WO2020085310A1 - Liquid crystal compound alignment layer transfer film - Google Patents

Liquid crystal compound alignment layer transfer film Download PDF

Info

Publication number
WO2020085310A1
WO2020085310A1 PCT/JP2019/041326 JP2019041326W WO2020085310A1 WO 2020085310 A1 WO2020085310 A1 WO 2020085310A1 JP 2019041326 W JP2019041326 W JP 2019041326W WO 2020085310 A1 WO2020085310 A1 WO 2020085310A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
film
liquid crystal
crystal compound
transfer film
Prior art date
Application number
PCT/JP2019/041326
Other languages
French (fr)
Japanese (ja)
Inventor
佐々木 靖
村田 浩一
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to JP2020553398A priority Critical patent/JPWO2020085310A1/en
Priority to KR1020217007467A priority patent/KR20210082163A/en
Priority to CN201980064154.8A priority patent/CN112771423B/en
Publication of WO2020085310A1 publication Critical patent/WO2020085310A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3016Polarising elements involving passive liquid crystal elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B23/00Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose
    • B32B23/04Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose comprising such cellulosic plastic substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B23/08Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose comprising such cellulosic plastic substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/08Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of polarising materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/42Polarizing, birefringent, filtering
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/02Cellulose; Modified cellulose

Definitions

  • the present invention relates to a transfer film for transferring a liquid crystal compound alignment layer. More specifically, when manufacturing a polarizing plate or a retardation plate such as a circularly polarizing plate in which a retardation layer composed of a liquid crystal compound alignment layer is laminated, or when manufacturing a polarizing plate having a polarizing layer composed of a liquid crystal compound alignment layer.
  • the present invention relates to a transfer film for transferring a liquid crystal compound alignment layer.
  • a circularly polarizing plate is arranged on the viewer-side panel surface of the image display panel in order to reduce reflection of extraneous light.
  • This circularly polarizing plate is composed of a laminated body of a linearly polarizing plate and a retardation film such as ⁇ / 4, and converts external light traveling toward the panel surface of the image display panel into linearly polarized light by the linearly polarizing plate, and then ⁇ / It is converted into circularly polarized light by a retardation film such as 4.
  • Circularly polarized extraneous light reverses the direction of rotation of the polarization plane when reflected on the surface of the image display panel, and this reflected light is conversely shielded by a linear polarizing plate by a retardation film such as ⁇ / 4. Since the light is converted into linearly polarized light in the direction indicated by the arrow and is then shielded by the linearly polarizing plate, it is possible to suppress the emission to the outside.
  • the circularly polarizing plate is formed by laminating a retardation film such as ⁇ / 4 on the polarizing plate.
  • a single retardation film such as a cyclic olefin (see Patent Document 1), polycarbonate (see Patent Document 2), or a stretched film of triacetyl cellulose (see Patent Document 3) is used.
  • a retardation film of a laminate having a retardation layer made of a liquid crystal compound on a transparent film see Patent Documents 4 and 5) is used. It is described above that the liquid crystal compound may be transferred when the retardation layer (liquid crystal compound alignment layer) made of the liquid crystal compound is provided.
  • Patent Document 6 a method for producing a retardation film by transferring a retardation layer made of a liquid crystal compound to a transparent film is known from Patent Document 6 and the like.
  • Patent Documents 7 and 8 a method of forming a ⁇ / 4 film by providing a retardation layer made of a liquid crystal compound such as ⁇ / 4 on a transparent film by such a transfer method.
  • the cyclic polyolefin film is preferable because it has no refractive index anisotropy, and thus the state of the retardation layer can be inspected (evaluated) in the state where the retardation layer is provided on the film substrate.
  • a method for producing a polarizing plate by transferring a polarizing layer (liquid crystal compound alignment layer) containing a liquid crystal compound and a dichroic dye laminated on a transfer film to a protective film is also known.
  • a polarizing layer liquid crystal compound alignment layer
  • a dichroic dye laminated on a transfer film to a protective film.
  • the present invention has been made against the background of such problems of the conventional technology. That is, the object of the present invention is a cyclic polyolefin-based transfer film for transferring a liquid crystal compound alignment layer, in which the occurrence of defects such as pinholes is reduced and a retardation layer or a polarizing layer (liquid crystal compound alignment layer). It is intended to provide a transfer film capable of forming a film.
  • the present inventor has a drawback such as a pinhole in a retardation layer laminated polarizing plate (circular polarizing plate) manufactured by using a cyclic polyolefin film as a film substrate for transfer.
  • a drawback such as a pinhole in a retardation layer laminated polarizing plate (circular polarizing plate) manufactured by using a cyclic polyolefin film as a film substrate for transfer.
  • the microstructure on the surface of the film substrate greatly affects the alignment state and the retardation of the liquid crystal compound in the retardation layer made of the liquid crystal compound formed on the film substrate, and the alignment state as designed. It has been found that, in some cases, a phase difference cannot be obtained, which causes defects such as pinholes.
  • the present inventor pays attention to the surface roughness of the film base material represented by specific parameters among these microstructures, and uses the film base material whose surface roughness is controlled within a specific range.
  • a retardation layer or a polarizing layer liquid crystal compound alignment layer
  • the present invention has the following configurations (1) to (4).
  • a film for transferring a liquid crystal compound alignment layer. (2) The film for transferring a liquid crystal compound alignment layer according to (1), wherein the release surface of the transfer film has a 10-point surface roughness (SRz) of 5 nm or more and 200 nm or less.
  • a liquid crystal compound alignment layer comprising a laminate of a liquid crystal compound alignment layer and a transfer film, wherein the transfer film is the transfer film according to (1) or (2). Transfer laminate.
  • the liquid crystal compound in the retardation layer or the polarizing layer is It is possible to form the retardation layer and the polarizing layer (liquid crystal compound orientation layer) in which the orientation state and the retardation can be made as designed and the occurrence of defects such as pinholes is reduced.
  • the transfer film of the present invention is for transferring the liquid crystal compound alignment layer to an object (other transparent resin film, polarizing plate, etc.), and has a surface roughness (SRa) of the release surface of the transfer film. It is characterized by being 1 nm or more and 30 nm or less.
  • the transfer film may be a single film, or a release film may be provided on the film serving as a base material by coating or the like. Further, an antistatic layer, a slipping layer or the like may be provided on the back surface.
  • a transfer film those used as a transfer film alone without using a layer such as a release coat, and those used as a transfer film by providing a release coat or a back coat are collectively referred to as a transfer film.
  • the film in the state before the coating is provided is called the base film.
  • the resin constituting the film substrate used in the transfer film of the present invention is a cyclic polyolefin type resin.
  • the cyclic polyolefin is a compound containing an alicyclic structure in the repeating unit of the polymer. Examples of the alicyclic structure include a cycloalkane structure and a cycloalkene structure, and the cycloalkane structure is preferable from the viewpoint of transparency.
  • the proportion of repeating units having an alicyclic structure in the cyclic polyolefin may be appropriately selected according to the purpose of use, but is usually 50% by weight or more, preferably 70% by weight or more, more preferably 90% by weight or more. .
  • Preferred cyclic polyolefins include norbornene-based polymers, and hydrogenated norbornene-based polymers are particularly preferred. As these, those used as an optical film can be used as a suitable example.
  • the transfer film of the present invention may have a single-layer structure or a multi-layer structure by co-extrusion.
  • it may have a multilayer structure of four or more layers.
  • Transfer film is industrially supplied by a roll that winds the film.
  • the lower limit of the roll width is preferably 30 cm, more preferably 50 cm, further preferably 70 cm, particularly preferably 90 cm, and most preferably 100 cm.
  • the upper limit of the roll width is preferably 5000 cm, more preferably 4000 cm, and further preferably 3000 cm.
  • the lower limit of the roll length is preferably 100 m, more preferably 500 m, even more preferably 1000 m.
  • the upper limit of the roll length is preferably 100,000 m, more preferably 50,000 m, and further preferably 30,000 m.
  • the release surface (A layer surface) of the transfer film of the present invention is preferably smooth.
  • the “release surface” of the transfer film means the surface of the transfer film intended to be provided with the liquid crystal compound alignment layer to be transferred by the transfer film.
  • the surface of these flattening layer or release layer (contact with the liquid crystal compound alignment layer) Surface) is the "release surface" of the transfer film.
  • the lower limit of the three-dimensional arithmetic mean roughness (SRa) of the release surface of the transfer film of the present invention is preferably 1 nm, more preferably 2 nm. If it is less than the above, it may be difficult to achieve the numerical value.
  • the upper limit of SRa of the release surface of the transfer film of the present invention is preferably 30 nm, more preferably 25 nm, further preferably 20 nm, particularly preferably 15 nm, most preferably 10 nm. . If it exceeds the above range, the alignment of the liquid crystal compound may be disturbed.
  • the lower limit of the three-dimensional ten-point average roughness (SRz) of the release surface of the transfer film of the present invention is preferably 5 nm, more preferably 10 nm, and further preferably 13 nm. If it is less than the above, it may be difficult to achieve the numerical value.
  • the upper limit of SRz of the release surface of the transfer film of the present invention is preferably 200 nm, more preferably 150 nm, further preferably 120 nm, particularly preferably 100 nm, and most preferably 80 nm. . If it exceeds the above range, the alignment of the liquid crystal compound may be disturbed.
  • the lower limit of the maximum height of the release surface (SRy: maximum release surface peak height SRp + release surface maximum valley depth SRv) of the transfer film of the present invention is preferably 10 nm, more preferably 15 nm, and It is preferably 20 nm. If it is less than the above, it may be difficult to achieve the numerical value.
  • the upper limit of SRy of the release surface of the transfer film of the present invention is preferably 300 nm, more preferably 250 nm, further preferably 150 nm, particularly preferably 120 nm, most preferably 100 nm. . If it exceeds the above range, the alignment of the liquid crystal compound may be disturbed.
  • the upper limit of the number of projections having a height difference of 0.5 ⁇ m or more on the release surface of the transfer film of the present invention is preferably 5 / m 2 , more preferably 4 / m 2 , and further preferably 3 / M 2 , particularly preferably 2 / m 2 , and most preferably 1 / m 2 . If it exceeds the above range, the alignment of the liquid crystal compound may be disturbed.
  • an alignment control layer such as a rubbing alignment control layer or a photo alignment control layer can be provided between the transfer film and the liquid crystal compound alignment layer.
  • the control layer it is considered that the orientation control layer of the convex portion is peeled off during rubbing, and the rubbing of the foot portion and the concave portion of the convex portion is insufficient, which causes the defects.
  • the thickness of the liquid crystal compound alignment layer may be formed at the convex portion of the release surface of the transfer film when the liquid crystal compound is applied. It is also a cause of the defect that the retardation as designed cannot be obtained because the thickness of the liquid crystal compound alignment layer becomes thicker in the concave portion of the release surface of the transfer film. Conceivable.
  • the release surface side layer (surface layer) of the base film does not contain particles. -If the release surface side layer (surface layer) of the base film contains particles, the particles have a small particle size. ⁇ Smooth the surface of the roll (casting roll or touch roll) on the side that becomes the release surface. -Provide a flattening coat on the release surface side of the base film.
  • the “release surface side layer” of the base film means a layer having a release surface among the layers of the resin constituting the base film.
  • the substrate film is a single layer, it may be referred to as a release surface side layer.
  • the back surface side layer and the release surface side layer described later are the same layer.
  • the surface layer preferably contains substantially no particles for smoothing.
  • substantially free of particles is meant that the particle content is less than 50 ppm, preferably less than 30 ppm.
  • the surface layer may contain particles to improve the slipperiness of the surface.
  • the lower limit of the surface layer particle content is preferably 30 ppm, more preferably 50 ppm, and further preferably 100 ppm.
  • the upper limit of the surface layer particle content is preferably 20000 ppm, more preferably 10000 ppm, further preferably 8000 ppm, and particularly preferably 6000 ppm. If it exceeds the above range, the roughness of the surface layer may not be within the preferred range.
  • the lower limit of the surface layer particle size is preferably 0.005 ⁇ m, more preferably 0.01 ⁇ m, and further preferably 0.02 ⁇ m.
  • the upper limit of the surface layer particle size is preferably 3 ⁇ m, more preferably 1 ⁇ m, further preferably 0.5 ⁇ m, and particularly preferably 0.3 ⁇ m. If it exceeds the above range, the roughness of the surface layer may not be within the preferred range.
  • the release surface layer may have a higher roughness due to the effect of the particles in the lower layer. In such a case, it is preferable to increase the thickness of the release surface layer or to provide a lower layer (intermediate layer) containing no particles.
  • the lower limit of the surface layer thickness is preferably 0.1 ⁇ m, more preferably 0.5 ⁇ m, further preferably 1 ⁇ m, particularly preferably 3 ⁇ m, and most preferably 5 ⁇ m.
  • the upper limit of the surface layer thickness is preferably 97%, more preferably 95%, and further preferably 90% based on the total thickness of the transfer film.
  • the content of particles is less than 50 ppm, preferably less than 30 ppm, in the sense that the intermediate layer containing no particles contains substantially no particles.
  • the lower limit of the thickness of the intermediate layer with respect to the total thickness of the transfer film is preferably 10%, more preferably 20%, and further preferably 30% with respect to the total thickness of the transfer film.
  • the upper limit is preferably 95%, more preferably 90%.
  • a flattening coat may be provided.
  • the resin used for the flattening coat include those generally used as the resin for the coating agent such as polyester, acryl, polyurethane, polystyrene and polyamide. It is also preferable to use a crosslinking agent such as melamine, isocyanate, epoxy resin, or oxazoline compound. These are applied as a coating agent dissolved or dispersed in an organic solvent or water and dried. Alternatively, in the case of acrylic, it may be coated without a solvent and cured by radiation.
  • the planarization coat may be an oligomer block coat. When the release layer is provided as a coat, the release layer itself may be thickened.
  • the lower limit of the thickness of the surface flattening coat layer is preferably 0.01 ⁇ m, more preferably 0.1 ⁇ m, further preferably 0.2 ⁇ m, and particularly preferably 0.3 ⁇ m. If it is less than the above, the flattening effect may be insufficient.
  • the upper limit of the thickness of the surface flattening coat layer is preferably 10 ⁇ m, more preferably 7 ⁇ m, further preferably 5 ⁇ m, and particularly preferably 3 ⁇ m. Even if it exceeds the above range, no further flattening effect may be obtained.
  • the flattening coat may be provided as an in-line coat during the film formation process, or may be provided as a separate offline coat.
  • the obtained substrate film can be used as it is as a transfer film as long as it has a releasability from the transferred product (liquid crystal compound alignment layer).
  • the film may be surface-treated in order to adjust the releasability. Examples of the surface treatment include corona treatment and plasma treatment.
  • a release layer may be provided.
  • a known release agent can be used, and alkyd resins, amino resins, long-chain acrylic acrylates, silicone resins, and fluororesins are preferred examples. These can be appropriately selected according to the adhesion to the transfer material.
  • the base film may be surface-treated. Examples of the surface treatment include the above treatments. Further, an easy adhesion coat may be applied.
  • a transfer film provided with a liquid crystal compound alignment layer may be wound with a masking film attached to protect the liquid crystal compound alignment layer, but it is often wound as it is for cost reduction.
  • the liquid crystal compound alignment layer When the liquid crystal compound alignment layer is wound in this manner, it is considered that the liquid crystal compound alignment layer has a phenomenon in which the projections on the back surface cause depressions, holes, or disordered alignment. Even when the liquid crystal compound alignment layer is not wound in the state of being provided, but the liquid crystal compound alignment layer is provided later, a phenomenon such that holes are formed in the liquid crystal compound alignment layer due to the convex portion on the back surface and the alignment is disturbed occurs. It is thought that In particular, the pressure is high at the core portion, and these phenomena are likely to occur. From the above findings, it was found that the above-mentioned defects can be prevented by setting the roughness of the surface (back surface) opposite to the release surface within a specific range.
  • the lower limit of the three-dimensional arithmetic mean roughness (SRa) of the back surface of the transfer film of the present invention is preferably 3 nm, more preferably 4 nm, and further preferably 5 nm. If it is less than the above range, the slipperiness may be deteriorated, and the roll may not be slipped smoothly during roll conveyance or winding, and may be easily scratched.
  • the upper limit of SRa on the back surface of the transfer film of the present invention is preferably 50 nm, more preferably 45 nm, and further preferably 40 nm. If it exceeds the above, there may be many defects.
  • the lower limit of the three-dimensional ten-point average roughness (SRz) of the back surface of the transfer film of the present invention is preferably 15 nm, more preferably 20 nm, further preferably 25 nm.
  • the upper limit of SRz on the back surface of the transfer film of the present invention is preferably 1500 nm, more preferably 1200 nm, further preferably 1000 nm, particularly preferably 700 nm, and most preferably 500 nm. If it exceeds the above, there may be many defects.
  • the lower limit of the maximum height of the back surface of the transfer film of the present invention (SRy: maximum back surface peak height SRp + back surface maximum valley depth SRv) is preferably 20 nm, more preferably 30 nm, further preferably 40 nm, Particularly preferably, it is 50 nm.
  • the upper limit of the maximum height SRy of the back surface of the transfer film of the present invention is preferably 2000 nm, more preferably 1500 nm, further preferably 1200 nm, particularly preferably 1000 nm, most preferably 700 nm. is there. If it exceeds the above, there may be many defects.
  • the upper limit of the number of protrusions having a height difference of 2 ⁇ m or more on the back surface of the transfer film of the present invention is preferably 5 / m 2 , more preferably 4 / m 2 , and further preferably 3 / m 2 . Yes, particularly preferably 2 / m 2 , and most preferably 1 / m 2 . If it exceeds the above, there may be many defects.
  • the roughness of the back surface of the transfer film of the present invention represented by the above parameters is less than the above range, the slipperiness of the film is deteriorated, and when the film is conveyed by a roll, it is less likely to slip during winding, etc., It may be easily scratched. Further, during winding during film production, the winding is not stable and wrinkles occur, resulting in defective products, and the irregularities at the ends of the wound roll become large, and the film tends to meander in the next step. Or it is easy to break. If the roughness of the back surface of the transfer film of the present invention exceeds the above, the above-mentioned defects are likely to occur.
  • the following method can be used to set the roughness of the back surface within the above range.
  • -The surface roughness of the roll (casting roll or touch roll) on the back side is set within a specific range.
  • the backside layer (backside layer) of the base film contains specific particles.
  • -Use a substrate film containing particles as the intermediate layer, and reduce the thickness by making the back surface layer side (back surface layer) free of particles.
  • a flattening coat is provided.
  • a slippery coat particle-containing coat
  • the lower limit of the particle diameter of the back surface layer is preferably 0.005 ⁇ m, more preferably 0.01 ⁇ m, further preferably 0.05 ⁇ m, and particularly preferably 0.1 ⁇ m. If it is less than the above range, slipperiness may be deteriorated and winding failure may occur.
  • the upper limit of the particle diameter of the back surface layer is preferably 5 ⁇ m, more preferably 3 ⁇ m, and further preferably 2 ⁇ m. If it exceeds the above range, the back surface may be too rough.
  • the lower limit of the back surface layer particle content is preferably 50 ppm, more preferably 100 ppm. If it is less than the above range, the effect of slipperiness due to addition of particles may not be obtained.
  • the upper limit of the content of the back surface layer particles is preferably 10,000 ppm, more preferably 7,000 ppm, and further preferably 5000 ppm. If it exceeds the above range, the back surface may be too rough.
  • the lower limit of the thickness of the back surface layer is preferably 0.1 ⁇ m, more preferably 0.5 ⁇ m, further preferably 1 ⁇ m, particularly preferably 3 ⁇ m, and most preferably 5 ⁇ m.
  • the upper limit of the thickness of the back surface layer is preferably 95%, more preferably 90%, and further preferably 85% based on the total thickness of the transfer film.
  • the particle size and amount of particles in the middle layer are the same as those in the back layer.
  • the lower limit of the thickness of the back surface layer is preferably 0.5 ⁇ m, more preferably 1 ⁇ m, and further preferably 2 ⁇ m.
  • the upper limit of the thickness is preferably 30 ⁇ m, more preferably 25 ⁇ m, further preferably 20 ⁇ m.
  • the back surface of the base film is rough, it is also preferable to provide a flattening coat.
  • a flattening coat those mentioned for the surface flattening coat can be similarly used.
  • the lower limit of the thickness of the back surface flattening coat layer is preferably 0.01 ⁇ m, more preferably 0.03 ⁇ m, and further preferably 0.05 ⁇ m. If it is less than the above, the flattening effect may be reduced.
  • the upper limit of the thickness of the back surface flattening coat layer is preferably 10 ⁇ m, more preferably 5 ⁇ m, and further preferably 3 ⁇ m. Even if it exceeds the above, the flattening effect will be saturated.
  • a slippery coat containing particles may be provided on the back surface.
  • the easy-sliding coat is effective when the back surface side of the base film does not contain particles or when the roughness is insufficient.
  • the lower limit of the particle size of the back surface easy-sliding coat layer is preferably 0.01 ⁇ m, more preferably 0.05 ⁇ m. If it is less than the above range, slipperiness may not be obtained.
  • the upper limit of the particle size of the back surface easy-sliding coat layer is preferably 5 ⁇ m, more preferably 3 ⁇ m, further preferably 2 ⁇ m, and particularly preferably 1 ⁇ m. If it exceeds the above range, the back surface roughness may be too high.
  • the lower limit of the particle content of the back surface easy-sliding coat layer is preferably 0.1% by mass, more preferably 0.5% by mass, further preferably 1% by mass, particularly preferably 1.5% by mass. And most preferably 2% by mass. If it is less than the above range, slipperiness may not be obtained.
  • the upper limit of the particle content of the back surface easy-sliding coat layer is preferably 20% by mass, more preferably 15% by mass, and further preferably 10% by mass. If it exceeds the above range, the back surface roughness may be too high.
  • the lower limit of the thickness of the back surface easy-sliding coat layer is preferably 0.01 ⁇ m, more preferably 0.03 ⁇ m, and further preferably 0.05 ⁇ m.
  • the upper limit of the thickness of the back surface easy-sliding coat layer is preferably 10 ⁇ m, more preferably 5 ⁇ m, further preferably 3 ⁇ m, particularly preferably 2 ⁇ m, and most preferably 1 ⁇ m.
  • the base film When providing these coats, it is preferable to subject the base film to the above-mentioned surface treatment or easy-adhesion coat.
  • the cyclic polyolefin film can be generally manufactured by a melt extrusion method. Hereinafter, this method will be briefly described.
  • the cyclic polyolefin resin is a single-screw or twin-screw extruder and is usually (Tg + 30) to (Tg + 180) ° C., preferably (Tg + 50) to (Tg + 150) ° C., particularly preferably (Tg + 60) to (Tg + 140). It is heated and melted at °C and extruded from a die onto a cast roll.
  • Tg is the glass transition temperature of the cyclic polyolefin resin.
  • the molten resin In order to achieve proper surface roughness, it is preferable to filter the molten resin with a filter between the extruder and the die to remove coarse particles.
  • the lower limit of the filtration accuracy of the filter used is preferably 0.5 ⁇ m, more preferably 1 ⁇ m.
  • the upper limit of the filtration accuracy of the filter is preferably 100 ⁇ m, more preferably 50 ⁇ m, further preferably 25 ⁇ m, particularly preferably 20 ⁇ m, and most preferably 10 ⁇ m. This value is appropriately determined depending on the particle size of the particles to be added.
  • Roll roughness By adjusting the roughness of the roll, the roughness of the surface of the formed film can be adjusted. For example, in the case where the casting roll is the release surface and the touch roll is the back surface, preferable roughness of the roll will be described below.
  • the lower limit of the three-dimensional arithmetic mean surface roughness (SRa) of the casting roll when the casting roll is used as the release surface is preferably 1 nm, more preferably 1.3 nm, and further preferably 1.5 nm.
  • the upper limit of the three-dimensional arithmetic mean surface roughness (SRa) of the casting roll when the casting roll is used as the release surface is preferably 250 nm, more preferably 200 nm, further preferably 150 nm, and particularly preferably 100 nm. And most preferably 50 nm.
  • the lower limit of the three-dimensional 10-point average roughness (SRz) of the casting roll when the casting roll is used as the release surface is preferably 3 nm, more preferably 5 nm, and further preferably 7 nm.
  • the upper limit of the three-dimensional ten-point average roughness (SRz) of the casting roll when the casting roll is used as the release surface is preferably 1000 nm, more preferably 700 nm, further preferably 500 nm, and particularly preferably 300 nm. And most preferably 250 nm.
  • the lower limit of the maximum height (SRy) of the casting roll when the casting roll is used as the release surface is preferably 5 nm, more preferably 8 nm, further preferably 10 nm.
  • the upper limit of the maximum height (SRy) of the casting roll when the casting roll is used as the release surface is preferably 1500 nm, more preferably 1000 nm, further preferably 800 nm, and particularly preferably 600 nm.
  • the lower limit of the three-dimensional arithmetic average surface roughness (SRa) of the touch roll when the touch roll is used as the back surface is preferably 5 nm, more preferably 10 nm, and further preferably 15 nm.
  • the upper limit of the three-dimensional arithmetic mean surface roughness (SRa) of the touch roll when the touch roll is used as the back surface is preferably 500 nm, more preferably 400 nm, further preferably 300 nm, particularly preferably 250 nm. , And most preferably 200 nm.
  • the lower limit of the three-dimensional 10-point average roughness (SRz) of the touch roll when the touch roll is used as the back surface is preferably 20 nm, more preferably 30 nm, and further preferably 40 nm.
  • the upper limit of the three-dimensional ten-point average roughness (SRz) of the touch roll when the touch roll is used as the back surface is preferably 2000 nm, more preferably 1500 nm, further preferably 1200 nm, and particularly preferably 1000 nm. , And most preferably 800 nm.
  • the lower limit of the maximum height (SRy) of the touch roll when the touch roll is used as the back surface is preferably 30 nm, more preferably 40 nm, and further preferably 50 nm.
  • the upper limit of the maximum height (SRy) of the touch roll when the touch roll is used as the back surface is preferably 3000 nm, more preferably 2500 nm, further preferably 2000 nm, particularly preferably 1500 nm, and most preferably It is 1000 nm.
  • the film forming conditions and the roughness of the film surface have the following relationship, and the roughness of the roll is determined in consideration of these. -If the casting roll and the touch roll have the same roughness, the casting roll surface of the film becomes rougher. -The smaller the distance between the die and the casting roll, the greater the roughness of the casting roll surface of the film. -The closer the position where the molten resin contacts the casting roll and the position where the touch roll presses, the greater the roughness of each surface. -The lower the melt viscosity of the resin, the greater the roughness of each surface. -The higher the temperature of the casting roll and the touch roll, the greater the roughness of each surface. -The higher the pressing force of the touch roll, the greater the roughness of each surface.
  • the temperature of the casting roll is preferably (Tg-30) to (Tg + 30) ° C, more preferably (Tg-20) to (Tg + 20) ° C.
  • the temperature of the touch roll is preferably (Tg-100) to (Tg + 30) ° C, more preferably (Tg-90) to (Tg + 20) ° C. Further, it is preferable that the temperature is set to be 0 to 50 ° C., further 5 to 40 ° C. lower than the temperature of the casting roll.
  • the pressing pressure (line pressure) of the touch roll is preferably 10 to 250 kgf / cm, more preferably 20 to 200 kgf / cm.
  • the film is peeled from the casting roll, cooled while passing through the roll, and wound on the core. At the time of winding, both ends may be thickened (knurled).
  • the wound film When performing coating, the wound film may be set in a coating device, unwound and coating dried. In the above film-forming step, the film may be coated and dried after being peeled off from the casting roll and wound up, and then wound up.
  • the air in these processes is passed through a HEPA filter or the like to be air of class 10000 or less, further class 1000 or less.
  • the transfer film of the present invention preferably has a low in-plane retardation.
  • the in-plane retardation of the transfer film of the present invention is preferably 50 nm or less, more preferably 30 nm or less, further preferably 20 nm or less, and particularly preferably 10 nm or less.
  • the sample is irradiated with linearly polarized light in an oblique direction (for example, 45 degrees) with respect to the slow axis of the retardation layer to be inspected, so that the retardation layer converts the light into elliptical polarization.
  • the polarized light is returned to the linearly polarized light by passing through another retardation layer, and the linearly polarized light is received through the polarizing plate in the extinction state. Accordingly, when the retardation layer has a pinhole-like defect, the defect can be detected as a bright spot.
  • the retardation of the transfer film can be obtained by measuring the refractive index and the thickness in the biaxial direction, and can also be obtained using a commercially available automatic birefringence measuring device such as KOBRA-21ADH (Oji Scientific Instruments). .
  • the lower limit of haze of the transfer film of the present invention is preferably 0.01%, more preferably 0.1%. If it is less than the above, it may be difficult to achieve the numerical value.
  • the upper limit of haze of the transfer film of the present invention is preferably 3%, more preferably 2.5%, further preferably 2%, and particularly preferably 1.7%. If it exceeds the above range, polarized light may be disturbed during irradiation of polarized UV, and a retardation layer as designed may not be obtained. In addition, light leakage may occur due to irregular reflection during the inspection of the retardation layer, which makes it difficult to perform the inspection.
  • the lower limit of the antistatic property (surface resistance) of the transfer film of the present invention is preferably 1 ⁇ 10 5 ⁇ / ⁇ , more preferably 1 ⁇ 10 6 ⁇ / ⁇ . Even if it is less than the above, the effect may be saturated, and further effect may not be obtained.
  • the upper limit of the antistatic property (surface resistance) of the transfer film of the present invention is preferably 1 ⁇ 10 13 ⁇ / ⁇ , more preferably 1 ⁇ 10 12 ⁇ / ⁇ , and further preferably 1 ⁇ 10. It is 11 ⁇ / ⁇ . If it exceeds the above range, cissing due to static electricity may occur or the alignment direction of the liquid crystal compound may be disturbed.
  • antistatic property surface resistance
  • kneading an antistatic agent into a transfer film providing an antistatic coating layer on the lower layer or the opposite surface of the release layer, or adding an antistatic agent to the release layer. It can be set within the above range by the above.
  • Antistatic agents added to antistatic coating layers, release layers, and transfer films include conductive polymers such as polyaniline and polythiophene, ionic polymers such as polystyrene sulfonate, tin-doped indium oxide, antimony-doped tin oxide. Conductive fine particles such as
  • a release layer may be provided on the transfer film.
  • the release layer may not be provided. If the adhesion is too low, the surface may be corona treated to adjust the adhesion.
  • the release layer can be formed using a known release agent, and alkyd resins, amino resins, long-chain acrylic acrylates, silicone resins, and fluororesins are preferred examples. These can be appropriately selected according to the adhesion to the transfer material.
  • the liquid crystal compound alignment layer transfer laminate of the present invention has a structure in which the liquid crystal compound alignment layer and the transfer film of the present invention are laminated.
  • the liquid crystal compound alignment layer must be coated on the transfer film for alignment.
  • a method for orienting a method for giving an orientation control function by rubbing a lower layer (release surface) of the liquid crystal compound orientation layer, or irradiating polarized ultraviolet rays after coating the liquid crystal compound to orient the liquid crystal compound directly There is a way.
  • the alignment layer and the liquid crystal compound alignment layer may be collectively referred to as a liquid crystal compound alignment layer, instead of the liquid crystal compound alignment layer alone.
  • the orientation control layer any orientation control layer may be used as long as it can bring the liquid crystal compound orientation layer into a desired orientation state, but a rubbing treatment orientation control layer obtained by rubbing a resin coating film or A preferable example is a photo-alignment control layer that orients molecules by polarized light irradiation to produce an alignment function.
  • a rubbing treatment orientation control layer coating liquid containing the above-mentioned polymer material is applied onto the release surface of the film, and then dried by heating to obtain an orientation control layer before the rubbing treatment.
  • the orientation control layer coating liquid may contain a crosslinking agent.
  • any solvent that dissolves the polymer material can be used without limitation.
  • Specific examples thereof include alcohols such as water, methanol, ethanol, ethylene glycol, isopropyl alcohol, propylene glycol and cellosolve; ester solvents such as ethyl acetate, butyl acetate and gamma-butyrolactone; acetone, methyl ethyl ketone, cyclopentanone, cyclohexanone. , And the like; ketone-based solvents such as; and aromatic hydrocarbon solvents such as toluene and xylene; and ether-based solvents such as tetrahydrofuran and dimethoxyethane. These solvents may be used alone or in combination.
  • the concentration of the coating solution for rubbing alignment control layer can be appropriately adjusted depending on the type of polymer and the thickness of the alignment control layer to be produced, but it is preferably 0.2 to 20% by mass in terms of solid content concentration. The range of 0.3 to 10% by mass is particularly preferable.
  • a coating method known methods such as a gravure coating method, a die coating method, a bar coating method and an applicator method, and a printing method such as a flexo method are used.
  • the heating and drying temperature is preferably in the range of 30 ° C to 170 ° C, more preferably 50 to 150 ° C, and further preferably 70 to 130 ° C.
  • the heating and drying time may be, for example, 0.5 to 30 minutes, more preferably 1 to 20 minutes, and further preferably 2 to 10 minutes.
  • the thickness of the rubbing orientation control layer is preferably 0.01 to 10 ⁇ m, more preferably 0.05 to 5 ⁇ m, and particularly preferably 0.1 ⁇ m to 1 ⁇ m.
  • the rubbing treatment can be generally performed by rubbing the surface of the polymer layer with paper or cloth in a certain direction.
  • the surface of the orientation control layer is rubbed by using a rubbing roller made of a raised cloth of fibers such as nylon, polyester, and acrylic.
  • the rubbing direction of the alignment control layer also needs to be at an angle suitable for it. The angle can be adjusted by adjusting the angle between the rubbing roller and the film, and adjusting the transport speed of the film and the rotation speed of the roller.
  • the photo-alignment control layer a coating solution containing a polymer or monomer having a photoreactive group and a solvent is applied to the film, polarized, preferably of an alignment film that imparts an alignment regulating force by irradiating polarized ultraviolet light.
  • the photoreactive group refers to a group that produces a liquid crystal aligning ability when irradiated with light. Specifically, it is one that causes a photoreaction that is the origin of the liquid crystal alignment ability, such as an orientation induction or isomerization reaction, a dimerization reaction, a photocrosslinking reaction, or a photodecomposition reaction of a molecule generated by irradiation with light. is there.
  • the photoreactive groups those that cause a dimerization reaction or a photocrosslinking reaction are preferable because they have excellent alignment properties and maintain the smectic liquid crystal state of the liquid crystal compound alignment layer.
  • a group having at least one selected from the above is particularly preferable.
  • a photoreactive group capable of causing a photodimerization reaction is preferable
  • a cinnamoyl group and a chalcone group have a relatively small amount of polarized light irradiation necessary for photoalignment, and a photoalignment layer having excellent thermal stability and stability over time. It is preferable because it is easily obtained.
  • a polymer having a photoreactive group a polymer having a cinnamoyl group such that the end portion of the polymer side chain has a cinnamic acid structure is particularly preferable.
  • the main chain structure include polyimide, polyamide, (meth) acrylic, polyester, and the like.
  • Specific alignment control layers include, for example, JP-A 2006-285197, JP-A 2007-76839, JP-A 2007-138138, JP-A 2007-94071, and JP-A 2007-121721. , JP-A-2007-140465, JP-A-2007-156439, JP-A-2007-133184, JP-A-2009-109831, JP-A-2002-229039, JP-A-2002-265541, and Alignment described in Japanese Unexamined Patent Publication No. 2002-317013, Special Table 2003-520878, Special Table 2004-529220, JP2013-33248, JP2015-7702, and JP2015-129210. A control layer is included.
  • the solvent for the photo-alignment control layer forming coating liquid can be used without limitation as long as it dissolves the polymer and monomer having a photoreactive group. Specific examples include those mentioned in the method of forming the rubbing orientation control layer. It is also preferable to add a photopolymerization initiator, a polymerization inhibitor, and various stabilizers to the coating liquid for forming the photo-alignment control layer. Further, a polymer other than the polymer having the photoreactive group and the monomer, or a monomer having no photoreactive group which is copolymerizable with the monomer having the photoreactive group may be added.
  • the concentration, coating method, and drying conditions of the coating liquid for forming the photo-alignment control layer can be the same as those mentioned in the method for forming the rubbing-alignment control layer.
  • the thickness is the same as the preferable thickness of the rubbing treatment orientation control layer.
  • the polarized light may be irradiated either from the direction of the photo-alignment control layer surface before alignment or from the direction of the transfer film surface through the transfer film.
  • the wavelength of polarized light is preferably in the wavelength range where the photoreactive group of the polymer or monomer having a photoreactive group can absorb light energy.
  • ultraviolet rays having a wavelength of 250 to 400 nm are preferable.
  • Examples of polarized light sources include xenon lamps, high-pressure mercury lamps, ultra-high pressure mercury lamps, metal halide lamps, and ultraviolet light lasers such as KrF and ArF. High-pressure mercury lamps, ultra-high-pressure mercury lamps and metal halide lamps are preferable. .
  • Polarized light is obtained, for example, by passing light from the light source through a polarizer.
  • the polarization direction can be adjusted by adjusting the polarization angle of the polarizer.
  • the polarizer include a polarizing filter, a polarizing prism such as Glan-Thompson and Glan-Teller, and a wire grid type polarizer.
  • the polarized light is preferably substantially collimated light.
  • the direction of the alignment control force of the photo-alignment control layer can be adjusted arbitrarily.
  • the irradiation intensity is different in kind and amount of a polymerization initiator or a resin (monomer), for example, preferably 10 ⁇ 10000mJ / cm 2 at 365nm reference, and more preferably 20 ⁇ 5000mJ / cm 2.
  • the liquid crystal compound alignment layer is not particularly limited as long as the liquid crystal compound is aligned. Specific examples include a polarizing film (polarizer) containing a liquid crystal compound and a dichroic dye, and a retardation layer containing a rod-shaped or discotic liquid crystal compound.
  • polarizer polarizing film
  • retardation layer containing a rod-shaped or discotic liquid crystal compound.
  • the polarizing film has a function of passing polarized light in only one direction and contains a dichroic dye.
  • the dichroic dye is a dye having a property that the absorbance in the long axis direction of the molecule and the absorbance in the short axis direction of the molecule are different.
  • the dichroic dye preferably has an absorption maximum wavelength ( ⁇ MAX) in the range of 300 to 700 nm.
  • a dichroic dye examples include an acridine dye, an oxazine dye, a cyanine dye, a naphthalene dye, an azo dye and an anthraquinone dye, and among them, an azo dye is preferable.
  • the azo dye examples include a monoazo dye, a bisazo dye, a trisazo dye, a tetrakisazo dye and a stilbeneazo dye, and a bisazo dye and a trisazo dye are preferable.
  • the dichroic dyes may be used alone or in combination, but it is preferable to combine two or more kinds in order to adjust the color tone (achromatic color). Particularly, it is preferable to combine three or more kinds. In particular, it is preferable to combine three or more kinds of azo compounds.
  • Preferred azo compounds include dyes described in JP-A 2007-126628, 2010-168570, 2013-101328, and 2013-210624.
  • the dichroic dye is a dichroic dye polymer introduced into the side chain of a polymer such as acrylic.
  • dichroic dye polymers include polymers described in JP-A-2016-4055 and polymers obtained by polymerizing the compounds of [Chemical formula 6] to [Chemical formula 12] in JP-A-2014-206682.
  • the content of the dichroic dye in the polarizing film is preferably 0.1 to 30% by mass, more preferably 0.5 to 20% by mass, from the viewpoint of improving the orientation of the dichroic dye. , 1.0 to 15 mass% is more preferable, and 2.0 to 10 mass% is particularly preferable.
  • the polarizing film preferably further contains a polymerizable liquid crystal compound in order to improve film strength, polarization degree and film homogeneity.
  • the polymerizable liquid crystal compound also includes a substance after polymerization as a film.
  • the polymerizable liquid crystal compound is a compound having a polymerizable group and exhibiting liquid crystallinity.
  • the polymerizable group means a group that participates in the polymerization reaction, and is preferably a photopolymerizable group.
  • the photopolymerizable group refers to a group capable of undergoing a polymerization reaction with an active radical or an acid generated from a photopolymerization initiator described later.
  • Examples of the polymerizable group include vinyl group, vinyloxy group, 1-chlorovinyl group, isopropenyl group, 4-vinylphenyl group, acryloyloxy group, methacryloyloxy group, oxiranyl group and oxetanyl group. Among them, an acryloyloxy group, a methacryloyloxy group, a vinyloxy group, an oxiranyl group and an oxetanyl group are preferable, and an acryloyloxy group is more preferable.
  • the compound exhibiting liquid crystallinity may be a thermotropic liquid crystal or a lyotropic liquid crystal, and may be a nematic liquid crystal or a smectic liquid crystal in the thermotropic liquid crystal.
  • the polymerizable liquid crystal compound is preferably a smectic liquid crystal compound, and more preferably a high-order smectic liquid crystal compound, in that higher polarization characteristics can be obtained.
  • the liquid crystal phase formed by the polymerizable liquid crystal compound is a higher order smectic phase, a polarizing film having a higher degree of orientational order can be manufactured.
  • Specific preferred polymerizable liquid crystal compounds include, for example, JP-A-2002-308832, JP-A-2007-16207, JP-A-2015-163596, JP-A-2007-510946, and JP-A-2013-114131.
  • Publication, WO 2005/045485, Lub et al. Recl. Trav. Chim. Examples include those described in Pays-Bas, 115, 321-328 (1996) and the like.
  • the content ratio of the polymerizable liquid crystal compound in the polarizing film is preferably 70 to 99.5% by mass, more preferably 75 to 99% by mass, further from the viewpoint of increasing the orientation of the polymerizable liquid crystal compound. It is preferably 80 to 97% by mass, and particularly preferably 83 to 95% by mass.
  • the polarizing film can be provided by applying a coating composition for the polarizing film.
  • the polarizing film composition coating material may contain a solvent, a polymerization initiator, a sensitizer, a polymerization inhibitor, a leveling agent, a polymerizable non-liquid crystal compound, a crosslinking agent and the like.
  • solvent those mentioned as the solvent for the alignment layer coating solution are preferably used.
  • the polymerization initiator is not limited as long as it polymerizes the polymerizable liquid crystal compound, but a photopolymerization initiator that generates an active radical by light is preferable.
  • the polymerization initiator include benzoin compounds, benzophenone compounds, alkylphenone compounds, acylphosphine oxide compounds, triazine compounds, iodonium salts and sulfonium salts.
  • the photosensitizer is preferable as the sensitizer.
  • a xanthone compound, an anthracene compound, phenothiazine, rubrene, etc. are mentioned.
  • polymerization inhibitors examples include hydroquinones, catechols, and thiophenols.
  • the polymerizable non-liquid crystal compound those which are copolymerizable with the polymerizable liquid crystal compound are preferable, and for example, when the polymerizable liquid crystal compound has a (meth) acryloyloxy group, (meth) crates can be mentioned.
  • the (meth) acrylates may be monofunctional or polyfunctional. By using polyfunctional (meth) acrylates, the strength of the polarizing film can be improved.
  • a polymerizable non-liquid crystal compound it is preferably contained in the polarizing film in an amount of 1 to 15% by mass, more preferably 2 to 10% by mass, and particularly preferably 3 to 7% by mass. If it exceeds 15% by mass, the degree of polarization may decrease.
  • cross-linking agent examples include compounds capable of reacting with a functional group of a polymerizable liquid crystal compound and a polymerizable non-liquid crystal compound, such as an isocyanate compound, melamine, an epoxy resin and an oxazoline compound.
  • a polarizing film is provided by directly applying a coating composition for a polarizing film on a transfer film or an orientation control layer, and then drying, heating, and curing if necessary.
  • the coating method known methods such as a gravure coating method, a die coating method, a bar coating method and an applicator method, and a printing method such as a flexo method are used as the coating method.
  • the transfer film after coating is introduced into a warm air dryer, an infrared dryer or the like, and dried at 30 to 170 ° C, more preferably 50 to 150 ° C, further preferably 70 to 130 ° C.
  • the drying time is preferably 0.5 to 30 minutes, more preferably 1 to 20 minutes, and even more preferably 2 to 10 minutes.
  • Heating can be performed to more strongly align the dichroic dye and the polymerizable liquid crystal compound in the polarizing film.
  • the heating temperature is preferably in the temperature range in which the polymerizable liquid crystal compound forms a liquid crystal phase.
  • the coating composition for the polarizing film contains a polymerizable liquid crystal compound
  • it is preferably cured.
  • the curing method include heating and light irradiation, and light irradiation is preferable.
  • the dichroic dye can be fixed in the oriented state.
  • the curing is preferably performed in a state where a liquid crystal phase is formed in the polymerizable liquid crystal compound, and may be cured by irradiation with light at a temperature showing the liquid crystal phase.
  • the light in the light irradiation include visible light, ultraviolet light and laser light. From the viewpoint of easy handling, ultraviolet light is preferable.
  • the irradiation intensity is different in kind and amount of a polymerization initiator or a resin (monomer), for example, preferably 100 ⁇ 10000mJ / cm 2 at 365nm reference, more preferably 200 ⁇ 5000mJ / cm 2.
  • Polarizing film by coating a polarizing film composition coating on the orientation control layer, the dye is oriented along the orientation direction of the orientation layer, as a result, it has a polarization transmission axis of a predetermined direction,
  • the polarizing film can be oriented by irradiating polarized light to cure the polarizing film forming composition.
  • polarized light in a desired direction for example, polarized light in an oblique direction
  • the dichroic dye is strongly aligned along the alignment direction of the polymer liquid crystal by further heat treatment thereafter.
  • the thickness of the polarizing film is 0.1 to 5 ⁇ m, preferably 0.3 to 3 ⁇ m, more preferably 0.5 to 2 ⁇ m.
  • retardation layer Representative examples of the retardation layer include a layer provided for optical compensation between a polarizer of a liquid crystal display device and a liquid crystal cell, and a ⁇ / 4 layer and a ⁇ / 2 layer of a circularly polarizing plate.
  • a polarizer of a liquid crystal display device and a liquid crystal cell
  • a ⁇ / 4 layer and a ⁇ / 2 layer of a circularly polarizing plate As the liquid crystal compound, a raw or negative A plate, a positive or negative C plate, an O plate, or the like, and a rod-shaped liquid crystal compound, a discotic liquid crystal compound, or the like can be used depending on the purpose.
  • the degree of retardation is appropriately set depending on the type of liquid crystal cell and the properties of the liquid crystal compound used in the cell when used for optical compensation of a liquid crystal display device.
  • an O plate using discotic liquid crystal is preferably used.
  • a C plate or A plate using a rod-shaped liquid crystal compound or a discotic liquid crystal compound is preferably used.
  • a rod-shaped compound it is preferable to use a rod-shaped compound to form an A plate.
  • the liquid crystal compound used for these retardation layers is preferably a polymerizable liquid crystal compound having a polymerizable group such as a double bond from the viewpoint that the alignment state can be fixed.
  • rod-shaped liquid crystal compounds examples include JP-A-2002-030042, JP-A-2004-204190, JP-A-2005-263789, JP-A-2007-119415, JP-A-2007-186430, and Examples thereof include rod-like liquid crystal compounds having a polymerizable group described in Kaihei 11-513360.
  • rod-shaped liquid crystal compounds may be used in combination at an arbitrary ratio.
  • discotic liquid crystal compound examples include benzene derivatives, truxene derivatives, cyclohexane derivatives, azacrown-based and phenylacetylene-based macrocycles, and various compounds are described in JP-A-2001-155866. Is preferably used. Among them, a compound having a triphenylene ring represented by the following general formula (1) is preferably used as the discotic compound.
  • R 1 to R 6 are each independently hydrogen, halogen, an alkyl group, or a group represented by —O—X (where X is an alkyl group, an acyl group, an alkoxybenzyl group, an epoxy-modified group).
  • R 1 to R 6 are preferably an acryloyloxy-modified alkoxybenzyl group represented by the following general formula (2) (where m is 4 to 10).
  • the retardation layer can be provided by applying the composition coating for the retardation layer.
  • the retardation layer composition coating material may contain a solvent, a polymerization initiator, a sensitizer, a polymerization inhibitor, a leveling agent, a polymerizable non-liquid crystal compound, a crosslinking agent and the like. As these, those described in the alignment control layer and the liquid crystal polarizer can be used.
  • the retardation layer is provided by applying the composition coating for the retardation layer on the release surface of the transfer film or the orientation control layer, followed by drying, heating and curing.
  • the conditions explained in the orientation control layer and the liquid crystal polarizer are used as preferable conditions.
  • a plurality of retardation layers may be provided.
  • a plurality of retardation layers may be provided on one transfer film and transferred onto an object, and a single retardation layer may be provided on one transfer film. It is also possible to prepare a plurality of types provided with the retardation layer and to transfer these in order to the object.
  • the polarizing layer and the retardation layer may be provided on a single transfer film and transferred to an object.
  • a protective layer may be provided between the polarizer and the retardation layer, or a protective layer may be provided on the retardation layer or between the retardation layers. These protective layers may also be provided on the transfer film together with the retardation layer or the polarizing layer and transferred to the object.
  • a transparent resin coating layer may be used as the protective layer.
  • the transparent resin is not particularly limited, such as polyvinyl alcohol, ethylene vinyl alcohol copolymer, polyester, polyurethane, polyamide, polystyrene, acrylic resin and epoxy resin.
  • a cross-linking structure may be formed by adding a cross-linking agent to these resins. Further, it may be one obtained by curing a photocurable composition such as acrylic as a hard coat. Further, after the protective layer is provided on the transfer film, the protective layer may be rubbed, and the liquid crystal compound alignment layer may be provided thereon without providing the alignment layer.
  • the method for producing a liquid crystal compound alignment layer laminated polarizing plate of the present invention includes a step of laminating a liquid crystal compound alignment layer surface of the liquid crystal compound alignment layer transfer laminate of the present invention to form an intermediate laminate, and an intermediate laminate. The step of peeling the transfer film from the body is included.
  • the liquid crystal compound alignment layer is the liquid crystal compound alignment layer used for the circularly polarizing plate.
  • a ⁇ / 4 layer is used as the retardation layer (referred to as a liquid crystal compound alignment layer in the transfer laminate).
  • the front retardation of the ⁇ / 4 layer is preferably 100 to 180 nm. More preferably, it is 120 to 150 nm.
  • the orientation axis (slow axis) of the ⁇ / 4 layer and the transmission axis of the polarizer are preferably 35 to 55 degrees, more preferably 40 degrees to 50 degrees, and further preferably Is 42 to 48 degrees.
  • the absorption axis of the polarizer is generally in the length direction of the long polarizer film, ⁇ / When four layers are provided, it is preferable to orient the liquid crystal compound within the above range with respect to the length direction of the long transfer film.
  • the liquid crystal compound is oriented so as to have the above relationship by taking the angle of the transmission axis of the polarizer into consideration.
  • the polarizing plate may have a protective film provided on both sides of the polarizer, but preferably has a protective film provided on only one side. In the case of a polarizing plate in which a protective film is provided only on one surface, it is preferable to attach a retardation layer to the opposite surface (polarizer surface) of the protective film.
  • the retardation layer is attached to the side that is supposed to be on the image cell side.
  • the surface that is assumed to be on the image cell side is a surface that is not generally surface-treated such as a low reflection layer, an antireflection layer, and an antiglare layer, which is provided on the viewing side.
  • the protective film on the side to which the retardation layer is attached is preferably a protective film such as TAC, acrylic, or COP having no retardation.
  • polarizer a PVA-based film alone is stretched to form a polarizer, or an unstretched substrate such as polyester or polypropylene is coated with PVA, and the polarizer is stretched to protect the polarizer.
  • examples thereof include those transferred to a film and those obtained by coating or transferring a polarizer comprising a liquid crystal compound and a dichroic dye on a polarizer protective film, and any of them is preferably used.
  • a conventionally known one such as an adhesive or an adhesive can be used.
  • an adhesive a polyvinyl alcohol adhesive, an ultraviolet curable adhesive such as acrylic or epoxy, or a thermosetting adhesive such as epoxy or isocyanate (urethane) is preferably used.
  • the adhesive include acrylic, urethane-based and rubber-based adhesives. It is also preferable to use an acrylic baseless transparent optical pressure-sensitive adhesive sheet.
  • the polarizer When a transfer type is used as the polarizer, the polarizer is transferred onto the retardation layer (liquid crystal compound alignment layer) of the transfer laminate, and then the polarizer and the retardation layer are targeted (polarizer protective film). It may be transferred to.
  • the retardation layer liquid crystal compound alignment layer
  • the polarizer protective film on the side opposite to the side where the retardation layer is provided commonly known ones such as TAC, acrylic, COP, polycarbonate, polyester can be used. Among them, TAC, acrylic, COP and polyester are preferable.
  • the polyester is preferably polyethylene terephthalate. In the case of polyester, a zero retardation film having an in-plane retardation of 100 nm or less, particularly 50 nm or less, or a high retardation film of 3000 nm to 30,000 nm is preferable.
  • the angle between the transmission axis of the polarizer and the slow axis of the polyester high retardation film is 30 to 30 mm in order to prevent blackout and coloring when viewing the image with polarized sunglasses.
  • the range of 60 degrees is preferable, and the range of 35 to 55 degrees is more preferable.
  • the angle between the transmission axis of the polarizer and the slow axis of the polyester high retardation film should be 10 degrees or less, and even 7 degrees or less, in order to reduce rainbow spots when observed from a shallow angle with the naked eye. Alternatively, it is preferably 80 to 100 degrees, more preferably 83 to 97 degrees.
  • the polarizer protective film on the opposite side may be provided with an antiglare layer, an antireflection layer, a low reflection layer, a hard coat layer and the like.
  • the ⁇ / 4 layer may be used in combination with the ⁇ / 2 layer.
  • the front retardation of the ⁇ / 2 layer is preferably 200 to 360 nm. More preferably, it is 240 to 300 nm.
  • the angle ( ⁇ ) between the orientation axis (slow axis) of the ⁇ / 2 layer and the transmission axis of the polarizer is preferably 5 to 20 degrees, more preferably 7 to 17 degrees.
  • the angle between the orientation axis (slow axis) of the ⁇ / 2 layer and the orientation axis of ⁇ / 4 (slow axis) is preferably 2 ⁇ + 45 ° ⁇ 10 °, more preferably 2 ⁇ + 45 ° ⁇ 5 °. Yes, and more preferably within the range of 2 ⁇ + 45 ° ⁇ 3 °.
  • the absorption axis of the polarizer is in the length direction of the long polarizer film, and therefore, for transfer of a long film.
  • the film is provided with a ⁇ / 2 layer or a ⁇ / 4 layer, it is preferable to align the liquid crystal compound so as to be in the above range with respect to the lengthwise direction of the long transfer film or the direction perpendicular to the lengthwise direction.
  • the liquid crystal compound is oriented so as to have the above relationship by taking the angle of the transmission axis of the polarizer into consideration.
  • a C plate layer on the ⁇ / 4 layer in order to reduce the change in coloring when viewed from an angle.
  • a positive or negative C plate layer is used according to the characteristics of the ⁇ / 4 layer and the ⁇ / 2 layer.
  • a ⁇ / 2 layer is provided on the polarizer by transfer, and a ⁇ / 4 layer is further provided on it by transfer.
  • a ⁇ / 4 layer and a ⁇ / 2 layer are provided in this order on the transfer film, and this is transferred onto the polarizer.
  • a ⁇ / 4 layer, a ⁇ / 2 layer and a polarizing layer are provided in this order on the transfer film, and this is transferred to an object.
  • a ⁇ / 2 layer and a polarizing layer are provided in this order on the transfer film, and this is transferred to an object, and further a ⁇ / 4 layer is transferred onto this.
  • Various methods such as can be adopted.
  • a method of transferring the C plate layer onto the ⁇ / 4 layer provided on the polarizer, or providing a C plate layer on the film, and further forming a ⁇ / 4 layer on the film Various methods such as a method of providing a ⁇ / 2 layer and a ⁇ / 4 layer and transferring the layer can be adopted.
  • the thickness of the circularly polarizing plate thus obtained is preferably 120 ⁇ m or less. It is more preferably 100 ⁇ m or less, still more preferably 90 ⁇ m or less, particularly preferably 80 ⁇ m or less, and most preferably 70 ⁇ m or less.
  • Three-dimensional surface roughness SRa, SRz, SRy Using a stylus type three-dimensional roughness meter (SE-3AK, manufactured by Kosaka Laboratory Ltd.), with a needle radius of 2 ⁇ m and a load of 30 mg, with a cutoff value of 0.25 mm in the longitudinal direction of the film, The measurement was performed at a needle feed speed of 0.1 mm / sec over a measurement length of 1 mm, divided into 500 points at a pitch of 2 ⁇ m, and the height of each point was incorporated into a three-dimensional roughness analyzer (SPA-11).
  • SE-3AK stylus type three-dimensional roughness meter
  • the same operation as above was continuously performed 150 times at intervals of 2 ⁇ m in the width direction of the film, that is, over 0.3 mm in the width direction of the film, and the data was captured by the analyzer.
  • the center plane average roughness (SRa), the ten-point average roughness (SRz), and the maximum height (SRy) were obtained using an analyzer.
  • the portion thus detected is cut into an appropriate size from the test piece, and a three-dimensional shape measuring device (Micromap TYPE550, manufactured by Ryoka Systems Inc .; measurement conditions: wavelength 550 nm, WAVE mode, objective lens 10 times) is used. It was used and observed from the direction perpendicular to the film surface and measured. At this time, the irregularities that are close to each other within 50 ⁇ m when observed from the direction perpendicular to the film surface are assumed to be the same scratch and a rectangle covering them as foreign matter, and the length and width of this rectangle are scratched, and the length of the foreign matter is long. And width.
  • a three-dimensional shape measuring device Micromap TYPE550, manufactured by Ryoka Systems Inc .; measurement conditions: wavelength 550 nm, WAVE mode, objective lens 10 times
  • the number of defects was quantified using a cross-sectional image (SURFACE PROFILE DISPLAY). The measurement was performed on 20 test pieces and converted into the number of defects per 1 m 2 . The number of defects having a height difference (difference between the highest point and the lowest point) of 0.5 ⁇ m or more on the release surface and the number of defects having a height difference of 2.0 ⁇ m or more on the back surface were counted.
  • a rubbing-treated alignment control layer or a photo-alignment control layer as an alignment control layer disposed between the transfer film and the liquid crystal compound alignment layer was prepared as an inspection sample.
  • the specific creation procedure is as follows.
  • the transfer film was cut into a size A4, the coating for the rubbing orientation control layer having the following composition was applied to the release layer surface using a bar coater, and dried at 80 ° C. for 5 minutes to form a film having a thickness of 100 nm. . Subsequently, the surface of the obtained film was treated with a rubbing roll wound with a nylon raised cloth to obtain a transfer film having a rubbing-treated orientation control layer laminated thereon. The rubbing was performed at 45 degrees with respect to the lengthwise direction of the transfer film.
  • a solution for forming a retardation layer having the following composition was applied to the surface subjected to the rubbing treatment by a bar coating method. It was dried at 110 ° C. for 3 minutes, irradiated with ultraviolet rays to be cured, and a 1 ⁇ 4 wavelength layer was provided to obtain an inspection sample.
  • LC242 manufactured by BASF 95 parts by mass Trimethylolpropane triacrylate 5 parts by mass Irgacure 379 3 parts by mass Surfactant 0.1 parts by mass Methyl ethyl ketone 250 parts by mass
  • the transfer film was cut into a size of A4, the photo-alignment control layer coating composition having the above composition was applied to the release layer surface using a bar coater, and dried at 80 ° C. for 1 minute to form a film having a thickness of 80 nm. Formed. Subsequently, polarized UV light was irradiated in a direction of 45 degrees with respect to the lengthwise direction of the film to obtain a transfer film in which a photo-alignment control layer was laminated. These paints were filtered with a membrane filter having a pore size of 0.2 ⁇ m, and coating and drying were performed in a clean room.
  • the retardation layer forming solution was applied to the surface on which the optical alignment control layer was laminated by the bar coating method. It was dried at 110 ° C. for 3 minutes, irradiated with ultraviolet rays to be cured, and a 1 ⁇ 4 wavelength layer was provided to obtain an inspection sample.
  • the defects of the retardation layer were inspected by the following procedure.
  • a lower polarizing plate is placed on a surface emitting light source using a white LED using a yellow phosphor as a light source, and the inspection sample prepared as described above is placed on the lower polarizing plate. (Direction) was placed parallel to the long side direction of the test sample. Further, a ⁇ / 4 film made of a stretched film of a cyclic polyolefin is placed thereon so that the orientation main axis is in the direction of 45 degrees with the extinction axis of the lower polarizing plate, and the upper polarizing plate is placed on the upper polarizing plate.
  • the extinction axis of was placed parallel to the extinction axis of the lower polarizing plate. In this state, the extinction state was observed with the naked eye (central part 15 cm ⁇ 20 cm) and a 20-fold magnifying glass (5 cm ⁇ 5 cm), and evaluated according to the following criteria. ⁇ : No bright spots were observed with the naked eye, and almost no bright spots were observed by loupe observation (2 or less at 5 cm ⁇ 5 cm). ⁇ : No bright spots were observed with the naked eye, and a small number of bright spots were observed by loupe observation (3 to 20 in 5 cm ⁇ 5 cm). B: No bright spots were observed with the naked eye, but bright spots were found by loupe observation (more than 20 at 5 cm ⁇ 5 cm). X: Bright spots were observed with the naked eye, or no bright spots were found, but there was overall light leakage which was attributed to the presence of many bright spots observed by loupe observation.
  • thermoplastic norbornene resin (ZEONOR1420R manufactured by Nippon Zeon Co., Ltd.) is dried, supplied to an extruder and melted at 215 ° C., and a stainless sintered body filter material (nominal filtration accuracy 10 ⁇ m particles 95% cut). And then extruded into a sheet on a casting roll. From the opposite side of the resin wrapped around the casting roll, the resin was pressed against the casting roll with a touch roll. The cooled film was peeled off from the casting roll and wound into a roll. The surface roughness of the casting roll and the touch roll is as shown in Table 1.
  • the films A1 to A4 and A7 were manufactured at a touch linear pressure of 200 Kgf / cm, and the films A5 and A6 were manufactured at a touch linear pressure of 200 Kgf / cm.
  • Example 1 The film A1 was used, and the above-mentioned physical properties were evaluated using the casting roll surface as the release layer surface. The evaluation results are shown in Table 2.
  • Example 2 The film A2 was used, and the above-mentioned physical properties were evaluated using the casting roll surface as the release layer surface. The evaluation results are shown in Table 2.
  • Example 3 The film A3 was used, and the above-mentioned physical properties were evaluated using the casting roll surface as the release layer surface. The evaluation results are shown in Table 2.
  • Example 4 The film A2 was used, and the above-mentioned physical properties were evaluated using the touch roll surface as the release layer surface. The evaluation results are shown in Table 2.
  • Example 5 The film A4 was used, and the above-mentioned physical properties were evaluated using the casting roll surface as the release layer surface. The evaluation results are shown in Table 2.
  • Example 6 The film A5 was used, and the above-mentioned physical properties were evaluated using the casting roll surface as the release layer surface. The evaluation results are shown in Table 2.
  • Example 7 The film A6 was used, and the above-mentioned physical properties were evaluated using the casting roll surface as the release layer surface. The evaluation results are shown in Table 2.
  • Example 8 Using film A2, the casting roll surface was subjected to corona treatment, a coating agent having the following composition was applied as a release layer (surface flattening coating layer) thereon, and dried in a heating oven at 150 ° C. for 3 minutes. . The thickness of the coating layer was 2 ⁇ m.
  • the coating agent was used after being filtered with a 2 ⁇ m filter.
  • the above-mentioned physical properties were evaluated using the surface on which the surface-flattening coat layer was formed as the release layer surface. The evaluation results are shown in Table 2.
  • Example 9 Using film A7, the touch roll surface was subjected to corona treatment, and a coating solution having the following composition was applied as a back surface easy-sliding coat layer thereon so that the coating amount after drying would be 0.07 g / m 2 . Then, it was introduced into a dryer and dried at 80 ° C. for 30 seconds.
  • Example 10 Corrosion treatment is applied to the touch roll surface of the film A4, and the antistatic layer Pertron C-4402 (antimony-doped tin oxide particles) with MEK having a solid concentration of 5% is applied and heated. It was dried in an oven at 80 ° C. for 3 minutes. The thickness of the coating layer was 200 nm. The surface resistance was 7.5 ⁇ 10 7 ⁇ / ⁇ . The above-mentioned physical properties were evaluated using the casting roll surface of the obtained film as the release layer surface. The evaluation results are shown in Table 2.
  • Pertron C-4402 antimony-doped tin oxide particles
  • Example 11 A twin screw extruder in which a dried thermoplastic norbornene resin (ZEONOR1420R manufactured by Nippon Zeon Co., Ltd.) and silica particles (KE-P250 manufactured by Nippon Shokubai Co., Ltd.) having a particle size of 2.5 ⁇ m are mixed so that the particle content is 1000 ppm in terms of solid content. And pellet 1 was obtained.
  • a dried thermoplastic norbornene resin ZONOR1420R manufactured by Nippon Zeon Co., Ltd.
  • silica particles KE-P250 manufactured by Nippon Shokubai Co., Ltd.
  • the dried pellets 1 were supplied to the extruder 1, and the dried thermoplastic norbornene resin (ZEONOR 1420R manufactured by Nippon Zeon Co., Ltd.) was supplied to the extruder 2, and the stainless steel sintered filter media (nominal filtration accuracy of 10 ⁇ m particles 95 % Cut), the mixture was laminated in a 2-kind 2-layer confluent block and extruded into a sheet shape on a casting roll in the same manner as the film A1 to obtain a film B1. At this time, the resin on the extruder 2 side was made to be the casting roll surface. The above-mentioned physical properties were evaluated using the casting roll surface of the obtained film as the release layer surface. The evaluation results are shown in Table 2.
  • Example 12 Dried thermoplastic norbornene resin (ZEONOR 1420R manufactured by Nippon Zeon Co., Ltd.) and silica particles having a particle diameter of 100 nm (KE-P10 manufactured by Nippon Shokubai Co., Ltd.) were added to a twin-screw extruder so that the particle content was 600 ppm in terms of solid content. Then, pellet 2 was obtained. A film B2 was obtained in the same manner as in Example 11 except that the pellet 2 was supplied to the extruder 2. The above-mentioned physical properties were evaluated using the casting roll surface of the obtained film as the release layer surface. The evaluation results are shown in Table 2.
  • Comparative Example 1 The film A3 was used, and the above-mentioned physical properties were evaluated using the touch roll surface as the release layer surface. The evaluation results are shown in Table 2.
  • the specific measurement procedure of in-plane retardation is as follows. That is, a 4 cm ⁇ 2 cm rectangle was cut out from the base film used in Examples and Comparative Examples so that the long side was in the flow direction, and used as a measurement sample.
  • the refractive index (flow direction nx, width direction ny) of this sample was measured using an Abbe refractometer (NAR-4T, manufactured by Atago Co., measurement wavelength 589 nm).
  • the product was measured at 5 points in the width direction of the film (center portion, both end portions, intermediate portion between the center portion and the end portion), and the average was taken as the product ((nx-ny) ⁇ d) of the film thickness d (nm).
  • the in-plane retardation (Re) was obtained.
  • the liquid crystal compound alignment layer transfer film of the present invention uses a film whose surface roughness is controlled within a specific range as a transfer film for a retardation layer or a polarizing layer.
  • the orientation state and retardation of the liquid crystal compound therein can be made as designed, and a retardation layer or a polarizing layer (liquid crystal compound orientation layer) in which occurrence of defects such as pinholes is reduced can be formed. Therefore, according to the present invention, a retardation layer laminated polarizing plate such as a circular polarizing plate can be stably manufactured with high quality.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Mechanical Engineering (AREA)
  • Polarising Elements (AREA)
  • Laminated Bodies (AREA)
  • Liquid Crystal (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

Provided is a cyclic polyolefin-based transfer film for transferring a liquid crystal compound alignment layer, which is capable of forming a retardation layer or a polarizing layer (liquid crystal compound alignment layer) with reduced occurrence of defects such as pinholes. This liquid crystal compound alignment layer transfer film is the cyclic polyolefin-based film for transferring a liquid crystal compound alignment layer to an object, and is characterized in that a surface roughness (SRa) of a release surface of the film is 1-30 nm (inclusive).

Description

液晶化合物配向層転写用フィルムLiquid crystal compound alignment layer transfer film
 本発明は、液晶化合物配向層を転写するための転写用フィルムに関する。更に詳しくは、液晶化合物配向層からなる位相差層が積層された円偏光板などの偏光板や位相差板を製造する時や、液晶化合物配向層からなる偏光層を有する偏光板を製造する時などに用いられる、液晶化合物配向層を転写するための転写用フィルムに関する。 The present invention relates to a transfer film for transferring a liquid crystal compound alignment layer. More specifically, when manufacturing a polarizing plate or a retardation plate such as a circularly polarizing plate in which a retardation layer composed of a liquid crystal compound alignment layer is laminated, or when manufacturing a polarizing plate having a polarizing layer composed of a liquid crystal compound alignment layer. For example, the present invention relates to a transfer film for transferring a liquid crystal compound alignment layer.
 従来、画像表示装置においては、外来光の反射を低減するために、画像表示パネルの視聴者側のパネル面に円偏光板を配置している。この円偏光板は、直線偏光板とλ/4等の位相差フィルムとの積層体により構成され、画像表示パネルのパネル面に向かう外来光を直線偏光板により直線偏光に変換し、続くλ/4等の位相差フィルムにより円偏光に変換する。円偏光による外来光は、画像表示パネルの表面で反射する際に偏光面の回転方向が逆転し、この反射光は、逆に、λ/4等の位相差フィルムにより、直線偏光板で遮光される方向の直線偏光に変換され、その後直線偏光板により遮光されるため、外部への出射が抑えられる。このように、円偏光板は、偏光板にλ/4等の位相差フィルムを貼り合わせたものが用いられている。 Conventionally, in image display devices, a circularly polarizing plate is arranged on the viewer-side panel surface of the image display panel in order to reduce reflection of extraneous light. This circularly polarizing plate is composed of a laminated body of a linearly polarizing plate and a retardation film such as λ / 4, and converts external light traveling toward the panel surface of the image display panel into linearly polarized light by the linearly polarizing plate, and then λ / It is converted into circularly polarized light by a retardation film such as 4. Circularly polarized extraneous light reverses the direction of rotation of the polarization plane when reflected on the surface of the image display panel, and this reflected light is conversely shielded by a linear polarizing plate by a retardation film such as λ / 4. Since the light is converted into linearly polarized light in the direction indicated by the arrow and is then shielded by the linearly polarizing plate, it is possible to suppress the emission to the outside. As described above, the circularly polarizing plate is formed by laminating a retardation film such as λ / 4 on the polarizing plate.
 位相差フィルムとしては、環状オレフィン(特許文献1参照)、ポリカーボネート(特許文献2参照)、トリアセチルセルロースの延伸フィルム(特許文献3参照)などの単体の位相差フィルムが用いられている。また、位相差フィルムとしては、透明フィルム上に液晶化合物からなる位相差層を有する積層体の位相差フィルム(特許文献4,5参照)が用いられている。上記において液晶化合物からなる位相差層(液晶化合物配向層)を設ける際には、液晶化合物を転写しても良いことが記載されている。 As the retardation film, a single retardation film such as a cyclic olefin (see Patent Document 1), polycarbonate (see Patent Document 2), or a stretched film of triacetyl cellulose (see Patent Document 3) is used. As the retardation film, a retardation film of a laminate having a retardation layer made of a liquid crystal compound on a transparent film (see Patent Documents 4 and 5) is used. It is described above that the liquid crystal compound may be transferred when the retardation layer (liquid crystal compound alignment layer) made of the liquid crystal compound is provided.
 また、液晶化合物からなる位相差層を透明フィルムに転写することにより位相差フィルムを作成する方法は特許文献6等で知られている。このような転写法により、λ/4等の液晶化合物からなる位相差層を透明フィルム上に設け、λ/4フィルムとする方法も知られている(特許文献7,8参照)。 Also, a method for producing a retardation film by transferring a retardation layer made of a liquid crystal compound to a transparent film is known from Patent Document 6 and the like. There is also known a method of forming a λ / 4 film by providing a retardation layer made of a liquid crystal compound such as λ / 4 on a transparent film by such a transfer method (see Patent Documents 7 and 8).
 これらの転写法では転写用の基材として様々なものが紹介されており、ポリエステル、トリアセチルセルロース、環状ポリオレフィンなどの透明樹脂フィルムが多く例示されている。これらの中でも、環状ポリオレフィン系フィルムは、屈折率異方性がないため、位相差層をフィルム基材に設けた状態で位相差層の状態を検査(評価)することができ、好ましい。 Various materials have been introduced as transfer base materials in these transfer methods, and transparent resin films such as polyester, triacetyl cellulose, and cyclic polyolefin are often exemplified. Among these, the cyclic polyolefin film is preferable because it has no refractive index anisotropy, and thus the state of the retardation layer can be inspected (evaluated) in the state where the retardation layer is provided on the film substrate.
 しかしながら、環状ポリオレフィン系フィルムを転写用のフィルム基材として使用して製造された位相差層積層偏光板(円偏光板)を画像表示装置の反射防止用に使用した場合、ピンホール状やキズ状の光漏れが生じることがあり、問題となっていた。 However, when a retardation layer laminated polarizing plate (circular polarizing plate) manufactured by using a cyclic polyolefin film as a film substrate for transfer is used for antireflection of an image display device, it has a pinhole shape or a scratch shape. However, there was a problem that light leakage occurred.
 また、転写用フィルム上に積層された液晶化合物と二色性色素を含む偏光層(液晶化合物配向層)を保護フィルムに転写することで偏光板を製造する方法も知られているが、この場合も上記と同様に、ピンホール状やキズ上の光漏れが生じることがあり、問題となっていた。 A method for producing a polarizing plate by transferring a polarizing layer (liquid crystal compound alignment layer) containing a liquid crystal compound and a dichroic dye laminated on a transfer film to a protective film is also known. However, similar to the above, there is a problem that light leakage may occur in the form of pinholes or scratches.
特開2012-56322号公報Japanese Patent Laid-Open No. 2012-56322 特開2004-144943号公報JP, 2004-144943, A 特開2004-46166号公報JP-A-2004-46166 特開2006-243653号公報JP, 2006-243653, A 特開2001-4837号公報JP 2001-4837 A 特開平4-57017号公報JP-A-4-57017 特開2014-071381号公報JP, 2014-071381, A 特開2017-146616号公報JP, 2017-146616, A
 本発明は、かかる従来技術の課題を背景になされたものである。すなわち、本発明の目的は、液晶化合物配向層を転写するための環状ポリオレフィン系転写用フィルムであって、ピンホールなどの欠点の発生が減少された位相差層や偏光層(液晶化合物配向層)を形成することができる転写用フィルムを提供しようとするものである。 The present invention has been made against the background of such problems of the conventional technology. That is, the object of the present invention is a cyclic polyolefin-based transfer film for transferring a liquid crystal compound alignment layer, in which the occurrence of defects such as pinholes is reduced and a retardation layer or a polarizing layer (liquid crystal compound alignment layer). It is intended to provide a transfer film capable of forming a film.
 本発明者は、かかる目的を達成するために、環状ポリオレフィン系フィルムを転写用のフィルム基材として使用して製造された位相差層積層偏光板(円偏光板)にピンホールなどの欠点が発生する原因について検討した。その結果、フィルム基材の表面の微小構造が、フィルム基材の上に形成される液晶化合物からなる位相差層中の液晶化合物の配向状態や位相差に大きな影響を与え、設計通りの配向状態や位相差が得られない場合があり、そのためピンホールなどの欠点が発生することを見出した。そして、本発明者は、これらの微小構造の中でも、特定のパラメータで表わされるフィルム基材の表面粗さに着目し、この表面粗さが特定の範囲内に制御されたフィルム基材を使用することによって、上記の従来の問題が生じずに、ピンホールなどの欠点の発生が減少された位相差層や偏光層(液晶化合物配向層)を形成することができることを見出し、本発明の完成に至った。 In order to achieve such an object, the present inventor has a drawback such as a pinhole in a retardation layer laminated polarizing plate (circular polarizing plate) manufactured by using a cyclic polyolefin film as a film substrate for transfer. I examined the cause. As a result, the microstructure on the surface of the film substrate greatly affects the alignment state and the retardation of the liquid crystal compound in the retardation layer made of the liquid crystal compound formed on the film substrate, and the alignment state as designed. It has been found that, in some cases, a phase difference cannot be obtained, which causes defects such as pinholes. Then, the present inventor pays attention to the surface roughness of the film base material represented by specific parameters among these microstructures, and uses the film base material whose surface roughness is controlled within a specific range. As a result, it has been found that it is possible to form a retardation layer or a polarizing layer (liquid crystal compound alignment layer) in which the occurrence of defects such as pinholes is reduced without causing the above-mentioned conventional problems, and to complete the present invention. I arrived.
 即ち、本発明は、以下の(1)~(4)の構成を有するものである。
(1)液晶化合物配向層を対象物に転写するための環状ポリオレフィン系転写用フィルムであって、転写用フィルムの離型面の表面粗さ(SRa)が1nm以上、30nm以下であることを特徴とする液晶化合物配向層転写用フィルム。
(2)転写用フィルムの離型面の10点表面粗さ(SRz)が5nm以上、200nm以下であることを特徴とする(1)に記載の液晶化合物配向層転写用フィルム。
(3)液晶化合物配向層と転写用フィルムとが積層された積層体であって、転写用フィルムが(1)又は(2)に記載の転写用フィルムであることを特徴とする液晶化合物配向層転写用積層体。
(4)偏光板と(3)に記載の積層体の液晶化合物配向層面とを貼り合わせて中間積層体を形成する工程、及び中間積層体から転写用フィルムを剥離する工程を含むことを特徴とする液晶化合物配向層積層偏光板の製造方法。
That is, the present invention has the following configurations (1) to (4).
(1) A cyclic polyolefin-based transfer film for transferring an alignment layer of a liquid crystal compound onto an object, wherein the release film has a surface roughness (SRa) of 1 nm or more and 30 nm or less. A film for transferring a liquid crystal compound alignment layer.
(2) The film for transferring a liquid crystal compound alignment layer according to (1), wherein the release surface of the transfer film has a 10-point surface roughness (SRz) of 5 nm or more and 200 nm or less.
(3) A liquid crystal compound alignment layer comprising a laminate of a liquid crystal compound alignment layer and a transfer film, wherein the transfer film is the transfer film according to (1) or (2). Transfer laminate.
(4) a step of adhering the polarizing plate and the liquid crystal compound alignment layer surface of the laminate described in (3) to form an intermediate laminate, and a step of peeling the transfer film from the intermediate laminate. A method for manufacturing a polarizing plate laminated with a liquid crystal compound alignment layer.
 本発明によれば、表面粗さが特定の範囲内に制御された環状ポリオレフィン系フィルムを位相差層や偏光層の転写用フィルムとして使用することによって、位相差層や偏光層中の液晶化合物の配向状態や位相差を設計通りにすることができ、ピンホールなどの欠点の発生が減少された位相差層や偏光層(液晶化合物配向層)を形成することができる。 According to the present invention, by using a cyclic polyolefin film whose surface roughness is controlled within a specific range as a transfer film for a retardation layer or a polarizing layer, the liquid crystal compound in the retardation layer or the polarizing layer is It is possible to form the retardation layer and the polarizing layer (liquid crystal compound orientation layer) in which the orientation state and the retardation can be made as designed and the occurrence of defects such as pinholes is reduced.
 本発明の転写用フィルムは、液晶化合物配向層を対象物(他の透明樹脂フィルム、偏光板など)に転写するためのものであり、転写用フィルムの離型面の表面粗さ(SRa)が1nm以上、30nm以下であることを特徴とする。なお、転写用フィルムはフィルム単体であってもよいが、基材となるフィルムにコート等により離型層が設けられていてもよい。また、裏面に帯電防止層や易滑層などが設けられていてもよい。なお、本発明では離型コートなどの層が用いられずに単体で転写用フィルムとして用いられるものや、離型コートや裏面のコートなどを設けて転写用フィルムとして用いられるものを総称して転写用フィルムといい、コートなどを設ける前の状態のフィルムを基材フィルムと称する。 The transfer film of the present invention is for transferring the liquid crystal compound alignment layer to an object (other transparent resin film, polarizing plate, etc.), and has a surface roughness (SRa) of the release surface of the transfer film. It is characterized by being 1 nm or more and 30 nm or less. The transfer film may be a single film, or a release film may be provided on the film serving as a base material by coating or the like. Further, an antistatic layer, a slipping layer or the like may be provided on the back surface. Incidentally, in the present invention, those used as a transfer film alone without using a layer such as a release coat, and those used as a transfer film by providing a release coat or a back coat are collectively referred to as a transfer film. The film in the state before the coating is provided is called the base film.
 本発明の転写用フィルムに用いられるフィルム基材を構成する樹脂は、環状ポリオレフィン系のものである。環状ポリオレフィンとは、重合体の繰り返し単位中に脂環式構造を含有する化合物である。脂環式構造としては、シクロアルカン構造、シクロアルケン構造などが挙げられるが、透明性の観点からシクロアルカン構造が好ましい。環状ポリオレフィン中の脂環式構造を有する繰り返し単位の割合は、使用目的に応じて適宜選択すればよいが、通常50重量%以上、好ましくは70重量%以上、より好ましくは90重量%以上である。好ましい環状ポリオレフィンとしては、ノルボルネン系ポリマーが挙げられ、特にノルボルネン系ポリマーの水素添加物が好ましい。これらは、光学フィルムとして用いられるものを好適な例として用いることができる。 The resin constituting the film substrate used in the transfer film of the present invention is a cyclic polyolefin type resin. The cyclic polyolefin is a compound containing an alicyclic structure in the repeating unit of the polymer. Examples of the alicyclic structure include a cycloalkane structure and a cycloalkene structure, and the cycloalkane structure is preferable from the viewpoint of transparency. The proportion of repeating units having an alicyclic structure in the cyclic polyolefin may be appropriately selected according to the purpose of use, but is usually 50% by weight or more, preferably 70% by weight or more, more preferably 90% by weight or more. . Preferred cyclic polyolefins include norbornene-based polymers, and hydrogenated norbornene-based polymers are particularly preferred. As these, those used as an optical film can be used as a suitable example.
 本発明の転写用フィルムは、構成としては、単層でも共押出による複数層であっても良い。複数層の場合は、表層(離型面側層A)/裏面側層(B)や、A/中間層(C)/A(離型面側層と裏面側層が同一)、A/C/B、などの構成が挙げられる。また、さらに4層以上の多層構成であっても良い。 The transfer film of the present invention may have a single-layer structure or a multi-layer structure by co-extrusion. In the case of a plurality of layers, surface layer (release surface side layer A) / back surface side layer (B), A / intermediate layer (C) / A (release surface layer and back surface layer are the same), A / C / B, and the like. Further, it may have a multilayer structure of four or more layers.
 転写用フィルムは工業的にはフィルムを巻回したロールで供給される。ロール幅の下限は好ましくは30cmであり、より好ましくは50cmであり、さらに好ましくは70cmであり、特に好ましくは90cmであり、最も好ましくは100cmである。ロール幅の上限は好ましくは5000cmであり、より好ましくは4000cmであり、さらに好ましくは3000cmである。 Transfer film is industrially supplied by a roll that winds the film. The lower limit of the roll width is preferably 30 cm, more preferably 50 cm, further preferably 70 cm, particularly preferably 90 cm, and most preferably 100 cm. The upper limit of the roll width is preferably 5000 cm, more preferably 4000 cm, and further preferably 3000 cm.
 ロール長さの下限は好ましくは100mであり、より好ましくは500mであり、さらに好ましくは1000mである。ロール長さの上限は好ましくは100000mであり、より好ましくは50000mであり、さらに好ましくは30000mである。 The lower limit of the roll length is preferably 100 m, more preferably 500 m, even more preferably 1000 m. The upper limit of the roll length is preferably 100,000 m, more preferably 50,000 m, and further preferably 30,000 m.
(離型面粗さ)
 本発明の転写用フィルムの離型面(A層表面)は平滑であることが好ましい。なお、本発明において、転写用フィルムの「離型面」とは、転写用フィルムの表面のうち、転写用フィルムの転写する液晶化合物配向層が設けられることを意図される表面を意味する。後述する平坦化コート層や離型層等が設けられている場合、この上に液晶化合物配向層を設けるのであれば、これらの平坦化層や離型層等の表面(液晶化合物配向層と接する面)が、転写用フィルムの「離型面」である。
(Release surface roughness)
The release surface (A layer surface) of the transfer film of the present invention is preferably smooth. In the present invention, the “release surface” of the transfer film means the surface of the transfer film intended to be provided with the liquid crystal compound alignment layer to be transferred by the transfer film. In the case where a flattening coat layer or a release layer described later is provided, if a liquid crystal compound alignment layer is provided thereon, the surface of these flattening layer or release layer (contact with the liquid crystal compound alignment layer) Surface) is the "release surface" of the transfer film.
 本発明の転写用フィルムの離型面の三次元算術平均粗さ(SRa)の下限は好ましくは1nmであり、より好ましくは2nmである。上記未満であると現実的に数値の達成が困難になりうる。また、本発明の転写用フィルムの離型面のSRaの上限は好ましくは30nmであり、より好ましくは25nmであり、さらに好ましくは20nmであり、特に好ましくは15nmであり、最も好ましくは10nmである。上記を越えると液晶化合物の配向が乱れることがある。 The lower limit of the three-dimensional arithmetic mean roughness (SRa) of the release surface of the transfer film of the present invention is preferably 1 nm, more preferably 2 nm. If it is less than the above, it may be difficult to achieve the numerical value. The upper limit of SRa of the release surface of the transfer film of the present invention is preferably 30 nm, more preferably 25 nm, further preferably 20 nm, particularly preferably 15 nm, most preferably 10 nm. . If it exceeds the above range, the alignment of the liquid crystal compound may be disturbed.
 本発明の転写用フィルムの離型面の三次元十点平均粗さ(SRz)の下限は好ましくは5nmであり、より好ましくは10nmであり、さらに好ましくは13nmである。上記未満であると現実的に数値の達成が困難になりうる。また、本発明の転写用フィルムの離型面のSRzの上限は好ましくは200nmであり、より好ましくは150nmであり、さらに好ましくは120nmであり、特に好ましくは100nmであり、最も好ましくは80nmである。上記を越えると液晶化合物の配向が乱れることがある。 The lower limit of the three-dimensional ten-point average roughness (SRz) of the release surface of the transfer film of the present invention is preferably 5 nm, more preferably 10 nm, and further preferably 13 nm. If it is less than the above, it may be difficult to achieve the numerical value. The upper limit of SRz of the release surface of the transfer film of the present invention is preferably 200 nm, more preferably 150 nm, further preferably 120 nm, particularly preferably 100 nm, and most preferably 80 nm. . If it exceeds the above range, the alignment of the liquid crystal compound may be disturbed.
 本発明の転写用フィルムの離型面の最大高さ(SRy:離型面最大山高さSRp+離型面最大谷深さSRv)の下限は好ましくは10nmであり、より好ましくは15nmであり、さらに好ましくは20nmである。上記未満であると現実的に数値の達成が困難になりうる。また、本発明の転写用フィルムの離型面のSRyの上限は好ましくは300nmであり、より好ましくは250nmであり、さらに好ましくは150nmであり、特に好ましくは120nmであり、最も好ましくは100nmである。上記を越えると液晶化合物の配向が乱れることがある。 The lower limit of the maximum height of the release surface (SRy: maximum release surface peak height SRp + release surface maximum valley depth SRv) of the transfer film of the present invention is preferably 10 nm, more preferably 15 nm, and It is preferably 20 nm. If it is less than the above, it may be difficult to achieve the numerical value. The upper limit of SRy of the release surface of the transfer film of the present invention is preferably 300 nm, more preferably 250 nm, further preferably 150 nm, particularly preferably 120 nm, most preferably 100 nm. . If it exceeds the above range, the alignment of the liquid crystal compound may be disturbed.
 本発明の転写用フィルムの離型面の高低差0.5μm以上の突起の数の上限は好ましくは5個/mであり、より好ましくは4個/mであり、さらに好ましくは3個/mであり、特に好ましくは2個/mであり、最も好ましくは1個/mである。上記を越えると液晶化合物の配向が乱れることがある。 The upper limit of the number of projections having a height difference of 0.5 μm or more on the release surface of the transfer film of the present invention is preferably 5 / m 2 , more preferably 4 / m 2 , and further preferably 3 / M 2 , particularly preferably 2 / m 2 , and most preferably 1 / m 2 . If it exceeds the above range, the alignment of the liquid crystal compound may be disturbed.
 離型面の粗さが上記範囲を超えると、本発明の転写用フィルムの上に形成された液晶化合物配向層の微小部分で設計通りの配向状態や位相差とならず、ピンホール状やキズ状の欠点が生じる場合がある。この理由は、以下のように考えられる。まず、後述のように、転写用フィルムと液晶化合物配向層の間には、ラビング処理配向制御層や光配向制御層などの配向制御層を設けることができるが、この配向制御層がラビング処理配向制御層であれば、ラビング時に凸部分の配向制御層が剥がれることや、凸部分の麓部や凹部分のラビングが不十分となることが欠点発生の原因と考えられる。また、離型面層に粒子を含む場合、ラビング時に粒子が脱落し、表面を傷つけることも欠点発生の原因と考えられる。また、ラビング処理配向制御層であっても光配向制御層であっても、配向制御層を設けた状態でフィルムを巻き取った場合、裏面層と擦れることにより、凸部分の配向制御層に穴が空いたり、圧力により配向が乱れたりすることも欠点発生の原因と考えられる。これらの配向制御層の欠陥により、配向制御層上に液晶化合物配向層を設ける時にその微小部分で液晶化合物の配向が適切に起こらず、設計通りの配向状態や位相差が得られず、その結果としてピンホール状やキズ状の欠点が生じると考えられる。 When the release surface roughness exceeds the above range, the alignment state and the retardation as designed do not occur in the minute portion of the liquid crystal compound alignment layer formed on the transfer film of the present invention, and pinholes or scratches are generated. -Like defects may occur. The reason for this is considered as follows. First, as described below, an alignment control layer such as a rubbing alignment control layer or a photo alignment control layer can be provided between the transfer film and the liquid crystal compound alignment layer. In the case of the control layer, it is considered that the orientation control layer of the convex portion is peeled off during rubbing, and the rubbing of the foot portion and the concave portion of the convex portion is insufficient, which causes the defects. Further, when particles are contained in the release surface layer, it is considered that particles fall off during rubbing and the surface is damaged, which is a cause of defects. In addition, when the film is wound with the orientation control layer provided, whether it is a rubbing-treated orientation control layer or a photo-orientation control layer, by rubbing against the back surface layer, holes are formed in the orientation control layer at the convex portion. It is considered that the defects are caused by the voids and the disordered orientation due to the pressure. Due to these defects in the alignment control layer, when the alignment layer for the liquid crystal compound is provided on the alignment control layer, the alignment of the liquid crystal compound does not occur properly in the minute portion, and the alignment state and phase difference as designed cannot be obtained. As a result, defects such as pinholes and scratches are considered to occur.
 また、配向制御層を設けず、転写用フィルムの上に液晶化合物配向層を直接形成させる場合でも、液晶化合物の塗工時に、転写用フィルムの離型面の凸部分で液晶化合物配向層の厚みが薄くなったり、逆に転写用フィルムの離型面の凹部分では液晶化合物配向層の厚みが厚くなったりするなどの理由で、設計通りの位相差が得られないことも欠点発生の原因と考えられる。 Even when the liquid crystal compound alignment layer is directly formed on the transfer film without providing the alignment control layer, the thickness of the liquid crystal compound alignment layer may be formed at the convex portion of the release surface of the transfer film when the liquid crystal compound is applied. It is also a cause of the defect that the retardation as designed cannot be obtained because the thickness of the liquid crystal compound alignment layer becomes thicker in the concave portion of the release surface of the transfer film. Conceivable.
 離型面(A)の粗さを上記範囲にするためには、以下の方法が挙げられる。
・基材フィルムの離型面側層(表層)が粒子を含まないものとする。
・基材フィルムの離型面側層(表層)が粒子を含む場合は粒径の小さな粒子とする。
・離型面となる側のロール(キャスティングロールまたはタッチロール)の表面を平滑にする。
・基材フィルムの離型面側に平坦化コートを設ける。
 なお、本発明において、基材フィルムの「離型面側層」とは、基材フィルムを構成する樹脂の各層のうち、離型面が存在する層を意味する。ここで、基材フィルムが単一の層である場合も離型面側層と呼ぶ場合がある。この場合、後述する裏面側層と離型面側層が同一層となる。
The following methods may be mentioned for controlling the roughness of the release surface (A) within the above range.
-The release surface side layer (surface layer) of the base film does not contain particles.
-If the release surface side layer (surface layer) of the base film contains particles, the particles have a small particle size.
・ Smooth the surface of the roll (casting roll or touch roll) on the side that becomes the release surface.
-Provide a flattening coat on the release surface side of the base film.
In the present invention, the “release surface side layer” of the base film means a layer having a release surface among the layers of the resin constituting the base film. Here, even when the substrate film is a single layer, it may be referred to as a release surface side layer. In this case, the back surface side layer and the release surface side layer described later are the same layer.
 また、上記以外に原料や製造工程を以下のようにクリーンにすることも重要である。
・溶融した環状ポリオレフィン樹脂にフィルターをかける。
・コート剤にフィルターをかけ、異物を除去する。
・製膜、コート、乾燥時にクリーン環境下で行う。
In addition to the above, it is important to clean the raw materials and manufacturing process as follows.
-Filter the molten cyclic polyolefin resin.
・ Apply a filter to the coating agent to remove foreign matter.
・ Perform in a clean environment during film formation, coating and drying.
 表層は平滑化のためには実質的に粒子を含まないことが好ましい。実質的に粒子を含まないとは、粒子含有量が50ppm未満であり、好ましくは30ppm未満であることを意味する。 The surface layer preferably contains substantially no particles for smoothing. By substantially free of particles is meant that the particle content is less than 50 ppm, preferably less than 30 ppm.
 表面の滑り性を上げるため、表層は粒子を含んでいても良い。粒子を含む場合、表層粒子含有量の下限は好ましくは30ppmであり、より好ましくは50ppmであり、さらに好ましくは100ppmである。また、表層粒子含有量の上限は好ましくは20000ppmであり、より好ましくは10000ppmであり、さらに好ましくは8000ppmであり、特に好ましくは6000ppmである。上記を越えると、表層の粗さを好ましい範囲内にできないことがある。 The surface layer may contain particles to improve the slipperiness of the surface. When particles are included, the lower limit of the surface layer particle content is preferably 30 ppm, more preferably 50 ppm, and further preferably 100 ppm. The upper limit of the surface layer particle content is preferably 20000 ppm, more preferably 10000 ppm, further preferably 8000 ppm, and particularly preferably 6000 ppm. If it exceeds the above range, the roughness of the surface layer may not be within the preferred range.
 表層粒子径の下限は好ましくは0.005μmであり、より好ましくは0.01μmであり、さらに好ましくは0.02μmである。また、表層粒子径の上限は好ましくは3μmであり、より好ましくは1μmであり、さらに好ましくは0.5μmであり、特に好ましくは0.3μmである。上記を越えると、表層の粗さを好ましい範囲内にできないことがある。 The lower limit of the surface layer particle size is preferably 0.005 μm, more preferably 0.01 μm, and further preferably 0.02 μm. The upper limit of the surface layer particle size is preferably 3 μm, more preferably 1 μm, further preferably 0.5 μm, and particularly preferably 0.3 μm. If it exceeds the above range, the roughness of the surface layer may not be within the preferred range.
 表層が粒子を含まない場合や粒径の小さな粒子とした場合であっても、その下層が粒子を含む場合は、下層の粒子の影響により離型面層の粗さが高くなる場合がある。このような場合は、離型面層の厚みを大きくしたり、粒子を含まない下層(中間層)を設ける等の方法をとることが好ましい。 Even if the surface layer does not contain particles or the particles have a small particle size, if the lower layer contains particles, the release surface layer may have a higher roughness due to the effect of the particles in the lower layer. In such a case, it is preferable to increase the thickness of the release surface layer or to provide a lower layer (intermediate layer) containing no particles.
 表層厚みの下限は好ましくは0.1μmであり、より好ましくは0.5μmであり、さらに好ましくは1μmであり、特に好ましくは3μmであり、最も好ましくは5μmである。また、表層厚みの上限は転写用フィルムの全厚みに対して、好ましくは97%、より好ましくは95%、さらに好ましくは90%である。 The lower limit of the surface layer thickness is preferably 0.1 μm, more preferably 0.5 μm, further preferably 1 μm, particularly preferably 3 μm, and most preferably 5 μm. The upper limit of the surface layer thickness is preferably 97%, more preferably 95%, and further preferably 90% based on the total thickness of the transfer film.
 粒子を含まない中間層は実質的に粒子を含まないという意味で、粒子の含有量は50ppm未満であり、30ppm未満であることが好ましい。転写用フィルムの全厚みに対して、中間層の厚みの下限は転写用フィルムの全厚みに対して、好ましくは10%、より好ましくは20%、さらに好ましくは30%である。上限は好ましくは95%、より好ましくは90%である。 The content of particles is less than 50 ppm, preferably less than 30 ppm, in the sense that the intermediate layer containing no particles contains substantially no particles. The lower limit of the thickness of the intermediate layer with respect to the total thickness of the transfer film is preferably 10%, more preferably 20%, and further preferably 30% with respect to the total thickness of the transfer film. The upper limit is preferably 95%, more preferably 90%.
 転写用フィルム(基材フィルム)の表層の粗さが高い場合、平坦化コートを設けても良い。平坦化コートに用いられる樹脂としては、ポリエステル、アクリル、ポリウレタン、ポリスチレン、ポリアミドなど一般にコート剤の樹脂として用いられるものが挙げられる。メラミン、イソシアネート、エポキシ樹脂、オキサゾリン化合物などの架橋剤を用いることも好ましい。これらは有機溶剤や水に溶解または分散させたコート剤として塗工されて乾燥される。またはアクリルの場合は無溶剤で塗工され、放射線で硬化させても良い。平坦化コートはオリゴマーブロックコートであっても良い。離型層をコートで設ける場合は離型層自体を厚くしても良い。 If the surface roughness of the transfer film (base film) is high, a flattening coat may be provided. Examples of the resin used for the flattening coat include those generally used as the resin for the coating agent such as polyester, acryl, polyurethane, polystyrene and polyamide. It is also preferable to use a crosslinking agent such as melamine, isocyanate, epoxy resin, or oxazoline compound. These are applied as a coating agent dissolved or dispersed in an organic solvent or water and dried. Alternatively, in the case of acrylic, it may be coated without a solvent and cured by radiation. The planarization coat may be an oligomer block coat. When the release layer is provided as a coat, the release layer itself may be thickened.
 表面平坦化コート層の厚みの下限は好ましくは0.01μmであり、より好ましくは0.1μmであり、さらに好ましくは0.2μmであり、特に好ましくは0.3μmである。上記未満であると平坦化の効果が不十分となることがある。また、表面平坦化コート層の厚みの上限は好ましくは10μmであり、より好ましくは7μmであり、さらに好ましくは5μmであり、特に好ましくは3μmである。上記を越えてもそれ以上の平坦化効果が得られないことがある。 The lower limit of the thickness of the surface flattening coat layer is preferably 0.01 μm, more preferably 0.1 μm, further preferably 0.2 μm, and particularly preferably 0.3 μm. If it is less than the above, the flattening effect may be insufficient. The upper limit of the thickness of the surface flattening coat layer is preferably 10 μm, more preferably 7 μm, further preferably 5 μm, and particularly preferably 3 μm. Even if it exceeds the above range, no further flattening effect may be obtained.
 平坦化コートは製膜過程中にインラインコートで設けても良く、別途オフラインで設けても良い。 The flattening coat may be provided as an in-line coat during the film formation process, or may be provided as a separate offline coat.
(離型層)
 得られた基材フィルムは、転写物(液晶化合物配向層)との剥離性を有するのであれば、そのまま転写用フィルムとして用いることができる。離型性の調整のため、フィルムを表面処理しても良い。表面処理としては、コロナ処理、プラズマ処理などが挙げられる。
(Release layer)
The obtained substrate film can be used as it is as a transfer film as long as it has a releasability from the transferred product (liquid crystal compound alignment layer). The film may be surface-treated in order to adjust the releasability. Examples of the surface treatment include corona treatment and plasma treatment.
 また、離型層を設けても良い。離型層としては、公知の離型剤を用いることができ、アルキッド樹脂、アミノ樹脂、長鎖アクリルアクリレート系、シリコーン樹脂、フッ素樹脂が好ましい例として挙げられる。これらは、転写物との密着性に合わせて適宜選択できる。基材フィルムと離型層の密着性を上げるため、基材フィルムに表面処理を行っても良い。表面処理としては、上記の処理が挙げられる。また、易接着コートを行ってもよい。 Alternatively, a release layer may be provided. As the release layer, a known release agent can be used, and alkyd resins, amino resins, long-chain acrylic acrylates, silicone resins, and fluororesins are preferred examples. These can be appropriately selected according to the adhesion to the transfer material. In order to improve the adhesiveness between the base film and the release layer, the base film may be surface-treated. Examples of the surface treatment include the above treatments. Further, an easy adhesion coat may be applied.
(裏面側粗さ)
 また、本発明の転写用フィルムの離型面を平滑にしても液晶化合物配向層に欠点が生じる場合がある。これは、転写用フィルムはロール状に巻き取られた状態で供給されており、表面と裏面が接して、裏面の粗さが表面に転写する(離型層に裏面の凸部が転写して凹部が形成される)ためであることがわかった。液晶化合物配向層を設けた転写用フィルムは、液晶化合物配向層を保護するため、マスキングフィルムを貼り合わせて巻き取られる場合もあるが、コスト低減のため、そのまま巻き取られることも多い。このように液晶化合物配向層を設けた状態で巻き取った場合は、液晶化合物配向層が裏面の凸部により、凹んだり、穴が空いたり、配向が乱れるといった現象が起こっていると考えられる。また、液晶化合物配向層を設けた状態で巻き取るのではなく、液晶化合物配向層を後で設ける場合でも、裏面の凸部により、液晶化合物配向層に穴が空く、配向が乱れるといった現象が起こっていると考えられる。特に巻芯部では圧力が高くこれらの現象が起こりやすい。以上の知見から、上記の欠点は離型面の反対面表面(裏面)の粗さを特定の範囲内にすることにより防止することができることがわかった。
(Roughness on the back side)
Further, even if the release surface of the transfer film of the present invention is made smooth, defects may occur in the liquid crystal compound alignment layer. This is because the transfer film is supplied in a rolled-up state, the front surface and the back surface are in contact with each other, and the roughness of the back surface is transferred to the surface (the convex portion of the back surface is transferred to the release layer). It was found that this is due to the formation of recesses. A transfer film provided with a liquid crystal compound alignment layer may be wound with a masking film attached to protect the liquid crystal compound alignment layer, but it is often wound as it is for cost reduction. When the liquid crystal compound alignment layer is wound in this manner, it is considered that the liquid crystal compound alignment layer has a phenomenon in which the projections on the back surface cause depressions, holes, or disordered alignment. Even when the liquid crystal compound alignment layer is not wound in the state of being provided, but the liquid crystal compound alignment layer is provided later, a phenomenon such that holes are formed in the liquid crystal compound alignment layer due to the convex portion on the back surface and the alignment is disturbed occurs. It is thought that In particular, the pressure is high at the core portion, and these phenomena are likely to occur. From the above findings, it was found that the above-mentioned defects can be prevented by setting the roughness of the surface (back surface) opposite to the release surface within a specific range.
 本発明の転写用フィルムの裏面の三次元算術平均粗さ(SRa)の下限は好ましくは3nmであり、より好ましくは4nmであり、さらに好ましくは5nmである。上記未満であると滑り性が悪くなり、ロール搬送時、巻き取り時などに滑らかに滑らず、キズが付きやすくなるとなることがある。また、本発明の転写用フィルムの裏面のSRaの上限は好ましくは50nmであり、より好ましくは45nmであり、さらに好ましくは40nmである。上記を越えると欠点が多くなることがある。 The lower limit of the three-dimensional arithmetic mean roughness (SRa) of the back surface of the transfer film of the present invention is preferably 3 nm, more preferably 4 nm, and further preferably 5 nm. If it is less than the above range, the slipperiness may be deteriorated, and the roll may not be slipped smoothly during roll conveyance or winding, and may be easily scratched. The upper limit of SRa on the back surface of the transfer film of the present invention is preferably 50 nm, more preferably 45 nm, and further preferably 40 nm. If it exceeds the above, there may be many defects.
 本発明の転写用フィルムの裏面の三次元十点平均粗さ(SRz)の下限は、好ましくは15nmであり、より好ましくは20nmであり、さらに好ましくは25nmである。また、本発明の転写用フィルムの裏面のSRzの上限は好ましくは1500nmであり、より好ましくは1200nmであり、さらに好ましくは1000nmであり、特に好ましくは700nmであり、最も好ましくは500nmである。上記を越えると欠点が多くなることがある。 The lower limit of the three-dimensional ten-point average roughness (SRz) of the back surface of the transfer film of the present invention is preferably 15 nm, more preferably 20 nm, further preferably 25 nm. The upper limit of SRz on the back surface of the transfer film of the present invention is preferably 1500 nm, more preferably 1200 nm, further preferably 1000 nm, particularly preferably 700 nm, and most preferably 500 nm. If it exceeds the above, there may be many defects.
 本発明の転写用フィルムの裏面の最大高さ(SRy:裏面最大山高さSRp+裏面最大谷深さSRv)の下限は好ましくは20nmであり、より好ましくは30nmであり、さらに好ましくは40nmであり、特に好ましくは50nmである。また、本発明の転写用フィルムの裏面の最大高さSRyの上限は好ましくは2000nmであり、より好ましくは1500nmであり、さらに好ましくは1200nmであり、特に好ましくは1000nmであり、最も好ましくは700nmである。上記を越えると欠点が多くなることがある。 The lower limit of the maximum height of the back surface of the transfer film of the present invention (SRy: maximum back surface peak height SRp + back surface maximum valley depth SRv) is preferably 20 nm, more preferably 30 nm, further preferably 40 nm, Particularly preferably, it is 50 nm. The upper limit of the maximum height SRy of the back surface of the transfer film of the present invention is preferably 2000 nm, more preferably 1500 nm, further preferably 1200 nm, particularly preferably 1000 nm, most preferably 700 nm. is there. If it exceeds the above, there may be many defects.
 本発明の転写用フィルムの裏面の高低差2μm以上の突起の数の上限は好ましくは5個/mであり、より好ましくは4個/mであり、さらに好ましくは3個/mであり、特に好ましくは2個/mであり、最も好ましくは1個/mである。上記を越えると欠点が多くなることがある。 The upper limit of the number of protrusions having a height difference of 2 μm or more on the back surface of the transfer film of the present invention is preferably 5 / m 2 , more preferably 4 / m 2 , and further preferably 3 / m 2 . Yes, particularly preferably 2 / m 2 , and most preferably 1 / m 2 . If it exceeds the above, there may be many defects.
 以上のパラメータで表わされる本発明の転写用フィルムの裏面の粗さが上記範囲未満であると、フィルムの滑り性が悪くなり、フィルムのロールでの搬送時、巻き取り時などに滑りにくくなり、キズが付きやすくなることがある。また、フィルム製造時の巻き取りにおいて、巻き取りが安定せず、皺が生じて不良品となったり、巻き取ったロールの端部の凹凸が大きくなり、次工程でフィルムの蛇行が起こりやすくなったり、破断しやすくなったりする。
 なお、本発明の転写用フィルムの裏面の粗さが上記を超えると、上述の欠点が生じやすくなる。
When the roughness of the back surface of the transfer film of the present invention represented by the above parameters is less than the above range, the slipperiness of the film is deteriorated, and when the film is conveyed by a roll, it is less likely to slip during winding, etc., It may be easily scratched. Further, during winding during film production, the winding is not stable and wrinkles occur, resulting in defective products, and the irregularities at the ends of the wound roll become large, and the film tends to meander in the next step. Or it is easy to break.
If the roughness of the back surface of the transfer film of the present invention exceeds the above, the above-mentioned defects are likely to occur.
 裏面の粗さを上記範囲とするためには、以下の方法が挙げられる。
・裏面となる側のロール(キャスティングロールまたはタッチロール)の表面の粗さを特定の範囲にする。
・基材フィルムの裏面側層(裏面層)を特定の粒子を含むものにする。
・基材フィルムの中間層に粒子を含むものを用い、裏面層側(裏面層)に粒子を含まないものとして厚みを薄くする。
・基材フィルムの裏面側層(裏面層)の粗さが大きい場合は平坦化コートを設ける。
・基材フィルムの裏面側層(裏面層)が平滑すぎる場合は易滑コート(粒子含有コート)を設ける。
The following method can be used to set the roughness of the back surface within the above range.
-The surface roughness of the roll (casting roll or touch roll) on the back side is set within a specific range.
-The backside layer (backside layer) of the base film contains specific particles.
-Use a substrate film containing particles as the intermediate layer, and reduce the thickness by making the back surface layer side (back surface layer) free of particles.
-If the back surface layer (back surface layer) of the base film has a large roughness, a flattening coat is provided.
-If the backside layer (backside layer) of the substrate film is too smooth, a slippery coat (particle-containing coat) is provided.
 裏面層粒子径の下限は好ましくは0.005μmであり、より好ましくは0.01μmであり、さらに好ましくは0.05μmであり、特に好ましくは0.1μmである。上記未満であると滑り性が悪くなり、巻き取り不良が起こる場合がある。また、裏面層粒子径の上限は好ましくは5μmであり、より好ましくは3μmであり、さらに好ましくは2μmである。上記を越えると裏面が粗くなりすぎることがある。 The lower limit of the particle diameter of the back surface layer is preferably 0.005 μm, more preferably 0.01 μm, further preferably 0.05 μm, and particularly preferably 0.1 μm. If it is less than the above range, slipperiness may be deteriorated and winding failure may occur. The upper limit of the particle diameter of the back surface layer is preferably 5 μm, more preferably 3 μm, and further preferably 2 μm. If it exceeds the above range, the back surface may be too rough.
 裏面が粒子を含む場合、裏面層粒子含有量の下限は好ましくは50ppmであり、より好ましくは100ppmである。上記未満であると粒子を添加することによる滑り性の効果が得られないことがある。また、裏面層粒子含有量の上限は好ましくは10000ppmであり、より好ましくは7000ppmであり、さらに好ましくは5000ppmである。上記を越えると裏面が粗くなりすぎることがある。 When the back surface contains particles, the lower limit of the back surface layer particle content is preferably 50 ppm, more preferably 100 ppm. If it is less than the above range, the effect of slipperiness due to addition of particles may not be obtained. The upper limit of the content of the back surface layer particles is preferably 10,000 ppm, more preferably 7,000 ppm, and further preferably 5000 ppm. If it exceeds the above range, the back surface may be too rough.
 裏面層厚みの下限は好ましくは0.1μmであり、より好ましくは0.5μmであり、さらに好ましくは1μmであり、特に好ましくは3μmであり、最も好ましくは5μmである。また、裏面層厚みの上限は転写用フィルムの全厚みに対して、好ましくは95%、より好ましくは90%、さらに好ましくは85%である。 The lower limit of the thickness of the back surface layer is preferably 0.1 μm, more preferably 0.5 μm, further preferably 1 μm, particularly preferably 3 μm, and most preferably 5 μm. The upper limit of the thickness of the back surface layer is preferably 95%, more preferably 90%, and further preferably 85% based on the total thickness of the transfer film.
 中間層に粒子を含ませ、裏面層は粒子を含まずに薄くすることで裏面の粗さを制御することも好ましい。このような形態を取ることで、粒子の脱落を防ぎながら裏面の粗さを確保することができる。 It is also preferable to control the roughness of the back surface by including particles in the intermediate layer and thinning the back surface layer without particles. By taking such a form, it is possible to secure the roughness of the back surface while preventing the particles from falling off.
 中間層の粒子の粒径や添加量としては、裏面層の粒子と同様である。この場合の裏面層の厚みの下限は好ましくは0.5μmであり、より好ましくは1μmであり、さらに好ましくは2μmである。厚みの上限は好ましくは30μmであり、より好ましくは25μmであり、さらに好ましくは20μmである。 The particle size and amount of particles in the middle layer are the same as those in the back layer. In this case, the lower limit of the thickness of the back surface layer is preferably 0.5 μm, more preferably 1 μm, and further preferably 2 μm. The upper limit of the thickness is preferably 30 μm, more preferably 25 μm, further preferably 20 μm.
 基材フィルムの裏面が粗い場合、平坦化コートを設けることも好ましい。平坦化コートは表面の平坦化コートで挙げたものを同様に用いることができる。 If the back surface of the base film is rough, it is also preferable to provide a flattening coat. As the flattening coat, those mentioned for the surface flattening coat can be similarly used.
 裏面平坦化コート層の厚みの下限は好ましくは0.01μmであり、より好ましくは0.03μmであり、さらに好ましくは0.05μmである。上記未満であると平坦化の効果が小さくなることがある。また、裏面平坦化コート層の厚みの上限は好ましくは10μmであり、より好ましくは5μmであり、さらに好ましくは3μmである。上記を超えても平坦化の効果が飽和してしまう。 The lower limit of the thickness of the back surface flattening coat layer is preferably 0.01 μm, more preferably 0.03 μm, and further preferably 0.05 μm. If it is less than the above, the flattening effect may be reduced. The upper limit of the thickness of the back surface flattening coat layer is preferably 10 μm, more preferably 5 μm, and further preferably 3 μm. Even if it exceeds the above, the flattening effect will be saturated.
 裏面に粒子を含有する易滑コートを設けてもよい。易滑コートは、基材フィルムの裏面側が粒子を含まない場合や、粗さが不足している場合に効果的である。 A slippery coat containing particles may be provided on the back surface. The easy-sliding coat is effective when the back surface side of the base film does not contain particles or when the roughness is insufficient.
 裏面易滑コート層の粒子径の下限は好ましくは0.01μmであり、より好ましくは0.05μmである。上記未満であると易滑性が得られないことがある。また、裏面易滑コート層の粒子径の上限は好ましくは5μmであり、より好ましくは3μmであり、さらに好ましくは2μmであり、特に好ましくは1μmである。上記を越えると裏面の粗さが高すぎることがある。 The lower limit of the particle size of the back surface easy-sliding coat layer is preferably 0.01 μm, more preferably 0.05 μm. If it is less than the above range, slipperiness may not be obtained. The upper limit of the particle size of the back surface easy-sliding coat layer is preferably 5 μm, more preferably 3 μm, further preferably 2 μm, and particularly preferably 1 μm. If it exceeds the above range, the back surface roughness may be too high.
 裏面易滑コート層の粒子含有量の下限は好ましくは0.1質量%であり、より好ましくは0.5質量%であり、さらに好ましくは1質量%であり、特に好ましくは1.5質量%であり、最も好ましくは2質量%である。上記未満であると易滑性が得られないことがある。また、裏面易滑コート層の粒子含有量の上限は好ましくは20質量%であり、より好ましくは15質量%であり、さらに好ましくは10質量%である。上記を越えると裏面の粗さが高すぎることがある。 The lower limit of the particle content of the back surface easy-sliding coat layer is preferably 0.1% by mass, more preferably 0.5% by mass, further preferably 1% by mass, particularly preferably 1.5% by mass. And most preferably 2% by mass. If it is less than the above range, slipperiness may not be obtained. The upper limit of the particle content of the back surface easy-sliding coat layer is preferably 20% by mass, more preferably 15% by mass, and further preferably 10% by mass. If it exceeds the above range, the back surface roughness may be too high.
 裏面易滑コート層の厚みの下限は好ましくは0.01μmであり、より好ましくは0.03μmであり、さらに好ましくは0.05μmである。また、裏面易滑コート層の厚みの上限は好ましくは10μmであり、より好ましくは5μmであり、さらに好ましくは3μmであり、特に好ましくは2μmであり、最も好ましくは1μmである。 The lower limit of the thickness of the back surface easy-sliding coat layer is preferably 0.01 μm, more preferably 0.03 μm, and further preferably 0.05 μm. The upper limit of the thickness of the back surface easy-sliding coat layer is preferably 10 μm, more preferably 5 μm, further preferably 3 μm, particularly preferably 2 μm, and most preferably 1 μm.
 これらのコートを設ける場合、基材フィルムに上述の表面処理や易接着コートをすることが好ましい。 When providing these coats, it is preferable to subject the base film to the above-mentioned surface treatment or easy-adhesion coat.
 環状ポリオレフィン系フィルムは、一般的に溶融押出法で製造することができる。以下、この方法に関して簡単に説明する。 The cyclic polyolefin film can be generally manufactured by a melt extrusion method. Hereinafter, this method will be briefly described.
 溶融押出法では、環状ポリオレフィン樹脂は、一軸または二軸押出機で、通常は(Tg+30)~(Tg+180)℃、好ましくは(Tg+50)~(Tg+150)℃、特に好ましくは(Tg+60)~(Tg+140)℃に加熱溶融され、ダイからキャストロール上に押し出される。ここで、Tgは環状ポリオレフィン樹脂のガラス転移温度である。 In the melt extrusion method, the cyclic polyolefin resin is a single-screw or twin-screw extruder and is usually (Tg + 30) to (Tg + 180) ° C., preferably (Tg + 50) to (Tg + 150) ° C., particularly preferably (Tg + 60) to (Tg + 140). It is heated and melted at ℃ and extruded from a die onto a cast roll. Here, Tg is the glass transition temperature of the cyclic polyolefin resin.
 適正な表面粗さを達成するためには、溶融樹脂は押出機からダイの間で、フィルターで濾過し、粗大粒子を除去することが好ましい。使用するフィルターの濾過精度の下限は好ましくは0.5μmであり、より好ましくは1μmである。フィルターの濾過精度の上限は好ましくは100μmであり、より好ましくは50μmであり、さらに好ましくは25μmであり、特に好ましくは20μmであり、最も好ましくは10μmである。この値は、添加する粒子の粒径により、適宜決められる。 In order to achieve proper surface roughness, it is preferable to filter the molten resin with a filter between the extruder and the die to remove coarse particles. The lower limit of the filtration accuracy of the filter used is preferably 0.5 μm, more preferably 1 μm. The upper limit of the filtration accuracy of the filter is preferably 100 μm, more preferably 50 μm, further preferably 25 μm, particularly preferably 20 μm, and most preferably 10 μm. This value is appropriately determined depending on the particle size of the particles to be added.
(ロール粗さ)
 ロールの粗さを調節することで、作成されるフィルムの表面の粗さを調節することができる。例えば、キャスティングロールを離型面、タッチロールを裏面とする場合について、好ましいロールの粗さを以下に説明する。
(Roll roughness)
By adjusting the roughness of the roll, the roughness of the surface of the formed film can be adjusted. For example, in the case where the casting roll is the release surface and the touch roll is the back surface, preferable roughness of the roll will be described below.
 キャスティングロールを離型面とする場合のキャスティングロールの三次元算術平均面粗さ(SRa)の下限は好ましくは1nmであり、より好ましくは1.3nmであり、さらに好ましくは1.5nmである。キャスティングロールを離型面とする場合のキャスティングロールの三次元算術平均面粗さ(SRa)の上限は好ましくは250nmであり、より好ましくは200nmであり、さらに好ましくは150nmであり、特に好ましくは100nmであり、最も好ましくは50nmである。 The lower limit of the three-dimensional arithmetic mean surface roughness (SRa) of the casting roll when the casting roll is used as the release surface is preferably 1 nm, more preferably 1.3 nm, and further preferably 1.5 nm. The upper limit of the three-dimensional arithmetic mean surface roughness (SRa) of the casting roll when the casting roll is used as the release surface is preferably 250 nm, more preferably 200 nm, further preferably 150 nm, and particularly preferably 100 nm. And most preferably 50 nm.
 キャスティングロールを離型面とする場合のキャスティングロールの三次元十点平均粗さ(SRz)の下限は好ましくは3nmであり、より好ましくは5nmであり、さらに好ましくは7nmである。キャスティングロールを離型面とする場合のキャスティングロールの三次元十点平均粗さ(SRz)の上限は好ましくは1000nmであり、より好ましくは700nmであり、さらに好ましくは500nmであり、特に好ましくは300nmであり、最も好ましくは250nmである。 The lower limit of the three-dimensional 10-point average roughness (SRz) of the casting roll when the casting roll is used as the release surface is preferably 3 nm, more preferably 5 nm, and further preferably 7 nm. The upper limit of the three-dimensional ten-point average roughness (SRz) of the casting roll when the casting roll is used as the release surface is preferably 1000 nm, more preferably 700 nm, further preferably 500 nm, and particularly preferably 300 nm. And most preferably 250 nm.
 キャスティングロールを離型面とする場合のキャスティングロールの最大高さ(SRy)の下限は好ましくは5nmであり、より好ましくは8nmであり、さらに好ましくは10nmである。キャスティングロールを離型面とする場合のキャスティングロールの最大高さ(SRy)の上限は好ましくは1500nmであり、より好ましくは1000nmであり、さらに好ましくは800nmであり、特に好ましくは600nmである。 The lower limit of the maximum height (SRy) of the casting roll when the casting roll is used as the release surface is preferably 5 nm, more preferably 8 nm, further preferably 10 nm. The upper limit of the maximum height (SRy) of the casting roll when the casting roll is used as the release surface is preferably 1500 nm, more preferably 1000 nm, further preferably 800 nm, and particularly preferably 600 nm.
 タッチロールを裏面とする場合のタッチロールの三次元算術平均面粗さ(SRa)の下限は好ましくは5nmであり、より好ましくは10nmであり、さらに好ましくは15nmである。タッチロールを裏面とする場合のタッチロールの三次元算術平均面粗さ(SRa)の上限は好ましくは500nmであり、より好ましくは400nmであり、さらに好ましくは300nmであり、特に好ましくは250nmであり、最も好ましくは200nmである。 The lower limit of the three-dimensional arithmetic average surface roughness (SRa) of the touch roll when the touch roll is used as the back surface is preferably 5 nm, more preferably 10 nm, and further preferably 15 nm. The upper limit of the three-dimensional arithmetic mean surface roughness (SRa) of the touch roll when the touch roll is used as the back surface is preferably 500 nm, more preferably 400 nm, further preferably 300 nm, particularly preferably 250 nm. , And most preferably 200 nm.
 タッチロールを裏面とする場合のタッチロールの三次元十点平均粗さ(SRz)の下限は好ましくは20nmであり、より好ましくは30nmであり、さらに好ましくは40nmである。タッチロールを裏面とする場合のタッチロールの三次元十点平均粗さ(SRz)の上限は好ましくは2000nmであり、より好ましくは1500nmであり、さらに好ましくは1200nmであり、特に好ましくは1000nmであり、最も好ましくは800nmである。 The lower limit of the three-dimensional 10-point average roughness (SRz) of the touch roll when the touch roll is used as the back surface is preferably 20 nm, more preferably 30 nm, and further preferably 40 nm. The upper limit of the three-dimensional ten-point average roughness (SRz) of the touch roll when the touch roll is used as the back surface is preferably 2000 nm, more preferably 1500 nm, further preferably 1200 nm, and particularly preferably 1000 nm. , And most preferably 800 nm.
 タッチロールを裏面とする場合のタッチロールの最大高さ(SRy)の下限は好ましくは30nmであり、より好ましくは40nmであり、さらに好ましくは50nmである。タッチロールを裏面とする場合のタッチロールの最大高さ(SRy)の上限は好ましくは3000nmであり、より好ましくは2500nmであり、さらに好ましくは2000nmであり、特に好ましくは1500nmであり、最も好ましくは1000nmである。 The lower limit of the maximum height (SRy) of the touch roll when the touch roll is used as the back surface is preferably 30 nm, more preferably 40 nm, and further preferably 50 nm. The upper limit of the maximum height (SRy) of the touch roll when the touch roll is used as the back surface is preferably 3000 nm, more preferably 2500 nm, further preferably 2000 nm, particularly preferably 1500 nm, and most preferably It is 1000 nm.
 キャスティングロール及び/又はタッチロールの各粗さのパラメータを上記範囲にすることにより、基材フィルムの粗さを適正な範囲に制御しやすくなる。 By setting each roughness parameter of the casting roll and / or the touch roll within the above range, it becomes easy to control the roughness of the base film within an appropriate range.
 一般的には、製膜条件とフィルム表面の粗さには以下の関係があり、これらを考慮してロールの粗さを決める。
・キャスティングロールとタッチロールでは同じ粗さの場合、フィルムのキャスティングロール面の方が粗くなる。
・ダイとキャスティングロールの間隔が少ないほど、フィルムのキャスティングロール面の粗さが大きくなる。
・溶融樹脂がキャスティングロールに接する位置とタッチロールの押し当てる位置が近いほど、各面の粗さは大きくなる。
・樹脂の溶融粘度が低いほど、各面の粗さは大きくなる。
・キャスティングロールとタッチロールの温度が高いほど、各面の粗さは大きくなる。
・タッチロールの押し圧が高いほど、各面の粗さは大きくなる。
Generally, the film forming conditions and the roughness of the film surface have the following relationship, and the roughness of the roll is determined in consideration of these.
-If the casting roll and the touch roll have the same roughness, the casting roll surface of the film becomes rougher.
-The smaller the distance between the die and the casting roll, the greater the roughness of the casting roll surface of the film.
-The closer the position where the molten resin contacts the casting roll and the position where the touch roll presses, the greater the roughness of each surface.
-The lower the melt viscosity of the resin, the greater the roughness of each surface.
-The higher the temperature of the casting roll and the touch roll, the greater the roughness of each surface.
-The higher the pressing force of the touch roll, the greater the roughness of each surface.
 キャスティングロールの温度は、(Tg-30)~(Tg+30)℃、さらには(Tg-20)~(Tg+20)℃であることが好ましい。 The temperature of the casting roll is preferably (Tg-30) to (Tg + 30) ° C, more preferably (Tg-20) to (Tg + 20) ° C.
 タッチロールの温度は、(Tg-100)~(Tg+30)℃、さらには(Tg-90)~(Tg+20)℃であることが好ましい。また、キャスティングロールの温度に比べて、0~50℃、さらには5~40℃低く設定することが好ましい。 The temperature of the touch roll is preferably (Tg-100) to (Tg + 30) ° C, more preferably (Tg-90) to (Tg + 20) ° C. Further, it is preferable that the temperature is set to be 0 to 50 ° C., further 5 to 40 ° C. lower than the temperature of the casting roll.
 タッチロールの押し圧(線圧)は、10~250kgf/cm、さらには20~200kgf/cmであることが好ましい。 The pressing pressure (line pressure) of the touch roll is preferably 10 to 250 kgf / cm, more preferably 20 to 200 kgf / cm.
 その後、フィルムはキャスティングロールから剥がされ、ロールを通過させながら冷却されてコアに巻き取られる。巻き取る際に、両端に厚みだし加工(ナール加工)を行っても良い。 After that, the film is peeled from the casting roll, cooled while passing through the roll, and wound on the core. At the time of winding, both ends may be thickened (knurled).
 塗工を行う場合には、巻き取ったフィルムを塗工装置にセットし、巻き出して塗工乾燥させてもよい。上記製膜工程中で、フィルムをキャスティングロールから剥がした後、巻き取るまでの間に塗工、乾燥を行い、その後、巻き取ってもよい。 When performing coating, the wound film may be set in a coating device, unwound and coating dried. In the above film-forming step, the film may be coated and dried after being peeled off from the casting roll and wound up, and then wound up.
 これら工程における空気はHEPAフィルターなどを通し、クラス10000以下、さらにはクラス1000以下の空気とすることが好ましい。 It is preferable that the air in these processes is passed through a HEPA filter or the like to be air of class 10000 or less, further class 1000 or less.
 次に、本発明の転写用フィルムの追加の特徴について説明する。 Next, additional features of the transfer film of the present invention will be described.
(転写用フィルムの面内リタデーション)
 本発明の転写用フィルムは面内リタデーションが低いことが好ましい。具体的には、本発明の転写用フィルムの面内リタデーションは、50nm以下が好ましく、より好ましくは30nm以下、さらに好ましくは20nm以下、特に好ましくは10nm以下である。転写用フィルムの面内リタデーションを上記範囲にすることにより、転写用フィルムに液晶化合物配向層が積層された状態で直線偏光を照射して液晶化合物配向層の配向状態を検査することができる。例えば、液晶化合物配向層が位相差層の場合、検査する位相差層の遅相軸に対して斜め方向(例えば45度)の直線偏光をサンプルに照射し、位相差層により楕円偏光となった偏光を別の位相差層を通過させて直線偏光に戻し、この直線偏光が消光状態となる偏光板を介して受光する。これにより、位相差層にピンホール状の欠点があった場合には輝点として欠点を検知することができる。
(In-plane retardation of transfer film)
The transfer film of the present invention preferably has a low in-plane retardation. Specifically, the in-plane retardation of the transfer film of the present invention is preferably 50 nm or less, more preferably 30 nm or less, further preferably 20 nm or less, and particularly preferably 10 nm or less. By setting the in-plane retardation of the transfer film within the above range, it is possible to inspect the alignment state of the liquid crystal compound alignment layer by irradiating linearly polarized light in the state where the liquid crystal compound alignment layer is laminated on the transfer film. For example, when the liquid crystal compound alignment layer is a retardation layer, the sample is irradiated with linearly polarized light in an oblique direction (for example, 45 degrees) with respect to the slow axis of the retardation layer to be inspected, so that the retardation layer converts the light into elliptical polarization. The polarized light is returned to the linearly polarized light by passing through another retardation layer, and the linearly polarized light is received through the polarizing plate in the extinction state. Accordingly, when the retardation layer has a pinhole-like defect, the defect can be detected as a bright spot.
 転写用フィルムのレタデーションは、2軸方向の屈折率と厚みを測定して求めることができ、KOBRA-21ADH(王子計測機器株式会社)等の市販の自動複屈折測定装置を用いて求めることもできる。 The retardation of the transfer film can be obtained by measuring the refractive index and the thickness in the biaxial direction, and can also be obtained using a commercially available automatic birefringence measuring device such as KOBRA-21ADH (Oji Scientific Instruments). .
 転写用フィルムの面内リタデーションを上記範囲にするためには、基材フィルムの製膜工程において、延伸を行わないか、又は延伸を行う場合には流れ方向と幅方向の延伸倍率を調整するなどの方法が挙げられる。 In order to make the in-plane retardation of the transfer film within the above range, in the film forming process of the base film, stretching is not performed, or when stretching is performed, the stretching ratio in the flow direction and the width direction is adjusted. The method of is mentioned.
 本発明の転写用フィルムのヘイズの下限は好ましくは0.01%であり、より好ましくは0.1%である。上記未満であると現実的に数値の達成が困難になりうる。また、本発明の転写用フィルムのヘイズの上限は好ましくは3%であり、より好ましくは2.5%であり、さらに好ましくは2%であり、特に好ましくは1.7%である。上記を越えると偏光UV照射時に偏光が乱れ、設計通りの位相差層が得られなくなることがある。また、位相差層の検査時に乱反射で光漏れが起こり、検査が行いにくくなることがある。 The lower limit of haze of the transfer film of the present invention is preferably 0.01%, more preferably 0.1%. If it is less than the above, it may be difficult to achieve the numerical value. The upper limit of haze of the transfer film of the present invention is preferably 3%, more preferably 2.5%, further preferably 2%, and particularly preferably 1.7%. If it exceeds the above range, polarized light may be disturbed during irradiation of polarized UV, and a retardation layer as designed may not be obtained. In addition, light leakage may occur due to irregular reflection during the inspection of the retardation layer, which makes it difficult to perform the inspection.
 本発明の転写用フィルムの帯電防止性(表面抵抗)の下限は好ましくは1×10Ω/□であり、より好ましくは1×10Ω/□である。上記未満であっても効果が飽和し、それ以上の効果が得られないことがある。また、本発明の転写用フィルムの帯電防止性(表面抵抗)の上限は好ましくは1×1013Ω/□であり、より好ましくは1×1012Ω/□であり、さらに好ましくは1×1011Ω/□である。上記を越えると、静電気によるハジキが生じたり、液晶化合物の配向方向の乱れが生じたりすることがある。帯電防止性(表面抵抗)は、転写用フィルムに帯電防止剤を練り込むこと、離型層の下層や反対面に帯電防止コート層を設けること、又は離型層に帯電防止剤を添加すること等により、上記範囲内とすることができる。 The lower limit of the antistatic property (surface resistance) of the transfer film of the present invention is preferably 1 × 10 5 Ω / □, more preferably 1 × 10 6 Ω / □. Even if it is less than the above, the effect may be saturated, and further effect may not be obtained. The upper limit of the antistatic property (surface resistance) of the transfer film of the present invention is preferably 1 × 10 13 Ω / □, more preferably 1 × 10 12 Ω / □, and further preferably 1 × 10. It is 11 Ω / □. If it exceeds the above range, cissing due to static electricity may occur or the alignment direction of the liquid crystal compound may be disturbed. For antistatic property (surface resistance), kneading an antistatic agent into a transfer film, providing an antistatic coating layer on the lower layer or the opposite surface of the release layer, or adding an antistatic agent to the release layer. It can be set within the above range by the above.
 帯電防止コート層や離型層や転写用フィルムに添加する帯電防止剤としては、ポリアニリン、ポリチオフェンなどの導電性高分子、ポリスチレンスルホン酸塩などのイオン性高分子、スズドープ酸化インジウム、アンチモンドープ酸化スズなどの導電性微粒子が挙げられる。 Antistatic agents added to antistatic coating layers, release layers, and transfer films include conductive polymers such as polyaniline and polythiophene, ionic polymers such as polystyrene sulfonate, tin-doped indium oxide, antimony-doped tin oxide. Conductive fine particles such as
 転写用フィルムには離型層を設けても良い。ただし、フィルム自体が位相差層や配向層などの転写物との密着性が低く、離型層を設けなくとも十分な離型性がある場合には、離型層を設けなくても良い。また、密着性が低すぎる場合には、表面にコロナ処理を行うなどして密着性を調整しても良い。離型層は公知の離型剤を用いて形成することができ、アルキッド樹脂、アミノ樹脂、長鎖アクリルアクリレート系、シリコーン樹脂、フッ素樹脂が好ましい例として挙げられる。これらは、転写物との密着性に合わせて適宜選択できる。 A release layer may be provided on the transfer film. However, when the film itself has low adhesion to a transfer material such as a retardation layer or an alignment layer and has sufficient releasability without providing a release layer, the release layer may not be provided. If the adhesion is too low, the surface may be corona treated to adjust the adhesion. The release layer can be formed using a known release agent, and alkyd resins, amino resins, long-chain acrylic acrylates, silicone resins, and fluororesins are preferred examples. These can be appropriately selected according to the adhesion to the transfer material.
(液晶化合物配向層転写用積層体)
 次に、本発明の液晶化合物配向層転写用積層体について説明する。
 本発明の液晶化合物配向層転写用積層体は、液晶化合物配向層と本発明の転写用フィルムが積層された構造を有する。液晶化合物配向層は転写用フィルム上に塗工し配向させる必要がある。配向させる方法としては、液晶化合物配向層の下層(離型面)にラビング処理等を行い配向制御機能を付与する方法や、液晶化合物を塗布後に偏光紫外線等を照射して直接液晶化合物を配向させる方法がある。
(Laminate for transferring liquid crystal compound alignment layer)
Next, the liquid crystal compound alignment layer transfer laminate of the present invention will be described.
The liquid crystal compound alignment layer transfer laminate of the present invention has a structure in which the liquid crystal compound alignment layer and the transfer film of the present invention are laminated. The liquid crystal compound alignment layer must be coated on the transfer film for alignment. As a method for orienting, a method for giving an orientation control function by rubbing a lower layer (release surface) of the liquid crystal compound orientation layer, or irradiating polarized ultraviolet rays after coating the liquid crystal compound to orient the liquid crystal compound directly There is a way.
(配向制御層)
 また、転写用フィルムに配向制御層を設け、この配向制御層上に液晶化合物配向層を設ける方法も好ましい。なお、本発明において、液晶化合物配向層単独ではなく配向制御層と液晶化合物配向層を合わせた総称としても液晶化合物配向層と呼ぶことがある。配向制御層としては、液晶化合物配向層を所望の配向状態にすることができるものであれば、どのような配向制御層でもよいが、樹脂の塗工膜をラビング処理したラビング処理配向制御層や、偏光の光照射により分子を配向させて配向機能を生じさせる光配向制御層が好適な例として挙げられる。
(Alignment control layer)
Further, a method in which an alignment control layer is provided on the transfer film and a liquid crystal compound alignment layer is provided on the alignment control layer is also preferable. In the present invention, the alignment layer and the liquid crystal compound alignment layer may be collectively referred to as a liquid crystal compound alignment layer, instead of the liquid crystal compound alignment layer alone. As the orientation control layer, any orientation control layer may be used as long as it can bring the liquid crystal compound orientation layer into a desired orientation state, but a rubbing treatment orientation control layer obtained by rubbing a resin coating film or A preferable example is a photo-alignment control layer that orients molecules by polarized light irradiation to produce an alignment function.
(ラビング処理配向制御層)
 ラビング処理により形成される配向制御層に用いられるポリマー材料としては、ポリビニルアルコールおよびその誘導体、ポリイミドおよびその誘導体、アクリル樹脂、ポリシロキサン誘導体などが好ましく用いられる。
(Rubbing treatment orientation control layer)
As the polymer material used for the orientation control layer formed by the rubbing treatment, polyvinyl alcohol and its derivative, polyimide and its derivative, acrylic resin, polysiloxane derivative and the like are preferably used.
 以下、ラビング処理配向制御層の形成方法を説明する。まず、上記のポリマー材料を含むラビング処理配向制御層塗布液をフィルムの離型面上に塗布したのち、加熱乾燥等を行ない、ラビング処理前の配向制御層を得る。配向制御層塗布液は架橋剤を有していても良い。 Hereinafter, the method of forming the rubbing orientation control layer will be described. First, a rubbing treatment orientation control layer coating liquid containing the above-mentioned polymer material is applied onto the release surface of the film, and then dried by heating to obtain an orientation control layer before the rubbing treatment. The orientation control layer coating liquid may contain a crosslinking agent.
 ラビング処理配向制御層塗布液の溶剤としては、ポリマー材料を溶解するものであれば制限なく用いることができる。具体例としては、水、メタノール、エタノール、エチレングリコール、イソプロピルアルコール、プロピレングリコール、セロソルブ、などのアルコール;酢酸エチル、酢酸ブチル、ガンマーブチロラクトン、などのエステル系溶剤;アセトン、メチルエチルケトン、シクロペンタノン、シクロヘキサノン、などのケトン系溶剤;トルエン又はキシレンなどの芳香族炭化水素溶剤、;テトラヒドロフラン又はジメトキシエタンなどのエーテル系溶剤などが挙げられる。これら溶剤は、単独で用いてもよいし、組み合わせてもよい。 As the solvent for the rubbing orientation control layer coating liquid, any solvent that dissolves the polymer material can be used without limitation. Specific examples thereof include alcohols such as water, methanol, ethanol, ethylene glycol, isopropyl alcohol, propylene glycol and cellosolve; ester solvents such as ethyl acetate, butyl acetate and gamma-butyrolactone; acetone, methyl ethyl ketone, cyclopentanone, cyclohexanone. , And the like; ketone-based solvents such as; and aromatic hydrocarbon solvents such as toluene and xylene; and ether-based solvents such as tetrahydrofuran and dimethoxyethane. These solvents may be used alone or in combination.
 ラビング処理配向制御層塗布液の濃度は、ポリマーの種類や製造しようとする配向制御層の厚みによって適宜調節できるが、固形分濃度で表して、0.2~20質量%とすることが好ましく、0.3~10質量%の範囲が特に好ましい。塗布する方法としては、グラビアコーティング法、ダイコーティング法、バーコーティング法及びアプリケータ法などの塗布法や、フレキソ法などの印刷法などの公知の方法が採用される。 The concentration of the coating solution for rubbing alignment control layer can be appropriately adjusted depending on the type of polymer and the thickness of the alignment control layer to be produced, but it is preferably 0.2 to 20% by mass in terms of solid content concentration. The range of 0.3 to 10% by mass is particularly preferable. As a coating method, known methods such as a gravure coating method, a die coating method, a bar coating method and an applicator method, and a printing method such as a flexo method are used.
 加熱乾燥温度は30℃~170℃の範囲が好ましく、より好ましくは、50~150℃、さらに好ましくは、70~130℃である。乾燥温度が低い場合は乾燥時間を長く取る必要が生じ、生産性に劣る場合がある。乾燥温度が高すぎる場合、転写用フィルムが熱で伸びたり、熱収縮が大きくなったりし、設計通りの光学機能が達成できなくなったり、平面性が悪くなる場合がある。加熱乾燥時間は例えば0.5~30分であればよく、1~20分がより好ましく、さらには2~10分がより好ましい。 The heating and drying temperature is preferably in the range of 30 ° C to 170 ° C, more preferably 50 to 150 ° C, and further preferably 70 to 130 ° C. When the drying temperature is low, it is necessary to take a long drying time, which may result in poor productivity. When the drying temperature is too high, the transfer film may be elongated by heat or the heat shrinkage may be large, the optical function as designed cannot be achieved, or the flatness may be deteriorated. The heating and drying time may be, for example, 0.5 to 30 minutes, more preferably 1 to 20 minutes, and further preferably 2 to 10 minutes.
 ラビング処理配向制御層の厚さは、0.01~10μmであることが好ましく、さらには0.05~5μm、特には0.1μm~1μmであることが好ましい。 The thickness of the rubbing orientation control layer is preferably 0.01 to 10 μm, more preferably 0.05 to 5 μm, and particularly preferably 0.1 μm to 1 μm.
 次に、ラビング処理を施す。ラビング処理は、一般にはポリマー層の表面を、紙や布で一定方向に擦ることにより実施することができる。一般的には、ナイロン、ポリエステル、アクリルなどの繊維の起毛布のラビングローラーを用い、配向制御層表面をラビング処理する。長尺状のフィルムの長手方向に対して斜めの所定方向に配向する液晶化合物配向制御層を設けるためには配向制御層のラビング方向もそれに合った角度にする必要がある。角度の調整は、ラビングローラーとフィルムとの角度調整、フィルムの搬送速度とローラーの回転数の調整で合わせることができる。 Next, perform rubbing treatment. The rubbing treatment can be generally performed by rubbing the surface of the polymer layer with paper or cloth in a certain direction. Generally, the surface of the orientation control layer is rubbed by using a rubbing roller made of a raised cloth of fibers such as nylon, polyester, and acrylic. In order to provide the liquid crystal compound alignment control layer that aligns in a predetermined direction oblique to the longitudinal direction of the long film, the rubbing direction of the alignment control layer also needs to be at an angle suitable for it. The angle can be adjusted by adjusting the angle between the rubbing roller and the film, and adjusting the transport speed of the film and the rotation speed of the roller.
 なお、転写用フィルムの離型面に直接ラビング処理を行って転写用フィルム表面に配向制御機能を持たせることも可能であり、この場合も本発明の技術範囲に含まれる。 Note that it is also possible to directly rub the release surface of the transfer film to give the surface of the transfer film an orientation control function, and this case is also included in the technical scope of the present invention.
(光配向制御層)
 光配向制御層とは、光反応性基を有するポリマー又はモノマーと溶剤とを含む塗工液をフィルムに塗布し、偏光、好ましくは偏光紫外線を照射することによって配向規制力を付与した配向膜のことをいう。光反応性基とは、光照射により液晶配向能を生じる基をいう。具体的には、光を照射することで生じる分子の配向誘起又は異性化反応、二量化反応、光架橋反応、あるいは光分解反応のような、液晶配向能の起源となる光反応を生じるものである。当該光反応性基の中でも、二量化反応又は光架橋反応を起こすものが、配向性に優れ、液晶化合物配向層のスメクチック液晶状態を保持する点で好ましい。以上のような反応を生じうる光反応性基としては、不飽和結合、特に二重結合であると好ましく、C=C結合、C=N結合、N=N結合、C=O結合からなる群より選ばれる少なくとも一つを有する基が特に好ましい。
(Photo-alignment control layer)
The photo-alignment control layer, a coating solution containing a polymer or monomer having a photoreactive group and a solvent is applied to the film, polarized, preferably of an alignment film that imparts an alignment regulating force by irradiating polarized ultraviolet light. Say that. The photoreactive group refers to a group that produces a liquid crystal aligning ability when irradiated with light. Specifically, it is one that causes a photoreaction that is the origin of the liquid crystal alignment ability, such as an orientation induction or isomerization reaction, a dimerization reaction, a photocrosslinking reaction, or a photodecomposition reaction of a molecule generated by irradiation with light. is there. Among the photoreactive groups, those that cause a dimerization reaction or a photocrosslinking reaction are preferable because they have excellent alignment properties and maintain the smectic liquid crystal state of the liquid crystal compound alignment layer. The photoreactive group capable of causing the above reaction is preferably an unsaturated bond, particularly a double bond, and is a group consisting of a C = C bond, a C = N bond, an N = N bond and a C = O bond. A group having at least one selected from the above is particularly preferable.
 C=C結合を有する光反応性基としては例えば、ビニル基、ポリエン基、スチルベン基、スチルバゾ-ル基、スチルバゾリウム基、カルコン基及びシンナモイル基などが挙げられる。C=N結合を有する光反応性基としては、芳香族シッフ塩基及び芳香族ヒドラゾンなどの構造を有する基が挙げられる。N=N結合を有する光反応性基としては、アゾベンゼン基、アゾナフタレン基、芳香族複素環アゾ基、ビスアゾ基及びホルマザン基などや、アゾキシベンゼンを基本構造とするものが挙げられる。C=O結合を有する光反応性基としては、ベンゾフェノン基、クマリン基、アントラキノン基及びマレイミド基などが挙げられる。これらの基は、アルキル基、アルコキシ基、アリ-ル基、アリルオキシ基、シアノ基、アルコキシカルボニル基、ヒドロキシル基、スルホン酸基及びハロゲン化アルキル基などの置換基を有していてもよい。 Examples of the photoreactive group having a C = C bond include vinyl group, polyene group, stilbene group, stilbazol group, stilbazolium group, chalcone group and cinnamoyl group. Examples of the photoreactive group having a C = N bond include groups having a structure such as an aromatic Schiff base and an aromatic hydrazone. Examples of the photoreactive group having an N = N bond include an azobenzene group, an azonaphthalene group, an aromatic heterocyclic azo group, a bisazo group and a formazan group, and those having an azoxybenzene as a basic structure. Examples of the photoreactive group having a C = O bond include a benzophenone group, a coumarin group, an anthraquinone group and a maleimide group. These groups may have a substituent such as an alkyl group, an alkoxy group, an aryl group, an allyloxy group, a cyano group, an alkoxycarbonyl group, a hydroxyl group, a sulfonic acid group and a halogenated alkyl group.
 中でも、光二量化反応を起こしうる光反応性基が好ましく、シンナモイル基及びカルコン基が、光配向に必要な偏光照射量が比較的少なく、かつ、熱安定性や経時安定性に優れる光配向層が得られやすいため好ましい。さらにいえば、光反応性基を有するポリマーとしては、当該ポリマー側鎖の末端部が桂皮酸構造となるようなシンナモイル基を有するものが特に好ましい。主鎖の構造としては、ポリイミド、ポリアミド、(メタ)アクリル、ポリエステル、等が挙げられる。 Among them, a photoreactive group capable of causing a photodimerization reaction is preferable, a cinnamoyl group and a chalcone group have a relatively small amount of polarized light irradiation necessary for photoalignment, and a photoalignment layer having excellent thermal stability and stability over time. It is preferable because it is easily obtained. Furthermore, as the polymer having a photoreactive group, a polymer having a cinnamoyl group such that the end portion of the polymer side chain has a cinnamic acid structure is particularly preferable. Examples of the main chain structure include polyimide, polyamide, (meth) acrylic, polyester, and the like.
 具体的な配向制御層としては、例えば、特開2006-285197号公報、特開2007-76839号公報、特開2007-138138号公報、特開2007-94071号公報、特開2007-121721号公報、特開2007-140465号公報、特開2007-156439号公報、特開2007-133184号公報、特開2009-109831号公報、特開2002-229039号公報、特開2002-265541号公報、特開2002-317013号公報、特表2003-520878号公報、特表2004-529220号公報、特開2013-33248号公報、特開2015-7702号公報、特開2015-129210号公報に記載の配向制御層が挙げられる。 Specific alignment control layers include, for example, JP-A 2006-285197, JP-A 2007-76839, JP-A 2007-138138, JP-A 2007-94071, and JP-A 2007-121721. , JP-A-2007-140465, JP-A-2007-156439, JP-A-2007-133184, JP-A-2009-109831, JP-A-2002-229039, JP-A-2002-265541, and Alignment described in Japanese Unexamined Patent Publication No. 2002-317013, Special Table 2003-520878, Special Table 2004-529220, JP2013-33248, JP2015-7702, and JP2015-129210. A control layer is included.
 光配向制御層形成用塗工液の溶剤としては、光反応性基を有するポリマー及びモノマーを溶解するものであれば制限なく用いることができる。具体例としてはラビング処理配向制御層の形成方法で挙げたものが例示できる。光配向制御層形成用塗工液には、光重合開始剤、重合禁止剤、各種安定剤を添加することも好ましい。また、光反応性基を有するポリマー及びモノマー以外のポリマーや光反応性基を有するモノマーと共重合可能な光反応性基を有しないモノマーを加えても良い。 The solvent for the photo-alignment control layer forming coating liquid can be used without limitation as long as it dissolves the polymer and monomer having a photoreactive group. Specific examples include those mentioned in the method of forming the rubbing orientation control layer. It is also preferable to add a photopolymerization initiator, a polymerization inhibitor, and various stabilizers to the coating liquid for forming the photo-alignment control layer. Further, a polymer other than the polymer having the photoreactive group and the monomer, or a monomer having no photoreactive group which is copolymerizable with the monomer having the photoreactive group may be added.
 光配向制御層形成用塗工液の濃度、塗布方法、乾燥条件もラビング処理配向制御層の形成方法で挙げたものが例示できる。厚みもラビング処理配向制御層の好ましい厚みと同様である。 The concentration, coating method, and drying conditions of the coating liquid for forming the photo-alignment control layer can be the same as those mentioned in the method for forming the rubbing-alignment control layer. The thickness is the same as the preferable thickness of the rubbing treatment orientation control layer.
 偏光は、配向前の光配向制御層面の方向から照射する方法、転写用フィルム面の方向から転写用フィルムを透過させて照射する方法のいずれもでもよい。 The polarized light may be irradiated either from the direction of the photo-alignment control layer surface before alignment or from the direction of the transfer film surface through the transfer film.
 偏光の波長は、光反応性基を有するポリマー又はモノマーの光反応性基が、光エネルギーを吸収できる波長領域のものが好ましい。具体的には、波長250~400nmの範囲の紫外線が好ましい。偏光の光源としては、キセノンランプ、高圧水銀ランプ、超高圧水銀ランプ、メタルハライドランプ、KrF、ArFなどの紫外光レ-ザ-などが挙げられ、高圧水銀ランプ、超高圧水銀ランプ及びメタルハライドランプが好ましい。 The wavelength of polarized light is preferably in the wavelength range where the photoreactive group of the polymer or monomer having a photoreactive group can absorb light energy. Specifically, ultraviolet rays having a wavelength of 250 to 400 nm are preferable. Examples of polarized light sources include xenon lamps, high-pressure mercury lamps, ultra-high pressure mercury lamps, metal halide lamps, and ultraviolet light lasers such as KrF and ArF. High-pressure mercury lamps, ultra-high-pressure mercury lamps and metal halide lamps are preferable. .
 偏光は、例えば前記光源からの光に偏光子を通過させることにより得られる。前記偏光子の偏光角を調整することにより、偏光の方向を調整することができる。前記偏光子は、偏光フィルターやグラントムソン、グランテ-ラ-等の偏光プリズムやワイヤーグリッドタイプの偏光子が挙げられる。偏光は、実質的に平行光であると好ましい。 Polarized light is obtained, for example, by passing light from the light source through a polarizer. The polarization direction can be adjusted by adjusting the polarization angle of the polarizer. Examples of the polarizer include a polarizing filter, a polarizing prism such as Glan-Thompson and Glan-Teller, and a wire grid type polarizer. The polarized light is preferably substantially collimated light.
 照射する偏光の角度を調整することにより、光配向制御層の配向規制力の方向を任意に調整することができる。 By adjusting the angle of polarized light to be irradiated, the direction of the alignment control force of the photo-alignment control layer can be adjusted arbitrarily.
 照射強度は重合開始剤や樹脂(モノマー)の種類や量で異なるが、例えば365nm基準で10~10000mJ/cmが好ましく、さらには20~5000mJ/cmが好ましい。 The irradiation intensity is different in kind and amount of a polymerization initiator or a resin (monomer), for example, preferably 10 ~ 10000mJ / cm 2 at 365nm reference, and more preferably 20 ~ 5000mJ / cm 2.
(液晶化合物配向層)
 液晶化合物配向層は、液晶化合物が配向されたものであれば特に制限はない。具体的な例としては、液晶化合物と二色性色素を含む偏光膜(偏光子)、棒状やディスコティック液晶化合物を含む位相差層が挙げられる。
(Liquid crystal compound alignment layer)
The liquid crystal compound alignment layer is not particularly limited as long as the liquid crystal compound is aligned. Specific examples include a polarizing film (polarizer) containing a liquid crystal compound and a dichroic dye, and a retardation layer containing a rod-shaped or discotic liquid crystal compound.
(偏光膜)
 偏光膜は一方向のみの偏光を通過させる機能を有し、二色性色素を含む。
(Polarizing film)
The polarizing film has a function of passing polarized light in only one direction and contains a dichroic dye.
(二色性色素)
 二色性色素とは、分子の長軸方向における吸光度と、短軸方向における吸光度とが異なる性質を有する色素をいう。
(Dichroic dye)
The dichroic dye is a dye having a property that the absorbance in the long axis direction of the molecule and the absorbance in the short axis direction of the molecule are different.
 二色性色素は、300~700nmの範囲に吸収極大波長(λMAX)を有するものが好ましい。このような二色性色素は、例えば、アクリジン色素、オキサジン色素、シアニン色素、ナフタレン色素、アゾ色素及びアントラキノン色素などが挙げられるが、中でもアゾ色素が好ましい。アゾ色素は、モノアゾ色素、ビスアゾ色素、トリスアゾ色素、テトラキスアゾ色素及びスチルベンアゾ色素などが挙げられ、好ましくはビスアゾ色素及びトリスアゾ色素である。二色性色素は単独でも、組み合わせても良いが、色調を調整(無彩色)にするため、2種以上を組み合わせることが好ましい。特には3種類以上を組み合わせるのが好ましい。特に、3種類以上のアゾ化合物を組み合わせるのが好ましい。 The dichroic dye preferably has an absorption maximum wavelength (λMAX) in the range of 300 to 700 nm. Examples of such a dichroic dye include an acridine dye, an oxazine dye, a cyanine dye, a naphthalene dye, an azo dye and an anthraquinone dye, and among them, an azo dye is preferable. Examples of the azo dye include a monoazo dye, a bisazo dye, a trisazo dye, a tetrakisazo dye and a stilbeneazo dye, and a bisazo dye and a trisazo dye are preferable. The dichroic dyes may be used alone or in combination, but it is preferable to combine two or more kinds in order to adjust the color tone (achromatic color). Particularly, it is preferable to combine three or more kinds. In particular, it is preferable to combine three or more kinds of azo compounds.
 好ましいアゾ化合物としては、特開2007-126628号公報、特開2010-168570号、特開2013-101328号、特開2013-210624号に記載の色素が挙げられる。 Preferred azo compounds include dyes described in JP-A 2007-126628, 2010-168570, 2013-101328, and 2013-210624.
 二色性色素はアクリルなどのポリマーの側鎖に導入された二色性色素ポリマーであることも好ましい。これら二色性色素ポリマーとしては特開2016-4055号で挙げられるポリマー、特開2014-206682号の[化6]~[化12]の化合物が重合されたポリマーが例示できる。 It is also preferable that the dichroic dye is a dichroic dye polymer introduced into the side chain of a polymer such as acrylic. Examples of these dichroic dye polymers include polymers described in JP-A-2016-4055 and polymers obtained by polymerizing the compounds of [Chemical formula 6] to [Chemical formula 12] in JP-A-2014-206682.
 偏光膜中の二色性色素の含有量は、二色性色素の配向を良好にする観点から、偏光膜中、0.1~30質量%が好ましく、0.5~20質量%がより好ましく、1.0~15質量%がさらに好ましく、2.0~10質量%が特に好ましい。 The content of the dichroic dye in the polarizing film is preferably 0.1 to 30% by mass, more preferably 0.5 to 20% by mass, from the viewpoint of improving the orientation of the dichroic dye. , 1.0 to 15 mass% is more preferable, and 2.0 to 10 mass% is particularly preferable.
 偏光膜には、膜強度や偏光度、膜均質性の向上のため、さらに重合性液晶化合物が含まれていることが好ましい。なお、ここで重合性液晶化合物は膜として重合後の物も含まれる。 The polarizing film preferably further contains a polymerizable liquid crystal compound in order to improve film strength, polarization degree and film homogeneity. Here, the polymerizable liquid crystal compound also includes a substance after polymerization as a film.
(重合性液晶化合物)
 重合性液晶化合物とは、重合性基を有し、かつ、液晶性を示す化合物である。
 重合性基とは、重合反応に関与する基を意味し、光重合性基であることが好ましい。ここで、光重合性基とは、後述する光重合開始剤から発生した活性ラジカルや酸などによって重合反応し得る基のことをいう。重合性基としては、ビニル基、ビニルオキシ基、1-クロロビニル基、イソプロペニル基、4-ビニルフェニル基、アクリロイルオキシ基、メタクリロイルオキシ基、オキシラニル基、オキセタニル基等が挙げられる。中でも、アクリロイルオキシ基、メタクリロイルオキシ基、ビニルオキシ基、オキシラニル基及びオキセタニル基が好ましく、アクリロイルオキシ基がより好ましい。液晶性を示す化合物は、サーモトロピック性液晶でもリオトロピック液晶でもよく、また、サーモトロピック液晶における、ネマチック液晶でもスメクチック液晶でもよい。
(Polymerizable liquid crystal compound)
The polymerizable liquid crystal compound is a compound having a polymerizable group and exhibiting liquid crystallinity.
The polymerizable group means a group that participates in the polymerization reaction, and is preferably a photopolymerizable group. Here, the photopolymerizable group refers to a group capable of undergoing a polymerization reaction with an active radical or an acid generated from a photopolymerization initiator described later. Examples of the polymerizable group include vinyl group, vinyloxy group, 1-chlorovinyl group, isopropenyl group, 4-vinylphenyl group, acryloyloxy group, methacryloyloxy group, oxiranyl group and oxetanyl group. Among them, an acryloyloxy group, a methacryloyloxy group, a vinyloxy group, an oxiranyl group and an oxetanyl group are preferable, and an acryloyloxy group is more preferable. The compound exhibiting liquid crystallinity may be a thermotropic liquid crystal or a lyotropic liquid crystal, and may be a nematic liquid crystal or a smectic liquid crystal in the thermotropic liquid crystal.
 重合性液晶化合物は、より高い偏光特性が得られるという点でスメクチック液晶化合物が好ましく、高次スメクチック液晶化合物がより好ましい。重合性液晶化合物が形成する液晶相が高次スメクチック相であると、配向秩序度のより高い偏光膜を製造することができる。 The polymerizable liquid crystal compound is preferably a smectic liquid crystal compound, and more preferably a high-order smectic liquid crystal compound, in that higher polarization characteristics can be obtained. When the liquid crystal phase formed by the polymerizable liquid crystal compound is a higher order smectic phase, a polarizing film having a higher degree of orientational order can be manufactured.
 具体的な好ましい重合性液晶化合物としては、例えば、特開2002-308832号公報、特開2007-16207号公報、特開2015-163596号公報、特表2007-510946号公報、特開2013-114131号公報、WO2005/045485号公報、Lub et al.Recl.Trav.Chim.Pays-Bas,115,321-328(1996)などに記載のものが挙げられる。 Specific preferred polymerizable liquid crystal compounds include, for example, JP-A-2002-308832, JP-A-2007-16207, JP-A-2015-163596, JP-A-2007-510946, and JP-A-2013-114131. Publication, WO 2005/045485, Lub et al. Recl. Trav. Chim. Examples include those described in Pays-Bas, 115, 321-328 (1996) and the like.
 偏光膜中の重合性液晶化合物の含有割合は、重合性液晶化合物の配向性を高くするという観点から、偏光膜中70~99.5質量%が好ましく、より好ましくは75~99質量%、さらに好ましくは80~97質量%であり、特に好ましくは83~95質量%である。 The content ratio of the polymerizable liquid crystal compound in the polarizing film is preferably 70 to 99.5% by mass, more preferably 75 to 99% by mass, further from the viewpoint of increasing the orientation of the polymerizable liquid crystal compound. It is preferably 80 to 97% by mass, and particularly preferably 83 to 95% by mass.
 偏光膜は偏光膜組成物塗料を塗工して設けることができる。偏光膜組成物塗料は、溶剤、重合開始剤、増感剤、重合禁止剤、レベリング剤及び、重合性非液晶化合物、架橋剤等を含んでもよい。 The polarizing film can be provided by applying a coating composition for the polarizing film. The polarizing film composition coating material may contain a solvent, a polymerization initiator, a sensitizer, a polymerization inhibitor, a leveling agent, a polymerizable non-liquid crystal compound, a crosslinking agent and the like.
 溶剤としては、配向層塗布液の溶剤として挙げたものが好ましく用いられる。 As the solvent, those mentioned as the solvent for the alignment layer coating solution are preferably used.
 重合開始剤は、重合性液晶化合物を重合させるものであれば限定はされないが、光により活性ラジカルを発生する光重合開始剤が好ましい。重合開始剤としては、例えばベンゾイン化合物、ベンゾフェノン化合物、アルキルフェノン化合物、アシルホスフィンオキサイド化合物、トリアジン化合物、ヨードニウム塩及びスルホニウム塩などが挙げられる。 The polymerization initiator is not limited as long as it polymerizes the polymerizable liquid crystal compound, but a photopolymerization initiator that generates an active radical by light is preferable. Examples of the polymerization initiator include benzoin compounds, benzophenone compounds, alkylphenone compounds, acylphosphine oxide compounds, triazine compounds, iodonium salts and sulfonium salts.
 増感剤は光増感剤が好ましい。例えば、キサントン化合物、アントラセン化合物、フェノチアジン、ルブレン等が挙げられる。 The photosensitizer is preferable as the sensitizer. For example, a xanthone compound, an anthracene compound, phenothiazine, rubrene, etc. are mentioned.
 重合禁止剤としては、ハイドロキノン類、カテコール類、チオフェノール類が挙げられる。 Examples of polymerization inhibitors include hydroquinones, catechols, and thiophenols.
 重合性非液晶化合物としては、重合性液晶化合物と共重合するものが好ましく、例えば、重合性液晶化合物が(メタ)アクリロイルオキシ基を有する場合は(メタ)クレート類が挙げられる。(メタ)クリレート類は単官能であっても多官能であっても良い。多官能の(メタ)アクリレート類を用いることで、偏光膜の強度を向上させることができる。重合性非液晶化合物を用いる場合は偏光膜中に1~15質量%とすることが好ましく、さらには2~10質量%、特には3~7質量%にすることが好ましい。15質量%を越えると偏光度が低下することがある。 As the polymerizable non-liquid crystal compound, those which are copolymerizable with the polymerizable liquid crystal compound are preferable, and for example, when the polymerizable liquid crystal compound has a (meth) acryloyloxy group, (meth) crates can be mentioned. The (meth) acrylates may be monofunctional or polyfunctional. By using polyfunctional (meth) acrylates, the strength of the polarizing film can be improved. When a polymerizable non-liquid crystal compound is used, it is preferably contained in the polarizing film in an amount of 1 to 15% by mass, more preferably 2 to 10% by mass, and particularly preferably 3 to 7% by mass. If it exceeds 15% by mass, the degree of polarization may decrease.
 架橋剤としては、重合性液晶化合物、重合性非液晶化合物の官能基と反応しうる化合物が挙げられ、イソシアネート化合物、メラミン、エポキシ樹脂、オキサゾリン化合物などが挙げられる。 Examples of the cross-linking agent include compounds capable of reacting with a functional group of a polymerizable liquid crystal compound and a polymerizable non-liquid crystal compound, such as an isocyanate compound, melamine, an epoxy resin and an oxazoline compound.
 偏光膜組成物塗料を転写用フィルム上または配向制御層上に直接塗工後、必要により乾燥、加熱、硬化することにより、偏光膜が設けられる。 A polarizing film is provided by directly applying a coating composition for a polarizing film on a transfer film or an orientation control layer, and then drying, heating, and curing if necessary.
 塗工方法としては、塗布する方法としては、グラビアコーティング法、ダイコーティング法、バーコーティング法及びアプリケータ法などの塗布法や、フレキソ法などの印刷法などの公知の方法が採用される。 As the coating method, known methods such as a gravure coating method, a die coating method, a bar coating method and an applicator method, and a printing method such as a flexo method are used as the coating method.
 塗工後の転写用フィルムは温風乾燥機、赤外線乾燥機などに導かれ、30~170℃、より好ましくは50~150℃、さらに好ましくは70~130℃で乾燥される。乾燥時間は0.5~30分が好ましく、1~20分がより好ましく、さらには2~10分がより好ましい。 The transfer film after coating is introduced into a warm air dryer, an infrared dryer or the like, and dried at 30 to 170 ° C, more preferably 50 to 150 ° C, further preferably 70 to 130 ° C. The drying time is preferably 0.5 to 30 minutes, more preferably 1 to 20 minutes, and even more preferably 2 to 10 minutes.
 加熱は、偏光膜中の二色性色素および重合性液晶化合物をより強固に配向させるために行うことができる。加熱温度は、重合性液晶化合物が液晶相を形成する温度範囲にすることが好ましい。 Heating can be performed to more strongly align the dichroic dye and the polymerizable liquid crystal compound in the polarizing film. The heating temperature is preferably in the temperature range in which the polymerizable liquid crystal compound forms a liquid crystal phase.
 偏光膜組成物塗料に重合性液晶化合物が含まれる場合は、硬化するのが好ましい。硬化方法としては、加熱及び光照射が挙げられ、光照射が好ましい。硬化により二色性色素を配向した状態で固定することができる。硬化は、重合性液晶化合物に液晶相を形成させた状態で行うのが好ましく、液晶相を示す温度で光照射して硬化してもよい。光照射における光としては、可視光、紫外光及びレーザー光が挙げられる。取り扱いやすい点で、紫外光が好ましい。 When the coating composition for the polarizing film contains a polymerizable liquid crystal compound, it is preferably cured. Examples of the curing method include heating and light irradiation, and light irradiation is preferable. By curing, the dichroic dye can be fixed in the oriented state. The curing is preferably performed in a state where a liquid crystal phase is formed in the polymerizable liquid crystal compound, and may be cured by irradiation with light at a temperature showing the liquid crystal phase. Examples of the light in the light irradiation include visible light, ultraviolet light and laser light. From the viewpoint of easy handling, ultraviolet light is preferable.
 照射強度は重合開始剤や樹脂(モノマー)の種類や量で異なるが、例えば365nm基準で100~10000mJ/cmが好ましく、さらには200~5000mJ/cmが好ましい。 The irradiation intensity is different in kind and amount of a polymerization initiator or a resin (monomer), for example, preferably 100 ~ 10000mJ / cm 2 at 365nm reference, more preferably 200 ~ 5000mJ / cm 2.
 偏光膜は、偏光膜組成物塗料を配向制御層上に塗布することで、色素が配向層の配向方向に添って配向し、その結果、所定方向の偏光透過軸を有することになるが、配向制御層を設けず直接転写用フィルムに塗工した場合は、偏光光を照射して偏光膜形成用組成物を硬化させることで、偏光膜を配向させることもできる。この際には、転写用フィルムの長尺方向に対して所望の方向の偏光光(例えば、斜め方向の偏光光)を照射する。さらにその後加熱処理することで二色性色素を強固に高分子液晶の配向方向に添って配向させることが好ましい。 Polarizing film, by coating a polarizing film composition coating on the orientation control layer, the dye is oriented along the orientation direction of the orientation layer, as a result, it has a polarization transmission axis of a predetermined direction, When the transfer film is directly coated without providing the control layer, the polarizing film can be oriented by irradiating polarized light to cure the polarizing film forming composition. At this time, polarized light in a desired direction (for example, polarized light in an oblique direction) is applied to the lengthwise direction of the transfer film. Further, it is preferable that the dichroic dye is strongly aligned along the alignment direction of the polymer liquid crystal by further heat treatment thereafter.
 偏光膜の厚さは、0.1~5μmであり、好ましくは0.3~3μm、より好ましくは0.5~2μmである。 The thickness of the polarizing film is 0.1 to 5 μm, preferably 0.3 to 3 μm, more preferably 0.5 to 2 μm.
(位相差層)
 位相差層は液晶表示装置の偏光子と液晶セルの間に光学補償のために設けられるものや、円偏光板のλ/4層、λ/2層等が代表的なものとして挙げられる。液晶化合物としては、生や負のAプレート、正や負のCプレート、Oプレートなど、目的に合わせて棒状液晶化合物やディスコティック液晶化合物などを使用することができる。
(Retardation layer)
Representative examples of the retardation layer include a layer provided for optical compensation between a polarizer of a liquid crystal display device and a liquid crystal cell, and a λ / 4 layer and a λ / 2 layer of a circularly polarizing plate. As the liquid crystal compound, a raw or negative A plate, a positive or negative C plate, an O plate, or the like, and a rod-shaped liquid crystal compound, a discotic liquid crystal compound, or the like can be used depending on the purpose.
 位相差の程度は、液晶表示装置の光学補償として用いられる場合は、液晶セルのタイプ、セルに用いられる液晶化合物の性質により適宜設定される。例えば、TN方式の場合はディスコティック液晶を用いたOプレートが好ましく用いられる。VA方式やIPS方式の場合、棒状液晶化合物やディスコティック液晶化合物を用いたCプレートやAプレートが好ましく用いられる。また、円偏光板のλ/4位相差層、λ/2位相差層の場合は、棒状化合物を用いて、Aプレートとすることが好ましく用いられる。これらの位相差層は単層だけでなく、組み合わせて複数の層にして用いられても良い。 The degree of retardation is appropriately set depending on the type of liquid crystal cell and the properties of the liquid crystal compound used in the cell when used for optical compensation of a liquid crystal display device. For example, in the case of the TN method, an O plate using discotic liquid crystal is preferably used. In the case of the VA system or the IPS system, a C plate or A plate using a rod-shaped liquid crystal compound or a discotic liquid crystal compound is preferably used. In the case of a λ / 4 retardation layer or a λ / 2 retardation layer of a circularly polarizing plate, it is preferable to use a rod-shaped compound to form an A plate. These retardation layers may be used not only as a single layer but also as a plurality of layers in combination.
 これらの位相差層に用いられる液晶化合物としては、配向状態を固定できるという面で、二重結合などの重合性基を持つ重合性液晶化合物であることが好ましい。 The liquid crystal compound used for these retardation layers is preferably a polymerizable liquid crystal compound having a polymerizable group such as a double bond from the viewpoint that the alignment state can be fixed.
 棒状液晶化合物の例としては、特開2002-030042号公報、特開2004-204190号公報、特開2005-263789号公報、特開2007-119415号公報、特開2007-186430号公報、及び特開平11-513360号公報に記載された重合性基を有する棒状液晶化合物が挙げられる。
 具体的な化合物としては、
CH=CHCOO-(CH)m-O-Ph1-COO-Ph2-OCO-Ph1-O-(CH)n-OCO-CH=CH
CH=CHCOO-(CH)m-O-Ph1-COO-NPh-OCO-Ph1-O-(CH)n-OCO-CH=CH
CH=CHCOO-(CH)m-O-Ph1-COO-Ph2-OCH
CH=CHCOO-(CH)m-O-Ph1-COO-Ph1-Ph1-CHCH(CH)C
 式中、m、nは2~6の整数であり、
 Ph1、Ph2は1,4-フェニル基(Ph2は2位がメチル基であっても良い)であり、
 NPhは2,6-ナフチル基である
が挙げられる。
 これらの棒状液晶化合物は、BASF社製からLC242等として市販されており、それらを利用することができる。
Examples of rod-shaped liquid crystal compounds include JP-A-2002-030042, JP-A-2004-204190, JP-A-2005-263789, JP-A-2007-119415, JP-A-2007-186430, and Examples thereof include rod-like liquid crystal compounds having a polymerizable group described in Kaihei 11-513360.
Specific compounds include:
CH 2 = CHCOO- (CH 2 ) m-O-Ph1-COO-Ph2-OCO-Ph1-O- (CH 2 ) n-OCO-CH = CH 2
CH 2 = CHCOO- (CH 2 ) m-O-Ph1-COO-NPh-OCO-Ph1-O- (CH 2 ) n-OCO-CH = CH 2
CH 2 = CHCOO- (CH 2 ) m-O-Ph1-COO-Ph2-OCH 3
CH 2 = CHCOO- (CH 2 ) m-O-Ph1-COO-Ph1-Ph1-CH 2 CH (CH 3 ) C 2 H 5
In the formula, m and n are integers of 2 to 6,
Ph1 and Ph2 are 1,4-phenyl groups (Ph2 may be a methyl group at the 2-position),
Examples of NPh include 2,6-naphthyl group.
These rod-shaped liquid crystal compounds are commercially available from BASF Corporation as LC242 and the like, and they can be used.
 これらの棒状液晶化合物は複数種を任意の比率で組み合わせて用いてもよい。 -A plurality of these rod-shaped liquid crystal compounds may be used in combination at an arbitrary ratio.
 また、ディスコティック液晶化合物としては、ベンゼン誘導体、トルキセン誘導体、シクロヘキサン誘導体、アザクラウン系、フェニルアセチレン系マクロサイクル等が挙げられ、特開2001-155866号公報に様々なものが記載されており、これらが好適に用いられる。
 中でもディスコティック化合物としては、下記一般式(1)で表されるトリフェニレン環を有する化合物が好ましく用いられる。
Figure JPOXMLDOC01-appb-I000001
 式中、R~Rはそれぞれ独立して水素、ハロゲン、アルキル基、又は-O-Xで示される基(ここで、Xは、Xはアルキル基、アシル基、アルコキシベンジル基、エポキシ変性アルコキシベンジル基、アクリロイルオキシ変性アルコキシベンジル基、アクリロイルオキシ変性アルキル基である)である。R~Rは、下記一般式(2)で表されるアクリロイルオキシ変性アルコキシベンジル基(ここで、mは4~10)であることが好ましい。
Figure JPOXMLDOC01-appb-I000002
Examples of the discotic liquid crystal compound include benzene derivatives, truxene derivatives, cyclohexane derivatives, azacrown-based and phenylacetylene-based macrocycles, and various compounds are described in JP-A-2001-155866. Is preferably used.
Among them, a compound having a triphenylene ring represented by the following general formula (1) is preferably used as the discotic compound.
Figure JPOXMLDOC01-appb-I000001
In the formula, R 1 to R 6 are each independently hydrogen, halogen, an alkyl group, or a group represented by —O—X (where X is an alkyl group, an acyl group, an alkoxybenzyl group, an epoxy-modified group). An alkoxybenzyl group, an acryloyloxy-modified alkoxybenzyl group, and an acryloyloxy-modified alkyl group). R 1 to R 6 are preferably an acryloyloxy-modified alkoxybenzyl group represented by the following general formula (2) (where m is 4 to 10).
Figure JPOXMLDOC01-appb-I000002
 位相差層は位相差層用組成物塗料を塗工して設けることができる。位相差層用組成物塗料は、溶剤、重合開始剤、増感剤、重合禁止剤、レベリング剤及び、重合性非液晶化合物、架橋剤等を含んでもよい。これらは、配向制御層や液晶偏光子の部分で説明した物を用いることができる。 The retardation layer can be provided by applying the composition coating for the retardation layer. The retardation layer composition coating material may contain a solvent, a polymerization initiator, a sensitizer, a polymerization inhibitor, a leveling agent, a polymerizable non-liquid crystal compound, a crosslinking agent and the like. As these, those described in the alignment control layer and the liquid crystal polarizer can be used.
 位相差層用組成物塗料を転写用フィルムの離型面または配向制御層上に塗工後、乾燥、加熱、硬化することにより、位相差層が設けられる。 The retardation layer is provided by applying the composition coating for the retardation layer on the release surface of the transfer film or the orientation control layer, followed by drying, heating and curing.
 これらの条件も配向制御層や液晶偏光子の部分で説明した条件が好ましい条件として用いられる。 Regarding these conditions, the conditions explained in the orientation control layer and the liquid crystal polarizer are used as preferable conditions.
 位相差層は複数設けられることがあるが、この場合、1つの転写用フィルム上に複数の位相差層を設けてこれを対象物に転写しても良く、1つの転写用フィルム上に単一の位相差層を設けたものを複数種用意してこれらを対象物に順に転写しても良い。 A plurality of retardation layers may be provided. In this case, a plurality of retardation layers may be provided on one transfer film and transferred onto an object, and a single retardation layer may be provided on one transfer film. It is also possible to prepare a plurality of types provided with the retardation layer and to transfer these in order to the object.
 また、偏光層と位相差層を1つの転写用フィルム上に設け、これを対象物に転写しても良い。さらに、偏光子と位相差層の間に保護層を設けたり、位相差層の上や位相差層の間に保護層を設ける場合がある。これらの保護層も位相差層や偏光層と共に転写用フィルム上に設けて対象物に転写しても良い。 Alternatively, the polarizing layer and the retardation layer may be provided on a single transfer film and transferred to an object. Further, a protective layer may be provided between the polarizer and the retardation layer, or a protective layer may be provided on the retardation layer or between the retardation layers. These protective layers may also be provided on the transfer film together with the retardation layer or the polarizing layer and transferred to the object.
 保護層としては透明樹脂の塗工層が挙げられる。透明樹脂としては、ポリビニルアルコール、エチレンビニルアルコール共重合体、ポリエステル、ポリウレタン、ポリアミド、ポリスチレン、アクリル樹脂、エポキシ樹脂など特に限定するものではない。これら樹脂に架橋剤を加えて架橋構造としても良い。また、ハードコートのようなアクリルなどの光硬化性の組成物を硬化させたものであっても良い。また、保護層を転写用フィルム上に設けた後、保護層をラビング処理し、その上に配向層を設けることなく液晶化合物配向層を設けても良い。 A transparent resin coating layer may be used as the protective layer. The transparent resin is not particularly limited, such as polyvinyl alcohol, ethylene vinyl alcohol copolymer, polyester, polyurethane, polyamide, polystyrene, acrylic resin and epoxy resin. A cross-linking structure may be formed by adding a cross-linking agent to these resins. Further, it may be one obtained by curing a photocurable composition such as acrylic as a hard coat. Further, after the protective layer is provided on the transfer film, the protective layer may be rubbed, and the liquid crystal compound alignment layer may be provided thereon without providing the alignment layer.
(液晶化合物配向層積層偏光板の製造方法)
 次に、本発明の液晶化合物配向層積層偏光板の製造方法について説明する。
 本発明の液晶化合物配向層積層偏光板の製造方法は、偏光板と本発明の液晶化合物配向層転写用積層体の液晶化合物配向層面とを貼り合わせて中間積層体を形成する工程、及び中間積層体から転写用フィルムを剥離する工程を含む。
 以下、液晶化合物配向層が円偏光板に用いられる液晶化合物配向層である場合を例として説明する。円偏光板の場合、位相差層(転写用積層体中では、液晶化合物配向層と称される)としてはλ/4層が用いられる。λ/4層の正面レタデーションは100~180nmが好ましい。さらに好ましくは120~150nmである。円偏光板としてλ/4層のみを用いる場合、λ/4層の配向軸(遅相軸)と偏光子の透過軸は35~55度が好ましく、より好ましくは40度~50度、さらに好ましくは42~48度である。ポリビニルアルコールの延伸フィルムの偏光子と組み合わせて用いる場合には、偏光子の吸収軸が長尺偏光子フィルムの長さ方向となることが一般的であるため、長尺の転写用フィルムにλ/4層を設ける場合は長尺の転写用フィルムの長さ方向に対して上記範囲となるように液晶化合物を配向させることが好ましい。なお、偏光子の透過軸の角度が上記と異なる場合は偏光子の透過軸の角度を加味して上記関係になるよう液晶化合物を配向させる。
(Method for producing polarizing plate with laminated liquid crystal compound alignment layer)
Next, a method of manufacturing the liquid crystal compound alignment layer laminated polarizing plate of the present invention will be described.
The method for producing a liquid crystal compound alignment layer laminated polarizing plate of the present invention includes a step of laminating a liquid crystal compound alignment layer surface of the liquid crystal compound alignment layer transfer laminate of the present invention to form an intermediate laminate, and an intermediate laminate. The step of peeling the transfer film from the body is included.
Hereinafter, the case where the liquid crystal compound alignment layer is the liquid crystal compound alignment layer used for the circularly polarizing plate will be described as an example. In the case of a circularly polarizing plate, a λ / 4 layer is used as the retardation layer (referred to as a liquid crystal compound alignment layer in the transfer laminate). The front retardation of the λ / 4 layer is preferably 100 to 180 nm. More preferably, it is 120 to 150 nm. When only the λ / 4 layer is used as the circularly polarizing plate, the orientation axis (slow axis) of the λ / 4 layer and the transmission axis of the polarizer are preferably 35 to 55 degrees, more preferably 40 degrees to 50 degrees, and further preferably Is 42 to 48 degrees. When used in combination with a polarizer of a stretched film of polyvinyl alcohol, since the absorption axis of the polarizer is generally in the length direction of the long polarizer film, λ / When four layers are provided, it is preferable to orient the liquid crystal compound within the above range with respect to the length direction of the long transfer film. When the angle of the transmission axis of the polarizer is different from the above, the liquid crystal compound is oriented so as to have the above relationship by taking the angle of the transmission axis of the polarizer into consideration.
 λ/4層と転写用フィルムが積層された転写用積層体中のλ/4層を偏光板に転写することで円偏光板を作成する。具体的には、偏光板と転写用積層体のλ/4層面を貼り合わせて中間積層体を形成し、この中間積層体から転写用フィルムを剥離する。偏光板は偏光子の両面に保護フィルムが設けられているものでも良いが、片面のみに保護フィルムが設けられているものが好ましい。片面のみに保護フィルムが設けられている偏光板であれば、保護フィルムの反対面(偏光子面)に位相差層を貼り合わせることが好ましい。両面に保護フィルムが設けられているのであれば位相差層は画像セル側を想定している面に貼り合わせることが好ましい。画像セル側を想定している面とは、低反射層、反射防止層、防眩層など一般的に視認側に設けられる表面加工がされていない面である。位相差層が貼り合わされる側の保護フィルムはTAC、アクリル、COPなどで位相差のない保護フィルムであることが好ましい。 Create a circularly polarizing plate by transferring the λ / 4 layer in the transfer laminate in which the λ / 4 layer and the transfer film are laminated to the polarizing plate. Specifically, the polarizing plate and the λ / 4 layer surface of the transfer laminate are bonded together to form an intermediate laminate, and the transfer film is peeled from the intermediate laminate. The polarizing plate may have a protective film provided on both sides of the polarizer, but preferably has a protective film provided on only one side. In the case of a polarizing plate in which a protective film is provided only on one surface, it is preferable to attach a retardation layer to the opposite surface (polarizer surface) of the protective film. If protective films are provided on both sides, it is preferable that the retardation layer is attached to the side that is supposed to be on the image cell side. The surface that is assumed to be on the image cell side is a surface that is not generally surface-treated such as a low reflection layer, an antireflection layer, and an antiglare layer, which is provided on the viewing side. The protective film on the side to which the retardation layer is attached is preferably a protective film such as TAC, acrylic, or COP having no retardation.
 偏光子としてはPVA系のフィルムを単独で延伸して作成した偏光子や、ポリエステルやポリプロピレンなどの未延伸基材にPVAを塗工し、基材ごと延伸して作成した偏光子を偏光子保護フィルムに転写したものや、液晶化合物と二色性色素からなる偏光子を偏光子保護フィルムに塗工するか転写したもの等が挙げられ、いずれも好ましく用いられる。 As the polarizer, a PVA-based film alone is stretched to form a polarizer, or an unstretched substrate such as polyester or polypropylene is coated with PVA, and the polarizer is stretched to protect the polarizer. Examples thereof include those transferred to a film and those obtained by coating or transferring a polarizer comprising a liquid crystal compound and a dichroic dye on a polarizer protective film, and any of them is preferably used.
 貼り付ける方法としては、接着剤、粘着剤など従来知られているものを用いることができる。接着剤としてはポリビニルアルコール系接着剤、アクリルやエポキシなどの紫外線硬化型接着剤、エポキシやイソシアネート(ウレタン)などの熱硬化型接着剤が好ましく用いられる。粘着剤は、アクリルやウレタン系、ゴム系などの粘着剤が挙げられる。また、アクリル系の基材レスの光学用透明粘着剤シートを用いることも好ましい。 As a method of pasting, a conventionally known one such as an adhesive or an adhesive can be used. As the adhesive, a polyvinyl alcohol adhesive, an ultraviolet curable adhesive such as acrylic or epoxy, or a thermosetting adhesive such as epoxy or isocyanate (urethane) is preferably used. Examples of the adhesive include acrylic, urethane-based and rubber-based adhesives. It is also preferable to use an acrylic baseless transparent optical pressure-sensitive adhesive sheet.
 偏光子として転写型のものを用いる場合、転写用積層体の位相差層(液晶化合物配向層)上に偏光子を転写し、その後、偏光子と位相差層を対象物(偏光子保護フィルム)に転写しても良い。 When a transfer type is used as the polarizer, the polarizer is transferred onto the retardation layer (liquid crystal compound alignment layer) of the transfer laminate, and then the polarizer and the retardation layer are targeted (polarizer protective film). It may be transferred to.
 位相差層を設ける側と反対側の偏光子保護フィルムとしてはTAC、アクリル、COP、ポリカーボネート、ポリエステルなど一般に知られているものが使用できる。中でもTAC、アクリル、COP、ポリエステルが好ましい。ポリエステルはポリエチレンテレフタレートが好ましい。ポリエステルの場合は、面内レタデーション100nm以下、特には50nm以下のゼロレタデーションフィルムであるか、3000nm~30000nmの高レタデーションフィルムであることが好ましい。 As the polarizer protective film on the side opposite to the side where the retardation layer is provided, commonly known ones such as TAC, acrylic, COP, polycarbonate, polyester can be used. Among them, TAC, acrylic, COP and polyester are preferable. The polyester is preferably polyethylene terephthalate. In the case of polyester, a zero retardation film having an in-plane retardation of 100 nm or less, particularly 50 nm or less, or a high retardation film of 3000 nm to 30,000 nm is preferable.
 ポリエステルの高レタデーションフィルムを用いる場合、偏光サングラスをかけて画像を見た場合のブラックアウトや着色を防止する目的では、偏光子の透過軸とポリエステルの高レタデーションフィルムの遅相軸の角度は30~60度の範囲が好ましく、さらには35~55度の範囲が好ましい。裸眼で角度の浅い斜め方向から観察した場合の虹斑などの低減のためには、偏光子の透過軸とポリエステルの高レタデーションフィルムの遅相軸の角度は10度以下、さらには7度以下にするか、もしくは80~100度、さらには83~97度にすることが好ましい。 When a polyester high retardation film is used, the angle between the transmission axis of the polarizer and the slow axis of the polyester high retardation film is 30 to 30 mm in order to prevent blackout and coloring when viewing the image with polarized sunglasses. The range of 60 degrees is preferable, and the range of 35 to 55 degrees is more preferable. The angle between the transmission axis of the polarizer and the slow axis of the polyester high retardation film should be 10 degrees or less, and even 7 degrees or less, in order to reduce rainbow spots when observed from a shallow angle with the naked eye. Alternatively, it is preferably 80 to 100 degrees, more preferably 83 to 97 degrees.
 反対側の偏光子保護フィルムには、防眩層、反射防止層、低反射層、ハードコート層などが設けられていても良い。 -The polarizer protective film on the opposite side may be provided with an antiglare layer, an antireflection layer, a low reflection layer, a hard coat layer and the like.
(複合位相差層)
 λ/4層単独では可視光領域の広い範囲に渡ってλ/4とならずに着色が生じることがある。そのため、λ/4層がλ/2層と組み合わせて用いられる場合がある。λ/2層の正面レタデーションは200~360nmが好ましい。さらに好ましくは240~300nmである。
(Composite retardation layer)
When the λ / 4 layer alone is used, coloring may occur over a wide range of the visible light region without being λ / 4. Therefore, the λ / 4 layer may be used in combination with the λ / 2 layer. The front retardation of the λ / 2 layer is preferably 200 to 360 nm. More preferably, it is 240 to 300 nm.
 この場合、λ/4層とλ/2層を合わせてλ/4となるような角度に配置されることが好ましい。具体的には、λ/2層の配向軸(遅相軸)と偏光子の透過軸の角度(θ)は5~20度が好ましく、より好ましくは7度~17度である。λ/2層の配向軸(遅相軸)とλ/4の配向軸(遅相軸)との角度は、2θ+45度±10度の範囲が好ましく、より好ましくは2θ+45度±5度の範囲であり、さらに好ましくは2θ+45度±3度の範囲である。 In this case, it is preferable to arrange the λ / 4 layer and the λ / 2 layer at an angle such that the λ / 4 layer is λ / 4. Specifically, the angle (θ) between the orientation axis (slow axis) of the λ / 2 layer and the transmission axis of the polarizer is preferably 5 to 20 degrees, more preferably 7 to 17 degrees. The angle between the orientation axis (slow axis) of the λ / 2 layer and the orientation axis of λ / 4 (slow axis) is preferably 2θ + 45 ° ± 10 °, more preferably 2θ + 45 ° ± 5 °. Yes, and more preferably within the range of 2θ + 45 ° ± 3 °.
 この場合も、ポリビニルアルコールの延伸フィルムの偏光子と組み合わせて用いる場合には、偏光子の吸収軸が長尺偏光子フィルムの長さ方向となることが一般的であるため、長尺の転写用フィルムにλ/2層やλ/4層を設ける場合は長尺の転写用フィルムの長さ方向または長さの垂直方向に対して上記範囲となるように液晶化合物を配向させることが好ましい。なお、偏光子の透過軸の角度が上記と異なる場合は偏光子の透過軸の角度を加味して上記関係になるよう液晶化合物を配向させる。 Also in this case, when it is used in combination with a polarizer of a stretched film of polyvinyl alcohol, it is common that the absorption axis of the polarizer is in the length direction of the long polarizer film, and therefore, for transfer of a long film. When the film is provided with a λ / 2 layer or a λ / 4 layer, it is preferable to align the liquid crystal compound so as to be in the above range with respect to the lengthwise direction of the long transfer film or the direction perpendicular to the lengthwise direction. When the angle of the transmission axis of the polarizer is different from the above, the liquid crystal compound is oriented so as to have the above relationship by taking the angle of the transmission axis of the polarizer into consideration.
 これらの方法や、位相差層の例としては、特開2008-149577号公報、特開2002-303722号公報、WO2006/100830号公報、特開2015-64418号公報等を参考とすることができる。 For these methods and examples of the retardation layer, reference may be made to JP-A-2008-149577, JP-A-2002-303722, WO2006 / 100830, JP-A-2015-64418 and the like. .
 さらに、斜めから見た場合の着色の変化などを低減するためにλ/4層の上にCプレート層を設けることも好ましい形態である。Cプレート層はλ/4層やλ/2層の特性に合わせ、正または負のCプレート層が用いられる。 Furthermore, it is also a preferable mode to provide a C plate layer on the λ / 4 layer in order to reduce the change in coloring when viewed from an angle. As the C plate layer, a positive or negative C plate layer is used according to the characteristics of the λ / 4 layer and the λ / 2 layer.
 これらの積層方法としては、例えば、λ/4層とλ/2層の組合せであれば、
・偏光子上に転写によりλ/2層を設け、さらにその上にλ/4層を転写により設ける。
・転写用フィルム上にλ/4層とλ/2層をこの順に設け、これを偏光子上に転写する。
・転写用フィルム上にλ/4層とλ/2層と偏光層をこの順に設け、これを対象物に転写する。
・転写用フィルム上にλ/2層と偏光層をこの順に設け、これを対象物に転写し、さらにこの上にλ/4層を転写する。
などの様々な方法を採用することができる。
As a method of laminating these, for example, if a combination of a λ / 4 layer and a λ / 2 layer is used,
A λ / 2 layer is provided on the polarizer by transfer, and a λ / 4 layer is further provided on it by transfer.
A λ / 4 layer and a λ / 2 layer are provided in this order on the transfer film, and this is transferred onto the polarizer.
A λ / 4 layer, a λ / 2 layer and a polarizing layer are provided in this order on the transfer film, and this is transferred to an object.
A λ / 2 layer and a polarizing layer are provided in this order on the transfer film, and this is transferred to an object, and further a λ / 4 layer is transferred onto this.
Various methods such as can be adopted.
 また、Cプレートを積層する場合も、偏光子上に設けられたλ/4層の上にCプレート層を転写する方法や、フィルムにCプレート層を設け、さらにこの上にλ/4層かλ/2層とλ/4層を設けてこれを転写する方法などの様々な方法が採用できる。 Also, when laminating the C plates, a method of transferring the C plate layer onto the λ / 4 layer provided on the polarizer, or providing a C plate layer on the film, and further forming a λ / 4 layer on the film Various methods such as a method of providing a λ / 2 layer and a λ / 4 layer and transferring the layer can be adopted.
 このようにして得られた円偏光板の厚みは、120μm以下であることが好ましい。より好ましくは100μm以下、さらには90μm以下、特には80μm以下が好ましく、最も好ましくは70μm以下である。 The thickness of the circularly polarizing plate thus obtained is preferably 120 μm or less. It is more preferably 100 μm or less, still more preferably 90 μm or less, particularly preferably 80 μm or less, and most preferably 70 μm or less.
 以下、実施例を参照して本発明をより具体的に説明するが、本発明は、下記実施例に限定されず、本発明の趣旨に適合し得る範囲で適宜変更を加えて実施することも可能であり、それらは、いずれも本発明の技術的範囲に含まれる。なお、実施例における物性の評価方法は以下の通りである。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the following Examples, and may be implemented with appropriate modifications within a range compatible with the gist of the present invention. It is possible and they are all included in the technical scope of the present invention. The methods for evaluating the physical properties in the examples are as follows.
(1)三次元表面粗さSRa、SRz、SRy
 触針式三次元粗さ計(SE-3AK、株式会社小坂研究所社製)を用いて、針の半径2μm、荷重30mgの条件下に、フィルムの長手方向にカットオフ値0.25mmで、測定長1mmにわたり、針の送り速度0.1mm/秒で測定し、2μmピッチで500点に分割し、各点の高さを三次元粗さ解析装置(SPA-11)に取り込ませた。これと同様の操作をフィルムの幅方向について2μm間隔で連続的に150回、すなわちフィルムの幅方向0.3mmにわたって行い、解析装置にデータを取り込ませた。次に解析装置を用いて中心面平均粗さ(SRa)、十点平均粗さ(SRz)、最大高さ(SRy)を求めた。
(1) Three-dimensional surface roughness SRa, SRz, SRy
Using a stylus type three-dimensional roughness meter (SE-3AK, manufactured by Kosaka Laboratory Ltd.), with a needle radius of 2 μm and a load of 30 mg, with a cutoff value of 0.25 mm in the longitudinal direction of the film, The measurement was performed at a needle feed speed of 0.1 mm / sec over a measurement length of 1 mm, divided into 500 points at a pitch of 2 μm, and the height of each point was incorporated into a three-dimensional roughness analyzer (SPA-11). The same operation as above was continuously performed 150 times at intervals of 2 μm in the width direction of the film, that is, over 0.3 mm in the width direction of the film, and the data was captured by the analyzer. Next, the center plane average roughness (SRa), the ten-point average roughness (SRz), and the maximum height (SRy) were obtained using an analyzer.
(2)離型面高低差0.5μm以上(離型面)、2.0μm(裏面)以上の突起数
 フィルム長手方向に幅100mm、長さ100mmの試験片を切り出し、これを2枚の偏光板の間に鋏込んでクロスニコル状態とし、消光位が保たれる状態にセットした。この状態でニコン万能投影機V-12(測定条件:投影レンズ50倍、透過照明光束切替えノブ50倍、透過光検査)を用いて、光が透過し、光り輝くように見える部分(キズ、異物)の長径が50μm以上あるものを検出した。このように検出された部分を、試験片から適当な大きさに切り取り、3次元形状測定装置(菱化システム社製、マイクロマップTYPE550;測定条件:波長550nm、WAVEモード、対物レンズ10倍)を用い、フィルム面に対して垂直方向から観察し、測定した。このとき、フィルム面に対して垂直方向から観察したときに50μm以内に近接する凹凸は、同一のキズ、異物としてこれらを覆う長方形を想定し、この長方形の長さ及び幅をキズ、異物の長さ及び幅とした。このキズ、異物に関して、断面映像(SURFACE PROFILE DISPLAY)を用いて、欠点数を定量した。なお、測定は20枚の試験片について行い、1m当たりの欠点数に換算した。離型面では高低差(最も高いところと低いところの差)が0.5μm以上のものの欠点数を、裏面は高低差2.0μm以上のものの欠点数を数えた。
(2) Number of protrusions having a release surface height difference of 0.5 μm or more (release surface), 2.0 μm (back surface) or more A test piece with a width of 100 mm and a length of 100 mm was cut out in the longitudinal direction of the film, and two pieces of this were polarized. Scissors were inserted between the plates to create a crossed Nicols state, and the extinction position was maintained. In this state, using Nikon Universal Projector V-12 (measurement condition: projection lens 50 times, transmitted illumination light flux switching knob 50 times, transmitted light inspection), the part through which light is transmitted and appears to shine (scratches, foreign matter) Those having a major axis of 50 μm or more were detected. The portion thus detected is cut into an appropriate size from the test piece, and a three-dimensional shape measuring device (Micromap TYPE550, manufactured by Ryoka Systems Inc .; measurement conditions: wavelength 550 nm, WAVE mode, objective lens 10 times) is used. It was used and observed from the direction perpendicular to the film surface and measured. At this time, the irregularities that are close to each other within 50 μm when observed from the direction perpendicular to the film surface are assumed to be the same scratch and a rectangle covering them as foreign matter, and the length and width of this rectangle are scratched, and the length of the foreign matter is long. And width. Regarding the scratches and foreign matters, the number of defects was quantified using a cross-sectional image (SURFACE PROFILE DISPLAY). The measurement was performed on 20 test pieces and converted into the number of defects per 1 m 2 . The number of defects having a height difference (difference between the highest point and the lowest point) of 0.5 μm or more on the release surface and the number of defects having a height difference of 2.0 μm or more on the back surface were counted.
(3)フィルム厚み(各層厚み)
 フィルムをエポキシ樹脂に包埋した後、断面を切り出して光学顕微鏡で観察して厚みを求めた。
(3) Film thickness (thickness of each layer)
After embedding the film in an epoxy resin, a cross section was cut out and observed with an optical microscope to determine the thickness.
(4)位相差層の欠点の検査
 転写用フィルムと液晶化合物配向層の間に配向制御層としてラビング処理配向制御層又は光配向制御層を配置したものを検査用サンプルとして作成した。具体的な作成手順は以下の通りである。
(4) Inspection of Defects of Retardation Layer A rubbing-treated alignment control layer or a photo-alignment control layer as an alignment control layer disposed between the transfer film and the liquid crystal compound alignment layer was prepared as an inspection sample. The specific creation procedure is as follows.
(配向制御層がラビング処理配向制御層である場合)
 転写用フィルムをA4の大きさに切り出し、離型層面に下記組成のラビング処理配向制御層用塗料をバーコーターを用いて塗布し、80℃で5分間乾燥して、厚み100nmの膜を形成した。引き続き、得られた膜の表面を、ナイロン製の起毛布が巻かれたラビングロールで処理し、ラビング処理配向制御層を積層した転写用フィルムを得た。なお、ラビングは、転写用フィルムの長尺方向に対して45度になるように行った。
(When the orientation control layer is a rubbing orientation control layer)
The transfer film was cut into a size A4, the coating for the rubbing orientation control layer having the following composition was applied to the release layer surface using a bar coater, and dried at 80 ° C. for 5 minutes to form a film having a thickness of 100 nm. . Subsequently, the surface of the obtained film was treated with a rubbing roll wound with a nylon raised cloth to obtain a transfer film having a rubbing-treated orientation control layer laminated thereon. The rubbing was performed at 45 degrees with respect to the lengthwise direction of the transfer film.
完全ケン化型ポリビニルアルコール 分子量800   2質量部
イオン交換水                  100質量部
界面活性剤                   0.1質量部
Completely saponified polyvinyl alcohol Molecular weight 800 2 parts by mass Ion-exchanged water 100 parts by mass Surfactant 0.1 parts by mass
 引き続き、ラビング処理を施した面に、下記組成の位相差層形成用溶液をバーコート法により塗布した。110℃で3分間乾燥し、紫外線を照射して硬化させ、1/4波長層を設け、検査用サンプルを得た。
  LC242(BASF社製)       95質量部
  トリメチロールプロパントリアクリレート  5質量部
  イルガキュア379            3質量部
  界面活性剤              0.1質量部
  メチルエチルケトン          250質量部
Subsequently, a solution for forming a retardation layer having the following composition was applied to the surface subjected to the rubbing treatment by a bar coating method. It was dried at 110 ° C. for 3 minutes, irradiated with ultraviolet rays to be cured, and a ¼ wavelength layer was provided to obtain an inspection sample.
LC242 (manufactured by BASF) 95 parts by mass Trimethylolpropane triacrylate 5 parts by mass Irgacure 379 3 parts by mass Surfactant 0.1 parts by mass Methyl ethyl ketone 250 parts by mass
(配向制御層が光配向制御層である場合)
 特開2013-33248号公報の実施例1、実施例2、実施例3の記載に基づき、下記式で表わされるポリマーのシクロペンタノン5質量%溶液を製造し、光配向制御層用塗料とした。
Figure JPOXMLDOC01-appb-I000003
(When the alignment control layer is a photo-alignment control layer)
Based on the description of Example 1, Example 2, and Example 3 of JP-A-2013-33248, a 5 mass% solution of cyclopentanone of a polymer represented by the following formula was produced to obtain a coating material for a photo-alignment control layer. .
Figure JPOXMLDOC01-appb-I000003
 次に、転写用フィルムをA4の大きさに切り出し、離型層面に上記組成の光配向制御層用塗料をバーコーターを用いて塗布し、80℃で1分間乾燥して、厚み80nmの膜を形成した。引き続き、フィルムの長尺方向に対して45度の方向で偏光UV光を照射し、光配向制御層を積層した転写用フィルムを得た。なお、これらの塗料は孔径0.2μmのメンブレンフィルターで濾過し、塗工、乾燥はクリーンルーム内で行った。 Next, the transfer film was cut into a size of A4, the photo-alignment control layer coating composition having the above composition was applied to the release layer surface using a bar coater, and dried at 80 ° C. for 1 minute to form a film having a thickness of 80 nm. Formed. Subsequently, polarized UV light was irradiated in a direction of 45 degrees with respect to the lengthwise direction of the film to obtain a transfer film in which a photo-alignment control layer was laminated. These paints were filtered with a membrane filter having a pore size of 0.2 μm, and coating and drying were performed in a clean room.
 引き続き、光配向制御層を積層した面に、位相差層形成用溶液をバーコート法により塗布した。110℃で3分間乾燥し、紫外線を照射して硬化させ、1/4波長層を設け、検査用サンプルを得た。 Next, the retardation layer forming solution was applied to the surface on which the optical alignment control layer was laminated by the bar coating method. It was dried at 110 ° C. for 3 minutes, irradiated with ultraviolet rays to be cured, and a ¼ wavelength layer was provided to obtain an inspection sample.
 次に、これらの検査用サンプルを使用して、以下の手順で位相差層の欠点を検査した。
 黄色蛍光体を用いた白色LEDを光源とする面発光光源の上に下側偏光板を置き、その上に、上述のようにして作成した検査用サンプルを、偏光板の消光軸方向(吸収軸方向)が検査用サンプルの長辺方向と平行になるように置いた。さらにその上に、環状ポリオレフィンの延伸フィルムからなるλ/4フィルムを、配向主軸が下側偏光板の消光軸と45度の方向になるように置き、その上に上側偏光板を、上側偏光板の消光軸が下側偏光板の消光軸と平行になるように置いた。この状態で、消光状態を肉眼(中央部15cm×20cm)および20倍のルーペ(5cm×5cm)で観察し、以下の基準で評価した。
◎:肉眼で輝点は認められず、ルーペ観察でも輝点はほとんど認められなかった(5cm×5cmで2個以下)。
○:肉眼で輝点は認められず、ルーペ観察で少数の輝点が認められた(5cm×5cmで3個以上20個以下)。
△:肉眼で輝点は認められなかったが、ルーペ観察で輝点が認められた(5cm×5cmで20個を超える)。
×:肉眼で輝点が認められたか、または、輝点が認められなかったがルーペ観察で観察された多くの輝点の存在に起因するとみられる全体的な光の漏れがあった。
Next, using these inspection samples, the defects of the retardation layer were inspected by the following procedure.
A lower polarizing plate is placed on a surface emitting light source using a white LED using a yellow phosphor as a light source, and the inspection sample prepared as described above is placed on the lower polarizing plate. (Direction) was placed parallel to the long side direction of the test sample. Further, a λ / 4 film made of a stretched film of a cyclic polyolefin is placed thereon so that the orientation main axis is in the direction of 45 degrees with the extinction axis of the lower polarizing plate, and the upper polarizing plate is placed on the upper polarizing plate. The extinction axis of was placed parallel to the extinction axis of the lower polarizing plate. In this state, the extinction state was observed with the naked eye (central part 15 cm × 20 cm) and a 20-fold magnifying glass (5 cm × 5 cm), and evaluated according to the following criteria.
⊚: No bright spots were observed with the naked eye, and almost no bright spots were observed by loupe observation (2 or less at 5 cm × 5 cm).
◯: No bright spots were observed with the naked eye, and a small number of bright spots were observed by loupe observation (3 to 20 in 5 cm × 5 cm).
B: No bright spots were observed with the naked eye, but bright spots were found by loupe observation (more than 20 at 5 cm × 5 cm).
X: Bright spots were observed with the naked eye, or no bright spots were found, but there was overall light leakage which was attributed to the presence of many bright spots observed by loupe observation.
(5)重ね合わせ後の欠点の検査1
 上記のラビング処理配向制御層を用いた検査用サンプルを二枚用意し、一枚目のサンプルの位相差層設置面と二枚目のサンプルの反対面を重ね合わせ、10分間、1kg/cmの加重を掛けた。このサンプルの位相差層の欠点を、(4)位相差層欠点の検査と同様にして検査した。
(5) Inspection of defects after superposition 1
Two inspection samples using the above rubbing orientation control layer were prepared, and the phase difference layer installation surface of the first sample and the opposite surface of the second sample were overlapped for 10 minutes at 1 kg / cm 2. Was multiplied by the weight. The defect of the retardation layer of this sample was inspected in the same manner as in (4) Inspecting the retardation layer defect.
(6)重ね合わせ後の欠点の検査2
 重ね合わせ後の欠点の検査1では、離型面の粗さが大きい場合に裏面の粗さの影響がわかりにくいため、離型面の粗さが小さい実施例2の光配向制御層を用いた検査用サンプルを用いて、他の実施例及び比較例の光配向制御層を用いた検査用サンプルの裏面の粗さの影響を調べた。
 具体的には、実施例2の光配向制御層に1/4波長層を設けた検査用サンプルの位相差層設置面と各実施例及び比較例の光配向制御層を用いた検査用サンプルの反対面を重ね合わせ、10分間、1kg/cmの加重を掛けた。このサンプル(実施例2の検査用サンプル)の位相差層の欠点を、(4)位相差層欠点の検査と同様にして検査した。
(6) Inspection of defects after superposition 2
In Inspection 1 of defects after superposition, since the influence of the roughness of the back surface is difficult to understand when the roughness of the release surface is large, the photo-alignment control layer of Example 2 having a small release surface roughness was used. Using the inspection sample, the influence of the roughness of the back surface of the inspection sample using the photo-alignment control layers of other examples and comparative examples was examined.
Specifically, the retardation layer installation surface of the inspection sample in which the quarter-wavelength layer was provided on the optical alignment control layer of Example 2 and the inspection sample using the optical alignment control layer of each of the Examples and Comparative Examples The opposite surfaces were overlaid and a load of 1 kg / cm 2 was applied for 10 minutes. The defect of the retardation layer of this sample (inspection sample of Example 2) was inspected in the same manner as (4) Inspecting the retardation layer defect.
フィルムA1~A7の製造
 熱可塑性ノルボルネン樹脂(日本ゼオン株式会社製 ZEONOR1420R)を乾燥後、押出機に供給し、215℃に溶融させ、ステンレス焼結体の濾材(公称濾過精度10μm粒子95%カット)で濾過し、キャスティングロール上にシート状に押し出した。キャスティングロールに巻き付いた樹脂の反対面からは、タッチロールで樹脂をキャスティングロールに押し当てた。冷却されたフィルムをキャスティングロールから剥がし、ロール状に巻き取った。キャスティングロールおよびタッチロールの表面粗さは、表1に示す通りである。なお、フィルムA1~A4、A7はタッチ線圧200Kgf/cmで、A5、A6はタッチ線圧200Kgf/cmで製造した。
Production of Films A1 to A7 A thermoplastic norbornene resin (ZEONOR1420R manufactured by Nippon Zeon Co., Ltd.) is dried, supplied to an extruder and melted at 215 ° C., and a stainless sintered body filter material (nominal filtration accuracy 10 μm particles 95% cut). And then extruded into a sheet on a casting roll. From the opposite side of the resin wrapped around the casting roll, the resin was pressed against the casting roll with a touch roll. The cooled film was peeled off from the casting roll and wound into a roll. The surface roughness of the casting roll and the touch roll is as shown in Table 1. The films A1 to A4 and A7 were manufactured at a touch linear pressure of 200 Kgf / cm, and the films A5 and A6 were manufactured at a touch linear pressure of 200 Kgf / cm.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
実施例1
 フィルムA1を使用し、そのキャスティングロール面を離型層面として、上述の物性の評価を行なった。その評価結果を表2に示す。
Example 1
The film A1 was used, and the above-mentioned physical properties were evaluated using the casting roll surface as the release layer surface. The evaluation results are shown in Table 2.
実施例2
 フィルムA2を使用し、そのキャスティングロール面を離型層面として、上述の物性の評価を行なった。その評価結果を表2に示す。
Example 2
The film A2 was used, and the above-mentioned physical properties were evaluated using the casting roll surface as the release layer surface. The evaluation results are shown in Table 2.
実施例3
 フィルムA3を使用し、そのキャスティングロール面を離型層面として、上述の物性の評価を行なった。その評価結果を表2に示す。
Example 3
The film A3 was used, and the above-mentioned physical properties were evaluated using the casting roll surface as the release layer surface. The evaluation results are shown in Table 2.
実施例4
 フィルムA2を使用し、そのタッチロール面を離型層面として、上述の物性の評価を行なった。その評価結果を表2に示す。
Example 4
The film A2 was used, and the above-mentioned physical properties were evaluated using the touch roll surface as the release layer surface. The evaluation results are shown in Table 2.
実施例5
 フィルムA4を使用し、そのキャスティングロール面を離型層面として、上述の物性の評価を行なった。その評価結果を表2に示す。
Example 5
The film A4 was used, and the above-mentioned physical properties were evaluated using the casting roll surface as the release layer surface. The evaluation results are shown in Table 2.
実施例6
 フィルムA5を使用し、そのキャスティングロール面を離型層面として、上述の物性の評価を行なった。その評価結果を表2に示す。
Example 6
The film A5 was used, and the above-mentioned physical properties were evaluated using the casting roll surface as the release layer surface. The evaluation results are shown in Table 2.
実施例7
 フィルムA6を使用し、そのキャスティングロール面を離型層面として、上述の物性の評価を行なった。その評価結果を表2に示す。
Example 7
The film A6 was used, and the above-mentioned physical properties were evaluated using the casting roll surface as the release layer surface. The evaluation results are shown in Table 2.
実施例8
 フィルムA2を使用し、そのキャスティングロール面にコロナ処理を行い、その上に離型層(表面平坦化コート層)として下記組成のコート剤を塗布し、加熱オーブン中で150℃3分間乾燥させた。塗布層の厚みは2μmであった。
(コート剤)
・メラミン架橋アルキル変性アルキド樹脂(日立化成ポリマー社製:テスファイン322:固形分40%)               10質量部
・P-トルエンスルホン酸(日立化成ポリマー社製:ドライヤー900)
                            0.1質量部
・溶剤(トルエン/メチルエチルケトン=1/1質量部)   40質量部
 なお、コート剤は2μmのフィルターで濾過してから使用した。
 表面平坦化コート層を形成した面を離型層面として、上述の物性の評価を行なった。その評価結果を表2に示す。
Example 8
Using film A2, the casting roll surface was subjected to corona treatment, a coating agent having the following composition was applied as a release layer (surface flattening coating layer) thereon, and dried in a heating oven at 150 ° C. for 3 minutes. . The thickness of the coating layer was 2 μm.
(Coating agent)
Melamine crosslinked alkyl-modified alkyd resin (manufactured by Hitachi Chemical Polymer Co., Ltd .: Tesfine 322: solid content 40%) 10 parts by mass P-toluenesulfonic acid (manufactured by Hitachi Chemical Polymer Co., Ltd .: dryer 900)
0.1 parts by mass / solvent (toluene / methyl ethyl ketone = 1/1 parts by mass) 40 parts by mass The coating agent was used after being filtered with a 2 μm filter.
The above-mentioned physical properties were evaluated using the surface on which the surface-flattening coat layer was formed as the release layer surface. The evaluation results are shown in Table 2.
実施例9
 フィルムA7を使用し、そのタッチロール面にコロナ処理を行い、その上に裏面易滑コート層として下記組成の塗布液を、乾燥後の塗布量が0.07g/mになるように塗布した後、乾燥機に導き、80℃で30秒間乾燥した。
(塗布液)
・水                        50.00質量部
・イソプロピルアルコール              36.10質量部
・ポリエステル水分散体               13.00質量部
(東洋紡製 MD-1200 固形分濃度34質量%)
・コロイダルシリカ                  0.60質量部
(日産化学製、MP2040、平均粒径200nm、固形分濃度40質量%)
・界面活性剤(フッ素系、固形分濃度10質量%)    0.30質量部
 得られたフィルムのキャスティングロール面を離型層面として、上述の物性の評価を行なった。その評価結果を表2に示す。
Example 9
Using film A7, the touch roll surface was subjected to corona treatment, and a coating solution having the following composition was applied as a back surface easy-sliding coat layer thereon so that the coating amount after drying would be 0.07 g / m 2 . Then, it was introduced into a dryer and dried at 80 ° C. for 30 seconds.
(Coating liquid)
-Water 50.00 parts by mass-Isopropyl alcohol 36.10 parts by mass-Polyester water dispersion 13.00 parts by mass (TOYOBO MD-1200 solid content concentration 34% by mass)
-Colloidal silica 0.60 part by mass (manufactured by Nissan Kagaku, MP2040, average particle size 200 nm, solid content concentration 40% by mass)
-Surfactant (fluorine type, solid content concentration 10% by mass) 0.30 parts by mass The above-mentioned physical properties were evaluated using the casting roll surface of the obtained film as the release layer surface. The evaluation results are shown in Table 2.
実施例10
 フィルムA4を使用し、そのタッチロール面にコロナ処理を行い、その上に帯電防止層としてペルトロン C-4402(アンチモンドープ酸化スズ粒子)をMEKで固形分濃度5%にしたものを塗布し、加熱オーブン中で80℃3分間乾燥させた。塗布層の厚みは200nmであった。なお、表面抵抗は7.5×10Ω/□であった。得られたフィルムのキャスフィングロール面を離型層面として、上記の物性の評価を行った。その評価結果を表2に示す。
Example 10
Corrosion treatment is applied to the touch roll surface of the film A4, and the antistatic layer Pertron C-4402 (antimony-doped tin oxide particles) with MEK having a solid concentration of 5% is applied and heated. It was dried in an oven at 80 ° C. for 3 minutes. The thickness of the coating layer was 200 nm. The surface resistance was 7.5 × 10 7 Ω / □. The above-mentioned physical properties were evaluated using the casting roll surface of the obtained film as the release layer surface. The evaluation results are shown in Table 2.
実施例11
 乾燥させた熱可塑性ノルボルネン樹脂(日本ゼオン株式会社製 ZEONOR1420R)と粒径2.5μmのシリカ粒子(KE-P250 日本触媒製)を、固形分で粒子含有量が1000ppmになるように二軸押出機に添加し、ペレット1を得た。
 乾燥させたペレット1を押出機1に供給し、乾燥させた熱可塑性ノルボルネン樹脂(日本ゼオン株式会社製 ZEONOR1420R)を押出機2に供給し、それぞれステンレス焼結体の濾材(公称濾過精度10μm粒子95%カット)で濾過し、2種2層合流ブロックにて、積層し、フィルムA1と同様にキャスティングロール上にシート状に押し出して、フィルムB1を得た。この際、押出機2側の樹脂がキャスティングロール面になるようにした。
 得られたフィルムのキャスティングロール面を離型層面として、上述の物性の評価を行なった。その評価結果を表2に示す。
Example 11
A twin screw extruder in which a dried thermoplastic norbornene resin (ZEONOR1420R manufactured by Nippon Zeon Co., Ltd.) and silica particles (KE-P250 manufactured by Nippon Shokubai Co., Ltd.) having a particle size of 2.5 μm are mixed so that the particle content is 1000 ppm in terms of solid content. And pellet 1 was obtained.
The dried pellets 1 were supplied to the extruder 1, and the dried thermoplastic norbornene resin (ZEONOR 1420R manufactured by Nippon Zeon Co., Ltd.) was supplied to the extruder 2, and the stainless steel sintered filter media (nominal filtration accuracy of 10 μm particles 95 % Cut), the mixture was laminated in a 2-kind 2-layer confluent block and extruded into a sheet shape on a casting roll in the same manner as the film A1 to obtain a film B1. At this time, the resin on the extruder 2 side was made to be the casting roll surface.
The above-mentioned physical properties were evaluated using the casting roll surface of the obtained film as the release layer surface. The evaluation results are shown in Table 2.
実施例12
 乾燥させた熱可塑性ノルボルネン樹脂(日本ゼオン株式会社製 ZEONOR1420R)と粒径100nmのシリカ粒子(KE-P10 日本触媒製)を、固形分で粒子含有量が600ppmになるように二軸押出機に添加し、ペレット2を得た。
 押出機2にペレット2を供給した以外は実施例11と同様にして、フィルムB2を得た。
 得られたフィルムのキャスティングロール面を離型層面として、上述の物性の評価を行なった。その評価結果を表2に示す。
Example 12
Dried thermoplastic norbornene resin (ZEONOR 1420R manufactured by Nippon Zeon Co., Ltd.) and silica particles having a particle diameter of 100 nm (KE-P10 manufactured by Nippon Shokubai Co., Ltd.) were added to a twin-screw extruder so that the particle content was 600 ppm in terms of solid content. Then, pellet 2 was obtained.
A film B2 was obtained in the same manner as in Example 11 except that the pellet 2 was supplied to the extruder 2.
The above-mentioned physical properties were evaluated using the casting roll surface of the obtained film as the release layer surface. The evaluation results are shown in Table 2.
比較例1
 フィルムA3を使用し、そのタッチロール面を離型層面として、上述の物性の評価を行なった。その評価結果を表2に示す。
Comparative Example 1
The film A3 was used, and the above-mentioned physical properties were evaluated using the touch roll surface as the release layer surface. The evaluation results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表2から明らかなように、離型面の表面粗さが本発明の要件を満たす実施例1~12はいずれも、欠点評価において欠点が著しく少なく、ピンホール状やキズ状の光漏れの発生が十分に抑制されていた。また、実施例1~6,8~12では、裏面の表面粗さも低いレベルに抑制されているため、欠点評価のうち、重ね合わせ後の欠点1,2も著しく少なく、ピンホール状やキズ状の光漏れの発生が十分に抑制されていた。これに対して、離型面の表面粗さが大きすぎる比較例1は、欠点評価において欠点が著しく多く、ピンホール状やキズ状の光漏れの発生を十分に抑制することができなかった。 As is clear from Table 2, in Examples 1 to 12 in which the surface roughness of the release surface satisfies the requirements of the present invention, the defects were markedly small in the defect evaluation, and pinhole-like or scratch-like light leakage occurred. Was sufficiently suppressed. Further, in Examples 1 to 6 and 8 to 12, the surface roughness of the back surface was suppressed to a low level, and therefore, among the defect evaluations, defects 1 and 2 after overlaying were remarkably small, and pinholes and scratches were observed. The occurrence of light leakage was sufficiently suppressed. On the other hand, Comparative Example 1 in which the surface roughness of the release surface was too large had many defects in the defect evaluation, and it was not possible to sufficiently suppress the occurrence of pinhole-shaped or scratch-shaped light leakage.
 なお、表1には示していないが、実施例、比較例で用いた基材フィルムの面内リタデーション(Re)を求めたところ、いずれの基材フィルムも10nm以下であり、十分低く、転写用フィルムに液晶化合物配向層が積層された状態で直線偏光を照射して液晶化合物配向層の配向状態を検査することができるレベルであった。 Although not shown in Table 1, when the in-plane retardation (Re) of the base material films used in Examples and Comparative Examples was determined, all of the base material films were 10 nm or less, which was sufficiently low, The alignment state of the liquid crystal compound alignment layer was inspected by irradiating linearly polarized light in a state where the liquid crystal compound alignment layer was laminated on the film.
 面内リタデーションの具体的な測定手順は、以下の通りである。即ち、実施例、比較例で用いた基材フィルムから、流れ方向が長辺となるように4cm×2cmの長方形を切り出し、測定用サンプルとした。このサンプルについて、屈折率(流れ方向nx,幅方向ny)をアッベ屈折率計(アタゴ社製、NAR-4T、測定波長589nm)を用いて測定した。フィルムの幅方向で5点(中央部、両端部、中央部と端部との中間部)測定し、その平均とし、フィルムの厚みd(nm)との積((nx-ny)×d)より、面内リタデーション(Re)を求めた。 The specific measurement procedure of in-plane retardation is as follows. That is, a 4 cm × 2 cm rectangle was cut out from the base film used in Examples and Comparative Examples so that the long side was in the flow direction, and used as a measurement sample. The refractive index (flow direction nx, width direction ny) of this sample was measured using an Abbe refractometer (NAR-4T, manufactured by Atago Co., measurement wavelength 589 nm). The product was measured at 5 points in the width direction of the film (center portion, both end portions, intermediate portion between the center portion and the end portion), and the average was taken as the product ((nx-ny) × d) of the film thickness d (nm). Thus, the in-plane retardation (Re) was obtained.
 本発明の液晶化合物配向層転写用フィルムは、表面粗さが特定の範囲内に制御されたフィルムを位相差層や偏光層の転写用のフィルムとして使用しているので、位相差層や偏光層中の液晶化合物の配向状態や位相差を設計通りにすることができ、ピンホールなどの欠点の発生が減少された位相差層や偏光層(液晶化合物配向層)を形成することができる。従って、本発明によれば、円偏光板などの位相差層積層偏光板を、高品質で安定して製造することができる。 The liquid crystal compound alignment layer transfer film of the present invention uses a film whose surface roughness is controlled within a specific range as a transfer film for a retardation layer or a polarizing layer. The orientation state and retardation of the liquid crystal compound therein can be made as designed, and a retardation layer or a polarizing layer (liquid crystal compound orientation layer) in which occurrence of defects such as pinholes is reduced can be formed. Therefore, according to the present invention, a retardation layer laminated polarizing plate such as a circular polarizing plate can be stably manufactured with high quality.

Claims (4)

  1.  液晶化合物配向層を対象物に転写するための環状ポリオレフィン系フィルムであって、フィルムの離型面の表面粗さ(SRa)が1nm以上、30nm以下であることを特徴とする液晶化合物配向層転写用フィルム。 A cyclic polyolefin film for transferring a liquid crystal compound alignment layer to an object, characterized in that the release surface of the film has a surface roughness (SRa) of 1 nm or more and 30 nm or less. Film.
  2.  フィルムの離型面の10点表面粗さ(SRz)が5nm以上、200nm以下であることを特徴とする請求項1に記載の液晶化合物配向層転写用フィルム。 The film for transferring a liquid crystal compound alignment layer according to claim 1, wherein the release surface of the film has a 10-point surface roughness (SRz) of 5 nm or more and 200 nm or less.
  3.  液晶化合物配向層とフィルムとが積層された積層体であって、フィルムが請求項1又は2に記載のフィルムであることを特徴とする液晶化合物配向層転写用積層体。 A laminate comprising a liquid crystal compound alignment layer and a film, wherein the film is the film according to claim 1 or 2, wherein the liquid crystal compound alignment layer transfer laminate.
  4.  偏光板と請求項3に記載の積層体の液晶化合物配向層面とを貼り合わせて中間積層体を形成する工程、及び中間積層体からフィルムを剥離する工程を含むことを特徴とする液晶化合物配向層積層偏光板の製造方法。 A liquid crystal compound alignment layer comprising: a step of adhering a polarizing plate and a liquid crystal compound alignment layer surface of the laminate according to claim 3 to form an intermediate laminate; and a step of peeling a film from the intermediate laminate. Method for manufacturing laminated polarizing plate.
PCT/JP2019/041326 2018-10-26 2019-10-21 Liquid crystal compound alignment layer transfer film WO2020085310A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020553398A JPWO2020085310A1 (en) 2018-10-26 2019-10-21 Liquid crystal compound alignment layer transfer film
KR1020217007467A KR20210082163A (en) 2018-10-26 2019-10-21 Liquid crystal compound alignment layer transfer film
CN201980064154.8A CN112771423B (en) 2018-10-26 2019-10-21 Film for transferring alignment layer of liquid crystal compound

Applications Claiming Priority (14)

Application Number Priority Date Filing Date Title
JP2018201940 2018-10-26
JP2018-201940 2018-10-26
JP2018-209662 2018-11-07
JP2018209662 2018-11-07
JP2018209663 2018-11-07
JP2018-209663 2018-11-07
JP2018219282 2018-11-22
JP2018-219282 2018-11-22
JP2018223878 2018-11-29
JP2018-223878 2018-11-29
JP2018231737 2018-12-11
JP2018-231737 2018-12-11
JP2019000802 2019-01-07
JP2019-000802 2019-01-07

Publications (1)

Publication Number Publication Date
WO2020085310A1 true WO2020085310A1 (en) 2020-04-30

Family

ID=70330512

Family Applications (4)

Application Number Title Priority Date Filing Date
PCT/JP2019/041323 WO2020085307A1 (en) 2018-10-26 2019-10-21 Alignment film for transferring liquid crystal compound alignment layer
PCT/JP2019/041325 WO2020085309A1 (en) 2018-10-26 2019-10-21 Liquid crystal compound alignment layer transfer film
PCT/JP2019/041324 WO2020085308A1 (en) 2018-10-26 2019-10-21 Alignment film for transferring liquid crystal compound alignment layer
PCT/JP2019/041326 WO2020085310A1 (en) 2018-10-26 2019-10-21 Liquid crystal compound alignment layer transfer film

Family Applications Before (3)

Application Number Title Priority Date Filing Date
PCT/JP2019/041323 WO2020085307A1 (en) 2018-10-26 2019-10-21 Alignment film for transferring liquid crystal compound alignment layer
PCT/JP2019/041325 WO2020085309A1 (en) 2018-10-26 2019-10-21 Liquid crystal compound alignment layer transfer film
PCT/JP2019/041324 WO2020085308A1 (en) 2018-10-26 2019-10-21 Alignment film for transferring liquid crystal compound alignment layer

Country Status (5)

Country Link
JP (4) JPWO2020085309A1 (en)
KR (4) KR20210082159A (en)
CN (5) CN112805136B (en)
TW (2) TW202033339A (en)
WO (4) WO2020085307A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7194365B2 (en) 2020-10-02 2022-12-22 大日本印刷株式会社 Glare contrast correction method, comparison method and comparison device, electronic display manufacturing method, and antiglare layer manufacturing method
KR102387993B1 (en) * 2021-01-06 2022-04-19 (주)엘프스 adhesive member, adhesive sheet comprising the same and manufacturing method thereof
TW202408816A (en) * 2022-07-21 2024-03-01 日商東洋紡股份有限公司 Biaxially oriented multilayer polyester film

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6363252B2 (en) * 1980-07-29 1988-12-06
JP2010120304A (en) * 2008-11-20 2010-06-03 Fujifilm Corp Norbornene resin film, method of manufacturing norbornene resin film, polarization plate, optical compensation film for liquid crystal display panel, and antireflection film
JP2017000039A (en) * 2015-06-08 2017-01-05 キユーピー株式会社 Method for producing freezing liquid egg white
JP2017146616A (en) * 2017-04-28 2017-08-24 大日本印刷株式会社 Transfer body for optical film, optical film, production method of transfer body for optical film, and production method of optical film

Family Cites Families (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2660601B2 (en) 1990-06-27 1997-10-08 日本石油株式会社 Manufacturing method of compensator for liquid crystal display element
JPH0756172A (en) * 1993-08-17 1995-03-03 Seiko Epson Corp Production of liquid crystal display
JPH08334757A (en) * 1995-04-07 1996-12-17 Sumitomo Chem Co Ltd Liquid crystal display device, polarization phase difference composite film and their production
JP2001004837A (en) 1999-06-22 2001-01-12 Fuji Photo Film Co Ltd Phase difference plate and circular polarization plate
JP2002328371A (en) * 2000-04-24 2002-11-15 Nippon Kayaku Co Ltd Method of aligning liquid crystal compound
JP4691842B2 (en) * 2001-07-11 2011-06-01 東レ株式会社 Polyester film for polarizing film lamination
CN1564951A (en) * 2002-06-27 2005-01-12 帝人株式会社 Polycarbonate-based oriented film and retardation film
JP2004144943A (en) 2002-10-23 2004-05-20 Fuji Photo Film Co Ltd Circular polarizer
JP2004264345A (en) * 2003-02-03 2004-09-24 Nitto Denko Corp Retardation film and its manufacturing method
JP2004287416A (en) * 2003-03-06 2004-10-14 Nitto Denko Corp Method of manufacturing inclined alignment film, inclined alignment film and image display device
JP4344566B2 (en) * 2003-08-22 2009-10-14 富士フイルム株式会社 Method for producing optical compensation film
JP4187594B2 (en) 2003-06-19 2008-11-26 帝人株式会社 Circular polarizer
JP3822198B2 (en) * 2003-09-08 2006-09-13 日東電工株式会社 Method for producing liquid crystal alignment film
JP2005313467A (en) * 2004-04-28 2005-11-10 Konica Minolta Opto Inc Method for producing cellulose ester film and cellulose ester film
JP2006058540A (en) * 2004-08-19 2006-03-02 Jsr Corp Optical film, polarizer plate and liquid crystal display
US20080291389A1 (en) * 2004-12-22 2008-11-27 Nitto Denko Corporation Elliptically Polarizing Plate and Image Display Apparatus Using the Same
JP2006201746A (en) * 2004-12-22 2006-08-03 Nitto Denko Corp Elliptic polarizing plate and image display device using the same
TWI413809B (en) * 2004-12-27 2013-11-01 Dainippon Ink & Chemicals Optical film, elliptically polarizing plate, circularly polarizing plate, liquid crystal display element, and method of producing optical film
JP2006195293A (en) * 2005-01-14 2006-07-27 Fuji Photo Film Co Ltd Liquid crystal display device, optical compensation film, and polarizing plate
JP2006240034A (en) * 2005-03-03 2006-09-14 Nissha Printing Co Ltd Insert-molded product with dichroic design and its manufacturing method
JP2006243653A (en) 2005-03-07 2006-09-14 Nitto Denko Corp Manufacturing method of elliptically polarizing plate and image display device using elliptically polarizing plate
JP2007001198A (en) * 2005-06-24 2007-01-11 Fujifilm Holdings Corp Cellulose ester film laminate, polarizing plate, optical compensation film, antireflection film and liquid crystal display device
CN100432799C (en) * 2005-07-20 2008-11-12 台湾薄膜电晶体液晶显示器产业协会 Method for hydrogen ion beam applying to liquid crystal molecule distributing direction
JP2007290342A (en) * 2005-09-12 2007-11-08 Fujifilm Corp Manufacturing method for cellulose acylate film, polarizing plate, and liquid crystal display device
JP4113547B2 (en) * 2005-12-12 2008-07-09 インターナショナル・ビジネス・マシーンズ・コーポレーション Alignment layer forming apparatus and alignment layer forming method
KR20080086451A (en) * 2005-12-14 2008-09-25 다이니폰 인사츠 가부시키가이샤 Liquid crystal display device
JP2007241037A (en) * 2006-03-10 2007-09-20 Toppan Printing Co Ltd Polarizing element, its manufacturing method and liquid crystal display element
JP5209223B2 (en) * 2006-03-29 2013-06-12 住友化学株式会社 Film, film manufacturing method, and use thereof
JP2008026824A (en) * 2006-07-25 2008-02-07 Fujifilm Corp Method of forming optical compensation film, optical compensation film, polarizing plate and liquid crystal display apparatus
JP2008126461A (en) * 2006-11-20 2008-06-05 Mitsubishi Polyester Film Copp Mold release film
JP5446369B2 (en) * 2008-04-30 2014-03-19 東洋紡株式会社 Adhesive film
JP5267666B2 (en) * 2009-06-19 2013-08-21 日本電気株式会社 LCD shutters and LCD shutter glasses
JP2011048025A (en) * 2009-08-25 2011-03-10 Fujifilm Corp Film, method of manufacturing the same, polarizing plate, and liquid crystal display device
JP5451672B2 (en) * 2011-03-25 2014-03-26 富士フイルム株式会社 Method for producing light reflective film
KR101884252B1 (en) * 2011-08-30 2018-08-01 도레이 카부시키가이샤 Biaxially oriented polyester film for mold-releasing film for polarizing plate, laminated body using same, and method for producing polarizing plate
JP2013050572A (en) * 2011-08-31 2013-03-14 Fujifilm Corp Optical film, polarizing plate, liquid crystal display device and alignment controlling agent
JP2013097277A (en) * 2011-11-02 2013-05-20 V Technology Co Ltd Film exposure device
TW201314384A (en) * 2011-09-16 2013-04-01 V Technology Co Ltd Film exposure device
JP5257505B2 (en) 2011-12-09 2013-08-07 日本ゼオン株式会社 Method for producing stretched film and method for producing circularly polarizing plate
JP5607673B2 (en) * 2012-03-09 2014-10-15 日東電工株式会社 Optical display device
JP2014071381A (en) 2012-09-28 2014-04-21 Dainippon Printing Co Ltd Transfer body for optical film, optical film, image display device and production method of optical film
WO2014185322A1 (en) * 2013-05-14 2014-11-20 東洋紡株式会社 Liquid crystal display device, polarizing plate, and polarizer protective film
JP6171707B2 (en) * 2013-08-07 2017-08-02 大日本印刷株式会社 Optical film transfer body, optical film, optical film transfer body manufacturing method, optical film manufacturing method
TWI645962B (en) * 2013-08-09 2019-01-01 住友化學股份有限公司 Optically anisotropic sheet
JP6303544B2 (en) * 2014-01-29 2018-04-04 東洋紡株式会社 Liquid crystal display device and polarizing plate
WO2016010134A1 (en) * 2014-07-18 2016-01-21 富士フイルム株式会社 Uniaxially oriented polyester film, hard coat film, touch panel sensor film, anti-shattering film, anti-reflective film, touch panel, and method for manufacturing uniaxially oriented polyester film
JP6724297B2 (en) * 2015-05-27 2020-07-15 日本ゼオン株式会社 Method for producing optical laminate, method for producing circularly polarizing plate, and method for producing organic electroluminescence display device
JP6816942B2 (en) * 2015-09-01 2021-01-20 大日本印刷株式会社 Transferred material for optical film, manufacturing method of optical film, and manufacturing method of image display device
JPWO2017069133A1 (en) * 2015-10-20 2018-08-09 日産化学工業株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP2017122864A (en) * 2016-01-08 2017-07-13 大日本印刷株式会社 Optical film, image display device, and method for manufacturing optical film
JP6589657B2 (en) * 2016-01-21 2019-10-16 Jnc株式会社 Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element using the same
JP6565730B2 (en) * 2016-02-18 2019-08-28 Jnc株式会社 Diamine, polyamic acid or derivative thereof, liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
KR102481313B1 (en) * 2016-07-21 2022-12-23 스미또모 가가꾸 가부시끼가이샤 ellipsoidal polarizer
JP2018028641A (en) * 2016-08-19 2018-02-22 コニカミノルタ株式会社 Method for manufacturing cellulose ester film
JP7000677B2 (en) * 2016-12-07 2022-01-19 東レ株式会社 Polyester film
JP6363252B1 (en) * 2017-04-24 2018-07-25 日東電工株式会社 Method for producing homeotropic alignment liquid crystal film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6363252B2 (en) * 1980-07-29 1988-12-06
JP2010120304A (en) * 2008-11-20 2010-06-03 Fujifilm Corp Norbornene resin film, method of manufacturing norbornene resin film, polarization plate, optical compensation film for liquid crystal display panel, and antireflection film
JP2017000039A (en) * 2015-06-08 2017-01-05 キユーピー株式会社 Method for producing freezing liquid egg white
JP2017146616A (en) * 2017-04-28 2017-08-24 大日本印刷株式会社 Transfer body for optical film, optical film, production method of transfer body for optical film, and production method of optical film

Also Published As

Publication number Publication date
KR20210082159A (en) 2021-07-02
CN112771422A (en) 2021-05-07
KR20210079273A (en) 2021-06-29
CN112771423A (en) 2021-05-07
TW202033632A (en) 2020-09-16
JPWO2020085308A1 (en) 2021-09-24
WO2020085308A1 (en) 2020-04-30
CN112771423B (en) 2023-10-27
JPWO2020085310A1 (en) 2021-10-07
TW202033339A (en) 2020-09-16
CN116804778A (en) 2023-09-26
CN112805136A (en) 2021-05-14
KR20210079272A (en) 2021-06-29
CN112805136B (en) 2023-06-20
CN112771422B (en) 2023-10-24
JPWO2020085307A1 (en) 2021-09-30
TWI824046B (en) 2023-12-01
WO2020085307A1 (en) 2020-04-30
CN112789531B (en) 2023-10-27
KR20210082163A (en) 2021-07-02
JPWO2020085309A1 (en) 2021-09-24
WO2020085309A1 (en) 2020-04-30
CN112789531A (en) 2021-05-11

Similar Documents

Publication Publication Date Title
JP7187764B2 (en) liquid crystal display
JP2003121641A (en) Laminated optical retardation film, polarizing member and liquid crystal display device
JP2018022060A (en) Long-size polarizing film and liquid crystal display, and electret luminescence display
KR20080018853A (en) Method of producing optical film, optical film, polarizer plate, transfer material, liquid crystal display device, and polarized ultraviolet exposure apparatus
WO2020085310A1 (en) Liquid crystal compound alignment layer transfer film
JP7406977B2 (en) Method for manufacturing optical laminates
WO2019182121A1 (en) Electroluminescent display device
JP2023081987A (en) Manufacturing method of polarizing plate
JP2009157343A (en) Polarizing plate and liquid crystal display using the same
JP6954502B1 (en) Laminate for thin film layer transfer
JP4612561B2 (en) Polarizer
WO2019182120A1 (en) Electroluminescent display device
JP7392278B2 (en) Method for manufacturing liquid crystal compound laminate and method for inspecting liquid crystal compound layer
JP6598864B2 (en) Optical laminated body, polarizing plate, manufacturing method of polarizing plate, and image display device
JP7331400B2 (en) FLEXIBLE IMAGE DISPLAY DEVICE AND METHOD FOR MANUFACTURING CIRCULARLY POLARIZED PLATE USED THEREOF
JP7404635B2 (en) Method for producing aligned liquid crystal compound layer laminate
JP7385380B2 (en) Manufacturing method of polarizing plate with retardation layer and hard coat layer
WO2020241704A1 (en) Method for manufacturing image display device and polarizer transfer laminate
WO2023276611A1 (en) Method for producing polarizing plate, method for producing organic electroluminescent display device, polarizing plate, organic electroluminescent display device, and liquid crystal display device
WO2023163119A1 (en) Antireflection film and organic electroluminescent display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19876887

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2020553398

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19876887

Country of ref document: EP

Kind code of ref document: A1