WO2020087817A1 - 一种led芯片、显示面板及显示面板的组装设备 - Google Patents
一种led芯片、显示面板及显示面板的组装设备 Download PDFInfo
- Publication number
- WO2020087817A1 WO2020087817A1 PCT/CN2019/076363 CN2019076363W WO2020087817A1 WO 2020087817 A1 WO2020087817 A1 WO 2020087817A1 CN 2019076363 W CN2019076363 W CN 2019076363W WO 2020087817 A1 WO2020087817 A1 WO 2020087817A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- led chip
- face
- groove
- emitting body
- film layer
- Prior art date
Links
- 239000012530 fluid Substances 0.000 claims abstract description 64
- 239000000758 substrate Substances 0.000 claims description 56
- 239000012780 transparent material Substances 0.000 claims description 3
- 238000003384 imaging method Methods 0.000 claims description 2
- 239000010408 film Substances 0.000 description 17
- 238000012546 transfer Methods 0.000 description 13
- 238000010586 diagram Methods 0.000 description 12
- 238000000034 method Methods 0.000 description 12
- 238000005538 encapsulation Methods 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 238000013461 design Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 229920002120 photoresistant polymer Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 238000001338 self-assembly Methods 0.000 description 2
- 229910000679 solder Inorganic materials 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- -1 for example Substances 0.000 description 1
- 150000008282 halocarbons Chemical class 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/36—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09F—DISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
- G09F9/00—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
- G09F9/30—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
- G09F9/33—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/93—Batch processes
- H01L24/95—Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
- H01L24/97—Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
- H01L25/03—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
- H01L25/04—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
- H01L25/075—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
- H01L25/0753—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/20—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/36—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
- H01L33/40—Materials therefor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/93—Batch processes
- H01L2224/95—Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
- H01L2224/95053—Bonding environment
- H01L2224/95085—Bonding environment being a liquid, e.g. for fluidic self-assembly
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/93—Batch processes
- H01L2224/95—Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
- H01L2224/951—Supplying the plurality of semiconductor or solid-state bodies
- H01L2224/95101—Supplying the plurality of semiconductor or solid-state bodies in a liquid medium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/93—Batch processes
- H01L2224/95—Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
- H01L2224/9512—Aligning the plurality of semiconductor or solid-state bodies
- H01L2224/95143—Passive alignment, i.e. self alignment, e.g. using surface energy, chemical reactions, thermal equilibrium
- H01L2224/95144—Magnetic alignment, i.e. using permanent magnetic parts in the semiconductor or solid-state body
Definitions
- the present application relates to the field of display technology, in particular to an LED chip, a display panel, and a display panel assembly device.
- LED display panels have received more and more attention because of their advantages such as high brightness, high response speed, low power consumption, and long life.
- LED chips are difficult to grow directly on the array substrate, and they often need to be transferred to the array substrate by mass transfer technology. Therefore, the small size and large number of transfers of the LED chip have brought a great deal to the mass transfer challenge.
- the inventor of the present application discovered during the long-term research that the massive transfer method used in the prior art has problems such as a low success rate.
- the technical problem mainly solved by the present application is to provide an LED chip, a display panel and a display panel assembly device, which can improve the success rate of LED chip transfer.
- an LED chip including: a light-emitting body including a first end face and a second end face arranged oppositely; and a magnetic electrode provided on the first One end surface, so that when the LED chip is placed in a fluid and is subjected to an external magnetic field, the first end surface is disposed in a predetermined direction.
- a display panel comprising: an array substrate including a first surface and a second surface which are oppositely arranged, the first surface is provided with A plurality of grooves arranged in an array; a plurality of LED chips are respectively arranged in the grooves, each of the LED chips includes a light-emitting body and a magnetic electrode, and the light-emitting body includes oppositely arranged first At one end surface and the second end surface, the magnetic electrode is disposed on the first end surface and is disposed toward the bottom of the groove.
- an assembly device for a display panel including: a magnetic base for carrying an array substrate, the array substrate including oppositely arranged first A surface and a second surface, the first surface is provided with a plurality of grooves arranged in an array; a fluid chamber is provided on the first surface and used to receive the fluid carrying the LED chip, wherein,
- Each of the LED chips includes a light-emitting body and a magnetic electrode, the light-emitting body includes a first end surface and a second end surface disposed oppositely, the magnetic electrode is disposed on the first end surface; The magnetic electrode is subjected to the magnetic field generated by the magnetic base, and then falls into the groove with the first end face toward the bottom of the groove.
- the LED chip provided in the present application includes a magnetic electrode, and the magnetic electrode is located on the first end surface of the light emitting body of the LED chip.
- the magnetic electrode is subjected to an external magnetic field, and under the action of magnetic attraction, the first end face of the LED chip is driven to be arranged in a predetermined direction, thereby improving the success rate of the LED chip transfer and further improving the efficiency of fluid assembly.
- FIG. 1 is a schematic structural diagram of an embodiment of an LED chip of this application.
- FIG. 2a is a schematic top view of an embodiment of the LED chip in FIG. 1;
- FIG. 2b is a schematic top view of another embodiment of the LED chip in FIG. 1;
- FIG. 3 is a schematic structural diagram of another embodiment of an LED chip of this application.
- FIG. 4 is a schematic structural diagram of an embodiment of a display panel of this application.
- FIG. 5 is a schematic structural diagram of an embodiment of an assembly device for a display panel of the present application.
- FIG. 6 is a schematic top view of an embodiment of the fluid chamber in FIG. 5;
- FIG. 7 is a schematic top view of another embodiment of the fluid chamber in FIG. 5;
- FIG. 8 is a schematic flowchart of an embodiment of an assembly process of a display panel of the present application.
- FIG. 9 is a schematic structural diagram of an embodiment corresponding to steps S101 to S107 in FIG. 8.
- FIG. 1 is a schematic structural diagram of an embodiment of an LED chip of the present application.
- the LED chip provided by the present application may be an ordinary LED chip or a Micro-LED chip.
- the LED chip 1 includes a light-emitting body 10 and a magnetic electrode 12.
- the light-emitting body 10 includes a first end surface 100 and a second end surface 102 that are disposed oppositely.
- the structure of the light-emitting body 10 may be any one of the prior art.
- the light-emitting body 10 includes a substrate, and is grown on the substrate.
- the substrate may be a sapphire substrate or the like.
- the magnetic electrode 12 is disposed on the first end surface 100, so that when the LED chip 1 is placed in a fluid and is subjected to an external magnetic field, the first end surface 100 is disposed in a predetermined direction, and the material of the magnetic electrode 12 may be metal, for example, Cr , Al, Pt, etc.
- the magnetic electrode 12 When the fluid self-assembly method is used to transfer the LED chip 1, the magnetic electrode 12 is subjected to an external magnetic field, and under the action of magnetic attraction, the first end surface 100 of the LED chip 1 is driven to be set in a predetermined direction, thereby improving the LED chip 1 The success rate of transfer, and further improve the efficiency of fluid assembly.
- the area of the first end surface 100 on the light-emitting body 10 of the LED chip 1 is smaller than the area of the second end surface 102, which is advantageous for the first end surface 100 of the LED chip 1 to be oriented toward a predetermined direction; preferably, the light-emitting body 10
- the longitudinal section along the vertical direction of the first end surface 100 and the second end surface 102 is arranged in an inverted trapezoid shape.
- FIG. 2a is a schematic top view of an embodiment of the LED chip in FIG.
- FIG. 2a is inverted trapezoid; of course, the longitudinal section of the light emitting body 10 of the LED chip 1 in FIG. 1 along the BB direction perpendicular to the AA direction in FIG. 2a is also It can take the form of an inverted trapezoid; this design can make the LED chip 1 easier and more accurate to fall to a predetermined position, thereby further improving the success rate of the LED chip 1 transfer and improving the efficiency of fluid assembly.
- FIGS. 2a and 2b FIG. 2a is a schematic top view of one embodiment of the LED chip in FIG. 1, and FIG. 2b is a schematic top view of another embodiment of the LED chip in FIG.
- the cross-section of the light-emitting body 10 of the LED chip 1 may be a circle (as shown in FIG. 2a), an ellipse, etc.
- the cross-section of the light-emitting body 10 'of the LED chip 1' may also be a polygon, such as a square (as shown in FIG. 2b)
- the light-emitting body 10 may be a circular table (as shown in FIG. 2a), and the light-emitting body 10 'may also be a prism (as shown in FIG. 2b).
- the LED chip 1 provided by the present application may be a vertical structure or a lateral structure.
- the LED chip 1 generally includes an anode and a cathode.
- the structure of the LED chip 1 and its corresponding growth mode determine the magnetic properties Whether the electrode 12 is the anode or cathode of the LED chip 1.
- the LED chip 1 in FIG. 1 has a vertical structure.
- the two electrodes of the LED chip 1 are located on opposite sides of the LED chip 1.
- FIG. 1 only the anode is schematically shown. This is because the LED chip 1 is Before assembly to the array substrate, only the anode is formed on the LED chip 1, and the cathode of the LED chip 1 may be formed after assembly to the array substrate.
- the magnetic electrode 12 may be the anode of the LED chip 1.
- both the anode and the cathode may be formed before the LED chip 1 is assembled to the array substrate. At this time, the magnetic electrode 12 may be selected according to actual needs.
- FIG. 3 is a schematic structural diagram of another embodiment of an LED chip of the present application.
- the LED chip 1a has a lateral structure, and the two electrodes of the LED chip 1a are located on the same side of the LED chip 1a.
- the cathode 14a of the LED chip 1a is located at the periphery of the anode 16a.
- the magnetic electrode may be the anode 16a or the cathode. 14a.
- FIG. 4 is a schematic structural diagram of an embodiment of a display panel of the present application.
- the display panel provided by the present application includes an array substrate 2 and a plurality of LED chips 1.
- the array substrate 2 includes a first surface 20 and a second surface 22 that are oppositely arranged.
- the first surface 20 is provided with a plurality of grooves 24 arranged in an array; the plurality of LED chips 1 are respectively disposed in the grooves 24
- each LED chip 1 includes a light-emitting body 10 and a magnetic electrode 12, the light-emitting body 10 includes a first end face 100 and a second end face 102 disposed oppositely, the magnetic electrode 12 is disposed on the first end face 100, and faces the groove 24 Bottom (not marked) setting.
- the structure of the LED chip 1 is the same as that in the above-mentioned embodiment, and will not be described in detail here.
- the area of the first end surface 100 of the LED chip 1 is smaller than the area of the second end surface 102, and the cross section of the light-emitting body 10 along the vertical direction of the first end surface 100 and the second end surface 102 is in an inverted trapezoidal shape.
- the shape of the chip 1 matches.
- the shape of the groove 24 may be slightly larger than the shape of the LED chip 1.
- the groove 24 is divided into a first groove segment 240 and a second groove segment 242 in a direction perpendicular to the first surface 20, wherein the shape of the first groove segment 240 matches the magnetic electrode 12 and is used
- the longitudinal cross-section of the magnetic electrode 12 along the vertical direction of the first end surface 100 and the second end surface 102 is square
- the longitudinal cross-section may be the longitudinal cross-section along the AA direction in FIG.
- the longitudinal section of the first groove segment 240 along the vertical direction of the first surface 20 and the second surface 22 may also be square.
- the shape of the second groove segment 242 matches the light-emitting body 10 and is used to accommodate the light-emitting body 10.
- the longitudinal section may be a longitudinal section along the AA direction in FIG. 2a or a longitudinal section along the BB direction perpendicular to the AA direction in FIG. 2A.
- the longitudinal section of the second groove segment 242 along the vertical direction of the first surface 20 and the second surface 22 may also be arranged in an inverted trapezoid shape.
- the shape of the groove 24 formed by the combination of the second groove segment 242 and the first groove segment 241 is similar to the shape of “Y”.
- This design method can make the LED chip 1 fall to a predetermined position more easily and accurately, and at the same time improve the stability of the LED chip 1 after falling into the groove 24, thereby further improving the success rate of the LED chip 1 transfer.
- the shape of the groove 24 may also be other.
- the array substrate 2 provided by the present application includes:
- the substrate 26 may be a rigid substrate (for example, glass, silicon substrate, etc.) or a flexible substrate (for example, polyimide, etc.).
- the first film layer 28 is located on the side of the substrate 26.
- the first film layer 28 is provided with a driving circuit (not marked) and a plurality of contact electrodes 280 connected to the driving circuit.
- the first film layer 28 may be any of the prior art. In a thin film transistor layer, some solder may be coated on the contact electrode 280, so that the magnetic electrode 12 of the subsequent LED chip 1 and the contact electrode 280 are better welded together.
- the second film layer 21 is located on the side of the first film layer 28 away from the substrate 26.
- the second film layer 21 is provided with a first groove segment 240, which exposes the corresponding contact electrode 280.
- the contact electrodes 280 may be all or Partly located in the first groove segment 240, the second film layer 21 may be made of an insulating material, for example, photoresist, etc.
- the first groove segment 240 may be formed by a photolithography process.
- the third film layer 23 is located on the side of the second film layer 21 away from the substrate 26.
- the third film layer 23 is provided with a second groove segment 242.
- the third film layer 23 may be made of insulating material, such as photoresist, etc.
- the second groove section 242 is formed using a photolithography process.
- the second groove segment 242 also exposes the corresponding contact electrode 280.
- the second film layer 21 and the third film layer 23 may also be combined into the same film layer; or, the second film layer 21 and the third film layer 23 may also be formed of multiple layers of film, This application does not limit this.
- the display panel provided by the present application may further include other structures, for example, an encapsulation layer 25 located on the side of the LED chip 1 away from the array substrate 2.
- the encapsulation layer 25 may adopt any encapsulation form in the prior art, for example, Frit glass encapsulation, thin film encapsulation, etc.
- FIG. 5 is a schematic structural diagram of an embodiment of an assembly device for a display panel of the present application.
- the assembly device includes:
- the magnetic base 3 is used to carry the array substrate 2.
- the array substrate 2 includes a first surface 20 and a second surface 22 oppositely arranged.
- the first surface 20 is provided with a plurality of grooves 24 arranged in an array; the array substrate 2
- the specific structure can be referred to the above embodiment, and will not be repeated here.
- the magnetic force of the magnetic base 3 can be provided by a substance such as a magnet, and the magnetic force generated by the magnetic base 3 can be changed by selecting materials of different magnetic sizes; or, the magnetic force of the magnetic base 3 can be generated by the energized coil, by changing through The current of the coil in turn changes the magnetic force of the magnetic base 3.
- the fluid chamber 4 is provided on the first surface 20 and used to receive the fluid carrying the LED chip 1, the solvent of the fluid may be alcohols, polyols, ketones, halogenated hydrocarbons, etc., each of which
- the LED chip 1 includes a light-emitting body 10 and a magnetic electrode 12, the light-emitting body 10 includes a first end surface 100 and a second end surface 102 that are oppositely disposed, and the magnetic electrode 12 is disposed on the first end surface 100.
- the magnetic electrode 12 of the LED chip 1 is subjected to the magnetic field generated by the magnetic base 3, and then falls into the groove 24 in such a manner that the first end surface 100 faces the bottom of the groove 24.
- the specific structure of the LED chip 1 can be referred to the above embodiment, and will not be repeated here.
- FIG. 6 is a schematic structural diagram of an embodiment of the fluid chamber in FIG. 5.
- the fluid chamber 4 is provided with a plurality of flow channels 40 spaced apart from each other, wherein the flow channels 40 are arranged along the row or column direction of the grooves 24 and cover at least one row or column of grooves 24, the fluid flows from the first of the flow channels 40 End A flows to the second end B.
- the width d1 of the flow channel 40 is greater than the width d2 of the LED chip 1 at least twice (eg, twice, three times, four times, etc.),
- the width d2 of the LED chip 1 may be the maximum width value of the LED chip 1. With this design, the number of LED chips 1 flowing in the flow channel 40 can be increased, thereby improving the fluid assembly efficiency.
- FIG. 7 is a schematic structural diagram of another embodiment of the fluid chamber in FIG. 5.
- the fluid channel 40a in the fluid chamber 4a may not penetrate the opposite sides of the fluid chamber 4a; at this time, a fluid inlet 42a and a fluid outlet 44a may be opened at corresponding positions in the fluid chamber 4a.
- the fluid inlet 42a and each fluid channel The first end A of 40a is in communication, and the fluid outlet 44a is in communication with the second end of each fluid channel 40a. After the fluid mixed with the LED chip 1 passes through the fluid inlet 42a, it flows to the fluid outlet 44a through the fluid channel 40a.
- the assembly equipment provided by the present application further includes: a pressure control assembly, located at the first end A and / or the second end B of the flow channel 40, for providing pressure to the fluid to make the fluid flow at a constant speed .
- the pressure control component may be a pump or the like.
- the fluid chamber 4 provided by the present application is made of transparent material, for example, transparent plastic, transparent glass, etc.
- the assembly equipment provided by the present application further includes: a camera device 5 (such as , CCD camera, etc.), located on the side of the fluid chamber 4 away from the array substrate 2 for obtaining images of the LED chip 1 and the array substrate 2; the judging device 6 for receiving images and judging the groove of the array substrate 2 according to the images 24 Whether to capture LED chip 1.
- the judging device 6 may be a processor or the like. Of course, in other embodiments, the judging device 6 may not be used, and the judgment may be performed manually. Since the fluid chamber 4 provided by the present application is made of a transparent material, the imaging device 5 can capture the images of the LED chip 1 and the array substrate 2 through the fluid chamber 4, and then determine whether to stop the fluid assembly according to the images.
- FIG. 8 is a schematic flowchart of an embodiment of an assembly process of a display panel of the present application.
- FIG. 9 is a structural diagram of an embodiment corresponding to steps S101-S107 in FIG. 8.
- the assembly process includes:
- S101 Provide a magnetic base 3, and place the array substrate 2 on the magnetic base 3; specifically, as shown in FIG. 9a, the second end surface 22 of the array substrate 2 may be in contact with the magnetic base 3.
- S102 Provide a fluid chamber 4, the side of the fluid chamber 4 where the flow channel 40 is provided faces the array substrate 2, and the flow channel 40 is arranged along the row direction or column direction of the groove 24, covering at least one row or column of groove 24; Specifically, as shown in FIG. 9b.
- the fluid containing the LED chip 1 flows from the first end to the second end of the flow channel 40; specifically, as shown in FIG. 9c.
- the pressure provided by the pressure control assembly can be adjusted so that the fluid containing the LED chip 1 flows at a uniform speed.
- the magnetic electrode 12 of the LED chip 1 in the fluid can face the array substrate 2 by controlling the fluid velocity and adjusting the magnetic force provided by the magnetic base 3.
- the fluid may contain only one of the blue LED chip, the red LED chip, or the green LED chip.
- the blue LED chip, or The recess 24 filled with the red LED chip or the green LED chip can be blocked by a tool like a mask in advance.
- the camera device 5 obtains images of the LED chip 1 and the array substrate 2 from the side of the fluid chamber 4 far away from the array substrate 2, and the judgment device 6 receives the image and judges whether the groove 24 of the array substrate 2 captures the LED chip 1 according to the image; Ground, as shown in Figure 9d.
- step S105 If the LED chip 1 is captured in all the grooves 24 on the array substrate 2, the fluid chamber 4 is removed, and the array substrate 2 is cleaned and dried. Specifically, as shown in FIG. 9e. In this step S105, the magnetic base 3 is not removed. Due to the role of the magnetic base 3, the LED chip 1 in the groove 24 is not disturbed by other processes and does not leave the groove 24.
- S106 The magnetic base 3 is removed, and the contact electrode 280 of the array substrate 2 and the magnetic electrode 12 of the LED chip 1 are soldered. Specifically, as shown in FIG. 9f, when forming the array substrate 2, a layer of solder may be coated on the contact electrode 280 in advance, and the contact electrode 280 of the array substrate 2 and the LED chip 1 are soldered by thermal reflow.
- S107 Form a plastic encapsulation layer 25 on the side of the LED chip 1 away from the array substrate 2.
- the plastic encapsulation layer 25 may be formed in any manner in the prior art, and will not be described in detail here.
- the LED chip provided in this application includes a magnetic electrode, which is located on the first end surface of the light emitting body of the LED chip.
- the magnetic Due to the external magnetic field, the electrode is driven by the magnetic attractive force to drive the first end face of the LED chip to be arranged in a predetermined direction, thereby improving the success rate of the LED chip transfer and further improving the efficiency of fluid assembly.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Led Device Packages (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
Abstract
本申请公开了一种LED芯片、显示面板及显示面板的组装设备,所述LED芯片包括:发光主体,包括相对设置的第一端面和第二端面;磁性电极,设置于所述第一端面上,以使得在所述LED芯片放置于流体中且受到外加磁场的作用时,所述第一端面朝预定方向设置。
Description
本申请涉及显示技术领域,特别是涉及一种LED芯片、显示面板及显示面板的组装设备。
LED显示面板由于具有高亮度、高响应速度、低功耗、长寿命等优点,受到越来越广泛的关注。
由于目前LED芯片难以在阵列基板上直接生长出来,往往需要依靠巨量转移技术将其转移到阵列基板上,因此,LED芯片微小的尺寸和巨大的转移数量给巨量转移带来了很大的挑战。
本申请的发明人在长期研究过程中发现,现有技术中所采用的巨量转移方法,存在成功率低等问题。
发明内容
本申请主要解决的技术问题是提供一种LED芯片、显示面板及显示面板的组装设备,能够提高LED芯片转移的成功率。
为解决上述技术问题,本申请采用的一个技术方案是:提供一种LED芯片,所述LED芯片包括:发光主体,包括相对设置的第一端面和第二端面;磁性电极,设置于所述第一端面上,以使得在所述LED芯片放置于流体中且受到外加磁场的作用时,所述第一端面朝预定方向设置。
为解决上述技术问题,本申请采用的另一个技术方案是:提供一种显示面板,所述显示面板包括:阵列基板,包括相对设置的第一表面和第二表面,所述第一表面设置有以阵列方式排布的多个凹槽;多个LED芯片,分别对应设置于所述凹槽内,所述每一个所述LED芯片包括发光主体和磁性电极,所述发光主体包括相对设置的第一端面和第二端面,所述磁性电极设置于所述第一端面上,并朝向所述凹槽的底部设置。
为解决上述技术问题,本申请采用的另一个技术方案是:提供一种显示面板的组装设备,所述组装设备包括:磁性基台,用于承载阵列基板,所述阵列基板包括相对设置的第一表面和第二表面,所述第一表面设置有以阵列方式排 布的多个凹槽;流体腔室,设置于所述第一表面上,并用于接收承载有LED芯片的流体,其中,每一个所述LED芯片包括发光主体和磁性电极,所述发光主体包括相对设置的第一端面和第二端面,所述磁性电极设置于所述第一端面上;其中,所述LED芯片的所述磁性电极受到所述磁性基台所产生的磁场作用,进而以所述第一端面朝向所述凹槽底部的方式落入所述凹槽。
本申请的有益效果是:区别于现有技术的情况,本申请所提供的LED芯片中包括磁性电极,磁性电极位于LED芯片的发光主体的第一端面上,当采用流体自组装方法对LED芯片进行转移时,磁性电极由于受到外加磁场的作用,在磁性吸引力的作用下,带动LED芯片的第一端面朝向预定方向设置,进而提高LED芯片转移的成功率,且进一步提升流体组装的效率。
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图,其中:
图1为本申请LED芯片一实施方式的结构示意图;
图2a为图1中LED芯片一实施方式的俯视示意图;
图2b为图1中LED芯片另一实施方式的俯视示意图;
图3为本申请LED芯片另一实施方式的结构示意图;
图4为本申请显示面板一实施方式的结构示意图;
图5为本申请显示面板的组装设备一实施方式的结构示意图;
图6为图5中流体腔室一实施方式的俯视结构示意图;
图7为图5中流体腔室另一实施方式的俯视结构示意图;
图8为本申请显示面板的组装过程一实施方式的流程示意图;
图9为图8中步骤S101-步骤S107对应的一实施方式的结构示意。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造 性劳动前提下所获得的所有其他实施例,均属于本发明保护的范围。
请参阅图1,图1为本申请LED芯片一实施方式的结构示意图。本申请所提供的LED芯片可以是普通LED芯片,也可以是Micro-LED芯片,该LED芯片1包括发光主体10和磁性电极12。
具体地,发光主体10包括相对设置的第一端面100和第二端面102,发光主体10的结构可以为现有技术中任一种,例如,发光主体10包括衬底、在衬底上生长的外延层结构等,衬底可以是蓝宝石衬底等。磁性电极12设置于第一端面100上,以使得在LED芯片1放置于流体中且受到外加磁场的作用时,第一端面100朝预定方向设置,磁性电极12的材质可以是金属,例如,Cr、Al、Pt等。当采用流体自组装方法对LED芯片1进行转移时,磁性电极12由于受到外加磁场的作用,在磁性吸引力的作用下,带动LED芯片1的第一端面100朝向预定方向设置,进而提高LED芯片1转移的成功率,且进一步提升流体组装的效率。
在一个实施方式中,LED芯片1的发光主体10上的第一端面100的面积小于第二端面102的面积,有利于LED芯片1的第一端面100朝向预定方向设置;优选地,发光主体10沿第一端面100和第二端面102的垂直方向的纵截面呈倒梯形设置。请一并参阅图2a,图2a为图1中LED芯片一实施方式的俯视示意图。图1中LED芯片1的发光主体10沿图2a中A-A方向的纵截面呈倒梯形;当然,图1中LED芯片1的发光主体10沿图2a中与A-A方向垂直的B-B方向的纵截面也可呈倒梯形;这种设计方式可以使得LED芯片1能够更容易更准确地掉落至预定位置,进而进一步提高LED芯片1转移的成功率,以及提升流体组装的效率。在一个应用场景中,请结合图2a和图2b,图2a为图1中LED芯片一实施方式的俯视示意图,图2b为图1中LED芯片另一实施方式的俯视示意图。LED芯片1的发光主体10的横截面可以是圆(如图2a所示)、椭圆等,LED芯片1'的发光主体10'的横截面也可以是多边形,例如方形(如图2b所示)等,即发光主体10可以为圆台(如图2a所示),发光主体10'也可以为棱柱(如图2b所示)等。
在另一个实施方式中,本申请所提供的LED芯片1可以是垂直型结构,也可以是横向型结构,LED芯片1一般包含阳极和阴极,LED芯片1的结构以及其对应的生长方式决定磁性电极12为LED芯片1的阳极还是阴极。
如图1所示,图1中LED芯片1为垂直型结构,LED芯片1的两个电极分 别位于LED芯片1的相对两侧,图1中仅示意画出阳极,这是因为LED芯片1在组装到阵列基板之前,LED芯片1上仅形成阳极,LED芯片1的阴极可以在组装到阵列基板之后形成。在此情况下,磁性电极12可以是LED芯片1的阳极。当然,在其他实施方式中,LED芯片1组装到阵列基板之前,阳极和阴极可均形成,此时磁性电极12可以根据实际需求进行选择。
如图3所示,图3为本申请LED芯片另一实施方式的结构示意图。图3中LED芯片1a为横向型结构,LED芯片1a的两个电极位于LED芯片1a的同一侧。图3中LED芯片1a的阴极14a位于阳极16a的外围,在LED芯片1a组装到阵列基板之前,LED芯片1a上阳极16a和阴极14a均形成,此时磁性电极可以为阳极16a,也可以为阴极14a。
请参阅图4,图4为本申请显示面板一实施方式的结构示意图。本申请所提供的显示面板包括阵列基板2和多个LED芯片1。
具体地,阵列基板2包括相对设置的第一表面20和第二表面22,第一表面20设置有以阵列方式排布的多个凹槽24;多个LED芯片1分别对应设置于凹槽24内,每一个LED芯片1包括发光主体10和磁性电极12,发光主体10包括相对设置的第一端面100和第二端面102,磁性电极12设置于第一端面100上,并朝向凹槽24的底部(未标识)设置。
在本实施例中,LED芯片1的结构与上述实施例中相同,在此不做过多说明。LED芯片1的第一端面100的面积小于第二端面102的面积,且发光主体10沿第一端面100和第二端面102的垂直方向的横截面呈倒梯形设置,凹槽24的形状与LED芯片1的形状相匹配,在本实施例中,凹槽24的形状可以略大于LED芯片1的形状即可。
在一个实施方式中,凹槽24在垂直于第一表面20的方向上划分成第一槽段240和第二槽段242,其中,第一槽段240的形状与磁性电极12相匹配且用于容纳磁性电极12,例如,磁性电极12沿第一端面100和第二端面102的垂直方向的纵截面呈方形设置时,该纵截面可以是图2a中沿A-A方向的纵截面,也可以是沿图2a中与A-A方向垂直的B-B方向的纵截面。对应地,第一槽段240沿第一表面20和第二表面22的垂直方向的纵截面也可以呈方形设置。第二槽段242的形状与发光主体10相匹配且用于容纳发光主体10,优选地,当发光主体10沿第一端面100和第二端面102的垂直方向的纵截面呈倒梯形设置时,该纵截面可以是图2a中沿A-A方向的纵截面,也可以是图2A中沿与A-A方向垂 直的B-B方向的纵截面。对应地,第二槽段242沿第一表面20和第二表面22的垂直方向的纵截面也可以呈倒梯形设置。在本实施例中,第二槽段242和第一槽段241组合形成凹槽24的形状类似于“Y”字型。这种设计方式可以使得LED芯片1能够更容易更准确地掉落至预定位置,同时提升LED芯片1落入凹槽24后的稳定性,进而进一步提高LED芯片1转移的成功率。当然,在其他实施例中,凹槽24的形状也可为其他。
为实现上述凹槽24的设计,请继续参阅图4,本申请所所提供的阵列基板2包括:
衬底26,衬底26可以是刚性衬底(例如,玻璃、硅基板等),也可以是柔性衬底(例如,聚酰亚胺等)。
第一膜层28,位于衬底26一侧,第一膜层28设置有驱动电路(未标识)以及与驱动电路连接的多个接触电极280,第一膜层28可以为现有技术中任一薄膜晶体管层,接触电极280上也可涂覆一些焊接剂,以使得后续LED芯片1的磁性电极12与接触电极280更好的焊接到一起。
第二膜层21,位于第一膜层28远离衬底26一侧,第二膜层21设置有第一槽段240,第一槽段240暴露对应的接触电极280,接触电极280可以全部或者部分位于第一槽段240内,第二膜层21可以为绝缘材质,例如,光刻胶等,可以利用光刻的工艺形成该第一槽段240。
第三膜层23,位于第二膜层21远离衬底26一侧,第三膜层23设置有第二槽段242,第三膜层23可以为绝缘材质,例如,光刻胶等,可以利用光刻工艺形成该第二槽段242。第二槽段242同样暴露对应的接触电极280。
当然,在其他实施例中,上述第二膜层21和第三膜层23也可合并为同一膜层;或者,第二膜层21和第三膜层23也可分别由多层膜形成,本申请对此不作限定。另外,在本实施例中,本申请所提供的显示面板还可包括其他结构,例如,封装层25,位于LED芯片1远离阵列基板2一侧。封装层25可以采用现有技术中任一种封装形式,例如,Frit玻璃封装、薄膜封装等。
请参阅图5,图5为本申请显示面板的组装设备一实施方式的结构示意图,该组装设备包括:
磁性基台3,用于承载阵列基板2,阵列基板2包括相对设置的第一表面20和第二表面22,第一表面20设置有以阵列方式排布的多个凹槽24;阵列基板2的具体结构可参见上述实施例,在此不再赘述。磁性基台3的磁力可以由磁铁 一类的物质提供,通过选择不同磁性大小的物质进而改变磁性基台3所产生的磁力;又或者,磁性基台3的磁力由通电线圈产生,通过改变通过线圈的电流进而改变磁性基台3的磁力。
流体腔室4,设置于第一表面20上,并用于接收承载有LED芯片1的流体,该流体的溶剂可以是醇类、多元醇类、酮类、卤代烃类等,其中,每一个LED芯片1包括发光主体10和磁性电极12,发光主体10包括相对设置的第一端面100和第二端面102,磁性电极12设置于第一端面100上。其中,LED芯片1的磁性电极12受到磁性基台3所产生的磁场作用,进而以第一端面100朝向凹槽24底部的方式落入凹槽24。LED芯片1的具体结构可参见上述实施例,在此不再赘述。
在一个实施方式中,请一并参阅图6,图6为图5中流体腔室一实施方式的结构示意图。流体腔室4设置有多个彼此间隔的流动通道40,其中,流动通道40沿凹槽24的行方向或列方向设置,且覆盖至少一行或一列凹槽24,流体从流动通道40的第一端A流动至第二端B。如图5所示,当流动通道40覆盖一行或一列凹槽24时,流动通道40的宽度d1大于至少两倍(例如,两倍、三倍、四倍等)的LED芯片1的宽度d2,LED芯片1的宽度d2可以是LED芯片1的最大宽度值。通过该设计方式,可以增大流动通道40内流过的LED芯片1的数量,进而提高流体组装效率。
在上述图6所示的流体腔室4中,流体通道40贯通流体腔室4的相对两侧。在其他实施方式中,请参阅图7,图7为图5中流体腔室另一实施方式的结构示意图。流体腔室4a中的流体通道40a也可不贯通流体腔室4a的相对两侧;此时可以在流体腔室4a中的对应位置处开设流体入口42a和流体出口44a,流体入口42a与各个流体通道40a的第一端A连通,流体出口44a与各个流体通道40a的第二端连通,混有LED芯片1的流体经流体入口42a后,通过流体通道40a流动至流体出口44a。
在另一个实施方式中,本申请所提供的组装设备还包括:控压组件,位于流动通道40的第一端A和/或第二端B,用于向流体提供压力,以使得流体匀速流动。该控压组件可以是泵等。
在又一个实施方式中,请再次参阅图5,本申请所提供的流体腔室4为透明材质,例如,透明塑料、透明玻璃等;本申请所提供的组装设备还包括:摄像装置5(例如,CCD相机等),位于流体腔室4远离阵列基板2一侧,用于获得 LED芯片1与阵列基板2的图像;判断装置6,用于接收图像,并根据图像判断阵列基板2的凹槽24是否捕获LED芯片1。在本实施例中,判断装置6可以为处理器等,当然,在其他实施例中,也可不采用判断装置6,可由人工进行判断。由于本申请所提供的流体腔室4为透明材质,摄像装置5可透过流体腔室4捕捉到LED芯片1与阵列基板2的图像,进而可根据该图像判断是否停止流体组装。
请参阅图8-图9,图8为本申请显示面板的组装过程一实施方式的流程示意图,图9为图8中步骤S101-步骤S107对应的一实施方式的结构示意。该组装过程包括:
S101:提供磁性基台3,将阵列基板放2置于磁性基台3上;具体地,如图9a所示,可以将阵列基板2的第二端面22与磁性基台3接触。
S102:提供流体腔室4,将流体腔室4设置有流动通道40的一面朝向阵列基板2,且流动通道40沿凹槽24的行方向或列方向设置,覆盖至少一行或一列凹槽24;具体地,如图9b所示。
S103:含有LED芯片1的流体从流动通道40的第一端流动至第二端;具体地,如图9c所示。在该步骤S103中,可以通过调节控压组件提供的压力,使得含有LED芯片1的流体匀速流动。此外,还可进一步通过控制流体速度的大小及调节磁性基台3提供的磁力大小,使得流体中LED芯片1的磁性电极12朝向阵列基板2。优选地,当流体速度越大时,磁性基台3提供的磁力也越大。另外,在本实施例中,为实现彩色化,流体中可以仅包含蓝色LED芯片、或红色LED芯片、或绿色LED芯片中的一种,对于阵列基板2上无需该蓝色LED芯片、或红色LED芯片、或绿色LED芯片填充的凹槽24可以预先利用类似掩膜板的工具遮挡。
S104:摄像装置5从流体腔室4远离阵列基板2一侧获得LED芯片1与阵列基板2的图像,判断装置6接收图像并根据图像判断阵列基板2的凹槽24是否捕获LED芯片1;具体地,如图9d所示。
S105:若阵列基板2上的所有凹槽24内均捕获到LED芯片1,则将流体腔室4撤去,对阵列基板2进行清洗以及烘干。具体地,如图9e所示。在本步骤S105中,磁性基台3并不会撤去,由于磁性基台3的作用,凹槽24内的LED芯片1并不会受其他流程扰动,不脱离凹槽24。
S106:撤去磁性基台3,将阵列基板2的接触电极280与LED芯片1的磁 性电极12进行焊接。具体地,如图9f所示,在形成阵列基板2时,可以预先在接触电极280上涂覆一层焊料,阵列基板2的接触电极280与LED芯片1通过热回流的方式焊接。
S107:在LED芯片1远离阵列基板2一侧形成塑封层25。具体地,如图9g所示,塑封层25可采用现有技术中任一种方式形成,在此不再详述。
总而言之,区别于现有技术的情况,本申请所提供的LED芯片中包括磁性电极,磁性电极位于LED芯片的发光主体的第一端面上,当采用流体自组装方法对LED芯片进行转移时,磁性电极由于受到外加磁场的作用,在磁性吸引力的作用下,带动LED芯片的第一端面朝向预定方向设置,进而提高LED芯片转移的成功率,且进一步提升流体组装的效率。
以上所述仅为本申请的实施方式,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。
Claims (15)
- 一种LED芯片,所述LED芯片包括:发光主体,包括相对设置的第一端面和第二端面;磁性电极,设置于所述第一端面上,以使得在所述LED芯片放置于流体中且受到外加磁场的作用时,所述第一端面朝预定方向设置。
- 根据权利要求1所述的LED芯片,其中,所述第一端面的面积小于所述第二端面的面积。
- 根据权利要求2所述的LED芯片,其中,所述发光主体沿所述第一端面和所述第二端面的垂直方向的纵截面呈倒梯形设置。
- 根据权利要求1所述的LED芯片,其中,所述LED芯片为垂直型结构,所述磁性电极为所述LED芯片的阳极。
- 根据权利要求1所述的LED芯片,其中,所述LED芯片为横向型结构,所述磁性电极为所述LED芯片的阳极或者阴极中至少一个。
- 一种显示面板,所述显示面板包括:阵列基板,包括相对设置的第一表面和第二表面,所述第一表面设置有以阵列方式排布的多个凹槽;多个LED芯片,分别对应设置于所述凹槽内,所述每一个所述LED芯片包括发光主体和磁性电极,所述发光主体包括相对设置的第一端面和第二端面,所述磁性电极设置于所述第一端面上,并朝向所述凹槽的底部设置。
- 根据权利要求6所述的显示面板,其中,所述第一端面的面积小于所述第二端面的面积,且所述发光主体沿所述第一端面和所述第二端面的垂直方向的纵截面呈倒梯形设置,所述凹槽的形状与所述LED芯片的形状相匹配。
- 根据权利要求7所述的显示面板,其中,所述凹槽在垂直于所述第一表面的方向上划分成第一槽段和第二槽段,其中所述第一槽段的形状与所述磁性电极相匹配且用于容纳所述磁性电极,所述第二槽段的形状与所述发光主体相匹配且用于容纳所述发光主体。
- 根据权利要求8所述的显示面板,其中,所述阵列基板包括:衬底;第一膜层,位于所述衬底一侧,所述第一膜层设置有驱动电路以及与所述驱动电路连接的多个接触电极;第二膜层,位于所述第一膜层远离所述衬底一侧,所述第二膜层设置有所 述第一槽段,所述第一槽段暴露对应的所述接触电极;第三膜层,位于所述第二膜层远离所述衬底一侧,所述第三膜层设置有所述第二槽段。
- 根据权利要求9所述的显示面板,其中,所述第二膜层与所述第三膜层为同一层膜。
- 一种显示面板的组装设备,所述组装设备包括:磁性基台,用于承载阵列基板,所述阵列基板包括相对设置的第一表面和第二表面,所述第一表面设置有以阵列方式排布的多个凹槽;流体腔室,设置于所述第一表面上,并用于接收承载有LED芯片的流体,其中,每一个所述LED芯片包括发光主体和磁性电极,所述发光主体包括相对设置的第一端面和第二端面,所述磁性电极设置于所述第一端面上;其中,所述LED芯片的所述磁性电极受到所述磁性基台所产生的磁场作用,进而以所述第一端面朝向所述凹槽底部的方式落入所述凹槽。
- 根据权利要求11所述的组装设备,其中,所述流体腔室设置有多个彼此间隔的流动通道,其中所述流动通道沿所述凹槽的行方向或列方向设置,且覆盖至少一行或一列所述凹槽,所述流体从所述流动通道的第一端流动至第二端。
- 根据权利要求12所述的组装设备,其中,所述流动通道覆盖一行或一列所述凹槽,所述流动通道的宽度大于至少两倍的所述LED芯片的宽度。
- 根据权利要求12所述的组装设备,其中,所述组装设备还包括:控压组件,位于所述流动通道的所述第一端和/或所述第二端,用于向所述流体提供压力,以使得所述流体匀速流动。
- 根据权利要求11所述的组装设备,其中,所述流体腔室为透明材质;所述组装设备还包括:摄像装置,位于所述流体腔室远离所述阵列基板一侧,用于获得所述LED芯片与所述阵列基板的图像;判断装置,用于接收所述图像,并根据所述图像判断所述阵列基板的所述凹槽是否捕获所述LED芯片。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020217016367A KR102551554B1 (ko) | 2018-10-31 | 2019-02-27 | Led 칩, 디스플레이 패널 및 디스플레이 패널의 조립 디바이스 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811291809.9 | 2018-10-31 | ||
CN201811291809.9A CN111129245B (zh) | 2018-10-31 | 2018-10-31 | 一种led芯片、显示面板及显示面板的组装设备 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020087817A1 true WO2020087817A1 (zh) | 2020-05-07 |
Family
ID=70462025
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/076363 WO2020087817A1 (zh) | 2018-10-31 | 2019-02-27 | 一种led芯片、显示面板及显示面板的组装设备 |
Country Status (3)
Country | Link |
---|---|
KR (1) | KR102551554B1 (zh) |
CN (1) | CN111129245B (zh) |
WO (1) | WO2020087817A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112967951A (zh) * | 2021-01-29 | 2021-06-15 | 天马微电子股份有限公司 | 一种发光元件组装系统及组装方法 |
WO2023277301A1 (ko) * | 2021-06-30 | 2023-01-05 | 삼성전자주식회사 | 무기 발광 소자, 디스플레이 모듈 및 그 제조 방법 |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113707786B (zh) * | 2020-05-20 | 2022-09-27 | 重庆康佳光电技术研究院有限公司 | 一种转移方法及显示装置 |
CN112002792B (zh) * | 2020-07-06 | 2022-02-22 | 深圳市隆利科技股份有限公司 | 一种电泳组装制备led显示器的方法 |
CN111933774B (zh) * | 2020-07-06 | 2022-09-23 | 深圳市隆利科技股份有限公司 | 流体制备led显示器的方法和系统 |
CN114093986A (zh) * | 2020-08-24 | 2022-02-25 | 北京芯海视界三维科技有限公司 | 光学材料填充方法及装置 |
CN112599459B (zh) * | 2020-12-16 | 2023-08-22 | 福州京东方光电科技有限公司 | 微发光二极管芯片的转移方法、显示面板及其制作方法 |
CN112838079B (zh) * | 2020-12-31 | 2022-06-10 | 湖北长江新型显示产业创新中心有限公司 | 显示模组及其制作方法 |
CN116312280B (zh) * | 2023-05-24 | 2023-08-25 | 惠科股份有限公司 | 灯板、灯板的制作方法和显示装置 |
CN117080335B (zh) * | 2023-10-12 | 2024-01-26 | 惠科股份有限公司 | 微型发光二极管及显示面板 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107425101A (zh) * | 2017-07-11 | 2017-12-01 | 华灿光电(浙江)有限公司 | 一种微型发光二极管芯片巨量转移的方法 |
US20180254395A1 (en) * | 2017-01-26 | 2018-09-06 | International Business Machines Corporation | Magnetically guided chiplet displacement |
CN108682312A (zh) * | 2018-05-12 | 2018-10-19 | 汕头超声显示器技术有限公司 | 一种led阵列装置的制造方法 |
CN108962042A (zh) * | 2018-07-23 | 2018-12-07 | 上海天马微电子有限公司 | 显示面板及其制作方法 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5545291A (en) * | 1993-12-17 | 1996-08-13 | The Regents Of The University Of California | Method for fabricating self-assembling microstructures |
US20060051517A1 (en) * | 2004-09-03 | 2006-03-09 | Eastman Kodak Company | Thermally controlled fluidic self-assembly method and support |
WO2007062268A2 (en) * | 2005-11-28 | 2007-05-31 | University Of Florida Research Foundation, Inc. | Method and structure for magnetically-directed, self-assembly of three-dimensional structures |
KR20110117424A (ko) * | 2010-04-21 | 2011-10-27 | (주)아이엠에스나노텍 | 칩 엘이디 표면 검사 장치 및 그 방법 |
KR102169275B1 (ko) * | 2015-08-21 | 2020-10-23 | 엘지전자 주식회사 | 표시장치 |
CN106816140B (zh) * | 2015-11-27 | 2019-04-05 | 群创光电股份有限公司 | 显示面板及其驱动方法 |
KR20180117004A (ko) * | 2017-04-18 | 2018-10-26 | 광주과학기술원 | 액체를 이용한 마이크로 소자의 이송방법 |
CN107452840B (zh) * | 2017-07-14 | 2019-03-01 | 华灿光电(浙江)有限公司 | 一种led面板及其制作方法 |
-
2018
- 2018-10-31 CN CN201811291809.9A patent/CN111129245B/zh active Active
-
2019
- 2019-02-27 WO PCT/CN2019/076363 patent/WO2020087817A1/zh active Application Filing
- 2019-02-27 KR KR1020217016367A patent/KR102551554B1/ko active IP Right Grant
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180254395A1 (en) * | 2017-01-26 | 2018-09-06 | International Business Machines Corporation | Magnetically guided chiplet displacement |
CN107425101A (zh) * | 2017-07-11 | 2017-12-01 | 华灿光电(浙江)有限公司 | 一种微型发光二极管芯片巨量转移的方法 |
CN108682312A (zh) * | 2018-05-12 | 2018-10-19 | 汕头超声显示器技术有限公司 | 一种led阵列装置的制造方法 |
CN108962042A (zh) * | 2018-07-23 | 2018-12-07 | 上海天马微电子有限公司 | 显示面板及其制作方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112967951A (zh) * | 2021-01-29 | 2021-06-15 | 天马微电子股份有限公司 | 一种发光元件组装系统及组装方法 |
WO2023277301A1 (ko) * | 2021-06-30 | 2023-01-05 | 삼성전자주식회사 | 무기 발광 소자, 디스플레이 모듈 및 그 제조 방법 |
Also Published As
Publication number | Publication date |
---|---|
CN111129245A (zh) | 2020-05-08 |
CN111129245B (zh) | 2022-09-06 |
KR102551554B1 (ko) | 2023-07-06 |
KR20210088607A (ko) | 2021-07-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020087817A1 (zh) | 一种led芯片、显示面板及显示面板的组装设备 | |
US20200058533A1 (en) | Method for transferring massive micro-led and micro-led substrate | |
WO2019218775A1 (zh) | 一种led阵列装置的制造方法 | |
TWI710103B (zh) | 發光面板及製造此種發光面板的方法 | |
US11362072B2 (en) | Light emitting diodes having different shapes with each having corresponding shape with respective pixel defining layer openings and a transfer method thereof | |
US6919581B2 (en) | Image display unit and production method thereof | |
WO2019223567A1 (zh) | 显示基板、显示装置以及显示基板的制作方法 | |
CN107833954A (zh) | 具有表面贴装发光元件的显示器 | |
CN110112090A (zh) | 统一微型发光二极管元器件取向的方法及应用其的巨量转移方法 | |
EP3796382A1 (en) | Device for self-assembling semiconductor light-emitting diodes | |
JP2003029654A (ja) | 表示装置 | |
JP2002313914A (ja) | 配線形成方法及びこれを用いた素子の配列方法、画像表示装置の製造方法 | |
US8633500B2 (en) | Light emitting diodes and methods for manufacturing light emitting diodes | |
US20210090929A1 (en) | Substrate chuck for self-assembling semiconductor light emitting diodes | |
CN112530833B (zh) | 用于自组装半导体发光二极管的装置 | |
WO2021120075A1 (zh) | 一种tft结构、发光件、显示器及其制备方法 | |
CN115332238B (zh) | 一种超高分辨率Micro-LED显示器件及其金属薄膜键合方法 | |
JP2002344028A (ja) | 素子の転写方法及び画像表示装置の製造方法 | |
EP4094946A1 (en) | Inkjet printing device, method for printing bipolar elements, and method for manufacturing display device | |
TWI685987B (zh) | 微晶粒模組轉移方法 | |
KR102174847B1 (ko) | 디스플레이 장치의 제조 방법 및 디스플레이 장치 | |
JP2003005674A (ja) | 表示素子及び画像表示装置 | |
US20220149236A1 (en) | Structure of micro light-emitting device and method of transferring micro light-emitting device | |
KR20210077847A (ko) | 잉크젯 프린팅 장치, 쌍극성 소자의 프린팅 방법 및 표시 장치의 제조 방법 | |
WO2020062746A1 (zh) | 驱动背板及其制备方法和显示装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19877865 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20217016367 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19877865 Country of ref document: EP Kind code of ref document: A1 |