WO2020087719A1 - 碳化硅长晶剩料制备的高纯碳材料及其制备方法和应用 - Google Patents

碳化硅长晶剩料制备的高纯碳材料及其制备方法和应用 Download PDF

Info

Publication number
WO2020087719A1
WO2020087719A1 PCT/CN2018/123712 CN2018123712W WO2020087719A1 WO 2020087719 A1 WO2020087719 A1 WO 2020087719A1 CN 2018123712 W CN2018123712 W CN 2018123712W WO 2020087719 A1 WO2020087719 A1 WO 2020087719A1
Authority
WO
WIPO (PCT)
Prior art keywords
crucible
insulation layer
silicon carbide
thermal insulation
box
Prior art date
Application number
PCT/CN2018/123712
Other languages
English (en)
French (fr)
Inventor
李霞
高超
梁晓亮
宁秀秀
刘鹏飞
宗艳民
刘家朋
李加林
李长进
Original Assignee
山东天岳先进材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201811302560.7A external-priority patent/CN109280977B/zh
Priority claimed from CN201811302578.7A external-priority patent/CN109437148B/zh
Priority claimed from CN201821802345.9U external-priority patent/CN209481854U/zh
Application filed by 山东天岳先进材料科技有限公司 filed Critical 山东天岳先进材料科技有限公司
Publication of WO2020087719A1 publication Critical patent/WO2020087719A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B35/00Apparatus not otherwise provided for, specially adapted for the growth, production or after-treatment of single crystals or of a homogeneous polycrystalline material with defined structure

Definitions

  • the present application relates to the technical field of silicon carbide long crystals, in particular to a method for preparing high-purity carbon materials with silicon carbide long crystals leftover material, and preparation methods and applications thereof.
  • Silicon carbide single crystal is one of the most important third-generation semiconductor materials. Because of its excellent band gap width, high saturation electron mobility, strong breakdown field, and high thermal conductivity, it is widely used in power electronics and radio frequency. Devices, optoelectronic devices and other fields.
  • the thermal insulation materials used for crystal growth are usually graphite paste, graphite paper and other high temperature resistant
  • the silicon atmosphere will diffuse to the vicinity of the insulation material, and react with the insulation material to cause corrosion of the insulation material and accelerate the loss of the insulation material.
  • the insulation material is eroded, the performance of the insulation material will be affected, which will cause fluctuations in the temperature field and uneven temperature field during the crystal growth process, and induce a series of problems such as inclusions, microtubes, stress, etc., affecting the quality and quality of the crystal. Yield.
  • the remaining material after the growth of silicon carbide crystals in the silicon carbide long crystal remaining material is mainly silicon carbide polycrystals and carbon particles, which cannot be reused for silicon carbide long crystals, and there is currently no effective recycling method.
  • the thermal insulation structure used in the crucible is mainly a one-piece structure, which can no longer be used after being subjected to high temperature on the outer wall of the crucible or chemical erosion of the overflowing gas in the crucible.
  • the growth process of silicon carbide single crystal needs to be carried out at a temperature of about 2000 ° C.
  • the thermal insulation material used for crystal growth is usually made of high-temperature resistant and expensive carbon materials such as graphite stick, graphite paper, etc.
  • the silicon atmosphere diffuses to the vicinity of the insulation material, and reacts with the insulation material to cause erosion of the insulation material and accelerate the loss of the insulation material.
  • the insulation structure used in the crucible is replaced only by partial erosion, it will cause serious waste and increase production costs; if it is used repeatedly for many times, it will cause the fluctuation of the temperature field during the crystal growth process in the crucible, and the temperature field will not Uniform, and induce a series of problems such as inclusions, microtubes, stress, etc., affecting the quality and yield of crystals.
  • the purpose of the present application is to provide a comprehensive utilization method of silicon carbide long crystal remaining material, which realizes the secondary utilization of the long crystal remaining material, ensuring Under the premise of consistent thermal insulation performance of thermal insulation materials, the recycling of thermal insulation materials can be realized to save costs.
  • the high-purity carbon material is used to make a filler for a thermal insulation structure
  • the thermal insulation structure is provided outside the silicon carbide long crystal crucible for thermal insulation;
  • the silicon carbide removal includes the following steps:
  • the decomposition and sublimation reaction is carried out in a silicon carbide long crystal crucible using a physical vapor transport method, and seed crystals located on the top of the crucible are used to adsorb the gas crystals of the decomposition and sublimation;
  • step S1 further includes a step of homogenizing the coarse material containing carbon particles.
  • reaction conditions for decomposition and sublimation are: pressure 5-50 mbar, temperature 2000-2500 ° C;
  • reaction time of the decomposition and sublimation is: 5-50h;
  • the decomposition and sublimation reaction is carried out in the presence of hydrogen and inert gas
  • the inert gas is one or more mixed gases among argon, helium and other rare gases.
  • the seed crystal is carbon material or silicon carbide material, preferably graphite paper.
  • the decomposition and sublimation reaction is carried out in a silicon carbide long crystal crucible using a physical vapor transport method, and the carbon material or silicon carbide material on the top of the crucible is used to adsorb the gas crystals of the decomposition and sublimation;
  • the ratio of the coarse material containing carbon particles to the volume of the crucible is (0.2-0.8): 1.
  • the distance between the coarse material containing carbon particles and the top of the crucible is 20-150 cm;
  • the mass ratio of silicon carbide to carbon in the coarse material containing carbon particles is (0.05-1): 1.
  • the thermal insulation structure is an integral type or is formed by detachably connecting at least three thermal insulation layers;
  • the heat preservation layer includes a sealed box body and the filler installed in the box body, the box body includes a box wall and a box cover;
  • the detachable connection method may specifically be splicing or stacking; the box cover is used to take and place the filler, and when the box body is eroded, The filling can be taken out and filled into other new or uneroded boxes to continue to use.
  • the at least three heat preservation layers include: at least one upper heat preservation layer located above the crucible, at least one lower heat preservation layer located below the crucible, and at least one outer heat preservation layer located outside the side wall of the crucible.
  • the outer heat insulation layer is cylindrical, and when the number of the outer heat insulation layer is two or more, each of the outer heat insulation layers is stacked and sleeved up and down outside the crucible;
  • the outer side of the box wall of the upper insulation layer and the inner side of the box wall of the outer insulation layer are sealed by a screw connection; the outer side of the box wall of the lower insulation layer and the inner side of the box wall of the outer insulation layer are screwed together seal.
  • the at least one upper insulation layer, the at least one lower insulation layer, and / or the middle of the at least one outer insulation layer is provided with a through hole communicating with the inside and outside; the through hole is used to measure the temperature of the crucible, the through hole The position of depends on the crucible and the actual position where the temperature needs to be measured; the size and / or shape and / or position of the through hole may or may not be adjustable;
  • the number of the at least one upper insulation layer and / or the at least one lower insulation layer is at least two, and the through hole is used as The center is arranged in the form of a ring sleeve; at this time, the axial and radial temperature fields in the crucible can be adjusted to control the growth rate and crystal quality of the crystal in the crucible; the removable area can also be set at different positions Different spliced block-shaped insulation layers form the through holes.
  • the box cover is provided at a position where the thermal insulation layer is convenient for opening or for easy access to the filler or the box cover itself is not easy to fall off, preferably above the box body;
  • the box cover is T-shaped to effectively prevent the filler inside the box body from floating out;
  • the box cover and the box wall of the box body are connected by threads or graphite nails.
  • the thickness of the box wall and the box cover is greater than or equal to 3 mm; it is determined according to the supporting ability and anti-deformation ability of the material;
  • the thickness of the inner cavity of the box is greater than or equal to 20mm; it depends on the thermal insulation performance of the filler material and the thermal insulation capacity required in the actual production process;
  • the material of the box body has a Shore hardness greater than 80 degrees and a Young's modulus greater than 5GPa;
  • the material of the box is mainly used for supporting, preventing insulation deformation, etc .;
  • the material of the box is a material resistant to high temperature corrosion and / or chemical corrosion, specifically carbon-carbon composite materials, graphite felt, graphite paper, metal tungsten, metal molybdenum, metal tungsten nitride or metal molybdenum nitride;
  • the heat preservation structure is sequentially provided with one layer, two layers or more than three layers outward from the outer wall of the crucible.
  • This application protects the application of silicon carbide long crystal leftovers in the preparation of thermal insulation materials.
  • a split-fill crucible insulation structure is provided.
  • the insulation structure has the advantages of material saving, cost reduction, ease of use, and good insulation effect.
  • a split-filled crucible insulation structure which is closely attached to the crucible and is formed by detachably connecting at least three insulation layers; in order to replace the insulation layer of the eroded part;
  • the detachable connection method can be splicing or stacking;
  • the heat preservation layer includes a sealed box and a filler installed in the box.
  • the box includes a box wall and a box cover.
  • the box cover is used to take and place the filler. When the box is eroded The filling inside can be taken out and filled into other new or uneroded boxes to continue to use.
  • the at least three heat preservation layers include: at least one upper heat preservation layer located above the crucible, at least one lower heat preservation layer located below the crucible, and at least one outer heat preservation layer located outside the side wall of the crucible.
  • the outer heat insulation layer is cylindrical, and when the number of the outer heat insulation layer is two or more, each of the outer heat insulation layers is stacked on the top and bottom of the crucible.
  • the at least one upper insulation layer, the at least one lower insulation layer, and / or the middle of the at least one outer insulation layer is provided with a through hole communicating with the inside and outside; the through hole is used to measure the temperature of the crucible, the through hole The position of the crucible depends on the actual temperature measurement position;
  • the size and / or shape and / or position of the through hole may or may not be adjustable;
  • the number of the at least one upper insulation layer and / or the at least one lower insulation layer is at least two, and the through hole is used as The center is arranged in the form of a ring sleeve; at this time, the axial and radial temperature fields in the crucible can be adjusted to control the growth rate and crystal quality of the crystal in the crucible; the removable area can also be set at different positions Different spliced block-shaped insulation layers form the through holes.
  • the box cover is provided at a position where the thermal insulation layer is convenient for opening or for easy handling of the filler or the box cover itself is not easy to fall off, preferably above the box body;
  • the box cover is T-shaped to effectively prevent the filler inside the box from floating out;
  • the box cover and the box wall of the box body are connected by threads or graphite nails.
  • the outside of the box wall of the upper insulation layer and the inside of the box wall of the outer insulation layer are sealed by a screw connection; the outside of the box wall of the lower insulation layer and the inside of the box wall of the outer insulation layer are sealed by a screw connection ; In order to achieve the role of the crucible inside the sealed insulation structure.
  • the thickness of the box wall and the box cover is greater than or equal to 3 mm; it is determined according to the supporting ability and anti-deformation ability of the material;
  • the thickness of the inner cavity of the box is greater than or equal to 20 mm; it depends on the thermal insulation performance of the filler material and the thermal insulation capacity required in the actual production process.
  • the material of the box of the upper insulation layer has a Shore hardness greater than 80 degrees and a Young's modulus greater than 5GPa;
  • the material of the filler is thermal insulation material
  • the material of the box is mainly used for supporting and preventing thermal insulation deformation; the filler is mainly used for thermal insulation.
  • the material of the box is a material resistant to high temperature corrosion and / or chemical corrosion, specifically carbon-carbon composite materials, graphite felt, graphite paper, metal tungsten, metal molybdenum, metal tungsten nitride or metal molybdenum nitride;
  • the material of the filler is carbon material with loose porous structure, carbon-carbon composite material, graphite felt, or graphite paper.
  • the heat preservation structure is sequentially provided with one layer, two layers or more than three layers outward from the outer wall of the crucible.
  • the present application provides a method for preparing a high-purity carbon material from silicon carbide long crystal residues.
  • the method has high carbon purity and high recovery rate.
  • the method is simple and easy to use, and the original long-term
  • the crystal crucible equipment does not need to add new process equipment, which provides a new way for the source of high-purity carbon materials and the utilization of silicon carbide long crystal residues.
  • the method for preparing high-purity carbon material from silicon carbide long crystal remaining material includes the following steps:
  • the remaining silicon carbide polycrystals in the coarse material containing carbon particles are removed by decomposition and sublimation, and the remaining coarse materials containing carbon particles are collected as high-purity carbon materials.
  • the decomposition and sublimation reaction is carried out in a silicon carbide long crystal crucible using a physical vapor transport method, and a seed crystal located on the top of the crucible is used to adsorb the gas crystal of the decomposition and sublimation.
  • the seed crystal is a carbon material (such as graphite paper) or a silicon carbide material (such as a silicon carbide wafer), and a carbon material such as graphite paper is preferably used to reduce costs.
  • a carbon material such as graphite paper
  • silicon carbide material such as a silicon carbide wafer
  • step S1 further includes a step of homogenizing the coarse material containing carbon particles (such as grinding).
  • reaction conditions for decomposition and sublimation are: pressure 5-50 mbar, temperature 2000-2500 ° C.
  • reaction time of the decomposition and sublimation is: 5-50h.
  • the decomposition and sublimation reaction is carried out under the protective conditions of hydrogen and inert gas;
  • the inert gas is one or more mixed gases among argon, helium and other rare gases.
  • the ratio of the coarse material containing carbon particles to the volume of the crucible is (0.2-0.8): 1.
  • the distance between the coarse material containing carbon particles and the top of the crucible is 20-150 cm.
  • the mass ratio of silicon carbide to carbon in the coarse material containing carbon particles is (0.05-1): 1.
  • the present application protects the high-purity carbon material obtained in any of the above-mentioned methods and its application in the preparation of thermal insulation materials.
  • the thermal insulation structure is formed by detachable connection of at least three thermal insulation layers, which is convenient to replace and save costs;
  • the thermal insulation layer itself is composed of the box body and its internal filler, which separates the two functions of high temperature resistance / chemical erosion and thermal insulation, which is easy to replace and save materials;
  • the method is simple and easy: the application is carried out in the physical vapor transmission method in the silicon carbide long crystal crucible, without adding new process equipment and new chemical reagents;
  • the method described in the present application realizes the secondary utilization of the silicon carbide long crystal remaining material, and realizes the recycling of the insulation material on the premise of ensuring the consistency of the insulation performance of the insulation material, saving costs.
  • FIG. 1 is a schematic flow chart of the comprehensive utilization method of silicon carbide long crystal remaining material.
  • Figure 2 The placement of materials in the inner cavity of silicon carbide long crystal crucible.
  • the reference signs are as follows: 100 is a crucible, 101 is graphite paper, and 102 is a coarse material containing carbon particles.
  • FIG. 3 is a schematic diagram of a longitudinal section of a heat insulation structure of a split-fill crucible.
  • Fig. 4 is a schematic diagram of a longitudinal section of the lid of the insulation layer adopting a graphite nail fixing method.
  • FIG. 5 is a schematic diagram of a longitudinal section of the outer wall of the lower insulation layer provided with threads.
  • Fig. 6 is a schematic diagram of a longitudinal section of three external insulation layers.
  • the silicon carbide long crystal remaining material also contains a part of the silicon carbide polycrystal, which needs to be removed by heating at high temperature.
  • the specific methods are as follows:
  • the obtained coarse material containing carbon particles (mainly carbon particles and containing a certain amount of silicon carbide crystals) is simply ground, and then put into a crucible using physical vapor transport method to grow silicon carbide crystals, and place the crucible in In the crystal growth furnace, the placement method is similar to the crystal growth process. The difference is that graphite paper is used to replace the higher-priced seed crystals, and the coarse material containing carbon particles is placed at the bottom of the crucible.
  • the specific placement method is shown in Figure 2;
  • the ratio of the coarse material containing carbon particles to the volume of the crucible is 0.6: 1; the distance between the coarse material containing carbon particles and the top of the crucible is 30 cm; The mass ratio of silicon carbide to carbon in the coarse material is 0.1: 1.
  • the pressure in the crucible growth chamber is gradually reduced from one atmospheric pressure to 50 mbar, and the furnace temperature is gradually increased to 2500 ° C;
  • a high-purity carbon material is obtained as a filler in step two.
  • the purity of the high-purity carbon material was 99%, and the recovery rate (the percentage of the amount of carbon in the high-purity carbon material to the amount of carbon in the coarse material containing carbon particles) was 95%.
  • the thermal insulation structure is closely attached to the silicon carbide long crystal crucible for thermal insulation; when the filler in the thermal insulation structure is eroded and cannot be used for thermal insulation, the thermal insulation structure is removed according to the method of step 1 Re-make the high-purity carbon material, and make the insulation structure according to the method of step two, and then go to step three.
  • step 2) in the crucible, the ratio of the coarse material containing carbon particles to the volume of the crucible is 0.2: 1; the distance between the coarse material containing carbon particles and the top of the crucible is 20 cm; The mass ratio of silicon carbide to carbon in the coarse material containing carbon particles is 0.05: 1;
  • steps 4) and 5) after the pressure in the crucible growth chamber is 5 mbar and the temperature is 2000 ° C, it is stable at this low pressure and temperature for 5 hours;
  • Embodiment 3 Comprehensive utilization method of silicon carbide long crystal remaining material
  • step 2) in the crucible, the ratio of the coarse material containing carbon particles to the volume of the crucible is 0.8: 1; the distance between the coarse material containing carbon particles and the top of the crucible is 150 cm; The mass ratio of silicon carbide to carbon in the coarse material containing carbon particles is 1: 1;
  • steps 4) and 5) after the pressure in the crucible growth chamber is 30 mbar and the temperature is 2300 ° C, it is stable at this low pressure and temperature for 30 hours;
  • steps 4) and 5) after the pressure in the crucible growth chamber is 30 mbar and the temperature is 1800 ° C, it is stable at this low pressure and temperature for 30 hours;
  • the purity of the carbon material was 75%, and the recovery rate was 86%. The results show that the purity of the obtained carbon material is significantly reduced when the temperature is lower than 2000 ° C.
  • steps 4) and 5) after the pressure in the crucible growth chamber is 30 mbar and the temperature is 2300 ° C, it is stable at this low pressure and temperature for 3 hours;
  • step 2 of Examples 1-3 and Comparative Examples 1-2 the split-fill crucible insulation structure is shown in FIG. 3, which is formed by three insulation layers detachably connected; the insulation layer includes a closed box A body 9 and a filler 9 installed in the cavity 8 in the box, the box includes a box wall 7 and a box cover 10;
  • the three thermal insulation layers are respectively: an upper thermal insulation layer 1 located above the crucible 3, a lower thermal insulation layer 6 located below the crucible 3, and an external thermal insulation layer 2 that is cylindrical outside the side wall of the crucible 3;
  • the upper insulation layer 1 and the outer insulation layer 2 are detachable connections;
  • the lower insulation layer 6 and the outer insulation layer 2 are detachable connections
  • the material of the cabinet is high temperature corrosion resistance and chemical corrosion resistance; and it should have certain hardness and anti-deformation characteristics.
  • the Shore hardness is greater than 80 degrees and the Young's modulus is greater than 5GPa; it mainly plays a role of supporting and preventing insulation deformation;
  • the material of the box is carbon-carbon composite material, or graphite felt, graphite paper, metal tungsten, metal molybdenum, metal tungsten nitride or metal molybdenum nitrogen Chemical compound
  • the material of the filler 9 is the high-purity carbon material obtained by removing the silicon carbide in the silicon carbide long crystal residue, and has a loose porous structure.
  • a through-hole 11 communicating with the inside and outside is provided for measuring the temperature of the crucible;
  • the middle part of the outer thermal insulation layer 2 is provided in the middle of the upper insulation layer 1.
  • the size, shape and position of the through hole 11 can be adjusted to adjust the axial and radial temperature field in the crucible 11 and control the growth rate and crystal quality of the crystal in the crucible;
  • the central sleeve-shaped thermal insulation layer is spliced together, and a removable block-shaped thermal insulation layer with different areas can be provided at different positions to form the through hole 11.
  • the box cover 10 is provided above the box wall 7; it can also be provided at other locations where the thermal insulation layer is easy to open or easy to take in and out of the filler 9 or the box cover 10 itself is not easy to fall off.
  • the shape of the box cover 10 is T-shaped, which can effectively prevent the filler inside the bracket from floating out;
  • the wall thickness of the box is greater than or equal to 3mm; it can be determined according to the support capacity and anti-deformation capacity of the bracket material;
  • the thickness of the cavity 8 in the box is greater than or equal to 20 mm; specifically, it can be determined according to the thermal insulation performance of the filler material and the thermal insulation capacity required in the actual production process.
  • the heat preservation structure is successively provided with a layer outward from the outer wall of the crucible 3, or two or more layers to increase the heat preservation effect.
  • the box cover 10 and the box wall 7 are connected by graphite nails 12, and may also be connected by screws (not shown in the figure).
  • the left and right outer walls of the lower insulation layer 6 are provided with threads 13 to facilitate sealing with the inner wall of the outer insulation layer 6 by thread connection, and the upper outer wall of the lower insulation layer 6 is provided with threads to connect with the crucible 5 Thread connection and sealing of the lower outer wall;
  • the outer wall of the box wall 7 of the upper insulation layer 1 and the inner wall of the box wall 7 of the outer insulation layer 2 are sealed by screw connection (not shown in the figure).
  • the number of the outer heat-insulating layers 2 is three, and each outer heat-insulating layer 2 is stacked on the upper and lower sides of the crucible to facilitate replacement and save materials.
  • the method of using the split-fill crucible insulation structure is as follows:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本申请公开了一种由碳化硅长晶剩料制备高纯碳材料及其制备方法和应用。本申请的碳化硅长晶剩料的应用方法,所述方法包括如下步骤:S1、将碳化硅长晶剩料中的碳化硅去除获得高纯碳材料;S2、将所述高纯碳材料用于制作保温结构的填充物;S3、将所述保温结构设于碳化硅长晶坩埚外用于保温;S4、当所述保温结构中的所述填充物被侵蚀不能用于保温时,将被侵蚀的所述填充物按照步骤S1—S4的方法重复进行。本申请方法实现了长晶剩料的二次利用,在保证保温材料保温性能一致性的前提下,实现保温材料的循环使用,节约成本。

Description

碳化硅长晶剩料制备的高纯碳材料及其制备方法和应用 技术领域
本申请涉及碳化硅长晶技术领域,具体说是一种碳化硅长晶剩料制备高纯碳材料及其制备方法和应用。
背景技术
碳化硅单晶是最重要的第三代半导体材料之一,因其具有禁带宽度大、饱和电子迁移率高、击穿场强大、热导率高等优异性能,被广泛应用于电力电子、射频器件、光电子器件等领域。
目前,高质量SiC单晶的制备技术日趋成熟,但其成本过高仍制约着SiC晶体的广泛应用,因此,各国科研人员及碳化硅生产企业都通过制备更大尺寸的SiC晶体和节约其制备部件如石墨坩埚镀保护膜这两方面来努力实现SiC晶体成本的降低。然而,在碳化硅晶体生长中高纯保温材料也是非常昂贵的,碳化硅单晶的生长过程需要在温度达到2000℃左右下进行,晶体生长所用的保温材料通常采用石墨粘、石墨纸等耐高温的碳材料制备,在长晶过程中会有硅气氛扩散到保温材料附近,与保温材料反应进而造成保温材料的侵蚀,加速保温材料的损耗。当保温材料受到侵蚀后,保温材料的性能会受到影响,进而会造成长晶过程中温场的波动、温场的不均匀,诱发包裹体、微管、应力等一系列问题,影响晶体的质量和产量。
碳化硅长晶剩料中碳化硅晶体生长后的剩料主要为碳化硅多晶及碳颗粒,不能重复用于碳化硅长晶,目前尚无有效回收利用的途径。
目前,坩埚使用的保温结构主要是一体式结构,受到坩埚外壁高温或坩埚内外溢气体的化学侵蚀后就无法继续使用。例如,碳化硅单晶的 生长过程需要在温度达到2000℃左右下进行,晶体生长所用的保温材料通常采用石墨粘、石墨纸等耐高温且价格昂贵的碳材料制备,在长晶过程中会有硅气氛扩散到保温材料附近,与保温材料反应进而造成保温材料的侵蚀,加速保温材料的损耗。
如果坩埚使用的保温结构仅因局部侵蚀而整个更换会造成严重的浪费,增加生产成本;如果继续循环多次使用,又会由于被侵蚀造成坩埚内长晶过程中温场的波动、温场的不均匀,而诱发包裹体、微管、应力等一系列问题,影响晶体的质量和产量。
发明内容
根据本申请的一方面,针对现有技术中存在的缺陷,本申请的目的在于提供一种碳化硅长晶剩料的综合利用方法,该方法实现了长晶剩料的二次利用,在保证保温材料保温性能一致性的前提下,实现保温材料的循环使用,节约成本。
为达到以上目的,本申请采取的技术方案是:
S1、将碳化硅长晶剩料中的碳化硅去除获得高纯碳材料;
S2、将所述高纯碳材料用于制作保温结构的填充物;
S3、将所述保温结构设于碳化硅长晶坩埚外用于保温;
S4、当所述保温结构中的所述填充物被侵蚀不能用于保温时,将被侵蚀的所述填充物按照步骤S1—S4的方法重复进行。
优选地,步骤S1中,所述碳化硅去除包括如下步骤:
S11、将碳化硅长晶剩料中的块状碳化硅多晶去除,获得含有碳颗粒的粗料;
S12、将所述含有碳颗粒的粗料中剩余的碳化硅多晶通过分解升华的方式去除,收集剩余的所述含有碳颗粒的粗料即为高纯碳材料。
优选地,所述分解升华的反应在采用物理气相传输法进行碳化硅长 晶坩埚中进行,使用位于所述坩埚顶部的种晶吸附所述分解升华的气体结晶;
和/或,步骤S1中,还包括对所述含有碳颗粒的粗料进行匀质化处理的步骤。
优选地,所述分解升华的反应条件为:压强5-50mbar、温度2000-2500℃;
所述分解升华的反应时间为:5-50h;
所述分解升华的反应是在氢气和惰性气体存在条件下进行的;
所述惰性气体为氩气、氦气及其他稀有气体中的一种或多种混合气体。
所述种晶为碳材料或碳化硅材料,优选为石墨纸。
优选地,所述分解升华的反应在采用物理气相传输法进行碳化硅长晶坩埚中进行,使用位于坩埚顶部的碳材料或碳化硅材料吸附所述分解升华的气体结晶;
在所述坩埚中,所述含有碳颗粒的粗料与所述坩埚容积之比为(0.2-0.8):1。
在所述坩埚中,所述含有碳颗粒的粗料与所述坩埚顶部的距离为20-150cm;
在所述坩埚中,所述含有碳颗粒的粗料中碳化硅与碳的质量比为(0.05-1):1。
优选地,所述保温结构为一体式或由至少三个保温层可拆卸式连接而成;
当所述保温结构由至少三个保温层可拆卸式连接而成时,所述保温层包括密闭箱体和装于所述箱体内的所述填充物,所述箱体包括箱壁和箱盖;以对被侵蚀部位的保温层进行更换;所述可拆卸式连接的方式具 体可为拼接或堆叠;所述箱盖用于取放所述填充物,当所述箱体被侵蚀时,其内的填充物可以取出,填入其它新的或未被侵蚀的箱体中继续使用。
优选地,所述至少三个保温层包括:位于所述坩埚上方的至少一个上保温层、位于所述坩埚下方的至少一个下保温层和位于所述坩埚侧壁外的至少一个外保温层。
优选地,所述外保温层呈筒状,当所述外保温层数量为两个或两个以上时,各所述外保温层上下堆叠套设于所述坩埚外;
和/或,所述上保温层的箱壁外侧与所述外保温层的箱壁内侧通过螺纹连接密封;所述下保温层的箱壁外侧与所述外保温层的箱壁内侧通过螺纹连接密封。
优选地,所述至少一个上保温层、所述至少一个下保温层和/或所述至少一个外保温层的中部开设内外相通的通孔;所述通孔用于测量坩埚温度,该通孔的位置根据坩埚以及实际需要测量温度的位置而定;所述通孔的大小和/或形状和/或位置可调节或不可调节;
当所述通孔的大小和/或形状和/或位置可调节时,所述至少一个上保温层和/或所述至少一个下保温层的数量为至少两个,且以所述通孔为中心向外呈环套状排布;此时可以调节所述坩埚内的轴向及径向温场,控制所述坩埚内晶体的生长速率及晶体质量;还可以在不同位置设置可取下的面积不同的拼接块状保温层形成所述通孔。
和/或,所述箱盖设于所述保温层便于打开或便于取放所述填充物或所述箱盖本身不容易脱落的位置,优选为所述箱体的上方;
和/或,所述箱盖为T字形,以有效阻挡所述箱体内部的填充物飘出;
和/或,所述箱盖与所述箱体的箱壁通过螺纹或石墨钉连接。
优选地,所述箱壁和所述箱盖的厚度大于或等于3mm;根据其材质的 支撑能力及抗变形能力而定;
所述箱体内腔的厚度大于或等于20mm;根据其内所述填充物材质的保温性能以及实际生产过程中所需要的保温能力而定;
和/或,所述箱体的材质邵氏硬度大于80度,杨氏模量大于5GPa;
所述箱体的材质为主要起支撑、防止保温变形等作用;
优选地,所述箱体的材质为耐高温侵蚀和/或耐化学侵蚀的材料,具体为碳碳复合材料、石墨毡、石墨纸、金属钨、金属钼、金属钨的氮化物或金属钼的氮化物;
和/或,所述保温结构由所述坩埚的外壁向外依次设一层、两层或三层以上。
本申请保护碳化硅长晶剩料在制备保温材料中的应用。
根据本申请的又一方面,提供一种分体填充式坩埚保温结构,该保温结构具有节省材料、降低成本、使用方便、保温效果好等优点。
根据本申请的一个方面,本申请采取的技术方案是:
一种分体填充式坩埚保温结构,所述保温结构紧密贴设于所述坩埚外,由至少三个保温层可拆卸式连接而成;以便于对被侵蚀部位的保温层进行更换;所述可拆卸式连接的方式具体可为拼接或堆叠;
所述保温层包括密闭箱体和装于所述箱体内的填充物,所述箱体包括箱壁和箱盖,所述箱盖用于取放所述填充物,当所述箱体被侵蚀时,其内的填充物可以取出,填入其它新的或未被侵蚀的箱体中继续使用。
优选地,所述至少三个保温层包括:位于所述坩埚上方的至少一个上保温层、位于所述坩埚下方的至少一个下保温层和位于所述坩埚侧壁外的至少一个外保温层。
优选地,所述外保温层呈筒状,当所述外保温层数量为两个或两个以上时,各所述外保温层上下堆叠套设于所述坩埚外。
优选地,所述至少一个上保温层、所述至少一个下保温层和/或所述至少一个外保温层的中部开设内外相通的通孔;所述通孔用于测量坩埚温度,该通孔的位置根据坩埚以及实际需要测量温度的位置而定;
所述通孔的大小和/或形状和/或位置可调节或不可调节;
当所述通孔的大小和/或形状和/或位置可调节时,所述至少一个上保温层和/或所述至少一个下保温层的数量为至少两个,且以所述通孔为中心向外呈环套状排布;此时可以调节所述坩埚内的轴向及径向温场,控制所述坩埚内晶体的生长速率及晶体质量;还可以在不同位置设置可取下的面积不同的拼接块状保温层形成所述通孔。
优选地,所述箱盖设于所述保温层便于打开或便于取放所述填充物或所述箱盖本身不容易脱落的位置,优选为所述箱体的上方;
所述箱盖为T字形,以有效阻挡所述箱体内部的填充物飘出;
所述箱盖与所述箱体的箱壁通过螺纹或石墨钉连接。
优选地,所述上保温层的箱壁外侧与所述外保温层的箱壁内侧通过螺纹连接密封;所述下保温层的箱壁外侧与所述外保温层的箱壁内侧通过螺纹连接密封;以达到密封保温结构内部坩埚的作用。
优选地,所述箱壁和所述箱盖的厚度大于或等于3mm;根据其材质的支撑能力及抗变形能力而定;
所述箱体内腔的厚度大于或等于20mm;根据其内所述填充物材质的保温性能以及实际生产过程中所需要的保温能力而定。
优选地,所述上保温层的箱体的材质邵氏硬度大于80度,杨氏模量大于5GPa;
所述填充物的材质为保温材料;
所述箱体的材质为主要起支撑、防止保温变形等作用;所述填充物主要起到保温作用。
优选地,所述箱体的材质为耐高温侵蚀和/或耐化学侵蚀的材料,具体为碳碳复合材料、石墨毡、石墨纸、金属钨、金属钼、金属钨的氮化物或金属钼的氮化物;
所述填充物的材质为具有疏松多孔结构的碳材料、碳碳复合材料、石墨毡、或石墨纸。
具体地,所述保温结构由所述坩埚的外壁向外依次设一层、两层或三层以上。
根据本申请的另一方面,本申请提供一种由碳化硅长晶剩料制备高纯碳材料的方法,该方法具有碳的纯度高、回收率高,方法简单易行,直接利用原有长晶坩埚设备进行,不需要添加新的工艺设备,为高纯碳材料的来源以及碳化硅长晶剩料的利用提供了一种新途径。
为达到以上目的,本申请采取的技术方案是:
由碳化硅长晶剩料制备高纯碳材料的方法,包括如下步骤:
S1、将碳化硅长晶剩料中的块状碳化硅多晶去除,获得含有碳颗粒的粗料;
S2、将含有碳颗粒的粗料中剩余的碳化硅多晶通过分解升华的方式去除,收集剩余的含有碳颗粒的粗料即为高纯碳材料。
优选地,所述分解升华的反应在采用物理气相传输法进行碳化硅长晶坩埚中进行,使用位于所述坩埚顶部的种晶吸附所述分解升华的气体结晶。
优选地,所述种晶为碳材料(如石墨纸)或碳化硅材料(如碳化硅晶片),优选使用碳材料如石墨纸,以降低成本。
优选地,步骤S1中,还包括对所述含有碳颗粒的粗料进行匀质化处理(如研磨)的步骤。
优选地,所述分解升华的反应条件为:压强5-50mbar、温度 2000-2500℃。
优选地,所述分解升华的反应时间为:5-50h。
优选地,所述分解升华的反应是在氢气和惰性气体保护条件下进行的;
所述惰性气体为氩气、氦气及其他稀有气体中的一种或多种混合气体。
优选地,在所述坩埚中,所述含有碳颗粒的粗料与所述坩埚容积之比为(0.2-0.8):1。
优选地,在所述坩埚中,所述含有碳颗粒的粗料与所述坩埚顶部的距离为20-150cm。
优选地,在所述坩埚中,所述含有碳颗粒的粗料中碳化硅与碳的质量比为(0.05-1):1。
本申请保护上述任一所述的方法中得到的所述高纯碳材料及其在制备保温材料中的应用。
本申请的有益效果包括但不限于:
1、保温结构由至少三个保温层可拆卸式连接而成,更换方便且节约成本;
2、保温层本身由箱体及其内部填充物组成,使耐高温/化学侵蚀与保温两个功能分离,便于更换且节省材料;
3、箱体及其内部填充物的材料选择范围广,材料成本降低;
4、整体结构设计合理,保温效果好。
5、碳材料纯度高:由于碳化硅晶体,尤其是高纯碳化硅晶体对金属含量、N含量等杂质都有严格的要求,杂质元素浓度一般低于1E+13,因此碳化硅晶体生长后的剩料主要为碳化硅多晶及碳颗粒,杂质含量很低, 因此经过本申请方法从含有碳颗粒的粗料中去除碳化硅多晶后,即可得到高纯碳材料;
6、方法简单易行:本申请在物理气相传输法进行碳化硅长晶坩埚内进行,不需要添加新的工艺设备和新的化学试剂;
7、工艺条件适宜:通过合理的工艺条件设置,使碳材料的纯度和回收率均较高。
8、本申请所述方法实现了碳化硅长晶剩料的二次利用,在保证保温材料保温性能一致性的前提下,实现保温材料的循环使用,节约成本。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1为碳化硅长晶剩料的综合利用方法流程示意图。
图2在碳化硅长晶坩埚内腔中各材料的放置方式。其中,附图标记如下:100为坩埚,101为石墨纸,102为含有碳颗粒的粗料。
图3为一种分体填充式坩埚保温结构的纵切面示意图。
图4为保温层箱盖采用石墨钉固定方式的纵切面示意图。
图5为下保温层的箱体外壁设螺纹的纵切面示意图。
图6为设置三个外保温层的纵切面示意图。
图3-6中的附图标记如下:1为上保温层,2为外保温层,3为坩埚,4为籽晶,5为长晶原料,6为下保温层,7为箱壁,8为空腔,9为填充物,10为箱盖,11为通孔,12为石墨钉,13为螺纹。
具体实施方式
为了更清楚的阐释本申请的整体构思,下面结合说明书附图以示例 的方式进行详细说明。
实施例1、碳化硅长晶剩料的综合利用方法
如图1所示,碳化硅长晶剩料的综合利用方法的具体流程如下:
一、将碳化硅长晶剩料中的碳化硅去除获得高纯碳材料
碳化硅长晶剩料中除含有碳材料外,还含有一部分碳化硅多晶,需通过高温加热将碳化硅多晶去除,具体方法如下:
1)对碳化硅长晶剩料进行分类,将上部的大块的碳化硅多晶与底部碳化后的碳颗粒分开后去除大块的碳化硅多晶,获得含有碳颗粒的粗料;
2)将得到的含有碳颗粒的粗料(主要为碳颗粒,并含有一定量的碳化硅结晶)进行简单研磨后装入采用物理气相传输法进行碳化硅长晶的坩埚中,将坩埚放置于长晶炉内,放置方式与长晶过程相似,有区别的主要是使用石墨纸代替价格较高的籽晶,坩埚底部放置含有碳颗粒的粗料,具体放置方式如图2所示;
另外:所述坩埚中,所述含有碳颗粒的粗料与所述坩埚容积之比为0.6:1;所述含有碳颗粒的粗料与所述坩埚顶部的距离为30cm;所述含有碳颗粒的粗料中碳化硅与碳的质量比为0.1:1。
3)将坩埚及坩埚外包的保温结构依次放入生长炉中,并向坩埚腔室内通入保护气体(氢气和氩气混合气体);
4)将坩埚生长腔室内的压强由一个大气压逐步降低至50mbar,同时将炉温逐步提升至2500℃;
5)当压强降至50mbar、温度提升至2500℃后,在此低压和温度下稳定50h,使碳化硅多晶分解、硅气氛与含碳气氛在轴向温梯的推动下, 上升至坩埚上部,在石墨纸部分结晶;
6)之后自然冷却至室温,压力恢复至大气压;
7)将提纯后的碳颗粒进行研磨、过筛后,得到高纯碳材料,作为步骤二的填充物。
结果:高纯碳材料的纯度为99%,回收率(高纯碳材料中碳的量占含有碳颗粒的粗料中碳的量的百分比)为95%。
二、坩埚保温结构制作
将步骤一制的所述高纯碳材料作为填充物填充于一种分体填充式坩埚保温结构中,获得坩埚保温结构;
三、将所述保温结构紧密贴设于碳化硅长晶坩埚外用于保温;当所述保温结构中的填充物被侵蚀不能用于保温时,将所述保温结构按照步骤一的方法去除碳化硅重新制成高纯碳材料,并按照步骤二的方法制作保温结构,然后再进行步骤三。
实施例2、碳化硅长晶剩料的综合利用方法
按照实施例1的方法进行,不同之处在于步骤一:
步骤2)中,所述坩埚中,所述含有碳颗粒的粗料与所述坩埚容积之比为0.2:1;所述含有碳颗粒的粗料与所述坩埚顶部的距离为20cm;所述含有碳颗粒的粗料中碳化硅与碳的质量比为0.05:1;
步骤4)和5)中,坩埚生长腔室内的压强为5mbar、温度为2000℃后,在此低压和温度下稳定5h;
结果:高纯碳材料的纯度为99%,回收率为94%。
实施例3、碳化硅长晶剩料的综合利用方法
按照实施例1的方法进行,不同之处在于步骤一:
步骤2)中,所述坩埚中,所述含有碳颗粒的粗料与所述坩埚容积之 比为0.8:1;所述含有碳颗粒的粗料与所述坩埚顶部的距离为150cm;所述含有碳颗粒的粗料中碳化硅与碳的质量比为1:1;
步骤4)和5)中,坩埚生长腔室内的压强为30mbar、温度为2300℃后,在此低压和温度下稳定30h;
结果:高纯碳材料的纯度为93%,回收率为92%。
对比例1
按照实施例3的方法进行,不同之处在于步骤一中:
步骤4)和5)中,坩埚生长腔室内的压强为30mbar、温度为1800℃后,在此低压和温度下稳定30h;
结果:碳材料的纯度为75%,回收率为86%。结果表明,温度低于2000℃,获得的碳材料纯度明显降低。
对比例2
按照实施例3的方法进行,不同之处在于步骤一中:
步骤4)和5)中,坩埚生长腔室内的压强为30mbar、温度为2300℃后,在此低压和温度下稳定3h;
结果:碳材料的纯度为80%,回收率为92%。结果表明,分解升华的反应时间低于5小时,获得的碳材料纯度明显降低。
分体填充式坩埚保温结构
实施例1—3和对比例1-2的步骤二中,所述分体填充式坩埚保温结构如图3所示,由三个保温层可拆卸式连接而成;所述保温层包括密闭箱体和装于所述箱体内空腔8的填充物9,所述箱体包括箱壁7和箱盖10;
所述三个保温层分别为:位于坩埚3上方的一个上保温层1、位于坩埚3下方的一个下保温层6和位于坩埚3侧壁外呈筒状的一个外保温层2;
上保温层1与外保温层2之间为可拆卸式连接;
下保温层6与外保温层2之间为可拆卸式连接;
箱体的材质为耐高温侵蚀且耐化学侵蚀的材料;且应具有一定的硬度和抗变形特性,邵氏硬度大于80度,杨氏模量大于5GPa;主要起支撑、防止保温变形等作用;当坩埚3内进行的是高纯碳碳材料回收时,箱体的材质为碳碳复合材料、也可为石墨毡、石墨纸、金属钨、金属钼、金属钨的氮化物或金属钼的氮化物;
填充物9的材质为所述将碳化硅长晶剩料中的碳化硅去除获得的高纯碳材料,具有疏松多孔结构。
上保温层1中部开设内外相通的通孔11,用于测量坩埚温度;该通孔11的位置根据坩埚以及实际需要测量温度的位置而定,还可以设于所述下保温层6和/或所述外保温层2中部。
通孔11的大小、形状和位置可调节,以调节所述坩埚11内的轴向及径向温场,控制所述坩埚内晶体的生长速率及晶体质量;具体可由一系列由通孔11为中心的套环状保温层拼接而成,也可以在不同位置设置可取下的面积不同的拼接块状保温层形成通孔11。
箱盖10设于箱壁7的上方;也可以设于保温层便于打开或便于取放填充物9或箱盖10本身不容易脱落的其它位置。
箱盖10的形状为T字形,可以有效阻挡所述支架内部的填充物飘出;
箱体的壁厚度大于或等于3mm;具体可以根据支架材质的支撑能力及抗变形能力确定;
箱体内空腔8厚度大于或等于20mm;具体可以根据所述填充物材质的保温性能以及实际生产过程中所需要的保温能力确定。
保温结构由坩埚3的外壁向外依次设一层,也可为两层或三层以上,以增加保温效果。
如图4所示,箱盖10与箱壁7通过石墨钉12连接,也可以通过螺纹连接(图中未画出)。
如图5所示,下保温层6的左和右侧外壁均设有螺纹13,以便于与外保温层6内壁通过螺纹连接密封,下保温层6的上侧外壁设螺纹,可以与坩埚5低部外壁螺纹连接密封;
上保温层1的箱壁7外壁与外保温层2的箱壁7内壁通过螺纹连接密封(图中未画出)。
如图6所示,外保温层2数量为三个,各外保温层2上下堆叠套设于所述坩埚外,以便于更换,且节省材料。
所述分体填充式坩埚保温结构使用方法如下:
将与待保温的坩埚5尺寸匹配的保温结构外包于坩埚5外,当箱体被侵蚀时,取下被侵蚀的保温层,如上保温层1、外保温层2或下保温层6,打开箱盖10,取出空腔8内的填充物9,更换尺寸对应的新的箱体,将取出的填充物9放入该箱体的空腔8内,盖上箱盖10,并用石墨钉12固定密封,或者旋紧密封,放入相应位置与其它保温层紧密连接后,开始进行下一个分解升华工序;当填充物9也被侵蚀时,更换箱体的同时,更换或补充新的填充物9,再开始进行下一个分解升华工序。
本说明书中未作详细描述的内容属于本领域专业技术人员公知的现有技术。以上所述仅为本申请的实施例而已,并不用于限制本申请。对于本领域技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (30)

  1. 碳化硅长晶剩料的综合利用方法,其特征在于,包括如下步骤:
    S1、将碳化硅长晶剩料中的碳化硅去除获得高纯碳材料;
    S2、将所述高纯碳材料用于制作保温结构的填充物;
    S3、将所述保温结构设于碳化硅长晶坩埚外用于保温;
    S4、当所述保温结构中的所述填充物被侵蚀不能用于保温时,将被侵蚀的所述填充物按照步骤S1—S4的方法重复进行。
  2. 如权利要求1所述的方法,其特征在于:步骤S1中,所述碳化硅去除包括如下步骤:
    S11、将碳化硅长晶剩料中的块状碳化硅多晶去除,获得含有碳颗粒的粗料;
    S12、将所述含有碳颗粒的粗料中剩余的碳化硅多晶通过分解升华的方式去除,收集剩余的所述含有碳颗粒的粗料即为高纯碳材料。
  3. 如权利要求2所述的方法,其特征在于:所述分解升华的反应在采用物理气相传输法进行碳化硅长晶坩埚中进行,使用位于所述坩埚顶部的种晶吸附所述分解升华的气体结晶;
    和/或,步骤S1中,还包括对所述含有碳颗粒的粗料进行匀质化处理的步骤。
  4. 如权利要求2或3所述的方法,其特征在于:所述分解升华的反应条件为:压强5-50mbar、温度2000-2500℃;
    所述分解升华的反应时间为:5-50h;
    所述分解升华的反应是在氢气和惰性气体存在条件下进行的;
    所述惰性气体为氩气、氦气及其他稀有气体中的一种或多种混合气体;
    所述种晶为碳材料或碳化硅材料,优选为石墨纸。
  5. 如权利要求3或4所述的方法,其特征在于:在所述坩埚中,所述含有碳颗粒的粗料与所述坩埚容积之比为(0.2-0.8):1。
    在所述坩埚中,所述含有碳颗粒的粗料与所述坩埚顶部的距离为20-150cm;
    在所述坩埚中,所述含有碳颗粒的粗料中碳化硅与碳的质量比为(0.05-1):1。
  6. 如权利要求1-5中任一项所述的方法,其特征在于:所述保温结构为一体式或由至少三个保温层可拆卸式连接而成;
    当所述保温结构由至少三个保温层可拆卸式连接而成时,所述保温层包括密闭箱体和装于所述箱体内的所述填充物,所述箱体包括箱壁和箱盖。
  7. 如权利要求6所述的方法,其特征在于:所述至少三个保温层包括:位于所述坩埚上方的至少一个上保温层、位于所述坩埚下方的至少一个下保温层和位于所述坩埚侧壁外的至少一个外保温层。
  8. 如权利要求7所述的方法,其特征在于:所述外保温层呈筒状,当所述外保温层数量为两个或两个以上时,各所述外保温层上下堆叠套设于所述坩埚外;
    和/或,所述上保温层的箱壁外侧与所述外保温层的箱壁内侧通过螺纹连接密封;所述下保温层的箱壁外侧与所述外保温层的箱壁内侧通过螺纹连接密封。
  9. 如权利要求7或8所述的方法,其特征在于:所述至少一个上保温层、所述至少一个下保温层和/或所述至少一个外保温层的中部开设内外相通的通孔;所述通孔的大小和/或形状和/或位置可调节或不可调节;
    当所述通孔的大小和/或形状和/或位置可调节时,所述至少一个上 保温层和/或所述至少一个下保温层的数量为至少两个,且以所述通孔为中心向外呈环套状排布,或在不同位置设置可取下的面积不同的拼接块状保温层形成所述通孔;
    和/或,所述箱盖设于所述保温层便于打开或便于取放所述填充物或所述箱盖本身不容易脱落的位置,
    和/或,所述箱盖为T字形,
    和/或,所述箱盖与所述箱体的箱壁通过螺纹或石墨钉连接。
    和/或,所述箱壁和所述箱盖的厚度大于或等于3mm;所述箱体内腔的厚度大于或等于20mm;
    和/或,所述箱体的材质邵氏硬度大于80度,杨氏模量大于5GPa;
    优选地,所述箱体的材质为耐高温侵蚀和/或耐化学侵蚀的材料,更优选地,所述箱体的材质为碳碳复合材料、石墨毡、石墨纸、金属钨、金属钼、金属钨的氮化物或金属钼的氮化物;
    和/或,所述保温结构由所述坩埚的外壁向外依次设一层、两层或三层以上。
  10. 碳化硅长晶剩料在制备保温材料中的应用。
  11. 一种分体填充式坩埚保温结构,其特征在于,所述保温结构紧密贴设于所述坩埚外,由至少三个保温层可拆卸式连接而成;
    所述保温层包括密闭箱体和装于所述箱体内的填充物,所述箱体包括箱壁和箱盖。
  12. 如权利要求11所述的保温结构,其特征在于:所述至少三个保温层包括:位于所述坩埚上方的至少一个上保温层、位于所述坩埚下方的至少一个下保温层和位于所述坩埚侧壁外的至少一个外保温层。
  13. 如权利要求12所述的保温结构,其特征在于:所述外保温层呈筒状,当所述外保温层数量为两个或两个以上时,各所述外保温层上下 堆叠套设于所述坩埚外。
  14. 如权利要求12或13所述的保温结构,其特征在于:所述至少一个上保温层、所述至少一个下保温层和/或所述至少一个外保温层的中部开设内外相通的通孔;所述通孔的大小和/或形状和/或位置可调节或不可调节;
    当所述通孔的大小和/或形状和/或位置可调节时,所述至少一个上保温层和/或所述至少一个下保温层的数量为至少两个,且以所述通孔为中心向外呈环套状排布,或在不同位置设置可取下的面积不同的拼接块状保温层形成所述通孔。
  15. 如权利要求11或12所述的保温结构,其特征在于:所述箱盖设于所述保温层便于打开或便于取放所述填充物或所述箱盖本身不容易脱落的位置,
    所述箱盖为T字形,
    所述箱盖与所述箱体的箱壁通过螺纹或石墨钉连接。
  16. 如权利要求11或12所述的保温结构,其特征在于:所述上保温层的箱壁外侧与所述外保温层的箱壁内侧通过螺纹连接密封;
    所述下保温层的箱壁外侧与所述外保温层的箱壁内侧通过螺纹连接密封。
  17. 如权利要求11或12所述的保温结构,其特征在于:所述箱壁和所述箱盖的厚度大于或等于3mm;所述箱体内腔的厚度大于或等于20mm。
  18. 如权利要求11或12所述的保温结构,其特征在于:所述箱体的材质邵氏硬度大于80度,杨氏模量大于5GPa;
    所述填充物的材质为保温材料。
  19. 如权利要求18所述的保温结构,其特征在于:所述箱体的材质为耐高温侵蚀和/或耐化学侵蚀的材料,为碳碳复合材料、石墨毡、石墨 纸、金属钨、金属钼、金属钨的氮化物或金属钼的氮化物;
    所述填充物的材质为具有疏松多孔结构的碳材料、碳碳复合材料、石墨毡、或石墨纸。
  20. 如权利要求11或12所述的保温结构,其特征在于:所述保温结构由所述坩埚的外壁向外依次设一层、两层或三层以上。
  21. 一种由碳化硅长晶剩料制备高纯碳材料的方法,其特征在于,包括如下步骤:S1、将碳化硅长晶剩料中的块状碳化硅多晶去除,获得含有碳颗粒的粗料;
    S2、将所述含有碳颗粒的粗料中剩余的碳化硅多晶通过分解升华的方式去除,收集剩余的所述含有碳颗粒的粗料即为高纯碳材料。
  22. 如权利要求21所述的方法,其特征在于:所述分解升华的反应在采用物理气相传输法进行碳化硅长晶坩埚中进行,使用位于所述坩埚顶部的种晶吸附所述分解升华的气体结晶;
    和/或,步骤S1中,还包括对所述含有碳颗粒的粗料进行匀质化处理的步骤。
  23. 如权利要求22所述的方法,其特征在于:所述种晶为碳材料或碳化硅材料,优选为石墨纸。
  24. 如权利要求21-23中任一所述所述的方法,其特征在于:所述分解升华的反应条件为:压强5-50mbar、温度2000-2500℃。
  25. 如权利要求21-24中任一所述的方法,其特征在于:所述分解升华的反应时间为:5-50h。
  26. 如权利要求21-25中任一项所述的方法,其特征在于:所述分解升华的反应是在氢气和惰性气体保护下进行的;
    所述惰性气体为氩气、氦气及其他稀有气体中的一种或多种混合气体。
  27. 如权利要求21-26中任一项所述的方法,其特征在于:在所述坩埚中,所述含有碳颗粒的粗料与所述坩埚容积之比为(0.2-0.8):1。
  28. 如权利要求21-27中任一项所述的方法,其特征在于:在所述坩埚中,所述含有碳颗粒的粗料与所述坩埚顶部的距离为20-150cm。
  29. 如权利要求21-28中任一项所述的方法,其特征在于:在所述坩埚中,所述含有碳颗粒的粗料中碳化硅与碳的质量比为(0.05-1):1。
  30. 权利要求21-29中任一项所述的方法中得到的所述高纯碳材料及其在制备保温材料中的应用。
PCT/CN2018/123712 2018-11-02 2018-12-26 碳化硅长晶剩料制备的高纯碳材料及其制备方法和应用 WO2020087719A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201811302560.7A CN109280977B (zh) 2018-11-02 2018-11-02 碳化硅长晶剩料的综合利用方法
CN201811302560.7 2018-11-02
CN201811302578.7A CN109437148B (zh) 2018-11-02 2018-11-02 由碳化硅长晶剩料制备高纯碳材料的方法
CN201821802345.9U CN209481854U (zh) 2018-11-02 2018-11-02 一种分体填充式坩埚保温结构
CN201811302578.7 2018-11-02
CN201821802345.9 2018-11-02

Publications (1)

Publication Number Publication Date
WO2020087719A1 true WO2020087719A1 (zh) 2020-05-07

Family

ID=70462979

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/123712 WO2020087719A1 (zh) 2018-11-02 2018-12-26 碳化硅长晶剩料制备的高纯碳材料及其制备方法和应用

Country Status (1)

Country Link
WO (1) WO2020087719A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112746325A (zh) * 2020-12-18 2021-05-04 国宏中宇科技发展有限公司 一种碳化硅晶体生长余料处理再利用方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1287097A (zh) * 2000-09-14 2001-03-14 贾玉东 一种碳化硅的生产方法
CN105543966A (zh) * 2016-02-02 2016-05-04 北京华进创威电子有限公司 一种碳化硅单晶生长用复合保温结构
CN205711045U (zh) * 2016-06-14 2016-11-23 河北同光晶体有限公司 一种减少Sic晶体生长中碳包裹物产生的热场结构
CN106435735A (zh) * 2016-12-09 2017-02-22 河北同光晶体有限公司 一种优化碳化硅单晶生长的方法
CN106698436A (zh) * 2017-01-10 2017-05-24 山东天岳晶体材料有限公司 一种高纯碳化硅粉料的制备方法
CN107779955A (zh) * 2017-10-30 2018-03-09 中国电子科技集团公司第四十六研究所 一种碳化硅晶体生长炉的高寿命保温系统
CN207376142U (zh) * 2017-11-02 2018-05-18 福建北电新材料科技有限公司 一种高纯半绝缘的碳化硅单晶生长装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1287097A (zh) * 2000-09-14 2001-03-14 贾玉东 一种碳化硅的生产方法
CN105543966A (zh) * 2016-02-02 2016-05-04 北京华进创威电子有限公司 一种碳化硅单晶生长用复合保温结构
CN205711045U (zh) * 2016-06-14 2016-11-23 河北同光晶体有限公司 一种减少Sic晶体生长中碳包裹物产生的热场结构
CN106435735A (zh) * 2016-12-09 2017-02-22 河北同光晶体有限公司 一种优化碳化硅单晶生长的方法
CN106698436A (zh) * 2017-01-10 2017-05-24 山东天岳晶体材料有限公司 一种高纯碳化硅粉料的制备方法
CN107779955A (zh) * 2017-10-30 2018-03-09 中国电子科技集团公司第四十六研究所 一种碳化硅晶体生长炉的高寿命保温系统
CN207376142U (zh) * 2017-11-02 2018-05-18 福建北电新材料科技有限公司 一种高纯半绝缘的碳化硅单晶生长装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112746325A (zh) * 2020-12-18 2021-05-04 国宏中宇科技发展有限公司 一种碳化硅晶体生长余料处理再利用方法

Similar Documents

Publication Publication Date Title
US20220002906A1 (en) SiC Single Crystal Sublimation Growth Apparatus
CN109280977B (zh) 碳化硅长晶剩料的综合利用方法
CN109234804B (zh) 一种碳化硅单晶生长方法
US8492774B2 (en) Method and apparatus for manufacturing a SiC single crystal film
KR101809642B1 (ko) 대구경 탄화규소 단결정 잉곳의 성장방법
US9228275B2 (en) Apparatus with two-chamber structure for growing silicon carbide crystals
CN110306239A (zh) 一种碳化硅材质籽晶托
WO2020087719A1 (zh) 碳化硅长晶剩料制备的高纯碳材料及其制备方法和应用
JP5293732B2 (ja) 炭化珪素単結晶の製造方法
KR100975957B1 (ko) 대구경 고품질 탄화규소 단결정의 직경확장을 위한 단결정성장 장치 및 그 방법
CN204325549U (zh) 一种碳化硅晶体生长装置
CN109234803A (zh) 一种改良的碳化硅单晶生长装置及在碳化硅单晶生长中的应用
CN219174676U (zh) 一种大尺寸低缺陷碳化硅单晶生长装置
CN209144312U (zh) 一种碳化硅单晶生长用双层坩埚
JP6829767B2 (ja) SiC結晶成長用SiC原料の製造方法及び製造装置
CN116789137A (zh) 降低氮元素杂质含量的碳化硅合成方法
WO2020087723A1 (zh) 一种碳化硅单晶生长装置
CN216039934U (zh) 一种碳化硅晶体生长装置和设备
RU2768938C1 (ru) Способ получения монокристаллического SiC политипа 4H
CN109437148B (zh) 由碳化硅长晶剩料制备高纯碳材料的方法
CN209243245U (zh) 一种高纯碳化硅的制备装置
Wang et al. Control of the growth quality by optimizing the crucible structure for growth of large-sized SiC single crystal
CN207862478U (zh) 一种自密封碳化硅晶体生长用坩埚装置
CN206052208U (zh) 一种可调节碳化硅生长温度梯度的籽晶轴
CN214830774U (zh) 一种氧化铝陶瓷坩埚及其使用结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18938714

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18938714

Country of ref document: EP

Kind code of ref document: A1