WO2022222820A1 - 一种数据传输的方法及其设备 - Google Patents

一种数据传输的方法及其设备 Download PDF

Info

Publication number
WO2022222820A1
WO2022222820A1 PCT/CN2022/086571 CN2022086571W WO2022222820A1 WO 2022222820 A1 WO2022222820 A1 WO 2022222820A1 CN 2022086571 W CN2022086571 W CN 2022086571W WO 2022222820 A1 WO2022222820 A1 WO 2022222820A1
Authority
WO
WIPO (PCT)
Prior art keywords
network device
channel quality
quality information
correction
target terminal
Prior art date
Application number
PCT/CN2022/086571
Other languages
English (en)
French (fr)
Inventor
张芳
王成毅
高慧
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022222820A1 publication Critical patent/WO2022222820A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/11Monitoring; Testing of transmitters for calibration
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/21Monitoring; Testing of receivers for calibration; for correcting measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a data transmission method and device thereof.
  • edge rate is one of the keys to improve user throughput.
  • Coordinated Multiple Points Transmission/Reception can improve the quality of the received signal or reduce the interference of the received signal by cooperating with the antennas of multiple cells. This results in higher edge throughput.
  • TRP Transmission Reception point
  • AAU Active Antenna Units
  • the embodiments of the present application provide a data transmission method and a device thereof.
  • the first network device receives the first channel quality information sent by the target terminal, and determines the first calibration compensation according to the first channel quality information. coefficient, and then send the first target data to the target terminal according to the first correction compensation coefficient, and do not need to be corrected in different network devices, so there is no limit to the strength of the sent first correction signal, which improves the cooperation between network devices. Corrected efficiency.
  • a first aspect of the present application provides a data transmission method.
  • the first network device sends a first correction signal to the target terminal, where the first correction signal is used to instruct the target terminal to feed back the first channel quality information, the first network device receives the first channel quality information sent by the target terminal, and the first channel quality information is used for In order to determine the channel quality of the first network device and the target terminal, the first network device determines a first correction compensation coefficient according to the first channel quality information, and the first correction compensation coefficient is used to correct the relationship between the first network device and the second network device. Phase difference, the target terminal is within the cell coverage of the first network device and the second network device, and the first network device sends the first target data to the target terminal according to the first correction compensation coefficient.
  • the first network device when performing joint calibration, receives the first channel quality information sent by the target terminal, determines a first calibration compensation coefficient according to the first channel quality information, and then compensates according to the first calibration.
  • the coefficient sends the first target data to the target terminal, and does not need to be calibrated in different network devices, so there is no limit to the strength of the sent first calibration signal, which improves the efficiency of joint calibration between network devices.
  • the first network device receives second channel quality information sent by the second network device, and the second channel quality information is used to determine the second network
  • the first network device determining the first correction compensation coefficient according to the first channel quality information includes: the first network device determining the first correction compensation coefficient according to the first channel quality information and the second channel quality information.
  • the first network device determines the first correction compensation coefficient according to the first channel quality information and the second channel quality information, so that the transmitter and the receiver of the first network device and the second network device maintain consistency Moreover, the implementation complexity and scenario limitations of the air interface transmission correction sequence are avoided.
  • sending the first correction signal to the target terminal by the first network device includes: the first network device sends a plurality of signals to the target terminal through N ports.
  • the port is a sending port of the first network device.
  • multiple first correction signals are sent to the target terminal through N ports, which improves the implementability of the solution.
  • sending a plurality of first correction signals to the target terminal by the first network device through N ports includes: the first network device transmits a plurality of first correction signals through the first antenna and the N ports send multiple first correction signals to the target terminal, and the first antenna is an antenna of the first network device.
  • the first correction signal is sent through one antenna, which reduces the complexity of sending the first correction signal.
  • the first network device sending a plurality of first correction signals to the target terminal through the first antenna and N ports includes: the first network device Sending multiple first correction signals to the target terminal through the first antenna and N ports in multiple phases respectively, and the first network device receiving the first channel quality information sent by the target terminal includes: pieces of first channel quality information, and multiple pieces of first channel quality information respectively correspond to multiple first correction signals sent at multiple phases.
  • the first network device sends multiple first correction signals to the target terminal through the first antenna and N ports in multiple phases, and receives multiple first channel quality information sent by the target terminal, which improves the The accuracy of the subsequent calculation of the compensation coefficient.
  • the first channel quality information includes a first rank indicator RI, a first channel quality indicator CQI, and a first precoding matrix indicator
  • the PMI the method further includes: the first network device obtains a plurality of first spectral effects SE according to the plurality of first RIs and the plurality of first CQIs, the first SE represents a spectral effect corresponding to the first correction signal, and the plurality of first spectral effects
  • the SE corresponds to multiple first correction signals sent in multiple phases.
  • the first network device determines the target spectral effect according to the multiple first spectral effects.
  • the target spectral effect is the largest of the values corresponding to the multiple first spectral effects.
  • the determining of the first correction and compensation coefficient by the network device according to the first channel quality information includes: the first network device determining the first correction and compensation coefficient according to the first PMI corresponding to the target spectral effect.
  • the first network device calculates the compensation coefficient after smooth filtering according to the PMI information fed back by the terminal, and performs phase correction when sending data, so that the transmitter and receiver of the first network device and the second network device are consistent with each other. It also avoids the implementation complexity and scenario limitations of the air interface transmission correction sequence.
  • a second aspect of the present application provides a data transmission method.
  • the terminal device receives the first correction signal sent by the first network device, the first correction signal is used to instruct the terminal device to feed back the first channel quality information, the terminal device receives the second correction signal sent by the second network device, and the second correction signal is used for Instruct the terminal device to feed back the second channel quality information.
  • the terminal device sends the first channel quality information to the first network device according to the first correction signal.
  • the first channel quality information is used to determine the channel quality of the first network device and the terminal device.
  • the terminal device Send second channel quality information to the second network device according to the second correction signal, where the second channel quality information is used to determine the channel quality of the second network device and the terminal device, and the terminal device receives the first target data sent by the first network device,
  • the first target data is sent by the first network device according to the first correction compensation coefficient
  • the first correction compensation coefficient is determined by the first network device according to the first channel quality information
  • the first correction compensation coefficient is used to correct the first network device and the phase difference between the second network device.
  • using the terminal feedback information to perform calibration is not limited by the AAU power limitation of the AAU air interface mutual transmission phase correction sequence, which reduces the implementation complexity.
  • a third aspect of the present application provides a network device.
  • a network device comprising:
  • a sending unit configured to send a first correction signal to the target terminal, where the first correction signal is used to instruct the target terminal to feed back the first channel quality information
  • a receiving unit configured to receive the first channel quality information sent by the target terminal, where the first channel quality information is used to determine the channel quality of the first network device and the target terminal;
  • the determining unit is configured to determine a first correction compensation coefficient according to the first channel quality information, the first correction compensation coefficient is used to correct the phase difference between the first network device and the second network device, and the target terminal is between the first network device and the second network device.
  • the sending unit is further configured to send the first target data to the target terminal according to the first correction compensation coefficient.
  • the receiving unit is further configured to receive second channel quality information sent by the second network device, where the second channel quality information is used to determine the channel quality of the second network device and the target terminal;
  • the determining unit is specifically configured to determine the first correction compensation coefficient according to the first channel quality information and the second channel quality information.
  • the sending unit is specifically configured to send a plurality of first correction signals to the target terminal through N ports, where the ports are sending ports of the first network device.
  • the sending unit is specifically configured to send a plurality of first correction signals to the target terminal through a first antenna and N ports, where the first antenna is an antenna of the first network device.
  • the sending unit is specifically configured to send multiple first correction signals to the target terminal through the first antenna and N ports in multiple phases respectively;
  • the receiving unit is specifically configured to receive multiple pieces of first channel quality information sent by the target terminal, where the multiple pieces of first channel quality information respectively correspond to multiple first correction signals sent with multiple phases.
  • the first channel quality information includes a first rank indicator RI, a first channel quality indicator CQI, and a first precoding matrix indicator PMI
  • the determining unit is further configured to determine according to a plurality of first RIs and a plurality of first
  • the CQI obtains a plurality of first spectral effects SEs
  • the first SEs represent the spectral effects corresponding to the first correction signals
  • the plurality of first spectral effects SEs correspond to a plurality of first correction signals sent by a plurality of phases
  • the determining unit is further configured to determine a target spectral effect according to a plurality of first spectral effects, and the target spectral effect is the largest among the values corresponding to the plurality of first spectral effects;
  • the determining unit is specifically configured to determine the first correction compensation coefficient according to the first PMI corresponding to the target spectral effect.
  • each unit of the network device in the third aspect of the present application are similar to the operations performed by the first network device in the first aspect of the present application, and details are not repeated here.
  • a fourth aspect of the present application provides a terminal device.
  • a terminal device including:
  • a receiving unit configured to receive a first correction signal sent by the first network device, where the first correction signal is used to instruct the terminal device to feed back the first channel quality information;
  • the receiving unit is further configured to receive a second correction signal sent by the second network device, where the second correction signal is used to instruct the terminal device to feed back the second channel quality information;
  • a sending unit configured to send the first channel quality information to the first network device according to the first correction signal, where the first channel quality information is used to determine the channel quality of the first network device and the terminal device;
  • the sending unit is further configured to send second channel quality information to the second network device according to the second correction signal, where the second channel quality information is used to determine the channel quality of the second network device and the terminal device;
  • the receiving unit is further configured to receive first target data sent by the first network device, where the first target data is sent by the first network device according to the first correction compensation coefficient, and the first correction compensation coefficient is the first network device according to the first channel quality Based on the information determined, the first correction compensation coefficient is used to correct the phase difference between the first network device and the second network device.
  • a fifth aspect of the present application provides a computer storage medium, where instructions are stored in the computer storage medium, and when the instructions are executed on a computer, the instructions cause the computer to execute the method according to the embodiments of the first aspect or the second aspect of the present application.
  • a sixth aspect of the present application provides a computer program product, which, when executed on a computer, causes the computer to execute the method according to the embodiments of the first aspect or the second aspect of the present application.
  • a seventh aspect of the present application provides a network device, including a processor, the processor is coupled to a memory, the memory stores at least one program instruction or code, and the at least one program instruction or code is loaded and executed by the processor, so that the network A device implements the method of the first aspect.
  • An eighth aspect of the present application provides a terminal device, including a processor, the processor is coupled to a memory, and at least one program instruction or code is stored in the memory, and at least one program instruction or code is loaded and executed by the processor, so that the terminal device A method for implementing the second aspect.
  • a ninth aspect of the present application provides a chip system, including: applied to a network device, the chip system includes at least one processor, a memory and an interface circuit, the memory, the transceiver and the at least one processor are interconnected through lines, and at least one memory Instructions are stored; the instructions are executed by a processor to perform the method of the first aspect of the present application.
  • a tenth aspect of the present application provides a chip system, including: applied to a terminal device, the chip system includes at least one processor, a memory and an interface circuit, the memory, the transceiver and the at least one processor are interconnected through lines, and at least one memory Instructions are stored; the instructions are executed by a processor to perform the method of the second aspect of the present application.
  • the embodiments of the present application have the following advantages:
  • the first network device when performing joint calibration, receives the first channel quality information sent by the target terminal, determines a first calibration compensation coefficient according to the first channel quality information, and then compensates according to the first calibration.
  • the coefficient sends the first target data to the target terminal, and does not need to be calibrated in different network devices, so there is no limit to the strength of the sent first calibration signal, which improves the efficiency of joint calibration between network devices.
  • FIG. 1 is a schematic diagram of channel calibration between AAUs in the prior art provided by an embodiment of the present application;
  • FIG. 2 is a schematic diagram of transmission channel calibration between AAUs in the prior art according to an embodiment of the present application
  • FIG. 3 is a schematic diagram of receiving channel calibration between AAUs in the prior art according to an embodiment of the present application
  • FIG. 4 is a schematic flowchart of joint calibration between AAUs in the prior art provided by an embodiment of the present application
  • FIG. 5 is a schematic diagram of a framework of a data transmission method provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of another framework of a data transmission method provided by an embodiment of the present application.
  • FIG. 7 is a schematic flowchart of a data transmission method provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a sending port of an AAU in a data transmission method provided by an embodiment of the present application.
  • FIG. 9 is another schematic flowchart of a data transmission method provided by an embodiment of the present application.
  • FIG. 10 is another schematic flowchart of a data transmission method provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a network device provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • FIG. 13 is another schematic structural diagram of a network device provided by an embodiment of the present application.
  • FIG. 14 is another schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • the first network device receives first channel quality information sent by a target terminal, and determines a first correction compensation coefficient according to the first channel quality information. , and then send the first target data to the target terminal according to the first correction compensation coefficient, which does not need to be corrected in different network devices, so there is no limit to the strength of the sent first correction signal, which improves the joint correction between network devices. s efficiency.
  • FIG. 1 is a schematic diagram of channel calibration between AAUs in the prior art according to an embodiment of the present application.
  • the improvement of the edge rate is one of the keys to improving the user throughput.
  • Coordinated Multiple Points Transmission/Reception cooperates with the antennas of multiple cells to improve the quality of the received signal or reduce the interference of the received signal. This results in higher edge throughput.
  • the fifth generation new radio interface 5G New Radio, 5G NR can better support multi-point coordinated transmission technology without scrambling code and cell ID decoupling.
  • the amplitude, phase and delay characteristics of each channel may be different due to the actual device.
  • AAU Active Antenna Unit
  • the receiving channel performs amplitude, phase and time delay compensation, that is, channel correction, to obtain higher gain.
  • TRP Transmission Reception Points
  • CoMP Coordinated Multiple Points Transmission/Reception
  • each AAU only performs channel correction within its own AAU, while channel correction between TRPs is performed independently, which cannot match the requirements of CoMP's joint amplitude, phase, and delay calibration. Therefore, in order to realize joint coherent transmission of signals of multiple AAUs, it is necessary to perform joint channel correction between AAUs in conjunction with AAUs of multiple transmission points.
  • RRU0 and RRU1 perform joint channel correction through a radio channel (Radio channel).
  • Radio channel radio channel
  • a compensation parameter ⁇ 1 is added, and through the compensation parameters to achieve joint channel correction.
  • the correction sequence sent by each AAU air interface is used for correction.
  • the internal calibration is first performed in each AAU.
  • the calibration coefficient of each channel in the AAU is calculated to obtain calibration compensation, thereby ensuring the consistency of each channel.
  • the AAU in the transmission calibration, the AAU generates a calibration reference signal, and sends it to the measurement signal receiving channel through channel 0 to channel N, and then calculates the calibration coefficient of each channel in the AAU to obtain calibration compensation to ensure the correctness of each channel. Consistency when transmitting signals.
  • the AAU receives the calibration signal sent by the measurement signal transmission channel through channel 0 to channel N, and then calculates the calibration coefficient of each channel in the AAU to obtain the calibration compensation to ensure the transmission signal of each channel. consistency.
  • the air interfaces between the AAUs are sent to each other.
  • AAU1 transmits
  • AAU2 receives the correction reference signal of AAU1 and then exchanges transmission and reception
  • AAU2 sends and receives the correction reference signal AAU1.
  • the correction coefficient compensation between the AAUs is calculated, so that the response ratios of the sending and receiving paths of AAU1 and AAU2 are the same to ensure that the amplitude and phase of the channels between the AAUs are consistent.
  • the present application provides a data transmission method, which realizes joint correction between AAUs through information exchange with a terminal, avoiding the limitation of signal strength for joint correction between AAUs .
  • FIG. 5 is a schematic diagram of a framework of a data transmission method provided by an embodiment of the present application.
  • the framework of the data transmission method provided by the present application includes at least two network devices and one terminal device, wherein the terminal is within the cell range of the at least two network devices and can receive at least two network devices.
  • the signal sent by the device is not limited to the frame size.
  • the network device may be an active antenna unit (AAU), an evolved nodeB (eNB) in a 4G access technology communication system, or a next-generation 5G access technology communication system.
  • AAU active antenna unit
  • eNB evolved nodeB
  • the base station may also be a base station in a future communication system, such as a base station of a 6G communication system, which is not specifically limited here.
  • the base station signal transmission architecture can be applied to a communication system of the third generation (3G) access technology, and can also be applied to a communication system of the fourth generation (4G) access technology, such as long term evolution (long term evolution) evolution, LTE) access technology; or, the base station signal transmission architecture can also be applied to a fifth generation (fifth generation, 5G) access technology communication system, such as a new radio (new radio, NR) access technology; or, the The base station signal transmission architecture can also be applied to communication systems of various wireless technologies, such as communication systems of LTE technology and NR technology. In addition, the base station signal transmission architecture can also be applied to future-oriented communication technologies, such as sixth generation (sixth generation, 6G) access technology communication systems.
  • the terminal device may be an entity for receiving or transmitting signals, such as a mobile phone.
  • a terminal device may also be referred to as a terminal (terminal), a user equipment (UE), a mobile station (mobile station, MS), a mobile terminal (mobile terminal, MT), and the like.
  • the terminal device can also be a car with a communication function, a smart car, a mobile phone (mobile phone), a wearable device, a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (virtual reality, VR) terminal device, augmented reality (augmented reality, AR) terminal equipment, wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical surgery, smart grid (smart grid) ), wireless terminals in transportation safety, wireless terminals in smart cities, wireless terminals in smart homes, and so on.
  • the embodiments of the present application do not limit the specific technology and specific device form adopted by the terminal device.
  • TRP1 and TRP2 when TRP1 and TRP2 perform joint calibration, TRP1 belongs to AAU1 and TRP2 belongs to AAU2.
  • TRP1 and TRP2 respectively send CSI-RS reference signals to the terminal equipment, and use the information fed back by the terminal equipment (rank indicator RI /channel quality indicator CQI/precoding matrix indicator PMI and other information) for joint correction, which avoids the signal strength problem caused by joint correction between two network devices and ensures the accuracy of received signals.
  • FIG. 7 is a schematic flowchart of a data transmission method provided by an embodiment of the present application.
  • the first network device represents TRP1 and the second network device represents TRP2 as an example for description.
  • the first network device and the second network device may have more hardware forms. There is no limitation here.
  • step 701 the first network device sends a first correction signal to the target terminal.
  • the first network device and the second network device establish a cooperative relationship with each other to perform joint transmission for the target terminal.
  • the first network device sends a first correction signal to the target terminal, where the first correction signal is used to instruct the target terminal to feed back the first channel quality information.
  • the CSI-RS signal is used to instruct the terminal to feed back CSI information corresponding to RANK1.
  • the first network device sends a plurality of first correction signals to the target terminal through N ports, where the N ports are sending ports of the first network device.
  • the first network device may send N ports among the M ports, where N is less than M, and the M ports belong to the ports of the first network device.
  • each different port represents a different frequency domain position, that is, when the first network device sends a plurality of first correction signals at N ports, it sends the first correction signals at N frequency domain positions respectively. For example, when M is equal to 2, N is equal to 1, and the first network device sends the first correction signal through one port.
  • N is equal to 2/M, that is, when there are 10 sending ports, the first network device selects 5 of the sending ports to send the first correction signal.
  • the resources used by the first network device to send the first correction signal may be multiplexed with measurement resources with the same number of ports, and may also be configured with dedicated correction resources to carry the first correction signal.
  • the first network device may multiplex measurement CSI-RS resources with the same number of ports, and may also configure resources dedicated to sending and correcting CSI-RS, which are not limited here. .
  • the first network device sends a plurality of first correction signals to the target terminal through a first antenna and N ports, where the first antenna belongs to an antenna of the first network device.
  • the first network device may also send multiple first correction signals to the target terminal through multiple antennas and N ports, which is not specifically limited here.
  • the first network device sends multiple first correction signals to the target terminal through the first antenna and N ports in multiple phases respectively, that is, the first network device uses the phase offset on the CSI-RS setting, different phase offsets are sent on different CSI-RS resources. For example, the first network device adds phase offsets of -90°, -45°, 0°, 45°, and 90° respectively when sending the first correction signal, and sends the CSI-RS with different phase offsets in the CSI-RS Time-sharing on resources.
  • the ports for measuring CSI-RS signals and the ports for phase-correcting CSI-RS signals are consistent.
  • the same set of CSI-RS configuration can be used, and there is no need to configure it separately, which saves the corresponding resource overhead.
  • the corrected CSI-RS signal may be configured as a periodic, aperiodic, or semi-static CSI-RS signal, which is not specifically limited here.
  • step 702 the second network device sends a second correction signal to the target terminal.
  • the first network device and the second network device establish a cooperative relationship with each other to perform joint transmission for the target terminal.
  • the second network device sends a second correction signal to the target terminal, where the second correction signal is used to instruct the target terminal to feed back the second channel quality information, and the target terminal is within the cell coverage of the first network device and the second network device.
  • the second network device sends multiple second correction signals to the target terminal through (M-N) ports, where the (M-N) ports are sending ports of the second network device.
  • the second network device and the first network device may use duplicate ports to send the second correction signal, that is, send the M ports other than the N ports sent by the first network device, and the M ports belong to the second network device.
  • the port of the network device each different port represents a different frequency domain position, that is, when the second network device sends multiple second correction signals at (M-N) ports, it sends second correction signals at (M-N) frequency domain positions respectively. For example, when M is equal to 2, N is equal to 1, and the second network device sends the second correction signal through one port.
  • (M-N) is equal to 2/M, that is, when there are 10 sending ports, the second network device selects 5 of the sending ports to send the second correction signal.
  • the first network device and the second network device multiplex the same segment of ports.
  • the first network device AAU1 transmits the first correction signal through ports 1 to N/2 on the antenna 1, and the transmission energy of the first correction signal is W1, 1 to W1, N/2, while the second network device AAU2 transmits the first correction signal through the antenna 2.
  • the transmit energy of ports 1 to N/2 is adjusted to 0.
  • the transmission energy of the second network device through ports N/2+1 to N at antenna 2 is W2, 1 to W2, N respectively, while the first network device at antenna 1 passes
  • the transmit energy of N/2+1 to N ports is adjusted to 0. It should be noted that, in the actual application process, the port used by the second network device and the port sent by the first network device may be the same, may be different, or partially overlap, which is not limited here. .
  • the resources for sending the second correction signal by the second network device may reuse measurement resources with the same number of ports, or may configure dedicated correction resources to carry the second correction signal.
  • the second network device may multiplex measurement CSI-RS resources with the same number of ports, or configure resources dedicated to sending and correcting CSI-RS, which are not limited here. .
  • the second network device sends a plurality of second correction signals to the target terminal through a second antenna and N ports, where the second antenna belongs to the antenna of the second network device.
  • the second network device may also send multiple first correction signals to the target terminal through multiple antennas and (M-N) ports, which is not specifically limited here.
  • the ports for measuring CSI-RS signals and the ports for phase-correcting CSI-RS signals are consistent, the ports for measuring CSI-RS signals and the ports for phase-correcting CSI-RS signals are the same.
  • the same set of CSI-RS configuration can be used, and there is no need to configure it separately, which saves the corresponding resource overhead.
  • step 703 the target terminal sends the first channel quality information to the first network device according to the first correction signal.
  • the target terminal After the target terminal receives the first correction signal sent by the first network device, the target terminal obtains the first channel quality information according to the first correction signal, and sends the first channel quality information to the first network device. The information is used to determine the channel quality of the first network device and the target terminal.
  • the target terminal measures the first correction signal, and obtains the first channel quality information.
  • the first channel quality information includes at least one of the following: CQI information, PMI information and RI information.
  • the target terminal when the target terminal receives the first correction signals sent by the first network device at multiple phase offsets in a time-sharing manner, the target terminal obtains multiple the first channel quality information, and then send a plurality of first channel quality information to the first network device.
  • the first network device sends first correction signals to the target terminal at phase offsets of -90°, -45°, 0°, 45° and 90°, respectively, and the target terminal correspondingly receives multiple first correction signals signal, the target terminal obtains multiple pieces of first channel quality information according to multiple first correction signals, and then sends multiple pieces of first channel quality information to the first network device.
  • the target terminal After obtaining the first channel quality information, the target terminal sends the first channel quality information to the first network device.
  • step 704 the target terminal sends the second channel quality information to the second network device according to the second correction signal.
  • the target terminal After the target terminal receives the second correction signal sent by the second network device, the target terminal obtains the second channel quality information according to the second correction signal, and sends the second channel quality information to the second network device. The information is used to determine the channel quality of the second network device and the target terminal.
  • the target terminal measures the second correction signal, and obtains the second channel quality information.
  • the second channel quality information includes at least one of the following: CQI information, PMI information and RI information.
  • the target terminal After obtaining the second channel quality information, the target terminal sends the second channel quality information to the second network device.
  • step 705 the second network device sends the second channel quality information to the first network device.
  • the second network device After the second network device receives the second channel quality information sent by the target terminal, the second network device sends the second channel quality information to the first network device.
  • step 706 the first network device determines a first correction compensation coefficient according to the first channel quality information and the second channel quality information.
  • the first network device After the first network device receives the first channel quality information and the second channel quality information, the first network device determines the first correction compensation coefficient according to the first channel quality information and the second channel quality information, and the first correction compensation coefficient is for correcting the phase difference between the first network device and the second network device.
  • the first network device when the first channel quality information includes a first rank indicator RI, a first channel quality indicator CQI and a first precoding matrix indicator PMI, the first network device is at a phase offset of X1
  • the first rank indicator RI and the first channel quality indicator CQI fed back by the first correction signal sent when the The first spectral effect SEx1,1 is obtained.
  • the first correction signal can be sent multiple times when the phase offset is X1, so multiple sets of first spectral effects will be obtained, then the multiple sets of first spectral effects will be filtered to obtain the offset position is a first spectral effect mean value at X1.
  • the first network device After the first correction signal sent by the first network device with different phase offsets, it can obtain a plurality of first spectral efficiency mean values corresponding to different phase offsets.
  • the mean value determines the target spectral effect, and the target spectral effect is the one with the largest corresponding value among the multiple first spectral effect mean values, that is, the optimal spectral effect among the multiple first spectral effect mean values.
  • the first network device After obtaining the target spectral effect, compares the first PMI value corresponding to the target spectral effect with the PMI value sent by the second network device, and compares the first PMI value corresponding to the target spectral effect with the PMI sent by the second network device.
  • the phase difference of the values can be calculated to obtain a phase compensation coefficient between the first network device and the second network device.
  • AAU1 (the first network device) and AAU2 (the second network device) are calculated through the CSI-RS outer weight, and AAU1 is sent in joint CSI-RS time division through the phase offset.
  • the UE receives the CSI -
  • the UE reports the CSI measurement information.
  • the phase offset calculation is performed, and after obtaining the phase offset weight, the data is sent to the UE according to the phase offset weight (ie, UE-level phase compensation) .
  • AAU1 (the first network device) sends CSI-RS signals at multiple phase offsets (-90°, -45°, ⁇ , 90°, etc.), and the UE feeds back after measurement.
  • AAU1 will obtain the spectral effect SE corresponding to multiple phase offsets (-90°, -45°, . . . , 90°, etc.) , and finally obtain the average spectral effect corresponding to each phase offset, and then calculate the phase compensation coefficient by selecting the data corresponding to the phase offset with the optimal spectral effect.
  • step 707 the first network device sends the first target data to the target terminal according to the first correction compensation coefficient.
  • the first network device After the first network device calculates and obtains the first correction compensation coefficient, the first network device sends first target data to the target terminal according to the first correction compensation coefficient, where the first target data represents data sent by the first network device to the target terminal.
  • the calculation of the first correction compensation coefficient may also be performed on other network devices. After the first correction compensation coefficient is calculated, it is sent to the first network device. It is understandable that if If the first correction compensation coefficient is calculated on other network equipment, the second network equipment sends the second channel quality information to the network equipment that calculates the first correction compensation coefficient.
  • step 705 is an optional step, that is, the terminal device can directly send the second channel quality information to the first network device without forwarding it through the second network device, which can save transmission resources.
  • the first network device and the second network device after the first network device and the second network device confirm the cooperation relationship, they multiplex and measure the CSI-RS resources and send N/2port different offset phases to correct the CSI-RS, and the terminal corrects the CSI-RS by the joint phase.
  • the RS performs measurement feedback.
  • the first network device calculates the compensation coefficient after smooth filtering according to the PMI information fed back by the terminal and performs phase correction when sending data, so as to maintain consistency between the transmitters and receivers of the first network device and the second network device and avoid air interface transmission.
  • the implementation complexity of the correction sequence and the problem of scene limitations It is beneficial to ensure the accuracy of the received signal at the cost of low complexity in the coordinated multi-point transmission scenario.
  • the first network device and the second network device perform single-user joint transmission. After the phase correction, there is no phase cancellation. In this way, the user obtains the power gain and the array gain of the BF weight and improves the user's throughput rate.
  • the first network device and the second network device are used to jointly send the CSI-RS, and the joint phase correction between AAUs is performed according to the PMI information fed back by the terminal.
  • the phase correction CSI-RS can be complex By measuring CSI-RS resources, the overhead caused by the transmission and reception of additional check sequences can be reduced.
  • the calibration using the terminal feedback information is not limited by the AAU power limitation of the AAU air interface mutual transmission phase calibration sequence, which reduces the implementation complexity.
  • the spectral effect filter for multiple measurements continues to smooth the phase compensation offset, reduces the error compensation caused by abnormal measurement, and improves the error tolerance rate.
  • FIG. 11 is a schematic structural diagram of a network device according to an embodiment of the present application.
  • a network device comprising:
  • a sending unit 1101 configured to send a first correction signal to the target terminal, where the first correction signal is used to instruct the target terminal to feed back the first channel quality information;
  • a receiving unit 1102 configured to receive first channel quality information sent by the target terminal, where the first channel quality information is used to determine the channel quality of the first network device and the target terminal;
  • the determining unit 1103 is configured to determine a first correction compensation coefficient according to the first channel quality information, the first correction compensation coefficient is used to correct the phase difference between the first network device and the second network device, and the target terminal is between the first network device and the second network device. Within the cell coverage of the second network device;
  • the sending unit 1101 is further configured to send the first target data to the target terminal according to the first correction and compensation coefficient.
  • each unit in the network device in this embodiment is similar to the operations performed by the first network device in the embodiment shown in FIG. 7 , and details are not repeated here.
  • FIG. 11 is another schematic structural diagram of a network device according to an embodiment of the present application.
  • a network device comprising:
  • a sending unit 1101 configured to send a first correction signal to the target terminal, where the first correction signal is used to instruct the target terminal to feed back the first channel quality information;
  • a receiving unit 1102 configured to receive first channel quality information sent by the target terminal, where the first channel quality information is used to determine the channel quality of the first network device and the target terminal;
  • the determining unit 1103 is configured to determine a first correction compensation coefficient according to the first channel quality information, the first correction compensation coefficient is used to correct the phase difference between the first network device and the second network device, and the target terminal is between the first network device and the second network device. Within the cell coverage of the second network device;
  • the sending unit 1101 is further configured to send the first target data to the target terminal according to the first correction and compensation coefficient.
  • the method also includes:
  • the receiving unit 1102 is further configured to receive second channel quality information sent by the second network device, where the second channel quality information is used to determine the channel quality of the second network device and the target terminal;
  • the determining unit 1103 is specifically configured to determine the first correction compensation coefficient according to the first channel quality information and the second channel quality information.
  • the sending unit 1101 is specifically configured to send a plurality of first correction signals to the target terminal through N ports, and the ports are the sending ports of the first network device.
  • the sending unit 1101 is specifically configured to send a plurality of first correction signals to the target terminal through a first antenna and N ports, where the first antenna is an antenna of the first network device.
  • the sending unit 1101 is specifically configured to send multiple first correction signals to the target terminal through the first antenna and N ports in multiple phases respectively;
  • the receiving unit 1102 is specifically configured to receive multiple pieces of first channel quality information sent by the target terminal, where the multiple pieces of first channel quality information respectively correspond to multiple first correction signals sent with multiple phases.
  • the first channel quality information includes a first rank indicator RI, a first channel quality indicator CQI, and a first precoding matrix indicator PMI
  • the determining unit 1103 is further configured to:
  • a CQI obtains a plurality of first spectral effects SEs, the first SEs represent the spectral effects corresponding to the first correction signals, and the plurality of first spectral effects SEs correspond to a plurality of first correction signals sent by a plurality of phases;
  • the determining unit 1103 is further configured to determine a target spectral effect according to a plurality of first spectral effects, and the target spectral effect is the largest among the values corresponding to the plurality of first spectral effects;
  • the determining unit 1103 is specifically configured to determine the first correction compensation coefficient according to the first PMI corresponding to the target spectral effect.
  • each unit in the network device in this embodiment is similar to the operations performed by the first network device in the embodiment shown in FIG. 7 , and details are not repeated here.
  • FIG. 12 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • a terminal device including:
  • a receiving unit 1201 configured to receive a first correction signal sent by a first network device, where the first correction signal is used to instruct the terminal device to feed back the first channel quality information;
  • the receiving unit 1201 is further configured to receive a second correction signal sent by the second network device, where the second correction signal is used to instruct the terminal device to feed back the second channel quality information;
  • a sending unit 1202 configured to send the first channel quality information to the first network device according to the first correction signal, where the first channel quality information is used to determine the channel quality of the first network device and the terminal device;
  • the sending unit 1202 is further configured to send second channel quality information to the second network device according to the second correction signal, where the second channel quality information is used to determine the channel quality of the second network device and the terminal device;
  • the receiving unit 1201 is further configured to receive the first target data sent by the first network device, the first target data is sent by the first network device according to the first correction compensation coefficient, and the first correction compensation coefficient is the first network device according to the first channel. Determined by the quality information, the first correction compensation coefficient is used to correct the phase difference between the first network device and the second network device.
  • each unit in the terminal device in this embodiment is similar to the operations performed by the target terminal in the embodiment shown in FIG. 7 , and details are not repeated here.
  • FIG. 13 is another schematic structural diagram of the control unit provided by the embodiment of the present application.
  • the processor 1301 is connected to the memory 1302 and the interface 1304.
  • the bus 1305 is respectively connected to the processor 1301, the memory 1302, and the interface 1304.
  • the interface 1304 is used to receive or send data.
  • the processor 1301 be a single-core or multi-core central processing unit, or be a specific integrated circuit, or be one or more integrated circuits configured to implement embodiments of the invention.
  • the memory 1302 may be random access memory (RAM), or may be non-volatile memory (non-volatile memory), such as at least one hard disk memory.
  • Memory 1302 is used to store computer-executable instructions. Specifically, the program 1303 may be included in the computer-executed instructions.
  • FIG. 14 is another schematic structural diagram of the control unit provided by the embodiment of the present application.
  • the processor 1401 is connected to the memory 1402 and the interface 1404.
  • the bus 1405 is respectively connected to the processor 1401, the memory 1402, and the interface 1404.
  • the interface 1404 is used to receive or send data.
  • the processor 1401 be a single-core or multi-core central processing unit, or be a specific integrated circuit, or be one or more integrated circuits configured to implement embodiments of the invention.
  • the memory 1402 may be random access memory (RAM), or may be non-volatile memory (non-volatile memory), such as at least one hard disk memory.
  • Memory 1402 is used to store computer-implemented instructions. Specifically, the program 1403 may be included in the computer-executed instructions.
  • processors mentioned in the network devices and terminal devices in the above embodiments of the present application may be a central processing unit (CPU), or other General-purpose processor, digital signal processor (DSP), application-specific integrated circuit (ASIC), off-the-shelf programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete Gate or transistor logic devices, discrete hardware components, etc.
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the number of processors in the network device and the terminal device in the above embodiments of the present application may be one or more, and may be adjusted according to actual application scenarios. limited.
  • the number of memories in this embodiment of the present application may be one or multiple, and may be adjusted according to actual application scenarios, which is merely illustrative and not limiting.
  • the network device and the terminal device include a processor (or a processing unit) and a memory
  • the processor in this application may be integrated with the memory, or the processor and the memory may be connected through an interface, It can be adjusted according to the actual application scenario and is not limited.
  • the present application provides a chip system, which includes a processor for supporting network devices and terminal devices to implement the functions of the controller involved in the above method, such as processing data and/or information involved in the above method.
  • the chip system further includes a memory for storing necessary program instructions and data.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the chip system when the chip system is a chip in a user equipment or an access network, the chip includes: a processing unit and a communication unit.
  • the processing unit may be a processor, for example, and the communication unit may be an input/communication unit, for example. Output interface, pin or circuit, etc.
  • the processing unit can execute the computer-executed instructions stored in the storage unit, so that the chips in the network device and the terminal device etc. execute the steps performed by the first network device and the terminal device in any one of the foregoing embodiments in FIG. 7 .
  • the storage unit is a storage unit in the chip, such as a register, a cache, etc.
  • the storage unit can also be a storage unit located outside the chip in a network device, a terminal device, etc., such as a read-only memory (ROM). ) or other types of static storage devices that can store static information and instructions, random access memory (RAM), etc.
  • ROM read-only memory
  • RAM random access memory
  • Embodiments of the present application further provide a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a computer, implements the method process performed with the controller of a network device and a terminal device in any of the above method embodiments .
  • the computer may be the above-mentioned network device and terminal device.
  • controller or processor mentioned in the above embodiments of the present application may be a central processing unit (central processing unit, CPU), or other general-purpose processors, digital signal processors (digital signal processor, DSP) ), application specific integrated circuit (ASIC), field programmable gate array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc. various combinations.
  • CPU central processing unit
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the number of processors or controllers in the network device and terminal device or chip system in the above embodiments of the present application may be one or more, and may be adjusted according to actual application scenarios. It is an exemplary illustration, not a limitation.
  • the number of memories in this embodiment of the present application may be one or more, and may be adjusted according to an actual application scenario, which is merely illustrative and not limiting.
  • the memory or readable storage medium, etc. mentioned in the network devices and terminal devices in the above embodiments, etc. may be volatile memory or non-volatile memory, or may include volatile memory Both volatile and non-volatile memory.
  • the non-volatile memory may be read-only memory (ROM), programmable read-only memory (PROM), erasable programmable read-only memory (EPROM), electrically programmable Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be random access memory (RAM), which acts as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous DRAM
  • SDRAM double data rate synchronous dynamic random access memory
  • double data rate SDRAM double data rate SDRAM
  • DDR SDRAM enhanced synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • SCRAM synchronous link dynamic random access memory
  • direct rambus RAM direct rambus RAM
  • the network device, the terminal device or the processor to implement the above embodiments may be completed by instructing the relevant hardware through hardware or programs.
  • the program may be stored in a computer-readable storage medium, and the above-mentioned storage medium may be a read-only memory, a random access memory, or the like.
  • the above-mentioned processing unit or processor may be a central processing unit, a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic devices , transistor logic devices, hardware components, or any combination thereof.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • a computer program product includes one or more computer instructions.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • Computer instructions may be stored on or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website site, computer, server, or data center over a wire (e.g.
  • a computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server, a data center, or the like that includes an integration of one or more available media.
  • Useful media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, DVDs), or semiconductor media, among others.
  • the words “if” or “if” as used herein may be interpreted as “at” or “when” or “in response to determining” or “in response to detecting.”
  • the phrases “if determined” or “if detected (the stated condition or event)” can be interpreted as “when determined” or “in response to determining” or “when detected (the stated condition or event),” depending on the context )” or “in response to detection (a stated condition or event)”.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种数据传输方法,用于进行网络设备的联合校正。本申请实施例方法包括:向目标终端发送第一校正信号,第一校正信号用于指示目标终端反馈第一信道质量信息,接收目标终端发送的第一信道质量信息,第一信道质量信息用于确定第一网络设备和目标终端的信道质量,根据第一信道质量信息确定第一校正补偿系数,第一校正补偿系数用于校正第一网络设备和第二网络设备之间的相位差,目标终端在第一网络设备和第二网络设备的小区覆盖范围内,根据第一校正补偿系数向目标终端发送第一目标数据。

Description

一种数据传输的方法及其设备
本申请要求于2021年4月23日提交中国国家知识产权局、申请号为202110444186.X、发明名称为“一种数据传输的方法及其设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,具体涉及一种数据传输的方法及其设备。
背景技术
随着用户对通信质量要求持续增加,业务量和数据量的不断增多,在有限的频谱资源下如何获得更高的吞吐率是当前所面临的一个挑战。
边缘速率的提升是提升用户吞吐率的关键之一,多点协同传输(Coordinated Multiple Points Transmission/Reception,CoMP)通过联合多个小区的天线进行协作实现对接收信号质量的抬升或降低接收信号的干扰从而获得更高的边缘吞吐率。在现有技术中,CoMP场景下多个传输接收点(Transmission Reception point,TRP)传输场景中,多个有源天线单元(Active Antenna Unit,AAU)之间会进行联合通道校正,以保证各个TRP的接收机和发射机可以准确的接收和发送信号。
在多个AAU之间进行联合校正时,多个AAU之间会互相发送校正参考信号,由于协议的规定,多个AAU之间接收的校正参考信号的强度有要求,即在多个AAU间传输的校正参考信号的强度不能过高也不能过低,这对使用场景进行了限制,影响了AAU之间联合校正的效率。
发明内容
本申请实施例提供了一种数据传输方法及其设备,在进行联合校正时,第一网络设备通过接收目标终端发送的第一信道质量信息,并根据该第一信道质量信息确定第一校正补偿系数,进而根据该第一校正补偿系数向目标终端发送第一目标数据,不需要在不同的网络设备中进行校正,因此对发送的第一校正信号没有强度的限制,提升了网络设备之间联合校正的效率。
本申请第一方面提供了一种数据传输方法。
第一网络设备向目标终端发送第一校正信号,第一校正信号用于指示目标终端反馈第一信道质量信息,第一网络设备接收目标终端发送的第一信道质量信息,第一信道质量信息用于确定第一网络设备和目标终端的信道质量,第一网络设备根据第一信道质量信息确定第一校正补偿系数,第一校正补偿系数用于校正第一网络设备和第二网络设备之间的相位差,目标终端在第一网络设备和第二网络设备的小区覆盖范围内,第一网络设备根据第一校正补偿系数向目标终端发送第一目标数据。
本申请实施例中,在进行联合校正时,第一网络设备通过接收目标终端发送的第一信道质量信息,并根据该第一信道质量信息确定第一校正补偿系数,进而根据该第一校正补偿系数向目标终端发送第一目标数据,不需要在不同的网络设备中进行校正,因此对发送的第一 校正信号没有强度的限制,提升了网络设备之间联合校正的效率。
基于本申请第一方面体用的数据传输方法,在一种可能的实现方式中,第一网络设备接收第二网络设备发送的第二信道质量信息,第二信道质量信息用于确定第二网络设备和目标终端的信道质量,第一网络设备根据第一信道质量信息确定第一校正补偿系数包括:第一网络设备根据第一信道质量信息和第二信道质量信息确定第一校正补偿系数。
本申请实施例中,第一网络设备根据第一信道质量信息和第二信道质量信息确定第一校正补偿系数,使得第一网络设备和第二网络设备的发射机和接收机之间保持一致性并且避免了空口传输校正序列的实现复杂度和场景局限问题。
基于本申请第一方面体用的数据传输方法,在一种可能的实现方式中,第一网络设备向目标终端发送第一校正信号包括:第一网络设备通过N个端口向目标终端发送多个第一校正信号,端口为第一网络设备的发送端口。
本申请实施例中,通过N个端口向目标终端发送多个第一校正信号,提升了方案的可实现性。
基于本申请第一方面体用的数据传输方法,在一种可能的实现方式中,第一网络设备通过N个端口向目标终端发送多个第一校正信号包括:第一网络设备通过第一天线和N个端口向目标终端发送多个第一校正信号,第一天线为第一网络设备的天线。
本申请实施例中,通过一根天线发送第一校正信号,降低了发送第一校正信号的复杂度。
基于本申请第一方面体用的数据传输方法,在一种可能的实现方式中,第一网络设备通过第一天线和N个端口向目标终端发送多个第一校正信号包括:第一网络设备分别在多个相位通过第一天线和N个端口向目标终端发送多个第一校正信号,第一网络设备接收目标终端发送的第一信道质量信息包括:第一网络设备接收目标终端发送的多个第一信道质量信息,多个第一信道质量信息分别对应多个相位发送的多个第一校正信号。
本申请实施例中,第一网络设备分别在多个相位通过第一天线和N个端口向目标终端发送多个第一校正信号,并且接收目标终端发送的多个第一信道质量信息,提升了后续计算补偿系数的准确性。
基于本申请第一方面体用的数据传输方法,在一种可能的实现方式中,第一信道质量信息包括第一秩指示符RI、第一信道质量指示符CQI和第一预编码矩阵指示符PMI,方法还包括:第一网络设备根据多个第一RI和多个第一CQI得到多个第一谱效SE,第一SE表示第一校正信号对应的谱效,多个第一谱效SE和多个相位发送的多个第一校正信号对应,第一网络设备根据多个第一谱效确定目标谱效,目标谱效为多个第一谱效对应的值中最大的,第一网络设备根据第一信道质量信息确定第一校正补偿系数包括:第一网络设备根据目标谱效对应的第一PMI确定第一校正补偿系数。
本申请实施例中,第一网络设备根据终端反馈的PMI信息平滑滤波后计算补偿系数并发送数据时进行相位校正,使得第一网络设备和第二网络设备的发射机和接收机之间保持一致性并且避免了空口传输校正序列的实现复杂度和场景局限问题。
本申请第二方面提供了一种数据传输方法。
终端设备接收第一网络设备发送的第一校正信号,第一校正信号用于指示终端设备反馈第一信道质量信息,终端设备接收第二网络设备发送的第二校正信号,第二校正信号用于指 示终端设备反馈第二信道质量信息,终端设备根据第一校正信号向第一网络设备发送第一信道质量信息,第一信道质量信息用于确定第一网络设备和终端设备的信道质量,终端设备根据第二校正信号向第二网络设备发送第二信道质量信息,第二信道质量信息用于确定第二网络设备和终端设备的信道质量,终端设备接收第一网络设备发送的第一目标数据,第一目标数据为第一网络设备根据第一校正补偿系数发送的,第一校正补偿系数为第一网络设备根据第一信道质量信息确定的,第一校正补偿系数用于校正校正第一网络设备和第二网络设备之间的相位差。
本申请实施例中,利用终端反馈信息进行校不会受限于AAU空口互传相位校正序列的AAU功率限制,降低了实现复杂度。
本申请第三方面提供了一种网络设备。
一种网络设备,包括:
发送单元,用于向目标终端发送第一校正信号,第一校正信号用于指示目标终端反馈第一信道质量信息;
接收单元,用于接收目标终端发送的第一信道质量信息,第一信道质量信息用于确定第一网络设备和目标终端的信道质量;
确定单元,用于根据第一信道质量信息确定第一校正补偿系数,第一校正补偿系数用于校正第一网络设备和第二网络设备之间的相位差,目标终端在第一网络设备和第二网络设备的小区覆盖范围内;
发送单元还用于根据第一校正补偿系数向目标终端发送第一目标数据。
可选的,接收单元还用于接收第二网络设备发送的第二信道质量信息,第二信道质量信息用于确定第二网络设备和目标终端的信道质量;
确定单元具体用于根据第一信道质量信息和第二信道质量信息确定第一校正补偿系数。
可选的,发送单元具体用于通过N个端口向目标终端发送多个第一校正信号,端口为第一网络设备的发送端口。
可选的,发送单元具体用于通过第一天线和N个端口向目标终端发送多个第一校正信号,第一天线为第一网络设备的天线。
可选的,发送单元具体用于分别在多个相位通过第一天线和N个端口向目标终端发送多个第一校正信号;
接收单元具体用于接收目标终端发送的多个第一信道质量信息,多个第一信道质量信息分别对应多个相位发送的多个第一校正信号。
可选的,第一信道质量信息包括第一秩指示符RI、第一信道质量指示符CQI和第一预编码矩阵指示符PMI,确定单元还用于根据多个第一RI和多个第一CQI得到多个第一谱效SE,第一SE表示第一校正信号对应的谱效,多个第一谱效SE和多个相位发送的多个第一校正信号对应;
确定单元还用于根据多个第一谱效确定目标谱效,目标谱效为多个第一谱效对应的值中最大的;
确定单元具体用于根据目标谱效对应的第一PMI确定第一校正补偿系数。
本申请第三方面中网络设备各单元所执行的操作与本申请第一方面中第一网络设备所执 行的操作类似,具体此处不再赘述。
本申请第四方面提供了一种终端设备。
一种终端设备,包括:
接收单元,用于接收第一网络设备发送的第一校正信号,第一校正信号用于指示终端设备反馈第一信道质量信息;
接收单元还用于接收第二网络设备发送的第二校正信号,第二校正信号用于指示终端设备反馈第二信道质量信息;
发送单元,用于根据第一校正信号向第一网络设备发送第一信道质量信息,第一信道质量信息用于确定第一网络设备和终端设备的信道质量;
发送单元还用于根据第二校正信号向第二网络设备发送第二信道质量信息,第二信道质量信息用于确定第二网络设备和终端设备的信道质量;
接收单元还用于接收第一网络设备发送的第一目标数据,第一目标数据为第一网络设备根据第一校正补偿系数发送的,第一校正补偿系数为第一网络设备根据第一信道质量信息确定的,第一校正补偿系数用于校正校正第一网络设备和第二网络设备之间的相位差。
本申请第四方面中终端设备各单元所执行的操作与本申请第二方面中终端设备所执行的操作类似,具体此处不再赘述。
本申请第五方面提供了一种计算机存储介质,计算机存储介质中存储有指令,指令在计算机上执行时,使得计算机执行如本申请第一方面或第二方面实施方式的方法。
本申请第六方面提供了一种计算机程序产品,计算机程序产品在计算机上执行时,使得计算机执行如本申请第一方面或第二方面实施方式的方法。
本申请第七方面,提供了一种网络设备,包括处理器,处理器与存储器耦合,存储器中存储有至少一条程序指令或代码,至少一条程序指令或代码由处理器加载并执行,以使网络设备实现第一方面的方法。
本申请第八方面提供了一种终端设备,包括处理器,处理器与存储器耦合,存储器中存储有至少一条程序指令或代码,至少一条程序指令或代码由处理器加载并执行,以使终端设备实现第二方面的方法。
本申请第九方面提供了一种芯片系统,包括:应用于网络设备中,芯片系统包括至少一个处理器,存储器和接口电路,存储器、收发器和至少一个处理器通过线路互联,至少一个存储器中存储有指令;指令被处理器执行,以执行本申请第一方面的方法。
本申请第十方面提供了一种芯片系统,包括:应用于终端设备中,芯片系统包括至少一个处理器,存储器和接口电路,存储器、收发器和至少一个处理器通过线路互联,至少一个存储器中存储有指令;指令被处理器执行,以执行本申请第二方面的方法。
从以上技术方案可以看出,本申请实施例具有以下优点:
本申请实施例中,在进行联合校正时,第一网络设备通过接收目标终端发送的第一信道质量信息,并根据该第一信道质量信息确定第一校正补偿系数,进而根据该第一校正补偿系数向目标终端发送第一目标数据,不需要在不同的网络设备中进行校正,因此对发送的第一校正信号没有强度的限制,提升了网络设备之间联合校正的效率。
附图说明
图1为本申请实施例提供的现有技术的AAU之间通道校正示意图;
图2为本申请实施例提供的现有技术的AAU之间发射通道校正示意图;
图3为本申请实施例提供的现有技术的AAU之间接收通道校正示意图;
图4为本申请实施例提供的现有技术的AAU之间联合校正流程示意图;
图5为本申请实施例提供的数据传输方法的一个框架示意图;
图6为本申请实施例提供的数据传输方法的另一框架示意图;
图7为本申请实施例提供的数据传输方法一个流程示意图;
图8为本申请实施例提供的数据传输方法中AAU的发送端口示意图;
图9为本申请实施例提供的数据传输方法另一流程示意图;
图10为本申请实施例提供的数据传输方法另一流程示意图;
图11为本申请实施例提供的网络设备一个结构示意图;
图12为本申请实施例提供的终端设备一个结构示意图;
图13为本申请实施例提供的网络设备另一结构示意图;
图14为本申请实施例提供的终端设备另一结构示意图。
具体实施方式
下面本申请实施例提供了一种数据传输的方法,在进行联合校正时,第一网络设备通过接收目标终端发送的第一信道质量信息,并根据该第一信道质量信息确定第一校正补偿系数,进而根据该第一校正补偿系数向目标终端发送第一目标数据,不需要在不同的网络设备中进行校正,因此对发送的第一校正信号没有强度的限制,提升了网络设备之间联合校正的效率。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
请参阅图1,为本申请实施例提供的现有技术的AAU之间通道校正示意图。
随着用户对通信质量要求持续增加,业务量和数据量的不断增多,在有限的频谱资源下如何获得更高的吞吐率是当前所面临的一个挑战。边缘速率的提升是提升用户吞吐率的关键之一,多点协同传输(Coordinated Multiple Points Transmission/Reception,CoMP)通过联合多个小区的天线进行协作实现对接收信号质量的抬升或者降低接收信号的干扰从而获得更高的边缘吞吐率。第五代新空口(5G New Radio,5G NR)相比第四代长期演进技术(4G Long term evolution,4G LTE)无扰码和小区ID解耦能够更好的支持多点协同传输技术。
TTD系统中,由于实际器件的原因可能导致各通道间的幅度相位和时延特征存在差异。为了确保发送信号和接收信号的准确性,必须保证有源天线单元(Active Antenna Unit,AAU)的各个射频通道的发送机和接收机之间的一致性,这需要对每个射频通道发射通道和接收通道进行幅度、相位以及时延进行补偿,即通道校正,来获得更高的增益。多点协同传输(Coordinated Multiple Points Transmission/Reception,CoMP)中多个传输接收点(Transmission Reception Point,TRP)的接收机和发射机同样存在不一致的问题而无法 保证准确的接收信号,造成用户吞吐率的下降。但是在多TRP传输场景中,每个AAU只进行各自AAU内的通道校正,同时各TRP间的通道校正是独立进行,无法匹配CoMP的联合幅度、相位和时延校准的要求。因此,为了实现多个AAU的信号的联合相干发送,需要联合多个传输点的AAU进行AAU间的联合通道校正。如图1所示,在一个信号隧道(back haul)中,RRU0和RRU1通过无线电信道(Radio channel)进行联合通道校正,在RRU1向RRU0传输的无线电信号中,加入了补偿参数α1,通过该补偿参数,实现了联合通道校正。
在现有的联合通道校正技术中,利用各AAU空口发送的校正序列进行校正。联合校正中,各AAU内先进行内部校正,通过生成校正参考信号和AAU内校正信号的发射和接收,计算AAU内各个通路的校正系数得到校正补偿,进而保证各个通道的一致性。
如图2所示,在发射校正中,AAU生成校正参考信号,并通过通道0至通道N发送至测量信号接收通道,进而计算AAU内各个通道的校正系数,以得到校正补偿,保证各个通道的在发射信号时的一致性。
如图3所示,在接收校正中,AAU通过通道0至通道N接收测量信号发射通道发送的校正信号,进而计算AAU内各个通道的校正系数,以得到校正补偿,保证各个通道的发射信号时的一致性。
如图4所示,在AAU内部校正后,AAU之间的空口相互发送。首先AAU1进行发送,AAU2接收AAU1的校正参考信号后交换收发,AAU2发送校正参考信号AAU1接收。依据通道校正算法基带计算AAU之间的校正系数补偿,使得AAU1和AAU2的收发通路响应比值相同保证AAU间通道幅度和相位一致。
如上的现有技术中,进行AAU间联合空口通道校验需要配置额外的资源进行校验序列的发送和接收。且通道校正算法的实现在射频算法设计中的复杂度较高,空口联合校正则进一步提高了校正的复杂度。在AAU之间的接收信号强度也有要求,进行AAU空口联合校正首先于AAU间的信号强度,使得空口联合校正的使用场景受到了限制。
基于上述现有技术中的问题,本申请提供了一种数据传输方法,通过和终端之间的信息交互来实现AAU之间的联合校正,避免了AAU之间的进行联合校正的信号强度的限制。
请参阅图5,为本申请实施例提供的数据传输方法一个框架示意图。
如图5所示,本申请提供的数据传输方法的框架中,包括了至少两个网络设备和一个终端设备,其中,终端在至少两个网络设备的小区范围内,可以接收到至少两个网络设备发送的信号。
在实际应用过程中,该网络设备可以是有源天线单元(AAU),还可以是4G接入技术通信系统中的演进型基站(evolved nodeB,eNB)、5G接入技术通信系统中的下一代基站(next generation nodeB,gNB),还可以是未来的通信系统中的基站,例如6G通信系统的基站,具体此处不做限定。
该基站信号传输架构可以应用于第三代(third generation,3G)接入技术的通信系统,还可以应用于第四代(fourth generation,4G)接入技术的通信系统,例如长期演进(long term evolution,LTE)接入技术;或者,该基站信号传输架构也可以应用于第五代(fifth generation,5G)接入技术通信系统,例如新无线(new radio,NR)接入技术;或者,该基站信号传输架构也可以应用于多种无线技术的通信系统,例如应用于LTE技术和NR技术的通 信系统。另外,该基站信号传输架构也可以应用于面向未来的通信技术,例如第六代(sixth generation,6G)接入技术通信系统。
该终端设备可以可以是一种用于接收或发射信号的实体,如手机。终端设备也可以称为终端(terminal)、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等。终端设备还可以是具备通信功能的汽车、智能汽车、手机(mobile phone)、穿戴式设备、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self-driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对终端设备所采用的具体技术和具体设备形态不做限定。
如图6所示,TRP1和TRP2在进行联合校正时,其中TRP1属于AAU1,TRP2属于AAU2,TRP1和TRP2分别向终端设备发送CSI-RS参考信号,并通过终端设备反馈的信息(秩指示符RI/信道质量指示符CQI/预编码矩阵指示符PMI等信息)进行联合校正,避免了两个网络设备之间进行联合校正产生的信号强度问题,确保接收信号的准确性。
基于上述的数据传输框架,下面对本申请实施例数据传输方法进行详细描述。
请参阅图7,为本申请实施例提供的数据传输方法一个流程示意图。
本实施例中,以第一网络设备表示TRP1,以第二网络设备表示TRP2为例进行说明,在实际应用过程中,第一网络设备和第二网络设备还可以有更多的硬件形态,具体此处不做限定。
在步骤701中,第一网络设备向目标终端发送第一校正信号。
第一网络设备和第二网络设备相互建立协作关系,为目标终端进行联合传输。第一网络设备向目标终端发送第一校正信号,该第一校正信号用于指示目标终端反馈第一信道质量信息。
在一种可能的实现方式中,当第一校正信号为CSI-RS信号时,该CSI-RS信号用于指示终端反馈RANK1对应的CSI信息。
在一种可能的实现方式中,第一网络设备通过N个端口向目标终端发送多个第一校正信号,其中,N个端口为第一网络设备的发送端口。具体的,第一网络设备可以发送M个端口中的N个端口,N小于M,M个端口属于第一网络设备的端口。其中,每个不同端口表示不同的频域位置,即第一网络设备在N个端口发送多个第一校正信号就是在N个频域位置分别发送第一校正信号。例如,M等于2时,N等于1,第一网络设备通过1个端口发送第一校正信号。
在一种可能的实现方式中,N等于2/M,即当发送端口有10个时,则第一网络设备选择其中的5个发送端口发送第一校正信号。
在一种可能的实现方式中,第一网络设备发送第一校正信号的资源可复用端口数相同的测量资源,也可以配置专用校正的资源来承载第一校正信号。例如,当第一校正信号为CSI-RS时,第一网络设备可以复用端口数相同的测量CSI-RS资源,也可以配置专门用于发送校 正CSI-RS的资源,具体此处不做限定。
在一种可能的实现方式中,第一网络设备通过第一天线和N个端口向目标终端发送多个第一校正信号,该第一天线属于第一网络设备的天线。在实际应用过程中,第一网络设备还可以通过多根天线和N个端口向目标终端发送多个第一校正信号,具体此处不做限定。
在一种可能的实现方式中,第一网络设备分别在多个相位通过第一天线和N个端口向目标终端发送多个第一校正信号,即第一网络设备在CSI-RS上使用相位偏置,不同的相位偏差在不同的CSI-RS资源上发送。例如,第一网络设备在发送第一校正信号时分别加上-90°,-45°,0°,45°和90°的相位偏置进行发送,不同相位偏差的CSI-RS在CSI-RS资源上分时发送。
在一种可能的实现方式中,若测量CSI-RS信号的端口数和相位校正CSI-RS信号的端口数一致的情况下,测量CSI-RS信号的端口和相位校正CSI-RS信号的端口可以服用同一套CSI-RS配置,而不需要另外去单独进行配置,节省了对应的资源开销。在实际应用过程中,校正CSI-RS信号可以配置为周期、非周期或者半静态的CSI-RS信号,具体此处不做限定。
在步骤702中,第二网络设备向目标终端发送第二校正信号。
第一网络设备和第二网络设备相互建立协作关系,为目标终端进行联合传输。第二网络设备向目标终端发送第二校正信号,该第二校正信号用于指示目标终端反馈第二信道质量信息,目标终端在第一网络设备和第二网络设备的小区覆盖范围内。
在一种可能的实现方式中,第二网络设备通过(M-N)个端口向目标终端发送多个第二校正信号,其中,(M-N)个端口为第二网络设备的发送端口。具体的,第二网络设备可以和第一网络设备使用重复的端口发送第二校正信号,即发送M个端口中除了第一网络设备发送的N个端口之外的端口,M个端口属于第二网络设备的端口。其中,每个不同端口表示不同的频域位置,即第二网络设备在(M-N)个端口发送多个第二校正信号就是在(M-N)个频域位置分别发送第二校正信号。例如,M等于2时,N等于1,第二网络设备通过1个端口发送第二校正信号。
在一种可能的实现方式中,(M-N)等于2/M,即当发送端口有10个时,则第二网络设备选择其中的5个发送端口发送第二校正信号。如图8所示,第一网络设备和第二网络设备复用同一段端口。第一网络设备AAU1在天线1通过1至N/2端口发送第一校正信号,该第一校正信号的发送能量为W1,1至W1,N/2,而第二网络设备AAU2在天线2通过1至N/2端口的发送能量调整为0。而在N/2+1至N端口时,第二网络设备在天线2通过N/2+1至N端口的发射能量分别为W2,1至W2,N,而第一网络设备在天线1通过N/2+1至N端口的发射能量调整为0。需要说明的是,在实际应用过程中,第二网络设备发用的端口和第一网络设备发送的端口可以是相同的,也可以是不同的,或者是部分重叠的,具体此处不做限定。
在一种可能的实现方式中,第二网络设备发送第二校正信号的资源可复用端口数相同的测量资源,也可以配置专用校正的资源来承载第二校正信号。例如,当第二校正信号为CSI-RS时,第二网络设备可以复用端口数相同的测量CSI-RS资源,也可以配置专门用于发送校正CSI-RS的资源,具体此处不做限定。
在一种可能的实现方式中,第二网络设备通过第二天线和N个端口向目标终端发送多个第二校正信号,该第二天线属于第二网络设备的天线。在实际应用过程中,第二网络设备还 可以通过多根天线和(M-N)个端口向目标终端发送多个第一校正信号,具体此处不做限定。
在一种可能的实现方式中,若测量CSI-RS信号的端口数和相位校正CSI-RS信号的端口数一致的情况下,测量CSI-RS信号的端口和相位校正CSI-RS信号的端口可以服用同一套CSI-RS配置,而不需要另外去单独进行配置,节省了对应的资源开销。
在步骤703中,目标终端根据第一校正信号向第一网络设备发送第一信道质量信息。
当目标终端接收到第一网络设备发送的第一校正信号之后,目标终端根据第一校正信号得到第一信道质量信息,并向第一网络设备发送该第一信道质量信息,该第一信道质量信息用于确定第一网络设备和目标终端的信道质量。
具体的,目标终端接收到第一校正信号之后,目标终端对第一校正信号进行测量,并得到第一信道质量信息。该第一信道质量信息包括以下至少一个:CQI信息、PMI信息和RI信息。
在一种可能的实现方式中,目标终端分时接收到第一网络设备在多个相位偏置发送的第一校正信号时,目标终端根据不同时刻接收到的第一校正信号,分别得到多个第一信道质量信息,再将多个第一信道质量信息发送给第一网络设备。例如,第一网络设备在-90°,-45°,0°,45°和90°的相位偏置上分别给目标终端发送第一校正信号,目标终端则对应的接收到多个第一校正信号,目标终端分别根据多个第一校正信号得到多个第一信道质量信息,再将多个第一信道质量信息发送给第一网络设备。
目标终端在得到第一信道质量信息之后,将该第一信道质量信息发送给第一网络设备。
在步骤704中,目标终端根据第二校正信号向第二网络设备发送第二信道质量信息。
当目标终端接收到第二网络设备发送的第二校正信号之后,目标终端根据第二校正信号得到第二信道质量信息,并向第二网络设备发送该第二信道质量信息,该第二信道质量信息用于确定第二网络设备和目标终端的信道质量。
具体的,目标终端接收到第二校正信号之后,目标终端对第二校正信号进行测量,并得到第二信道质量信息。该第二信道质量信息包括以下至少一个:CQI信息、PMI信息和RI信息。
目标终端在得到第二信道质量信息之后,将该第二信道质量信息发送给第二网络设备。
在步骤705中,第二网络设备向第一网络设备发送第二信道质量信息。
第二网络设备在接收到目标终端发送的第二信道质量信息之后,第二网络设备将该第二信道质量信息发送给第一网络设备。
在步骤706中,第一网络设备根据第一信道质量信息和第二信道质量信息确定第一校正补偿系数。
第一网络设备在接收到第一信道质量信息和第二信道质量信息之后,第一网络设备根据第一信道质量信息和第二信道质量信息确定第一校正补偿系数,该第一校正补偿系数用于校正第一网络设备和第二网络设备之间的相位差。
在一种可能的实现方式中,当第一信道质量信息包括第一秩指示符RI、第一信道质量指示符CQI和第一预编码矩阵指示符PMI,第一网络设备在相位偏置为X1时发送的第一校正信号反馈回的第一秩指示符RI、第一信道质量指示符CQI分别为RIX1,1和CQIX1,1,则第一网络设备可以根据RIX1,1和CQIX1,1计算得出第一谱效SEx1,1。在一种更优的方式中, 可以在相位偏置为X1时多次发送第一校正信号,因此会得到多组第一谱效,则对多组第一谱效进行滤波,得到偏置位置为X1时的一个第一谱效均值。以此类推,第一网络设备分别在不同相位偏置发送的第一校正信号后,则可以得到不同相位偏置对应的多个第一谱效均值,第一网络设备根据多个第一谱效均值确定目标谱效,目标谱效为多个第一谱效均值中对应的值最大的,即为多个第一谱效均值中最优的谱效。在获得目标谱效之后,第一网络设备根据目标谱效对应的第一PMI值和第二网络设备发送的PMI值对比,由目标谱效对应的第一PMI值和第二网络设备发送的PMI值的相位差异可以计算得到第一网络设备和第二网络设备之间的相位补偿系数。
如图9所示,AAU1(第一网络设备)和AAU2(第二网络设备)通过CSI-RS外层权计算,且AAU1通过相位偏置,联合CSI-RS分时发送,UE在接收到CSI-RS信号时,UE上报CSI测量信息,AAU1接收到之后,进行相位偏置计算,并得到相位偏置权值后,根据相位偏置权值来发送数据给UE(即UE级的相位补偿)。
具体来说,如图10所示,AAU1(第一网络设备)在多个相位偏置(-90°、-45°、···、90°等)发送CSI-RS信号,UE测量后反馈,在多次测量后,AAU1会获取多个相位偏置(-90°、-45°、···、90°等)对应的谱效SE,在进行了多次测量后,进行谱效滤波,最终获得各个相位偏置对应的谱效均值,进而通过选择谱效最优的相位偏置对应的数据进行相位补偿系数的计算。
在步骤707中,第一网络设备根据第一校正补偿系数向目标终端发送第一目标数据。
第一网络设备在计算得到第一校正补偿系数之后,第一网络设备根据第一校正补偿系数向目标终端发送第一目标数据,该第一目标数据表示第一网络设备向目标终端发送的数据。
需要说明的是,本申请实施例中,计算第一校正补偿系数也可以在其他网络设备上进行,在计算出第一校正补偿系数之后,再发给第一网络设备,可以理解的是,如果在其他网络设备上计算第一校正补偿系数,则第二网络设备将第二信道质量信息发给计算第一校正补偿系数的网络设备。
本申请实施例中,步骤705为可选步骤,即终端设备可以直接将第二信道质量信息发送给第一网络设备,而不需要再经过第二网络设备转发,这样可以节省传输资源。
本申请实施例中,第一网络设备和第二网络设备确认协作关系后,再复用测量CSI-RS资源各发N/2port的不同偏置相位校正CSI-RS,终端对联合相位校正CSI-RS进行测量反馈。第一网络设备根据终端反馈的PMI信息平滑滤波后计算补偿系数并发送数据时进行相位校正,使得第一网络设备和第二网络设备的发射机和接收机之间保持一致性并且避免了空口传输校正序列的实现复杂度和场景局限问题。有利于在多点协作传输场景中以低复杂度的实现代价保证接收信号的准确性。第一网络设备和第二网络设备进行单用户联合发送,相位校正之后,就不会出现相位相消的情况,这样用户获得功率增益和BF权值的阵列增益,提升用户的吞吐率。
本申请实施例中,利用第一网络设备和第二网络设备联合发送CSI-RS,根据终端反馈的PMI信息进行AAU间的联合相位校正,在相同端口数的情况下相位校正CSI-RS可复用测量CSI-RS资源,能够减少额外的校验序列的发送和接收带来的开销。利用终端反馈信息进行校不会受限于AAU空口互传相位校正序列的AAU功率限制,降低了实现复杂度。多次测量进行 谱效滤波对相位补偿偏置继续平滑,减少测量异常造成的错误补偿,提升容错率。
上面对本申请数据传输方法进行了描述,下面对本申请实施例提供的网络设备和终端设备进行描述。
请参阅图11,为本申请实施例提供的网络设备一个结构示意图。
一种网络设备,包括:
发送单元1101,用于向目标终端发送第一校正信号,第一校正信号用于指示目标终端反馈第一信道质量信息;
接收单元1102,用于接收目标终端发送的第一信道质量信息,第一信道质量信息用于确定第一网络设备和目标终端的信道质量;
确定单元1103,用于根据第一信道质量信息确定第一校正补偿系数,第一校正补偿系数用于校正第一网络设备和第二网络设备之间的相位差,目标终端在第一网络设备和第二网络设备的小区覆盖范围内;
发送单元1101还用于根据第一校正补偿系数向目标终端发送第一目标数据。
本实施例中网络设备中各单元所执行的操作和图7所示实施例中第一网络设备所执行的操作类似,具体此处不再赘述。
请参阅图11,为本申请实施例提供的网络设备另一结构示意图。
一种网络设备,包括:
发送单元1101,用于向目标终端发送第一校正信号,第一校正信号用于指示目标终端反馈第一信道质量信息;
接收单元1102,用于接收目标终端发送的第一信道质量信息,第一信道质量信息用于确定第一网络设备和目标终端的信道质量;
确定单元1103,用于根据第一信道质量信息确定第一校正补偿系数,第一校正补偿系数用于校正第一网络设备和第二网络设备之间的相位差,目标终端在第一网络设备和第二网络设备的小区覆盖范围内;
发送单元1101还用于根据第一校正补偿系数向目标终端发送第一目标数据。
可选的,方法还包括:
接收单元1102还用于接收第二网络设备发送的第二信道质量信息,第二信道质量信息用于确定第二网络设备和目标终端的信道质量;
确定单元1103具体用于根据第一信道质量信息和第二信道质量信息确定第一校正补偿系数。
可选的,发送单元1101具体用于通过N个端口向目标终端发送多个第一校正信号,端口为第一网络设备的发送端口。
可选的,发送单元1101具体用于通过第一天线和N个端口向目标终端发送多个第一校正信号,第一天线为第一网络设备的天线。
可选的,发送单元1101具体用于分别在多个相位通过第一天线和N个端口向目标终端发送多个第一校正信号;
接收单元1102具体用于接收目标终端发送的多个第一信道质量信息,多个第一信道质量信息分别对应多个相位发送的多个第一校正信号。
可选的,第一信道质量信息包括第一秩指示符RI、第一信道质量指示符CQI和第一预编码矩阵指示符PMI,确定单元1103还用于根据多个第一RI和多个第一CQI得到多个第一谱效SE,第一SE表示第一校正信号对应的谱效,多个第一谱效SE和多个相位发送的多个第一校正信号对应;
确定单元1103还用于根据多个第一谱效确定目标谱效,目标谱效为多个第一谱效对应的值中最大的;
确定单元1103具体用于根据目标谱效对应的第一PMI确定第一校正补偿系数。
本实施例中网络设备中各单元所执行的操作和图7所示实施例中第一网络设备所执行的操作类似,具体此处不再赘述。
请参阅图12,为本申请实施例提供的终端设备一个结构示意图。
一种终端设备,包括:
接收单元1201,用于接收第一网络设备发送的第一校正信号,第一校正信号用于指示终端设备反馈第一信道质量信息;
接收单元1201还用于接收第二网络设备发送的第二校正信号,第二校正信号用于指示终端设备反馈第二信道质量信息;
发送单元1202,用于根据第一校正信号向第一网络设备发送第一信道质量信息,第一信道质量信息用于确定第一网络设备和终端设备的信道质量;
发送单元1202还用于根据第二校正信号向第二网络设备发送第二信道质量信息,第二信道质量信息用于确定第二网络设备和终端设备的信道质量;
接收单元1201还用于接收第一网络设备发送的第一目标数据,第一目标数据为第一网络设备根据第一校正补偿系数发送的,第一校正补偿系数为第一网络设备根据第一信道质量信息确定的,第一校正补偿系数用于校正校正第一网络设备和第二网络设备之间的相位差。
本实施例中终端设备中各单元所执行的操作和图7所示实施例中目标终端所执行的操作类似,具体此处不再赘述。
请参阅图13,为本申请实施例提供的控制单元另一结构示意图。
处理器1301、存储器1302、总线1305、接口1304,处理器1301与存储器1302、接口1304相连,总线1305分别连接处理器1301、存储器1302以及接口1304,接口1304用于接收或者发送数据,处理器1301是单核或多核中央处理单元,或者为特定集成电路,或者为被配置成实施本发明实施例的一个或多个集成电路。存储器1302可以为随机存取存储器(random access memory,RAM),也可以为非易失性存储器(non-volatile memory),例如至少一个硬盘存储器。存储器1302用于存储计算机执行指令。具体的,计算机执行指令中可以包括程序1303。
请参阅图14,为本申请实施例提供的控制单元另一结构示意图。
处理器1401、存储器1402、总线1405、接口1404,处理器1401与存储器1402、接口1404相连,总线1405分别连接处理器1401、存储器1402以及接口1404,接口1404用于接收或者发送数据,处理器1401是单核或多核中央处理单元,或者为特定集成电路,或者为被配置成实施本发明实施例的一个或多个集成电路。存储器1402可以为随机存取存储器(random access memory,RAM),也可以为非易失性存储器(non-volatile memory),例如至 少一个硬盘存储器。存储器1402用于存储计算机执行指令。具体的,计算机执行指令中可以包括程序1403。
应理解,本申请以上实施例中的网络设备和终端设备中提及的处理器,或者本申请上述实施例提供的处理器,可以是中央处理单元(central processing unit,CPU),还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application-specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请中以上实施例中的网络设备和终端设备中的处理器的数量可以是一个,也可以是多个,可以根据实际应用场景调整,此处仅仅是示例性说明,并不作限定。本申请实施例中的存储器的数量可以是一个,也可以是多个,可以根据实际应用场景调整,此处仅仅是示例性说明,并不作限定。
还需要说明的是,当网络设备和终端设备包括处理器(或处理单元)与存储器时,本申请中的处理器可以是与存储器集成在一起的,也可以是处理器与存储器通过接口连接,可以根据实际应用场景调整,并不作限定。
本申请提供了一种芯片系统,该芯片系统包括处理器,用于支持网络设备和终端设备实现上述方法中所涉及的控制器的功能,例如处理上述方法中所涉及的数据和/或信息。在一种可能的设计中,芯片系统还包括存储器,存储器,用于保存必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
在另一种可能的设计中,当该芯片系统为用户设备或接入网等内的芯片时,芯片包括:处理单元和通信单元,处理单元例如可以是处理器,通信单元例如可以是输入/输出接口、管脚或电路等。该处理单元可执行存储单元存储的计算机执行指令,以使该网络设备和终端设备等内的芯片执行上述图7中任一项实施例中第一网络设备和终端设备执行的步骤。可选地,存储单元为芯片内的存储单元,如寄存器、缓存等,存储单元还可以是网络设备和终端设备等内的位于芯片外部的存储单元,如只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)等。
本申请实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被计算机执行时实现上述任一方法实施例中与网络设备和终端设备的控制器执行的方法流程。对应的,该计算机可以为上述网络设备和终端设备。
应理解,本申请以上实施例中的提及的控制器或处理器,可以是中央处理单元(central processing unit,CPU),还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等中的一种或多种的组合。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请中以上实施例中的网络设备和终端设备或芯片系统等中的处理器或控制器的数量可以是一个,也可以是多个,可以根据实际应用场景调整,此处仅仅是示例性说明,并不作限定。本申请实施例中的存储器的数量可以是一个,也可以是多个,可以根据实 际应用场景调整,此处仅仅是示例性说明,并不作限定。
还应理解,本申请实施例中以上实施例中的网络设备和终端设备等中提及的存储器或可读存储介质等,可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
本领域普通技术人员可以理解实现上述实施例的全部或部分由网络设备和终端设备或者处理器执行的步骤可以通过硬件或程序来指令相关的硬件完成。程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,随机接入存储器等。具体地,例如:上述处理单元或处理器可以是中央处理器,通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。上述的这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
当使用软件实现时,上述实施例描述的方法步骤可以全部或部分地以计算机程序产品的形式实现。计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质等。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,这仅仅是描述本申请的实施例中对相同属性的对象在描述时所采用的区分方式。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,以便包含一系列单元的过程、方法、系统、产品或设备不必限于那些单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它单元。
在本申请实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本发明。在本申请实施例中所使用的单数形式的“一种”、“”和“该”也旨在包括多数形式,除非上 下文清楚地表示其他含义。还应当理解,在本申请的描述中,除非另有说明,“/”表示前后关联的对象是一种“或”的关系,例如,A/B可以表示A或B;本申请中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。
取决于语境,如在此所使用的词语“如果”或“若”可以被解释成为“在……时”或“当……时”或“响应于确定”或“响应于检测”。类似地,取决于语境,短语“如果确定”或“如果检测(陈述的条件或事件)”可以被解释成为“当确定时”或“响应于确定”或“当检测(陈述的条件或事件)时”或“响应于检测(陈述的条件或事件)”。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (16)

  1. 一种数据传输方法,其特征在于,包括:
    第一网络设备向目标终端发送第一校正信号,所述第一校正信号用于指示所述目标终端反馈第一信道质量信息;
    所述第一网络设备接收所述目标终端发送的第一信道质量信息,所述第一信道质量信息用于确定所述第一网络设备和所述目标终端的信道质量;
    所述第一网络设备根据所述第一信道质量信息确定第一校正补偿系数,所述第一校正补偿系数用于校正所述第一网络设备和第二网络设备之间的相位差,所述目标终端在所述第一网络设备和所述第二网络设备的小区覆盖范围内;
    所述第一网络设备根据所述第一校正补偿系数向所述目标终端发送第一目标数据。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述第一网络设备接收所述第二网络设备发送的第二信道质量信息,所述第二信道质量信息用于确定所述第二网络设备和所述目标终端的信道质量;
    所述第一网络设备根据所述第一信道质量信息确定第一校正补偿系数包括:
    所述第一网络设备根据所述第一信道质量信息和所述第二信道质量信息确定第一校正补偿系数。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一网络设备向目标终端发送第一校正信号包括:
    所述第一网络设备通过N个端口向所述目标终端发送多个第一校正信号,所述端口为所述第一网络设备的发送端口。
  4. 根据权利要求3所述的方法,其特征在于,所述第一网络设备通过N个端口向所述目标终端发送多个第一校正信号包括:
    所述第一网络设备通过第一天线和N个端口向所述目标终端发送多个第一校正信号,所述第一天线为所述第一网络设备的天线。
  5. 根据权利要求3或4所述的方法,其特征在于,所述第一网络设备通过第一天线和N个端口向所述目标终端发送多个第一校正信号包括:
    所述第一网络设备分别在多个相位通过第一天线和N个端口向所述目标终端发送多个第一校正信号;
    所述第一网络设备接收所述目标终端发送的第一信道质量信息包括:
    所述第一网络设备接收所述目标终端发送的多个第一信道质量信息,所述多个第一信道质量信息分别对应多个相位发送的多个第一校正信号。
  6. 根据权利要求5所述的方法,其特征在于,所述第一信道质量信息包括第一秩指示符RI、第一信道质量指示符CQI和第一预编码矩阵指示符PMI,所述方法还包括:
    所述第一网络设备根据多个所述第一RI和多个所述第一CQI得到多个第一谱效SE,所述第一SE表示所述第一校正信号对应的谱效,所述多个第一谱效SE和多个相位发送的多个所述第一校正信号对应;
    所述第一网络设备根据多个所述第一谱效确定目标谱效,所述目标谱效为多个所述第一谱效对应的值中最大的;
    所述第一网络设备根据所述第一信道质量信息确定第一校正补偿系数包括:
    所述第一网络设备根据所述目标谱效对应的第一PMI确定第一校正补偿系数。
  7. 一种数据传输方法,其特征在于,包括:
    终端设备接收第一网络设备发送的第一校正信号,所述第一校正信号用于指示所述终端设备反馈第一信道质量信息;
    所述终端设备接收第二网络设备发送的第二校正信号,所述第二校正信号用于指示所述终端设备反馈第二信道质量信息;
    所述终端设备根据所述第一校正信号向所述第一网络设备发送第一信道质量信息,所述第一信道质量信息用于确定所述第一网络设备和所述终端设备的信道质量;
    所述终端设备根据所述第二校正信号向所述第二网络设备发送第二信道质量信息,所述第二信道质量信息用于确定所述第二网络设备和所述终端设备的信道质量;
    所述终端设备接收所述第一网络设备发送的第一目标数据,所述第一目标数据为所述第一网络设备根据第一校正补偿系数发送的,所述第一校正补偿系数为所述第一网络设备根据所述第一信道质量信息确定的,所述第一校正补偿系数用于校正校正所述第一网络设备和所述第二网络设备之间的相位差。
  8. 一种网络设备,其特征在于,包括:
    发送单元,用于向目标终端发送第一校正信号,所述第一校正信号用于指示所述目标终端反馈第一信道质量信息;
    接收单元,用于接收所述目标终端发送的第一信道质量信息,所述第一信道质量信息用于确定所述第一网络设备和所述目标终端的信道质量;
    确定单元,用于根据所述第一信道质量信息确定第一校正补偿系数,所述第一校正补偿系数用于校正所述第一网络设备和第二网络设备之间的相位差,所述目标终端在所述第一网络设备和所述第二网络设备的小区覆盖范围内;
    所述发送单元还用于根据所述第一校正补偿系数向所述目标终端发送第一目标数据。
  9. 根据权利要求8所述的网络设备,其特征在于,所述网络设备还包括:
    所述接收单元还用于接收所述第二网络设备发送的第二信道质量信息,所述第二信道质量信息用于确定所述第二网络设备和所述目标终端的信道质量;
    所述确定单元具体用于根据所述第一信道质量信息和所述第二信道质量信息确定第一校正补偿系数。
  10. 根据权利要求8或9所述的网络设备,其特征在于,所述发送单元具体用于通过N个端口向所述目标终端发送多个第一校正信号,所述端口为所述第一网络设备的发送端口。
  11. 根据权利要求10所述的网络设备,其特征在于,所述发送单元具体用于通过第一天线和N个端口向所述目标终端发送多个第一校正信号,所述第一天线为所述第一网络设备的天线。
  12. 根据权利要求10或11所述的网络设备,其特征在于,所述发送单元具体用于分别在多个相位通过第一天线和N个端口向所述目标终端发送多个第一校正信号;
    所述接收单元具体用于接收所述目标终端发送的多个第一信道质量信息,所述多个第一信道质量信息分别对应多个相位发送的多个第一校正信号。
  13. 根据权利要求12所述的网络设备,其特征在于,所述第一信道质量信息包括第一秩指示符RI、第一信道质量指示符CQI和第一预编码矩阵指示符PMI,所述确定单元还用于根据多个所述第一RI和多个所述第一CQI得到多个第一谱效SE,所述第一SE表示所述第一校正信号对应的谱效,所述多个第一谱效SE和多个相位发送的多个所述第一校正信号对应;
    所述确定单元还用于根据多个所述第一谱效确定目标谱效,所述目标谱效为多个所述第一谱效对应的值中最大的;
    所述确定单元具体用于根据所述目标谱效对应的第一PMI确定第一校正补偿系数。
  14. 一种终端设备,其特征在于,包括:
    接收单元,用于接收第一网络设备发送的第一校正信号,所述第一校正信号用于指示所述终端设备反馈第一信道质量信息;
    所述接收单元还用于接收第二网络设备发送的第二校正信号,所述第二校正信号用于指示所述终端设备反馈第二信道质量信息;
    发送单元,用于根据所述第一校正信号向所述第一网络设备发送第一信道质量信息,所述第一信道质量信息用于确定所述第一网络设备和所述终端设备的信道质量;
    所述发送单元还用于根据所述第二校正信号向所述第二网络设备发送第二信道质量信息,所述第二信道质量信息用于确定所述第二网络设备和所述终端设备的信道质量;
    所述接收单元还用于接收所述第一网络设备发送的第一目标数据,所述第一目标数据为所述第一网络设备根据第一校正补偿系数发送的,所述第一校正补偿系数为所述第一网络设备根据所述第一信道质量信息确定的,所述第一校正补偿系数用于校正校正所述第一网络设备和所述第二网络设备之间的相位差。
  15. 一种计算机可读存储介质,其特征在于,包括指令,当其在计算机上运行时,使得计算机执行上述权利要求1至7中任一项所述的方法。
  16. 一种包含指令的计算机程序产品,其特征在于,当其在计算机上运行时,使得计算机执行上述权利要求1至7中任一项所述的方法。
PCT/CN2022/086571 2021-04-23 2022-04-13 一种数据传输的方法及其设备 WO2022222820A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110444186.X 2021-04-23
CN202110444186.XA CN115242320A (zh) 2021-04-23 2021-04-23 一种数据传输的方法及其设备

Publications (1)

Publication Number Publication Date
WO2022222820A1 true WO2022222820A1 (zh) 2022-10-27

Family

ID=83666656

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/086571 WO2022222820A1 (zh) 2021-04-23 2022-04-13 一种数据传输的方法及其设备

Country Status (2)

Country Link
CN (1) CN115242320A (zh)
WO (1) WO2022222820A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102714803A (zh) * 2010-01-07 2012-10-03 株式会社Ntt都科摩 移动终端装置、无线基站装置以及无线通信方法
CN103368697A (zh) * 2012-03-26 2013-10-23 中兴通讯股份有限公司 协作cqi和/或节点间的pci的反馈方法及装置
CN104113367A (zh) * 2013-04-19 2014-10-22 上海交通大学 混合协作多点传输系统中的反馈方法及相关的用户设备
CN105637775A (zh) * 2013-12-26 2016-06-01 华为技术有限公司 一种基站间互易性校正的方法及装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108632971A (zh) * 2017-03-24 2018-10-09 华为技术有限公司 功率控制方法、终端和网络设备
CN110351851B (zh) * 2018-04-04 2023-08-25 华为技术有限公司 数据传输方法、终端设备和网络设备
CN115175340A (zh) * 2018-10-26 2022-10-11 成都华为技术有限公司 通信方法和通信装置
CN112491515A (zh) * 2019-09-12 2021-03-12 上海华为技术有限公司 一种探测参考信号传输的方法、相关设备以及存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102714803A (zh) * 2010-01-07 2012-10-03 株式会社Ntt都科摩 移动终端装置、无线基站装置以及无线通信方法
CN103368697A (zh) * 2012-03-26 2013-10-23 中兴通讯股份有限公司 协作cqi和/或节点间的pci的反馈方法及装置
CN104113367A (zh) * 2013-04-19 2014-10-22 上海交通大学 混合协作多点传输系统中的反馈方法及相关的用户设备
CN105637775A (zh) * 2013-12-26 2016-06-01 华为技术有限公司 一种基站间互易性校正的方法及装置

Also Published As

Publication number Publication date
CN115242320A (zh) 2022-10-25

Similar Documents

Publication Publication Date Title
US11012948B2 (en) Uplink measurement reference signal power control method, network device, and terminal device
JP5957595B2 (ja) 複数のアクセスポイント間の偏差校正方法、システム及び装置
WO2018082641A1 (zh) 传输信息的方法和设备
US11405930B2 (en) Measurement method, network device, and terminal device
CN112399543B (zh) 一种功率控制参数配置方法、终端和网络侧设备
EP4231565A1 (en) Beam-based communication method and related apparatus
WO2020143657A1 (zh) 信道和干扰测量方法和设备
US11088738B2 (en) Communication method and network device
WO2019137445A1 (zh) 信道状态信息的测量方法和装置
JP2014531171A (ja) マルチアクセスポイント校正方法及び装置
US20220150744A1 (en) Measurement reporting method and apparatus
US20230189038A1 (en) Acquisition and reporting of channel measurements and interference measurements
WO2022151859A1 (zh) 一种信息处理方法、装置、终端及网络侧设备
US20240154706A1 (en) Channel phase calibration method and related apparatus
WO2020088549A1 (zh) 一种天线校正方法及装置
US20240072964A1 (en) Transmission of Single-Port Reference Signal Resources
WO2022222820A1 (zh) 一种数据传输的方法及其设备
CN105356951A (zh) 一种基站信号校准方法、基站及系统
WO2021088042A1 (zh) 一种通信方法及装置
EP3979689A1 (en) Method and device for determining receiving parameter used for channel measurement
US11984939B2 (en) Methods and devices for inter-cell interference estimation
WO2024168822A1 (zh) 计算信道质量信息的方法、装置和通信系统
US20220201626A1 (en) Information reporting method and apparatus, and user equipment
WO2024168830A1 (zh) 信道状态信息的发送和接收方法、装置和通信系统
WO2023273969A1 (zh) 资源测量方法和通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22790928

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22790928

Country of ref document: EP

Kind code of ref document: A1