WO2020088071A1 - 一种气动输送流体双向混合压榨的固液分离系统 - Google Patents

一种气动输送流体双向混合压榨的固液分离系统 Download PDF

Info

Publication number
WO2020088071A1
WO2020088071A1 PCT/CN2019/103472 CN2019103472W WO2020088071A1 WO 2020088071 A1 WO2020088071 A1 WO 2020088071A1 CN 2019103472 W CN2019103472 W CN 2019103472W WO 2020088071 A1 WO2020088071 A1 WO 2020088071A1
Authority
WO
WIPO (PCT)
Prior art keywords
slurry
air
inlet
filter press
liquid separation
Prior art date
Application number
PCT/CN2019/103472
Other languages
English (en)
French (fr)
Inventor
杨作星
杨光
董鸿翮
王复胜
杨东霖
杨航
毕海龙
刘铄维
Original Assignee
杨作星
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杨作星 filed Critical 杨作星
Publication of WO2020088071A1 publication Critical patent/WO2020088071A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D25/00Filters formed by clamping together several filtering elements or parts of such elements
    • B01D25/12Filter presses, i.e. of the plate or plate and frame type

Definitions

  • the present application relates to the field of fluid transportation, and in particular to a solid-liquid separation system for bidirectional mixing and squeezing of pneumatically conveyed fluid.
  • solid-liquid separation is a common technique, which refers to the process of separating suspended solids from liquids.
  • methods for solid-liquid separation including filtration, pressure filtration, centrifugation, etc.
  • the filter press method is used for solid-liquid separation, the tool used is a filter press.
  • Diaphragm filter press is a filter press with a layer of elastic membrane installed between the filter plate and the filter cloth.
  • the high-pressure fluid or gas medium can be injected into the membrane.
  • the entire membrane will bulge to press the filter cake to achieve further dehydration of the filter cake, that is, press filtration.
  • the diaphragm filter press Compared with the traditional chamber filter press, the diaphragm filter press has the advantages of high squeezing pressure, convenient maintenance, safety and reliability, and is widely used in various fields that require solid-liquid separation.
  • the water content of the filter cake after being pressed by the membrane filter press is still high, and there is a problem of incomplete separation, and the effect of solid-liquid separation cannot be well achieved.
  • the poor pressing effect of the membrane filter press is more obvious.
  • the purpose of the present application is to provide a solid-liquid separation system for pneumatic conveying fluid bidirectional mixing and pressing, which can further reduce the moisture content of the filter cake and achieve a better solid-liquid separation effect. And with the advanced pneumatic fluid transportation technology, it can achieve a balanced production capacity matching.
  • a solid-liquid separation system for pneumatic conveying fluid bidirectional mixing and squeezing including:
  • Pneumatic pressure-regulating variable slurry bin pump with slurry inlet pipe, slurry outlet pipe and air inlet pipe;
  • Air supply device connected to the air inlet pipe
  • the filter press includes a membrane pressing unit and an inlet air blowing pressing unit.
  • the inlet air-blowing press unit is provided in the inlet duct of the filter press, and includes an air supply line for blowing air into the filter press through the inlet of the filter press.
  • the air supply pipe is connected to an air supply device.
  • the angle between the direction of the air flow conveyed by the air supply line and the direction in which the inlet pipe supplies the slurry ranges from 0 ° to 90 °.
  • the number of the pneumatic variable pressure variable slurry pumps is not less than two, which are connected in parallel between the slurry preparation device and the filter press.
  • the slurry inlet pipe and the slurry outlet pipe are all provided at the bottom of the pneumatic pressure-adjustable variable-slurry pump.
  • the gas supply device includes an air compressor and a gas storage tank connected in sequence.
  • a filter press includes a diaphragm pressing unit and an inlet air blowing pressing unit.
  • the inlet air-blowing squeezing unit is provided at the inlet pipe of the filter press, and is connected to an air supply device to deliver air to the inlet pipe.
  • the inlet air blowing and squeezing unit includes an air supply pipe connected to the inlet pipe, and the angle range between the direction of the air flow conveyed by the air supply pipe and the direction of the slurry supplied by the inlet pipe is 0 ° to 90 °.
  • the device described by the technical solution described above has a structure.
  • the filter press includes two press structures: a diaphragm press unit and an inlet air blow press unit, which can press the filter cake from two directions.
  • the "two-way mixed press” can increase the pressure of filter press, further press the filter cake, reduce the moisture content of the filter cake, and better achieve solid-liquid separation.
  • FIG. 1 shows a schematic structural diagram of a solid-liquid separation system for pneumatic conveying fluid bidirectional mixing and pressing described in an embodiment of the present application
  • FIG. 2 is a schematic diagram of the structure of a filter press in a solid-liquid separation system of the pneumatic conveying fluid bidirectional mixing and squeezing described in an embodiment of the present application;
  • 3 to 5 show schematic structural diagrams of the inlet air-blowing press units described in the three embodiments of the present application.
  • FIG. 6 shows a schematic structural view of the inlet wind-blowing press unit as viewed from the perspective of slurry transportation described in an embodiment of the present application.
  • first and second are used for description purposes only, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated.
  • the features defined as “first” and “second” may explicitly or implicitly include one or more of the features.
  • the meaning of “plurality” is two or more, unless otherwise specifically limited.
  • the first feature may be “upper” or “lower” on the second feature, the first and second features may be in direct contact, or the first and second features may pass through the middle Indirect media contact.
  • the description referring to the terms “one embodiment”, “some embodiments”, “examples”, “specific examples”, or “some examples” means specific features described in conjunction with the embodiment or examples , Structure, material or characteristic is included in at least one embodiment or example of the present application.
  • the schematic representation of the above terms does not necessarily refer to the same embodiment or example.
  • the specific features, structures, materials, or characteristics described may be combined in any suitable manner in any one or more embodiments or examples.
  • the patent application for authorization announcement on June 5, 2018 provides a pneumatic slurry tank pump with variable pressure regulation, which realizes the transportation of slurry materials in a pneumatic manner The demand for slurry pump for filter machine. Compared with the traditional quantitative pump, the configuration of the inverter is eliminated, and the storage and consumption of the quantitative pump and pump parts are avoided. And effectively reduce energy consumption and manual operation and maintenance costs, on the basis of increasing the stability of the slurry conveying equipment, can also achieve a large flow of stable slurry conveying through the air compressor.
  • the above patents have perfectly solved the problem of slurry material transportation, and in the entire solid-liquid separation system, matching improvement is still required.
  • the first is that when the system is stable, the slurry transportation tends to be stable, which can get rid of the limitations of the original mechanical transportation. As long as sufficient driving air is provided, the transportation flow can be easily increased, but the existing filter press is difficult Carry out solid-liquid separation, because the mismatch of production capacity limits the patented technology to give full play to its technical advantages.
  • the realization of pneumatic delivery of fluids requires the configuration of a larger compressor, and the compressor does not work at rated power for a long time, which will cause waste of production capacity.
  • a solid-liquid separation system for pneumatically conveying fluid bidirectional mixing and pressing includes: a pneumatic variable pressure variable slurry pump 100, a slurry preparation device 200, and a filter press 400.
  • Gas supply device 300 As shown in FIG. 1, in an embodiment, a solid-liquid separation system for pneumatically conveying fluid bidirectional mixing and pressing includes: a pneumatic variable pressure variable slurry pump 100, a slurry preparation device 200, and a filter press 400.
  • Gas supply device 300 As shown in FIG. 1, in an embodiment, a solid-liquid separation system for pneumatically conveying fluid bidirectional mixing and pressing includes: a pneumatic variable pressure variable slurry pump 100, a slurry preparation device 200, and a filter press 400.
  • Gas supply device 300 As shown in FIG. 1, in an embodiment, a solid-liquid separation system for pneumatically conveying fluid bidirectional mixing and pressing includes: a pneumatic variable pressure variable slurry pump 100, a slurry preparation device 200, and a filter press 400.
  • Gas supply device 300
  • the pneumatic pressure-regulated variable slurry bin pump 100 is used to transport slurry, including a pump body, a slurry inlet pipe, a slurry outlet pipe, and an air inlet pipe.
  • the pump body is a cavity that can contain slurry.
  • the specific structure can refer to the existing patented technology.
  • the slurry inlet pipe and the slurry outlet pipe can be arranged at the bottom of the pneumatic pressure-adjustable variable-slurry pump, so that there is air in the upper part and a lower part Feeding and discharging can reduce the weight load of material transportation, help to improve the efficiency of slurry transportation, and make full use of air kinetic energy.
  • the pneumatic variable pressure variable slurry tank pump 100 is connected to the slurry preparation device 200 through the slurry inlet pipe, receives the generated slurry, is connected to the filter press 400 through the slurry outlet pipe, and sends the slurry to the filter press 400 for squeezing
  • the air supply device 300 is connected through an air inlet pipe, receives air, and transports the slurry in the pump body to the filter press 400 by the action of air pressure.
  • the air supply device 300 is used to deliver gas to the slurry bin pump 100, and the slurry in the pump body is delivered to the filter press 400 by the action of air pressure.
  • the air supply device 300 includes an air compressor and an air storage tank, and the air compressor and the air storage tank are sequentially connected.
  • the air storage tank is connected to the air inlet pipe of the slurry bin pump 100, and delivers air to the pump body.
  • the filter press 400 is connected to the slurry outlet pipe of the slurry bin pump 100 and receives the slurry. It squeezes the slurry transported by the slurry bin pump 100 to achieve solid-liquid separation.
  • the filter press 400 includes a diaphragm press unit 410 and an inlet air blow press unit 420.
  • the inlet air blowing and pressing unit 410 is provided at the inlet duct of the filter press 400, and includes an air supply duct for blowing air into the filter press through the inlet of the filter press.
  • the air supply pipeline is also supplied by the air supply device 300, and the air is continuously supplied.
  • the air supply puts the slurry into the air supply pipeline to perform filter press , Achieve bidirectional pressing by supplying air to the inlet.
  • the number of pneumatic variable pressure variable silo pumps can be set at least two, which are connected in parallel between the slurry preparation device and the filter press.
  • the slurry preparation device can also be equipped with multiple units, which are supplied by the same high-power air compressor. Due to the bidirectional pressing technology, solid-liquid separation can be achieved fully and quickly, making it possible to increase production capacity.
  • the filter press 400 specifically includes a machine body, a filter press inlet pipe 430, an inlet wind-blowing press unit 410 and a diaphragm press unit 420.
  • the filter press inlet pipe 430 is connected to the slurry outlet pipe of the slurry bin pump 100, and receives the slurry transported by the slurry bin pump 100.
  • the inlet air blowing press unit 410 is located above the membrane pressing unit, and blows air into the filter press 400 through the inlet of the filter press, including the air supply piping.
  • the air supply pipeline is connected with an air compressor, and the air compressor supplies gas.
  • the air supply pipe is connected to the inlet pipe of the filter press.
  • the pressure of the gas conveyed in the air supply pipeline is higher than the pressure of the slurry entering the filter press 5 to avoid the connection of the slurry from the air supply pipeline to the filter press inlet pipe during the process of entering the filter press 5 Position into the supply air line.
  • the angle range ⁇ between the air flow direction of the air supply duct and the direction in which the inlet pipe supplies the slurry is 0 ° to 90 °. As shown in Figure 4, ⁇ takes 0 °; as shown in Figure 5, ⁇ takes 90 °. Of course, other angle values in this range can be taken, such as 30 °, 45 °, 60 °, etc.
  • the air supply pipe may be connected to the inlet pipe through a pipe, such as a tee, or a communication hole may be opened in the inlet pipe and then welded.
  • the air supply pipe can be connected to the inlet pipe at any suitable angle without interference.
  • the setting of this angle is conducive to cooperate with the action of air pressure to prevent the slurry from entering the air supply pipeline during the slurry transportation process, and can also reduce the resistance of the slurry flow to the air.
  • the diaphragm pressing unit 410 is a well-known structure.
  • the gas bulges the diaphragm to press the filter cake, including the air supply switch, the air supply pipe, the air supply pipeline, and the diaphragm.
  • the gas supply switch is located at one end of the gas supply pipe to control the start or stop of gas delivery to the diaphragm.
  • the gas supply pipe is connected with the gas supply switch and the gas supply pipeline to carry out gas transportation.
  • the air supply pipeline is connected to the diaphragm, receives the gas from the air supply pipe, and fills the diaphragm to expand the diaphragm.
  • the air supply pipeline continuously sends gas to the body at the same time.
  • the slurry enters the filter press through the inlet pipe of the filter press, mixes with the gas delivered by the air supply pipeline, and fills the body of the filter press.
  • the gas is sent into the diaphragm through the air supply pipe, so that the slurry in the machine body is simultaneously subjected to the double pressure from the inlet wind blowing press unit and the diaphragm press unit, that is, the bidirectional mixed press.
  • the slurry Under the bidirectional mixing and squeezing of wind force and diaphragm, the slurry will generate more pressure, which can further reduce the moisture content of the filter cake.
  • the moisture content of the filter cake can be reduced compared with other corresponding specifications of solid-liquid separation equipment About 5%, to better achieve solid-liquid separation.
  • the solid-liquid separation system of the pneumatic conveying fluid bidirectional mixing and pressing in the embodiments of the present application realizes automatic control through a pneumatic pressure variable variable silo pump, reduces manual operations, improves the working efficiency of the filter press, and combines the ability to perform bidirectional mixing
  • the squeezing filter press applies double pressure to the filter cake to reduce the moisture content of the filter cake, which can better achieve solid-liquid separation, thereby further improving work efficiency.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Filtration Of Liquid (AREA)
  • Reciprocating Pumps (AREA)

Abstract

一种气动输送流体双向混合压榨的固液分离系统及压滤机(400)。固液分离系统包括气动调压变量料浆仓泵(100),具有料浆入口管,料浆出口管及空气入口管;连接料浆入口管的料浆制备装置(200);连接料浆出口管的压滤机(400);连接空气入口管的供气装置(300);其中,压滤机(400)包括隔膜压榨单元(410)及入口风吹压榨单元(420)。

Description

一种气动输送流体双向混合压榨的固液分离系统 技术领域
本申请涉及流体输送领域,具体涉及一种气动输送流体双向混合压榨的固液分离系统。
背景技术
在工业生产中,固液分离是一种常见的技术,指将液体中的悬浮固体与液体分离的过程。固液分离的方法有多种,包括过滤、压滤、离心等。其中,采用压滤方法进行固液分离时,所使用的工具为压滤机。
现今,应用范围较广的一种压滤机为隔膜压滤机。隔膜压滤机,是滤板与滤布之间加装了一层弹性膜的压滤机。在使用过程中,当入料结束时,可将高压流体或气体介质注入隔膜中,这时整张隔膜就会鼓起压迫滤饼,实现滤饼的进一步脱水,也就是压榨过滤。
相比传统的厢式压滤机,隔膜压滤机具有压榨压力高、维修方便、安全可靠等优点,广泛应用于需要固液分离的各个领域。但经过隔膜压滤机压榨后的滤饼含水率仍较高,存在分离不彻底的问题,不能很好的实现固液分离的效果。
尤其是在提高料浆输送效率后,隔膜压滤机压榨效果不佳的情况更加明显。
需要说明的是,上述内容属于申请人的技术认知范畴,并不必然构成现有技术。
发明内容
为了解决上述问题,本申请的目的在于提供一种气动输送流体双向混合压榨的固液分离系统,能够进一步降低滤饼含水率,实现更好的固液分离的效果。并且配合先进的气动输送流体技术,能够实现产能匹配化均衡配置。
为了达到上述的目的,本申请采取的技术方案是:
一种气动输送流体双向混合压榨的固液分离系统,包括:
气动调压变量料浆仓泵,具有料浆入口管,料浆出口管及空气入口管;
连接料浆入口管的料浆制备装置;
连接料浆出口管的压滤机;
连接空气入口管的供气装置;
其中,所述压滤机包括隔膜压榨单元及入口风吹压榨单元。
在优选的实施例中,所述入口风吹压榨单元设置于所述压滤机入口管道,包括通过压滤机入口向压滤机内部吹送空气的送风管路。
在优选的实施例中,所述送风管路连接供气装置。
在优选的实施例中,所述送风管路输送空气的气流方向与入口管道供应浆料的方向之间的夹角范围为0°至90°。
在优选的实施例中,所述气动调压变量料浆仓泵数量不少于两台,并行连通于料浆制备装置及压滤机之间。
在优选的实施例中,所述料浆入口管,料浆出口管均设置于气动调压变量料浆仓泵底部。
在优选的实施例中,所述供气装置包括依次连接的空压机及储气罐。
一种压滤机,包括隔膜压榨单元及入口风吹压榨单元。
在优选的实施例中,所述入口风吹压榨单元设置于所述压滤机的入口管道,并连接供气装置以向入口管道输送空气。
在优选的实施例中,所述入口风吹压榨单元包括与入口管道连接送风管路,所述送风管路输送空气的气流方向与入口管道供应浆料的方向之间的夹角范围为0°至90°。
由上文描述的技术方案所描述的装置具有的结构,压滤机包括隔膜压榨单元和入口风吹压榨单元两个压榨结构,能够从两个方向对滤饼进行压榨,称之为对滤饼的“双向混合压榨”,能够加大压滤压力,进一步压榨滤饼,降低滤饼含水率,更好的实现固液分离。
并且配合气动输送流体方式,提高设备整体产能,并避免了局部产能过剩或失衡,实现设备投资的高效利用。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1绘示了本申请一实施例中描述的气动输送流体双向混合压榨的固液分离系统结构示意图;
图2绘示了本申请一实施例中描述的气动输送流体双向混合压榨的固液分离系统结构示意图中压滤机的结构示意图;
图3至图5绘示了本申请三个实施例中描述的入口风吹压榨单元结构示意图。
图6绘示了本申请一个实施例中描述的沿着浆料输送的视角观察入口风吹压榨单元的结构示意图。
具体实施方式
为了更清楚的阐释本申请的整体构思,下面结合说明书附图以示例 的方式进行详细说明。
在下面的描述中阐述了很多具体细节以便于充分理解本申请,但是,本申请还可以采用其他不同于在此描述的其他方式来实施,因此,本申请的保护范围并不受下面公开的具体实施例的限制。
另外,在本申请实施例的描述中,需要理解的是,术语“中心”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请实施例中,除非另有明确的规定和限定,第一特征在第二 特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。
在上述对相关术语进行解释的基础上,下文将对本申请的工作原理及各种实施方式进行介绍。
在2018年6月5日授权公告的申请专利(授权公告号CN207454412U)提供了一种本申请提供一种气动调压变量料浆仓泵,其以气动方式实现料浆物料的输送,满足作为压滤机供浆泵的需求。与传统的定量泵相比,取消了变频器的配置,并且避免了定量泵及泵件的储存和消耗。并且有效降低能耗和人工操作及维护成本,在增加料浆输送设备的稳定性的基础上,还可以通过空压机实现大流量的稳定料浆输送。
上述专利已经完善地解决了料浆物料输送的问题,而在整个固液分离系统中,还需进行匹配性的改进。首先是在系统稳定的情况下,料浆输送趋于稳定,可以摆脱原有机械输送的限制,只要提供充足的驱动空气,就可以方便地提高输送流量,而现有的压滤机却难以充分进行固液分离,因为产能不匹配限制了专利技术充分发挥其技术优势。另外,实现气动输送流体需要配置较大规格的空压机,而空压机并非长时间在额定功率工作,会造成产能浪费。
本申请正是基于上述构思对匹配专利公开的气动调压变量料浆仓泵 的整个固液分离系统进行优化改进。
如图1所示,在一实施例中,提供一种气动输送流体双向混合压榨的固液分离系统,包括:气动调压变量料浆仓泵100,料浆制备装置200,压滤机400,供气装置300。
其中,气动调压变量料浆仓泵100用于输送料浆,包括泵体、料浆入口管、料浆出口管以及空气入口管。泵体是可以容纳料浆的空腔。具体结构可参考已有专利技术。
在本申请的一个优选实现方式中,可在专利技术的基础上,将料浆入口管和料浆出口管设置于气动调压变量料浆仓泵底部,由此,有上部通入空气,下部进料和出料,可以减少物料输送的重量载荷,有利于提高浆料输送效率,充分利用空气动能。气动调压变量料浆仓泵100通过料浆入口管连接料浆制备装置200,接收产生的料浆,通过料浆出口管连接压滤机400,将料浆输送到压滤机400中进行压榨以实现固液分离,具体地,通过空气入口管连接供气装置300,接收空气,通过空气压力的作用将泵体中的料浆输送到压滤机400。
其中,供气装置300用于向料浆仓泵100输送气体,通过空气压力的作用将泵体中的料浆输送到压滤机400。供气装置300包括空压机及储气罐,空压机与储气罐依次连接。储气罐连接料浆仓泵100的空气入口管,将空气输送到泵体中。
压滤机400连接料浆仓泵100的料浆出口管,接收料浆。其对料浆仓泵100输送的料浆进行压榨,实现固液分离。
同时,参考图1及图2,压滤机400包括隔膜压榨单元410及入口风吹压榨单元420。入口风吹压榨单元410设置于压滤机400的入口管道,包括通过压滤机入口向压滤机内部吹送空气的送风管路。
并且,可设置地,送风管路同样由供气装置300供气,并且是源源 不断地送气,在浆料向压滤机输送时,送气放置浆料流入送风管路,进行压滤时,通过向入口送气实现双向压榨。
另外,为充分利用产能,可设置气动调压变量料浆仓泵数量不少于两台,并行连通于料浆制备装置及压滤机之间。浆料制备装置也可以配置多台,由同一的大功率空压机供气。由于采用双向压榨技术,能够充分、快速地实现固液分离,使产能的提高成为可能。
参考图2,压滤机400具体包括:机体,压滤机入口管430,入口风吹压榨单元410及隔膜压榨单元420。
其中,压滤机入口管430与料浆仓泵100的料浆出口管连接,接收料浆仓泵100输送的料浆。
入口风吹压榨单元410位于隔膜压榨单元上方,通过压滤机入口向压滤机400内部吹送空气,包括送风管路。送风管路与空压机连接,空压机供应气体。送风管路连接到压滤机入口管上。
具体的,送风管路中输送的气体的压强大于料浆进入压滤机5的压强,以避免料浆在进入压滤机5的过程中从送风管路与压滤机入口管连接的位置进入送风管路。参考图3,送风管路输送空气的气流方向与入口管道供应浆料的方向之间的夹角范围α为0°至90°。如图4,α取0°;如图5α取90°。当然可取此范围其他角度值,如30°、45°、60°等。
此外,送风管路可以通过管件例如三通与入口管道连接,也可以在入口管道开设连通孔然后进行焊接连接。
另外,参考图6,在另一角度,即沿着浆料输送的视角,送风管路在不发生干涉的情况下可以通过任意适合的角度与入口管道连接。
此角度的设置有利于配合空气压力作用避免浆料输送过程中浆料进入送风管路,也可以减少浆料流对空气的阻力。
其中,隔膜压榨单元410系公知结构,气通过向隔膜内输送气体, 使隔膜鼓起压榨滤饼,包括供气开关、供气管、送气管路、隔膜。供气开关位于供气管的一端,控制开始或停止向隔膜输送气体。供气管与供气开关和送气管路连接,进行气体的输送。送气管路连接隔膜,接收供气管输送过来的气体,充入隔膜,使隔膜膨胀。
在压滤过程中,送风管路同时持续不断的向机体内输送气体,料浆通过压滤机入口管进入压滤机内,与送风管路输送的气体混合,充满压滤机机体,再通过供气管向隔膜内输送气体,使机体内的料浆同时受到来自入口风吹压榨单元与隔膜压榨单元的双重压力,即双向混合压榨。在风力和隔膜的双向混合压榨下,对料浆产生更大的压力,能够进一步减少滤饼的含水率,理想工况下,可将滤饼的含水率较其他对应规格的固液分离设备降低约5%,更好的实现固液分离。
本申请实施例中的气动输送流体双向混合压榨的固液分离系统,通过气动调压变量料浆仓泵实现自动化控制,减少人工操作,提高了压滤机的工作效率,并结合能够进行双向混合压榨的压滤机,对滤饼施加双重压力,降低滤饼含水率,能够更好的实现固液分离,从而进一步提高工作效益。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。
以上所述仅为本申请的实施例而已,并不用于限制本申请。对于本领域技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (10)

  1. 一种气动输送流体双向混合压榨的固液分离系统,其特征在于,包括:
    气动调压变量料浆仓泵,具有料浆入口管,料浆出口管及空气入口管;
    连接料浆入口管的料浆制备装置;
    连接料浆出口管的压滤机;
    连接空气入口管的供气装置;
    其中,所述压滤机包括隔膜压榨单元及入口风吹压榨单元。
  2. 如权利要求1所述的气动输送流体双向混合压榨的固液分离系统,其特征在于,所述入口风吹压榨单元设置于所述压滤机入口管道,包括通过压滤机入口向压滤机内部吹送空气的送风管路。
  3. 如权利要求2所述的气动输送流体双向混合压榨的固液分离系统,其特征在于,所述送风管路连接供气装置。
  4. 如权利要求2所述的气动输送流体双向混合压榨的固液分离系统,其特征在于,所述送风管路输送空气的气流方向与入口管道供应浆料的方向之间的夹角范围为0°至90°。
  5. 如权利要求1所述的气动输送流体双向混合压榨的固液分离系统,其特征在于,所述气动调压变量料浆仓泵数量不少于两台,并行连通于料浆制备装置及压滤机之间。
  6. 如权利要求1所述的气动输送流体双向混合压榨的固液分离系统,其特征在于,所述料浆入口管,料浆出口管均设置于气动调压变量料浆仓泵底部。
  7. 如权利要求1所述的气动输送流体双向混合压榨的固液分离系统,其特征在于,所述供气装置包括依次连接的空压机及储气罐。
  8. 一种压滤机,其特征在于,包括隔膜压榨单元及入口风吹压榨单元。
  9. 如权利要求8所述的压滤机,其特征在于,所述入口风吹压榨单元设置于所述压滤机的入口管道,并连接供气装置以向入口管道输送空气。
  10. 如权利要求9所述的压滤机,其特征在于,所述入口风吹压榨单元包括与入口管道连接送风管路,所述送风管路输送空气的气流方向与入口管道供应浆料的方向之间的夹角范围为0°至90°。
PCT/CN2019/103472 2018-10-30 2019-08-30 一种气动输送流体双向混合压榨的固液分离系统 WO2020088071A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201821767276.2 2018-10-30
CN201821767276.2U CN209155210U (zh) 2018-10-30 2018-10-30 一种气动输送流体双向混合压榨的固液分离系统及压滤机

Publications (1)

Publication Number Publication Date
WO2020088071A1 true WO2020088071A1 (zh) 2020-05-07

Family

ID=67335677

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/103472 WO2020088071A1 (zh) 2018-10-30 2019-08-30 一种气动输送流体双向混合压榨的固液分离系统

Country Status (2)

Country Link
CN (1) CN209155210U (zh)
WO (1) WO2020088071A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN209155210U (zh) * 2018-10-30 2019-07-26 杨作星 一种气动输送流体双向混合压榨的固液分离系统及压滤机
CN114053770B (zh) * 2021-11-12 2023-02-21 恩彻尔(天津)环保科技有限公司 一种用于废液处理的板框压滤机

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4397746A (en) * 1982-01-28 1983-08-09 Kratochvil Russell F Diaphragm type cake compressor for filter presses
CN2495357Y (zh) * 2001-07-02 2002-06-19 湖南中联环保工程有限公司 利用水压实现高压压榨的压滤机
KR101305041B1 (ko) * 2013-07-09 2013-09-17 (주)동일캔바스엔지니어링 공기 주입형 필터 프레스
CN103550966A (zh) * 2013-10-30 2014-02-05 广州市新之地环保产业有限公司 一种隔膜压滤机的操作方法
CN205850337U (zh) * 2016-08-12 2017-01-04 成都市鼎阳环保科技有限责任公司 一种高粘度快速固液分离装备
KR20180034371A (ko) * 2018-03-27 2018-04-04 두산중공업 주식회사 폐수 처리 시스템
CN207445701U (zh) * 2017-10-24 2018-06-05 沧州市宝来金康生物科技股份有限公司 一种隔膜压滤机
CN209155210U (zh) * 2018-10-30 2019-07-26 杨作星 一种气动输送流体双向混合压榨的固液分离系统及压滤机

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4397746A (en) * 1982-01-28 1983-08-09 Kratochvil Russell F Diaphragm type cake compressor for filter presses
CN2495357Y (zh) * 2001-07-02 2002-06-19 湖南中联环保工程有限公司 利用水压实现高压压榨的压滤机
KR101305041B1 (ko) * 2013-07-09 2013-09-17 (주)동일캔바스엔지니어링 공기 주입형 필터 프레스
CN103550966A (zh) * 2013-10-30 2014-02-05 广州市新之地环保产业有限公司 一种隔膜压滤机的操作方法
CN205850337U (zh) * 2016-08-12 2017-01-04 成都市鼎阳环保科技有限责任公司 一种高粘度快速固液分离装备
CN207445701U (zh) * 2017-10-24 2018-06-05 沧州市宝来金康生物科技股份有限公司 一种隔膜压滤机
KR20180034371A (ko) * 2018-03-27 2018-04-04 두산중공업 주식회사 폐수 처리 시스템
CN209155210U (zh) * 2018-10-30 2019-07-26 杨作星 一种气动输送流体双向混合压榨的固液分离系统及压滤机

Also Published As

Publication number Publication date
CN209155210U (zh) 2019-07-26

Similar Documents

Publication Publication Date Title
WO2020088071A1 (zh) 一种气动输送流体双向混合压榨的固液分离系统
CN201949953U (zh) 一种高效节能喷嘴及安装有该喷嘴的蒸汽喷射泵
CN108265983A (zh) 一种超高层建筑混凝土输送装置
CN211077456U (zh) 一种皂粒风送系统
CN208054450U (zh) 一种低压散状物料气力输送系统
CN111603955A (zh) 一种固液物料混合系统
CN206827630U (zh) 一种风动送样机
CN111170012A (zh) 一种连续式气力输送装置
CN212492439U (zh) 一种固液物料混合系统
CN211254434U (zh) 输送电极前驱体粉料的系统
CN111036103B (zh) 一种正丁烷与空气混合装置
CN209173414U (zh) 一种具备短程精馏功能的精馏塔
CN209619340U (zh) 一种改进型好氧性发酵罐
CN209476026U (zh) 一种真空乳化搅拌机
CN208326259U (zh) 一种新型粉料库内节能均化充气装置
CN102848477B (zh) 一种多个矿浆搅拌槽循环系统及其循环方法
CN201703873U (zh) 物料输送装置
CN206336782U (zh) 一种高效节能粉末涂料抗结团添加剂添加装置
CN202389959U (zh) 空气槽式水平接料器
CN206124084U (zh) 自动加料发泡机
CN220111020U (zh) 一种上料高效的反应釜的管道串并联系统
CN212399957U (zh) 建筑工程用泡沫混凝土稀释装置
CN220115675U (zh) 一种用于多种粉尘的节能高效输送系统
CN219341874U (zh) 一种水处理加料装置
CN218024220U (zh) 一种粉碎浆粕气力输送装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19879400

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19879400

Country of ref document: EP

Kind code of ref document: A1