WO2020088549A1 - 一种天线校正方法及装置 - Google Patents

一种天线校正方法及装置 Download PDF

Info

Publication number
WO2020088549A1
WO2020088549A1 PCT/CN2019/114450 CN2019114450W WO2020088549A1 WO 2020088549 A1 WO2020088549 A1 WO 2020088549A1 CN 2019114450 W CN2019114450 W CN 2019114450W WO 2020088549 A1 WO2020088549 A1 WO 2020088549A1
Authority
WO
WIPO (PCT)
Prior art keywords
antennas
correction
terminal devices
subcarriers
subcarrier
Prior art date
Application number
PCT/CN2019/114450
Other languages
English (en)
French (fr)
Inventor
宋富强
谢尔盖坦波夫斯基
杜多洛夫谢尔盖•尼古拉耶维奇
田铅柱
李翔麟
肖宇翔
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2020088549A1 publication Critical patent/WO2020088549A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/21Monitoring; Testing of receivers for calibration; for correcting measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/084Equal gain combining, only phase adjustments
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/086Weighted combining using weights depending on external parameters, e.g. direction of arrival [DOA], predetermined weights or beamforming

Definitions

  • the present application relates to the field of wireless communication technology, and in particular, to an antenna correction method and device.
  • a base station in a communication system has multiple antennas.
  • the base station is based on an antenna array composed of multiple antennas, and realizes communication with terminal devices through massive MIMO technology and beamforming (BF) technology, thereby greatly increasing communication system traffic.
  • massive MIMO technology and beamforming (BF) technology thereby greatly increasing communication system traffic.
  • the base station assigns a corresponding BF weight to each antenna in the antenna array, and adjusts the received signal strength or transmitted signal strength of each antenna through the BF weight to achieve the antenna array in a specific direction Receive and send.
  • the accuracy of the BF weight depends on the calibration of the antenna array, and the calibration of the antenna array can make the antennas have the same receiving gain and transmitting gain to a large extent.
  • a fixed far-field calibration antenna is provided in the communication system.
  • the far-field calibration antenna generates a specific calibration signal after a series of complex operations and sends it to the base station.
  • the base station receives the calibration signal sent by the far-field calibration antenna, and calibrates the gain of each antenna in the antenna array according to the calibration signal.
  • the embodiments of the present application provide an antenna correction method and device, which are used to reduce the complexity of the communication system while correcting the antenna.
  • an embodiment of the present application provides an antenna correction method, including: a network device determining one or more of the M terminal devices according to the uplink pilot signals respectively sent by the M terminal devices received by the N antennas of the network device Correction subcarriers; one or more correction subcarriers of M terminal devices are obtained based on subcarriers carrying uplink pilot signals sent by M terminal devices; where N is greater than 1, M is greater than 1; for the first syndrome Carrier, the network device determines the reception result of the first correction subcarrier of the first terminal device by N antennas according to the uplink pilot signal sent by the first terminal device, and the The reception result includes the amplitude information and the phase information of the first correction subcarrier when the N antennas respectively receive the uplink pilot signals sent by the first terminal device; the first terminal device is any terminal device among the M terminal devices; One correction subcarrier is any one of one or more correction subcarriers; the network device performs one or more correction subcarriers on M terminal devices according to N antennas Reception result, determining an
  • the network device uses the uplink pilot signal sent by the terminal device to obtain the uplink correction parameters corresponding to the N antennas in the network device, respectively.
  • a fixed far-field calibration antenna is not required, which reduces the complexity of the communication system.
  • the network device determines the uplink correction parameters corresponding to the N antennas according to the reception results of the N antennas for one or more correction subcarriers of the M terminal devices.
  • the reception result of one or more correction subcarriers of the M terminal devices and the obtained angle normalization coefficients corresponding to the M terminal devices respectively determine the uplink correction parameters corresponding to the N antennas.
  • the N antennas include reference antennas; the network device determines the N antennas based on the reception results of the N antennas for one or more correction subcarriers of the M terminal devices When corresponding to the uplink correction parameters, for the first correction subcarrier, the network device may determine the N antennas except the reference antenna according to the phase information in the reception results of the first correction subcarriers of the N terminal antennas for M terminal devices The phase errors of the external N-1 antennas relative to the reference antenna respectively; the network device determines the array row corresponding to the N antennas according to the phase errors of the N-1 antennas relative to the reference antenna and the coordinates corresponding to the N antennas, respectively Distribution error; the network device further determines the number of the N antennas to the M terminal devices according to the array arrangement errors corresponding to the determined N antennas and the reception results of the first correction subcarriers of the N antennas to the M terminal devices The error coefficient of the reception result of a correction subcarrier; according to the error coefficient of the reception
  • the embodiment of the present application may use the phase error and N of N-1 antennas relative to the reference antenna respectively Coordinates corresponding to the antennas respectively, to determine the array arrangement error corresponding to the N antennas respectively, so that when performing antenna correction, the array arrangement error can be reduced to the N antennas receiving the first correction subcarriers of M terminal devices
  • the impact is beneficial to improve the accuracy of antenna correction.
  • the network device determines the N antennas according to the array arrangement errors corresponding to the N antennas and the reception results of the first correction subcarriers of the M terminal devices by the N antennas, respectively.
  • the BF weights can be shaped according to the preset beam of the reference antenna, the array arrangement errors corresponding to N antennas respectively, and N antenna pairs M
  • the receiving result of the first correction subcarrier of each terminal device determines the equivalent effective BF weights corresponding to N antennas respectively; the network device further determines the equivalent effective BF weights corresponding to N antennas and N antennas respectively
  • the corresponding preset BF weight determines the error coefficient of the reception result of the first correction subcarriers of M terminal devices by N antennas.
  • the network device determines the equivalent effective BF weight determined by the reception result of the first correction subcarriers of M terminal devices and the preset BF weight configured by the network device for N antennas Not the same.
  • the error coefficient of the reception result of the first correction subcarriers of the N antennas to the M terminal devices is determined by the equivalently effective BF weights and the preset BF weights corresponding to the N antennas, respectively, to eliminate the preset
  • the influence of the BF weight on the reception result of the first correction subcarrier of the terminal device can characterize the error of the antenna reception gain to a certain extent through the error coefficient.
  • the network device determines the equivalent effective BF weight corresponding to the N antennas according to the preset BF weight of the reference antenna and the array arrangement error corresponding to the N antennas respectively Value
  • the BF weight error corresponding to the N antennas can be determined according to the preset BF weight of the reference antenna and the array arrangement error corresponding to the N antennas respectively
  • the BF weight error of the antenna is used to indicate that the antenna is equivalently effective
  • the network device determines that the equivalent equivalent of the N antennas takes effect according to the BF weight error corresponding to the N antennas and the preset BF weight value of the reference antenna respectively BF weight.
  • the uplink pilot signal sent by the first terminal device is obtained after the first terminal device performs reciprocal arithmetic processing on the received downlink pilot signal sent by the network device; where , The uplink pilot signal and the downlink pilot signal are carried on the same correction subcarrier; after the network device determines the error coefficient of the reception results of the first correction subcarriers of the N terminal antennas to the M terminal devices, the first correction For subcarriers, the network device determines the N antennas for the M terminal devices based on the error coefficients of the N antennas receiving the first corrected subcarriers of the M terminal devices and the downlink pilot signal carried on the first subcarrier The error coefficient of the transmission result of the first correction subcarrier; the network device determines the downlink correction parameters corresponding to the N antennas respectively according to the error coefficient of the transmission result of one or more correction subcarriers of the N antennas to the M terminal devices.
  • an embodiment of the present application further provides an antenna correction device, the device includes: a determination unit and a processing unit; wherein, the determination unit is configured to receive uplink pilot signals respectively sent by M terminal devices received by N antennas , Determine one or more correction subcarriers of the M terminal devices; one or more correction subcarriers of the M terminal devices are obtained based on the subcarriers carrying the uplink pilot signals sent by the M terminal devices; where N is greater than 1, M is greater than 1; the determining unit is also used to determine the reception result of the first correction subcarrier of the first terminal device by the N antennas according to the uplink pilot signal sent by the first terminal device for the first correction subcarrier, The reception results of the first correction subcarriers of the first terminal device by the N antennas include amplitude information and phase information of the first correction subcarriers when the N antennas respectively receive the uplink pilot signals sent by the first terminal device;
  • the terminal device is any one of the M terminal devices; the first correction subcarrier is any one of one or more correction
  • the processing unit is specifically configured to: when the N pilot antennas receive the uplink pilot signals respectively sent by the M terminal devices, the angle of arrival AOA of the uplink pilot signals obtains M Angle normalization coefficients corresponding to each terminal device; determine N antennas based on the reception results of N antennas for one or more correction subcarriers of M terminal devices and the angle normalization coefficients corresponding to M terminal devices, respectively Corresponding upstream correction parameters.
  • the N antennas include reference antennas; the processing unit is specifically configured to: for the first correction subcarrier, according to the N correction antennas for the first correction subcarriers of M terminal devices
  • the phase information in the reception results of N determines the phase error of the N-1 antennas with respect to the reference antenna except for the reference antenna; according to the phase error of the N-1 antennas with respect to the reference antenna and N
  • the coordinates corresponding to the antennas respectively determine the array arrangement errors corresponding to the N antennas respectively;
  • the network device according to the array arrangement errors corresponding to the N antennas and the results of the N antennas receiving the first correction subcarriers of M terminal devices, Determine the error coefficients of the reception results of the first correction subcarriers of M terminal devices by N antennas; determine the N antennas according to the error coefficients of the reception results of one or more correction subcarriers of M terminal devices by N antennas Corresponding upstream correction parameters.
  • the processing unit is specifically configured to: shape the BF weight according to the preset beam of the reference antenna, the array arrangement error corresponding to the N antennas respectively, and the N antenna pairs M
  • the receiving result of the first correction subcarrier of the terminal device determines the equivalent effective BF weights corresponding to the N antennas respectively; according to the equivalent effective BF weights corresponding to the N antennas and the presets corresponding to the N antennas respectively
  • the BF weight determines the error coefficient of the reception results of the first correction subcarriers of M terminal devices by N antennas.
  • the processing unit is specifically configured to determine the BF weights corresponding to the N antennas according to the preset BF weights of the reference antennas and the array arrangement errors corresponding to the N antennas, respectively Value error; the BF weight error of the antenna is used to characterize the error of the equivalent BF weight of the antenna relative to the preset BF weight of the reference antenna; according to the BF weight error corresponding to the N antennas and the preset of the reference antenna, respectively The BF weight value determines the equivalent effective BF weight value corresponding to the N antennas respectively.
  • the uplink pilot signal sent by the first terminal device is obtained after the first terminal device performs reciprocal arithmetic processing on the received downlink pilot signal; the uplink pilot signal and The downlink pilot signal is carried on the same correction subcarrier; the processing unit is further used to: for the first correction subcarrier, an error coefficient according to the reception result of the first correction subcarrier of M terminal devices by N antennas for the first correction subcarrier, and bearer For the downlink pilot signal of the first subcarrier, determine the error coefficient of the transmission result of the first correction subcarriers of the N antennas to the M terminal devices; according to the N antennas, one or more correction subcarriers of the M terminal devices The error coefficient of the transmission result determines the downlink correction parameters corresponding to the N antennas respectively.
  • an embodiment of the present application further provides an apparatus, including: a processor and a memory; wherein, the memory is used to store program instructions; the processor is used to call the program instructions stored in the memory to execute the first The method provided in any aspect.
  • an embodiment of the present application further provides a computer-readable storage medium that stores computer-executable instructions, and the computer-executable instructions are used to cause the computer to execute as provided in any one of the first aspects Methods.
  • Figure 1 is a schematic diagram of a communication system
  • FIG. 2 is a schematic diagram of a communication relationship between a network device and a terminal device
  • FIG. 3 is a schematic flowchart of an antenna correction method provided by an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a feasible antenna correction method provided by an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of a downlink correction method provided by an embodiment of this application.
  • FIG. 6 is a schematic diagram of an apparatus provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of an antenna correction device provided by an embodiment of the present application.
  • LTE long term evolution
  • NR new generation radio access technology
  • 6G system future communication system
  • exemplary is used as an example, illustration or explanation. Any embodiment or design described in this application as an “example” should not be construed as being more preferred or advantageous than other embodiments or design. Rather, the term usage example is intended to present concepts in a concrete way.
  • the network architecture and business scenarios described in the embodiments of the present application are intended to more clearly explain the technical solutions of the embodiments of the present application, and do not constitute a limitation on the technical solutions provided by the embodiments of the present application. With the evolution of the architecture and the emergence of new business scenarios, the technical solutions provided in the embodiments of the present application are also applicable to similar technical problems.
  • the communication system shown in FIG. 1 is taken as an example to describe in detail the communication system applicable to the embodiments of the present application.
  • the communication system includes a network device 101 and multiple terminal devices (102, 103, and 104).
  • the network device 101 may be configured with multiple antennas, and the terminal devices 102, 103, and 104 may also be configured with multiple antennas. .
  • the network device 101 is a device with wireless transceiver function or a chip that can be installed in the device.
  • the device includes but is not limited to: evolved Node B (evolved Node B, eNB), radio network controller (radio network controller, RNC) ), Node B (Node B, NB), Base Station Controller (BSC), Base Transceiver Station (BTS), Home Base Station (eg, Home Evolved Node B, or Home Node B, HNB), Baseband unit (BBU), access point (AP), wireless relay node, wireless backhaul node, transmission point (transmission and reception point) in wireless fidelity (WIFI) system Or transmission point (TP), etc., can also be 5G, such as NR, gNB in the system, or, transmission point (TRP or TP), one or a group of antennas (including multiple antenna panels) of the base station in the 5G system
  • the panel or, may also be a network node that constitutes a gNB or a transmission point, such
  • the terminal devices 102, 103, and 104 may also be referred to as user equipment (UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, Wireless communication equipment, user agent or user device.
  • UE user equipment
  • the terminal devices in the embodiments of the present application may be mobile phones, tablet computers, computers with wireless transceiver functions, virtual reality (virtual reality, VR) terminal devices, and augmented reality (augmented reality, AR) terminals.
  • VR virtual reality
  • AR augmented reality
  • Wireless terminals in equipment industrial control (industrial control), wireless terminals in self-driving (self-driving), wireless terminals in remote medical (remote medical), wireless terminals in smart grid (smart grid), transportation safety ( Wireless terminals in transportation, wireless terminals in smart cities, wireless terminals in smart homes, etc.
  • the embodiments of the present application do not limit the application scenarios.
  • a terminal device having a wireless transceiver function and a chip that can be provided in the terminal device are collectively referred to as a terminal device.
  • the network device 101 includes N antennas (1011, 1012,..., 101N), N is greater than 1, and the network device 101 simultaneously receives the uplink signals sent by the terminal device 102 through the N antennas, and, The above N antennas simultaneously send downlink signals to the terminal device 102.
  • the network device 101 configures a corresponding BF weight for each antenna according to the location information of the terminal device 102 to adjust the amplitude and the downlink signal sent by each antenna separately
  • the phase makes the downlink signals sent by the N antennas shaped in the direction of the terminal device 102, thereby improving the strength of the downlink signal received by the terminal device 102.
  • the communication between other terminal devices and the network device in the communication system is similar to the terminal device 102, and no further details are provided in the embodiments of the present application.
  • the beamforming effect between the network device 101 and the terminal device 102 accurately adjusts the amplitude and phase of the communication signal transmitted by the antenna based on the BF weight.
  • the beamforming effect generated by the BF weights needs to be further improved.
  • the so-called transmission gain is used to indicate that when the network device 101 transmits a downlink signal, the transmission channel inside the antenna amplifies the downlink signal transmitted by the antenna.
  • the so-called reception gain is used to indicate that when the network device 101 receives an uplink signal, the reception channel inside the antenna amplifies the uplink signal received by the antenna.
  • the network device 101 needs to calibrate the N antennas to eliminate the adverse effect of the difference between the reception gain and the transmission gain on the beamforming caused by the N antennas.
  • the communication system further includes a far-field calibration antenna 105.
  • the far-field calibration antenna 105 may periodically send a calibration signal satisfying a preset rule to the network device 101 and send it to the network device 101.
  • the network device 101 receives the calibration signals sent by the far-field calibration antenna 105 through N antennas, and acquires phase information and amplitude information of the calibration signals received by the N antennas, respectively.
  • the network device 101 may also determine, according to a preset rule, ideal phase information and ideal amplitude information of the N antennas respectively receiving the calibration signal.
  • the network device 101 can determine N pieces of information based on the phase information and amplitude information of the calibration signal actually received by each antenna of the N antennas, and the ideal phase information and ideal amplitude information of each antenna receiving the calibration signal The receiving error of each antenna in the antenna, and then determining the uplink correction coefficients corresponding to the N antennas respectively.
  • the uplink correction parameter is used to correct the receiving gain of the antenna receiving channel, so that the corrected N antennas have the same receiving gain.
  • the far-field correction scheme shown in FIG. 1 requires that a far-field calibration antenna 105 is additionally provided in the communication system, which increases the complexity of the communication system, thereby increasing the operation and maintenance cost of the communication system.
  • an embodiment of the present application provides an antenna correction method that passes multiple terminal devices (terminal device 102, terminal device 103, and terminal device) under network device 101 104)
  • the transmitted uplink pilot signal realizes the correction of multiple antennas in the network device 101, and the far-field calibration antenna 105 can be omitted from the communication system, thereby reducing the complexity of the communication system.
  • FIG. 3 is a schematic flowchart of an antenna correction method provided by an embodiment of the present application. As shown in FIG. 3, the method mainly includes the following steps:
  • the network device determines one or more correction subcarriers of the M terminal devices according to the uplink pilot signals respectively sent by the M terminal devices received by the N antennas of the network device; wherein, one or more of the M terminal devices The correction subcarrier is obtained based on the subcarriers carrying the uplink pilot signals sent by M terminal devices; where N is greater than 1, and M is greater than 1.
  • the M terminal devices are terminal devices that have a wireless communication connection with the network device.
  • M may be either the preset number of terminal devices or the number of terminal devices currently in wireless communication connection with the network device.
  • the value of M can be 3.
  • the uplink signal sent by the terminal device 102 to the network device 101 includes an uplink pilot signal, and the uplink pilot signal is located at one or more frequency points in the frequency domain
  • the uplink pilot signal sent by the terminal device 102 is located at the frequency point f1 and the frequency point f2 in the frequency domain.
  • the network device 101 may determine the uplink pilot signal and the frequency or frequencies of the uplink pilot signal in the uplink signal according to the communication protocol.
  • the uplink pilot signal sent by the terminal device 102 is located at the frequency point f1 and the frequency point f2, thereby obtaining the subcarrier 1 corresponding to the frequency point f1 and the subcarrier 2 corresponding to the frequency point f2, wherein Where the center frequency point is frequency point f1 and the center frequency point of subcarrier 2 is frequency point f2, then the subcarriers corresponding to terminal device 102 include subcarrier 1 and subcarrier 2.
  • the network device 101 can determine the terminal device 102, the terminal device 103, and the terminal device 104
  • the corrected subcarriers are subcarrier 1, subcarrier 2, subcarrier 3, and subcarrier 4.
  • the network device determines the reception result of the first correction subcarrier of the first terminal device by N antennas according to the uplink pilot signal sent by the first terminal device, and the N antennas
  • the reception result of the device includes the amplitude information and phase information of the first correction subcarrier when the N antennas respectively receive the uplink pilot signals sent by the first terminal device;
  • the first terminal device is any one of the M terminal devices
  • the first correction subcarrier is any one of one or more correction subcarriers corresponding to the M terminal devices.
  • the network device can determine the amplitude information and phase information of subcarrier 1 when N antennas receive the uplink pilot signal sent by terminal device 102 on subcarrier 1, This is the result of the N antennas receiving the subcarrier 1 of the terminal device 102. Understandably, taking the terminal device 103 as an example, since the uplink pilot signal of the terminal device 103 is carried on subcarrier 2 and subcarrier 4, but not carried on subcarrier 1, the network device cannot receive it on subcarrier 1. For the uplink pilot signal of the terminal device 103, at this time, it can be considered that the reception result of the subcarrier 1 of the terminal device 103 by the N antennas is 0.
  • the network device determines the uplink correction parameters corresponding to the N antennas according to the results of the N antennas receiving one or more correction subcarriers of the M terminal devices.
  • the reception result of subcarrier 1 of terminal device 102 by N antennas is affected by the reception gain of the antenna. Therefore, network device 101 After the reception results of one or more correction subcarriers of the M terminal devices are determined, according to the reception results of the M terminal devices, after a certain operation, the influence of the reception gain of the antenna on the reception result can be determined, and then determined Correction parameters corresponding to N antennas respectively.
  • the network device uses the uplink pilot signal sent by the terminal device to obtain uplink correction parameters corresponding to the N antennas in the network device, respectively.
  • the antenna correction method shown in FIG. 3 can only use the upstream service channel to achieve far-field correction, without requiring a complicated coupling network, without having to go out and make a meter, and at a lower cost.
  • the carrier wave mainly includes the following steps:
  • Step 1 For any one of the M terminal devices, such as the terminal device 102, construct a normalized covariance matrix according to the reception results of the first correction subcarriers of the terminal device 102 by the N antennas.
  • Step 2 Perform feature root decomposition on the normalized covariance matrix to obtain several feature roots of the normalized covariance matrix.
  • Step 3 Determine the largest feature root from the obtained several feature roots, and then determine the feature vector corresponding to the largest feature root, and normalize the feature vector.
  • the feature vector may be a column vector including N elements.
  • Step 4 Repeat steps 1 to 3 until the normalized feature vectors corresponding to the M terminal devices are obtained, so as to construct a feature matrix composed of the M normalized feature vectors.
  • the obtained feature matrix is an M ⁇ N matrix.
  • Step 5 Use the obtained feature matrix to calculate and obtain the uplink correction parameters corresponding to the N antennas respectively.
  • the reception results of the first correction subcarriers of the N antennas for the M terminal devices are converted into a characteristic matrix, so that the reception results of the first correction subcarriers of the M terminal devices by the N antennas can be calculated, Furthermore, according to the reception results of one or more correction subcarriers of the M terminal devices by the N antennas, the uplink correction parameters corresponding to the N antennas respectively are obtained.
  • the reception results of the correction subcarriers of the terminal equipment by the N antennas are also affected by the angle of arrival (AOA) of the uplink pilot signal of the terminal equipment.
  • AOA angle of arrival
  • the network device may When the N antennas receive the uplink pilot signals sent by M terminal devices, the angle of arrival of the uplink pilot signals obtains the angle normalization coefficients corresponding to the M terminal devices respectively; the network device uses M terminal devices according to the N antennas The received result of one or more correction subcarriers and the angle normalization coefficients corresponding to the M terminal devices respectively determine the uplink correction parameters corresponding to the N antennas.
  • the network device 101 affects the arrival angle of the uplink pilot signals of the terminal device 102, the terminal device 103, and the terminal device 104 and the terminal device 102, the terminal device 103, and the terminal device 104.
  • the network device 101 may determine the angle normalization coefficients corresponding to the terminal device 102, the terminal device 103, and the terminal device 104 according to the arrival angles of the uplink pilot signals of the terminal device 102, the terminal device 103, and the terminal device 104, respectively.
  • the angle normalization coefficient corresponding to the terminal device is a vector including N elements, and the N elements correspond to N antennas of the network device, respectively.
  • the network device may determine one terminal device from M terminal devices as a reference terminal, and compare the AOA of the uplink pilot signals of other terminals of the M terminal devices except the reference terminal with respect to the Normalize with reference to the AOA of the terminal.
  • the network device 101 may determine a terminal device from the terminal device 102, the terminal device 103, and the terminal device 104, for example, the terminal device 102 serves as a reference terminal, and uses the AOA of the upstream pilot signals of the terminal device 103 and the terminal device 104. , The AOA of the upstream pilot signal of the terminal device 102 is normalized.
  • the uplink pilot signals of different AOAs can be normalized on the same AOA, thereby reducing the difference in the AOA of the uplink pilot signals of different terminal devices, and receiving N antennas
  • the influence caused by the reception results of the correction subcarriers of different terminal devices is beneficial to improve the accuracy of antenna correction.
  • the reception results of the first correction subcarriers of the M terminal devices by the N antennas include amplitude information and phase information of the first correction subcarriers.
  • the network device may determine one of the N antennas as a reference antenna, and determine the N antennas according to the phase information in the reception results of the first corrected subcarriers of the N antennas for the M terminal devices
  • the phase errors of the N-1 antennas except for the reference antenna are relative to the reference antenna. As shown in FIG.
  • the network device 101 determines that the antenna 1012 is a reference antenna, and determines the antenna 1011 and the antennas 1013 to 101N relative to the antenna according to the phase information in the reception results of the first correction subcarriers of M terminal devices by N antennas 1012 phase error.
  • the network device may determine the array arrangement errors corresponding to the N antennas according to the phase errors of the N-1 antennas other than the reference antenna and the coordinates corresponding to the N antennas, respectively.
  • the corresponding coordinates of the N antennas can be preset, for example, the position of the reference antenna can be set as the starting coordinate, such as (0,0), and then the remaining N-1 is obtained according to the array arrangement rule of the N antennas The coordinates corresponding to each antenna. Due to factors such as manufacturing process, there is an error between the actual position of the antenna and the coordinates set by the network device for the N antennas, and this error is the array arrangement error.
  • the embodiment of the present application may use the phase error and N of N-1 antennas relative to the reference antenna respectively Coordinates corresponding to the antennas respectively, to determine the array arrangement error corresponding to the N antennas respectively, so that when performing antenna correction, the array arrangement error can be reduced to the N antennas receiving the first correction subcarriers of M terminal devices
  • the impact is beneficial to improve the accuracy of antenna correction.
  • the network device may also consider the aforementioned angle normalization coefficients to obtain the array arrangement errors more accurately.
  • the network device may determine according to the array arrangement errors corresponding to the N antennas and the reception results of the N antennas for one or more correction subcarriers of the M terminal devices The error coefficient of the reception result of one or more correction subcarriers of M terminal devices by N antennas.
  • an array arrangement error calculation is performed once to improve the correction accuracy.
  • the above-mentioned angle normalization coefficient may also be considered, that is, the network device may arrange the error, angle normalization coefficient, and N antennas for the M terminal devices according to the array arrangement corresponding to the N antennas, respectively.
  • the reception result of the first correction subcarrier determines the error coefficient of the reception result of the first correction subcarrier of the N antennas for the M terminal devices.
  • the network device may determine the uplink correction parameters corresponding to the N antennas according to the error coefficients of the N antennas receiving one or more correction subcarriers of the M terminal devices.
  • the network device introduces the array arrangement error (and angle normalization coefficient) when calculating the error coefficient, thereby reducing the influence of the array arrangement error and the upstream pilot signal AOA on the reception result of the terminal device. Then, when different antennas receive the uplink pilot signal of the same terminal device, the phase information and amplitude information of the first correction subcarrier received by the different antennas are also affected by the antenna preset BF weight and the antenna reception gain.
  • the network device determines N antenna pairs to M based on the array arrangement errors corresponding to N antennas and the first correction subcarrier reception result of N antennas for M terminal devices, respectively.
  • the error coefficient of the first correction subcarrier reception result of the terminal device the first BF weight of the reference antenna, the array arrangement error corresponding to the N antennas respectively, and the first correction of the M terminal devices by the N antennas
  • the receiving result of the subcarrier determines the equivalent effective BF weight corresponding to the N antennas respectively.
  • the network device determines the error of the reception results of the first correction subcarriers of the M terminal devices by the N antennas according to the equivalent effective BF weights corresponding to the N antennas and the preset BF weights corresponding to the N antennas, respectively. coefficient.
  • the network device determines the equivalent effective BF weight determined by the reception result of the first correction subcarriers of M terminal devices and the preset BF weight configured by the network device for N antennas Not the same.
  • the error coefficient of the reception result of the first correction subcarriers of the N antennas to the M terminal devices is determined by the equivalently effective BF weights and the preset BF weights corresponding to the N antennas, respectively, to eliminate the preset
  • the influence of the BF weight on the reception result of the first correction subcarrier of the terminal device can characterize the error of the antenna reception gain to a certain extent through the error coefficient.
  • the embodiment of the present application also provides a method for determining the equivalently effective BF weight.
  • the network device may determine, according to the preset BF weight of the reference antenna and the array arrangement error (and / or angle normalization factor) corresponding to the N antennas, the corresponding BF weight error, where the BF weight error of the antenna is used to characterize the error of the equivalent BF weight of the antenna relative to the preset BF weight of the reference antenna. After that, the network device determines the actually effective BF weights corresponding to the N antennas according to the BF weight errors corresponding to the N antennas and the preset BF weights of the reference antennas, respectively.
  • FIG. 4 provides a schematic flowchart of a feasible antenna correction method, as shown in FIG. 4, where Rx1 is the receiving channel of antenna 1 and Rx2 is the receiving channel of antenna 2, ... , RxN is the receiving channel of antenna N.
  • Rx1 is the receiving channel of antenna 1
  • Rx2 is the receiving channel of antenna 2
  • RxN is the receiving channel of antenna N.
  • S401 N antennas of the network device receive the uplink signal sent by the terminal device.
  • the network device performs Fourier transform on the received uplink signal to obtain the frequency domain expression x of the uplink signal. Extract the upstream data in the upstream signal and process it. And, the pilot parts (pilot Rx1, pilot Rx2, ..., pilot RXN) of the uplink signals received by the N antennas are obtained.
  • the pilot part may include the uplink pilot signal of one or more terminal devices of the M terminal devices at any time, for example, at time t1, it may include the uplink of the terminal device 102, the terminal device 103, and the terminal device 104 in FIG.
  • the pilot signal may include only the uplink pilot signal of the terminal device 102 in FIG. 1 at time t2.
  • the uplink pilot signal includes but is not limited to a sounding reference signal (SRS), a demodulation reference signal (DMRS), and so on.
  • S403 Acquire characteristic matrices corresponding to the K correction subcarriers according to the uplink pilot signals of M terminal devices.
  • S406 Synthesize K error coefficients to determine the uplink correction parameters corresponding to the N antennas respectively.
  • the correction of the antenna receiving channel can be achieved.
  • the embodiments of the present application also provide a technical solution for correcting the transmission channel of the antenna.
  • M terminal devices may perform reciprocal arithmetic processing on the received downlink pilot signal sent by the network device.
  • the network device 101 in FIG. 1 may send instruction information to the terminal device 102, the terminal device 103, and the terminal device 104 to instruct the terminal device 102, the terminal device 103, and the terminal device 104 to perform a reciprocal operation on the received downlink pilot signal deal with.
  • the terminal device After performing reciprocal arithmetic processing on the downlink pilot signal, the terminal device sends the processed downlink pilot signal as an uplink pilot signal to the network device.
  • the terminal device uses the subcarrier carrying the downlink pilot signal as the subcarrier carrying the uplink pilot signal, and sends the uplink pilot signal to the network device.
  • the downlink pilot signal sent by the network device 101 received by the terminal device 102 is carried on subcarrier 1, then the terminal device 102 performs reciprocal arithmetic processing on the downlink pilot signal to obtain the uplink pilot signal. 1.
  • the uplink pilot signal is sent to the network device 101.
  • the network device may determine the error coefficient of the reception result of the one or more correction subcarriers of the M terminal devices by the N antennas. For any corrected subcarrier, for example, subcarrier 1, the network device may determine N according to the error coefficient of the reception result of subcarrier 1 of M terminal devices by N antennas, and the downlink pilot signal sent on subcarrier 1. The transmission result of sub-carrier 1 of M terminal devices by an antenna.
  • the downlink pilot signal carried by subcarrier 1 satisfies the following formula 1:
  • x dl is the downlink pilot signal sent by the network device received by the terminal device
  • h is the channel frequency response
  • t bs is the error coefficient of the transmission result of N antennas to the subcarrier 1 of M terminal devices
  • S dl is The downlink pilot signal sent on subcarrier 1 determined by the network device.
  • the terminal device performs reciprocal arithmetic processing on the downlink pilot signal carried on subcarrier 1, and obtains the uplink pilot signal as shown in Formula 2:
  • the terminal device sends the uplink pilot signal shown in formula 2 to the network device 101 on subcarrier 1, and the uplink pilot signal received by the network device on subcarrier 1 satisfies the following formula 3:
  • the network device may further determine the error coefficient of the reception result of the subcarrier 1 of the M terminal devices by the N antennas, the received uplink pilot signal carried on the subcarrier 1, and the load transmitted to one or more terminal devices
  • the downlink pilot signal of subcarrier 1 determines the error coefficient of the transmission result of subcarrier 1 of N antennas to M terminal devices. It can be understood that the error coefficient of the transmission result of the N antennas on the subcarrier 1 of the M terminal devices is for the entirety of the M terminal devices.
  • the network device sends the downlink pilot signal on the subcarrier 1 , The downlink pilot signal can be sent to only one or more of the M terminal devices.
  • the network device may determine the downlink correction parameters corresponding to the N antennas according to the error coefficients of the transmission results of the N antennas to one or more correction subcarriers of the M terminal devices.
  • FIG. 5 is a schematic flowchart of a downlink correction method provided by an embodiment of the present application. As shown in FIG. 5, the method mainly includes the following steps:
  • S501 The network device performs inverse Fourier transform processing on the downlink pilot signal, and sends the processed downlink pilot signal to the terminal device.
  • the terminal device receives the downlink pilot signal processed by the inverse Fourier transform, and performs Fourier transform processing to obtain the downlink pilot signal sent by the network device.
  • S503 The terminal device performs reciprocal arithmetic processing on the downlink pilot signal.
  • the terminal device uses the reciprocal processed downlink pilot signal as the uplink pilot signal, and sends it to the network device after inverse Fourier transform processing.
  • the network device receives the inverse Fourier transformed uplink pilot signal sent by the terminal device, and performs Fourier transform processing to obtain the uplink pilot signal.
  • the network device obtains the error coefficient of the reception result of one or more correction subcarriers of the M antenna devices by the N antennas according to the received upstream pilot signal, and then obtains the N antennas for the M terminal devices Error coefficients of the transmission result of one or more of the corrected subcarriers to obtain the downlink correction parameters corresponding to the N antennas respectively.
  • S507 Correct the transmission channels of the N antennas according to the downlink correction parameters corresponding to the N antennas respectively.
  • FIG. 6 it is a schematic diagram of an apparatus provided by an embodiment of the present application.
  • the apparatus 1000 may be a network device, or may be a system on chip or a chip, and may perform any of the embodiments An antenna correction method.
  • the device 1000 includes at least one processor 1001, a transceiver 1002, and optionally, a memory 1003.
  • the processor 1001, transceiver 1002, and memory 1003 are connected through a communication bus.
  • the processor 1001 may be a general-purpose central processing unit (CPU), a microprocessor, a specific ASIC, or one or more integrated circuits for controlling the execution of the program of the present invention.
  • CPU central processing unit
  • ASIC application specific integrated circuit
  • the communication bus may include a path to transfer information between the aforementioned devices.
  • the transceiver 1002 is used to communicate with other devices or communication networks.
  • the transceiver may be a communication interface, for example, a wired interface or a wireless interface, or a wifi interface, or the transceiver includes a radio frequency circuit.
  • the memory 1003 may be a ROM or other type of static storage device that can store static information and instructions, a RAM or other type of dynamic storage device that can store information and instructions, or an EEPROM, CD-ROM, or other optical disk storage, optical disk storage (Including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program code in the form of instructions or data structures and can be used by a computer Access to any other media, but not limited to this.
  • the memory 1003 may exist independently, and is connected to the processor 1001 through a communication bus.
  • the memory 1003 may also be integrated with the processor.
  • the memory 1003 is used to store program code for executing the solution of the present invention, and the processor 1001 controls the execution.
  • the processor 1001 is used to execute the application program code stored in the memory 1003.
  • the processor 1001 may include one or more CPUs, for example, CPU0 and CPU1 in FIG. 6.
  • the apparatus 1000 may include multiple processors, such as the processor 1001 and the processor 1008 in FIG. 6.
  • processors may be a single-core (single-CPU) processor or a multi-core (multi-CPU) processor, where the processor may refer to one or more devices, circuits, and / or A processing core for processing data (eg, computer program instructions).
  • the device may be used to implement any of the antenna correction methods provided in the above embodiments, and the related features may refer to the above, which will not be repeated here.
  • the present application may divide the functional modules of the device according to the above method examples.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above integrated modules may be implemented in the form of hardware or software function modules.
  • FIG. 7 shows a schematic diagram of an antenna correction device.
  • the antenna correction device 1100 may be a network device or a system-on-chip or chip involved in an embodiment of the present application.
  • the device includes a determination unit 1101 and a processing unit 1102. among them:
  • the determining unit 1101 is configured to determine one or more correction subcarriers of the M terminal devices according to the uplink pilot signals respectively sent by the M terminal devices received by the N antennas; one or more correction subcarriers of the M terminal devices It is obtained based on the subcarriers carrying the uplink pilot signals sent by the M terminal devices; where N is greater than 1, and M is greater than 1; the determining unit 1101 is also used for the first correction subcarrier and is sent according to the first terminal device
  • the uplink pilot signal determines the reception result of the first correction subcarrier of the first terminal device by the N antennas, and the reception result of the first correction subcarrier of the first terminal device by the N antennas includes that the N antennas receive the first
  • the uplink pilot signal sent by the terminal device the amplitude information and phase information of the first correction subcarrier
  • the first terminal device is any terminal device among the M terminal devices
  • the first correction subcarrier is one or more syndromes Any subcarrier in the carrier
  • the processing unit 1102 is used to determine that
  • the processing unit 1102 is specifically configured to: according to the N antennas receiving the uplink pilot signals sent by the M terminal devices, the angle of arrival AOA of the uplink pilot signals to obtain the M terminal devices respectively Corresponding angle normalization coefficients; according to the reception results of one or more correction subcarriers of M terminal devices by N antennas and the angle normalization coefficients corresponding to M terminal devices respectively, determine the uplink corresponding to N antennas respectively Correct the parameters.
  • the N antennas include reference antennas; the processing unit 1102 is specifically configured to: for the first correction subcarrier, according to the reception results of the first correction subcarriers of M terminal devices by the N antennas Phase information of N-1 antennas, except for the reference antenna, to determine the phase error of the N-1 antennas relative to the reference antenna; according to the phase error of the N-1 antennas relative to the reference antenna and the corresponding correspondence of the N antennas, respectively Coordinates to determine the array arrangement errors corresponding to N antennas respectively; the network device determines N antennas according to the array arrangement errors corresponding to N antennas and the reception results of the first correction subcarriers of M terminal devices by N antennas The error coefficient of the reception result of the first correction subcarriers of the M terminal devices; according to the error coefficient of the reception result of one or more correction subcarriers of the M terminal devices by the N antennas, determine the uplink corresponding to the N antennas respectively Correct the parameters.
  • the processing unit 1102 is specifically configured to: according to the preset beamforming BF weight of the reference antenna, the array arrangement error corresponding to the N antennas respectively, and the number of N antennas on the M terminal devices A correction subcarrier reception result to determine the equivalent effective BF weights corresponding to N antennas respectively; determined according to the equivalent effective BF weights corresponding to N antennas and the preset BF weights corresponding to N antennas respectively The error coefficient of the reception results of the first correction subcarriers of the N antennas on the M terminal devices.
  • the processing unit 1102 is specifically configured to determine the BF weight error corresponding to the N antennas according to the preset BF weight of the reference antenna and the array arrangement error corresponding to the N antennas respectively; the antenna The BF weight error of is used to characterize the error of the equivalent BF weight of the antenna relative to the preset BF weight of the reference antenna; according to the BF weight error corresponding to the N antennas and the preset BF weight of the reference antenna, Determine the equivalent effective BF weights corresponding to the N antennas respectively.
  • the uplink pilot signal sent by the first terminal device is obtained after the first terminal device performs reciprocal arithmetic processing on the received downlink pilot signal; the uplink pilot signal and the downlink pilot signal carry The same correction subcarrier; the processing unit 1102 is further used to: for the first correction subcarrier, an error coefficient according to the reception result of the first correction subcarrier of the M terminal devices by N antennas for the first correction subcarrier, and carried in the first subcarrier
  • the downlink pilot signal of the carrier determines the error coefficient of the transmission result of the first correction subcarriers of the N antennas to the M terminal devices; according to the error of the transmission result of one or more correction subcarriers of the N antennas to the M terminal devices
  • the coefficient determines the downlink correction parameters corresponding to the N antennas respectively.
  • embodiments of the present application also provide a computer-readable storage medium that stores computer instructions, and when the instructions run on the computer, the computer is allowed to execute any of the above Kind of method embodiment.
  • the embodiments of the present application also provide a computer program product containing instructions, which when run on a computer, causes the computer to execute the method embodiments described in the above aspects.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a dedicated computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transferred from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be from a website site, computer, server or data center Transmit to another website, computer, server or data center via wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device including a server, a data center, and the like integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)), or the like.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a DVD
  • a semiconductor medium for example, a solid state disk (SSD)
  • the embodiments of the present application may be provided as a method, an apparatus (device), a computer-readable storage medium, or a computer program product. Therefore, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects, which are collectively referred to herein as "modules" or "systems”.
  • These computer program instructions may also be stored in a computer-readable memory that can guide a computer or other programmable data processing device to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including an instruction device, the instructions The device implements the functions specified in one block or multiple blocks of the flowchart one flow or multiple flows and / or block diagrams.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device, so that a series of operating steps are performed on the computer or other programmable device to produce computer-implemented processing, which is executed on the computer or other programmable device
  • the instructions provide steps for implementing the functions specified in one block or multiple blocks of the flowchart one flow or multiple flows and / or block diagrams.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radio Transmission System (AREA)

Abstract

本申请实施例提供一种天线校正方法及装置,用以降低通信系统复杂程度。其中方法包括:网络设备根据N条天线接收的M个终端设备分别发送的上行导频信号,确定M个终端设备的一个或多个校正子载波;针对第一校正子载波,网络设备根据第一终端设备发送的上行导频信号,确定N条天线对第一终端设备的第一校正子载波的接收结果;第一终端设备为M个终端设备中的任一终端设备;第一校正子载波为一个或多个校正子载波中的任一子载波;根据N条天线对M个终端设备的一个或多个校正子载波的接收结果,确定N条天线分别对应的上行校正参数。采用上述方法,可以不借助远场标定天线实现天线校正,有利于简化通信系统的复杂程度。

Description

一种天线校正方法及装置
相关申请的交叉引用
本申请要求在2018年10月31日提交中国专利局、申请号为201811291711.3、申请名称为“一种天线校正方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,尤其涉及一种天线校正方法及装置。
背景技术
随着无线通信技术的发展,通信系统中的基站具有多个天线。基站基于多个天线构成的天线阵列,通过大规模多入多出(massive MIMO)技术和波束赋形(beamforming,BF)技术,实现与终端设备之间的通信,从而大大提升通信系统流量。
在波束赋形技术中,基站通过为天线阵列中的每个天线赋予对应的BF权值,通过BF权值调节每个天线的接收信号强度或发送信号强度,以实现天线阵列在特定方向上的接收和发送。
其中,BF权值的准确性依赖于对天线阵列的校准,天线阵列的校准可以在较大程度上使各天线之间具有相同的接收增益和发送增益。在一种现有的远场校正方案中,通信系统中设置有固定的远场标定天线,远场标定天线会经过一系列复杂运算生成特定的校准信号并发送给基站。基站接收远场标定天线发送的校准信号,并根据校准信号校准天线阵列中各天线的增益。
然而,设置远场标定天线会增加通信系统的复杂度,不利于通信系统的简化。
发明内容
本申请实施例提供一种天线校正方法及装置,用以在对天线进行校正的同时降低通信系统复杂程度。
第一方面,本申请实施例提供一种天线校正方法,包括:网络设备根据网络设备的N条天线接收的M个终端设备分别发送的上行导频信号,确定M个终端设备的一个或多个校正子载波;M个终端设备的一个或多个校正子载波是根据承载M个终端设备发送的上行导频信号的子载波得到的;其中,N大于1,M大于1;针对第一校正子载波,网络设备根据第一终端设备发送的上行导频信号,确定N条天线对第一终端设备的第一校正子载波的接收结果,N条天线对第一终端设备的第一校正子载波的接收结果包括N条天线分别接收到第一终端设备发送的上行导频信号时,第一校正子载波的幅度信息和相位信息;第一终端设备为M个终端设备中的任一终端设备;第一校正子载波为一个或多个校正子载波中的任一子载波;网络设备根据N条天线对M个终端设备的一个或多个校正子载波的接收结果,确定N条天线分别对应的上行校正参数。
采用上述天线校正方法,网络设备利用终端设备发送的上行导频信号获取网络设备中N条天线分别对应的上行校正参数。与远场校正方案相比,不需要固定的远场标定天线,降低了通信系统的复杂程度。
基于第一方面,在一种可能的实现方式中,网络设备在根据N条天线对M个终端设备的一个或多个校正子载波的接收结果,确定N条天线分别对应的上行校正参数时,可以执行:根据N条天线接收到M个终端设备分别发送的上行导频信号时,上行导频信号的到达角度AOA,得到M个终端设备分别对应的角度归一化系数;根据N条天线对M个终端设备的一个或多个校正子载波的接收结果和所得到的M个终端设备分别对应的角度归一化系数,确定N条天线分别对应的上行校正参数。
基于第一方面,在一种可能的实现方式中,N条天线中包括参考天线;网络设备在根据N条天线对M个终端设备的一个或多个校正子载波的接收结果,确定N条天线分别对应的上行校正参数时,可以针对第一校正子载波,网络设备根据N条天线对M个终端设备的第一校正子载波的接收结果中的相位信息,确定N条天线中除参考天线之外的N-1条天线分别相对于参考天线的相位误差;网络设备根据N-1条天线分别相对于参考天线的相位误差和N条天线分别对应的坐标,确定N条天线分别对应的阵列排布误差;网络设备进而根据所确定的N条天线分别对应的阵列排布误差和N条天线对M个终端设备的第一校正子载波的接收结果,确定N条天线对M个终端设备的第一校正子载波的接收结果的误差系数;根据N条天线对M个终端设备的一个或多个校正子载波的接收结果的误差系数,确定N条天线分别对应的上行校正参数。
由于N条天线对M个终端设备的第一校正子载波的接收结果可能会受到阵列排布误差的影响,因此本申请实施例可以通过N-1条天线分别相对于参考天线的相位误差和N条天线分别对应的坐标,确定N条天线分别对应的阵列排布误差,从而可以在进行天线校正时,降低阵列排布误差对N条天线对M个终端设备的第一校正子载波的接收结果造成的影响,有利于提高天线校正精度。
基于第一方面,在一种可能的实现方式中,网络设备在根据N条天线分别对应的阵列排布误差和N条天线对M个终端设备的第一校正子载波的接收结果,确定N条天线对M个终端设备的第一校正子载波的接收结果的误差系数时,可以根据参考天线的预设波束赋形BF权值、N条天线分别对应的阵列排布误差和N条天线对M个终端设备的第一校正子载波的接收结果,确定N条天线分别对应的等效生效的BF权值;网络设备进而根据N条天线分别对应的等效生效的BF权值和N条天线分别对应的预设BF权值确定N条天线对M个终端设备的第一校正子载波的接收结果的误差系数。
由于天线接收增的误差影响,使网络设备根据对M个终端设备的第一校正子载波的接收结果所确定的等效生效的BF权值与网络设备为N条天线配置的预设BF权值并不相同。本申请实施例通过等效生效的BF权值与N条天线分别对应的预设BF权值确定N条天线对M个终端设备的第一校正子载波的接收结果的误差系数,以消除预设BF权值对终端设备的第一校正子载波的接收结果的影响,便可以通过误差系数在一定程度上表征天线接收增益的误差。
基于第一方面,在一种可能的实现方式中,网络设备在根据参考天线的预设BF权值和N条天线分别对应的阵列排布误差确定N条天线分别对应的等效生效的BF权值时,可以根据参考天线的预设BF权值和N条天线分别对应的阵列排布误差,确定N条天线分别 对应的BF权值误差;天线的BF权值误差用于表征天线等效生效的BF权值相对于参考天线的预设BF权值的误差;网络设备根据N条天线分别对应的BF权值误差和参考天线的预设BF权值,确定N条天线分别对应的等效生效的BF权值。
基于第一方面,在一种可能的实现方式中,第一终端设备发送的上行导频信号是第一终端设备对接收到的网络设备发送的下行导频信号进行倒数运算处理后获得的;其中,上行导频信号和下行导频信号承载于相同的校正子载波;网络设备确定N条天线对M个终端设备的第一校正子载波的接收结果的误差系数之后,还可以针对于第一校正子载波,网络设备根据N条天线对M个终端设备的第一校正子载波的接收结果的误差系数,以及承载于第一子载波的下行导频信号,确定N条天线对M个终端设备的第一校正子载波的发送结果的误差系数;网络设备根据N条天线对M个终端设备的一个或多个校正子载波发送结果的误差系数确定N条天线分别对应的下行校正参数。
第二方面,本申请实施例还提供一种天线校正装置,该装置包括:确定单元和处理单元;其中,确定单元,用于根据N条天线接收的M个终端设备分别发送的上行导频信号,确定M个终端设备的一个或多个校正子载波;M个终端设备的一个或多个校正子载波是根据承载M个终端设备发送的上行导频信号的子载波得到的;其中,N大于1,M大于1;确定单元,还用于针对第一校正子载波,根据第一终端设备发送的上行导频信号,确定N条天线对第一终端设备的第一校正子载波的接收结果,N条天线对第一终端设备的第一校正子载波的接收结果包括N条天线分别接收到第一终端设备发送的上行导频信号时,第一校正子载波的幅度信息和相位信息;第一终端设备为M个终端设备中的任一终端设备;第一校正子载波为一个或多个校正子载波中的任一子载波;处理单元,用于根据N条天线对M个终端设备的一个或多个校正子载波的接收结果,确定N条天线分别对应的上行校正参数。
基于第二方面,在一种可能的实现方式中,处理单元具体用于:根据N条天线接收到M个终端设备分别发送的上行导频信号时,上行导频信号的到达角度AOA,得到M个终端设备分别对应的角度归一化系数;根据N条天线对M个终端设备的一个或多个校正子载波的接收结果和M个终端设备分别对应的角度归一化系数,确定N条天线分别对应的上行校正参数。
基于第二方面,在一种可能的实现方式中,N条天线中包括参考天线;处理单元具体用于:针对第一校正子载波,根据N条天线对M个终端设备的第一校正子载波的接收结果中的相位信息,确定N条天线中除参考天线之外的N-1条天线分别相对于参考天线的相位误差;根据N-1条天线分别相对于参考天线的相位误差和N条天线分别对应的坐标,确定N条天线分别对应的阵列排布误差;网络设备根据N条天线分别对应的阵列排布误差和N条天线对M个终端设备的第一校正子载波的接收结果,确定N条天线对M个终端设备的第一校正子载波的接收结果的误差系数;根据N条天线对M个终端设备的一个或多个校正子载波的接收结果的误差系数,确定N条天线分别对应的上行校正参数。
基于第二方面,在一种可能的实现方式中,处理单元具体用于:根据参考天线的预设波束赋形BF权值、N条天线分别对应的阵列排布误差和N条天线对M个终端设备的第一校正子载波的接收结果,确定N条天线分别对应的等效生效的BF权值;根据N条天线分别对应的等效生效的BF权值和N条天线分别对应的预设BF权值确定N条天线对M个终 端设备的第一校正子载波的接收结果的误差系数。
基于第二方面,在一种可能的实现方式中,处理单元具体用于:根据参考天线的预设BF权值和N条天线分别对应的阵列排布误差,确定N条天线分别对应的BF权值误差;天线的BF权值误差用于表征天线等效生效的BF权值相对于参考天线的预设BF权值的误差;根据N条天线分别对应的BF权值误差和参考天线的预设BF权值,确定N条天线分别对应的等效生效的BF权值。
基于第二方面,在一种可能的实现方式中,第一终端设备发送的上行导频信号是第一终端设备对接收到的下行导频信号进行倒数运算处理后获得的;上行导频信号和下行导频信号承载于相同的校正子载波;处理单元还用于:针对于第一校正子载波,根据N条天线对M个终端设备的第一校正子载波的接收结果的误差系数,以及承载于第一子载波的下行导频信号,确定N条天线对M个终端设备的第一校正子载波的发送结果的误差系数;根据N条天线对M个终端设备的一个或多个校正子载波发送结果的误差系数确定N条天线分别对应的下行校正参数。
第三方面,本申请实施例还提供一种装置,该装置包括:处理器和存储器;其中,存储器,用于存储程序指令;处理器,用于通过调用存储器存储的程序指令,执行如第一方面中任一项所提供的方法。
第四方面,本申请实施例还提供一种计算机可读存储介质,该计算机可读存储介质存储有计算机可执行指令,计算机可执行指令用于使计算机执行如第一方面中任一项所提供的方法。
附图说明
图1为一种通信系统示意图;
图2为一种网络设备与终端设备之间的通信关系示意图;
图3为本申请实施例提供的一种天线校正方法流程示意图;
图4为本申请实施例提供的一种可行的天线校正方法流程示意图;
图5为本申请实施例提供的一种下行校正方法流程示意图;
图6为本申请实施例提供的一种装置示意图;
图7为本申请实施例提供的一种天线校正装置示意图。
具体实施方式
下面将结合附图对本发明作进一步地详细描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(long term evolution,LTE)系统,全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统,未来的第五代(5th Generation,5G)系统,如新一代无线接入技术(new radio access technology,NR),及未来的通信系统,如6G系统等。
本申请将围绕可包括多个设备、组件、模块等的系统来呈现各个方面、实施例或特征。应当理解和明白的是,各个系统可以包括另外的设备、组件、模块等,并且/或者可以并不包括结合附图讨论的所有设备、组件、模块等。此外,还可以使用这些方案的组合。
另外,在本申请实施例中,“示例的”一词用于表示作例子、例证或说明。本申请中被描述为“示例”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用示例的一词旨在以具体方式呈现概念。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本申请实施例中部分场景以无线通信网络中LTE系统为例进行说明,应当指出的是,本申请实施例中的方案还可以应用于其他无线通信网络中,相应的名称也可以用其他无线通信网络中的对应功能的名称进行替代。
为便于理解本申请实施例,首先以图1中示出的通信系统为例详细说明适用于本申请实施例的通信系统。如图1所示,该通信系统包括网络设备101和多个终端设备(102、103和104),网络设备101可配置有多个天线,终端设备102、103和104也可配置有多个天线。
其中,网络设备101为具有无线收发功能的设备或可设置于该设备的芯片,该设备包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(baseband unit,BBU),无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission and reception point,TRP或者transmission point,TP)等,还可以为5G,如,NR,系统中的gNB,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(DU,distributed unit)等。
终端设备102、103和104也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对应用场景不做限定。本申请中将具有无线收发功能的终端设备及可设置于前述终端设备的芯片统称为终端设备。
随着无线通信技术的发展,越来越多的网络设备101采用了massive MIMO技术和BF技术。如图2所示,网络设备101包括N条天线(1011、1012、…….、101N),N大于1,网络设备101通过上述N条天线同时接收终端设备102发送的上行信号,以及,通过上述N条天线同时向终端设备102发送下行信号。以网络设备101向终端设备102发送下行信号为例,网络设备101根据终端设备102的位置信息,为每条天线配置对应的BF权值,以分别调整每条天线所发送的下行信号的幅度和相位,使N条天线所发送的下行信号在终 端设备102的方向赋形,从而提高终端设备102接收到的下行信号的强度。通信系统中其它终端设备与网络设备之间的通信与终端设备102类似,本申请实施例不再赘述。
由上述过程可见,网络设备101与终端设备102之间的波束赋形效果基于BF权值对天线传输的通信信号幅度和相位的精准调节。然而,在实际应用中由于网络设备101的N条天线之间具有不同的发送增益和接收增益,使BF权值所产生的波束赋形效果还有待进一步提高。所谓发送增益,用于表示在网络设备101发送下行信号时,天线内部的发送通道对天线所发送的下行信号产生的放大效果。所谓接收增益,用于表示在网络设备101接收上行信号时,天线内部的接收通道对天线所接收的上行信号产生的放大效果。
在N条天线之间的接收增益互不相同时,便会为BF权值对上行信号的波束赋形结果带来一定的误差,同理,在N条天线之间的发送增益互不相同时,便会为BF权值对下行信号的波束赋形结果带来一定的误差。因此,网络设备101需要对N条天线进行校准,以消除N条天线之间接收增益和发送增益的差异对波束赋形带来的不利影响。
如图1所示,在一种远场校正方案中,通信系统中还包括远场标定天线105,通常,远场标定天线105相对于网络设备101的位置是固定的。远场标定天线105可以周期性向网络设备101发送满足预设规则的校准信号,并发送给网络设备101。网络设备101通过N条天线接收远场标定天线105发送的校准信号,并获取N条天线分别接收到的校准信号的相位信息和幅度信息。此外,网络设备101还可以根据预设规则确定N条天线分别接收到该校准信号的理想的相位信息和理想的幅度信息。之后,网络设备101便可以根据N条天线中每条天线实际接收的校准信号的相位信息和幅度信息,以及,每条天线接收该校准信号的理想的相位信息和理想的幅度信息,确定N条天线中每一条天线的接收误差,进而确定N条天线分别对应的上行校正系数。该上行校正参数被用于校正天线接收通道的接收增益,使校正后的N条天线具有相同的接收增益。然而,如图1中所示的远场校正方案需要在通信系统中额外设置远场标定天线105,增加了通信系统的复杂程度,进而提高了通信系统的运维成本。
为了在实现天线校正的同时,降低通信系统的复杂程度,本申请实施例提供了一种天线校正方法,该方法通过网络设备101下的多个终端设备(终端设备102、终端设备103和终端设备104)发送的上行导频信号实现对网络设备101中多个天线的校正,可以从通信系统中省去远场标定天线105,从而降低了通信系统的复杂程度。
图3为本申请实施例提供的一种天线校正方法流程示意图,如图3所示,主要包括以下步骤:
S301:网络设备根据网络设备的N条天线接收的M个终端设备分别发送的上行导频信号,确定M个终端设备的一个或多个校正子载波;其中,M个终端设备的一个或多个校正子载波是根据承载M个终端设备发送的上行导频信号的子载波得到的;其中,N大于1,M大于1。
其中,M个终端设备为与网络设备存在无线通信连接的终端设备。在本申请实施例中,M既可以是预设的终端设备的数量,也可以是当前与网络设备存在无线通信连接的终端设备的数量。如图1的通信系统中,M的取值便可以为3。
以图1所示的通信系统中的终端设备102为例,终端设备102向网络设备101发送的上行信号中包括上行导频信号,该上行导频信号在频域上位于一个或多个频点,如终端设备102所发送的上行导频信号在频域上位于频点f1和频点f2。
在一种可能的实现方式中,网络设备101在接收到终端设备102发送的上行信号后,便可以根据通信协议确定上行信号中的上行导频信号和上行导频信号所在的一个或多个频点,如上述终端设备102所发送的上行导频信号位于频点f1和频点f2,进而得到频点f1所对应的子载波1以及频点f2所对应的子载波2,其中,子载波1的中心频点为频点f1,子载波2的中心频点为频点f2,则终端设备102所对应的子载波包括子载波1和子载波2。与之类似,假设终端设备103对应的子载波包括子载波2和子载波4,终端设备104对应的子载波为子载波3,则网络设备101可以确定终端设备102、终端设备103和终端设备104的校正子载波为子载波1、子载波2、子载波3和子载波4。
S302:针对于第一校正子载波,网络设备根据第一终端设备发送的上行导频信号,确定N条天线对第一终端设备的第一校正子载波的接收结果,N条天线对第一终端设备的接收结果包括N条天线分别接收到第一终端设备发送的上行导频信号时,第一校正子载波的幅度信息和相位信息;第一终端设备为M个终端设备中的任一终端设备,第一校正子载波为M个终端设备对应的一个或多个校正子载波中的任一子载波。
以上述子载波1为例,请参考图2,网络设备可以确定出在N条天线接收到终端设备102在子载波1上发送的上行导频信号时,子载波1的幅度信息和相位信息,即为N条天线对终端设备102的子载波1的接收结果。可以理解的,以终端设备103为例,由于终端设备103的上行导频信号承载在子载波2和子载波4上,并未承载在子载波1上,因此网络设备在子载波1上无法接收到终端设备103的上行导频信号,此时,可以认为N条天线对终端设备103的子载波1的接收结果为0。
S303:网络设备根据N条天线对M个终端设备的一个或多个校正子载波的接收结果,确定N条天线分别对应的上行校正参数。
以N条天线对终端设备102的子载波1的接收结果为例,网络设备101的N条天线对终端设备102的子载波1的接收结果受天线的接收增益的影响,因此,网络设备101在确定了M个终端设备的一个或多个校正子载波的接收结果之后,便可以根据M个终端设备的接收结果,经过一定的运算,确定天线的接收增益对接收结果带来的影响,进而确定N条天线分别对应的校正参数。
采用图3所示的天线校正方法,网络设备利用终端设备发送的上行导频信号获取网络设备中N条天线分别对应的上行校正参数。与远场校正方案相比,不需要固定的远场标定天线,降低了通信系统的复杂程度。而且,与现有的天线自校正方案相比,图3所示的天线校正方法可以只利用上行业务通道实现远场校正,不需要复杂的耦合网络,无需出场做表,成本更低。
接下来,本申请实施例将以图1所示的通信系统为例,提供一种可行的网络设备101确定N条天线分别对应的上行校正参数的具体的运算方法,该过程针对第一校正子载波,主要包括以下步骤:
步骤一:针对M个终端设备中的任一终端设备,如终端设备102,根据N条天线对终端设备102的第一校正子载波的接收结果构建归一化协方差矩阵。
步骤二:对归一化协方差矩阵进行特征根分解,获取该归一化协方差矩阵的若干个特征根。
步骤三:从所获得的若干个特征根中确定最大特征根,进而确定最大特征根所对应的特征向量,并对该特征向量进行归一化。其中,特征向量可以为包括N个元素的列向量。
步骤四:重复步骤一至三,直至获取M个终端设备分别对应的归一化的特征向量,从而构建由M个归一化的特征向量构成的特征矩阵。所获得的特征矩阵为一M×N矩阵。
步骤五:利用获得的特征矩阵,计算获得N条天线分别对应的上行校正参数。
通过以上步骤,将N条天线对M个终端设备对第一校正子载波的接收结果转换为特征矩阵,从而可以对N条天线对M个终端设备的第一校正子载波的接收结果进行运算,进而根据N条天线对M个终端设备的一个或多个校正子载波的接收结果获取N条天线分别对应的上行校正参数。
在通信系统中,N条天线对终端设备的校正子载波的接收结果还受该终端设备的上行导频信号的信号到达角度(angle of arrival,AOA)影响。基于此,在一种可能的实现方式中,网络设备在根据N条天线对M个终端设备的一个或多个校正子载波的接收结果,确定N条天线分别对应的上行校正参数时,可以根据N条天线接收到M个终端设备分别发送的上行导频信号时,上行导频信号的到达角度,得到M个终端设备分别对应的角度归一化系数;网络设备根据N条天线M个终端设备的一个或多个校正子载波的接收结果和M个终端设备分别对应的角度归一化系数,确定N条天线分别对应的上行校正参数。
以图1所示的通信系统为例,网络设备101对终端设备102、终端设备103和终端设备104还与终端设备102、终端设备103和终端设备104的上行导频信号到达角度影响。网络设备101可以根据终端设备102、终端设备103和终端设备104的上行导频信号到达角度确定终端设备102、终端设备103和终端设备104分别对应的角度归一化系数。
应理解,终端设备所对应的角度归一化系数为包括N个元素的向量,该N个元素分别对应网络设备的N条天线。
在一种可能的实现方式中,网络设备可以从M个终端设备中确定一个终端设备作为参考终端,将M个终端设备中除参考终端之外的其它终端的上行导频信号的AOA相对于该参考终端的AOA进行归一化。例如图1中,网络设备101可以从终端设备102、终端设备103和终端设备104中确定一个终端设备,如终端设备102作为参考终端,将终端设备103和终端设备104的上行导频信号的AOA,相对于终端设备102的上行导频信号的AOA进行归一化。
使用通过上述方法所获得的角度归一化系数,可以将不同AOA的上行导频信号在同一AOA上进行归一化,从而降低不同终端设备上行导频信号的AOA的不同,对N条天线接收不同终端设备的校正子载波的接收结果造成的影响,有利于提高天线校正精度。
在本申请实施例中,N条天线对M个终端设备的第一校正子载波的接收结果包括第一校正子载波的幅度信息和相位信息。在一种可能的实现方式中,网络设备可以确定N条天线中一天线作为参考天线,根据N条天线对M个终端设备的第一校正子载波的接收结果中的相位信息,确定N条天线中除参考天线之外的N-1条天线分别相对于参考天线的相位误差。如图1中,网络设备101确定天线1012为参考天线,根据N条天线对M个终端设备的第一校正子载波的接收结果中的相位信息,确定天线1011,以及天线1013至101N相对于天线1012的相位误差。
网络设备可以根据上述除参考天线之外的N-1条天线分别相对于参考天线的相位误差和N条天线分别对应的坐标,确定N条天线分别对应的阵列排布误差。N条天线分别对应的坐标可以为预先设置的,比如可以将参考天线所在的位置设为起始坐标,如(0,0),进而根据N条天线的阵列排布规律,得到其余N-1条天线对应的坐标。由于制作工艺等因素, 天线的实际位置会与网络设备为N条天线所设置的坐标之间存在误差,该误差即为阵列排布误差。
由于N条天线对M个终端设备的第一校正子载波的接收结果可能会受到阵列排布误差的影响,因此本申请实施例可以通过N-1条天线分别相对于参考天线的相位误差和N条天线分别对应的坐标,确定N条天线分别对应的阵列排布误差,从而可以在进行天线校正时,降低阵列排布误差对N条天线对M个终端设备的第一校正子载波的接收结果造成的影响,有利于提高天线校正精度。
在一种可能的实现方式中,网络设备在获取N条天线分别对应的阵列排布误差时,还可以考虑上述角度归一化系数,以更加准确地获取阵列排布误差。
网络设备在获取N条天线分别对应的阵列排布误差后,可以根据N条天线分别对应的阵列排布误差和N条天线对M个终端设备的一个或多个校正子载波的接收结果,确定N条天线对M个终端设备的一个或多个校正子载波的接收结果的误差系数。具体实施中,针对每一个校正子载波,都会进行一次阵列排布误差的计算,以提高校正精度。
在一种可能的实现方式中,还可以考虑上述角度归一化系数,即网络设备可以根据N条天线分别对应的阵列排布误差、角度归一化系数和N条天线对M个终端设备的第一校正子载波的接收结果,确定N条天线对M个终端设备的第一校正子载波的接收结果的误差系数。如此,网络设备可以根据N条天线对M个终端设备的一个或多个校正子载波的接收结果的误差系数,确定N条天线分别对应的上行校正参数。
采用上述方法,网络设备在计算误差系数时,引入阵列排布误差(和角度归一化系数),从而降低阵列排布误差和上行导频信号AOA对终端设备的接收结果造成的影响。则不同天线接收同一终端设备的上行导频信号时,不同天线所接收到的第一校正子载波的相位信息和幅度信息,还受天线预设BF权值和天线接收增益的影响。
基于此,在一种可能的实现方式中,网络设备根据N条天线分别对应的阵列排布误差和N条天线对M个终端设备的第一校正子载波接收结果,确定N条天线对M个终端设备的第一校正子载波接收结果的误差系数时,可以先根据参考天线的预设BF权值、N条天线分别对应的阵列排布误差和N条天线对M个终端设备的第一校正子载波的接收结果,确定N条天线分别对应的等效生效的BF权值。之后,网络设备根据N条天线分别对应的等效生效的BF权值和N条天线分别对应的预设BF权值确定N条天线对M个终端设备的第一校正子载波的接收结果的误差系数。
由于天线接收增的误差影响,使网络设备根据对M个终端设备的第一校正子载波的接收结果所确定的等效生效的BF权值与网络设备为N条天线配置的预设BF权值并不相同。本申请实施例通过等效生效的BF权值与N条天线分别对应的预设BF权值确定N条天线对M个终端设备的第一校正子载波的接收结果的误差系数,以消除预设BF权值对终端设备的第一校正子载波的接收结果的影响,便可以通过误差系数在一定程度上表征天线接收增益的误差。
本申请实施例还提供一种等效生效的BF权值的确定方法。在一种可能的实现方式中,网络设备可以根据参考天线的预设BF权值和N条天线分别对应的阵列排布误差(和/或角度归一化因子),确定N条天线分别对应的BF权值误差,其中,天线的BF权值误差用于表征天线等效生效的BF权值相对于参考天线的预设BF权值的误差。之后,网络设备根据N条天线分别对应的BF权值误差和参考天线的预设BF权值,确定N条天线分别对应的 实际生效的BF权值。
为了更具体地说明本申请实施例,图4提供了一种可行的天线校正方法流程示意图,如图4所示,其中,Rx1为天线1的接收通道,Rx2为天线2的接收通道,……,RxN为天线N的接收通道。以Rx1为例,图4反映了以下过程:
S401:网络设备的N条天线接收终端设备发送的上行信号。
S402:网络设备对接收到的上行信号进行傅里叶变换,获取上行信号的频域表达形式x。提取上行信号中的上行数据并处理。以及,获取N条天线分别接收到的上行信号的导频部分(导频Rx1,导频Rx2,…….,导频RXN)。其中,导频部分在任一时刻可以包括M个终端设备中一个或多个终端设备的上行导频信号,例如在t1时刻可以同时包括图1中终端设备102、终端设备103和终端设备104的上行导频信号,在t2时刻可以只包括图1中终端设备102的上行导频信号。在本申请实施例中,上行导频信号包括但不限于探测参考信号(sounding reference signal,SRS)、解调参考信号(demodulation reference signal,DMRS)等。
S403:根据M个终端设备的上行导频信号,获取K个校正子载波分别对应的特征矩阵。其具体实现过程可以参见前述内容,本申请实施例对此不再赘述。
S404:获取角度归一化系数。
S405:根据K个校正子载波对应的特征矩阵,角度归一化系数和N条天线分别对应的预设BF权值,分别确定K个误差系数。综合K个误差系数,获取N条天线分别对应的上行校正系数。
S406:综合K个误差系数,确定N条天线分别对应的上行校正参数。
S407:使用N条天线对应的上行校正系数分别对N条天线进行校正。
S408:根据阵列排布误差更新N条天线的坐标,以及根据上行校正参数更新N条天线分别对应的预设BF权值。
采用以上实施例,可以实现对天线接收通道的校正。基于此,本申请实施例还提供一种对天线的发送通道进行校正的技术方案。
在一种可能的实现方式中,M个终端设备可以对接收到的网络设备发送的下行导频信号进行倒数运算处理。例如,图1中网络设备101可以通过向终端设备102、终端设备103和终端设备104发送指示信息,以指示终端设备102、终端设备103和终端设备104将接收到的下行导频信号进行倒数运算处理。终端设备对下行导频信号进行倒数运算处理后,将处理后的下行导频信号作为上行导频信号发送给网络设备。
在时分复用(time division duplexing,TDD)系统中,终端设备会将承载下行导频信号的子载波作为承载上行导频信号的子载波,将上行导频信号发送给网络设备。例如,图1中终端设备102接收到的网络设备101发送的下行导频信号承载于子载波1,则终端设备102对下行导频信号进行倒数运算处理,获得上行导频信号之后,在子载波1上向网络设备101发送该上行导频信号。
网络设备接收到M个终端设备发送的上行导频信号后,可以根据N条天线对M个终端设备的一个或多个校正子载波的接收结果的误差系数。对于任一校正子载波,例如子载波1,网络设备可以根据N条天线对M个终端设备的子载波1的接收结果的误差系数,以及在子载波1上发送的下行导频信号,确定N条天线对M个终端设备的子载波1的发送结果。
例如,在排除其它因素干扰的情况下,子载波1所承载的下行导频信号满足以下公式一:
x dl=h*t bs*S dl  (公式一)
其中,x dl为终端设备接收到的网络设备发送的下行导频信号,h为信道频响,t bs为N条天线对M个终端设备的子载波1的发送结果的误差系数,S dl为网络设备所确定的在子载波1上发送的下行导频信号。
终端设备对承载于子载波1的下行导频信号进行倒数运算处理,获得上行导频信号如公式二所示:
Figure PCTCN2019114450-appb-000001
其中,
Figure PCTCN2019114450-appb-000002
为终端设备所得到的上行导频信号。
终端设备在子载波1上向网络设备101发送公式二所示的上行导频信号,网络设备在子载波1上接收到的上行导频信号满足以下公式三:
Figure PCTCN2019114450-appb-000003
其中,x ul为网络设备接收到的上行导频信号,r bs为N条天线对M个终端设备的子载波1的接收结果的误差系数,则,根据公式二和公式三可以确定如下公式四:
Figure PCTCN2019114450-appb-000004
网络设备进而可以根据N条天线对M个终端设备的子载波1的接收结果的误差系数、接收到的承载于子载波1的上行导频信号,以及向一个或多个终端设备发送的承载于子载波1的下行导频信号,确定N条天线对M个终端设备的子载波1的发送结果的误差系数。可以理解,N条天线对M个终端设备的子载波1的发送结果的误差系数是针对于M个终端设备所构成的一个整体而言的,网络设备在子载波1上发送下行导频信号时,可以只向M个终端设备中的一个或多个终端设备发送下行导频信号。
进而,网络设备可以根据N条天线对M个终端设备的一个或多个校正子载波的发送结果的误差系数,确定N条天线分别对应的下行校正参数。
图5为本申请实施例提供的一种下行校正方法流程示意图,如图5所示,主要包括以下步骤:
S501:网络设备对下行导频信号进行逆傅里叶变换处理,并将处理后的下行导频信号发送给终端设备。
S502:终端设备接收逆傅里叶变换处理后的下行导频信号,并进行傅里叶变换处理,获取网络设备发送的下行导频信号。
S503:终端设备对下行导频信号进行倒数运算处理。
S504:终端设备将倒数处理后的下行导频信号作为上行导频信号,经逆傅里叶变换处理后发送给网络设备。
S505:网络设备接收终端设备发送的逆傅里叶变换后的上行导频信号,并进行傅里叶变换处理,获取上行导频信号。
S506:网络设备根据接收的上行导频信号,按照前述实施例获取N条天线对M个终端设备的一个或多个校正子载波的接收结果的误差系数,进而获取N条天线对M个终端 设备的一个或多个校正子载波的发送结果的误差系数,从而获取N条天线分别对应的下行校正参数。
S507:根据N条天线分别对应的下行校正参数分别对N条天线的发送通道进行校正。
基于相同的技术构思,如图6所示,为本申请实施例提供的一种装置示意图,该装置1000可以是网络设备,也可以是片上系统或芯片,可执行上述实施例所提供的任一种天线校正方法。
该装置1000包括至少一个处理器1001,收发器1002,可选地,还包括存储器1003。所述处理器1001、收发器1002、存储器1003通过通信总线连接。
处理器1001可以是一个通用中央处理器(CPU),微处理器,特定ASIC,或一个或多个用于控制本发明方案程序执行的集成电路。
通信总线可包括一通路,在上述器件之间传送信息。
所述收发器1002,用于与其他设备或通信网络通信,该收发器可以是一种通信接口,例如,有线接口或无线接口,或wifi接口,或该收发器包括射频电路。
存储器1003可以是ROM或可存储静态信息和指令的其他类型的静态存储设备,RAM或者可存储信息和指令的其他类型的动态存储设备,也可以是EEPROM、CD-ROM或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器1003可以是独立存在,通过通信总线与处理器1001相连接。存储器1003也可以和处理器集成在一起。其中,存储器1003用于存储执行本发明方案的程序代码,并由处理器1001来控制执行。处理器1001用于执行存储器1003中存储的应用程序代码。
在具体实现中,作为一种实施例,处理器1001可以包括一个或多个CPU,例如装置图6中的CPU0和CPU1。
在具体实现中,作为一种实施例,装置1000可以包括多个处理器,例如图6中的处理器1001和处理器1008。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器,这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
应理解,该装置可以用于实现上述实施例所提供的任一种天线校正方法,相关特征可以参照上文,此处不再赘述。
本申请可以根据上述方法示例对装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。比如,在采用对应各个功能划分各个功能模块的情况下,图7示出了一种天线校正装置示意图,该天线校正装置1100可以是本申请实施例中所涉及的网络设备或片上系统或芯片,该装置包括确定单元1101和处理单元1102。其中:
确定单元1101,用于根据N条天线接收的M个终端设备分别发送的上行导频信号,确定M个终端设备的一个或多个校正子载波;M个终端设备的一个或多个校正子载波是 根据承载M个终端设备发送的上行导频信号的子载波得到的;其中,N大于1,M大于1;确定单元1101,还用于针对第一校正子载波,根据第一终端设备发送的上行导频信号,确定N条天线对第一终端设备的第一校正子载波的接收结果,N条天线对第一终端设备的第一校正子载波的接收结果包括N条天线分别接收到第一终端设备发送的上行导频信号时,第一校正子载波的幅度信息和相位信息;第一终端设备为M个终端设备中的任一终端设备;第一校正子载波为一个或多个校正子载波中的任一子载波;处理单元1102,用于根据N条天线对M个终端设备的一个或多个校正子载波的接收结果,确定N条天线分别对应的上行校正参数。
在一种可能的实现方式中,处理单元1102具体用于:根据N条天线接收到M个终端设备分别发送的上行导频信号时,上行导频信号的到达角度AOA,得到M个终端设备分别对应的角度归一化系数;根据N条天线对M个终端设备的一个或多个校正子载波的接收结果和M个终端设备分别对应的角度归一化系数,确定N条天线分别对应的上行校正参数。
在一种可能的实现方式中,N条天线中包括参考天线;处理单元1102具体用于:针对第一校正子载波,根据N条天线对M个终端设备的第一校正子载波的接收结果中的相位信息,确定N条天线中除参考天线之外的N-1条天线分别相对于参考天线的相位误差;根据N-1条天线分别相对于参考天线的相位误差和N条天线分别对应的坐标,确定N条天线分别对应的阵列排布误差;网络设备根据N条天线分别对应的阵列排布误差和N条天线对M个终端设备的第一校正子载波的接收结果,确定N条天线对M个终端设备的第一校正子载波的接收结果的误差系数;根据N条天线对M个终端设备的一个或多个校正子载波的接收结果的误差系数,确定N条天线分别对应的上行校正参数。
在一种可能的实现方式中,处理单元1102具体用于:根据参考天线的预设波束赋形BF权值、N条天线分别对应的阵列排布误差和N条天线对M个终端设备的第一校正子载波的接收结果,确定N条天线分别对应的等效生效的BF权值;根据N条天线分别对应的等效生效的BF权值和N条天线分别对应的预设BF权值确定N条天线对M个终端设备的第一校正子载波的接收结果的误差系数。
在一种可能的实现方式中,处理单元1102具体用于:根据参考天线的预设BF权值和N条天线分别对应的阵列排布误差,确定N条天线分别对应的BF权值误差;天线的BF权值误差用于表征天线等效生效的BF权值相对于参考天线的预设BF权值的误差;根据N条天线分别对应的BF权值误差和参考天线的预设BF权值,确定N条天线分别对应的等效生效的BF权值。
在一种可能的实现方式中,第一终端设备发送的上行导频信号是第一终端设备对接收到的下行导频信号进行倒数运算处理后获得的;上行导频信号和下行导频信号承载于相同的校正子载波;处理单元1102还用于:针对于第一校正子载波,根据N条天线对M个终端设备的第一校正子载波的接收结果的误差系数,以及承载于第一子载波的下行导频信号,确定N条天线对M个终端设备的第一校正子载波的发送结果的误差系数;根据N条天线对M个终端设备的一个或多个校正子载波发送结果的误差系数确定N条天线分别对应的下行校正参数。
基于相同的技术构思,本申请实施例还提供了一种计算机可读存储介质,所述计算机 可读存储介质中存储有计算机指令,当所述指令在计算机上运行时,使得计算机执行上述任意一种方法实施例。
基于相同的技术构思,本申请实施例还提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各方面所述的方法实施例。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(Solid State Disk,SSD))等。
尽管在此结合各实施例对本申请进行了描述,然而,在实施所要求保护的本发明过程中,本领域技术人员通过查看所述附图、公开内容、以及所附权利要求书,可理解并实现所述公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
本领域技术人员应明白,本申请的实施例可提供为方法、装置(设备)、计算机可读存储介质或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式,这里将它们都统称为“模块”或“系统”。
本申请是参照本申请的方法、装置(设备)和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管结合具体特征及其实施例对本发明进行了描述,显而易见的,在不脱离本发明的精神 和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本发明的示例性说明,且视为已覆盖本发明范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (14)

  1. 一种天线校正方法,其特征在于,包括:
    网络设备根据所述网络设备的N条天线接收的M个终端设备分别发送的上行导频信号,确定所述M个终端设备的一个或多个校正子载波;所述M个终端设备的一个或多个校正子载波是根据承载所述M个终端设备发送的上行导频信号的子载波得到的;其中,N大于1,M大于1;
    针对第一校正子载波,所述网络设备根据第一终端设备发送的上行导频信号,确定所述N条天线对所述第一终端设备的第一校正子载波的接收结果,所述N条天线对所述第一终端设备的第一校正子载波的接收结果包括所述N条天线分别接收到所述第一终端设备发送的上行导频信号时,所述第一校正子载波的幅度信息和相位信息;所述第一终端设备为所述M个终端设备中的任一终端设备;所述第一校正子载波为所述一个或多个校正子载波中的任一子载波;
    所述网络设备根据所述N条天线对所述M个终端设备的一个或多个校正子载波的接收结果,确定所述N条天线分别对应的上行校正参数。
  2. 如权利要求1所述的方法,其特征在于,所述网络设备根据所述N条天线对所述M个终端设备的一个或多个校正子载波的接收结果,确定所述N条天线分别对应的上行校正参数,包括:
    所述网络设备根据所述N条天线接收到所述M个终端设备分别发送的上行导频信号时,所述上行导频信号的到达角度AOA,得到所述M个终端设备分别对应的角度归一化系数;
    所述网络设备根据所述N条天线对所述M个终端设备的一个或多个校正子载波的接收结果和所述M个终端设备分别对应的角度归一化系数,确定所述N条天线分别对应的上行校正参数。
  3. 如权利要求1或2所述的方法,其特征在于,所述N条天线中包括参考天线;
    所述网络设备根据所述N条天线对所述M个终端设备的一个或多个校正子载波的接收结果,确定所述N条天线分别对应的上行校正参数,包括:
    针对所述第一校正子载波,所述网络设备根据所述N条天线对所述M个终端设备的第一校正子载波的接收结果中的相位信息,确定所述N条天线中除所述参考天线之外的N-1条天线分别相对于所述参考天线的相位误差;所述网络设备根据所述N-1条天线分别相对于所述参考天线的相位误差和所述N条天线分别对应的坐标,确定所述N条天线分别对应的阵列排布误差;所述网络设备根据所述N条天线分别对应的阵列排布误差和所述N条天线对所述M个终端设备的所述第一校正子载波的接收结果,确定所述N条天线对所述M个终端设备的第一校正子载波的接收结果的误差系数;
    根据所述N条天线对所述M个终端设备的一个或多个校正子载波的接收结果的误差系数,确定所述N条天线分别对应的上行校正参数。
  4. 如权利要求3所述的方法,其特征在于,所述网络设备根据所述N条天线分别对应的阵列排布误差和所述N条天线对所述M个终端设备的第一校正子载波的接收结果,确定所述N条天线对所述M个终端设备的第一校正子载波的接收结果的误差系数,包括:
    所述网络设备根据所述参考天线的预设波束赋形BF权值、所述N条天线分别对应的 阵列排布误差和所述N条天线对所述M个终端设备的第一校正子载波的接收结果,确定所述N条天线分别对应的等效生效的BF权值;
    所述网络设备根据所述N条天线分别对应的等效生效的BF权值和所述N条天线分别对应的预设BF权值确定所述N条天线对所述M个终端设备的第一校正子载波的接收结果的误差系数。
  5. 如权利要求4所述的方法,其特征在于,所述网络设备根据所述参考天线的预设BF权值和所述N条天线分别对应的阵列排布误差确定所述N条天线分别对应的等效生效的BF权值,包括:
    所述网络设备根据所述参考天线的预设BF权值和所述N条天线分别对应的阵列排布误差,确定所述N条天线分别对应的BF权值误差;所述天线的BF权值误差用于表征所述天线等效生效的BF权值相对于所述参考天线的预设BF权值的误差;
    所述网络设备根据所述N条天线分别对应的BF权值误差和所述参考天线的预设BF权值,确定所述N条天线分别对应的等效生效的BF权值。
  6. 如权利要求3所述的方法,其特征在于,所述第一终端设备发送的上行导频信号是所述第一终端设备对接收到的所述网络设备发送的下行导频信号进行倒数运算处理后获得的;所述上行导频信号和所述下行导频信号承载于相同的校正子载波;
    所述网络设备确定所述N条天线对所述M个终端设备的第一校正子载波的接收结果的误差系数之后,还包括:
    针对于所述第一校正子载波,所述网络设备根据所述N条天线对所述M个终端设备的第一校正子载波的接收结果的误差系数,以及承载于所述第一子载波的下行导频信号,确定所述N条天线对所述M个终端设备的第一校正子载波的发送结果的误差系数;
    所述网络设备根据所述N条天线对所述M个终端设备的一个或多个校正子载波发送结果的误差系数确定所述N条天线分别对应的下行校正参数。
  7. 一种天线校正装置,其特征在于,包括:确定单元和处理单元;
    所述确定单元,用于根据N条天线接收的M个终端设备分别发送的上行导频信号,确定所述M个终端设备的一个或多个校正子载波;所述M个终端设备的一个或多个校正子载波是根据承载所述M个终端设备发送的上行导频信号的子载波得到的;其中,N大于1,M大于1;
    所述确定单元,还用于针对第一校正子载波,根据第一终端设备发送的上行导频信号,确定所述N条天线对所述第一终端设备的第一校正子载波的接收结果,所述N条天线对所述第一终端设备的第一校正子载波的接收结果包括所述N条天线分别接收到所述第一终端设备发送的上行导频信号时,所述第一校正子载波的幅度信息和相位信息;所述第一终端设备为所述M个终端设备中的任一终端设备;所述第一校正子载波为所述一个或多个校正子载波中的任一子载波;
    所述处理单元,用于根据所述N条天线对所述M个终端设备的一个或多个校正子载波的接收结果,确定所述N条天线分别对应的上行校正参数。
  8. 如权利要求7所述的装置,其特征在于,所述处理单元具体用于:
    根据所述N条天线接收到所述M个终端设备分别发送的上行导频信号时,所述上行导频信号的到达角度AOA,得到所述M个终端设备分别对应的角度归一化系数;根据所述N条天线对所述M个终端设备的一个或多个校正子载波的接收结果和所述M个终端设 备分别对应的角度归一化系数,确定所述N条天线分别对应的上行校正参数。
  9. 如权利要求7或8所述的装置,其特征在于,所述N条天线中包括参考天线;所述处理单元具体用于:
    针对所述第一校正子载波,根据所述N条天线对所述M个终端设备的第一校正子载波的接收结果中的相位信息,确定所述N条天线中除所述参考天线之外的N-1条天线分别相对于所述参考天线的相位误差;根据所述N-1条天线分别相对于所述参考天线的相位误差和所述N条天线分别对应的坐标,确定所述N条天线分别对应的阵列排布误差;所述网络设备根据所述N条天线分别对应的阵列排布误差和所述N条天线对所述M个终端设备的所述第一校正子载波的接收结果,确定所述N条天线对所述M个终端设备的第一校正子载波的接收结果的误差系数;根据所述N条天线对所述M个终端设备的一个或多个校正子载波的接收结果的误差系数,确定所述N条天线分别对应的上行校正参数。
  10. 如权利要求9所述的装置,其特征在于,所述处理单元具体用于:
    根据所述参考天线的预设波束赋形BF权值、所述N条天线分别对应的阵列排布误差和所述N条天线对所述M个终端设备的第一校正子载波的接收结果,确定所述N条天线分别对应的等效生效的BF权值;根据所述N条天线分别对应的等效生效的BF权值和所述N条天线分别对应的预设BF权值确定所述N条天线对所述M个终端设备的第一校正子载波的接收结果的误差系数。
  11. 如权利要求10所述的装置,其特征在于,所述处理单元具体用于:
    根据所述参考天线的预设BF权值和所述N条天线分别对应的阵列排布误差,确定所述N条天线分别对应的BF权值误差;所述天线的BF权值误差用于表征所述天线等效生效的BF权值相对于所述参考天线的预设BF权值的误差;根据所述N条天线分别对应的BF权值误差和所述参考天线的预设BF权值,确定所述N条天线分别对应的等效生效的BF权值。
  12. 如权利要求9所述的装置,其特征在于,所述第一终端设备发送的上行导频信号是所述第一终端设备对接收到的下行导频信号进行倒数运算处理后获得的;所述上行导频信号和所述下行导频信号承载于相同的校正子载波;
    所述处理单元还用于:
    针对于所述第一校正子载波,根据所述N条天线对所述M个终端设备的第一校正子载波的接收结果的误差系数,以及承载于所述第一子载波的下行导频信号,确定所述N条天线对所述M个终端设备的第一校正子载波的发送结果的误差系数;
    根据所述N条天线对所述M个终端设备的一个或多个校正子载波发送结果的误差系数确定所述N条天线分别对应的下行校正参数。
  13. 一种装置,其特征在于,包括:处理器和存储器;
    所述存储器,用于存储程序指令;
    所述处理器,用于通过调用所述存储器存储的程序指令,执行如权利要求1至6中任一项所述的方法。
  14. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使计算机执行如权利要求1至6中任一项所述的方法。
PCT/CN2019/114450 2018-10-31 2019-10-30 一种天线校正方法及装置 WO2020088549A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811291711.3A CN111130661B (zh) 2018-10-31 2018-10-31 一种天线校正方法及装置
CN201811291711.3 2018-10-31

Publications (1)

Publication Number Publication Date
WO2020088549A1 true WO2020088549A1 (zh) 2020-05-07

Family

ID=70463540

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/114450 WO2020088549A1 (zh) 2018-10-31 2019-10-30 一种天线校正方法及装置

Country Status (2)

Country Link
CN (1) CN111130661B (zh)
WO (1) WO2020088549A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022077409A1 (zh) * 2020-10-15 2022-04-21 华为技术有限公司 天线校准方法、设备、存储介质、通信系统及芯片系统
CN112491455B (zh) * 2021-02-05 2021-06-01 电子科技大学 一种基于阵列单元位置修正的鲁棒性波束赋形方法
CN116155404B (zh) * 2022-12-27 2023-07-28 湖南工商大学 阵列天线幅相校正方法、校正单元、校正系统及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1859031A (zh) * 2006-02-10 2006-11-08 华为技术有限公司 一种在多输入多输出系统中发射通道校正方法
CN1943194A (zh) * 2004-02-19 2007-04-04 高通股份有限公司 校准无线mimo通信系统中的下行链路和上行链路信道响应
US20110263280A1 (en) * 2010-04-21 2011-10-27 Jiann-Ching Guey Self-calibrating multi-antenna wireless communication system
US20130070827A1 (en) * 2011-09-19 2013-03-21 Alcatel-Lucent Usa Inc. Method for beamforming transmissions from a network element having a plurality of antennas, and the network element
WO2015188365A1 (zh) * 2014-06-13 2015-12-17 上海贝尔股份有限公司 在大规模mimo无线通信系统中使用的天线校准方法和装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1925362A (zh) * 2005-08-29 2007-03-07 中兴通讯股份有限公司 一种基于均匀线阵的智能天线的实现方法
US9948407B2 (en) * 2016-05-27 2018-04-17 Huawei Technologies Co., Ltd. Method and apparatus for beamforming calibration in point to multipoint communication systems
CN108155958A (zh) * 2017-11-22 2018-06-12 西南电子技术研究所(中国电子科技集团公司第十研究所) 大规模mimo天线阵列远场校准系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1943194A (zh) * 2004-02-19 2007-04-04 高通股份有限公司 校准无线mimo通信系统中的下行链路和上行链路信道响应
CN1859031A (zh) * 2006-02-10 2006-11-08 华为技术有限公司 一种在多输入多输出系统中发射通道校正方法
US20110263280A1 (en) * 2010-04-21 2011-10-27 Jiann-Ching Guey Self-calibrating multi-antenna wireless communication system
US20130070827A1 (en) * 2011-09-19 2013-03-21 Alcatel-Lucent Usa Inc. Method for beamforming transmissions from a network element having a plurality of antennas, and the network element
WO2015188365A1 (zh) * 2014-06-13 2015-12-17 上海贝尔股份有限公司 在大规模mimo无线通信系统中使用的天线校准方法和装置

Also Published As

Publication number Publication date
CN111130661A (zh) 2020-05-08
CN111130661B (zh) 2021-08-31

Similar Documents

Publication Publication Date Title
US11005580B2 (en) Array antenna calibration method and device
US11139945B2 (en) Communication method, terminal, and network device for determining a beam for an uplink channel
WO2021008477A1 (zh) 预编码处理方法和装置
US10812159B2 (en) Antenna calibration method and apparatus
WO2020088549A1 (zh) 一种天线校正方法及装置
CN108471324A (zh) 电子设备、通信装置和信号处理方法
WO2018145529A1 (zh) 一种数据传输方法及装置
TW202304159A (zh) 一種基於通道互易性的預編碼矩陣配置方法及裝置
WO2018127193A1 (zh) 信道状态信息反馈方法、用户设备及基站
US10601559B2 (en) Methods and devices for transmitting and receiving pilot signal
US11705941B2 (en) Quasi-co-location indication method and apparatus
WO2020108637A1 (zh) 信道探测的配置方法及装置
WO2019192410A1 (zh) 一种信号传输方法及通信设备
WO2018228356A1 (zh) 通道校正的方法和网络设备
CN110830202B (zh) 通信方法、装置和通信系统
WO2020107361A1 (zh) 一种射频通道的校准方法和装置
CN111565060A (zh) 波束赋形方法和天线设备
CN108880646A (zh) 一种确定传输时延差的方法及装置
CN116114183A (zh) 一种信息传输的方法、相关装置以及设备
EP4287523A1 (en) Phase correction method and communication apparatus
WO2023160119A1 (zh) 一种通信方法及设备
EP4038759A1 (en) Method and network device for beam vector selection
WO2022222820A1 (zh) 一种数据传输的方法及其设备
US10673656B2 (en) Base station and method therein
WO2023125049A1 (zh) 信道状态信息反馈方法及装置、介质、程序产品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19879959

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19879959

Country of ref document: EP

Kind code of ref document: A1