WO2020087411A1 - 电路板以及超算设备 - Google Patents

电路板以及超算设备 Download PDF

Info

Publication number
WO2020087411A1
WO2020087411A1 PCT/CN2018/113201 CN2018113201W WO2020087411A1 WO 2020087411 A1 WO2020087411 A1 WO 2020087411A1 CN 2018113201 W CN2018113201 W CN 2018113201W WO 2020087411 A1 WO2020087411 A1 WO 2020087411A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit board
heat
groove
card
heat conducting
Prior art date
Application number
PCT/CN2018/113201
Other languages
English (en)
French (fr)
Inventor
吕政勇
Original Assignee
北京比特大陆科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京比特大陆科技有限公司 filed Critical 北京比特大陆科技有限公司
Priority to CN201880002442.6A priority Critical patent/CN109565930B/zh
Priority to PCT/CN2018/113201 priority patent/WO2020087411A1/zh
Publication of WO2020087411A1 publication Critical patent/WO2020087411A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0201Thermal arrangements, e.g. for cooling, heating or preventing overheating
    • H05K1/0203Cooling of mounted components
    • H05K1/0207Cooling of mounted components using internal conductor planes parallel to the surface for thermal conduction, e.g. power planes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0201Thermal arrangements, e.g. for cooling, heating or preventing overheating
    • H05K1/0203Cooling of mounted components
    • H05K1/0209External configuration of printed circuit board adapted for heat dissipation, e.g. lay-out of conductors, coatings

Definitions

  • This application relates to the technical field of circuit boards, in particular to a circuit board and supercomputing equipment.
  • the printed circuit board (Printed Circuit Board, PCB for short) is used in various electronic devices.
  • the printed circuit board is an important electronic component, and various components can be provided on the printed circuit board.
  • the printed circuit board may be simply referred to as a circuit board.
  • the circuit board will generate heat during the work, which will make the temperature of the circuit board higher, and the higher temperature will destroy the structure of the circuit board and the components on the circuit board, causing the circuit board and the components on the circuit board to be abnormal Work, which requires heat treatment of the circuit board.
  • a plurality of heat sinks can be provided on the circuit board, and the heat sink can dissipate heat to the circuit board.
  • a solder paste may be coated on the circuit board, and a solder paste is applied to the bottom of the heat sink, so that the heat sink is fixedly disposed on the circuit board through the solder paste; Alternatively, screw the heat sink to the circuit board.
  • the inventor of the present application found that the contact area between the heat sink and the circuit board is still not large enough, resulting in poor heat dissipation of the circuit board.
  • the present application provides a circuit board and supercomputing equipment to solve the problem that the existing circuit board heat dissipation method can usually only take a small amount of heat from the circuit board, and the overall heat dissipation effect is not ideal.
  • this application provides a circuit board, including:
  • a circuit board body, at least one groove is provided on the surface of the circuit board body
  • At least one heat conducting member is provided in the at least one groove
  • each of the at least one heat-conducting member is in contact with the bottom surface of the groove corresponding to the heat-conducting member.
  • the heat conducting member is a heat conducting metal.
  • the heat conductive metal includes one or more of copper, aluminum, silver, tin, gold, iron, and aluminum alloy.
  • the heat conducting member is a heat conducting non-metal.
  • thermally conductive non-metal is graphene.
  • each groove of the at least one groove is provided with one or more heat conduction members of the at least one heat conduction member.
  • each of the at least one groove corresponds to each of the at least one heat conductive member.
  • each of the grooves is screwed with the heat conducting member corresponding to each of the grooves;
  • each of the grooves is bonded to the heat conducting member corresponding to each of the grooves.
  • each groove is engaged with the heat conducting member corresponding to each groove.
  • each groove is provided with a first clamping portion
  • each heat-conducting member corresponding to each groove is provided with a second clamping portion, the first clamping portion and the groove The second clamping portion is clamped.
  • the number of the first clamping part on each groove is one, at least one first card and part are provided on the first clamping part, and each of the grooves corresponds to Each of the heat-conducting members is provided with at least one second card and part matching the first card and part.
  • first card and the part are concave, and the second card and the part are convex;
  • first card and portion are convex, and the second card and portion are concave.
  • the at least one first card and the part on each of the first clamping parts are arranged at the edge of the top of the groove;
  • the at least one second card and portion are disposed at the edge of the top surface of the heat conducting member.
  • the at least one first card and portion on each of the first clamping portions and the top of the groove are on the same horizontal plane, and the at least one second card and portion and the top of the heat conducting member The faces are at the same level.
  • first card and part correspond to the second card and part in one-to-one correspondence.
  • At least one heat sink is provided on the circuit board body
  • Each of the at least one cooling fin includes a bottom plate and at least one cooling fin, each of the at least one cooling fin is connected to the bottom plate, and the bottom plate is connected to the circuit board body Surface connection.
  • each of the heat sinks is provided with a connecting portion, the connecting portion includes a first plate and a second plate, and the first plate and the second plate are at a preset angle;
  • the at least one heat dissipation fin is fixedly arranged on the upper surface of the connection part, and the bottom piece is fixedly arranged on the lower surface of the connection part.
  • the height of adjacent heat dissipation fins in the at least one heat dissipation fin is the same or different.
  • the present application provides a supercomputing device, including at least one circuit board according to any one of claims 1-18.
  • circuit boards in the supercomputing device are connected in parallel with each other.
  • chassis of the supercomputing device is provided with a chute, and the chute is used for sliding connection with each of the circuit boards in the supercomputing device.
  • At least one groove on the surface of the circuit board body by providing at least one groove on the surface of the circuit board body; at least one groove is provided with at least one heat conducting member; the lower surface of each heat conducting member corresponds to the groove of the heat conducting member Bottom fit.
  • one or more heat conducting members are provided in the groove, and then the heat inside the circuit board body can be dissipated through the heat conducting member, enhancing the heat dissipation effect of the circuit board;
  • the bottom surface of the component is bonded to the bottom surface of the groove to further increase the contact area of the heat conductive component and the circuit board body, and then transfer the heat generated by the circuit board to the outside world during the working process, thereby improving the heat dissipation capacity of the circuit board;
  • the components on the board and the circuit board are not damaged by the high temperature, and the normal operation of the components on the circuit board and the circuit board is guaranteed.
  • FIG. 1 is a schematic structural diagram 1 of a circuit board provided by an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram 1 of a heat conducting member provided by an embodiment of this application;
  • FIG. 3 is a second schematic structural diagram of a circuit board provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram 3 of a circuit board provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram 1 of another circuit board provided by an embodiment of the present application.
  • FIG. 6 is a second schematic structural diagram of another circuit board provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram 1 of a heat sink provided by an embodiment of the present application.
  • FIG. 8 is a second structural diagram of a heat sink provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram 3 of a heat sink provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram 4 of a heat sink provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram 1 of yet another circuit board provided by an embodiment of the present application.
  • FIG. 12 is a second schematic structural diagram of another circuit board provided by an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram 3 of yet another circuit board provided by an embodiment of the present application.
  • FIG. 14 is a second structural diagram of a heat conducting member provided by an embodiment of the present application.
  • FIG. 15 is a schematic structural diagram 3 of a heat conducting member provided by an embodiment of the present application.
  • 16 is a schematic structural diagram of a supercomputing device provided by an embodiment of this application.
  • the embodiment of the present application is applied to a circuit board. It should be noted that when the solutions of the embodiments of the present application are applied to a current circuit board or a circuit board that may appear in the future, the names of various structures may change, but this does not affect the implementation of the solutions of the embodiments of the present application.
  • a solder paste may be coated on the circuit board, and a solder paste is applied to the bottom of the heat sink, so that the heat sink is fixedly disposed on the circuit board through the solder paste; Or, screw the heat sink to the circuit board with screws or screws.
  • the above-mentioned facility heat sink method makes the contact area of the heat sink and the circuit board small, and the heat sink cannot take away the heat of the circuit board well, resulting in a poor heat dissipation effect of the circuit board.
  • circuit board and supercomputing equipment provided in this application are intended to solve the above technical problems of the prior art.
  • FIG. 1 is a schematic structural diagram 1 of a circuit board provided by an embodiment of the present application
  • FIG. 2 is a structural schematic diagram 1 of a heat conductive member provided by an embodiment of the present application, as shown in FIGS. 1 and 2
  • the circuit board includes: The body 1 is provided with at least one groove 2 on the surface of the circuit board body 1; at least one heat conduction member 3 is provided in the at least one groove 2; the lower surface of each heat conduction member 3 of the at least one heat conduction member 3 and the heat conduction member The bottom surface of the groove 2 corresponding to 3 fits.
  • the heat conducting member 3 is a heat conducting metal.
  • the heat conductive metal includes one or more of copper, aluminum, silver, tin, gold, iron, aluminum alloy.
  • the heat conducting member 3 is a heat conducting non-metal.
  • the thermally conductive non-metal is graphene.
  • each groove 2 of the at least one groove 2 is provided with one or more heat conductive members 3 of at least one heat conductive member 3; or, each groove 2 of the at least one groove 2 is at least one Each of the heat-conducting members 3 in one heat-conducting member 3 corresponds to each other.
  • each groove 2 is screwed to the heat conducting member 3 corresponding to each groove 2; or, each groove 2 is bonded to the heat conducting member 3 corresponding to each groove 2; or, Each groove 2 is engaged with the heat conducting member 3 corresponding to each groove 2.
  • the circuit board is composed of a circuit board body 1.
  • the shape of the circuit board body 1 may be a rectangle, a square, a trapezoid, or other regular shapes, or other irregular shapes; the shape of the circuit board body 1 is not limited by this application.
  • the material of the circuit board body 1 is not limited in this application.
  • the circuit board body 1 may be a single panel, a double panel, or a multilayer board, which is not limited in this application.
  • N grooves 2 are formed on the surface of the circuit board body 1, N is a positive integer greater than or equal to 1.
  • one or more grooves 2 are formed on the upper surface of the circuit board body 1; or one or more grooves 2 are formed on the lower surface of the circuit board body 1; or, One or more grooves 2 are opened on the upper surface, and one or more grooves 2 are opened on the lower surface of the circuit board body 1.
  • the groove 2 needs not to affect the work of the circuit board body 1 itself, and the groove 2 needs not to affect the work of each component on the circuit board body 1.
  • each groove 2 on the surface of the circuit board body 1 is not limited in this application.
  • the size, shape and area of each groove 2 are not limited in this application.
  • the depth of each groove 2 is not limited in this application.
  • the size, area, and material of the heat conducting member 3 in the same groove 2 may be the same or different.
  • M heat conduction members 3 are provided in the N grooves 2, M is a positive integer greater than or equal to 1; the heat conduction member 3 can take away the heat generated by the circuit board; and, in order to make the heat conduction member 3 conduct better heat,
  • the lower surface of one heat conducting member 3 is bonded to the bottom surface of the groove 2 corresponding to the heat conducting member 3.
  • one or more heat conductive members 3 are provided in each of the N grooves 2; or, one or more heat conductive members are provided in the R grooves 2 of the N grooves 2 3.
  • R is an integer greater than or equal to 1 and less than N, and the remaining NR grooves 2 of the N grooves 2 may not be provided with the heat conducting member 3.
  • Each heat-conducting member 3 in each groove 2 may fill the corresponding groove 2; or, each heat-conducting member 3 in each groove 2 may not fill the corresponding groove 2.
  • FIG. 3 is a schematic structural diagram 2 of a circuit board provided by an embodiment of the present application.
  • N grooves 2 are formed on the surface of the circuit board body 1, and in each groove 2 One or more heat conducting members 3 are provided, wherein the number of the heat conducting members 3 in different grooves 2 may be the same or different.
  • the N grooves 2 include a first groove 2, a second groove 2 and a third groove 2, and a heat conducting member 3 is provided in the first groove 2, Two heat conducting members 3 are provided in the second groove 2 and one heat conducting member 3 is provided in the third groove 2.
  • FIG. 4 is a schematic structural diagram 3 of a circuit board according to an embodiment of the present application.
  • N grooves 2 are formed on the surface of the circuit board body 1, and each groove 2 A heat conducting member 3 is provided, and there is a one-to-one correspondence between the groove 2 and the heat conducting member 3.
  • the thermally conductive member 3 may be a thermally conductive metal; preferably, the material of the thermally conductive metal may include one or more of the following: copper, aluminum, silver, tin, gold, iron, aluminum alloy. limited.
  • the thermally conductive member 3 is a thermally conductive non-metallic material.
  • the thermally conductive non-metallic material may include one or more of the following: The thermally conductive non-metallic material includes resin, ceramic, graphite, graphene, water, etc., which is not limited in any way.
  • the materials of different heat conducting members 3 are the same or different.
  • M thermal conductive members 3 are provided, and the M thermal conductive members 3 may all be thermally conductive metals; or, the M thermal conductive members 3 may all be thermally conductive non-metallic; or Among the M thermal conductive members 3, S thermal conductive members 3 are thermally conductive metals, where S is a positive integer greater than or equal to 1 and smaller than M, and the remaining NS thermal conductive members 3 are thermally conductive non-metallic.
  • the groove 2 and the heat conducting member 3 in the groove 2 may be fixedly connected.
  • the fixed connection may adopt at least one of the following: screw connection, cementing, bonding, and snapping.
  • the fixed connection methods adopted by different heat conducting members 3 may be the same or different.
  • M heat conducting members 3 are provided, and each of the M heat conducting members 3 is screwed to the corresponding groove 2 of the heat conducting member 3;
  • each of the M thermal conductive members 3 engages with the groove 2 corresponding to the thermal conductive member 3; or, the S thermal conductive members 3 and the concave corresponding to the thermal conductive member 3 of the M thermal conductive members 3
  • the slot 2 is screwed, where S is a positive integer greater than or equal to 1 and less than M, and the remaining NS heat conducting members 3 are engaged with the grooves 2 corresponding to the heat conducting member 3;
  • S of the M heat conducting members 3 The heat conducting members 3 are screwed to the grooves 2 corresponding to the heat conducting members 3, where S is a positive integer greater than or equal to 1 and less than M, and the remaining NS heat conducting members 3 and the grooves 2 corresponding to the heat conducting members 3 Perform cementation.
  • the surface of the circuit board body 1 is provided with at least one groove 2; at least one groove 2 is provided with at least one heat conducting member 3; the lower surface of each heat conducting member 3 corresponds to the heat conducting member 3 The bottom surface of the groove 2 is attached.
  • one or more heat conducting members 3 are provided in the groove 2, and then the heat inside the circuit board body 1 can be dissipated through the heat conducting member 3 to enhance the circuit board Heat dissipation effect; and the bottom surface of the heat conducting member 3 is bonded to the bottom surface of the groove 2 to further increase the contact area of the heat conducting member 3 and the circuit board body 1, thereby transferring the heat generated by the circuit board during the working process to the outside world and improving The heat dissipation capacity of the circuit board; further, to ensure that the circuit board and the components on the circuit board are not damaged by high temperature, and ensure the normal operation of the circuit board and the components on the circuit board.
  • FIG. 5 is a schematic structural diagram 1 of another circuit board provided by an embodiment of the present application
  • FIG. 6 is a structural schematic diagram 2 of another circuit board provided by an embodiment of the present application, as shown in FIG. 5 and FIG. Based on the illustrated embodiment, at least one heat sink 4 is provided on the circuit board body 1.
  • Each of the at least one heat sink 4 includes a bottom plate 5 and at least one heat dissipation fin 6. Each of the at least one heat dissipation fin 6 is connected to the bottom plate 5.
  • the bottom plate 5 is connected to the Surface connection.
  • each cooling fin 4 is provided with a connecting portion 7, the connecting portion 7 includes a first plate and a second plate, and the first plate and the second plate are at a preset angle; at least one cooling fin 6 is fixedly provided On the upper surface of the connecting portion 7, the backsheet 5 is fixedly provided on the lower surface of the connecting portion 7.
  • the height of the adjacent heat dissipation fins 6 in the at least one heat dissipation fin 6 is the same or different.
  • one or more heat sinks 4 may also be provided on the surface of the circuit board body 1.
  • one or more heat sinks 4 are fixedly arranged on the upper surface of the circuit board body 1; or, one or more heat sinks 4 are fixedly arranged on the lower surface of the circuit board body 1; or, on the circuit board body
  • One or more heat sinks 4 are fixedly arranged on the upper surface of 1, and one or more heat sinks 4 are fixedly arranged on the lower surface of the circuit board body 1; or, one or more heat conductors on the circuit board body 1
  • one or more heat sinks 4 are provided on the surface of the component 3, one or more heat sinks 4 are provided.
  • the application of the heat sink 4 on the circuit board body 1 is not limited in this application.
  • the application of the heat sink 4 on the circuit board body 1 is not limited in this application.
  • the number of heat sinks 4 is not limited in this application.
  • the shape and size of the heat sink 4 are not limited in this application.
  • one or more chips are provided on the lower surface of the circuit board body 1, and each chip is fixedly connected to the circuit board body 1; in order to facilitate heat dissipation of the chip, a heat sink 4 may be provided on each chip.
  • the application of the heat sink 4 and the chip is not limited.
  • the application does not limit the position of the chip on the lower surface of the circuit board body 1.
  • This application does not limit the arrangement of the chips on the circuit board body 1.
  • This application does not limit the number of chips.
  • the application does not limit the shape and size of the chip.
  • FIG. 7 is a schematic structural diagram 1 of a heat sink provided by an embodiment of the present application.
  • each heat sink 4 is composed of a bottom sheet 5 and at least one heat sink fin 6, and each heat sink fin 6 and the bottom sheet 5 fixed connection; and, the bottom plate 5 is fixedly connected with the circuit board body 1, and then the heat sink 4 is fixedly arranged on the circuit board body 1.
  • the heights of adjacent heat radiation fins 6 among the heat radiation fins 6 in the same heat radiation fin 4 are the same or different.
  • the height of each fin 6 in the same heat sink 4 is the same; or, the height of each fin 6 in the same heat sink 4 is different; or, the height of each fin 6 in the same heat sink 4 Part of the heat dissipation fins 6 have the same height, and the rest of the heat dissipation fins 6 have different heights; or, for the same heat dissipation fin 4, from the middle heat dissipation fin 6 to the two sides Direction, the height of the heat dissipation fins 6 increases or decreases in sequence. For example, as shown in FIG.
  • the heights of the heat dissipation fins 6 in the heat dissipation fins 4 are the same;
  • the heat dissipation fins 6 in the middle of the heat dissipation fins 4 are directed toward the heat dissipation fins 6 on both sides, and the heights of the heat dissipation fins 6 increase in sequence.
  • a handle may be provided on the top of the heat sink 4, and the handle is fixedly connected to a heat dissipation fin 6 of the heat sink 4, so that the heat sink 4 can be snapped onto the circuit board body 1 through the handle, or Remove the heat sink 4 from the circuit board body 1 by the handle.
  • a connection portion 7 may be provided on the heat sink 4, the connection portion 7 is composed of a first plate and a second plate, and the first plate and the second plate are at a preset angle, the preset The angle may be in the range of 180 degrees to 90 degrees; moreover, each heat dissipation fin 6 is fixedly arranged on the upper surface of the connection portion 7, and the bottom plate 5 is fixedly arranged on the lower surface of the connection portion 7.
  • FIG. 9 is a schematic structural diagram 3 of a heat sink provided by an embodiment of the present application.
  • a connection portion 7 is provided on the heat sink 4, and the height of each heat dissipation fin 6 in the heat sink 4 is It is the same;
  • FIG. 10 is a schematic structural view 4 of a heat sink provided by an embodiment of the present application.
  • a connection portion 7 is provided on the heat sink 4, and the heat sink fin 6 in the middle of the heat sink 4 faces In the direction of the heat dissipation fins 6 on both sides, the height of the heat dissipation fins 6 increases in sequence.
  • one or more heat sinks 4 are provided on the circuit board body 1; the heat sinks 4 may be provided on the heat conducting member 3 of the circuit board body 1, or the heat sink 4 may be provided on the surface of the circuit board body 1 At other locations. Furthermore, through the heat sink 4, the heat generated by the circuit board during the working process is further transferred to the outside world; the heat dissipation capacity of the circuit board is further improved.
  • FIG. 11 is a schematic structural diagram 1 of another circuit board provided by an embodiment of the present application. As shown in FIG. 11, on the basis of the embodiments shown in FIGS. 1 and 5, the grooves 2 and 2 correspond to When the heat conducting member 3 is engaged, the following solution of this embodiment is implemented.
  • Each groove 2 is provided with a first clamping portion, and each heat-conducting member 3 corresponding to each groove 2 is provided with a second clamping portion, and the first clamping portion is clamped with the second clamping portion.
  • the number of the first clamping part on each groove 2 is one, at least one first card and part 8 are provided on the first clamping part, and each heat conduction corresponding to each groove 2
  • the piece 3 is provided with at least one second card and portion 9 matching the first card and portion 8.
  • the first card and portion 8 are concave, and the second card and portion 9 are convex; or, the first card and portion 8 are convex, and the second card and portion 9 are concave.
  • At least one first card and portion 8 on each first clamping portion is disposed at the edge of the top of the groove 2; at least one second card and portion 9 is disposed at the edge of the top surface of the heat conducting member 3.
  • At least one first card and portion 8 on each first clamping portion and the top of the groove 2 are on the same horizontal plane, and at least one second card and portion 9 and the top surface of the heat conducting member 3 are on the same horizontal plane.
  • the first card and part 8 correspond to the second card and part 9 in one-to-one correspondence.
  • each groove 2 is provided with a first engaging portion, and each heat conducting member 3 is provided with a second engaging portion; the first The clamping portion and the second clamping portion are matched with each other, so that the first clamping portion can be clamped with the second clamping portion, and then the heat conducting member 3 is snapped into the groove 2.
  • first clamping portion is provided on each groove 2
  • first cards and portions 8 are provided on the first clamping portion
  • the first card is provided on the heat conducting member 3
  • each groove 2 is provided with a first card and a portion 8; one groove 2 corresponds to one heat conducting member 3, then the heat conducting member 3 corresponding to the groove 2 is provided One or more second cards and sections 9 matching the first cards and sections 8.
  • the first card sum portion 8 and the second card sum portion 9 are in one-to-one correspondence.
  • the first card and the portion 8 may be located on the bottom surface of the groove 2.
  • the first card and portion 8 may be concave, then the second card and portion 9 is convex, and the second card and portion 9 may be inserted into the first card and portion 8; 8 is more firmly connected to the second card and portion 9, the first card and portion 8 can be set to be elastic, and the diameter of the first card and portion 8 is larger than the diameter of the second card and portion 9.
  • the first card and portion 8 may be convex, then the second card and portion 9 is concave, and the first card and portion 8 may be inserted into the second card and portion 9, in order to make the first card and portion 9
  • the portion 8 is more firmly connected to the second card and portion 9, and the first card and portion 8 can be provided to be elastic, and the diameter of the first card and portion 8 is smaller than the diameter of the second card and portion 9. If the first card and portion 8 may be convex and the second card and portion 9 are concave, when one first card and portion 8 is inserted into a plurality of second cards and portions 9, a plurality of second cards It can communicate with each other.
  • each groove 2 is provided with a first card and a portion 8; one groove 2 corresponds to a plurality of thermally conductive members 3, then each of the grooves 2 corresponds to heat conduction
  • the piece 3 is provided with one or more second cards and parts 9 matching the first cards and parts 8.
  • the first card and portion 8 may be concave, and the second card and portion 9 may be convex; or, the first card and portion 8 may be convex, and the second card and portion 9 may be concave. It may be provided that the first card and the portion 8 are elastic.
  • FIG. 12 is a second schematic structural diagram of another circuit board provided by an embodiment of the present application.
  • a plurality of first cards and portions 8 are provided in each groove 2;
  • the groove 2 corresponds to one or more heat conducting members 3; then one or more second cards and portions 9 matching the first card and portion 8 are provided on the heat conducting member 3 corresponding to the groove 2.
  • one first card and part 8 corresponds to one heat conducting member 3; or, multiple first cards and part 8 correspond to one heat conducting member 3; or, the first card and part 8 and the second card and part 9 are one One corresponds.
  • the first card and the portion 8 may be located on the bottom surface of the groove 2.
  • first card and portion 8 may be concave, then the second card and portion 9 is convex; or, the first card and portion 8 may be convex, then the second card and portion 9 is Depressed. It may be provided that the first card and the portion 8 are elastic.
  • FIG. 13 is a schematic structural diagram 3 of yet another circuit board provided by an embodiment of the present application.
  • the first card and the portion 8 may be disposed in the groove 2 corresponding to the first card and the portion 8
  • the second card and the portion 9 are provided on the edge of the top surface of the heat conducting member 3.
  • the structure of the first card sum part 8 and the second card sum part provides the following several embodiments.
  • the first card and the portion 8 may be concave, and the second card and the portion 9 are convex, then the first card and the portion 8 are recessed on the edge of the top of the groove 2, the heat conducting member 3 A second card and portion 9 extends from the edge of the top surface of the second card, and then the second card and portion 9 is carded into the first card and portion 8.
  • the top of the first card and the portion 8 and the top of the corresponding groove 2 are located on the same horizontal plane.
  • FIG. 14 is a schematic structural diagram 2 of the heat conducting member provided by the embodiment of the present application. As shown in FIG.
  • the top surface of the second card and the portion 9 and the top surface of the corresponding heat conducting member 3 are located on the same horizontal plane;
  • 15 is a schematic structural diagram 3 of the heat conducting member provided by the embodiment of the present application. As shown in FIG. 15, the bottom surface of the second card and the portion 9 and the top surface of the corresponding heat conducting member 3 are located on the same horizontal plane.
  • the first card and the portion 8 may be convex, and the second card and the portion 9 are concave, then the first card and the portion 8 are raised on the edge of the top of the groove 2, the heat conducting member The second card and portion 9 extends from the edge of the top surface of 3, and then the first card and portion 8 is carded into the second card and portion 9. At this time, the bottom of the first card and the portion 8 and the top of the corresponding groove 2 are located on the same horizontal plane. At this time, the second card and the portion 9 of the heat conducting member 3 shown in FIG.
  • the 14 may be recessed, and the top surface of the second card and the portion 9 and the corresponding top surface of the heat conducting member 3 are on the same horizontal plane; or, In the second card and portion 9 of the heat conducting member 3 shown in FIG. 15, a concave portion is dug, and the bottom surface of the second card and portion 9 and the corresponding top surface of the heat conducting member 3 are located on the same horizontal plane.
  • each groove 2 is provided with a first clamping portion
  • each heat-conducting member 3 corresponding to each groove 2 is provided with a second clamping portion.
  • the first clamping portion and the second The clamping part is clamped, so that the heat conductive member 3 and the groove 2 are well engaged, so that the heat conductive member 3 is not easy to fall off from the circuit board body 1, which is beneficial to heat dissipation of the circuit board.
  • FIG. 16 is a schematic structural diagram of the supercomputing device provided in the embodiment of the present application.
  • the supercomputing device includes at least one circuit board 161 provided in the foregoing embodiment.
  • circuit boards 161 in the supercomputing device are connected in parallel with each other.
  • a slide slot is provided on the chassis of the supercomputing device, and the slide slot is used for sliding connection with each circuit board 161 in the supercomputing device.
  • fans can be provided on both sides of the chassis of the supercomputing device, and the cooling air channels of the fans can be consistent with the heat dissipation cavity of the radiator on the circuit board 161, thereby quickly dissipating the heat generated by the circuit board 161 in the chassis To the outside of the chassis, to provide the performance of supercomputing equipment.
  • circuit board 161 is provided in the supercomputing device, and the circuit board 161 uses the circuit board provided in the foregoing embodiment.
  • the circuit board 161 uses the circuit board provided in the foregoing embodiment.
  • the structure and function of the circuit board 161 reference may be made to the introduction of the foregoing embodiment, and no further description will be provided.
  • a plurality of circuit boards 161 may be connected in parallel, and then the parallel circuit boards 161 may be arranged in the supercomputing device.
  • the supercomputing device may be a supercomputing server.
  • connection method between the circuit board 161 and the supercomputing device may be a fixed connection method or a sliding connection method.
  • one or more sliding slots may be provided on the chassis of the supercomputing device, and then the circuit board 161 is disposed in the sliding slot, so that the circuit board 161 may slide on the sliding slot.
  • each of the multiple circuit boards 161 may be the same or different.
  • S circuit boards 161 are provided, S is a positive integer greater than or equal to 2, part of the S circuit boards 161 is provided with a groove on the circuit board 161, and the remaining circuit boards 161 Multiple grooves.
  • At least one groove is provided on the surface of the circuit board body; at least one heat conduction member is provided in the at least one groove; the lower surface of each heat conduction member is attached to the bottom surface of the groove corresponding to the heat conduction member .
  • one or more heat-conducting members are provided in the groove, and then the heat inside the circuit board body can be dissipated through the heat-conducting member to enhance the heat dissipation effect of the circuit board 161; and
  • the bottom surface of the heat conducting member is bonded to the bottom surface of the groove to further increase the contact area of the heat conducting member and the circuit board body, thereby transferring the heat generated by the circuit board 161 during the work to the outside world, and improving the heat dissipation capacity of the circuit board 161; To ensure that the components on the circuit board 161 and the circuit board 161 are not damaged by high temperature, and ensure the normal operation of the components on the circuit board 161 and the circuit board 161.
  • first, second, etc. may be used in this application to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another.
  • the first element can be called the second element, and likewise, the second element can be called the first element, as long as all occurrences of the "first element” are consistently renamed and all occurrences of The “second component” can be renamed consistently.
  • the first element and the second element are both elements, but they may not be the same element.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

本申请提供了一种电路板以及超算设备,其中,该电路板包括电路板本体,电路板本体的表面上设置有至少一个凹槽;至少一个凹槽中设置有至少一个导热件;每一个导热件的下表面与导热件所对应的凹槽的底面贴合。通过在电路板本体的表面上开设凹槽,在凹槽中设置一个或多个导热件,进而在电路板本体的内部的热量可以通过导热件散发出去,增强电路板的散热效果;并且将导热件的底面与凹槽的底面进行贴合,进一步增大导热件与电路板本体的接触面积,进而将电路板在工作过程产生的热量传递到外界,提升电路板的散热能力;进而,保证电路板和电路板上的元器件不被高温所损伤,保障电路板和电路板上的元器件的正常工作。

Description

电路板以及超算设备 技术领域
本申请涉及电路板技术领域,尤其涉及一种电路板以及超算设备。
背景技术
印制电路板(Printed Circuit Board,简称PCB)应用在各类电子装置中,印制电路板是重要的电子部件,可以在印制电路板上设置各种元器件。其中,印制电路板可以简称为电路板。电路板在工作的过程中会产生热量,会使得电路板的温度较高,较高的温度会破坏电路板的结构和电路板上的元器件,导致电路板和电路板上的元器件不能正常工作,从而需要对电路板进行散热处理。可以在电路板上设置多个散热片,通过散热片对电路板进行散热。
现有技术中,在电路板上设置散热片的时候,可以在电路板上涂覆锡膏,并且在散热片的底部涂覆锡膏,从而通过锡膏将散热片固定设置在电路板上;或者,通过螺钉将散热片螺接到电路板上。
但是,本申请的发明人发现,散热片与电路板的接触面积依然不够大,导致电路板的散热效果不佳。
发明内容
本申请提供一种电路板以及超算设备,以解决现有的电路板散热方式通常只能带走电路板内的少部分的热量,整体的散热效果并不理想的问题。
第一方面,本申请提供一种电路板,包括:
电路板本体,所述电路板本体的表面上设置有至少一个凹槽;
所述至少一个凹槽中设置有至少一个导热件;
所述至少一个导热件中的每一个导热件的下表面与导热件所对应的凹槽的底面贴合。
进一步地,所述导热件为导热金属。
进一步地,所述导热金属包括铜、铝、银、锡、金、铁、铝合金中的 一种或多种。
进一步地,所述导热件为导热非金属。
进一步地,所述导热非金属为石墨烯。
进一步地,所述至少一个凹槽中的每一个凹槽中设置有所述至少一个导热件中的一个或多个导热件。
进一步地,所述至少一个凹槽中的每一个凹槽与所述至少一个导热件中的每一个导热件是一一对应的。
进一步地,所述每一个凹槽与所述每一个凹槽所对应的导热件进行螺接;
或者,所述每一个凹槽与所述每一个凹槽所对应的导热件进行粘接。
进一步地,所述每一个凹槽与所述每一个凹槽所对应的导热件进行卡合。
进一步地,所述每一个凹槽上设置有第一卡接部,所述每一个凹槽所对应的每一个导热件上设置有第二卡接部,所述第一卡接部与所述第二卡接部卡接。
进一步地,所述每一个凹槽上的所述第一卡接部的个数为一个,所述第一卡接部上设置有至少一个第一卡和部,所述每一个凹槽所对应的每一个导热件上设置有与所述第一卡和部匹配的至少一个第二卡和部。
进一步地,所述第一卡和部为凹陷状,所述第二卡和部为凸起状;
或者,所述第一卡和部为凸起状,所述第二卡和部为凹陷状。
进一步地,每一个所述第一卡接部上的所述至少一个第一卡和部设置在所述凹槽的顶部的边缘;
所述至少一个第二卡和部设置在所述导热件的顶面的边缘。
进一步地,每一个所述第一卡接部上的所述至少一个第一卡和部与所述凹槽的顶部位于同一水平面,所述至少一个第二卡和部与所述导热件的顶面位于同一水平面。
进一步地,所述第一卡和部和所述第二卡和部一一对应。
进一步地,所述电路板本体上设置有至少一个散热片;
所述至少一个散热片中的每一个散热片包括底片和至少一个散热翅片,所述至少一个散热翅片中的每一个散热翅片与所述底片连接,所述底片与所述电路板本体的表面连接。
进一步地,所述每一个散热片上设置有连接部,连接部包括第一板和第二板,所述第一板与所述第二板之间呈预设角度;
所述至少一个散热翅片固定设置在所述连接部的上表面,所述底片固定设置在所述连接部的下表面。
进一步地,所述至少一个散热翅片中相邻的散热翅片的高度相同或不同。
第二方面,本申请提供一种超算设备,包括至少一个如权利要求1-18任一项所述的电路板。
进一步地,所述超算设备中的各所述电路板之间相互并联。
进一步地,所述超算设备的机箱上设置有滑槽,所述滑槽用于与所述超算设备中的各所述电路板滑动连接。
在以上的各方面中,通过在电路板本体的表面上设置有至少一个凹槽;至少一个凹槽中设置有至少一个导热件;每一个导热件的下表面与导热件所对应的凹槽的底面贴合。通过在电路板本体的表面上开设凹槽,在凹槽中设置一个或多个导热件,进而在电路板本体的内部的热量可以通过导热件散发出去,增强电路板的散热效果;并且将导热件的底面与凹槽的底面进行贴合,进一步增大导热件与电路板本体的接触面积,进而将电路板在工作过程产生的热量传递到外界,提升电路板的散热能力;进而,保证电路板和电路板上的元器件不被高温所损伤,保障电路板和电路板上的元器件的正常工作。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的一种电路板的结构示意图一;
图2为本申请实施例提供的导热件的结构示意图一;
图3为本申请实施例提供的一种电路板的结构示意图二;
图4为本申请实施例提供的一种电路板的结构示意图三;
图5为本申请实施例提供的另一种电路板的结构示意图一;
图6为本申请实施例提供的另一种电路板的结构示意图二;
图7为本申请实施例提供的散热片的结构示意图一;
图8为本申请实施例提供的散热片的结构示意图二;
图9为本申请实施例提供的散热片的结构示意图三;
图10为本申请实施例提供的散热片的结构示意图四;
图11为本申请实施例提供的又一种电路板的结构示意图一;
图12为本申请实施例提供的又一种电路板的结构示意图二;
图13为本申请实施例提供的又一种电路板的结构示意图三;
图14为本申请实施例提供的导热件的结构示意图二;
图15为本申请实施例提供的导热件的结构示意图三;
图16为本申请实施例提供的超算设备的结构示意图。
附图标记:
1-电路板本体 2-凹槽 3-导热件
4-散热片 5-底片 6-散热翅片
7-连接部 8-第一卡和部 9-第二卡和部
161-电路板    
具体实施方式
本申请实施例应用于电路板中。需要说明的是,当本申请实施例的方案应用于现在电路板或未来可能出现的电路板时,各个结构的名称可能发生变化,但这并不影响本申请实施例方案的实施。
需要指出的是,本申请实施例中涉及的名词或术语可以相互参考,不再赘述。
现有技术中,在电路板上设置散热片的时候,可以在电路板上涂覆锡膏,并且在散热片的底部涂覆锡膏,从而通过锡膏将散热片固定设置在电路板上;或者,通过螺钉或螺丝等,将散热片螺接到电路板上。但是以上设施散热片的方式,使得散热片与电路板的接触面积较小,散热片不能很好地将电路板的热量带走,导致电路板的散热效果不佳。
本申请提供的电路板以及超算设备,旨在解决现有技术的如上技术问题。
下面以具体地实施例对本申请的技术方案以及本申请的技术方案如何解决上述技术问题进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例中不再赘述。下面将结合附图,对本申请的实施例进行描述。
图1为本申请实施例提供的一种电路板的结构示意图一,图2为本申请实施例提供的导热件的结构示意图一,如图1和图2所示,该电路板包括:电路板本体1,电路板本体1的表面上设置有至少一个凹槽2;至少一个凹槽2中设置有至少一个导热件3;至少一个导热件3中的每一个导热件3的下表面与导热件3所对应的凹槽2的底面贴合。
可选的,导热件3为导热金属。优选的,导热金属包括铜、铝、银、锡、金、铁、铝合金中的一种或多种。
或者,可选的,导热件3为导热非金属。优选的,导热非金属为石墨烯。
可选的,至少一个凹槽2中的每一个凹槽2中设置有至少一个导热件3中的一个或多个导热件3;或者,至少一个凹槽2中的每一个凹槽2与至少一个导热件3中的每一个导热件3是一一对应的。
可选的,每一个凹槽2与每一个凹槽2所对应的导热件3进行螺接;或者,每一个凹槽2与每一个凹槽2所对应的导热件3进行粘接;或者,每一个凹槽2与每一个凹槽2所对应的导热件3进行卡合。
示例性地,电路板由一个电路板本体1构成。
电路板本体1的形状可以是长方形、或者是正方形、或者是梯形、或者是其他规则形状、或者是其他不规则形状;对于电路板本体1的形状,本申请不做限制。
对于电路板本体1的材质,本申请不做限制。
电路板本体1可以是单面板、或者双面板、或者多层板,本申请不做限制。
在电路板本体1的表面上开设N个凹槽2,N为大于等于1的正整数。举例来说,在电路板本体1的上表面上开设一个或多个凹槽2;或者,在电路板本体1的下表面上开设一个或多个凹槽2;或者,在电路板本体1 的上表面上开设一个或多个凹槽2,并且,在电路板本体1的下表面上开设一个或多个凹槽2。
凹槽2需要不影响到电路板本体1本身的工作,并且凹槽2需要不影响到电路板本体1上的各元器件的工作。
对于每一个凹槽2在电路板本体1的表面上的位置,本申请不做限制。对于每一个凹槽2的大小、形状和面积,本申请不做限制。对于每一个凹槽2的深度,本申请不做限制。同一凹槽2中的导热件3的大小、面积、材料,可以相同或不同。
在N个凹槽2中设置M个导热件3,M为大于等于1的正整数;导热件3可以将电路板产生的热量带走;并且,为了使得导热件3更好的导热,将每一个导热件3的下表面与导热件3所对应的凹槽2的底面进行贴合。示例性地,在N个凹槽2中的每一个凹槽2中设置一个或多个导热件3;或者,在N个凹槽2中的R个凹槽2中设置一个或多个导热件3,R为大于等于1、且小于N的整数,并且,N个凹槽2中的剩余N-R个凹槽2中可以不设置导热件3。
每一个凹槽2中的各导热件3,可以填充满对应的凹槽2;或者,每一个凹槽2中的各导热件3,可以不填充满对应的凹槽2。
举例来说,图3为本申请实施例提供的一种电路板的结构示意图二,如图3所示,在电路板本体1的表面上开设N个凹槽2,在每一个凹槽2中设置了一个或多个导热件3,其中,不同的凹槽2中的导热件3的个数可以相同或不同。例如,如3所示,N个凹槽2包括了第一个凹槽2、第二个凹槽2和第三个凹槽2,在第一个凹槽2中设置了一个导热件3,在第二个凹槽2中设置了两个导热件3,在第三个凹槽2中设置了一个导热件3。
再举例来说,图4为本申请实施例提供的一种电路板的结构示意图三,如图4所示,在电路板本体1的表面上开设N个凹槽2,在每一个凹槽2中设置了一个导热件3,凹槽2与导热件3之间是一一对应的。
本实施例中,导热件3可以为导热金属;优选的,导热金属的材料中可以包括以下的一种或多种:铜、铝、银、锡、金、铁、铝合金,对此不作任何限定。或者,导热件3为导热非金属,例如,导热非金属可以包括以下的一种或多种:导热非金属的材料中包括树脂、陶瓷、石墨、石墨烯、水等,对此不作任何限定。在本实施例中,不同的导热件3的材料相同或 不同。举例来说,在电路板本体1的N个凹槽2中设置了M个导热件3,M个导热件3可以都是导热金属;或者,M个导热件3可以都是导热非金属;或者,M个导热件3中的S个导热件3为导热金属,其中,S为大于等于1、且小于M的正整数,其余的N-S个导热件3为导热非金属。
进一步地,为了使得导热件3可以稳固的设置在凹槽2中,可以将凹槽2和凹槽2中的导热件3进行固定连接。其中,固定连接的方式可以采用以下至少一种:螺接、胶结、粘结、卡合。
本实施例中,不同的导热件3所采用的固定连接方式可以相同或不同。举例来说,在电路板本体1的N个凹槽2中设置了M个导热件3,M个导热件3中的每一个导热件3与导热件3所对应的凹槽2进行螺接;或者,M个导热件3中的每一个导热件3与导热件3所对应的凹槽2进行卡合;或者,M个导热件3中的S个导热件3与导热件3所对应的凹槽2进行螺接,其中,S为大于等于1、且小于M的正整数,其余的N-S个导热件3与导热件3所对应的凹槽2进行卡合;M个导热件3中的S个导热件3与导热件3所对应的凹槽2进行螺接,其中,S为大于等于1、且小于M的正整数,其余的N-S个导热件3与导热件3所对应的凹槽2进行胶结。
本实施例,通过在电路板本体1的表面上设置有至少一个凹槽2;至少一个凹槽2中设置有至少一个导热件3;每一个导热件3的下表面与导热件3所对应的凹槽2的底面贴合。通过在电路板本体1的表面上开设凹槽2,在凹槽2中设置一个或多个导热件3,进而在电路板本体1的内部的热量可以通过导热件3散发出去,增强电路板的散热效果;并且将导热件3的底面与凹槽2的底面进行贴合,进一步增大导热件3与电路板本体1的接触面积,进而将电路板在工作过程产生的热量传递到外界,提升电路板的散热能力;进而,保证电路板和电路板上的元器件不被高温所损伤,保障电路板和电路板上的元器件的正常工作。
图5为本申请实施例提供的另一种电路板的结构示意图一,图6为本申请实施例提供的另一种电路板的结构示意图二,如图5和图6所示,在图1所示实施例的基础上,电路板本体1上设置有至少一个散热片4。
至少一个散热片4中的每一个散热片4包括底片5和至少一个散热翅片6,至少一个散热翅片6中的每一个散热翅片6与底片5连接,底片5 与电路板本体1的表面连接。
可选的,每一个散热片4上设置有连接部7,连接部7包括第一板和第二板,第一板与第二板之间呈预设角度;至少一个散热翅片6固定设置在连接部7的上表面,底片5固定设置在连接部7的下表面。
可选的,至少一个散热翅片6中相邻的散热翅片6的高度相同或不同。
示例性地,在上述实施例的基础上,还可以在电路板本体1的表面上设置一个或多个散热片4。
举例来说,在电路板本体1的上表面上固定设置一个或多个散热片4;或者,在电路板本体1的下表面上固定设置一个或多个散热片4;或者,在电路板本体1的上表面上固定设置一个或多个散热片4,并且,在电路板本体1的下表面上固定设置一个或多个散热片4;或者,在电路板本体1上的一个或多个导热件3的表面上,设置一个或多个散热片4。
对于散热片4在电路板本体1上的位置,本申请不做限制。对于散热片4在电路板本体1上的排列方式,本申请不做限制。对于散热片4的个数,本申请不做限制。对于散热片4的形状和大小,本申请不做限制。
进一步地,在电路板本体1的下表面上设置有一个或多个芯片,每一个芯片与电路板本体1进行固定连接;为了便于芯片的散热,可以在每一个芯片上设置散热片4。
对于散热片4与芯片的连接方式,本申请不做限制。对于芯片在电路板本体1的下表面上的位置,本申请不做限制。对于芯片在电路板本体1上的排列方式,本申请不做限制。对于芯片的个数,本申请不做限制。对于芯片的形状和大小,本申请不做限制。
进一步地,图7为本申请实施例提供的散热片的结构示意图一,如图7所示,每一个散热片4由底片5和至少一个散热翅片6构成,每一个散热翅片6与底片5固定连接;并且,底片5与电路板本体1进行固定连接,进而将散热片4固定设置到电路板本体1上。
并且,同一散热片4中的各散热翅片6中相邻的散热翅片6的高度相同或不同。例如,同一散热片4中的各散热翅片6的高度都是相同的;或者,同一散热片4中的各散热翅片6的高度都是各不相同的;或者,同一散热片4中的部分散热翅片6的高度相同,其余的部分散热翅片6的高度不同;或者,对于同一散热片4来说,从散热片4的中间的散热翅片6朝 着两边的散热翅片6的方向,散热翅片6的高度依次升高或降低。例如,如图7所示,散热片4中的各散热翅片6的高度都是相同的;例如,图8为本申请实施例提供的散热片的结构示意图二,如图8所示,从散热片4的中间的散热翅片6朝着两边的散热翅片6的方向,散热翅片6的高度依次升高。
并且,可以在散热片4的顶部设置一个把手,该把手与散热片4的一个散热翅片6固定连接,从而可以通过该把手将散热片4卡接到电路板本体1上,也可以通过该把手将散热片4从电路板本体1上取下来。
本实施例中,可以在散热片4上设置有一个连接部7,连接部7由包括第一板和第二板构成,并且第一板与第二板之间呈预设角度,该预设角度可以在180度至90度的范围内;并且,各散热翅片6固定设置在连接部7的上表面,底片5固定设置在连接部7的下表面。
例如,图9为本申请实施例提供的散热片的结构示意图三,如图9所示,散热片4上设置有一个连接部7,并且,散热片4中的各散热翅片6的高度都是相同的;图10为本申请实施例提供的散热片的结构示意图四,如图10所示,散热片4上设置有一个连接部7,并且从散热片4的中间的散热翅片6朝着两边的散热翅片6的方向,散热翅片6的高度依次升高。
本实施例,通过在电路板本体1上设置一个或多个散热片4;散热片4可以设置在电路板本体1的导热件3上,或者,散热片4可以设置在电路板本体1的表面的其他位置处。进而通过散热片4,进一步地将电路板在工作过程产生的热量,更多的传递到外界;进一步地提升电路板的散热能力。
图11为本申请实施例提供的又一种电路板的结构示意图一,如图11所示,在图1和图5所示实施例的基础上,在凹槽2与凹槽2所对应的导热件3进行卡合的时候,实施本实施例的以下方案。
每一个凹槽2上设置有第一卡接部,每一个凹槽2所对应的每一个导热件3上设置有第二卡接部,第一卡接部与第二卡接部卡接。
可选的,每一个凹槽2上的第一卡接部的个数为一个,第一卡接部上设置有至少一个第一卡和部8,每一个凹槽2所对应的每一个导热件3上设置有与第一卡和部8匹配的至少一个第二卡和部9。
可选的,第一卡和部8为凹陷状,第二卡和部9为凸起状;或者,第一卡和部8为凸起状,第二卡和部9为凹陷状。
可选的,每一个第一卡接部上的至少一个第一卡和部8设置在凹槽2的顶部的边缘;至少一个第二卡和部9设置在导热件3的顶面的边缘。
可选的,每一个第一卡接部上的至少一个第一卡和部8与凹槽2的顶部位于同一水平面,至少一个第二卡和部9与导热件3的顶面位于同一水平面。
可选的,第一卡和部8和第二卡和部9一一对应。
示例性地,为了使得凹槽2与导热件3进行良好的卡合,在每一个凹槽2上设置有第一卡接部,在每一个导热件3上设置第二卡接部;第一卡接部与第二卡接部是相互匹配的,从而第一卡接部可以与第二卡接部进行卡接,进而将导热件3卡合到凹槽2中。
进一步地,在每一个凹槽2上设置一个第一卡接部,在第一卡接部上设置有一个或多个第一卡和部8,并且,在导热件3上设置与第一卡和部8匹配的一个或多个第二卡和部9。
举例来说,如图11所示,在每一个凹槽2中设置了一个第一卡和部8;一个凹槽2对应了一个导热件3,则在凹槽2对应的导热件3上设置与第一卡和部8匹配的一个或多个第二卡和部9。优选的,第一卡和部8与第二卡和部9是一一对应的。如图11所示,第一卡和部8可以位于凹槽2的底面上。其中,第一卡和部8可以是凹陷状,则第二卡和部9为凸起状,可以将第二卡和部9插入到第一卡和部8中;为了使得第一卡和部8与第二卡和部9连接更为牢固,可以设置第一卡和部8为弹性的,并且第一卡和部8的直径大于第二卡和部9的直径。或者,第一卡和部8可以是凸起状的,则第二卡和部9为凹陷状,可以将第一卡和部8插入到第二卡和部9中,为了使得第一卡和部8与第二卡和部9连接更为牢固,可以设置第一卡和部8为弹性的,并且第一卡和部8的直径小于第二卡和部9的直径。若第一卡和部8可以是凸起状的、第二卡和部9为凹陷状,在一个第一卡和部8插入到多个第二卡和部9的时候,多个第二卡和部9之间是可以相互连通的。
再举例来说,如图11所示,在每一个凹槽2中设置了一个第一卡和部8;一个凹槽2对应了多个导热件3,则在凹槽2对应的每一个导热件3上 设置与第一卡和部8匹配的一个或多个第二卡和部9。第一卡和部8可以是凹陷状的,第二卡和部9为凸起状;或者,第一卡和部8可以是凸起状的,第二卡和部9为凹陷状。可以设置第一卡和部8为弹性的。
又举例来说,图12为本申请实施例提供的又一种电路板的结构示意图二,如图12所示,在每一个凹槽2中设置了多个第一卡和部8;一个凹槽2对应了一个或多个导热件3;则在凹槽2对应的导热件3上设置与第一卡和部8匹配的一个或多个第二卡和部9。其中,一个第一卡和部8对应了一个导热件3;或者,多个第一卡和部8对应了一个导热件3;或者,第一卡和部8与第二卡和部9是一一对应的。如图12所示,第一卡和部8可以位于凹槽2的底面上。同样的,第一卡和部8可以是凹陷状的,则第二卡和部9为凸起状;或者,第一卡和部8可以是凸起状的,则第二卡和部9为凹陷状。可以设置第一卡和部8为弹性的。
进一步地,图13为本申请实施例提供的又一种电路板的结构示意图三,如图13所示,可以将第一卡和部8设置在第一卡和部8所对应的凹槽2的顶部的边缘,并且,将第二卡和部9设置在导热件3的顶面的边缘。第一卡和部8和二卡和部的结构,提供了以下几种实施方式。
第一种实施方式:第一卡和部8可以为凹陷状,第二卡和部9为凸起状,则第一卡和部8在凹槽2的顶部的边缘上进行凹陷,导热件3的顶面的边缘上延伸出第二卡和部9,进而第二卡和部9卡和到第一卡和部8中。此时,第一卡和部8的顶部与其对应的凹槽2的顶部位于同一水平面。此时,图14为本申请实施例提供的导热件的结构示意图二,如图14所示,第二卡和部9的顶面与其对应的导热件3的顶面位于同一水平面;或者,图15为本申请实施例提供的导热件的结构示意图三,如图15所示,第二卡和部9的底面与其对应的导热件3的顶面位于同一水平面。
第一种实施方式:第一卡和部8可以为凸起状,第二卡和部9为凹陷状,则第一卡和部8在凹槽2的顶部的边缘上进行凸起,导热件3的顶面的边缘上延伸出第二卡和部9,进而第一卡和部8卡和到第二卡和部9中。此时,第一卡和部8的底部与其对应的凹槽2的顶部位于同一水平面。此时,可以在图14所示的导热件3的第二卡和部9上挖设凹陷部,第二卡和部9的顶面与其对应的导热件3的顶面位于同一水平面;或者,在图15所示导热件3的第二卡和部9上挖设凹陷部,第二卡和部9的底面与其对 应的导热件3的顶面位于同一水平面。
本实施例,通过每一个凹槽2上设置有第一卡接部,在每一个凹槽2所对应的每一个导热件3上设置有第二卡接部,第一卡接部与第二卡接部卡接,进而使得导热件3与凹槽2进行良好的卡合,使得导热件3不易从电路板本体1上脱落,有益于对电路板进行散热。
本申请的实施例还提供了一种超算设备,如图16所示,其为本申请实施例中提供的超算设备的结构示意图。具体地,由图16可知,该超算设备中包括上述实施例中提供的至少一个电路板161。
可选的,超算设备中的各电路板161之间相互并联。
可选的,超算设备的机箱上设置有滑槽,滑槽用于与超算设备中的各电路板161滑动连接。
可选的,超算设备的机箱两侧还可设置有风扇,风扇的散热风道可与电路板161上的散热器的散热腔保持一致,从而快速的将机箱内电路板161产生的热量散发到机箱外,进而提供超算设备的性能。
示例性地,在超算设备中设置一个或多个电路板161,该电路板161采用上述实施例提供的电路板。电路板161的结构和功能,可以参见上述实施例的介绍,不再赘述。
本实施例中,可以将多个电路板161进行并联,然后将并联的电路板161设置在超算设备中。在一种实施方式中,超算设备可以为超算服务器。
电路板161与超算设备的连接方式可以选择固定连接或滑动连接的方式。示例性地,可以在超算设备的机箱上设置有一个或多个滑槽,然后将电路板161设置在滑槽中,使得电路板161可以在滑槽上滑动。
其中,在超算设备中设置多个电路板161的时候,多个电路板161中的每一个电路板161的结构可以相同或不同。举例来说,超算设备中设置S个电路板161,S为大于等于2的正整数,S个电路板161中的部分的电路板161上设置了一个凹槽,其余的电路板161上设置了多个凹槽。
本实施例,通过在电路板本体的表面上设置有至少一个凹槽;至少一个凹槽中设置有至少一个导热件;每一个导热件的下表面与导热件所对应的凹槽的底面贴合。通过在电路板本体的表面上开设凹槽,在凹槽中设置一个或多个导热件,进而在电路板本体的内部的热量可以通过导热件散发 出去,增强电路板161的散热效果;并且将导热件的底面与凹槽的底面进行贴合,进一步增大导热件与电路板本体的接触面积,进而将电路板161在工作过程产生的热量传递到外界,提升电路板161的散热能力;进而,保证电路板161和电路板161上的元器件不被高温所损伤,保障电路板161和电路板161上的元器件的正常工作。
当用于本申请中时,虽然术语“第一”、“第二”等可能会在本申请中使用以描述各元件,但这些元件不应受到这些术语的限制。这些术语仅用于将一个元件与另一个元件区别开。比如,在不改变描述的含义的情况下,第一元件可以叫做第二元件,并且同样第,第二元件可以叫做第一元件,只要所有出现的“第一元件”一致重命名并且所有出现的“第二元件”一致重命名即可。第一元件和第二元件都是元件,但可以不是相同的元件。
本申请中使用的用词仅用于描述实施例并且不用于限制权利要求。如在实施例以及权利要求的描述中使用的,除非上下文清楚地表明,否则单数形式的“一个”(a)、“一个”(an)和“所述”(the)旨在同样包括复数形式。类似地,如在本申请中所使用的术语“和/或”是指包含一个或一个以上相关联的列出的任何以及所有可能的组合。另外,当用于本申请中时,术语“包括”(comprise)及其变型“包括”(comprises)和/或包括(comprising)等指陈述的特征、整体、步骤、操作、元素,和/或组件的存在,但不排除一个或一个以上其它特征、整体、步骤、操作、元素、组件和/或这些的分组的存在或添加。
上述技术描述可参照附图,这些附图形成了本申请的一部分,并且通过描述在附图中示出了依照所描述的实施例的实施方式。虽然这些实施例描述的足够详细以使本领域技术人员能够实现这些实施例,但这些实施例是非限制性的;这样就可以使用其它的实施例,并且在不脱离所描述的实施例的范围的情况下还可以做出变化。比如,流程图中所描述的操作顺序是非限制性的,因此在流程图中阐释并且根据流程图描述的两个或两个以上操作的顺序可以根据若干实施例进行改变。作为另一个例子,在若干实施例中,在流程图中阐释并且根据流程图描述的一个或一个以上操作是可选的,或是可删除的。另外,某些步骤或功能可以添加到所公开的实施例中,或两个以上的步骤顺序被置换。所有这些变化被认为包含在所公开的 实施例以及权利要求中。
另外,上述技术描述中使用术语以提供所描述的实施例的透彻理解。然而,并不需要过于详细的细节以实现所描述的实施例。因此,实施例的上述描述是为了阐释和描述而呈现的。上述描述中所呈现的实施例以及根据这些实施例所公开的例子是单独提供的,以添加上下文并有助于理解所描述的实施例。上述说明书不用于做到无遗漏或将所描述的实施例限制到本申请的精确形式。根据上述教导,若干修改、选择适用以及变化是可行的。在某些情况下,没有详细描述为人所熟知的处理步骤以避免不必要地影响所描述的实施例。
本申请中应用了具体实施例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (21)

  1. 一种电路板,其特征在于,包括:
    电路板本体,所述电路板本体的表面上设置有至少一个凹槽;
    所述至少一个凹槽中设置有至少一个导热件;
    所述至少一个导热件中的每一个导热件的下表面与导热件所对应的凹槽的底面贴合。
  2. 根据权利要求1所述的电路板,其特征在于,所述导热件为导热金属。
  3. 根据权利要求2所述的电路板,其特征在于,所述导热金属包括铜、铝、银、锡、金、铁、铝合金中的一种或多种。
  4. 根据权利要求1所述的电路板,其特征在于,所述导热件为导热非金属。
  5. 根据权利要求4所述的电路板,其特征在于,所述导热非金属为石墨烯。
  6. 根据权利要求1所述的电路板,其特征在于,所述至少一个凹槽中的每一个凹槽中设置有所述至少一个导热件中的一个或多个导热件。
  7. 根据权利要求1所述的电路板,其特征在于,所述至少一个凹槽中的每一个凹槽与所述至少一个导热件中的每一个导热件是一一对应的。
  8. 根据权利要求1-7任一项所述的电路板,其特征在于,所述每一个凹槽与所述每一个凹槽所对应的导热件进行螺接;
    或者,所述每一个凹槽与所述每一个凹槽所对应的导热件进行粘接。
  9. 根据权利要求1-7任一项所述的电路板,其特征在于,所述每一个凹槽与所述每一个凹槽所对应的导热件进行卡合。
  10. 根据权利要求9所述的电路板,其特征在于,所述每一个凹槽上设置有第一卡接部,所述每一个凹槽所对应的每一个导热件上设置有第二卡接部,所述第一卡接部与所述第二卡接部卡接。
  11. 根据权利要求10所述的电路板,其特征在于,所述每一个凹槽上的所述第一卡接部的个数为一个,所述第一卡接部上设置有至少一个第一卡和部,所述每一个凹槽所对应的每一个导热件上设置有与所述第一卡和部匹配的至少一个第二卡和部。
  12. 根据权利要求11所述的电路板,其特征在于,所述第一卡和部为凹陷状,所述第二卡和部为凸起状;
    或者,所述第一卡和部为凸起状,所述第二卡和部为凹陷状。
  13. 根据权利要求11或12所述的电路板,其特征在于,每一个所述第一卡接部上的所述至少一个第一卡和部设置在所述凹槽的顶部的边缘;
    所述至少一个第二卡和部设置在所述导热件的顶面的边缘。
  14. 根据权利要求13所述的电路板,其特征在于,每一个所述第一卡接部上的所述至少一个第一卡和部与所述凹槽的顶部位于同一水平面,所述至少一个第二卡和部与所述导热件的顶面位于同一水平面。
  15. 根据权利要求11-14任一项所述的电路板,其特征在于,所述第一卡和部和所述第二卡和部一一对应。
  16. 根据权利要求1-15任一项所述的电路板,其特征在于,所述电路板本体上设置有至少一个散热片;
    所述至少一个散热片中的每一个散热片包括底片和至少一个散热翅片,所述至少一个散热翅片中的每一个散热翅片与所述底片连接,所述底片与所述电路板本体的表面连接。
  17. 根据权利要求16所述的电路板,其特征在于,所述每一个散热片上设置有连接部,连接部包括第一板和第二板,所述第一板与所述第二板之间呈预设角度;
    所述至少一个散热翅片固定设置在所述连接部的上表面,所述底片固定设置在所述连接部的下表面。
  18. 根据权利要求16或17所述的电路板,其特征在于,所述至少一个散热翅片中相邻的散热翅片的高度相同或不同。
  19. 一种超算设备,其特征在于,包括至少一个如权利要求1-18任一项所述的电路板。
  20. 根据权利要求19所述的超算设备,其特征在于,所述超算设备中的各所述电路板之间相互并联。
  21. 根据权利要求19或20所述的超算设备,其特征在于,所述超算设备的机箱上设置有滑槽,所述滑槽用于与所述超算设备中的各所述电路板滑动连接。
PCT/CN2018/113201 2018-10-31 2018-10-31 电路板以及超算设备 WO2020087411A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880002442.6A CN109565930B (zh) 2018-10-31 2018-10-31 电路板以及超算设备
PCT/CN2018/113201 WO2020087411A1 (zh) 2018-10-31 2018-10-31 电路板以及超算设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/113201 WO2020087411A1 (zh) 2018-10-31 2018-10-31 电路板以及超算设备

Publications (1)

Publication Number Publication Date
WO2020087411A1 true WO2020087411A1 (zh) 2020-05-07

Family

ID=65872570

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/113201 WO2020087411A1 (zh) 2018-10-31 2018-10-31 电路板以及超算设备

Country Status (2)

Country Link
CN (1) CN109565930B (zh)
WO (1) WO2020087411A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116136618A (zh) * 2021-11-16 2023-05-19 中兴智能科技南京有限公司 一种光模块散热装置及通讯设备
CN117395865B (zh) * 2023-12-12 2024-02-27 深圳市凌航达电子有限公司 一种传感器用可叠加线路板

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100819887B1 (ko) * 2005-11-25 2008-04-07 윤동구 집적회로 홀더, 시스템 보드 및 이를 위한 집적회로 패키지
CN101291571A (zh) * 2007-04-20 2008-10-22 富准精密工业(深圳)有限公司 散热装置
CN104776338A (zh) * 2015-04-24 2015-07-15 东莞市闻誉实业有限公司 照明装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204217201U (zh) * 2014-10-13 2015-03-18 东莞森玛仕格里菲电路有限公司 埋铜块散热pcb结构
CN105472869A (zh) * 2015-12-14 2016-04-06 深圳崇达多层线路板有限公司 一种半埋式埋入导热块的印制电路板
CN205693973U (zh) * 2016-06-28 2016-11-16 广州市博声电子科技开发有限公司 一种pcb板组件
CN205864859U (zh) * 2016-07-11 2017-01-04 江门市奔力达电路有限公司 一种具有散热结构的pcb电路板
CN207573703U (zh) * 2017-12-08 2018-07-03 东莞市德胜电路板有限公司 一种单面电路板

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100819887B1 (ko) * 2005-11-25 2008-04-07 윤동구 집적회로 홀더, 시스템 보드 및 이를 위한 집적회로 패키지
CN101291571A (zh) * 2007-04-20 2008-10-22 富准精密工业(深圳)有限公司 散热装置
CN104776338A (zh) * 2015-04-24 2015-07-15 东莞市闻誉实业有限公司 照明装置

Also Published As

Publication number Publication date
CN109565930B (zh) 2022-03-08
CN109565930A (zh) 2019-04-02

Similar Documents

Publication Publication Date Title
TW410454B (en) Laminated semiconductor device
RU2742524C1 (ru) Радиатор, интегральная микросхема и печатная плата
WO2008122220A1 (en) Shielding and heat-dissipating device
US8120917B2 (en) Heat dissipation device
JP2009117612A (ja) 回路モジュールとその製造方法
US7487825B2 (en) Heat dissipation device
US20210280489A1 (en) Chip heat dissipating structure, chip structure, circuit board and supercomputing device
US10504813B2 (en) Heat sink assemblies for surface mounted devices
WO2020087411A1 (zh) 电路板以及超算设备
TW201204227A (en) Heat dissipation apparatus
JP2020533796A (ja) ヒートシンクを備えるプリント回路基板
US20210280504A1 (en) Chip heat dissipating structure, chip structure, circuit board and supercomputing device
US20090180254A1 (en) Electronic assembly and heat sink
TWI645588B (zh) 半導體的導熱及散熱結構
TWI522032B (zh) 散熱模組
JP4438526B2 (ja) パワー部品冷却装置
TWM417597U (en) Structure of heat conducting body
US9870973B2 (en) Cooling device and device
US20080057279A1 (en) Laminated heat-transfer interface for cooler module
US20050199377A1 (en) Heat dissipation module with heat pipes
WO2021233241A1 (zh) 一种功率变换装置
WO2020103137A1 (zh) 芯片散热结构、芯片结构、电路板和超算设备
US20100251536A1 (en) Heat-dissipating structure on case of industrial computer and manufacturing method thereof
TWI828976B (zh) 用於半導體功率元件的洩熱元件及具有該元件的電路板
CN209643064U (zh) 电路板以及超算设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18938867

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 11.10.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18938867

Country of ref document: EP

Kind code of ref document: A1