11-12 Konica Minolta Opto Inc レンズ、撮像レンズ及び撮像装置
WO2013115159A1 (ja) * 2012-01-31 2013-08-08 Hoya株式会社 眼鏡レンズの製造方法、およびレンズ保持具
JP2015231216A (ja) * 2014-06-06 2015-12-21 株式会社タムロン 光学ユニット及び車載用撮像装置
JP2014237586A (ja) * 2014-08-13 2014-12-18 Hoya株式会社 車載カメラ用レンズ
WO2018079638A1 (ja) * 2016-10-28 2018-05-03 パナソニックIpマネジメント株式会社 カバー部材、カメラ、及び、カバー部材の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023189574A1 (ja) * 2022-03-31 2023-10-05 ニデックインスツルメンツ株式会社 レンズユニット
WO2023189575A1 (ja) * 2022-03-31 2023-10-05 ニデックインスツルメンツ株式会社 レンズユニット

Also Published As

Publication number Publication date
JP2020071359A (ja) 2020-05-07

Similar Documents

Publication Publication Date Title
JP6080299B2 (ja) 光学部材およびその製造方法
WO2020090417A1 (ja) コーティング方法
JP5466499B2 (ja) 眼用レンズの処理方法
JP4408859B2 (ja) トリミングに適切なレンズの処理方法
JP6786248B2 (ja) 光学素子およびその製造方法
JP6910184B2 (ja) 広角レンズユニットおよび車載カメラ
US20230384483A1 (en) Lens unit
US10466389B2 (en) Optical element, manufacturing method thereof, and optical apparatus
CN107229086B (zh) 光学构件及其制造方法
JP2006527385A5 (ja)
JP2010269957A (ja) 光学素子およびそれを有する光学系
JP2010054827A (ja) 光学素子及び該光学素子の製造方法
WO2020090416A1 (ja) レンズユニット
JP2013114103A (ja) 光学系および光学機器
WO2019058742A1 (ja) 膜付きレンズ、レンズユニットおよびカメラモジュール
US10698136B2 (en) Optical member and method for manufacturing the same
WO2015182276A1 (ja) 親水性部材およびその製造方法並びに親水性部材のメンテナンス方法
JP2020122912A (ja) 膜付きレンズ、レンズユニットおよびカメラモジュール
JP2010281877A (ja) 光学素子及びそれを有する光学系
JP2015169874A (ja) 光学素子および光学系、並びに光学素子の製造方法
JP5311944B2 (ja) 光学素子及びそれを有する光学系
JP2020181073A (ja) 膜付きレンズ、レンズユニットおよびカメラモジュール
JP2002107597A (ja) レンズ鏡筒及びその製造方法
JP2019159174A (ja) 膜付きレンズ、レンズユニットおよびカメラモジュール
CN111095039A (zh) 显微镜物镜和具有这样的物镜的显微镜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19878545

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19878545

Country of ref document: EP

Kind code of ref document: A1