WO2020085551A1 - 레독스 흐름전지 - Google Patents

레독스 흐름전지 Download PDF

Info

Publication number
WO2020085551A1
WO2020085551A1 PCT/KR2018/012870 KR2018012870W WO2020085551A1 WO 2020085551 A1 WO2020085551 A1 WO 2020085551A1 KR 2018012870 W KR2018012870 W KR 2018012870W WO 2020085551 A1 WO2020085551 A1 WO 2020085551A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte
supply
tank
battery cell
battery
Prior art date
Application number
PCT/KR2018/012870
Other languages
English (en)
French (fr)
Inventor
김기현
김부기
이동영
최담담
박상현
최강영
Original Assignee
스탠다드에너지 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 스탠다드에너지 주식회사 filed Critical 스탠다드에너지 주식회사
Publication of WO2020085551A1 publication Critical patent/WO2020085551A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04186Arrangements for control of reactant parameters, e.g. pressure or concentration of liquid-charged or electrolyte-charged reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04276Arrangements for managing the electrolyte stream, e.g. heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a redox flow battery, and in particular, to a redox flow battery that minimizes the flow path generated during circulation of the electrolyte to smoothly circulate the electrolyte, improve the efficiency of the battery, and simplify the overall structure. It is about.
  • renewable energy such as solar energy or wind energy has been spotlighted.
  • a lot of research has been conducted to spread their practical use.
  • renewable energy is greatly affected by the location environment or natural conditions, and furthermore, since renewable energy has a large output fluctuation, it is disadvantageous in that it cannot continuously supply energy continuously.
  • a large capacity secondary battery is used as the energy storage system.
  • Secondary batteries for storing large amounts of power include lead acid batteries, sodium sulfide (NaS) batteries, lithium batteries, or redox flow batteries (RFBs).
  • the redox flow battery is capable of operating at room temperature, and since capacity and output can be independently designed, many studies have been conducted on large-capacity secondary batteries.
  • the redox flow battery has a function of a secondary battery capable of charging and discharging electrical energy by arranging a separator (membrane), an electrode, and a bipolar plate in series, similar to a fuel cell.
  • redox flow battery positive and negative electrodes are disposed on both sides of the separator, and a positive electrode electrolyte storage tank and a negative electrode electrolyte storage tank for supplying the electrolyte to the positive and negative electrodes are provided, respectively, in the positive electrode electrolyte storage tank and the negative electrode electrolyte storage tank. Ion exchange is performed while the supplied electrolyte circulates, and in this process, electrons are generated and charged and discharged.
  • EES energy storage system
  • the redox flow battery must be provided separately to install the positive electrode electrolyte storage tank and the negative electrode electrolyte storage tank for storing the positive electrode electrolyte and the negative electrode electrolyte.
  • a certain space must be provided on both sides or under the stack (a structure in which a plurality of structures in which an anode and a cathode are disposed on both sides of a separator) is provided to arrange the electrolyte tank.
  • a plurality of electrolyte circulation pipes connecting the stack and the electrolyte storage tank should be provided, and when the circulation pipe becomes longer, there is a problem that the volume and manufacturing cost increase because the required capacity of the pump increases.
  • the conventional redox flow battery uses a pump to circulate the electrolyte, but the process of introducing the electrolyte into the pump is not smoothly, and thus the efficiency of the entire system is deteriorated.
  • a separate suction device may be installed to induce the inflow of the electrolyte, but this has a disadvantage of complicating the pumping system because of the need to install an additional mechanism, and increasing installation inconvenience and cost.
  • the present invention has been devised to improve the problems as described above, and minimizes the flow path resistance generated when the electrolyte is circulated to facilitate circulation of the electrolyte, improve the efficiency of the battery, and simplify the overall structure.
  • the aim is to provide a dock flow cell.
  • Redox flow battery a separator and a battery cell provided with an anode and a cathode on both sides of the separator; and an electrolyte solution supply unit for supplying the electrolyte to the battery cell, Redox flow battery comprising a, the electrolyte supply Blowing, the supply tank for storing the electrolyte supplied to the battery cell; A supply passage connecting the supply tank and the battery cell; A first pressure transmission unit that applies pressure to the electrolyte solution stored in the supply tank to flow the electrolyte solution into the battery cell through the supply passage; A recovery tank in which the electrolyte solution circulated inside the battery cell is recovered; A return flow passage connecting the battery cell and the recovery tank; A filling passage connecting the recovery tank and the supply tank; And a second pressure transmission unit that applies pressure to the electrolyte solution stored in the recovery tank to flow the electrolyte solution through the filling passage to the supply tank.
  • Redox flow battery comprising a, the electrolyte supply Blowing, the supply tank for storing the electro
  • the filling flow path is provided with a backflow prevention device for preventing backflow of the electrolyte.
  • the reverse flow path is provided with a reverse flow prevention device that prevents reverse flow of the electrolyte.
  • two or more electrolyte supply units are provided, and when the electrolyte is supplied to the battery cell through at least one of the electrolyte supply units, the remaining electrolyte supply unit fills the electrolyte from the recovery tank to the supply tank. It is desirable to do.
  • each supply tank of the electrolyte supply part is connected to the battery cell by a separate supply flow path.
  • each of the supply flow paths extending from each of the supply tanks is merged before entering the battery cell to form a common flow path.
  • the supply tank or the recovery tank is selected from rubber, fluorocarbon rubber, polyolefin-based resin, olefin-based polyethylene (PE), chlorinated polyethylene, polypropylene, alkane-based solid wax, or polyvinyl chloride-based resin. It is preferably made of material.
  • the first pressure transmitting part or the second pressure transmitting part is provided in plural.
  • a fluid filter for removing foreign matter contained in the electrolyte.
  • the supply tank or the recovery tank is preferably provided with an oxygen absorbing device for absorbing oxygen or an oxygen supplying device for supplying oxygen to control the oxidation number of the electrolyte.
  • the internal pressure of the battery cell or the electrolyte supply portion is greater than or equal to a predetermined pressure
  • the supply tank or the recovery tank is expandable so that the internal volume is variable, and the first pressure transfer unit or the second pressure transfer unit expands and contracts the supply tank or the recovery tank to transfer pressure to the electrolyte. desirable.
  • the supply tank includes a first variable portion having an internal volume variable, a first extension portion extending from the first variable portion and having no change in the internal volume, and the filling flow path is coupled, and the recovery tank has an internal volume. It is preferable to include a variable second variable portion, and a second extension portion extending from the second variable portion and having no internal volume change and the filling flow path coupled thereto.
  • the redox flow battery according to the present invention minimizes the flow path resistance generated during circulation of the electrolyte to smoothly circulate the electrolyte and improve the efficiency of the battery, and greatly improves productivity by simplifying the overall structure of the redox flow battery It provides the effect of prescribing.
  • FIG. 1 is a view schematically showing a redox flow battery according to an embodiment of the present invention
  • 3 is a view showing the operation when the electrolyte is moved from the recovery tank to the supply tank
  • Figure 4 is a block diagram of a redox flow battery according to an embodiment of the present invention.
  • FIG. 5 is a view schematically showing a redox flow battery according to another embodiment of the present invention.
  • FIG. 6 is a view schematically showing a redox flow battery according to another embodiment of the present invention.
  • FIG. 7 is a view schematically showing a redox flow battery according to another embodiment of the present invention.
  • FIG. 1 is a view schematically showing a redox flow battery according to an embodiment of the present invention.
  • 2 is a view showing the operation when the electrolyte is introduced into the battery cell
  • Figure 3 is a view showing the operation when the electrolyte moves from the recovery tank to the supply tank
  • Figure 4 is a diagram according to an embodiment of the present invention It is a block diagram of the DOX flow battery.
  • a redox flow battery 100 includes a battery cell 10 and an electrolyte supply unit 20.
  • the battery cell (battery cell) 10 is the smallest unit in which charging and discharging occurs through the electrolyte, and the separator 13 and the anode 11 disposed on both sides of the separator 13 so that charge and discharge are performed while ion exchange occurs. , It may be configured to include a cathode 12, a separation plate (14). Since the configuration of the battery cell 10 itself is based on a known configuration, detailed description thereof will be omitted.
  • the electrolyte solution supply unit 20 is provided to supply the electrolyte solution to the battery cell 10.
  • the electrolyte solution supply unit 20 is implemented in the form of supplying electrolyte to both the positive electrode 11 and the negative electrode 12 of the battery cell 10.
  • the electrolyte solution supply unit 20 is implemented in the form of supplying the electrolyte solution to either the anode 11 or the cathode 12.
  • the electrolyte solution supply unit 20 supplies the electrolyte solution to the anode 11.
  • the structure or operation when the electrolyte solution supply unit 20 supplies the electrolyte solution to the cathode 12 is the same as the structure or operation of supplying the electrolyte solution to the anode 11.
  • the electrolyte supply unit 20 is a supply tank 21, a supply passage 22, a first pressure transmission unit 23, a recovery tank 24, a return passage 25, a filling passage 26, and It includes a second pressure transmission portion (27).
  • the supply tank 21 stores the electrolyte solution supplied to the battery cell 10.
  • the supply flow path 22 connects the supply tank 21 and the battery cell 10 and provides a flow path through which the electrolyte flows.
  • the supply tank 21 is rubber, fluorocarbon rubber, polyolefin-based resin, olefin-based polyethylene (PE), chlorinated polyethylene, polypropene, alkane-based solid wax, or polyvinyl chloride-based It is made of a material selected from resins.
  • the material is a material resistant to chemicals and prevents the inside of the supply tank 21 from being corroded by the electrolyte.
  • the inner wall surface of the supply tank 21 may be coated using a chemical resistant coating agent, and the coating agent may be selected from silicon compounds, boron compounds, or aluminum compounds.
  • the first pressure transmission unit 23 is provided to apply pressure to the electrolyte stored in the supply tank 21 to flow the electrolyte to the battery cell 10.
  • the electrolytic solution flows into the battery cell 10 through the supply flow path 22 by the first pressure transfer part 23.
  • the first pressure transmission unit 23 directly or indirectly provides pressure to the electrolyte so that the electrolyte moves from the supply tank 21 to the battery cell 10 side.
  • the first pressure transmission unit 23 may be a pneumatic pump, an electric pump, a hydraulic pump, or the like, or may be implemented as a structure indirectly applying pressure to the electrolyte, as in the embodiment of FIG. 7.
  • the first pressure transmission unit 23 for transmitting pressure to the electrolyte stored in the supply tank 21 is provided, but a plurality of first pressure transmission unit 23 is connected to the supply tank 21 may be implemented to transmit pressure to the electrolyte.
  • a plurality of the first pressure transmitting parts 23 are provided, it is possible to transfer the electrolyte at a larger flow rate, and the electrolyte can be rapidly transferred.
  • the recovery tank 24 is provided to circulate the inside of the battery cell 10 and recover the electrolyte solution.
  • the recirculation flow path 25 connects the battery cell 10 and the recovery tank 24 and provides a flow path through which the electrolyte flows from the battery cell 10 to the recovery tank 24.
  • the material of the recovery tank 24 may be made of the same material as that of the supply tank 21.
  • the inner wall surface of the recovery tank 24 may be coated with a chemical resistant coating agent as in the supply tank 21.
  • the coating agent may be selected from silicon compounds, boron compounds, or aluminum compounds.
  • the filling flow path 26 connects the recovery tank 24 and the supply tank 21.
  • the second pressure transmission unit 27 is provided to apply pressure to the electrolyte stored in the recovery tank 24 to flow the electrolyte to the supply tank 21.
  • the electrolytic solution flows from the recovery tank 24 to the supply tank 21 through the filling passage 26 by the second pressure transmission part 27.
  • the second pressure transmission unit 27 may be implemented by substantially the same configuration as the first pressure transmission unit 23.
  • the second pressure transfer unit 27 is provided with one to transfer pressure to the electrolyte stored in the recovery tank 24, but a plurality of second pressure transfer units 27 recover the pressure. It can be implemented to be connected to the tank 24 to deliver pressure to the electrolyte.
  • the electrolyte solution circulates while flowing through the supply tank 21, the battery cell 10, and the recovery tank 24 sequentially, and then flows back to the supply tank 21.
  • the redox flow battery according to the present embodiment is provided with a backflow prevention opening 30 for preventing backflow of electrolyte.
  • the backflow preventer 30 is sufficient if it allows the electrolyte to move in one direction and blocks the movement in the opposite direction.
  • a valve, a shutoff valve, a check valve, or a floating valve may be employed. .
  • a check valve is used as the backflow preventer 30, but is not limited thereto.
  • Check valves are ball type check valves, valve type check valves, lift type check valves, swing check valves, swing wafer check valves, or split disc check valves. Valves are also available.
  • the backflow prevention hole 30 is provided on the filling flow path 26 and the recirculation flow path 25 to prevent backflow of the electrolyte.
  • the check valve installed in the filling passage 26 allows the electrolyte to flow from the recovery tank 24 to the supply tank 21, and the electrolyte flows back to the recovery tank 24 from the supply tank 21 side. To prevent.
  • the check valve installed in the return passage 25 allows the electrolyte to flow into the recovery tank 24 from the battery cell 10, and the electrolyte flows back to the battery cell 10 from the recovery tank 24 side. To prevent.
  • the reverse flow prevention hole 30 is provided in the filling passage 26 and the recirculation passage 25, but when the flow resistance inside the battery cell 10 is greater than the flow resistance inside the filling passage 26, It is also possible to remove the installed backflow preventer 30 on the return passage 25. That is, when the pressure is transmitted to the electrolyte by the second pressure transmission unit 27, the electrolyte does not flow from the recovery tank 24 to the battery cell 10 having high flow resistance, and the supply tank having low flow resistance Since it flows to (21), the desired electrolyte flow is achieved.
  • FIG. 2 shows the operation when the electrolyte is introduced into the battery cell 10.
  • the electrolyte flows into the battery cell 10 through the supply passage 22.
  • the electrolyte is not flowed to the recovery tank 24 by the backflow prevention hole 30 provided in the filling passage 20, but flows into the battery cell 10 through the supply passage 22.
  • Ion exchange occurs inside the battery cell 10 by the electrolyte flowing into the battery cell 10, and the electrolyte 10 is transferred from the battery cell 10 to the recovery tank 24 through the return passage 25. Inflow.
  • the reverse flow prevention hole 30 provided in the return passage 25 allows the flow of electrolyte from the battery cell 10 toward the recovery tank 24, and conversely, from the recovery tank 24 to the battery cell 10 Since it prevents backflow, the electrolyte flows in one direction.
  • FIG. 3 shows the operation when the electrolyte is moved from the recovery tank 24 to the supply tank 21.
  • the second pressure transmission unit 27 applies pressure to the electrolyte stored in the recovery tank 24
  • the electrolyte flows into the supply tank 21 through the filling passage 26, and Fill the supply tank (21) again.
  • the reverse flow prevention hole 30 provided in the filling passage 26 allows the flow of the electrolyte from the recovery tank 24 to the supply tank 21 side.
  • the backflow prevention hole 30 provided in the return passage 25 prevents the electrolyte from flowing into the battery cell 10, so that the electrolyte is supplied from the recovery tank 24 It flows to the tank 21. By this action, the electrolyte is circulated in one direction from the supply tank 21 and then enters the supply tank 21 again.
  • the redox flow battery according to the embodiment of the present invention improves the overall efficiency of the redox flow battery by reducing the flow path resistance in the course of circulating the electrolyte. That is, in the present invention, since the electrolyte is not introduced into the pumping means for circulating the electrolyte as in the prior art, the flow path resistance can be significantly reduced.
  • the redox flow battery according to an embodiment of the present invention can easily control the flow of the electrolyte by appropriately controlling the pressure applied to the electrolyte by the first and second pressure transmission units 23 and 27.
  • the redox flow battery according to an embodiment of the present invention can simplify the overall configuration, thereby improving the reliability of the redox flow battery and providing an effect of improving convenience of manufacture.
  • the redox flow battery according to an embodiment of the present invention may be implemented in other types of embodiments as shown in FIGS. 5 to 7. 5 to 7, the same reference numerals are assigned to components having the same function or function as the embodiment of FIG. 1, and detailed descriptions thereof will be omitted.
  • two or more electrolyte supply units 20 may be provided.
  • the electrolyte solution is supplied to the battery cell 10 through at least one of the electrolyte solution supply units 20, the remaining electrolyte solution supply unit 20 discharges the electrolyte solution from the recovery tank 24 to the supply tank 21 ).
  • each electrolyte supply unit 20 is provided on the upper side and the lower side, respectively, based on FIG. 5.
  • Each supply tank 21 of the electrolyte supply unit 20 is connected to the battery cell 10 by a separate supply passage 22.
  • each recovery tank 24 of the electrolyte supply unit 20 is connected by a battery cell 10 and a separate recirculation flow path (25).
  • the supply tank 21 and the recovery tank 24 on the upper side are connected by a filling passage 26.
  • the electrolyte supply unit 20 provided on the lower side is also connected to the lower supply tank 21 and the recovery tank by a filling passage 26.
  • the supply flow path 22, the recirculation flow path 25, and the filling flow path 26 are each provided with a reverse flow prevention port 30.
  • the second pressure transmission unit 20 applies pressure to the electrolyte solution supply unit 20 provided on the upper side, while the electrolyte solution of the supply tank 21 flows into the battery cell 10, the second electrolyte supply unit 20 provided on the lower side
  • the electrolyte solution stored in the recovery tank 24 is introduced into the supply tank 21 provided at the lower side by the pressure transmission unit 27. That is, the supply step of introducing the electrolyte into the battery cell 10 is performed in the electrolyte supply section 20 provided on the upper side, and the recovery step of recovering the electrolyte solution into the recovery tank 24 is performed on the electrolyte supply section 20 provided on the lower side. do.
  • a supply step in which the electrolyte is supplied to the battery cell is performed by the electrolyte solution supply unit 20 provided on the lower side, and in the electrolyte solution supply unit 20 provided on the upper side, a recovery step in which the electrolyte solution is recovered into the recovery tank 24 Is performed.
  • the electrolyte solution supply unit 20 provided on the upper side and the electrolyte solution supply unit 20 provided on the lower side can be continuously and uniformly supplied with the electrolyte solution to the battery cell 10 while operating in opposition to each other. That is, according to the present embodiment, while filling the supply tank 21 by flowing the electrolyte from the recovery tank 24 to the supply tank 21, the electrolyte is temporarily transferred from the supply tank 21 to the battery cell 10 Since it is not supplied, it is possible to prevent the charging and discharging efficiency of the battery from falling.
  • FIG. 6 shows another embodiment of the present invention.
  • the embodiment of FIG. 6 is distinguished from the embodiment of FIG. 5 in that a common flow path 40 is provided.
  • each supply passage 22 extending from each supply tank 21 is merged before entering the battery cell 10 to form a common passage 40 do.
  • two electrolyte supply units are provided, and supply passages 22 are connected from each supply tank 21 constituting the electrolyte supply unit, and each supply passage 22 is the battery cell It is merged with each other before being connected to (10).
  • the supply tank 21 or the recovery tank 24 may be embodied to be flexible so that the internal volume is variable.
  • the first pressure transmission unit 23 extends the supply tank 21 to transmit pressure to the electrolyte
  • the second pressure transmission unit 27 expands and contracts the recovery tank 24 to obtain the electrolyte solution. To deliver pressure.
  • the supply tank 21 includes a first variable portion 211 and a first extension portion 212.
  • the first variable portion 211 is a portion in which the internal volume is variable
  • the first extension portion 212 is a portion extending from the first variable portion 211 and having no internal volume change.
  • One end of the filling passage 26 is coupled to the first extension part 212.
  • the recovery tank 24, like the supply tank 21, includes a second variable portion 241 and a second extension portion 242.
  • the second variable portion 241 is a portion whose internal volume is variable
  • the second extension portion 242 is a portion extending from the second variable portion 241 and having no internal volume change.
  • the other end of the filling passage 26 is coupled to the second extension part 242.
  • the filling passage 26 is coupled to the first and second extension parts 212 and 242 whose volume does not change, and thus is structurally stable.
  • the supply tank 21 or the recovery tank 24 may be any form in which the volume changes so that pressure can be transmitted to the electrolyte.
  • it may be implemented in the form of bellows, rubber bags, vinyl packs, and the like.
  • the first and second pressure transmission parts 23 and 27 may be implemented in a form of indirectly transmitting pressure to the electrolyte, the supply tank 21 and the recovery tank 24
  • the stored electrolyte is isolated from the external components to prevent the electrolyte from being contaminated from foreign materials.
  • the redox flow battery according to the present invention further includes a fluid filter 50, an oxygen absorbing device 60, an oxygen supply device 70, and a pressure reducing device 80, as shown in FIG. can do.
  • the fluid filter 50 is provided to remove foreign substances contained in the electrolyte.
  • the foreign matter means not only solid / liquid matter such as dust, reaction by-products, or electrolyte residue, but also gaseous impurities that may affect the performance of the electrolyte.
  • the fluid filter 50 is installed on the flow path through which the electrolyte flows, that is, on the supply flow path 22, the return flow path 25, the filling flow path 26, or in the supply tank 21 or the recovery tank 24. This mixed impurity can be removed.
  • the fluid filter 50 may be implemented with various filters in consideration of the properties of the object to be removed.
  • the oxygen absorbing device 60 or the oxygen supplying device 70 is provided to control the oxidation number of the electrolyte.
  • the oxygen absorbing device 60 is provided to absorb oxygen to reduce the number of oxidation contained in the electrolyte
  • the oxygen supply device 70 is provided to supply oxygen to increase the number of oxidation contained in the electrolyte do.
  • the oxygen absorption device 60 or the oxygen supply device 70 is provided in the supply tank 21 or the recovery tank 24.
  • the oxygen absorbing device 60 and the oxygen supply device 70 may be provided on a flow path through which the electrolyte flows, if necessary.
  • the pressure reducing device 80 is provided to drop the pressure when the pressure inside the battery cell 10 or the electrolyte supply unit 20 is greater than or equal to a predetermined pressure.
  • the pressure reducing device 80 may employ a relief valve that discharges pressure by operating at a specific pressure or higher.
  • the pressure reducing device 80 is not limited to a relief valve.
  • the pressure reducing device 80 may be provided as many as necessary on the supply tank 21, the recovery tank 24, the battery cell 10, or the flow path through which the electrolyte flows, and the installation location and number are particularly limited. It does not work.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

본 발명은 레독스 흐름전지에 관한 것이다. 이러한 레독스 흐름전지는, 분리막과 상기 분리막의 양측에 양극 및 음극이 마련된 전지셀;과 상기 전지셀에 전해액을 공급하는 전해액공급부;를 포함하는 레독스 흐름전지에 있어서, 상기 전해액공급부는, 상기 전지셀에 공급되는 상기 전해액을 저장하는 공급탱크; 상기 공급탱크와 상기 전지셀을 연결하는 공급유로; 상기 공급탱크에 저장된 상기 전해액에 압력을 가하여 상기 전해액을 상기 공급유로를 통하여 상기 전지셀 내부로 유동시키는 제1 압력전달부; 상기 전지셀 내부를 순환하고 나온 상기 전해액이 회수되는 회수탱크; 상기 전지셀과 상기 회수탱크를 연결하는 회기유로; 상기 회수탱크와 상기 공급탱크를 연결하는 충진유로; 및 상기 회수탱크에 저장된 상기 전해액에 압력을 가하여 상기 전해액을 상기 충진유로를 통하여 상기 공급탱크로 유동시키는 제2 압력전달부;를 포함하는 것을 특징으로 한다.

Description

레독스 흐름전지
본 발명은 레독스 흐름전지에 관한 것으로, 특히 전해액의 순환시 발생하는 유로 저항을 최소화하여 전해액의 순환을 원활하게 하고 전지의 효율을 향상시키며, 전체적인 구조를 단순화할 수 있도록 한 레독스 흐름전지에 관한 것이다.
최근 지구 온난화의 주요 원인인 온실가스 배출을 억제하기 위한 방법으로, 태양광 에너지나 풍력 에너지 같은 재생 에너지가 각광받고 있다. 이들의 실용화 보급을 위해 많은 연구가 진행되고 있다. 그러나 재생에너지는 입지 환경이나 자연조건에 의해 크게 영향을 받으며, 더욱이 재생에너지는 출력 변동이 심하기 때문에 에너지를 연속적으로 그르게 공급할 수 없다는 단점이 있다.
따라서 재생에너지를 가정용이나 상업용으로 사용하기 위해서는 출력이 높을 때 에너지를 저장하고 출력이 낮을 때 저장된 에너지를 사용할 수 있는 시스템을 도입하여 사용하고 있다.
이러한 에너지 저장 시스템으로는 대용량 이차전지가 사용된다. 예컨대, 대규모 태양광발전 및 풍력발전 단지에는 대용량 이차전지 저장시스템이 도입되고 있다. 대용량의 전력저장을 위한 이차전지로는 납축전지, 황화나트륨(NaS) 전지, 리튬전지, 또는 레독스 흐름전지(RFB: Redox flow battery) 등이 있다.
상기 레독스 흐름전지는 상온에서 동작 가능하며, 용량과 출력을 각기 독립적으로 설계할 수 있으므로 최근 대용량 이차전지로 많은 연구가 진행되고 있다. 레독스 흐름전지는 연료전지와 유사하게 분리막(멤브레인), 전극 및 분리판(Bipolar plate)이 직렬로 배치되어 구성됨으로써, 전기 에너지의 충방전이 가능한 이차전지(secondary battery)의 기능을 가진다.
레독스 흐름전지는 분리막의 양측에 양극 및 음극이 배치되고, 상기 양극 및 음극으로 전해액을 공급하는 양극 전해액저장탱크와 음극 전해액저장탱크가 각각 마련되며, 상기 양극 전해액저장탱크 및 음극 전해액저장탱크에서 공급된 전해액(electrolyte)이 순환하면서 이온 교환이 이루어지고, 이 과정에서 전자의 이동이 발생하여 충방전이 이루어진다. 이와 같은 레독스 흐름전지는 기존 이차전지에 비하여 수명이 길고, kw 내지 mw 급의 중대형 시스템으로 제작할 수 있기 때문에 EES(Energy storage system)으로 적합하다.
그러나 레독스 흐름전지는 양극 전해액과 음극 전해액을 저장하는 양극 전해액저장탱크와 음극 전해액저탱크를 설치하기 위해서 별도로 구비하여야 한다. 예를들어, 스택(분리막의 양측에 양극과 음극이 배치되는 구조가 복수로 마련된 구조)의 양측 또는 하측에 일정 공간을 마련하여 전해액 탱크를 배치하여야 한다. 또한, 상기 스택과 전해액저장탱크를 연결하는 전해액 순환관이 다수 구비되어야 하며, 순환관이 길어지는 경우 펌프 요구 용량이 증가하기 때문에 부피와 제조 단가가 증가하는 문제가 있다.
또한, 종래 레독스 흐름전지는 전해액을 순환시키기 위해서 펌프를 사용하는데, 상기 펌프의 내부로 전해액을 유입시키는 과정이 원활하게 이루어지지 않아 전체 시스템의 효율이 저하되는 문제가 있으며, 상기 펌프로 전해액을 원활하게 공급하기 위해서 별도의 흡입장치를 설치하여 전해액의 유입을 유도할 수 있으나, 이는 추가적인 기구를 설치해야 하므로 펌핑시스템을 복잡하게 하고, 설치의 불편 및 비용의 증가를 초래하는 단점이 있다.
본 발명은 상술한 바와 같은 문제점을 개선하기 위해 안출된 것으로, 전해액의 순환시 발생하는 유로 저항을 최소화하여 전해액의 순환을 원활하게 하고 전지의 효율을 향상시키며, 전체적인 구조를 단순화할 수 있도록 한 레독스 흐름전지를 제공함을 그 목적으로 한다.
본 발명에 따른 레독스 흐름전지는, 분리막과 상기 분리막의 양측에 양극 및 음극이 마련된 전지셀;과 상기 전지셀에 전해액을 공급하는 전해액공급부;를 포함하는 레독스 흐름전지에 있어서, 상기 전해액공급부는, 상기 전지셀에 공급되는 상기 전해액을 저장하는 공급탱크; 상기 공급탱크와 상기 전지셀을 연결하는 공급유로; 상기 공급탱크에 저장된 상기 전해액에 압력을 가하여 상기 전해액을 상기 공급유로를 통하여 상기 전지셀 내부로 유동시키는 제1 압력전달부; 상기 전지셀 내부를 순환하고 나온 상기 전해액이 회수되는 회수탱크; 상기 전지셀과 상기 회수탱크를 연결하는 회기유로; 상기 회수탱크와 상기 공급탱크를 연결하는 충진유로; 및, 상기 회수탱크에 저장된 상기 전해액에 압력을 가하여 상기 전해액을 상기 충진유로를 통하여 상기 공급탱크로 유동시키는 제2 압력전달부;를 포함하는 것을 특징으로 한다.
또한, 상기 충진유로에는 상기 전해액의 역류는 방지하는 역류방지구가 마련된 것이 바람직하다.
또한, 상기 회기유로에는 상기 전해액의 역류는 방지하는 역류방지구가 마련된 것이 바람직하다.
또한, 상기 전해액공급부는 2개 이상 마련되며, 상기 전해액공급부 중 적어도 어느 하나를 통해서 상기 전지셀로 상기 전해액이 공급될 때, 나머지의 상기 전해액공급부에서는 상기 전해액을 상기 회수탱크로부터 상기 공급탱크로 충진하는 것이 바람직하다.
또한, 상기 전해액공급부의 각 공급탱크는 상기 전지셀에 개별적인 공급유로에 의해 연결되는 것이 바람직하다.
또한, 상기 각 공급탱크로부터 연장되는 상기 각 공급유로는 상기 전지셀에 유입되기 전에 병합되어 공통유로를 형성하는 것이 바람직하다.
또한, 상기 공급탱크 또는 상기 회수탱크는, 고무, 불소고무(fluorocarbon rubber), 폴리올레핀계 수지, 올레핀계 폴리에틸렌(PE), 염소화 폴리에틸렌, 폴리프로필렌, 알케인계 고체왁스, 또는 폴리염화비닐계 수지 중에서 선택된 재료로 이루어지는 것이 바람직하다.
또한, 상기 제1 압력전달부 또는 상기 제2 압력전달부는 복수로 마련된 것이 바람직하다.
또한, 상기 전해액에 포함된 이물질을 제거하는 유체 여과기를 포함하는 것이 바람직하다.
또한, 상기 공급탱크 또는 상기 회수탱크는, 상기 전해액의 산화 수 조절을 위해 산소를 흡수하는 산소흡수장치 또는 산소를 공급하는 산소공급장치를 구비하는 것이 바람직하다.
또한, 상기 전지셀 또는 상기 전해액공급부의 내부 압력이 소정 압력 이상인 경우, 상기 압력을 떨어뜨리기 위한 압력저감장치를 구비하는 것이 바람직하다.
또한, 상기 공급탱크 또는 상기 회수탱크는 내부 체적이 가변하도록 신축 가능하며, 상기 제1 압력전달부 또는 상기 제2 압력전달부는 상기 공급탱크 또는 상기 회수탱크를 신축시켜서 상기 전해액에 압력을 전달하는 것이 바람직하다.
또한, 상기 공급탱크는 내부 체적이 가변하는 제1 가변부와, 상기 제1 가변부로부터 연장되고 내부 체적 변화가 없으며 상기 충진유로가 결합되는 제1 연장부를 포함하고, 상기 회수탱크는 내부 체적이 가변하는 제2 가변부와, 상기 제2 가변부로부터 연장되고 내부 체적 변화가 없으며 상기 충진유로가 결합되는 제2 연장부를 포함하는 것이 바람직하다.
본 발명에 따른 레독스 흐름전지는, 전해액의 순환시 발생하는 유로 저항을 최소화하여 전해액의 순환을 원활하게 하고 전지의 효율을 향상시키며, 레독스 흐름전지의 전체적인 구조를 단순화하여 생산성을 획기적으로 향상시키는 효과를 제공한다.
도1은 본 발명의 일 실시예에 따른 레독스 흐름전지를 개략적으로 도시한 도면,
도2는 전해액이 전지셀로 유입될 때의 동작을 보인 도면,
도3은 전해액이 회수탱크에서 공급탱크로 이동할 때의 동작을 보인 도면,
도4는 본 발명의 일 실시예에 따른 레독스 흐름전지의 블럭도,
도5는 본 발명의 다른 실시예에 따른 레독스 흐름전지를 개략적으로 도시한 도면,
도6은 본 발명의 또 다른 실시예에 따른 레독스 흐름전지를 개략적으로 도시한 도면,
도7은 본 발명의 또 다른 실시예에 따른 레독스 흐름전지를 개략적으로 도시한 도면이다.
이하, 본 발명의 다양한 실시 예가 첨부된 도면과 연관되어 기재된다. 본 발명의 다양한 실시 예는 다양한 변경을 가할 수 있고 여러 가지 실시 예를 가질 수 있는 바, 특정 실시 예들이 도면에 예시되고 관련된 상세한 설명이 기재되어 있다. 그러나 이는 본 발명의 다양한 실시 예를 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 다양한 실시 예의 사상 및 기술 범위에 포함되는 모든 변경 및/또는 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 도면의 설명과 관련하여, 유사한 구성요소에 대해서는 유사한 참조 부호가 사용되었다.
본 발명의 다양한 실시 예에서 사용될 수 있는 "포함한다" 또는 "포함할 수 있다" 등의 표현은 발명(disclosure)된 해당 기능, 동작 또는 구성요소 등의 존재를 가리키며, 추가적인 하나 이상의 기능, 동작 또는 구성요소 등을 제한하지 않는다. 또한, 본 발명의 다양한 실시예에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다고 언급된 때에는, 상기 어떤 구성요소가 상기 다른 구성요소에 직접적으로 연결되어 있을 수도 있지만, 상기 어떤 구성요소와 상기 다른 구성요소 사이에 새로운 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 상기 어떤 구성요소와 상기 다른 구성요소 사이에 새로운 다른 구성요소가 존재하지 않는 것으로 이해될 수 있어야 할 것이다.
본 발명의 다양한 실시 예에서 사용한 용어는 단지 특정일 실시 예를 설명하기 위해 사용된 것으로, 본 발명의 다양한 실시 예를 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명의 다양한 실시 예가 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다.
일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 발명의 다양한 실시 예에서 명백하게 정의되지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
이하, 본 발명에 따른 바람직한 실시예를 첨부된 도면을 참조하여 상세히 설명한다.
도1은 본 발명의 일 실시예에 따른 레독스 흐름전지를 개략적으로 도시한 도면이다. 도2는 전해액이 전지셀로 유입될 때의 동작을 보인 도면이고, 도3은 전해액이 회수탱크에서 공급탱크로 이동할 때의 동작을 보인 도면이며, 도4는 본 발명의 일 실시예에 따른 레독스 흐름전지의 블럭도이다.
먼저 도1을 참고하면, 본 발명의 실시예에 따른 레독스 흐름전지(100)는, 전지셀(10)과 전해액공급부(20)를 포함한다.
상기 전지셀(battery cell;10)은 전해액을 통해 충방전이 일어나는 최소 단위로서, 이온 교환이 일어나면서 충방전이 이루어지도록 분리막(13)과 상기 분리막(13)의 양측에 배치되는 양극(11), 음극(12), 분리판(14)을 포함하여 구성될 수 있다. 상기 전지셀(10) 자체의 구성은 공지된 구성에 의하므로, 그 구체적인 설명은 생략한다.
상기 전해액공급부(20)는 상기 전지셀(10)에 전해액을 공급하기 위해 마련된다. 본 실시예에 따르면, 상기 전해액공급부(20)는 상기 전지셀(10)의 상기 양극(11)과 음극(12) 모두에 전해액을 공급하는 형태로 구현된다. 물론, 상기 전해액공급부(20)가 상기 양극(11) 또는 음극(12) 중 어느 하나에 전해액을 공급하는 형태로 구현되는 것을 배제하지 않는다.
이하, 상기 전해액공급부(20)가 양극(11)에 전해액을 공급할 때를 예를 들어 설명한다. 전해액공급부(20)가 음극(12)에 전해액을 공급할 때의 구성 내지 작용은 상기 양극(11)에 전해액을 공급하는 구성 내지 작용과 동일하다.
구체적으로, 상기 전해액공급부(20)는 공급탱크(21), 공급유로(22), 제1 압력전달부(23), 회수탱크(24), 회기유로(25), 충진유로(26), 및 제2 압력전달부(27)를 포함한다.
상기 공급탱크(21)는 상기 전지셀(10)에 공급되는 상기 전해액을 저장한다. 상기 공급유로(22)는 상기 공급탱크(21)와 상기 전지셀(10)을 연결하며, 상기 전해액이 유동하는 유로를 제공한다.
본 실시예에 따르면, 상기 공급탱크(21)는 고무, 불소고무(fluorocarbon rubber), 폴리올레핀계 수지, 올레핀계 폴리에틸렌(PE), 염소화 폴리에틸렌, 폴리프로펠렌, 알케인계 고체왁스, 또는 폴리염화비닐계 수지 중에서 선택된 재료로 이루어진다. 상기 재료는 화학액에 내성을 갖는 소재로서 상기 공급탱크(21)의 내부가 전해액에 의해 부식되는 것을 예방한다. 한편, 상기 공급탱크(21)의 내벽면은 내화학성 코팅제를 이용하여 코팅될 수 있으며, 상기 코팅제로는 규소화합물, 붕소화합물, 또는 알루미늄화합물 등으로부터 선택될 수 있다.
상기 제1 압력전달부(23)는 상기 공급탱크(21)에 저장된 전해액에 압력을 가하여 상기 전해액을 상기 전지셀(10)로 유동시키기 위해서 마련된다. 상기 제1 압력전달부(23)에 의해 상기 전해액은 상기 공급유로(22)를 통해 상기 전지셀(10)의 내부로 유동한다.
상기 제1 압력전달부(23)는 상기 전해액이 상기 공급탱크(21)에서 상기 전지셀(10) 측으로 이동하도록 상기 전해액에 직간접적으로 압력을 제공한다. 예컨대, 상기 제1 압력전달부(23)는 공압펌프, 전동펌프, 또는 유압펌프 등이 채용될 되거나, 도7의 실시예처럼 간접적으로 전해액에 압력을 가하는 구조로 구현될 수 있다.
도1에 도시된 바와 같이, 본 실시예에 따르면, 상기 공급탱크(21)에 저장된 전해액에 압력을 전달하는 상기 제1 압력전달부(23)는 하나가 마련되어 있으나, 복수 개의 제1 압력전달부(23)가 상기 공급탱크(21)에 연결되어 상기 전해액에 압력을 전달하도록 구현될 수 있다. 제1 압력전달부(23)가 복수 개 마련된 경우, 보다 큰 유량의 전해액의 이송이 가능해지고, 전해액을 빠르게 이송시킬 수 있다.
상기 회수탱크(24)는 상기 전지셀(10) 내부를 순환하고 나온 상기 전해액을 회수하기 위해서 마련된다. 상기 회기유로(25)는 상기 전지셀(10)과 상기 회수탱크(24)를 연결하며, 상기 전지셀(10)에서 상기 회수탱크(24) 측으로 전해액이 흐르는 유로를 제공한다.
상기 회수탱크(24)의 소재는 상기 공급탱크(21)의 소재와 동일한 소재로 이루어질 수 있다. 물론, 상기 회수탱크(24)의 내벽면도 상기 공급탱크(21)와 마찬가지로 내화학성 코팅제로 코팅될 수 있다. 상기 코팅제로는 규소화합물, 붕소화합물, 또는 알루미늄화합물 등으로부터 선택될 수 있다.
상기 충진유로(26)는 상기 회수탱크(24)와 상기 공급탱크(21)를 연결한다. 상기 제2 압력전달부(27)는 상기 회수탱크(24)에 저장된 상기 전해액에 압력을 가하여 상기 전해액를 상기 공급탱크(21)로 유동시키기 위해서 마련된다. 상기 제2 압력전달부(27)에 의해 상기 전해액은 상기 충진유로(26)를 통해 상기 회수탱크(24)에서 공급탱크(21)로 유동한다. 상기 제2 압력전달부(27)는 실질적으로 제1 압력전달부(23)와 동일한 구성에 의해 구현될 수 있다.
본 실시예에 따르면, 상기 제2 압력전달부(27)는 상기 회수탱크(24)에 저장된 상기 전해액에 압력을 전달하기 위해서 하나가 마련되어 있으나, 복수 개의 제2 압력전달부(27)가 상기 회수탱크(24)에 연결되어 상기 전해액에 압력을 전달하도록 구현될 수 있다.
이와 같은 구성에 의해, 상기 전해액은 공급탱크(21), 전지셀(10), 회수탱크(24)를 순차적으로 거친 후 다시 공급탱크(21)로 유동하면서 순환한다.
본 실시예에 따른 레독스 흐름전지는, 전해액의 역류를 방지하기 위한 역류방지구(30)가 마련된다. 상기 역류방지구(30)는 전해액의 일방향으로 이동을 허용하고 반대방향으로의 이동을 차단하는 기능을 수행하면 족하며, 예컨대, 판막, 차단밸브, 체크밸브, 또는 부유밸브 등이 채용될 수 있다.
본 실시예에 따르면, 상기 역류방지구(30)로는 체크밸브가 사용되며, 물론 이에 한정되는 것은 아니다. 체크밸브는 볼(ball) 타입 체크밸브, 판막 타입 체크밸브, 리프트 타입 체크밸브, 스윙 체크밸브, 스윙 웨이퍼 체크밸브, 또는 스플리트 디스크 체크밸브 등 유체의 흐름 방향을 제어할 수 있는 어떠한 형태의 체크밸브도 사용 가능하다.
도2를 참조하면, 상기 역류방지구(30)는 충진유로(26)와 회기유로(25) 상에 마련되어 전해액의 역류를 방지한다.
상기 충진유로(26)에 설치된 체크밸브는 상기 전해액이 회수탱크(24)로부터 공급탱크(21)로 유입되는 것은 허용하고, 상기 전해액이 공급탱크(21) 측에서 상기 회수탱크(24)로 역류하는 것은 방지한다.
상기 회기유로(25)에 설치된 체크밸브는 상기 전해액이 전지셀(10)로부터 회수탱크(24)로 유입되는 것은 허용하고, 상기 전해액이 회수탱크(24) 측에서 상기 전지셀(10)로 역류하는 것은 방지한다.
도2에는 상기 역류방지구(30)가 충진유로(26)와 회기유로(25)에 마련되어 있으나, 전지셀(10) 내부의 유로저항이 충진유로(26) 내부의 유로저항보다 큰 경우에는 상기 회기유로(25) 상의 설치된 역류방지구(30)를 제거하여도 무방하다. 즉, 상기 제2 압력전달부(27)에 의해 상기 전해액에 압력이 전달될 때, 전해액은 회수탱크(24)에서 유로저항이 큰 전지셀(10)로 유동하지 않고, 유로저항이 작은 공급탱크(21)로 유동하므로 원하는 전해액의 흐름이 달성된다.
이하, 상기 구성에 따른 레독스 흐름전지의 작용 내지 효과에 대하여 구체적으로 설명한다.
도2는 전해액이 전지셀(10)로 유입될 때의 동작을 도시한다. 도2에 도시된 바와 같이, 제1 압력전달부(23)가 공급탱크(21)에 저장된 전해액에 압력을 가하면, 상기 전해액은 공급유로(22)를 통해서 전지셀(10)로 유입된다. 이때, 충진유로(20)에 마련된 역류방지구(30)에 의해 상기 전해액은 회수탱크(24) 측으로 유동하지 않고, 공급유로(22)를 통해 상기 전지셀(10)로 유입된다.
상기 전지셀(10)로 유입된 전해액에 의해서 상기 전지셀(10) 내부에서는 이온교환이 일어나고, 상기 전해액(10)은 전지셀(10)로부터 회기유로(25)를 통해 회수탱크(24)로 유입된다. 이때, 상기 회기유로(25)에 마련된 역류방지구(30)는 상기 전지셀(10)로부터 회수탱크(24) 측으로 전해액의 유동은 허용하고, 반대로 회수탱크(24)로부터 전지셀(10)로 역류하는 것을 방지하므로, 상기 전해액은 일방향으로 흐른다.
도3은 전해액이 회수탱크(24)에서 공급탱크(21)로 이동할 때의 동작을 도시한다. 도3에 도시된 바와 같이, 제2 압력전달부(27)가 회수탱크(24)에 저장된 전해액에 압력을 가하면, 상기 전해액은 충진유로(26)를 통해서 공급탱크(21)로 유입되어, 상기 공급탱크(21)를 다시 채운다. 이때, 상기 충진유로(26)에 마련된 역류방지구(30)는 상기 회수탱크(24)로부터 상기 공급탱크(21) 측으로 전해액의 유동은 허용한다. 또한, 본 실시예에 따르면, 상기 회기유로(25)에 마련된 역류방지구(30)는 상기 전지셀(10)로 전해액이 유동하는 것을 방지하므로, 상기 전해액은 상기 회수탱크(24)에서 상기 공급탱크(21)로 유동한다. 이와 같은 작용에 의해, 전해액은 공급탱크(21)로부터 일방향으로 순환하하여 다시 공급탱크(21)로 들어오게 된다.
이처럼, 본 발명 실시예에 따른 레독스 흐름전지는, 전해액이 순환하는 과정에서 유로 저항을 감소시켜서 레독스 흐름전지의 전체적인 효율을 향상시킨다. 즉, 본 발명은, 종래처럼 전해액을 순환시키는 펌핑수단의 내부로 전해액을 유입시키지 않기 때문에 유로 저항을 현저히 감소시킬 수 있다.
또한, 본 발명 실시예에 따른 레독스 흐름전지는 제1,2 압력전달부(23,27)이 전해액에 가하는 압력을 적절하게 제어하여 전해액의 흐름을 용이하게 조절할 수 있다.
또한, 본 발명 실시예에 따른 레독스 흐름전지는, 전체적인 구성을 단순화시킬 수 있으므로, 레독스 흐름전지의 신뢰성을 향상시키고 제작의 편의성이 향상되는 효과를 제공한다.
한편, 본 발명 실시예에 따른 레독스 흐름전지는, 도5 내지 도7과 같이 다른 형태의 실시예로 구현될 수 있다. 도5 내지 도7에 있어서, 도1의 실시예와 동일한 기능 내지 작용을 하는 구성에 대하여는 동일한 참조번호를 부여하고, 그 구체적인 설명은 생략한다.
본 발명의 다른 실시예에 따르면, 전해액공급부(20)는 2개 이상 마련될 수 있다. 상기 전해액공급부(20) 중 적어도 어느 하나를 통해서 상기 전지셀(10)로 상기 전해액이 공급될 때, 나머지의 상기 전해액공급부(20)에서는 상기 전해액을 상기 회수탱크(24)로부터 상기 공급탱크(21)로 충진한다.
도5를 참조하면, 본 실시예에 다른 레독스 흐름전지는 전해액공급부(20)가 2개 마련된다. 도5를 기준으로 상측 및 하측에 각각 전해액공급부(20)가 마련된다. 상기 전해액공급부(20)의 각 공급탱크(21)는 상기 전지셀(10)에 개별적인 공급유로(22)에 의해 연결된다. 그리고, 상기 전해액공급부(20)의 각 회수탱크(24)는 전지셀(10)과 개별적인 회기유로(25)에 의해 연결된다.
상기 상측에 마련된 전해액공급부(20)에 있어서, 상기 상측의 공급탱크(21) 및 회수탱크(24)는 충전유로(26)에 의해 연결된다. 상기 하측에 마련된 전해액공급부(20) 역시, 하측의 공급탱크(21) 및 회수탱크는 충전유로(26)에 의해 연결된다. 본 실시예에 있어서, 상기 공급유로(22), 회기유로(25), 및 충진유로(26)에는 각각 역류방지구(30)가 마련되어 있다.
제1 압력전달부(23)가 상측에 마련된 전해액공급부(20)에 압력을 가하여 공급탱크(21)의 전해액이 전지셀(10)로 유입되는 동안, 하측에 마련된 전해액공급부(20)에는 제2 압력전달부(27)에 의해 회수탱크(24)에 저장된 전해액을 하측에 마련된 공급탱크(21)로 유입시킨다. 즉, 상측에 마련된 전해액공급부(20)에서는 전지셀(10)로 전해액을 유입시키는 공급단계가 수행되고, 하측에 마련된 전해액공급부(20)에서는 회수탱크(24)로 전해액을 회수하는 회수단계가 수행된다.
이 과정이 끝나면, 하측에 마련된 전해액공급부(20)에 의해 전해액이 전지셀로 공급되는 공급단계가 수행되고, 상측에 마련된 전해액공급부(20)에서는 전해액이 회수탱크(24)로 회수되는 회수단계가 수행된다.
따라서, 상측에 마련된 전해액공급부(20)와 하측에 마련된 전해액공급부(20)가 서로 반대로 동작하면서 연속적으로 균일하게 전해액을 전지셀(10)에 공급할 수 있다. 즉, 본 실시예에 따르면, 회수탱크(24)로부터 공급탱크(21)로 전해액을 유동시켜서 공급탱크(21)를 충진하는 동안, 공급탱크(21)에서 전지셀(10)로 전해액이 일시적으로 공급되지 않아서 전지의 충방전 효율이 떨어지는 것을 방지할 수 있다.
도6은 본 발명의 또 다른 실시예를 도시한다. 도6의 실시예는, 공통유로(40)를 구비한 점에서 도5의 실시예와 구별된다.
구체적으로, 상기 전해액공급부(20)가 복수 개로 마련될 때, 각 공급탱크(21)로부터 연장되는 각 공급유로(22)는 전지셀(10)에 유입되기 전에 병합되어 공통유로(40)를 형성한다. 도6에 도시된 바와 같이, 전해액공급부는 2개가 마련되며, 상기 전해액공급부를 구성하는 각 공급탱크(21)로부터는 공급유로(22)가 연결되고, 상기 각 공급유로(22)는 상기 전지셀(10)에 연결되기 전에 서로 병합된다.
상기와 같이 공통유로(40)를 사용하는 경우, 상기 전지셀(10)에 연결되는 유로의 개수가 줄어들게 되므로, 레독스 흐름전지의 구성 내지 설계를 단순화할 수 있다.
도7은 본 발명의 또 다른 실시예를 도시한다.
도7을 참고하면, 상기 공급탱크(21) 또는 상기 회수탱크(24)는 내부 체적이 가변하도록 신축 가능하게 구현될 수 있다. 이때, 상기 제1 압력전달부(23)는 상기 공급탱크(21)를 신축시켜서 상기 전해액에 압력을 전달하며, 상기 제2 압력전달부(27)는 상기 회수탱크(24)를 신축시켜서 상기 전해액에 압력을 전달한다.
본 실시예에 따르면, 상기 공급탱크(21)는 제1 가변부(211)와 제1 연장부(212)를 포함한다. 상기 제1 가변부(211)는 내부 체적이 가변하는 부분이고, 상기 제1 연장부(212)는 상기 제1 가변부(211)로부터 연장되고 내부 체적 변화가 없는 부분이다. 상기 제1 연장부(212)에는 상기 충진유로(26)의 일단이 결합된다.
상기 회수탱크(24)는 상기 공급탱크(21)와 마찬가지로, 제2 가변부(241)와 제2 연장부(242)를 포함한다. 상기 제2 가변부(241)는 내부 체적이 가변하는 부분이고, 상기 제2 연장부(242)는 상기 제2 가변부(241)로부터 연장되고 내부 체적 변화가 없는 부분이다. 상기 제2 연장부(242)에는 상기 충진유로(26)의 타단이 결합된다. 상기 충진유로(26)는 체적이 변하지 않는 제1,2 연장부(212,242)에 결합되어 구조적으로 안정적으로 유지된다.
상기 제1,2 압력전달부(23,27)에 의해 압력을 전달받은 전해액이 순환하는 과정은 도1에 도시된 실시예와 동일하므로, 그 구체적인 설명은 생략한다.
본 실시예에 있어서, 상기 공급탱크(21) 또는 상기 회수탱크(24)는 전해액에 압력이 전달될 수 있도록 체적이 변하는 어떤 형태라도 무방하다. 예컨대, 벨로우즈(Bellows), 고무백(bag), 비닐팩(vinyl pack) 등의 형태로 구현될 수 있다.
본 실시예에 따르면, 상기 제1,2 압력전달부(23,27)은 상기 전해액에 간접적으로 압력을 전달하는 형태로 구현될 수 있으므로, 상기 공급탱크(21)와 상기 회수탱크(24)에 저장된 전해액이 외부 구성으로부터 격리되어 전해액이 외부 물질로부터 오염되는 것을 예방한다.
한편, 본 발명에 따른 레독스 흐름전지는, 도4에 도시된 바와 같이, 유체여과기(50), 산소흡수장치(60), 산소공급장치(70), 및 압력저감장치(80)를 더 포함할 수 있다.
상기 유체여과기(50)는 상기 전해액에 포함된 이물질을 제거하기 위해서 구비된다. 상기 이물질은 먼지, 반응부산물, 또는 전해액찌꺼기 등 고상/액상의 물질뿐만 아니라, 전해액의 성능에 영향을 미칠 수 있는 기체 상의 불순물을 의미한다. 상기 유체여과기(50)는 전해액이 유동하는 유로, 즉 공급유로(22), 회기유로(25), 충진유로(26) 상에, 또는 공급탱크(21) 또는 회수탱크(24) 내에 설치되어 전해액이 혼합된 불순물을 제거할 수 있다. 예컨대, 상기 유체여과기(50)는 제거 대상의 성질을 고려한 각종 필터로 구현될 수 있다.
상기 산소흡수장치(60) 또는 상기 산소공급장치(70)는 전해액의 산화 수 조절을 위해 마련된다. 상기 산소흡수장치(60)는 전해액에 포함된 산화 수를 감소시키기 위해서 산소를 흡수하기 위해서 마련되고, 상기 산소공급장치(70)는 전해액에 포함된 산화 수를 증가시키기 위해서 산소를 공급하기 위해서 마련된다. 본 실시예에 따르면, 상기 산소흡수장치(60) 또는 상기 산소공급장치(70)는 상기 공급탱크(21) 또는 상기 회수탱크(24)에 마련된다. 물론, 상기 산소흡수장치(60) 및 산소공급장치(70)는 필요에 따라 전해액이 흐르는 유로 상에 마련될 수 있다.
상기 압력저감장치(80)는 상기 전지셀(10) 또는 전해액공급부(20) 내부의 압력이 소정 압력 이상인 경우, 상기 압력을 떨어뜨리기 위해서 마련된다. 본 실시예에 있어서, 상기 압력저감장치(80)는 특정 압력 이상에서 작동하여 압력을 배출하는 릴리프밸브를 채용할 수 있다. 물론, 상기 압력자감장치(80)는 릴리프밸브로 한정되는 것은 아니다. 또한, 상기 압력저감장치(80)는 공급탱크(21), 회수탱크(24), 전지셀(10) 또는 전해액이 흐르는 유로 상에 필요한 개수만큼 마련될 수 있으므로, 그 설치장소 및 개수가 특별히 한정되는 것은 아니다.
이상, 본 발명을 바람직한 실시예들을 들어 상세하게 설명하였으나, 본 발명은 상기 실시예들에 한정되지 않으며, 본 발명의 범주를 벗어나지 않는 범위 내에서 여러 가지 많은 변형이 제공될 수 있다.

Claims (13)

  1. 분리막(13)과 상기 분리막(13)의 양측에 양극(11) 및 음극(12)이 마련된 전지셀(10);과 상기 전지셀(10)에 전해액을 공급하는 전해액공급부(20);를 포함하는 레독스 흐름전지에 있어서,
    상기 전해액공급부(20)는,
    상기 전지셀(10)에 공급되는 상기 전해액을 저장하는 공급탱크(21);
    상기 공급탱크(21)와 상기 전지셀(10)을 연결하는 공급유로(22);
    상기 공급탱크(21)에 저장된 상기 전해액에 압력을 가하여 상기 전해액을 상기 공급유로(22)를 통하여 상기 전지셀(10) 내부로 유동시키는 제1 압력전달부(23);
    상기 전지셀(10) 내부를 순환하고 나온 상기 전해액이 회수되는 회수탱크(24);
    상기 전지셀(10)과 상기 회수탱크(24)를 연결하는 회기유로(25);
    상기 회수탱크(24)와 상기 공급탱크(21)를 연결하는 충진유로(26); 및
    상기 회수탱크(24)에 저장된 상기 전해액에 압력을 가하여 상기 전해액을 상기 충진유로(26)를 통하여 상기 공급탱크(21)로 유동시키는 제2 압력전달부(27);를 포함하는 것을 특징으로 하는 레독스 흐름전지.
  2. 제1항에 있어서,
    상기 충진유로(26)에는 상기 전해액의 역류는 방지하는 역류방지구(30)가 마련된 것을 특징으로 하는 레독스 흐름전지.
  3. 제2항에 있어서,
    상기 회기유로(25)에는 상기 전해액의 역류는 방지하는 역류방지구가 마련된 것을 특징으로 하는 레독스 흐름전지.
  4. 제1항에 있어서,
    상기 전해액공급부(20)는 2개 이상 마련되며,
    상기 전해액공급부(20) 중 적어도 어느 하나를 통해서 상기 전지셀(10)로 상기 전해액이 공급될 때, 나머지의 상기 전해액공급부(20)에서는 상기 전해액을 상기 회수탱크(24)로부터 상기 공급탱크(21)로 충진하는 것을 특징으로 하는 레독스 흐름전지.
  5. 제4항에 있어서,
    상기 전해액공급부(20)의 각 공급탱크(21)는 상기 전지셀에 개별적인 공급유로(22)에 의해 연결되는 것을 특징으로 하는 레독스 흐름전지.
  6. 제5항에 있어서,
    상기 각 공급탱크(21)로부터 연장되는 상기 각 공급유로(22)는 상기 전지셀(10)에 유입되기 전에 병합되어 공통유로(40)를 형성하는 것을 특징으로 하는 레독스 흐름전지.
  7. 제1항에 있어서,
    상기 공급탱크(21) 또는 상기 회수탱크(24)는, 고무, 불소고무(fluorocarbon rubber), 폴리올레핀계 수지, 올레핀계 폴리에틸렌(PE), 염소화 폴리에틸렌, 폴리프로필렌, 알케인계 고체왁스, 또는 폴리염화비닐계 수지 중에서 선택된 재료로 이루어지는 것을 특징으로 하는 레독스 흐름전지.
  8. 제1항에 있어서,
    상기 제1 압력전달부(23) 또는 상기 제2 압력전달부(27)는 복수로 마련된 것을 특징으로 하는 레독스 흐름전지.
  9. 제1항에 있어서,
    상기 전해액에 포함된 이물질을 제거하는 유체 여과기(50)를 포함하는 것을 특징으로 하는 레독스 흐름전지.
  10. 제1항에 있어서,
    상기 공급탱크(21) 또는 상기 회수탱크(24)는, 상기 전해액의 산화 수 조절을 위해 산소를 흡수하는 산소흡수장치(60) 또는 산소를 공급하는 산소공급장치(70)를 구비하는 것을 특징으로 하는 레독스 흐름전지.
  11. 제1항에 있어서,
    상기 전지셀(10) 또는 상기 전해액공급부(20)의 내부 압력이 소정 압력 이상인 경우, 상기 압력을 떨어뜨리기 위한 압력저감장치(80)를 구비하는 것을 특징으로 하는 레독스 흐름전지.
  12. 제1항에 있어서,
    상기 공급탱크(21) 또는 상기 회수탱크(24)는 내부 체적이 가변하도록 신축 가능하며, 상기 제1 압력전달부(23) 또는 상기 제2 압력전달부(27)는 상기 공급탱크(21) 또는 상기 회수탱크(24)를 신축시켜서 상기 전해액에 압력을 전달하는 것을 특징으로 하는 레독스 흐름전지.
  13. 제12항에 있어서,
    상기 공급탱크(21)는 내부 체적이 가변하는 제1 가변부(211)와, 상기 제1 가변부(211)로부터 연장되고 내부 체적 변화가 없으며 상기 충진유로(26)가 결합되는 제1 연장부(212)를 포함하고,
    상기 회수탱크(24)는 내부 체적이 가변하는 제2 가변부(241)와, 상기 제2 가변부(241)로부터 연장되고 내부 체적 변화가 없으며 상기 충진유로(26)가 결합되는 제2 연장부(242)를 포함하는 것을 특징으로 하는 레독스 흐름전지.
PCT/KR2018/012870 2018-10-26 2018-10-26 레독스 흐름전지 WO2020085551A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180129276A KR102187257B1 (ko) 2018-10-26 2018-10-26 레독스 흐름전지
KR10-2018-0129276 2018-10-26

Publications (1)

Publication Number Publication Date
WO2020085551A1 true WO2020085551A1 (ko) 2020-04-30

Family

ID=70332037

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/012870 WO2020085551A1 (ko) 2018-10-26 2018-10-26 레독스 흐름전지

Country Status (2)

Country Link
KR (1) KR102187257B1 (ko)
WO (1) WO2020085551A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102210658B1 (ko) * 2020-06-26 2021-02-01 서울과학기술대학교 산학협력단 복수의 활물질을 포함하는 레독스 흐름 전지

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2724817B2 (ja) * 1986-02-11 1998-03-09 ユニサーチ・リミテッド 全バナジウムのレドツクス電池
CN102148388A (zh) * 2010-02-10 2011-08-10 大连融科储能技术发展有限公司 一种氧化还原液流电池系统
JP5768997B2 (ja) * 2011-02-07 2015-08-26 住友電気工業株式会社 電解液流通型電池
KR101760983B1 (ko) * 2014-06-10 2017-07-24 주식회사 엘지화학 플로우 배터리 및 플로우 배터리의 전해액 혼합 방지 방법
KR20180021397A (ko) * 2016-08-17 2018-03-05 두산중공업 주식회사 자가 기동이 가능한 바나듐 레독스 흐름 전지
KR101855290B1 (ko) * 2017-03-02 2018-05-04 스탠다드에너지(주) 레독스 흐름전지

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10334938A (ja) * 1997-06-02 1998-12-18 Sumitomo Electric Ind Ltd 電力貯蔵用二次電池
JP3304312B2 (ja) * 1998-04-30 2002-07-22 住友電気工業株式会社 電解液タンクおよびその製造方法
KR100647422B1 (ko) 2005-02-12 2006-11-24 이보름 수격방지용 에어돔을 구비한 공기방울 분산장치
DE102011107185B3 (de) * 2011-07-13 2012-08-16 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Luftatmende Brennstoffzelle und Zellstapel für die Oxidation von Ionen mit Sauerstoff

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2724817B2 (ja) * 1986-02-11 1998-03-09 ユニサーチ・リミテッド 全バナジウムのレドツクス電池
CN102148388A (zh) * 2010-02-10 2011-08-10 大连融科储能技术发展有限公司 一种氧化还原液流电池系统
JP5768997B2 (ja) * 2011-02-07 2015-08-26 住友電気工業株式会社 電解液流通型電池
KR101760983B1 (ko) * 2014-06-10 2017-07-24 주식회사 엘지화학 플로우 배터리 및 플로우 배터리의 전해액 혼합 방지 방법
KR20180021397A (ko) * 2016-08-17 2018-03-05 두산중공업 주식회사 자가 기동이 가능한 바나듐 레독스 흐름 전지
KR101855290B1 (ko) * 2017-03-02 2018-05-04 스탠다드에너지(주) 레독스 흐름전지

Also Published As

Publication number Publication date
KR102187257B1 (ko) 2020-12-04
KR20200047165A (ko) 2020-05-07

Similar Documents

Publication Publication Date Title
WO2014035020A1 (ko) 션트전류 저감을 위한 레독스 흐름전지용 매니폴드 및 이를 포함하는 레독스 흐름전지
WO2018182376A1 (ko) 전해액유로가 독립적으로 구비된 레독스 흐름전지
CN103733409B (zh) 用于感测和减少液流电池系统内的氢析出的系统和方法
WO2012020941A2 (ko) 신규한 구조의 전지팩
WO2017179795A1 (ko) 레독스 흐름전지
CN102714295B (zh) 流动电解液贮藏系统
WO2012102500A2 (ko) 공기 금속 이차 전지 유닛 및 이를 포함하는 공기 금속 이차 전지 모듈
WO2018169358A1 (ko) 레독스 흐름 전지
WO2018160050A2 (ko) 레독스 흐름전지
WO2019103559A1 (ko) 전해질 주입장치 및 전해액 주입방법
WO2017065575A1 (ko) 레독스 흐름 전지의 스택 손상 방지 방법
WO2020085551A1 (ko) 레독스 흐름전지
WO2015102407A1 (ko) 반응물질의 누설방지를 위한 저장 및 회수수단이 구비된 레독스 흐름전지 또는 연료전지
WO2021015469A1 (ko) 전력 저장 장치
KR20170132005A (ko) 레독스 흐름 전지
WO2016032101A1 (ko) 에너지저장시스템
WO2020075899A1 (ko) 레독스 흐름전지
WO2013149512A1 (zh) 集流板和包括该集流板的双极集流板、单电池和液流电池
WO2014038764A1 (ko) 내부 밀봉 구조를 갖는 일체형 복합전극셀 및 이를 포함하는 레독스 흐름전지
KR20190103565A (ko) 모듈간 soc 밸런싱을 위한 레독스 흐름 전지 시스템
KR102178304B1 (ko) 밸런싱 유로를 사용하는 레독스 흐름전지
WO2014104732A1 (ko) 연료전지용 분리판 및 이를 포함하는 연료전지
CN212136587U (zh) 一种电解液循环装置
JP6629911B2 (ja) レドックスフロー電池
US11211617B2 (en) Fuel cell generator system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18937638

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18937638

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04.10.2021)