WO2020088327A1 - 一种平衡-不平衡变换装置、通信器件及通信系统 - Google Patents

一种平衡-不平衡变换装置、通信器件及通信系统 Download PDF

Info

Publication number
WO2020088327A1
WO2020088327A1 PCT/CN2019/112784 CN2019112784W WO2020088327A1 WO 2020088327 A1 WO2020088327 A1 WO 2020088327A1 CN 2019112784 W CN2019112784 W CN 2019112784W WO 2020088327 A1 WO2020088327 A1 WO 2020088327A1
Authority
WO
WIPO (PCT)
Prior art keywords
section
balanced
signal connection
impedance matching
balanced signal
Prior art date
Application number
PCT/CN2019/112784
Other languages
English (en)
French (fr)
Inventor
臧大军
王翠翠
莫道春
陆玉春
王临春
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19880245.6A priority Critical patent/EP3863114B1/en
Publication of WO2020088327A1 publication Critical patent/WO2020088327A1/zh
Priority to US17/244,741 priority patent/US11870124B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/02Details
    • H04B3/30Reducing interference caused by unbalanced currents in a normally balanced line
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/02Waveguides; Transmission lines of the waveguide type with two longitudinal conductors
    • H01P3/026Coplanar striplines [CPS]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/02Waveguides; Transmission lines of the waveguide type with two longitudinal conductors
    • H01P3/08Microstrips; Strip lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/02Waveguides; Transmission lines of the waveguide type with two longitudinal conductors
    • H01P3/08Microstrips; Strip lines
    • H01P3/081Microstriplines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/08Coupling devices of the waveguide type for linking dissimilar lines or devices
    • H01P5/10Coupling devices of the waveguide type for linking dissimilar lines or devices for coupling balanced lines or devices with unbalanced lines or devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/42Networks for transforming balanced signals into unbalanced signals and vice versa, e.g. baluns
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/54Systems for transmission via power distribution lines

Definitions

  • the present application relates to the technical field of communication equipment, and in particular, to a balanced-unbalanced conversion device, a communication device, and a communication system.
  • the electrical interconnection uses differential signal lines.
  • the reason why the differential signal line is used is because the chip's high-speed serializer / deserializer (Serializer / Deserializer, Serdes) is a differential signal interface. In this way, when the chip performs on-chip signal processing and packaging, the differential signal has a Mode noise has better immunity.
  • the high-speed communication system of the backplane / inter-frame / rack usually uses a dual-axis transmission line for signal transmission, but the use of the dual-axis transmission line has the following problems:
  • the dual-axis transmission line includes two signal lines and a ground wire, which has a large diameter and is occupied Large wiring space. The bending ability is limited, and the biaxial transmission line is not easy to bend in the axial direction.
  • the dual-axis transmission line has strict requirements on process control and is expensive. The delay within the differential pair needs to be controlled to avoid performance loss.
  • coaxial cables can be used instead of biaxial cables to achieve signal transmission.
  • the differential impedance of Serdes is generally 100 ⁇ or 90 ⁇ , and the impedance of the coaxial cable is 50 ⁇ or 75 ⁇ .
  • This conversion device is usually called Balun (Balance-unbalance, BALUN), which is a transliteration of the abbreviation of "balance-unbalance converter" in English.
  • the balun includes two transmission lines of equal length, namely a first transmission line 01 and a second transmission line 02, and left ends of the first transmission line 01 and the second transmission line 02 In parallel, the right end is connected in series. If the impedance of the first transmission line 01 is 2 * Z0, the impedance of the second transmission line 02 is also 2 * Z0. At this time, when the signal is injected from the left end with Z0, the first transmission line 01 and the second transmission line 02 respectively Half of the signal energy is obtained, and it is transmitted to the right in the form of a traveling wave.
  • the balanced-unbalanced conversion device, the communication device, and the communication system provided by the embodiments of the present application solve the problems of the prior art balanced-unbalanced conversion device that are not conducive to wiring and occupy a large space.
  • the present application provides a balanced-unbalanced conversion device, including:
  • a first microstrip line the first microstrip line includes a first balanced signal connection section, a first impedance matching section and an unbalanced signal connection section connected in sequence, the first balanced signal connection section is used for transmitting balanced signals A first component, the unbalanced signal connection section is used to transmit an unbalanced signal;
  • a second microstrip line the second microstrip line includes a second balanced signal connection section, a second impedance matching section and a ground section connected in sequence, the second balanced signal connection section is used to transmit the second component of the balanced signal , The ground segment is used to connect the ground signal;
  • Conductive ground (Ground, GND), which is a reference ground for the first balanced signal connection section and the second balanced signal connection section;
  • the first microstrip line, the second microstrip line and the conductive ground are all disposed on the insulating substrate, and the first balanced signal connection section and the second balanced signal connection section are located on the insulation
  • the same plane of the substrate, the first impedance matching section of the first microstrip line and the second impedance matching section of the second microstrip line are separated by the insulating substrate, the first microstrip
  • the cross-sectional area of at least a part of the line and / or at least a part of the second microstrip line gradually changes.
  • the first component of the differential AC signal (or balanced signal) is accessed by the first balanced signal connection section, and the second component of the differential AC signal is accessed by the second balanced signal connection section After access, the two parts of the differential signal pass through the first impedance matching section and the second impedance matching section, and the unbalanced signal port outputs a single-ended signal (or unbalanced signal) to complete the conversion of the differential signal to the single-ended signal.
  • the impedance value can be adjusted so that the first balanced signal connection section and the second balanced
  • the impedance formed by the signal connection section and the conductive ground smoothly transitions to the impedance formed by the unbalanced signal connection section and the ground section.
  • the balanced-unbalanced conversion device provided by the embodiment of the present application replaces the transmission cable in the prior art such as coaxial cable or twisted pair cable with a microstrip line as a signal conductor, so the balanced-unbalanced conversion device can be integrated in Made on a substrate (such as a PCB board), which eliminates complicated wiring work and saves installation space and manufacturing costs.
  • the first impedance matching section of the first microstrip line and the second impedance matching section of the second microstrip line are parallel to each other.
  • the cross-sectional area of the first impedance matching section may gradually increase in a direction close to the unbalanced signal connection section, so that the impedance of the first impedance matching section approaches the unbalanced signal
  • the direction of the connection section gradually decreases
  • the cross-sectional area of the second impedance matching section gradually increases in the direction close to the ground section, so that the impedance of the second impedance matching section gradually increases in the direction close to the ground section Decrease.
  • the cross-sectional area of the first impedance matching section may be gradually reduced in a direction close to the unbalanced signal connection section, so that the impedance of the first impedance matching section is close to the unbalanced signal
  • the direction of the connection section gradually increases
  • the cross-sectional area of the second impedance matching section may gradually decrease in the direction close to the ground section, so that the impedance of the second impedance matching section gradually increases in the direction close to the ground section Increase.
  • the cross-sectional width of the microstrip line can be kept constant, and the cross-sectional thickness of the microstrip line can be gradually changed.
  • the cross-sectional thickness of the microstrip line can be kept constant, and the cross-sectional width of the microstrip line can be gradually changed. This scheme can facilitate the production of gradient microstrip lines.
  • both the cross-sectional thickness of the microstrip line and the cross-sectional width of the microstrip line can be graded.
  • the first balanced signal connection segment includes a first parallel segment and a first inclined segment, the first parallel segment is used to transmit a first component of a balanced signal, and one end of the first inclined segment Connected to the first parallel section, and the other end is connected to the first impedance matching section;
  • the second balanced signal connection section includes a second parallel section and a second inclined section, the second parallel section and the first parallel section A parallel section is parallel, the second parallel section is used to transmit the second component of the balanced signal, one end of the second inclined section is connected to the second parallel section, and the other end is connected to the second impedance matching section;
  • the conductive ground includes a first reference ground and a second reference ground, the first reference ground is the reference ground of the first parallel section and the second parallel section, and the second reference ground is the first Reference ground of the inclined section and the second inclined section.
  • the impedance formed by the first parallel section, the second parallel section and the first reference ground is unchanged, the first inclined section, the second inclined section and the second reference ground form
  • the impedance gradually changes or keeps the impedance formed by the first parallel section, the second parallel section, and the first reference ground unchanged. Since the first parallel section and the second parallel section are used to transmit balanced signals, making the first parallel section and the second parallel section parallel to each other and having the same impedance can make it have good electrical characteristics.
  • the first inclined section gradually approaches the second inclined section in a direction away from the first parallel section
  • the second inclined section gradually approaches the first in the direction away from the second parallel section Inclined section.
  • the cross-sectional area of the first reference ground does not change, and the cross-sectional area of the second reference ground gradually changes. Therefore, the gradual change of the cross-sectional area of the second reference ground can also change the impedance, so as to achieve a smooth impedance transition.
  • the cross-sectional areas of the first parallel section and the second parallel section are unchanged, and the cross-sectional areas of the first inclined section and the second inclined section gradually change.
  • the impedance can be changed by changing the cross-sectional area of the first inclined section and the second inclined section, so that the implementation of the smooth transition of the impedance is more flexible.
  • the projection of the first impedance matching section on the plane where the second impedance matching section is located may overlap with the second impedance matching section. This can save space in the width direction.
  • a magnetic member may be sleeved on at least a portion of the first impedance matching section and at least a portion of the second impedance matching section.
  • the entire balanced-unbalanced conversion device structure has ultra-wideband performance and better low-frequency characteristics, for example, S11 ⁇ -20dB, S21> -3dB in the entire frequency band of interest.
  • a magnetic member may be sleeved outside the entirety of the first impedance matching section and the second impedance matching section. Compared with the case where the magnetic member is only sleeved on a part of the first impedance matching section and the second impedance matching section, the overall sleeve of the magnetic member can make the low-frequency characteristic better. Set more magnetic parts can meet S11 ⁇ -20dB at lower frequency.
  • the magnetic member may be made of one magnetic material, or may be made of two or more magnetic materials. Using multiple materials to match the magnetic parts can further reduce S11.
  • the structure of the magnetic member may include a magnetic coil, a hollow magnetic prism, a hollow magnetic cylinder, or a hollow magnetic elliptical cylinder.
  • the magnetic member may also be formed by splicing at least two parts. Thus, it is easy to install the magnetic member.
  • the first surface of the insulating substrate is provided with the first microstrip line and the second balanced signal connection section of the second microstrip line
  • the second surface of the insulating substrate is provided with the The second impedance matching section and the ground section of the second microstrip line, the second balanced signal connection section and the second impedance matching section pass through the first surface and the second surface of the insulating substrate
  • the conductive vias are connected, and the conductively disposed on the second surface of the insulating substrate.
  • the insulating substrate includes a first insulating substrate and a second insulating substrate, a first surface of the first insulating substrate is provided with a first balanced signal connection section of the first microstrip line, and the first The second balanced signal connection section of the two microstrip lines, the second surface of the first insulating substrate is provided with the conductive ground, and the first surface of the first insulating substrate is opposite to the second surface of the first insulating substrate .
  • the first surface of the second insulating substrate is provided with the first impedance matching section and the unbalanced signal connection section of the first microstrip line, and the second surface of the second insulating substrate is provided with the second The second impedance matching section and the ground section of the microstrip line.
  • the first balanced signal connection section of the first microstrip line and the second balanced signal connection section of the second microstrip line extend to the first edge of the first insulating substrate, so The first impedance matching section of the first microstrip line and the second impedance matching section of the second microstrip line extend to the second edge of the second insulating substrate, the The first edge is connected to the second edge of the second insulating substrate, and the first balanced signal connection section is electrically connected to the first impedance matching section, and the second balanced signal connection section is The second impedance matching section is electrically connected.
  • a slot is provided at the first edge of the first insulating substrate, and the slot is located between the first balanced signal connection section and the second balanced signal connection section, the The first side wall of the slot is close to the first balanced signal connection section, and a first conductive sheet connected to the first balanced signal connection section is provided, and the second side wall of the slot is close to the second
  • the balanced signal connection section is provided with a second conductive sheet connected to the second balanced signal connection section, the second edge of the second insulating substrate is inserted into the slot, the first conductive sheet and the The first impedance matching section is welded, and the second conductive sheet is welded to the second impedance matching section.
  • the first insulating substrate and the second insulating substrate are perpendicular to each other.
  • the first insulating substrate and the second insulating substrate are parallel to each other, and the first edge and the second edge overlap, and the first balanced signal connection section and the first impedance matching section In crimping, the second balanced signal connection section and the second impedance matching section are welded by welding points.
  • the first balanced signal connection section and the second balanced signal connection section are respectively connected with DC blocking capacitors.
  • the signals entering the first balanced signal connection section and the second balanced signal connection section can be AC signals without a DC component.
  • the first balanced signal connection segment includes a first parallel segment and a first inclined segment, the first parallel segment is used to transmit a first component of a balanced signal, and one end of the first inclined segment Connected to the first parallel section, and the other end is connected to the first impedance matching section;
  • the second balanced signal connection section includes a second parallel section, and the second microstrip line further includes an impedance transition section, the The impedance transition section is in the same plane as the second impedance matching section, one end of the impedance transition section is connected to the second parallel section through a via, and the other end is connected to the second impedance matching section;
  • the conductive ground Including a first reference ground, which is the reference ground of the first parallel section and the second parallel section; the impedance formed by the first inclined section and the impedance transition section remains unchanged and The impedance formed by the first parallel section, the second parallel section, and the first reference ground is the same, or the impedance gradient formed by the first inclined section and the impedance transition section is
  • the line width of the first parallel segment and the second parallel segment can be made narrower; and the first tilt There is no reference ground for the section and the impedance transition section, so it is necessary to fully use the line widths of the first inclined section and the impedance transition section to match the impedance.
  • the impedance formed by a parallel section, the second parallel section, and the first reference ground matches.
  • the width of the first inclined section is greater than the width of the first parallel section
  • the width of the impedance transition section is greater than the width of the second parallel section.
  • the first parallel section and the first inclined section may be connected by a first pad
  • the upper end of the via of the second parallel section and the impedance transition section may be connected by a second pad
  • the first solder The shape of the disk and the second pad can be arbitrarily selected, such as round, rectangular, square, etc., as long as the impedance requirements can be met, that is, the impedance formed by the first inclined section and the impedance transition section remains unchanged and
  • the impedance formed by a parallel section, the second parallel section and the first reference ground is the same, or the impedance formed by the first inclined section and the impedance transition section is gradual so that the first parallel section and the second parallel A smooth transition from the impedance formed by the segment and the first reference ground to the impedance formed by the unbalanced signal connection segment and the ground segment.
  • the present application also provides a balanced-unbalanced conversion device, including:
  • a first microstrip line the first microstrip line includes a first balanced signal connection section, a first impedance matching section and an unbalanced signal connection section connected in sequence, the first balanced signal connection section is used for transmitting balanced signals
  • the first component, the unbalanced signal connection section is used to transmit unbalanced signals
  • a second microstrip line the second microstrip line includes a second balanced signal connection section, a second impedance matching section and a ground section connected in sequence, the second balanced signal connection section is used to transmit the second component of the balanced signal , The ground segment is used to connect the ground signal;
  • Conductive ground which is the reference ground for the first balanced signal connection section and the second balanced signal connection section;
  • the first insulating substrate, the first surface of the first insulating substrate is provided with a first balanced signal connection section of the first microstrip line, and the second balanced signal connection of the second microstrip line, the second surface of the first insulating substrate is provided Conductively, the first surface of the first insulating substrate is opposite to the second surface of the first insulating substrate;
  • a second insulating substrate, a first surface of the second insulating substrate is provided with a first impedance matching section and an unbalanced signal connection section of the first microstrip line, and a second surface of the second insulating substrate is providing a second impedance of the second microstrip line Matching section and grounding section;
  • the cross-sectional area of at least a portion of the first microstrip line and / or at least a portion of the second microstrip line gradually changes.
  • the first component of the differential AC signal (or balanced signal) is accessed by the first balanced signal connection section, and the second component of the differential AC signal is accessed by the second balanced signal connection section After access, the two parts of the differential signal pass through the first impedance matching section and the second impedance matching section, and the unbalanced signal port outputs a single-ended signal (or unbalanced signal) to complete the conversion of the differential signal to the single-ended signal.
  • the impedance value can be adjusted so that the first balanced signal connection section and the second balanced
  • the impedance formed by the signal connection section and the conductive ground smoothly transitions to the impedance formed by the unbalanced signal connection section and the ground section.
  • the balanced-unbalanced conversion device replaces the transmission cable in the prior art such as coaxial cable or twisted pair cable with a microstrip line as a signal conductor, so the balanced-unbalanced conversion device can be integrated in The first insulating substrate and the second insulating substrate are made, thereby eliminating complicated wiring work, and saving installation space and manufacturing cost.
  • the first balanced signal connection section of the first microstrip line and the second balanced signal connection section of the second microstrip line extend to the first edge of the first insulating substrate, the first microstrip The first impedance matching section of the line and the second impedance matching section of the second microstrip line extend to the second edge of the second insulating substrate, the first edge of the first insulating substrate is connected to the second edge of the second insulating substrate, The first balanced signal connection section is electrically connected to the first impedance matching section, and the second balanced signal connection section is electrically connected to the second impedance matching section.
  • a slot is opened at a first edge of the first insulating substrate, the slot is located between the first balanced signal connection section and the second balanced signal connection section, and the first side wall of the slot Close to the first balanced signal connection section, and provided with a first conductive piece connected to the first balanced signal connection section, the second side wall of the slot is close to the second balanced signal connection section, and is provided with the second balanced signal connection section.
  • the first insulating substrate and the second insulating substrate are perpendicular to each other.
  • the first insulating substrate and the second insulating substrate are parallel to each other, and the first edge and the second edge overlap, the first balanced signal connection section is crimped with the first impedance matching section, and the second The balanced signal connection section and the second impedance matching section are welded by welding points.
  • the first impedance matching section of the first microstrip line and the second impedance matching section of the second microstrip line are parallel to each other.
  • the cross-sectional area of the first impedance matching section may be gradually increased in a direction close to the unbalanced signal connection section; the cross-sectional area of the second impedance matching section is close to the connection The direction of the lot gradually increases.
  • the cross-sectional area of the first impedance matching section may gradually decrease in a direction close to the unbalanced signal connection section; the cross-sectional area of the second impedance matching section may be close to the connection The direction of the lot gradually decreases.
  • the cross-sectional width of the microstrip line can be kept constant, and the cross-sectional thickness of the microstrip line can be gradually changed.
  • the cross-sectional thickness of the microstrip line can be kept constant, and the cross-sectional width of the microstrip line can be gradually changed. This scheme can facilitate the production of gradient microstrip lines.
  • both the cross-sectional thickness of the microstrip line and the cross-sectional width of the microstrip line can be graded.
  • the first balanced signal connection section includes a first parallel section and a first inclined section, where the first parallel section is used to transmit a first component of a balanced signal, and the first inclined section One end of the segment is connected to the first parallel segment, and the other end is connected to the first impedance matching segment;
  • the second balanced signal connection segment includes a second parallel segment and a second inclined segment, and the second parallel segment is The first parallel section is parallel, the second parallel section is used to transmit the second component of the balanced signal, one end of the second inclined section is connected to the second parallel section, and the other end is matched to the second impedance Segment connection;
  • the conductive ground includes a first reference ground and a second reference ground, the first reference ground is the reference ground of the first parallel segment and the second parallel segment, the second reference ground is The reference ground of the first inclined section and the second inclined section.
  • the impedance formed by the first parallel section, the second parallel section and the first reference ground is unchanged, the first inclined section, the second inclined section and the second reference ground form Impedance gradient. Since the first parallel section and the second parallel section are used to transmit balanced signals, making the first parallel section and the second parallel section parallel to each other and having the same impedance can make it have good electrical characteristics.
  • the first inclined section gradually approaches the second inclined section in a direction away from the first parallel section
  • the second inclined section gradually approaches the second inclined section in a direction away from the second parallel section
  • the cross-sectional area of the first reference ground does not change, and the cross-sectional area of the second reference ground gradually changes. Therefore, the gradual change of the cross-sectional area of the second reference ground can also change the impedance, so as to achieve a smooth impedance transition.
  • the cross-sectional areas of the first parallel section and the second parallel section are unchanged, and the cross-sectional areas of the first inclined section and the second inclined section gradually change.
  • the impedance can be changed by changing the cross-sectional area of the first inclined section and the second inclined section, so that the implementation of the smooth transition of the impedance is more flexible.
  • the projection of the first impedance matching section on the plane where the second impedance matching section is located may overlap with the second impedance matching section. This can save space in the width direction.
  • a magnetic member may be sleeved on at least a portion of the first impedance matching section and at least a portion of the second impedance matching section.
  • a magnetic member may be sleeved outside the entirety of the first impedance matching section and the second impedance matching section. Compared with the case where the magnetic member is only sleeved on a part of the first impedance matching section and the second impedance matching section, the overall sleeve of the magnetic member can make the low-frequency characteristic better. Set more magnetic parts can meet S11 ⁇ -20dB at lower frequency.
  • the magnetic member may be made of one magnetic material, or may be made of two or more magnetic materials. Using multiple materials to match the magnetic parts can further reduce S11.
  • the structure of the magnetic member may include a magnetic coil, a hollow magnetic prism, a hollow magnetic cylinder, or a hollow magnetic elliptical cylinder.
  • the magnetic member may also be formed by joining at least two parts. Thus, it is easy to install the magnetic member.
  • the first surface of the insulating substrate is provided with the first microstrip line and the second balanced signal connection section of the second microstrip line, and the second surface of the insulating substrate
  • the second impedance matching section and the grounding section of the second microstrip line are provided, and the second balanced signal connection section and the second impedance matching section pass through the first surface of the insulating substrate and the first
  • the conductive vias on the two surfaces are connected, and the conductively disposed on the second surface of the insulating substrate.
  • the first balanced signal connection section and the second balanced signal connection section are respectively connected with DC blocking capacitors.
  • the signals entering the first balanced signal connection section and the second balanced signal connection section can be AC signals without a DC component.
  • the first balanced signal connection section includes a first parallel section and a first inclined section, where the first parallel section is used to transmit a first component of a balanced signal, and the first inclined section One end of the segment is connected to the first parallel segment, and the other end is connected to the first impedance matching segment;
  • the second balanced signal connection segment includes a second parallel segment, and the second microstrip line further includes an impedance transition segment ,
  • the impedance transition section and the second impedance matching section are on the same plane, one end of the impedance transition section is connected to the second parallel section through a via, and the other end is connected to the second impedance matching section;
  • the conductive ground includes a first reference ground, which is the reference ground of the first parallel section and the second parallel section; the impedance formed by the first inclined section and the impedance transition section remains unchanged And the same impedance formed by the first parallel section, the second parallel section, and the first reference ground, or the impedance formed by the first inclined section and the impedance transition
  • the line width of the first parallel segment and the second parallel segment can be made narrower; and There is no reference ground for the first inclined section and the impedance transition section. Therefore, the line width of the first inclined section and the impedance transition section needs to be fully used to match the impedance.
  • the second parallel section and the first reference ground In order to match the impedance formed by the first parallel section, the second parallel section and the first reference ground. At this time, the width of the first inclined section is greater than the width of the first parallel section, and the width of the impedance transition section is greater than the width of the second parallel section.
  • the first parallel section and the first inclined section may be connected by a first pad, and the upper end of the via of the second parallel section and the impedance transition section may be connected by a second pad,
  • the shape of the first pad and the second pad can be arbitrarily selected, such as round, rectangular, square, etc., as long as the impedance requirements can be met, the impedance formed by the first inclined section and the impedance transition section remains unchanged and The impedance formed by the first parallel section, the second parallel section, and the first reference ground is the same, or the impedance gradient formed by the first inclined section and the impedance transition section is changed so that the first parallel section, the The impedance formed by the second parallel section and the first reference ground is smoothly transitioned to the impedance formed by the unbalanced signal connection section and the ground section.
  • the present application further provides a communication device, including a circuit board, on which an integrated circuit and at least one balanced-unbalanced conversion device are provided, and the balanced-unbalanced conversion device is the first aspect described above Or the balance-unbalance conversion device described in any embodiment of the second aspect.
  • the integrated circuit includes a first balanced signal port and a second balanced signal port, the first balanced signal port is connected to the first balanced signal connection section of the balanced-unbalanced conversion device , The second balanced signal port is connected to the second balanced signal connection section of the balanced-unbalanced conversion device.
  • the present application also provides a communication system, including a first communication device and a second communication device, where the first communication device and the second communication device are described in any of the implementation manners of the third aspect Communication device, the balance-unbalance conversion device of the first communication device is connected to the balance-unbalance conversion device of the second communication device.
  • the balanced-unbalanced conversion device of the first communication device and the balanced-unbalanced conversion device of the second communication device are connected through a coaxial transmission line.
  • the first communication device includes a first chip and a first balanced-unbalanced conversion device
  • the second communication device includes a second chip and a second balanced-unbalanced conversion device
  • the first chip is used to output a balanced signal
  • the second chip is used to receive a balanced signal
  • the first balanced-unbalanced conversion device is used to convert the balanced signal output from the first chip to an unbalanced signal
  • the second balanced-unbalanced conversion device is used for converting unbalanced signals into balanced signals and transmitted to the second chip.
  • a coaxial transmission line can be used to transmit signals between the second balanced-unbalanced conversion device and the second chip.
  • the communication system provided by the present application can be connected by a coaxial transmission line, it has the advantages of higher density, better electrical performance, more flexible winding, and cheaper price than the twin-axial cable.
  • FIG. 1 is a structural diagram of a balun
  • FIG. 2 is a schematic structural diagram of a balanced-unbalanced conversion device provided by an embodiment of the present application
  • FIG. 3 is a schematic structural diagram of a first surface of a balance-unbalance conversion device provided by an embodiment of the present application
  • FIG. 4 is a schematic structural diagram of a second surface of a balance-unbalance conversion device provided by an embodiment of the present application.
  • FIG. 5 is a cross-sectional view taken along line C-C of FIG. 2;
  • FIG. 6 is a D-D sectional view of FIG. 2;
  • FIG. 8 is a cross-sectional view of F-F of FIG. 2;
  • FIG. 9 is a schematic structural diagram of a balanced-unbalanced conversion device provided with an embodiment of the present application after a magnetic member is provided;
  • FIG. 10 is a schematic structural view of a magnetic member using a hollow magnetic quadrangular prism
  • FIG. 11 is a schematic diagram of the structure of the magnetic piece when two parts are spliced
  • FIG. 12 is a schematic diagram when the first inclined section and the second inclined section adopt a trapezoidal structure
  • FIG. 13 is a schematic structural diagram of a balanced-unbalanced conversion device provided by an embodiment of the present application when two substrates are vertically inserted;
  • FIG. 14 is a view from the A direction of FIG. 13;
  • FIG. 15 is a schematic diagram of the exploded structure of FIG. 13;
  • FIG. 16 is a view from the B direction of FIG. 13;
  • 17 is a schematic structural diagram of a balanced-unbalanced conversion device provided by an embodiment of the present application when two substrates are used for parallel pressure bonding;
  • FIG. 18 is a top view of FIG. 17;
  • 19 is an application architecture diagram of a balanced-unbalanced conversion device provided by an embodiment of the present application.
  • FIG. 20 is an enlarged view of part H of FIG. 19;
  • 21 is a schematic structural diagram of a balanced-unbalanced conversion device according to an embodiment of the present application when no second reference ground is provided.
  • the embodiments of the present application relate to baluns, communication devices, and communication systems.
  • Balun converters also known as baluns, are used to convert balanced signals into unbalanced signals or unbalanced signals into balanced signals.
  • impedance in a circuit with resistance, inductance, and capacitance, the impediment to the current in the circuit is called impedance.
  • an embodiment of the present application provides a balanced-unbalanced conversion device, including an insulating substrate 1, a first microstrip line 2, a second microstrip line 3, and a conductive ground 4, as shown in FIG. 3,
  • the first microstrip line 2 includes a first balanced signal connection section 21, a first impedance matching section 22, and an unbalanced signal connection section 23 that are sequentially connected, and the first balanced signal connection section 21 is used to transmit the first component of the balanced signal
  • the unbalanced signal connection section 23 is used to transmit unbalanced signals; as shown in FIGS.
  • the second microstrip line 3 includes a second balanced signal connection section 31, a second impedance matching section 32 and a The ground section 33, the second balanced signal connection section 31 is used to transmit the second component of the balanced signal, the ground section 33 is used to connect the ground signal; the conductive ground 4 is the first balanced signal connection section 21 and the The reference ground of the second balanced signal connection section 31.
  • the first microstrip line 2, the second microstrip line 3 and the conductive ground 4 are all provided on the insulating substrate 1, the first balanced signal connection section 21 of the first microstrip line 2 and the second microstrip line 3
  • the second balanced signal connection section 31 is located on the same plane of the insulating substrate 1, the first impedance matching section 22 of the first microstrip line 2 and the second impedance matching section 32 of the second microstrip line 3 are separated by the insulating substrate 1, At least a part of the first microstrip line 2 and / or at least a part of the second microstrip line 3 have a gradual cross-sectional area so that the first balanced signal connection section 21, the second balanced signal connection section 31 and the conductive ground 4 are formed
  • the impedance is smoothly transitioned to the impedance formed by the unbalanced signal connection section 23 and the ground section 33.
  • the first component of the differential AC signal (or balanced signal) is connected by the first balanced signal connection section 21, and the second component of the differential AC signal is connected by the second balanced signal
  • the segment 31 is connected.
  • the impedance value can be adjusted to make the first balanced signal connection section 21 and the second balanced signal
  • the impedance formed by the connection section 31 and the conductive ground 4 smoothly transitions to the impedance formed by the unbalanced signal connection section 23 and the ground section 33.
  • the first balanced signal connection section 21 and the second balanced signal connection section 31 are located on the same plane of the insulating substrate 1, which can facilitate the connection of the balance-unbalance conversion device and other electrical devices (such as serdes).
  • the balanced-unbalanced conversion device replaces the transmission cable in the prior art such as coaxial cable or twisted pair cable with a microstrip line as a signal conductor, so the balanced-unbalanced conversion device can be integrated in Made on a substrate (such as a PCB board), which eliminates complicated wiring work and saves installation space and manufacturing costs.
  • the area of the conductive ground 4 illustrated in FIG. 2 is smaller than the area of the insulating substrate 1, in actual application, the area of the conductive ground 4 and the area of the insulating substrate 1 may be the same or different, which is not described here. Be limited.
  • the impedance gradient can be realized by changing the cross-sectional area of the microstrip line. For example, the cross-sectional area of at least a part of the first microstrip line 2 can be changed, or the cross-sectional area of at least a part of the second microstrip line 3 can also be changed.
  • the cross-sectional area of at least a part of the first microstrip line 2 and the cross-sectional area of at least a part of the second microstrip line 3 are simultaneously graded to form a gradual transition of the impedance, and finally the first balanced signal connection section 21, the first The impedance formed by the two balanced signal connection sections 31 and the conductive ground 4 smoothly transitions to the impedance formed by the unbalanced signal connection section 23 and the ground section 33.
  • the impedance smoothing transition scheme can increase the total signal energy transmittance and reduce the reflectance.
  • the above-mentioned cross-sectional area gradual change refers to that the change process of the cross-sectional area is smooth, and there is no obvious change step.
  • the above-mentioned impedance smooth transition may refer to that the impedance transformation process is smooth without obvious change steps.
  • the impedance formed by the first balanced signal connection section 21, the second balanced signal connection section 31 and the conductive ground 4 is 100 ⁇ , it passes through at least a part of the first microstrip line 2 and / or the second microstrip line 3
  • the impedance gradually changes smoothly from 100 ⁇ to 50 ⁇ formed by the unbalanced signal connection section 23 and the ground section 33.
  • the impedance transformation process is smooth, the degree of change is uniform, and there is no obvious step of change.
  • the impedance formed by the first balanced signal connection section 21, the second balanced signal connection section 31, and the conductive ground 4 is greater than the unbalanced signal connection section 23
  • the impedance formed by the grounding section 33, the cross-sectional area of the first impedance matching section 22 can be gradually increased in the direction close to the unbalanced signal connection section 23, so that the first impedance matching section 22 and the second impedance
  • the impedance formed between the matching sections 32 gradually decreases in the direction close to the unbalanced signal connection section 23; the cross-sectional area of the second impedance matching section 32 gradually increases in the direction close to the ground section 33, so that The impedance formed between the first impedance matching section 22 and the second impedance matching section 32 gradually decreases in a direction close to the ground section 33.
  • the first impedance matching section 22 The cross-sectional area gradually decreases in the direction close to the unbalanced signal connection section 23, so that the impedance formed between the first impedance matching section 22 and the second impedance matching section 32 approaches the unbalanced signal connection section
  • the direction of 23 gradually increases; the cross-sectional area of the second impedance matching section 32 can be gradually reduced in the direction close to the ground section 33, so that the first impedance matching section 22 and the second impedance matching section 32 are formed between
  • the impedance gradually increases in the direction close to the ground segment 33.
  • the cross-sectional width of the microstrip line can be kept constant, and the cross-sectional thickness of the microstrip line can be gradual;
  • the cross-sectional width of the microstrip line can be gradual;
  • the cross-sectional thickness of the microstrip line and the cross-sectional width of the microstrip line can also be gradual. Specifically, as shown in FIGS.
  • the thickness of the cross section of the first impedance matching section 22 can be kept constant, and the width of the cross section of the first impedance matching section 22 is close to the unbalanced signal connection section 23
  • the direction of is gradually increased, so that the cross-sectional area of the first impedance matching section 22 gradually increases in a direction close to the unbalanced signal connection section 23; as shown in FIGS. 4, 7, and 8, the first
  • the cross-sectional thickness of the second impedance matching section 32 remains unchanged, and the cross-sectional width of the second impedance matching section 32 gradually increases in a direction close to the ground section 33, so that the cross-sectional area of the second impedance matching section 32 approaches The direction of the ground segment 33 gradually increases.
  • the thickness of the cross section of the microstrip line is kept constant, and the gradual change in the width of the microstrip line can facilitate the production of the gradual microstrip line.
  • the first balanced signal connection section 21 may include a first parallel section 211 and a first inclined section 212, and the first parallel section 211 is used to transmit a first balanced signal Component, one end of the first inclined section 212 is connected to the first parallel section 211, and the other end is connected to the first impedance matching section 22;
  • the second balanced signal connection section 31 includes a second parallel section 311 and a second inclined section 312, The second parallel section 311 is parallel to the first parallel section 211.
  • the second parallel section 311 is used to transmit the second component of the balanced signal.
  • One end of the second inclined section 312 is connected to the second parallel section 311, and the other end is connected to the second The impedance matching section 32 is connected.
  • the conductive ground 4 includes a first reference ground 41 and a second reference ground 42.
  • the first reference ground 41 is the reference ground of the first parallel section 211 and the second parallel section 311.
  • the second reference ground 42 is the reference ground of the first inclined section 212 and the second inclined section 312.
  • the impedance formed by the first parallel section 211, the second parallel section 311, and the first reference ground 41 may be kept unchanged, so that the first inclined section 212, the second inclined section 312, and the second reference ground 42 the impedance gradient formed. Since the first parallel section 211 and the second parallel section 311 are used to transmit balanced signals, making the first parallel section 211 and the second parallel section 311 parallel to each other and having the same impedance can have good electrical characteristics.
  • the first inclined section 212 gradually approaches the second inclined section 312 in a direction away from the first parallel section 211, and the second inclined section 312 gradually approaches the first in the direction away from the second parallel section 311 The inclined section 212.
  • the first inclined section 212 and the second inclined section 312 gradually approach each other, so as to facilitate the subsequent provision of vias and connect the first impedance matching section 22 and the second impedance matching section 32.
  • the space occupied by the first impedance matching section 22 and the second impedance matching section 32 in the width direction is smaller, so that it is convenient to wind the magnetic ring, and The width of the balance-unbalance conversion device can be reduced.
  • the cross-sectional area of the first inclined section 212 and the second inclined section 312 can be changed.
  • the first The cross-sectional areas of the parallel section 211 and the second parallel section 311 are unchanged, so that the cross-sectional areas of the first inclined section 212 and the second inclined section 312 are gradually changed.
  • the parameters such as the cross-sectional area, spacing, and relative position of each microstrip line and conductive ground 4 may affect the impedance. Therefore, in order to realize the impedance gradient formed by the first inclined section 212, the second inclined section 312, and the second reference ground 42, In a possible implementation manner, the cross-sectional area of the first inclined section 212 and the second inclined section 312 can be changed, for example, the cross-sectional area of the first parallel section 211 and the second parallel section 311 can be kept unchanged, The cross-sectional areas of the first inclined section 212 and the second inclined section 312 are gradually changed. In another possible implementation, the impedance can also be gradually changed by changing the cross-sectional area of the conductive ground 4. As shown in FIGS.
  • the cross-sectional area of the first reference ground 41 is unchanged, and the cross-sectional area of the second reference ground 42 gradually changes. Therefore, the gradual change of the cross-sectional area of the second reference ground 42 can also change the impedance, so as to achieve a smooth impedance transition.
  • the second reference ground 42 may not be provided.
  • the specific structure is shown in FIG. 21.
  • the first balanced signal connection section 21 includes a first parallel section 211 and a first inclined section 212.
  • the first parallel section is used to transmit the first component of the balanced signal, one end of the first inclined section 212 is connected to the first parallel section 211, and the other end is connected to the first impedance matching section 22;
  • the second The balanced signal connection section includes a second parallel section 311 ', the second microstrip line also includes an impedance transition section 312', the impedance transition section 312 'and the second impedance matching section 32 are in the same plane, the impedance One end of the transition section 312 'is connected to the second parallel section 311' through the via H, and the other end is connected to the second impedance matching section 32;
  • the conductive ground includes only the first reference ground 41, the first reference ground 41 is a reference ground for the first parallel section 211 and the second parallel section 311 '; the impedance
  • the first parallel section 211 and the second parallel section 311 ' have the first reference ground 41
  • the first parallel section 211 and the second parallel section 311 ' The line width can be made narrower; and the first inclined section 212 and the impedance transition section 312' have no reference ground, so it is necessary to fully use the line width of the first inclined section 212 and the impedance transition section 312 'to match the impedance.
  • the width of the first inclined section 212 is greater than the width of the first parallel section 211
  • the width of the impedance transition section 312 ' is greater than the width of the second parallel section 311'.
  • the upper end, as shown, the first segment 211 and may be connected in parallel between the first pad 212 through P 1, a second parallel section 311 'of the impedance transition section 312' of the first via hole 21 may be inclined section Connected by the second pad P 2 , the shapes of the first pad P 1 and the second pad P 2 can be arbitrarily selected, such as circular, rectangular, square, etc., as long as the impedance requirements can be met, the first inclined section 212 is realized
  • the impedance formed by the impedance transition section 312 'remains unchanged and is the same as the impedance formed by the first parallel section 211, the second parallel section 311' and the first reference ground 41, or the first inclined section 212 The impedance formed by the impedance transition section 312 'is gradually changed so that the impedance formed by the first parallel section 211, the second parallel section 311' and the first reference ground 41 to the unbalanced signal connection section 23
  • the impedance formed by the grounding section 33 smoothly transitions.
  • the projection of the first impedance matching section 22 on the plane where the second impedance matching section 32 is located can overlap with the second impedance matching section 32. That is to say, the first impedance matching section 22 and the second impedance matching section 32 overlap in the thickness direction of the insulating substrate 1, whereby space in the width direction can be saved. It should be noted that the above-mentioned overlap only refers to the position overlap, and the widths of the first impedance matching section 22 and the second impedance matching section 32 may be the same or different, which is not limited herein.
  • the projection of the first impedance matching section 22 on the plane of the second impedance matching section 32 and the second impedance matching section 32 may not overlap as long as the layout space allows, as long as the desired impedance transition can be achieved That's it.
  • At least a portion of the first impedance matching section 22 and at least a portion of the second impedance matching section 32 may be set outside There is a magnetic member 5, and the magnetic member 5 is not in contact with the first impedance matching section 22 and the second impedance matching section 32.
  • the entire balanced-unbalanced conversion device structure has ultra-wideband performance and better low-frequency characteristics, for example, S11 ⁇ -20dB, S21> -3dB in the entire frequency band of interest.
  • the magnetic member 5 may be made of one kind of magnetic material, or two or more kinds of magnetic materials, which is not limited herein.
  • the use of a variety of materials to match the magnetic member can further reduce S11, and the specific type and distribution of the wound magnetic material can be determined according to the actual situation.
  • the structure of the magnetic member 5 may include a magnetic coil, a hollow magnetic prism, a hollow magnetic cylinder, or a hollow magnetic elliptical cylinder, or the like. As shown in FIG. 10, the structure of the magnetic member 5 may be a hollow magnetic quadrangular prism structure.
  • the magnetic member 5 may surround the entire length range of the entire first impedance matching section 22 and the entire second impedance matching section 32, or may only surround a part of the first impedance matching section 22 and a part of the second impedance matching section 32, which is not done here limited.
  • S11 ⁇ -20dB can be satisfied at a lower frequency. For example, for a 2cm long balance-unbalance conversion device, when no magnetic member is provided, S11> -20dB in the frequency range below 3.5GHz. When the magnetic part is partially wound, S11> -20dB in the range of 2GHz, and S11 ⁇ -20dB at the frequency above 2GHz.
  • the magnetic member 5 may also be formed by splicing at least two parts (51, 52).
  • the insulating substrate 1 may be one board or two boards.
  • the first surface of the insulating substrate 1 is provided with The first microstrip line 2 and the second balanced signal connection section 31 of the second microstrip line 3
  • the second surface of the insulating substrate 1 is provided with the second impedance matching of the second microstrip line 3 Segment 32 and the ground segment 33
  • the second balanced signal connection segment 31 and the second impedance matching segment 32 are connected by conductive vias 34 that penetrate the first surface and the second surface of the insulating substrate 1, so
  • the conductive ground 4 is provided on the second surface of the insulating substrate 1.
  • the conductive ground 4 is the reference ground of the first balanced signal connection section 21 and the second balanced signal connection section 31, the first balanced signal is connected
  • the projection of the segment 21 and the second balanced signal connection segment 31 on the second surface is within the range of the conductive ground 4.
  • the conductive via 34 can realize the layer-changing connection between the second balanced signal connection section 31 and the second impedance matching section 32.
  • the conductive via 34 may be opened corresponding to the second inclined section 312 of the second balanced signal connection section 31, that is, the conductive via 34 is connected to the second balanced signal connection section 31 at one end and to the second inclined section 312 at the other end.
  • the first inclined section 212 and the second inclined section 312 may also include other shapes, such as a trapezoidal structure as shown in FIG. 12, no matter which shape is adopted, as long as the via can be completed and the impedance of the via can be matched before and after .
  • a coaxial wire pad 6 may be provided on the insulating substrate 1. As shown in FIG. 3, the core wire connection of the coaxial wire pad 6 is provided on the first surface of the insulating substrate 1 As shown in FIG. 4, the second surface of the insulating substrate 1 is provided with an outer layer metal connection port 62 of the coaxial pad 6, as shown in FIG.
  • the outer layer metal connection port 62 may penetrate the first surface and the second of the insulating substrate 1
  • the surface, for example, the outer metal connection port 62 may be a metal conductor disposed through the first surface and the second surface of the insulating substrate 1, the unbalanced signal connection section 23 of the first microstrip line 2 and the coaxial pad
  • the core wire connection port 61 is connected, and the ground segment 33 of the second microstrip line 3 is short-circuited with the outer metal connection port 62 of the coaxial wire pad, thereby converting the out-of-plane differential signal into a single-ended signal, and can be passed
  • the coaxial transmission line outputs single-ended signals.
  • the coaxial wire 9 when the coaxial wire 9 is connected, the coaxial wire 9 includes a core wire 91 and an outer metal layer 92 covering the core wire 91, which can be welded on the insulating substrate 1 near the coaxial wire
  • One end of the disc 6 is provided with a coaxial line slot, the coaxial line 9 is inserted into the coaxial line slot, the core wire 91 is connected to the core wire connection port 61, and the outer metal layer 92 is connected to the outer metal connection port 62.
  • the coaxial cable 9 is entirely disposed above the insulating substrate 1, the outer metal layer 92 is directly contacted and welded with the outer metal connection port 62, and the core wire 91 is located Above the core wire connection port 61 and not in contact with the core wire connection port 61, soldering can be performed by stacking solder.
  • the insulating substrate 1 may be formed by combining two plates. As shown in FIG. 14, the insulating substrate 1 includes a first insulating substrate 11 and a second insulating substrate 12. The first surface of the first insulating substrate 11 is provided with a first balanced signal connection section 21 of the first microstrip line 2 , And the second balanced signal connection section 31 of the second microstrip line 3, the second surface of the first insulating substrate 11 is provided with the conductive ground 4, the first surface of the first insulating substrate 11 and the The second surface of the first insulating substrate 11 is opposed.
  • the first surface of the second insulating substrate 12 is provided with the first impedance matching section 22 and the unbalanced signal connection section 23 of the first microstrip line 2, and the second surface of the second insulating substrate 12
  • the second impedance matching section 32 and the ground section 33 of the second microstrip line 3 are provided.
  • the first balanced signal connection section 21 of the first microstrip line 2 and the second balanced signal connection section 31 of the second microstrip line 3 extend to the first edge 111 of the first insulating substrate 11,
  • the first impedance matching section 22 of the first microstrip line 2 and the second impedance matching section 32 of the second microstrip line 3 extend to the second edge 121 of the second insulating substrate 12, the The first edge 111 of the first insulating substrate 11 is connected to the second edge 121 of the second insulating substrate 12, and the first balanced signal connection section 21 is electrically connected to the first impedance matching section 22 Connected, the second balanced signal connection section 31 is electrically connected to the second impedance matching section 32.
  • the first insulating substrate 11 and the second insulating substrate 12 are inserted into each other.
  • a slot 112 is provided at the first edge 111 of the first insulating substrate 11, wherein the slot 112 may penetrate the first surface and the second surface of the first insulating substrate 11 in the thickness direction
  • the slot 112 may not penetrate the first surface and the second surface of the first insulating substrate 11, and the slot 112 is located in the first balanced signal connection section 21 and the second balanced
  • the first side wall of the slot 112 is close to the first balanced signal connection section 21, and a first conductive sheet 113 connected to the first balanced signal connection section 21 is provided.
  • the second side wall of the groove 112 is close to the second balanced signal connection section 31 and is provided with a second conductive sheet 114 connected to the second balanced signal connection section 31.
  • the first insulating substrate 11 and the second insulating substrate 12 are perpendicular to each other, such as As shown in FIGS. 13 and 14, the second edge 121 of the second insulating substrate 12 is inserted into the slot 112, the first conductive sheet 113 is welded to the first impedance matching section 22, and the second conductive sheet 114 is coupled to the second impedance matching section 32 welding. It should be noted that the first insulating substrate 11 and the second insulating substrate 12 may be perpendicular to each other, or may be arranged at a certain angle, which is not limited herein.
  • the first insulating substrate 11 and the second insulating substrate 12 are crimped in parallel with each other. As shown in FIGS. 17 and 18, the first insulating substrate 11 and the second insulating substrate 12 are parallel to each other, and the first edge 111 and the second edge 121 are overlapped, and the first balanced signal The connection section 21 and the first impedance matching section 22 are welded through a welding spot 13, and the second balanced signal connection section 31 is crimped with the second impedance matching section 32.
  • the left edge of the conductive ground 4 may exceed the first balanced signal connection section 21 and the second balanced signal
  • the left edge of the connection section 31 and the right edge of the conductive ground 4 are flush with the right edges of the first balanced signal connection section 21 and the second balanced signal connection section 31.
  • the left edge of the conductive ground 4 may also be flush with the left edges of the first balanced signal connection section 21 and the second balanced signal connection section 31, that is, the length of the conductive ground 4 is equal to The lengths of the first balanced signal connection section 21 and the second balanced signal connection section 31 are equal.
  • FIG. 19 is a diagram showing an application architecture of a balanced-unbalanced conversion device according to an embodiment of the present application, in which the first chip 71 outputs a differential signal and enters through the first balanced signal connection section 21 and the second balanced signal connection section 31
  • Differential to single-ended balanced-unbalanced conversion device A only DC blocking capacitor 8 can be introduced before differential-to-single-ended conversion, so that the signal that enters the balanced-unbalanced conversion device is an AC signal with no DC component, balanced-unbalanced conversion
  • the unbalanced signal connection section 23 of the device A can be connected to the coaxial transmission line 9, the single-ended signal enters the coaxial transmission line 9, and after a distance of transmission reaches the single-ended to differential balanced-unbalanced conversion device B, the single-ended to differential balanced-unbalanced
  • the unbalanced signal connection section 23 of the balanced conversion device B is connected to the coaxial transmission line 9, and the first balanced signal connection section 21 and the second balanced signal connection section 31 of the single-
  • the balanced-unbalanced conversion device of this application can be used in the backplane and on-board cable (On Board) in the chassis (OBC).
  • the balanced-unbalanced conversion device of this application can also be used in various Optical modules, active / passive cable interfaces, including but not limited to small hot-swappable optical modules (Small Form-factor Pluggable, SFP), four-channel small hot-swappable optical modules (Quad Small Form-factor Pluggable, QSFP ), Dual-density four-channel small hot-swappable optical module (Quad Small Form-factor Pluggable-double density (QSFP-DD), 12 ⁇ 10Gbps hot-swappable optical module (12 ⁇ 10Gbps Pluggable, CXP), etc.
  • small hot-swappable optical modules Small Form-factor Pluggable, SFP
  • four-channel small hot-swappable optical modules Quadad Small Form-factor Pluggable, QSFP
  • the present application also provides a communication device including a circuit board provided with an integrated circuit and at least one balanced-unbalanced conversion device, the balanced-unbalanced conversion device being any implementation of the first aspect above The balance-unbalance conversion device described in the example.
  • the integrated circuit includes a first balanced signal port and a second balanced signal port, the first balanced signal port is connected to the first balanced signal connection section 21 of the balanced-unbalanced conversion device, the first The two balanced signal ports are connected to the second balanced signal connection section 31 of the balanced-unbalanced conversion device.
  • a connector may also be provided on the circuit board of the above communication device.
  • the connector includes an unbalanced signal port and an external port.
  • the unbalanced signal port of the connector may be connected to the unbalanced signal connection section of the balanced-unbalanced conversion device.
  • the external port can be connected to other communication devices.
  • the present application also provides a communication system, including a first communication device and a second communication device, the first communication device and the second communication device are all the communication devices described in any of the above embodiments, the first The balance-unbalance conversion device of the communication device is connected to the balance-unbalance conversion device of the second communication device.
  • the balance-unbalance conversion device of the first communication device and the balance-unbalance conversion device of the second communication device may be connected through a coaxial transmission line. Since the communication system provided by the present application can be connected by a coaxial transmission line, it has the advantages of higher density, better electrical performance, more flexible winding, and cheaper price than the twin-axial cable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

本申请实施例提供平衡-不平衡变换装置、通信器件及通信系统,涉及通信设备技术领域,该平衡-不平衡变换装置包括绝缘基板、第一微带线、第二微带线以及导电地,第一微带线包括第一平衡信号连接段、第一阻抗匹配段以及不平衡信号连接段,第一平衡信号连接段用于传输平衡信号的第一分量,不平衡信号连接段用于传输不平衡信号;第二微带线包括第二平衡信号连接段、第二阻抗匹配段以及接地段,第二平衡信号连接段用于传输平衡信号的第二分量,接地段用于连接地信号,第一微带线、第二微带线以及导电地均设置于绝缘基板上,第一微带线的至少一部分和/或第二微带线的至少一部分截面积渐变。

Description

一种平衡-不平衡变换装置、通信器件及通信系统
本申请要求于2018年10月31日提交国家知识产权局、申请号为201811299393.5、发明名称为“一种平衡-不平衡变换装置、通信器件及通信系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信设备技术领域,尤其涉及一种平衡-不平衡变换装置、通信器件及通信系统。
背景技术
在当前的数据通信设备中,电互连采用的均为差分信号线。之所以采用差分信号线,是因为芯片的高速串行器/解串器(Serializer/Deserializer,serdes)是差分信号接口,这样芯片在进行片上信号处理和封装出线时差分信号对来自电源等的共模噪声有更好的免疫力。然而,背板/框间/机架的高速通信系统通常使用双轴传输线进行信号传输,但采用双轴传输线存在如下问题:双轴传输线包括两根信号线和一根地线,直径大,占用布线空间大。弯折能力受限,双轴传输线不易沿轴向弯曲。且双轴传输线对工艺控制要求严格,工艺昂贵。需要控制差分对内延迟,避免性能损失。
为了解决上述问题,可以采用同轴电缆替代双轴电缆实现信号传输,这样就需要在没有能量损失的情况下将发送侧芯片的Serdes差分信号转成单端信号,在接收侧将单端信号转成Serdes需要的差分信号。另外,Serdes的差分阻抗一般为100Ω或90Ω,同轴电缆的阻抗是50Ω或75Ω。这两点的存在使得需要设计一个合理的转换装置,该转换装置可以在实现差分信号转单端信号的同时,实现Serdes端与同轴电缆之间的阻抗过渡。这种转换装置通常称为巴伦(Balance-unbalance,BALUN),是英文"平衡-不平衡变换器"缩写的音译。
在一种巴伦的实现方式中,如图1所示,该巴伦包括两根等长的传输线,分别为第一传输线01和第二传输线02,第一传输线01和第二传输线02的左端并联,右端串联,若第一传输线01的阻抗为2*Z0,第二传输线02的阻抗也为2*Z0,此时当信号从左端以Z0注入时,第一传输线01和第二传输线02各自得到了一半的信号能量,以行波方式向右传递。当信号同时到达右端时,由于在右端是串联关系,所以电压和阻抗都通过堆叠而得到了抬升,正好过渡至右边的4*Z0输出端口阻抗。然而,图1所示的巴伦不利于布线。并且结构复杂,占用空间较大。
发明内容
本申请的实施例提供的平衡-不平衡变换装置、通信器件及通信系统,解决了现有技术的平衡-不平衡变换装置不利于布线且占用空间较大的问题。
第一方面,本申请提供一种平衡-不平衡变换装置,包括:
绝缘基板;
第一微带线,所述第一微带线包括依次连接的第一平衡信号连接段、第一阻抗匹配段以及不平衡信号连接段,所述第一平衡信号连接段用于传输平衡信号的第一分量, 所述不平衡信号连接段用于传输不平衡信号;
第二微带线,所述第二微带线包括依次连接的第二平衡信号连接段、第二阻抗匹配段以及接地段,所述第二平衡信号连接段用于传输平衡信号的第二分量,所述接地段用于连接地信号;
导电地(Ground,GND),所述导电地为所述第一平衡信号连接段和所述第二平衡信号连接段的参考地;
所述第一微带线、所述第二微带线以及所述导电地均设置于所述绝缘基板上,所述第一平衡信号连接段和所述第二平衡信号连接段位于所述绝缘基板的同一平面,所述第一微带线的所述第一阻抗匹配段与所述第二微带线的所述第二阻抗匹配段被所述绝缘基板隔开,所述第一微带线的至少一部分和/或所述第二微带线的至少一部分的截面积渐变。
本申请实施例提供的平衡-不平衡变换装置,差分交流信号(或称平衡信号)的第一分量由第一平衡信号连接段接入,差分交流信号的第二分量由第二平衡信号连接段接入,两部分差分信号分别经过第一阻抗匹配段和第二阻抗匹配段后,由不平衡信号端口输出单端信号(或称不平衡信号),从而完成差分信号转单端信号。其中,由于第一微带线的至少一部分和/或所述第二微带线的至少一部分截面积渐变,从而可调整阻抗值,以使所述第一平衡信号连接段、所述第二平衡信号连接段和所述导电地形成的阻抗到所述不平衡信号连接段和所述接地段形成的阻抗平滑过渡。本申请实施例提供的平衡-不平衡变换装置,通过微带线代替了现有技术中的同轴电缆或双绞线等传输线电缆来作为信号导体,因此可以将平衡-不平衡变换装置集成在基板(如PCB板)上制成,从而免去了复杂的布线工作,且节省了安装空间和制作成本。
在可能的实现方式中,所述第一微带线的所述第一阻抗匹配段与所述第二微带线的所述第二阻抗匹配段相互平行。
在可能的实现方式中,可将第一阻抗匹配段的截面积沿靠近所述不平衡信号连接段的方向逐渐增大,以使所述第一阻抗匹配段的阻抗沿靠近所述不平衡信号连接段的方向逐渐减小;所述第二阻抗匹配段的截面积沿靠近所述接地段的方向逐渐增大,以使所述第二阻抗匹配段的阻抗沿靠近所述接地段的方向逐渐减小。
在可能的实现方式中,可将第一阻抗匹配段的截面积沿靠近所述不平衡信号连接段的方向逐渐减小,以使所述第一阻抗匹配段的阻抗沿靠近所述不平衡信号连接段的方向逐渐增大;可将第二阻抗匹配段的截面积沿靠近所述接地段的方向逐渐减小,以使所述第二阻抗匹配段的阻抗沿靠近所述接地段的方向逐渐增大。
在可能的实现方式中,可以保持微带线的截面宽度不变,使微带线的截面厚度渐变。
在可能的实现方式中,可以保持微带线的截面厚度不变,使微带线的截面宽度渐变。此方案可便于渐变微带线的制作。
在可能的实现方式中,可以使微带线的截面厚度和微带线的截面宽度均渐变。
在可能的实现方式中,所述第一平衡信号连接段包括第一平行段和第一倾斜段,所述第一平行段用于传输平衡信号的第一分量,所述第一倾斜段的一端与所述第一平行段连接,另一端与所述第一阻抗匹配段连接;所述第二平衡信号连接段包括第二平 行段和第二倾斜段,所述第二平行段与所述第一平行段平行,所述第二平行段用于传输平衡信号的第二分量,所述第二倾斜段的一端与所述第二平行段连接,另一端与所述第二阻抗匹配段连接;所述导电地包括第一参考地和第二参考地,所述第一参考地为所述第一平行段和所述第二平行段的参考地,所述第二参考地为所述第一倾斜段和所述第二倾斜段的参考地。其中,所述第一平行段、所述第二平行段以及所述第一参考地形成的阻抗不变,所述第一倾斜段、所述第二倾斜段以及所述第二参考地形成的阻抗渐变或保持第一平行段、所述第二平行段以及所述第一参考地形成的阻抗不变。由于第一平行段和第二平行段用于传输平衡信号,因此使第一平行段和第二平行段相互平行且阻抗不变可使其具有良好的电特性。
在可能的实现方式中,第一倾斜段沿远离所述第一平行段的方向逐渐靠近所述第二倾斜段,第二倾斜段沿远离所述第二平行段的方向逐渐靠近所述第一倾斜段。由此,可便于绕设磁环,且能够减小平衡-不平衡变换装置的宽度。
在可能的实现方式中,所述第一参考地的截面积不变,所述第二参考地的截面积渐变。由此,第二参考地的截面积渐变也可使阻抗发生变化,以便于实现阻抗平滑过渡。
在可能的实现方式中,所述第一平行段和所述第二平行段的截面积不变,所述第一倾斜段和所述第二倾斜段的截面积渐变。由此,可通过改变第一倾斜段和所述第二倾斜段的截面积来改变阻抗,使阻抗平滑过渡的实现方式更灵活。
在可能的实现方式中,可将第一阻抗匹配段在第二阻抗匹配段所在平面上的投影与第二阻抗匹配段重叠。由此,可节省宽度方向的空间。
在可能的实现方式中,可在第一阻抗匹配段的至少一部分和第二阻抗匹配段的至少一部分外部套设有磁性件。由此可使整个平衡-不平衡变换装置结构具有超带宽性能及较好的低频特性,如,在整个关心的频段范围内S11<-20dB,S21>-3dB。
在可能的实现方式中,可在第一阻抗匹配段和第二阻抗匹配段整体外部均套设磁性件。相比于仅在第一阻抗匹配段和第二阻抗匹配段的一部分套设磁性件,整体套设磁性件可使低频特性更好。套设更多的磁性件可以在更低频率处就可满足S11<-20dB。
在可能的实现方式中,磁性件可采用一种磁性材料制成,也可采用两种或两种以上的磁性材料制成。将磁性件采用多种材料配合设置,可以进一步压低S11。
在可能的实现方式中,磁性件的结构可以包括磁力线圈、空心磁性棱柱、空心磁性圆柱或空心磁性椭圆柱等。
在可能的实现方式中,磁性件还可以由至少两部分拼接形成。由此,可便于安装磁性件。
在可能的实现方式中,所述绝缘基板的第一表面设置所述第一微带线以及所述第二微带线的第二平衡信号连接段,所述绝缘基板的第二表面设置所述第二微带线的所述第二阻抗匹配段和所述接地段,所述第二平衡信号连接段和所述第二阻抗匹配段通过贯穿所述绝缘基板的第一表面和第二表面的导电过孔连接,所述导电地设置于所述绝缘基板的第二表面。
在可能的实现方式中,绝缘基板包括第一绝缘基板和第二绝缘基板,所述第一绝缘基板的第一表面设置所述第一微带线的第一平衡信号连接段,以及所述第二微带线 的第二平衡信号连接段,所述第一绝缘基板的第二表面设置所述导电地,所述第一绝缘基板的第一表面与所述第一绝缘基板的第二表面相对。所述第二绝缘基板的第一表面设置所述第一微带线的所述第一阻抗匹配段和所述不平衡信号连接段,所述第二绝缘基板的第二表面设置所述第二微带线的所述第二阻抗匹配段和所述接地段。
在可能的实现方式中,所述第一微带线的第一平衡信号连接段和所述第二微带线的第二平衡信号连接段延伸至所述第一绝缘基板的第一边沿,所述第一微带线的所述第一阻抗匹配段和所述第二微带线的所述第二阻抗匹配段延伸至所述第二绝缘基板的第二边沿,所述第一绝缘基板的所述第一边沿与所述第二绝缘基板的所述第二边沿相连接,且所述第一平衡信号连接段与所述第一阻抗匹配段电连接,所述第二平衡信号连接段与所述第二阻抗匹配段电连接。
在可能的实现方式中,第一绝缘基板的所述第一边沿处开设有插槽,所述插槽位于所述第一平衡信号连接段和所述第二平衡信号连接段之间,所述插槽的第一侧壁靠近所述第一平衡信号连接段,且设有与所述第一平衡信号连接段连接的第一导电片,所述插槽的第二侧壁靠近所述第二平衡信号连接段,且设有与所述第二平衡信号连接段连接的第二导电片,所述第二绝缘基板的第二边沿插入所述插槽内,所述第一导电片与所述第一阻抗匹配段焊接,所述第二导电片与所述第二阻抗匹配段焊接。
在可能的实现方式中,第一绝缘基板和第二绝缘基板相互垂直。
在可能的实现方式中,第一绝缘基板和第二绝缘基板相互平行,且所述第一边沿和所述第二边沿叠置,所述第一平衡信号连接段与所述第一阻抗匹配段压接,所述第二平衡信号连接段与所述第二阻抗匹配段通过焊点焊接。
在可能的实现方式中,第一平衡信号连接段和第二平衡信号连接段分别连接有隔直电容。由此可使进入第一平衡信号连接段和第二平衡信号连接段的信号为没有直流分量的交流信号。
在可能的实现方式中,所述第一平衡信号连接段包括第一平行段和第一倾斜段,所述第一平行段用于传输平衡信号的第一分量,所述第一倾斜段的一端与所述第一平行段连接,另一端与所述第一阻抗匹配段连接;所述第二平衡信号连接段包括第二平行段,所述第二微带线还包括阻抗过渡段,所述阻抗过渡段与所述第二阻抗匹配段位于同一平面,所述阻抗过渡段的一端与所述第二平行段通过过孔连接,另一端与所述第二阻抗匹配段连接;所述导电地包括第一参考地,所述第一参考地为所述第一平行段和所述第二平行段的参考地;所述第一倾斜段与所述阻抗过渡段形成的阻抗保持不变且与所述第一平行段、所述第二平行段以及所述第一参考地形成的阻抗相同,或所述第一倾斜段与所述阻抗过渡段形成的阻抗渐变,以使所述第一平行段、所述第二平行段以及所述第一参考地形成的阻抗到所述不平衡信号连接段和所述接地段形成的阻抗平滑过渡。由此,可以不设置第二参考地,只要使所述第一倾斜段与所述阻抗过渡段形成的阻抗满足阻抗匹配要求即可。
在可能的实现方式中,由于所述第一平行段和所述第二平行段具有参考地,因此第一平行段和所述第二平行段的线宽可以制作的较窄;而第一倾斜段和阻抗过渡段没有参考地,因此需要完全利用第一倾斜段和阻抗过渡段的线宽来匹配阻抗,此时第一倾斜段和阻抗过渡段的线宽需要制作的较宽,才能与第一平行段、所述第二平行段以 及所述第一参考地形成的阻抗相匹配。此时,所述第一倾斜段的宽度大于所述第一平行段的宽度,所述阻抗过渡段的宽度大于所述第二平行段的宽度。
在可能的实现方式中,第一平行段和第一倾斜段之间可通过第一焊盘连接,第二平行段与阻抗过渡段的过孔的上端可通过第二焊盘连接,第一焊盘和第二焊盘的形状可以任意选择,如圆形、矩形、正方形等,只要可满足阻抗要求,即实现第一倾斜段与所述阻抗过渡段形成的阻抗保持不变且与所述第一平行段、所述第二平行段以及所述第一参考地形成的阻抗相同,或第一倾斜段与阻抗过渡段形成的阻抗渐变,以使所述第一平行段、所述第二平行段以及所述第一参考地形成的阻抗到所述不平衡信号连接段和所述接地段形成的阻抗平滑过渡。
第二方面,本申请还提供了一种平衡-不平衡变换装置,包括:
第一微带线,所述第一微带线包括依次连接的第一平衡信号连接段、第一阻抗匹配段以及不平衡信号连接段,所述第一平衡信号连接段用于传输平衡信号的第一分量,所述不平衡信号连接段用于传输不平衡信号;
第二微带线,所述第二微带线包括依次连接的第二平衡信号连接段、第二阻抗匹配段以及接地段,所述第二平衡信号连接段用于传输平衡信号的第二分量,所述接地段用于连接地信号;
导电地,所述导电地为所述第一平衡信号连接段和所述第二平衡信号连接段的参考地;
第一绝缘基板,第一绝缘基板的第一表面设置第一微带线的第一平衡信号连接段,以及第二微带线的第二平衡信号连接段,第一绝缘基板的第二表面设置导电地,第一绝缘基板的第一表面与第一绝缘基板的第二表面相对;
第二绝缘基板,第二绝缘基板的第一表面设置第一微带线的第一阻抗匹配段和不平衡信号连接段,第二绝缘基板的第二表面设置第二微带线的第二阻抗匹配段和接地段;
所述第一微带线的至少一部分和/或所述第二微带线的至少一部分的截面积渐变。
本申请实施例提供的平衡-不平衡变换装置,差分交流信号(或称平衡信号)的第一分量由第一平衡信号连接段接入,差分交流信号的第二分量由第二平衡信号连接段接入,两部分差分信号分别经过第一阻抗匹配段和第二阻抗匹配段后,由不平衡信号端口输出单端信号(或称不平衡信号),从而完成差分信号转单端信号。其中,由于第一微带线的至少一部分和/或所述第二微带线的至少一部分截面积渐变,从而可调整阻抗值,以使所述第一平衡信号连接段、所述第二平衡信号连接段和所述导电地形成的阻抗到所述不平衡信号连接段和所述接地段形成的阻抗平滑过渡。本申请实施例提供的平衡-不平衡变换装置,通过微带线代替了现有技术中的同轴电缆或双绞线等传输线电缆来作为信号导体,因此可以将平衡-不平衡变换装置集成在第一绝缘基板和第二绝缘基板上制成,从而免去了复杂的布线工作,且节省了安装空间和制作成本。
在第二方面可能的实现方式中,第一微带线的第一平衡信号连接段和第二微带线的第二平衡信号连接段延伸至第一绝缘基板的第一边沿,第一微带线的第一阻抗匹配段和第二微带线的第二阻抗匹配段延伸至第二绝缘基板的第二边沿,第一绝缘基板的第一边沿与第二绝缘基板的第二边沿相连接,且第一平衡信号连接段与第一阻抗匹配 段电连接,第二平衡信号连接段与第二阻抗匹配段电连接。
在第二方面可能的实现方式中,第一绝缘基板的第一边沿处开设有插槽,插槽位于第一平衡信号连接段和第二平衡信号连接段之间,插槽的第一侧壁靠近第一平衡信号连接段,且设有与第一平衡信号连接段连接的第一导电片,插槽的第二侧壁靠近第二平衡信号连接段,且设有与第二平衡信号连接段连接的第二导电片,第二绝缘基板的第二边沿插入插槽内,第一导电片与第一阻抗匹配段焊接,第二导电片与第二阻抗匹配段焊接。
在第二方面可能的实现方式中,第一绝缘基板和第二绝缘基板相互垂直。
在第二方面可能的实现方式中,第一绝缘基板和第二绝缘基板相互平行,且第一边沿和第二边沿叠置,第一平衡信号连接段与第一阻抗匹配段压接,第二平衡信号连接段与第二阻抗匹配段通过焊点焊接。
在第二方面可能的实现方式中,所述第一微带线的所述第一阻抗匹配段与所述第二微带线的所述第二阻抗匹配段相互平行。
在第二方面可能的实现方式中,可将第一阻抗匹配段的截面积沿靠近所述不平衡信号连接段的方向逐渐增大;所述第二阻抗匹配段的截面积沿靠近所述接地段的方向逐渐增大。
在第二方面可能的实现方式中,可将第一阻抗匹配段的截面积沿靠近所述不平衡信号连接段的方向逐渐减小;可将第二阻抗匹配段的截面积沿靠近所述接地段的方向逐渐减小。
在第二方面可能的实现方式中,可以保持微带线的截面宽度不变,使微带线的截面厚度渐变。
在第二方面可能的实现方式中,可以保持微带线的截面厚度不变,使微带线的截面宽度渐变。此方案可便于渐变微带线的制作。
在第二方面可能的实现方式中,可以使微带线的截面厚度和微带线的截面宽度均渐变。
在第二方面可能的实现方式中,所述第一平衡信号连接段包括第一平行段和第一倾斜段,所述第一平行段用于传输平衡信号的第一分量,所述第一倾斜段的一端与所述第一平行段连接,另一端与所述第一阻抗匹配段连接;所述第二平衡信号连接段包括第二平行段和第二倾斜段,所述第二平行段与所述第一平行段平行,所述第二平行段用于传输平衡信号的第二分量,所述第二倾斜段的一端与所述第二平行段连接,另一端与所述第二阻抗匹配段连接;所述导电地包括第一参考地和第二参考地,所述第一参考地为所述第一平行段和所述第二平行段的参考地,所述第二参考地为所述第一倾斜段和所述第二倾斜段的参考地。其中,所述第一平行段、所述第二平行段以及所述第一参考地形成的阻抗不变,所述第一倾斜段、所述第二倾斜段以及所述第二参考地形成的阻抗渐变。由于第一平行段和第二平行段用于传输平衡信号,因此使第一平行段和第二平行段相互平行且阻抗不变可使其具有良好的电特性。
在第二方面可能的实现方式中,第一倾斜段沿远离所述第一平行段的方向逐渐靠近所述第二倾斜段,第二倾斜段沿远离所述第二平行段的方向逐渐靠近所述第一倾斜段。由此,可便于绕设磁环,且能够减小平衡-不平衡变换装置的宽度。
在第二方面可能的实现方式中,所述第一参考地的截面积不变,所述第二参考地的截面积渐变。由此,第二参考地的截面积渐变也可使阻抗发生变化,以便于实现阻抗平滑过渡。
在第二方面可能的实现方式中,所述第一平行段和所述第二平行段的截面积不变,所述第一倾斜段和所述第二倾斜段的截面积渐变。由此,可通过改变第一倾斜段和所述第二倾斜段的截面积来改变阻抗,使阻抗平滑过渡的实现方式更灵活。
在第二方面可能的实现方式中,可将第一阻抗匹配段在第二阻抗匹配段所在平面上的投影与第二阻抗匹配段重叠。由此,可节省宽度方向的空间。
在第二方面可能的实现方式中,可在第一阻抗匹配段的至少一部分和第二阻抗匹配段的至少一部分外部套设有磁性件。由此可使整个平衡-不平衡变换装置结构具有超带宽性能及较好的低频特性,如,在整个关心的频段范围内S11<-20dB,S21>-3dB。
在第二方面可能的实现方式中,可在第一阻抗匹配段和第二阻抗匹配段整体外部均套设磁性件。相比于仅在第一阻抗匹配段和第二阻抗匹配段的一部分套设磁性件,整体套设磁性件可使低频特性更好。套设更多的磁性件可以在更低频率处就可满足S11<-20dB。
在第二方面可能的实现方式中,磁性件可采用一种磁性材料制成,也可采用两种或两种以上的磁性材料制成。将磁性件采用多种材料配合设置,可以进一步压低S11。
在第二方面可能的实现方式中,磁性件的结构可以包括磁力线圈、空心磁性棱柱、空心磁性圆柱或空心磁性椭圆柱等。
在第二方面可能的实现方式中,磁性件还可以由至少两部分拼接形成。由此,可便于安装磁性件。
在第二方面可能的实现方式中,所述绝缘基板的第一表面设置所述第一微带线以及所述第二微带线的第二平衡信号连接段,所述绝缘基板的第二表面设置所述第二微带线的所述第二阻抗匹配段和所述接地段,所述第二平衡信号连接段和所述第二阻抗匹配段通过贯穿所述绝缘基板的第一表面和第二表面的导电过孔连接,所述导电地设置于所述绝缘基板的第二表面。
在第二方面可能的实现方式中,第一平衡信号连接段和第二平衡信号连接段分别连接有隔直电容。由此可使进入第一平衡信号连接段和第二平衡信号连接段的信号为没有直流分量的交流信号。
在第二方面可能的实现方式中,所述第一平衡信号连接段包括第一平行段和第一倾斜段,所述第一平行段用于传输平衡信号的第一分量,所述第一倾斜段的一端与所述第一平行段连接,另一端与所述第一阻抗匹配段连接;所述第二平衡信号连接段包括第二平行段,所述第二微带线还包括阻抗过渡段,所述阻抗过渡段与所述第二阻抗匹配段位于同一平面,所述阻抗过渡段的一端与所述第二平行段通过过孔连接,另一端与所述第二阻抗匹配段连接;所述导电地包括第一参考地,所述第一参考地为所述第一平行段和所述第二平行段的参考地;所述第一倾斜段与所述阻抗过渡段形成的阻抗保持不变且与所述第一平行段、所述第二平行段以及所述第一参考地形成的阻抗相同,或所述第一倾斜段与所述阻抗过渡段形成的阻抗渐变,以使所述第一平行段、所述第二平行段以及所述第一参考地形成的阻抗到所述不平衡信号连接段和所述接地段 形成的阻抗平滑过渡。由此,可以不设置第二参考地,只要使所述第一倾斜段与所述阻抗过渡段形成的阻抗满足阻抗匹配要求即可。
在第二方面可能的实现方式中,由于所述第一平行段和所述第二平行段具有参考地,因此第一平行段和所述第二平行段的线宽可以制作的较窄;而第一倾斜段和阻抗过渡段没有参考地,因此需要完全利用第一倾斜段和阻抗过渡段的线宽来匹配阻抗,此时第一倾斜段和阻抗过渡段的线宽需要制作的较宽,才能与第一平行段、所述第二平行段以及所述第一参考地形成的阻抗相匹配。此时,所述第一倾斜段的宽度大于所述第一平行段的宽度,所述阻抗过渡段的宽度大于所述第二平行段的宽度。
在第二方面可能的实现方式中,第一平行段和第一倾斜段之间可通过第一焊盘连接,第二平行段与阻抗过渡段的过孔的上端可通过第二焊盘连接,第一焊盘和第二焊盘的形状可以任意选择,如圆形、矩形、正方形等,只要可满足阻抗要求,即实现第一倾斜段与所述阻抗过渡段形成的阻抗保持不变且与所述第一平行段、所述第二平行段以及所述第一参考地形成的阻抗相同,或第一倾斜段与阻抗过渡段形成的阻抗渐变,以使所述第一平行段、所述第二平行段以及所述第一参考地形成的阻抗到所述不平衡信号连接段和所述接地段形成的阻抗平滑过渡。
第三方面,本申请还提供了一种通信器件,包括电路板,所述电路板上设有集成电路以及至少一个平衡-不平衡变换装置,所述平衡-不平衡变换装置为上述第一方面或第二方面的任一实施例中所述的平衡-不平衡变换装置。
在第三方面的可能的实现方式中,集成电路包括第一平衡信号端口和第二平衡信号端口,所述第一平衡信号端口与所述平衡-不平衡变换装置的第一平衡信号连接段连接,所述第二平衡信号端口与所述平衡-不平衡变换装置的第二平衡信号连接段连接。
第四方面,本申请还提供了一种通信系统,包括第一通信器件和第二通信器件,所述第一通信器件和第二通信器件均为上述第三方面的任一实现方式中所述的通信器件,所述第一通信器件的平衡-不平衡变换装置与所述第二通信器件的平衡-不平衡变换装置连接。
在第四方面的可能的实现方式中,第一通信器件的平衡-不平衡变换装置与第二通信器件的平衡-不平衡变换装置通过同轴传输线连接。
在第四方面的可能的实现方式中,所述第一通信器件包括第一芯片和第一平衡-不平衡变换装置,所述第二通信器件包括第二芯片和第二平衡-不平衡变换装置,所述第一芯片用于输出平衡信号,所述第二芯片用于接收平衡信号,所述第一平衡-不平衡变换装置用于将所述第一芯片输出的平衡信号转换为不平衡信号并传输至所述第二平衡-不平衡变换装置,所述第二平衡-不平衡变换装置用于将不平衡信号转换为平衡信号并传输至所述第二芯片。其中,第二平衡-不平衡变换装置与所述第二芯片之间可用同轴传输线传输信号。
本申请提供的通信系统,由于可以采用同轴传输线连接,因此相比双轴电缆具有密度更高、电性能更好、绕线更灵活、价格更便宜的优势。
附图说明
图1为一种巴伦的结构图;
图2为本申请实施例提供的平衡-不平衡变换装置的结构示意图;
图3为本申请实施例提供的平衡-不平衡变换装置的第一表面的结构示意图;
图4为本申请实施例提供的平衡-不平衡变换装置的第二表面的结构示意图;
图5为图2的C-C剖视图;
图6为图2的D-D剖视图;
图7为图2的E-E剖视图;
图8为图2的F-F剖视图;
图9为本申请实施例提供的平衡-不平衡变换装置设置磁性件后的结构示意图;
图10为磁性件采用空心磁性四棱柱时的结构示意图;
图11为磁性件采用两部分拼接时的结构示意图;
图12为第一倾斜段和第二倾斜段采用梯形结构时的示意图;
图13为本申请实施例提供的平衡-不平衡变换装置采用两块基板垂直插接时的结构示意图;
图14为图13的A向视图;
图15为图13的分解结构示意图;
图16为图13的B向视图;
图17为本申请实施例提供的平衡-不平衡变换装置采用两块基板平行压接时的结构示意图;
图18为图17的俯视图;
图19为本申请实施例提供的平衡-不平衡变换装置的一种应用架构图;
图20为图19的H部放大图;
图21为本申请实施例提供的平衡-不平衡变换装置不设置第二参考地时的结构示意图。
具体实施方式
本申请实施例涉及平衡-不平衡变换器、通信器件及通信系统,以下对上述实施例涉及到的概念进行简单说明:
平衡-不平衡变换器,又称巴伦,用于将平衡信号转化为不平衡信号或将不平衡信号转化为平衡信号。
阻抗,在具有电阻、电感和电容的电路里,对电路中的电流所起的阻碍作用叫做阻抗。
如图2所示,本申请实施例提供了一种平衡-不平衡变换装置,包括绝缘基板1、第一微带线2、第二微带线3以及导电地4,如图3所示,第一微带线2包括依次连接的第一平衡信号连接段21、第一阻抗匹配段22以及不平衡信号连接段23,所述第一平衡信号连接段21用于传输平衡信号的第一分量,所述不平衡信号连接段23用于传输不平衡信号;如图3、图4所示,第二微带线3包括依次连接的第二平衡信号连接段31、第二阻抗匹配段32以及接地段33,所述第二平衡信号连接段31用于传输平衡信号的第二分量,所述接地段33用于连接地信号;导电地4为所述第一平衡信号连接段21和所述第二平衡信号连接段31的参考地。其中,第一微带线2、所述第二微带线3以及导电地4均设置于绝缘基板1上,第一微带线2的第一平衡信号连接段21和第二微带线3的第二平衡信号连接段31位于绝缘基板1的同一平面,第一微带线2 的第一阻抗匹配段22与第二微带线3的第二阻抗匹配段32被绝缘基板1隔开,第一微带线2的至少一部分和/或第二微带线3的至少一部分截面积渐变,以使所述第一平衡信号连接段21、第二平衡信号连接段31和导电地4形成的阻抗到不平衡信号连接段23和接地段33形成的阻抗平滑过渡。
本申请实施例提供的平衡-不平衡变换装置,差分交流信号(或称平衡信号)的第一分量由第一平衡信号连接段21接入,差分交流信号的第二分量由第二平衡信号连接段31接入,两部分差分信号分别经过第一阻抗匹配段22和第二阻抗匹配段32后,由不平衡信号端口输出单端信号(或称不平衡信号),从而完成差分信号转单端信号。其中,由于第一微带线2的至少一部分和/或所述第二微带线3的至少一部分截面积渐变,从而可调整阻抗值,以使第一平衡信号连接段21、第二平衡信号连接段31和导电地4形成的阻抗到不平衡信号连接段23和接地段33形成的阻抗平滑过渡。另外,第一平衡信号连接段21和第二平衡信号连接段31位于绝缘基板1的同一平面,可便于平衡-不平衡变换装置和其他电器件(如serdes)的连接。本申请实施例提供的平衡-不平衡变换装置,通过微带线代替了现有技术中的同轴电缆或双绞线等传输线电缆来作为信号导体,因此可以将平衡-不平衡变换装置集成在基板(如PCB板)上制成,从而免去了复杂的布线工作,且节省了安装空间和制作成本。
需要说明的是,虽然图2上示意的导电地4的面积小于绝缘基板1的面积,但在实际应用过程中,导电地4的面积与绝缘基板1的面积可以相同也可以不同,在此不做限定。
在微波信号传输过程中,若遇到阻抗突变点,会发生透射和反射。但若将阻抗改为渐变式过渡,可以增加总的信号能量透射率,减少反射率。阻抗渐变可以通过改变微带线的截面积来实现,例如,可以使第一微带线2的至少一部分的截面积渐变,或使第二微带线3的至少一部分的截面积渐变,还可以使第一微带线2的至少一部分的截面积和第二微带线3的至少一部分的截面积同时渐变,以此来使阻抗形成渐变式过渡,最终实现第一平衡信号连接段21、第二平衡信号连接段31和导电地4形成的阻抗到不平衡信号连接段23和接地段33形成的阻抗平滑过渡。并且,该阻抗平滑过渡方案可以增加总的信号能量透射率,减少反射率。
需要说明的是,上述截面积渐变指的是截面积的变化过程平滑,无明显的变化阶梯。相应的,上述阻抗平滑过渡可以是指阻抗的变换过程平滑,无明显的变化阶梯。例如,若第一平衡信号连接段21、第二平衡信号连接段31和导电地4形成的阻抗为100Ω,经过第一微带线2的至少一部分和/或所述第二微带线3的至少一部分截面积渐变后,阻抗由100Ω逐渐平滑变化至不平衡信号连接段23和接地段33形成的50Ω。在100Ω到50Ω的变化过程中,阻抗变换过程平滑,变化程度均匀,无明显的变化阶梯。
在上述通过改变微带线的截面积来实现阻抗平滑过渡的实施例中,若第一平衡信号连接段21、第二平衡信号连接段31和导电地4形成的阻抗大于不平衡信号连接段23和接地段33形成的阻抗,则可将第一阻抗匹配段22的截面积沿靠近所述不平衡信号连接段23的方向逐渐增大,以使所述第一阻抗匹配段22和第二阻抗匹配段32之间形成的阻抗沿靠近所述不平衡信号连接段23的方向逐渐减小;所述第二阻抗匹配段 32的截面积沿靠近所述接地段33的方向逐渐增大,以使第一阻抗匹配段22和所述第二阻抗匹配段32之间形成的阻抗沿靠近所述接地段33的方向逐渐减小。同理,若第一平衡信号连接段21、第二平衡信号连接段31和导电地4形成的阻抗小于不平衡信号连接段23和接地段33形成的阻抗,则可将第一阻抗匹配段22的截面积沿靠近所述不平衡信号连接段23的方向逐渐减小,以使所述第一阻抗匹配段22和第二阻抗匹配段32之间形成的阻抗沿靠近所述不平衡信号连接段23的方向逐渐增大;可将第二阻抗匹配段32的截面积沿靠近所述接地段33的方向逐渐减小,以使第一阻抗匹配段22和第二阻抗匹配段32之间形成的阻抗沿靠近所述接地段33的方向逐渐增大。由此,可实现第一平衡信号连接段21、第二平衡信号连接段31和导电地4形成的阻抗到不平衡信号连接段23和接地段33形成的阻抗平滑过渡。
为了实现微带线截面积渐变,可以有多种实现方案,例如,可以保持微带线的截面宽度不变,使微带线的截面厚度渐变;也可以保持微带线的截面厚度不变,使微带线的截面宽度渐变;还可以使微带线的截面厚度和微带线的截面宽度均渐变。具体地,如图3、图7、图8所示,可使第一阻抗匹配段22的截面厚度不变,所述第一阻抗匹配段22的截面宽度沿靠近所述不平衡信号连接段23的方向逐渐增大,以使所述第一阻抗匹配段22的截面积沿靠近所述不平衡信号连接段23的方向逐渐增大;如图4、图7、图8所示,可使第二阻抗匹配段32的截面厚度不变,所述第二阻抗匹配段32的截面宽度沿靠近所述接地段33的方向逐渐增大,以使所述第二阻抗匹配段32的截面积沿靠近所述接地段33的方向逐渐增大。由于微带线的宽度可根据需要裁剪,而厚度改变较困难,因此保持微带线的截面厚度不变,使微带线的截面宽度渐变可便于渐变微带线的制作。
在本申请的一种实现方式中,如图3所示,第一平衡信号连接段21可以包括第一平行段211和第一倾斜段212,第一平行段211用于传输平衡信号的第一分量,第一倾斜段212的一端与所述第一平行段211连接,另一端与第一阻抗匹配段22连接;第二平衡信号连接段31包括第二平行段311和第二倾斜段312,第二平行段311与所述第一平行段211平行,第二平行段311用于传输平衡信号的第二分量,第二倾斜段312的一端与第二平行段311连接,另一端与第二阻抗匹配段32连接。如图4所示,导电地4包括第一参考地41和第二参考地42,所述第一参考地41为所述第一平行段211和所述第二平行段311的参考地,所述第二参考地42为所述第一倾斜段212和所述第二倾斜段312的参考地。此时为了实现阻抗平滑过渡,可保持第一平行段211、第二平行段311以及第一参考地41形成的阻抗不变,使第一倾斜段212、第二倾斜段312以及第二参考地42形成的阻抗渐变。由于第一平行段211和第二平行段311用于传输平衡信号,因此使第一平行段211和第二平行段311相互平行且阻抗不变可使其具有良好的电特性。
其中,第一倾斜段212沿远离所述第一平行段211的方向逐渐靠近所述第二倾斜段312,第二倾斜段312沿远离所述第二平行段311的方向逐渐靠近所述第一倾斜段212。由此,第一倾斜段212和第二倾斜段312逐渐靠近,以便于后续设置过孔以及连接第一阻抗匹配段22和第二阻抗匹配段32。并且,第一倾斜段212和第二倾斜段312逐渐靠近后可使第一阻抗匹配段22和第二阻抗匹配段32在宽度方向上占用的空间更 小,从而可便于绕设磁环,且能够减小平衡-不平衡变换装置的宽度。
为了实现第一倾斜段212、第二倾斜段312以及第二参考地42形成的阻抗渐变,可通过改变第一倾斜段212和第二倾斜段312的截面积来实现,例如,可使第一平行段211和第二平行段311的截面积不变,使第一倾斜段212和第二倾斜段312的截面积渐变。
由于各微带线以及导电地4的截面积、间距、相对位置等参数均可能影响阻抗,因此,为了实现第一倾斜段212、第二倾斜段312以及第二参考地42形成的阻抗渐变,在一种可能的实现方式中,可通过改变第一倾斜段212和第二倾斜段312的截面积来实现,例如,可使第一平行段211和第二平行段311的截面积不变,使第一倾斜段212和第二倾斜段312的截面积渐变。在另一种可能的实现方式中,也可通过改变导电地4的截面积来使阻抗渐变。如图4、图5、图6所示,所述第一参考地41的截面积不变,所述第二参考地42的截面积渐变。由此,第二参考地42的截面积渐变也可使阻抗发生变化,以便于实现阻抗平滑过渡。
在另一种可能的实现方式中,也可以不设置第二参考地42,具体结构如图21所示,第一平衡信号连接段21包括第一平行段211和第一倾斜段212,所述第一平行段用于传输平衡信号的第一分量,所述第一倾斜段212的一端与所述第一平行段211连接,另一端与所述第一阻抗匹配段22连接;所述第二平衡信号连接段包括第二平行段311',所述第二微带线还包括阻抗过渡段312',所述阻抗过渡段312'与所述第二阻抗匹配段32位于同一平面,所述阻抗过渡段312'的一端与所述第二平行段311'通过过孔H连接,另一端与所述第二阻抗匹配段32连接;导电地仅包括第一参考地41,所述第一参考地41为所述第一平行段211和所述第二平行段311'的参考地;所述第一倾斜段212与所述阻抗过渡段312'形成的阻抗保持不变且与所述第一平行段211、所述第二平行段311'以及所述第一参考地41形成的阻抗相同,或所述第一倾斜段212与所述阻抗过渡段312'形成的阻抗渐变,以使所述第一平行段211、所述第二平行段311'以及所述第一参考地41形成的阻抗到所述不平衡信号连接段23和所述接地段33形成的阻抗平滑过渡。由此,可以不设置第二参考地,只要使所述第一倾斜段212与所述阻抗过渡段312'形成的阻抗满足上述阻抗匹配要求即可。
在上述实施例中,如图21所示,由于所述第一平行段211和所述第二平行段311'具有第一参考地41,因此第一平行段211和所述第二平行段311'的线宽可以制作的较窄;而第一倾斜段212和阻抗过渡段312'没有参考地,因此需要完全利用第一倾斜段212和阻抗过渡段312'的线宽来匹配阻抗,此时第一倾斜段212和阻抗过渡段312'的线宽需要制作的较宽,才能与第一平行段211、所述第二平行段311'以及所述第一参考地41形成的阻抗相匹配。此时,所述第一倾斜段212的宽度大于所述第一平行段211的宽度,所述阻抗过渡段312'的宽度大于所述第二平行段311'的宽度。
具体地,如图21所示,第一平行段211和第一倾斜段212之间可通过第一焊盘P 1连接,第二平行段311'与阻抗过渡段312'的过孔的上端可通过第二焊盘P 2连接,第一焊盘P 1和第二焊盘P 2的形状可以任意选择,如圆形、矩形、正方形等,只要可满足阻抗要求,即实现第一倾斜段212与所述阻抗过渡段312'形成的阻抗保持不变且与所述第一平行段211、所述第二平行段311'以及所述第一参考地41形成的阻抗 相同,或第一倾斜段212与阻抗过渡段312'形成的阻抗渐变,以使所述第一平行段211、所述第二平行段311'以及所述第一参考地41形成的阻抗到所述不平衡信号连接段23和所述接地段33形成的阻抗平滑过渡。
为了节省空间,可将第一阻抗匹配段22在第二阻抗匹配段32所在平面上的投影与第二阻抗匹配段32重叠。也就是说,第一阻抗匹配段22和第二阻抗匹配段32在绝缘基板1的厚度方向上位置重叠,由此,可节省宽度方向的空间。需要说明的是,上述重叠仅指位置重叠,而第一阻抗匹配段22和第二阻抗匹配段32的宽度可以相同也可以不同,在此不做限定。需要说明的是,在布置空间允许的情况下,第一阻抗匹配段22在第二阻抗匹配段32所在平面上的投影与第二阻抗匹配段32也可以不重叠,只要能够实现期望的阻抗过渡即可。
为了使低频处的S11参数满足信号传输要求,以获得较好的低频特性,如图9所示,可在第一阻抗匹配段22的至少一部分和第二阻抗匹配段32的至少一部分外部套设有磁性件5,且磁性件5与第一阻抗匹配段22和第二阻抗匹配段32均不接触。由此可使整个平衡-不平衡变换装置结构具有超带宽性能及较好的低频特性,如,在整个关心的频段范围内S11<-20dB,S21>-3dB。
其中,磁性件5可采用一种磁性材料制成,也可采用两种或两种以上的磁性材料制成,在此不做限定。将磁性件采用多种材料配合设置,可以进一步压低S11,而具体缠绕的磁性材料种类及分布可以根据实际情况决定。
示例地,磁性件5的结构可以包括磁力线圈、空心磁性棱柱、空心磁性圆柱或空心磁性椭圆柱等。如图10所示,磁性件5的结构可以为空心磁性四棱柱结构。
磁性件5可以围绕整个第一阻抗匹配段22和整个第二阻抗匹配段32的长度范围,也可以仅围绕第一阻抗匹配段22的一部分和第二阻抗匹配段32的一部分,在此不做限定。磁性件5设置的长度越长,则低频特性越好,套设更多的磁性件可以在更低频率处就可满足S11<-20dB。例如,对于2cm长的平衡-不平衡变换装置,当不设置磁性件时,在低于3.5GHz的频率范围内S11>-20dB。而当部分缠绕磁性件时,2GHz范围内S11>-20dB,而2GHz以上频率处S11<-20dB。当缠绕更多磁环时,很可能0.5GHz以上频率均可满足S11<-20dB。因此,所要关注的频带范围决定了缠绕磁环的数量。另外,为了便于安装,如图11所示,磁性件5还可以由至少两部分(51,52)拼接形成。
可选地,绝缘基板1可以是一块板也可以是两块板,当绝缘基板1为一块板时,如图2、图3、图4所示,所述绝缘基板1的第一表面设置所述第一微带线2以及所述第二微带线3的第二平衡信号连接段31,所述绝缘基板1的第二表面设置所述第二微带线3的所述第二阻抗匹配段32和所述接地段33,所述第二平衡信号连接段31和所述第二阻抗匹配段32通过贯穿所述绝缘基板1的第一表面和第二表面的导电过孔34连接,所述导电地4设置于所述绝缘基板1的第二表面,由于导电地4为所述第一平衡信号连接段21和所述第二平衡信号连接段31的参考地,因此第一平衡信号连接段21和所述第二平衡信号连接段31在第二表面上的投影位于导电地4的范围内。由此,可通过导电过孔34实现第二平衡信号连接段31和所述第二阻抗匹配段32的换层连接。
具体地,导电过孔34可以对应第二平衡信号连接段31的第二倾斜段312开设,即导电过孔34一端与第二平衡信号连接段31连接,另一端与第二倾斜段312连接,第一倾斜段212和第二倾斜段312也可能包括其他形状,例如可以为如图12所示的梯形结构,无论采用哪种形状,只要能够完成过孔,并使过孔前后阻抗匹配即可。
为了便于通过同轴线传输单端信号,可在绝缘基板1上设置同轴线焊盘6,如图3所示,绝缘基板1的第一表面设有同轴线焊盘6的芯线连接端口61,如图4所示,绝缘基板1的第二表面设有同轴线焊盘6的外层金属连接端口62,外层金属连接端口62可以贯穿绝缘基板1的第一表面和第二表面,例如,外层金属连接端口62可以为穿透绝缘基板1的第一表面和第二表面设置的金属导体,第一微带线2的不平衡信号连接段23与同轴线焊盘的芯线连接端口61连接,第二微带线3的接地段33与同轴线焊盘的外层金属连接端口62短接,由此可实现异面差分信号转换为单端信号,且可通过同轴传输线输出单端信号。
示例地,如图20所示,在连接同轴线9时,同轴线9包括芯线91和包覆于芯线91外的外层金属层92,可以在绝缘基板1靠近同轴线焊盘6的一端开设同轴线插槽,同轴线9插入同轴线插槽内,且芯线91与芯线连接端口61连接,外层金属层92与外层金属连接端口62连接。另外,绝缘基板1上也可以不设置同轴线插槽,同轴线9整体设置于绝缘基板1的上方,将外层金属层92直接与外层金属连接端口62接触焊接,芯线91位于芯线连接端口61的上方且与芯线连接端口61不接触,可通过堆叠焊锡进行焊接。
绝缘基板1也可以是两块板组合形成。如图14所示,绝缘基板1包括第一绝缘基板11和第二绝缘基板12,所述第一绝缘基板11的第一表面设置所述第一微带线2的第一平衡信号连接段21,以及所述第二微带线3的第二平衡信号连接段31,所述第一绝缘基板11的第二表面设置所述导电地4,所述第一绝缘基板11的第一表面与所述第一绝缘基板11的第二表面相对。所述第二绝缘基板12的第一表面设置所述第一微带线2的所述第一阻抗匹配段22和所述不平衡信号连接段23,所述第二绝缘基板12的第二表面设置所述第二微带线3的所述第二阻抗匹配段32和所述接地段33。所述第一微带线2的第一平衡信号连接段21和所述第二微带线3的第二平衡信号连接段31延伸至所述第一绝缘基板11的第一边沿111,所述第一微带线2的所述第一阻抗匹配段22和所述第二微带线3的所述第二阻抗匹配段32延伸至所述第二绝缘基板12的第二边沿121,所述第一绝缘基板11的所述第一边沿111与所述第二绝缘基板12的所述第二边沿121相连接,且所述第一平衡信号连接段21与所述第一阻抗匹配段22电连接,所述第二平衡信号连接段31与所述第二阻抗匹配段32电连接。
在一种可能的实现方式中,第一绝缘基板11和第二绝缘基板12相互插接。如图15所示,第一绝缘基板11的所述第一边沿111处开设有插槽112,其中,插槽112可以沿厚度方向贯穿所述第一绝缘基板11的第一表面和第二表面,当第一绝缘基板11的厚度较厚时,插槽112也可以不贯穿第一绝缘基板11的第一表面和第二表面,且插槽112位于第一平衡信号连接段21和第二平衡信号连接段31之间,如图16所示,插槽112的第一侧壁靠近第一平衡信号连接段21,且设有与第一平衡信号连接段21连接的第一导电片113,插槽112的第二侧壁靠近第二平衡信号连接段31,且设有与 第二平衡信号连接段31连接的第二导电片114,第一绝缘基板11和第二绝缘基板12相互垂直,如图13、图14所示,第二绝缘基板12的第二边沿121插入插槽112内,第一导电片113与第一阻抗匹配段22焊接,第二导电片114与第二阻抗匹配段32焊接。需要说明的是,第一绝缘基板11和第二绝缘基板12可以相互垂直,也可以呈一定夹角设置,在此不做限定。
在另一种可能的实现方式中,第一绝缘基板11和第二绝缘基板12相互平行压接。如图17、图18所示,所述第一绝缘基板11和所述第二绝缘基板12相互平行,且所述第一边沿111和所述第二边沿121叠置,所述第一平衡信号连接段21与所述第一阻抗匹配段22通过焊点13焊接,所述第二平衡信号连接段31与所述第二阻抗匹配段32压接。
需要说明的是,如图2、图4、图9、图12、图13、图14、图15所示,导电地4的左侧边沿可以超出第一平衡信号连接段21和第二平衡信号连接段31的左侧边沿,导电地4的右侧边沿与第一平衡信号连接段21和第二平衡信号连接段31的右侧边沿平齐。另外,在另一可能的实施例中,导电地4的左侧边沿还可以与第一平衡信号连接段21和第二平衡信号连接段31的左侧边沿平齐,即导电地4的长度与第一平衡信号连接段21和第二平衡信号连接段31的长度相等。
图19所示为本申请实施例平衡-不平衡变换装置的一种应用架构图,其中,第一芯片71输出为差分信号,通过第一平衡信号连接段21和第二平衡信号连接段31进入差分转单端平衡-不平衡变换装置A,只是在进行差分转单端之前可引入隔直电容8,这样进入平衡-不平衡变换装置的信号为没有直流分量的交流信号,平衡-不平衡变换装置A的不平衡信号连接段23可连接同轴传输线9,单端信号进入同轴传输线9,经过一段距离的传输到达单端转差分平衡-不平衡变换装置B,单端转差分平衡-不平衡变换装置B的不平衡信号连接段23与同轴传输线9连接,单端转差分平衡-不平衡变换装置的第一平衡信号连接段21和第二平衡信号连接段31与第二芯片72连接。
需要说明的是,本申请平衡-不平衡变换装置可以用于机框内背板和板内电缆(On Board Cable,OBC)中,另外,本申请平衡-不平衡变换装置还可以用于各种光模块、有源/无源电缆接口,包括但不限于小型可热插拔光模块(Small Form-factor Pluggable,SFP)、四通道小型可热插拔光模块(Quad Small Form-factor Pluggable,QSFP)、双密度四通道小型可热插拔光模块(Quad Small Form-factor Pluggable-double density,QSFP-DD)、12×10Gbps可热插拔光模块(12×10Gbps Pluggable,CXP)等。
本申请还提供了一种通信器件,包括电路板,所述电路板上设有集成电路以及至少一个平衡-不平衡变换装置,所述平衡-不平衡变换装置为上述第一方面的任一实施例中所述的平衡-不平衡变换装置。
在一个实施例中,集成电路包括第一平衡信号端口和第二平衡信号端口,所述第一平衡信号端口与所述平衡-不平衡变换装置的第一平衡信号连接段21连接,所述第二平衡信号端口与所述平衡-不平衡变换装置的第二平衡信号连接段31连接。
上述通信器件的电路板上还可以设置连接器,连接器包括不平衡信号端口和外接端口,连接器的不平衡信号端口可与平衡-不平衡变换装置的不平衡信号连接段连接,连接器的外接端口可以与其他通信器件连接。
本申请还提供了一种通信系统,包括第一通信器件和第二通信器件,所述第一通信器件和第二通信器件均为上述任一实施例中所述的通信器件,所述第一通信器件的平衡-不平衡变换装置与所述第二通信器件的平衡-不平衡变换装置连接。
在一个实施例中,第一通信器件的平衡-不平衡变换装置与第二通信器件的平衡-不平衡变换装置可以通过同轴传输线连接。本申请提供的通信系统,由于可以采用同轴传输线连接,因此相比双轴电缆具有密度更高、电性能更好、绕线更灵活、价格更便宜的优势。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (23)

  1. 一种平衡-不平衡变换装置,其特征在于,包括:
    绝缘基板;
    第一微带线,所述第一微带线包括依次连接的第一平衡信号连接段、第一阻抗匹配段以及不平衡信号连接段,所述第一平衡信号连接段用于传输平衡信号的第一分量,所述不平衡信号连接段用于传输不平衡信号;
    第二微带线,所述第二微带线包括依次连接的第二平衡信号连接段、第二阻抗匹配段以及接地段,所述第二平衡信号连接段用于传输平衡信号的第二分量,所述接地段用于连接地信号;
    导电地,所述导电地为所述第一平衡信号连接段和所述第二平衡信号连接段的参考地;
    所述第一微带线、所述第二微带线以及所述导电地均设置于所述绝缘基板上,所述第一平衡信号连接段和所述第二平衡信号连接段位于所述绝缘基板的同一平面,所述第一微带线的所述第一阻抗匹配段与所述第二微带线的所述第二阻抗匹配段被所述绝缘基板隔开;
    所述第一微带线的至少一部分和/或所述第二微带线的至少一部分的截面积渐变。
  2. 根据权利要求1所述的平衡-不平衡变换装置,其特征在于,所述第一阻抗匹配段的截面积沿靠近所述不平衡信号连接段的方向逐渐增大;所述第二阻抗匹配段的截面积沿靠近所述接地段的方向逐渐增大;或
    所述第一阻抗匹配段的截面积沿靠近所述不平衡信号连接段的方向逐渐减小;所述第二阻抗匹配段的截面积沿靠近所述接地段的方向逐渐减小。
  3. 根据权利要求2所述的平衡-不平衡变换装置,其特征在于,所述第一阻抗匹配段的截面厚度不变,所述第一阻抗匹配段的截面宽度沿靠近所述不平衡信号连接段的方向逐渐增大,以使所述第一阻抗匹配段的截面积沿靠近所述不平衡信号连接段的方向逐渐增大;所述第二阻抗匹配段的截面厚度不变,所述第二阻抗匹配段的截面宽度沿靠近所述接地段的方向逐渐增大,以使所述第二阻抗匹配段的截面积沿靠近所述接地段的方向逐渐增大;或
    所述第一阻抗匹配段的截面厚度不变,所述第一阻抗匹配段的截面宽度沿靠近所述不平衡信号连接段的方向逐渐减小,以使所述第一阻抗匹配段的截面积沿靠近所述不平衡信号连接段的方向逐渐减小;所述第二阻抗匹配段的截面厚度不变,所述第二阻抗匹配段的截面宽度沿靠近所述接地段的方向逐渐减小,以使所述第二阻抗匹配段的截面积沿靠近所述接地段的方向逐渐减小。
  4. 根据权利要求1-3中任一项所述的平衡-不平衡变换装置,其特征在于,所述第一平衡信号连接段包括第一平行段和第一倾斜段,所述第一平行段用于传输平衡信号的第一分量,所述第一倾斜段的一端与所述第一平行段连接,另一端与所述第一阻抗匹配段连接;
    所述第二平衡信号连接段包括第二平行段和第二倾斜段,所述第二平行段与所述第一平行段平行,所述第二平行段用于传输平衡信号的第二分量,所述第二倾斜段的一端与所述第二平行段连接,另一端与所述第二阻抗匹配段连接;
    所述导电地包括第一参考地和第二参考地,所述第一参考地为所述第一平行段和所述第二平行段的参考地,所述第二参考地为所述第一倾斜段和所述第二倾斜段的参考地。
  5. 根据权利要求4所述的平衡-不平衡变换装置,其特征在于,所述第一倾斜段沿远离所述第一平行段的方向逐渐靠近所述第二倾斜段,所述第二倾斜段沿远离所述第二平行段的方向逐渐靠近所述第一倾斜段。
  6. 根据权利要求4或5所述的平衡-不平衡变换装置,其特征在于,所述第一参考地的截面积不变,所述第二参考地的截面积渐变。
  7. 根据权利要求4-6中任一项所述的平衡-不平衡变换装置,其特征在于,所述第一平行段和所述第二平行段的截面积不变,所述第一倾斜段和所述第二倾斜段的截面积渐变。
  8. 根据权利要求1-3中任一项所述的平衡-不平衡变换装置,其特征在于,所述第一平衡信号连接段包括第一平行段和第一倾斜段,所述第一平行段用于传输平衡信号的第一分量,所述第一倾斜段的一端与所述第一平行段连接,另一端与所述第一阻抗匹配段连接;
    所述第二平衡信号连接段包括第二平行段,所述第二微带线还包括阻抗过渡段,所述阻抗过渡段与所述第二阻抗匹配段位于同一平面,所述阻抗过渡段的一端与所述第二平行段通过过孔连接,另一端与所述第二阻抗匹配段连接;
    所述导电地包括第一参考地,所述第一参考地为所述第一平行段和所述第二平行段的参考地;
    所述第一倾斜段与所述阻抗过渡段形成的阻抗保持不变且与所述第一平行段、所述第二平行段以及所述第一参考地形成的阻抗相同,或所述第一倾斜段与所述阻抗过渡段形成的阻抗渐变,以使所述第一平行段、所述第二平行段以及所述第一参考地形成的阻抗到所述不平衡信号连接段和所述接地段形成的阻抗平滑过渡。
  9. 根据权利要求1-8中任一项所述的平衡-不平衡变换装置,其特征在于,所述第一阻抗匹配段的至少一部分和所述第二阻抗匹配段的至少一部分套设有磁性件。
  10. 根据权利要求9所述的平衡-不平衡变换装置,其特征在于,所述磁性件采用至少一种磁性材料制成。
  11. 根据权利要求9或10所述的平衡-不平衡变换装置,其特征在于,所述磁性件包括磁力线圈、空心磁性棱柱、空心磁性圆柱或空心磁性椭圆柱。
  12. 根据权利要求9-11中任一项所述的平衡-不平衡变换装置,其特征在于,所述磁性件由至少两部分拼接形成。
  13. 根据权利要求1-12中任一项所述的平衡-不平衡变换装置,其特征在于,所述第一阻抗匹配段在所述第二阻抗匹配段所在平面上的投影与所述第二阻抗匹配段重叠。
  14. 根据权利要求1-7中任一项所述的平衡-不平衡变换装置,其特征在于,所述绝缘基板的第一表面设置所述第一微带线以及所述第二微带线的第二平衡信号连接段,所述绝缘基板的第二表面设置所述第二微带线的所述第二阻抗匹配段和所述接地段,所述第二平衡信号连接段和所述第二阻抗匹配段通过贯穿所述绝缘基板的第一表 面和第二表面的导电过孔连接,所述导电地设置于所述绝缘基板的第二表面。
  15. 根据权利要求1-7中任一项所述的平衡-不平衡变换装置,其特征在于,所述绝缘基板包括第一绝缘基板和第二绝缘基板,所述第一绝缘基板的第一表面设置所述第一微带线的第一平衡信号连接段,以及所述第二微带线的第二平衡信号连接段,所述第一绝缘基板的第二表面设置所述导电地,所述第一绝缘基板的第一表面与所述第一绝缘基板的第二表面相对;
    所述第二绝缘基板的第一表面设置所述第一微带线的所述第一阻抗匹配段和所述不平衡信号连接段,所述第二绝缘基板的第二表面设置所述第二微带线的所述第二阻抗匹配段和所述接地段。
  16. 根据权利要求15所述的平衡-不平衡变换装置,其特征在于,所述第一微带线的第一平衡信号连接段和所述第二微带线的第二平衡信号连接段延伸至所述第一绝缘基板的第一边沿,所述第一微带线的所述第一阻抗匹配段和所述第二微带线的所述第二阻抗匹配段延伸至所述第二绝缘基板的第二边沿,所述第一绝缘基板的所述第一边沿与所述第二绝缘基板的所述第二边沿相连接,且所述第一平衡信号连接段与所述第一阻抗匹配段电连接,所述第二平衡信号连接段与所述第二阻抗匹配段电连接。
  17. 根据权利要求16所述的平衡-不平衡变换装置,其特征在于,所述第一绝缘基板的所述第一边沿处开设有插槽,且所述插槽位于所述第一平衡信号连接段和所述第二平衡信号连接段之间,所述插槽的第一侧壁靠近所述第一平衡信号连接段,且设有与所述第一平衡信号连接段连接的第一导电片,所述插槽的第二侧壁靠近所述第二平衡信号连接段,且设有与所述第二平衡信号连接段连接的第二导电片,所述第二绝缘基板的第二边沿插入所述插槽内,所述第一导电片与所述第一阻抗匹配段焊接,所述第二导电片与所述第二阻抗匹配段焊接。
  18. 根据权利要求16所述的平衡-不平衡变换装置,其特征在于,所述第一绝缘基板和所述第二绝缘基板相互平行,且所述第一边沿和所述第二边沿叠置,所述第一平衡信号连接段与所述第一阻抗匹配段通过焊点焊接压接,所述第二平衡信号连接段与所述第二阻抗匹配段压接。
  19. 根据权利要求1-18中任一项所述的平衡-不平衡变换装置,其特征在于,所述第一平衡信号连接段和所述第二平衡信号连接段分别连接有隔直电容。
  20. 一种通信器件,其特征在于,包括:电路板,所述电路板上设有集成电路以及至少一个平衡-不平衡变换装置,所述平衡-不平衡变换装置为权利要求1-19中任一项所述的平衡-不平衡变换装置。
  21. 根据权利要求20所述的通信器件,其特征在于,所述集成电路包括第一平衡信号端口和第二平衡信号端口,所述第一平衡信号端口与所述平衡-不平衡变换装置的第一平衡信号连接段连接,所述第二平衡信号端口与所述平衡-不平衡变换装置的第二平衡信号连接段连接。
  22. 一种通信系统,其特征在于,包括:
    第一通信器件和第二通信器件,所述第一通信器件和第二通信器件均为权利要求20或21所述的通信器件,所述第一通信器件的平衡-不平衡变换装置与所述第二通信器件的平衡-不平衡变换装置连接。
  23. 根据权利要求22所述的通信系统,其特征在于,所述第一通信器件包括第一芯片和第一平衡-不平衡变换装置,所述第二通信器件包括第二芯片和第二平衡-不平衡变换装置,所述第一芯片用于输出平衡信号,所述第二芯片用于接收平衡信号,所述第一平衡-不平衡变换装置用于将所述第一芯片输出的平衡信号转换为不平衡信号并传输至所述第二平衡-不平衡变换装置,所述第二平衡-不平衡变换装置用于将不平衡信号转换为平衡信号并传输至所述第二芯片。
PCT/CN2019/112784 2018-10-31 2019-10-23 一种平衡-不平衡变换装置、通信器件及通信系统 WO2020088327A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19880245.6A EP3863114B1 (en) 2018-10-31 2019-10-23 Balance-unbalance conversion apparatus, communication device, and communication system
US17/244,741 US11870124B2 (en) 2018-10-31 2021-04-29 Balance-unbalance conversion apparatus, communications device, and communications system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811299393.5 2018-10-31
CN201811299393.5A CN111129681B (zh) 2018-10-31 2018-10-31 一种平衡-不平衡变换装置、通信器件及通信系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/244,741 Continuation US11870124B2 (en) 2018-10-31 2021-04-29 Balance-unbalance conversion apparatus, communications device, and communications system

Publications (1)

Publication Number Publication Date
WO2020088327A1 true WO2020088327A1 (zh) 2020-05-07

Family

ID=70462530

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/112784 WO2020088327A1 (zh) 2018-10-31 2019-10-23 一种平衡-不平衡变换装置、通信器件及通信系统

Country Status (4)

Country Link
US (1) US11870124B2 (zh)
EP (1) EP3863114B1 (zh)
CN (1) CN111129681B (zh)
WO (1) WO2020088327A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230198114A1 (en) * 2021-12-22 2023-06-22 Nxp B.V. Planar balun with non-uniform microstrip line width to improve s-parameter alignment
CN114678673B (zh) * 2022-04-02 2023-03-14 西安电子科技大学 一种加载铁氧体磁环的宽带巴伦

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020003454A1 (en) * 1998-12-17 2002-01-10 Richael Emil Sweeney Balun assembly with reliable coaxial connection
CN102306862A (zh) * 2011-05-19 2012-01-04 南京邮电大学 一种宽带共面波导-双面平行双线转换接头
CN102306861A (zh) * 2011-05-19 2012-01-04 南京邮电大学 带有屏蔽背板的共面波导-双面平行双线宽带转换接头
CN102709658A (zh) * 2012-06-08 2012-10-03 哈尔滨工业大学 一种平衡微带线过渡的半模双脊基片集成波导
CN102810704A (zh) * 2012-08-06 2012-12-05 哈尔滨工业大学 一种平衡微带线过渡的全模双脊基片集成波导
CN103338019A (zh) * 2013-06-04 2013-10-02 华为技术有限公司 巴伦电路
CN105356858A (zh) * 2014-08-19 2016-02-24 华为技术有限公司 一种巴伦及功率放大器

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5808529A (en) * 1996-07-12 1998-09-15 Storage Technology Corporation Printed circuit board layering configuration for very high bandwidth interconnect
US6677831B1 (en) * 2001-01-31 2004-01-13 3Pardata, Inc. Differential impedance control on printed circuit
JP2003008311A (ja) * 2001-06-22 2003-01-10 Mitsubishi Electric Corp バランおよび該バランを有する半導体装置
US7088200B2 (en) * 2004-10-21 2006-08-08 International Business Machines Corporation Method and structure to control common mode impedance in fan-out regions
US7646988B2 (en) 2006-08-04 2010-01-12 Finisar Corporation Linear amplifier for use with laser driver signal
KR100771529B1 (ko) * 2007-05-30 2007-10-30 이엠와이즈 통신(주) 초광대역 발룬 및 그 응용 모듈
KR20100080652A (ko) * 2009-01-02 2010-07-12 (주)더블유엘호스트 안테나 장치에서 사용하는 반위상분배기와 이를 이용한 안테나 장치
US8073030B2 (en) 2009-07-23 2011-12-06 Sumitomo Electric Industries, Ltd. Shunt driver circuit for semiconductor laser diode
US8638181B2 (en) * 2010-08-20 2014-01-28 Anaren, Inc. Wideband balun using re-entrant coupled lines and ferrite material
ITMI20121238A1 (it) * 2012-07-17 2014-01-18 St Microelectronics Srl Dispositivo trasformatore balun planare
CN102983388B (zh) * 2012-10-11 2015-02-25 孙丽华 太赫兹混频天线和准光混频模块
US9641170B2 (en) 2015-04-03 2017-05-02 Cosemi Technologies, Inc. Pass device with boost voltage regulation and current gain for VCSEL driving applications
US10971894B2 (en) 2015-06-22 2021-04-06 Maxim Integrated Products, Inc. Driver for high speed laser diode

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020003454A1 (en) * 1998-12-17 2002-01-10 Richael Emil Sweeney Balun assembly with reliable coaxial connection
CN102306862A (zh) * 2011-05-19 2012-01-04 南京邮电大学 一种宽带共面波导-双面平行双线转换接头
CN102306861A (zh) * 2011-05-19 2012-01-04 南京邮电大学 带有屏蔽背板的共面波导-双面平行双线宽带转换接头
CN102709658A (zh) * 2012-06-08 2012-10-03 哈尔滨工业大学 一种平衡微带线过渡的半模双脊基片集成波导
CN102810704A (zh) * 2012-08-06 2012-12-05 哈尔滨工业大学 一种平衡微带线过渡的全模双脊基片集成波导
CN103338019A (zh) * 2013-06-04 2013-10-02 华为技术有限公司 巴伦电路
CN105356858A (zh) * 2014-08-19 2016-02-24 华为技术有限公司 一种巴伦及功率放大器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3863114A4

Also Published As

Publication number Publication date
EP3863114A4 (en) 2021-11-24
CN111129681B (zh) 2021-05-07
EP3863114A1 (en) 2021-08-11
EP3863114B1 (en) 2023-08-02
CN111129681A (zh) 2020-05-08
US20210249747A1 (en) 2021-08-12
US11870124B2 (en) 2024-01-09

Similar Documents

Publication Publication Date Title
US7755447B2 (en) Multilayer balun, hybrid integrated circuit module, and multilayer substrate
US6819199B2 (en) Balun transformer with means for reducing a physical dimension thereof
US10178762B2 (en) Device and method for transmitting differential data signals
CN101998763B (zh) 裸芯片与印制电路板的连接结构及印制电路板、通信设备
US9843085B2 (en) Directional coupler
US11870124B2 (en) Balance-unbalance conversion apparatus, communications device, and communications system
TWI485983B (zh) 信號傳輸電路與其信號傳輸單元
CN106793455B (zh) 一种光模块
WO2011076068A1 (zh) 一种提升传输带宽的装置
KR20170086757A (ko) Em-터널이 내장된 구조를 갖는 인쇄회로기판 및 그 제작 방법
CN1179445C (zh) 四端口混合电路
JP2015056719A (ja) 多層配線基板
TW201436355A (zh) 平衡非平衡轉換器
JP2023550802A (ja) コモン・モード・フィルタ及び端末デバイス
US8227707B2 (en) Coaxial connector mounted circuit board
JP2002198129A (ja) 同軸−ストリップ導体変換器
JP6892126B2 (ja) 積層基板に形成した高速差動伝送線路
RU2753347C2 (ru) Разделительный трансформатор
US6700181B1 (en) Method and system for broadband transition from IC package to motherboard
JP7004209B2 (ja) 差動伝送ケーブルモジュール
JP2002260930A (ja) 積層型バラントランス
WO2021077379A1 (zh) 带阻滤波器及电子设备
US20130049883A1 (en) Waveguide network
TWM594843U (zh) 線路板
Wang et al. Impedance Compensation for Interconnection Structure with Large Inductance on PCB Using Capacitors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19880245

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019880245

Country of ref document: EP

Effective date: 20210503