WO2023163119A1 - Antireflection film and organic electroluminescent display device - Google Patents

Antireflection film and organic electroluminescent display device Download PDF

Info

Publication number
WO2023163119A1
WO2023163119A1 PCT/JP2023/006796 JP2023006796W WO2023163119A1 WO 2023163119 A1 WO2023163119 A1 WO 2023163119A1 JP 2023006796 W JP2023006796 W JP 2023006796W WO 2023163119 A1 WO2023163119 A1 WO 2023163119A1
Authority
WO
WIPO (PCT)
Prior art keywords
optically anisotropic
film
liquid crystal
layer
crystal compound
Prior art date
Application number
PCT/JP2023/006796
Other languages
French (fr)
Japanese (ja)
Inventor
暢之 芥川
義明 久門
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2023163119A1 publication Critical patent/WO2023163119A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/86Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays

Definitions

  • the present invention relates to an antireflection film and an organic electroluminescence display device.
  • Patent Document 1 discloses a retardation plate in which two kinds of optically anisotropic layers exhibiting predetermined optical properties are laminated.
  • the present inventors have studied a retardation plate having a plurality of optically anisotropic layers described in Patent Document 1 and the like, and found that when the optically anisotropic layers are laminated via an adhesive layer, clarified that in-plane color unevenness (hereinafter abbreviated as "rainbow unevenness”) occurs when the film is used as an antireflection film in an organic EL display device.
  • in-plane color unevenness hereinafter abbreviated as "rainbow unevenness”
  • an object of the present invention is to provide an antireflection film and an organic EL display device that can suppress the occurrence of iridescent unevenness when used in an organic EL display device.
  • An antireflection film comprising a polarizer, a first optically anisotropic film, and a second optically anisotropic film in this order, Both the first optically anisotropic film and the second optically anisotropic film have an optically anisotropic layer formed by fixing an oriented liquid crystal compound, The first optically anisotropic film and the second optically anisotropic film are laminated via an adhesive layer, An antireflection film having a standard deviation ⁇ of less than 35 nm of film thickness values calculated when the thickness of the pressure-sensitive adhesive layer is measured by an interference film thickness meter.
  • An antireflection film comprising a polarizer, a first optically anisotropic film, and a second optically anisotropic film in this order, Both the first optically anisotropic film and the second optically anisotropic film have an optically anisotropic layer formed by fixing an oriented liquid crystal compound, The first optically anisotropic film and the second optically anisotropic film are laminated via an adhesive layer, The ratio of the standard deviation ⁇ (nm) of the film thickness value calculated when the thickness of the adhesive layer is measured with an interference film thickness gauge to the thickness ( ⁇ m) of the adhesive layer is 7.0 or less. prevention film.
  • the antireflection film is elongated, The antireflection film according to any one of [1] to [5], wherein the angle between the longitudinal direction of the antireflection film and the in-plane slow axis of the first optically anisotropic film is 40 to 85°. .
  • the second optically anisotropic film comprises an optically anisotropic layer in which a twisted rod-like liquid crystal compound having a helical axis in the thickness direction is fixed, and an optical film in which a vertically aligned rod-like liquid crystal compound is fixed.
  • An organic electroluminescence display device comprising the antireflection film according to any one of [1] to [10].
  • an antireflection film and an organic EL display device that can suppress the occurrence of iridescent unevenness when used in an organic EL display device.
  • FIG. 1 is an example of a schematic cross-sectional view of one embodiment of the antireflection film of the present invention.
  • FIG. 2 shows the relationship between the absorption axis of the polarizer and the in-plane slow axes of the first optically anisotropic film and the second optically anisotropic film in one embodiment of the antireflection film of the present invention.
  • FIG. 4 is a diagram showing relationships;
  • FIG. 3 shows the relationship between the absorption axis of the polarizer and the in-plane slow axes of the first optically anisotropic film and the second optically anisotropic film when observed from the direction of the white arrow in FIG.
  • FIG. 4 is a schematic diagram showing the relationship of angles;
  • each component may use the substance applicable to each component individually by 1 type, or may use 2 or more types together.
  • the content of the component refers to the total content of the substances used in combination unless otherwise specified.
  • (meth)acryl is a notation representing "acryl” or “methacryl”
  • (meth)acryloyl is a notation representing "acryloyl” or “methacryloyl”.
  • the slow axis is defined at 550 nm unless otherwise specified.
  • Re( ⁇ ) and Rth( ⁇ ) represent in-plane retardation and thickness direction retardation at wavelength ⁇ , respectively.
  • the wavelength ⁇ is 550 nm.
  • Re( ⁇ ) and Rth( ⁇ ) are values measured at wavelength ⁇ with AxoScan (manufactured by Axometrics).
  • AxoScan manufactured by Axometrics.
  • Re( ⁇ ) R0( ⁇ )
  • Average refractive index values of main optical films are exemplified below: cellulose acylate (1.48), cycloolefin polymer (1.52), polycarbonate (1.59), polymethyl methacrylate (1.49), and polystyrene (1.59).
  • light means actinic rays or radiation, and includes, for example, the emission line spectrum of mercury lamps, far ultraviolet rays represented by excimer lasers, extreme ultraviolet rays (EUV light: Extreme Ultraviolet), X-rays, ultraviolet rays, and electron beam (EB). Among them, ultraviolet rays are preferable.
  • EUV light Extreme Ultraviolet
  • X-rays extreme ultraviolet rays
  • EB electron beam
  • ultraviolet rays are preferable.
  • visible light refers to light of 380 to 780 nm.
  • the measurement wavelength is 550 nm unless otherwise specified.
  • the angular relationship shall include the range of error that is permissible in the technical field to which the present invention belongs. Specifically, it means that the exact angle is within a range of less than ⁇ 10°, and the error from the strict angle is preferably within a range of ⁇ 5° or less, and within a range of ⁇ 3° or less. is more preferable.
  • the horizontal orientation of the rod-like liquid crystal compound refers to a state in which the major axes of the liquid crystal compound are aligned horizontally and in the same direction with respect to the layer surface.
  • the term “horizontal” does not mean that the layer is strictly horizontal, but means an orientation in which the tilt angle between the average molecular axis of the liquid crystal compound in the layer and the layer surface is less than 20°.
  • the same orientation does not strictly require the same orientation, but when the slow axis orientation is measured at arbitrary 20 positions in the plane, the slow axis The maximum difference in the slow axis orientations among the orientations of .
  • the vertical alignment of the discotic liquid crystal compound means a state in which the disc axis of the liquid crystal compound is aligned perpendicularly to the layer surface and in the same direction.
  • the term "perpendicular" does not mean that the liquid crystal compound in the layer must be strictly perpendicular, but means that the liquid crystal compound in the layer has an inclination angle of 70 to 110° between the disc surface and the layer surface.
  • the same orientation does not strictly require the same orientation, but when the slow axis orientation is measured at arbitrary 20 positions in the plane, the slow axis The maximum difference in the slow axis orientations among the orientations of .
  • the optically anisotropic layer refers to a layer formed by fixing an aligned liquid crystal compound.
  • the "fixed" state is a state in which the orientation of the liquid crystal compound is maintained. Specifically, the layer does not have fluidity at a temperature range of 0 to 50° C., or -30 to 70° C. under more severe conditions, and the orientation is changed by an external field or force. It is more preferable to be in a state in which the fixed alignment form can be stably maintained.
  • the antireflection film according to the first embodiment of the present invention is an antireflection film having a polarizer, a first optically anisotropic film, and a second optically anisotropic film in this order. Further, in the antireflection film according to the first embodiment of the present invention, both the first optically anisotropic film and the second optically anisotropic film are optically anisotropic films in which an oriented liquid crystal compound is fixed. It has an anisotropic layer. Also, in the antireflection film according to the first embodiment of the present invention, the first optically anisotropic film and the second optically anisotropic film are laminated via an adhesive layer.
  • the standard deviation ⁇ of the film thickness value calculated when the thickness of the pressure-sensitive adhesive layer is measured with an interference film thickness meter (hereinafter referred to as “thickness unevenness ⁇ ” ) is less than 35 nm.
  • the antireflection film according to the second embodiment of the present invention is an antireflection film having a polarizer, a first optically anisotropic film, and a second optically anisotropic film in this order. Further, in the antireflection film according to the second embodiment of the present invention, both the first optically anisotropic film and the second optically anisotropic film are optically anisotropic films in which an oriented liquid crystal compound is fixed. It has an anisotropic layer. Also, in the antireflection film according to the second embodiment of the present invention, the first optically anisotropic film and the second optically anisotropic film are laminated via an adhesive layer.
  • the thickness ( ⁇ m) of the pressure-sensitive adhesive layer is calculated when the thickness of the pressure-sensitive adhesive layer is measured with an interference film thickness meter.
  • the ratio of deviation ⁇ (nm) [thickness unevenness ⁇ (nm)/thickness ( ⁇ m)] is 7.0 or less. That is, the antireflection film according to the second embodiment of the present invention is the same as the antireflection film according to the first embodiment of the present invention except for the thickness of the adhesive layer.
  • the pressure-sensitive adhesive layer in the antireflection film according to the first embodiment and the second embodiment of the present invention (hereinafter simply abbreviated as “antireflection film of the present invention” when no distinction is required)
  • the thickness value (unit: ⁇ m) and the thickness unevenness ⁇ (unit: nm) refer to values calculated under the following conditions.
  • the thickness of the adhesive layer is determined by measuring the reflectance of the antireflection film (objective lens: 5x) using a microscopic spectroscopic film thickness meter (OPTM, manufactured by Otsuka Electronics), and Fourier analysis using the analysis software in the same device. Calculated by conversion (calculation wavelength: 400 to 800 nm, Bell function: available).
  • the optical film of the pressure-sensitive adhesive layer is calculated by dividing the thickness by the refractive index of the adhesive layer.
  • This measurement and calculation are performed at intervals of 1 mm for 3 cm from an arbitrary position on the antireflection film, and the average value of the calculation results of 31 points is taken as the "thickness of the pressure-sensitive adhesive layer.” Further, the thickness unevenness ⁇ is calculated as the standard deviation of the thickness of the pressure-sensitive adhesive layer at 31 points obtained by performing the above measurement from an arbitrary position of the antireflection film at intervals of 3 cm and 1 mm.
  • the thickness unevenness ⁇ of the adhesive layer is less than 35 nm, or the ratio [thickness unevenness ⁇ (nm)/thickness ( ⁇ m)] is 7.0 or less. It is possible to suppress the occurrence of iridescent unevenness when used in an EL display device.
  • the present inventors presume as follows. That is, when the antireflection film of the present invention is used, any one of the first optically anisotropic film and the second optically anisotropic film arranged on the viewing side when used in an organic EL display device, Interference light generated at the interface with the pressure-sensitive adhesive layer can be homogenized in the plane, so it is thought that the occurrence of iridescent unevenness could be suppressed.
  • the thickness unevenness ⁇ of the pressure-sensitive adhesive layer is less than 35 nm, and the first optically anisotropic film and the second optically anisotropic film
  • the thickness is preferably more than 3 nm because it is difficult for air bubbles to enter during lamination with the film. That is, the thickness unevenness ⁇ of the pressure-sensitive adhesive layer is preferably more than 3 nm and less than 35 nm, more preferably 5 nm or more and 30 nm or less.
  • the adhesive layer ratio [thickness unevenness ⁇ (nm)/thickness ( ⁇ m)] is 7.0 or less. Since it can be suppressed, it is preferably 4.5 or less.
  • the lower limit is not particularly limited, it is preferably 0.1 or more.
  • the polarizer, the first optically anisotropic film and the second optically anisotropic film, and the first optically anisotropic film and the second optically anisotropic film of the antireflection film of the present invention are described below.
  • the pressure-sensitive adhesive layer (hereinafter abbreviated as "specific pressure-sensitive adhesive layer") used for lamination with a flexible film will be described in detail, but the specific pressure-sensitive adhesive layer, which is a feature of the present invention, will be described first.
  • the specific pressure-sensitive adhesive layer of the antireflection film of the present invention has a thickness unevenness ⁇ of less than 35 nm in the first aspect, and a ratio [thickness unevenness ⁇ (nm)/thickness ( ⁇ m)] in the second aspect. If it is 7.0 or less, a conventionally known pressure-sensitive adhesive layer can be used.
  • Examples of adhesives contained in the specific adhesive layer include rubber-based adhesives, acrylic adhesives, silicone-based adhesives, urethane-based adhesives, vinyl alkyl ether-based adhesives, polyvinyl alcohol-based adhesives, and polyvinylpyrrolidone-based adhesives.
  • Examples include pressure-sensitive adhesives, polyacrylamide-based pressure-sensitive adhesives, cellulose-based pressure-sensitive adhesives, and the like.
  • acrylic adhesives pressure-sensitive adhesives
  • acrylic pressure-sensitive adhesives are preferable from the viewpoint of transparency, weather resistance, heat resistance, and the like.
  • a (meth)acrylic polymer is used and usually contains alkyl (meth)acrylate as a main component as a monomer unit.
  • alkyl (meth)acrylate constituting the main skeleton of the (meth)acrylic polymer examples include linear or branched alkyl groups having 1 to 18 carbon atoms. These can be used alone or in combination. The average carbon number of these alkyl groups is preferably 3-9.
  • Alkyl (meth)acrylates containing an aromatic ring such as phenoxyethyl (meth)acrylate and benzyl (meth)acrylate can also be used.
  • the alkyl (meth) acrylate containing an aromatic ring may be used by mixing a polymer obtained by polymerizing this with the (meth) acrylic polymer exemplified above, or may be used by copolymerizing with the alkyl (meth) acrylate. good too. From the viewpoint of transparency, copolymerization is preferred. Details of the adhesive are described, for example, in [0071]-[0084] of JP-A-2018-60014. The description of the publication is incorporated herein by reference.
  • the method for forming the specific pressure-sensitive adhesive layer is not particularly limited, but for example, a method of applying a pressure-sensitive adhesive solution onto a release sheet, drying it, and then transferring it to the surface of a transparent polymer layer; It can be formed by a method of applying directly to the surface of the polymer layer and drying.
  • the adhesive solution is prepared as a solution of about 10 to 40% by mass by dissolving or dispersing the adhesive in a solvent such as toluene or ethyl acetate.
  • a roll coating method such as reverse coating or gravure coating, a spin coating method, a screen coating method, a fountain coating method, a dipping method, a spray method, or the like can be employed.
  • Materials constituting the release sheet include, for example, synthetic polymer films such as polyethylene, polypropylene, and polyethylene terephthalate; rubber sheets; paper; cloth; mentioned.
  • the refractive index of the specific pressure-sensitive adhesive layer is preferably 1.36 or more and 1.53 or less. more preferred.
  • the thickness of the specific pressure-sensitive adhesive layer is preferably 2 to 20 ⁇ m, more preferably 3 to 15 ⁇ m, more preferably 4 to 12 ⁇ m, for the reason of good durability. More preferred.
  • the polarizer included in the antireflection film of the present invention may be any member as long as it has a function of converting natural light into specific linearly polarized light, and examples thereof include absorptive polarizers.
  • the type of polarizer is not particularly limited, and commonly used polarizers can be used. Examples thereof include iodine-based polarizers, dye-based polarizers using dichroic dyes, and polyene-based polarizers. Iodine-based polarizers and dye-based polarizers are generally produced by allowing polyvinyl alcohol to adsorb iodine or a dichroic dye and stretching the resultant.
  • a protective film may be arranged on one side or both sides of the polarizer.
  • a liquid crystal compound and a dichroic organic dye e.g., A coated polarizer prepared by coating using a dichroic azo dye used in a light-absorbing anisotropic film described in International Publication No. 2017/195833 may be used. That is, the polarizer may be a polarizer formed using a composition containing a polymerizable liquid crystal compound. This coated polarizer is a technique for orienting a dichroic organic dye by utilizing the orientation of a liquid crystal compound.
  • a polarizer in which a dichroic organic dye is oriented by utilizing the orientation of liquid crystal without stretching has the following characteristics. It can be made very thin with a thickness of about 0.1 ⁇ m to 5 ⁇ m, and as described in JP-A-2019-194685, it is difficult for cracks to occur when bent and thermal deformation is small. As described in 1., even a polarizing plate with a high transmittance exceeding 50% has many advantages such as excellent durability. By taking advantage of these advantages, it can be used for applications requiring high brightness, small size and light weight, applications for fine optical systems, applications for molding parts having curved surfaces, and applications for flexible parts. Of course, it is also possible to peel off the support and transfer the polarizer for use.
  • the visibility correction single transmittance is preferably 40% or more, more preferably 44% or more, and even more preferably 50% or more, from the viewpoint of power saving.
  • the upper limit is not particularly limited, and is preferably 60% or less.
  • the luminous efficiency correction single transmittance of the polarizer is measured using an automatic polarizing film measuring device: VAP-7070 (manufactured by JASCO Corporation).
  • the visibility correction single transmittance can be measured as follows. A sample (5 cm ⁇ 5 cm) is prepared by pasting a polarizer onto glass via an adhesive. At this time, the polarizing plate protective film is attached to the polarizer so as to face the opposite side (air interface) to the glass.
  • the structure of the polarizer protective film is not particularly limited, and may be, for example, a support or a coating layer, or a laminate of a support and a coating layer.
  • a known layer can be used, and for example, a layer obtained by polymerizing and curing a polymer or a polyfunctional monomer may be used.
  • Polymers include (meth)acrylic polymers and cycloolefin polymers.
  • Polymerizable monomers include radically polymerizable or cationically polymerizable compounds.
  • the bonding surface between the polarizer and the protective film is not particularly limited. A side may be laminated with a polarizer.
  • the first optically anisotropic film of the antireflection film of the present invention has an optically anisotropic layer in which an oriented liquid crystal compound is fixed.
  • the liquid crystal compound can be classified into a rod-like type and a disk-like type according to its shape. Furthermore, there are low-molecular-weight and high-molecular-weight types, respectively.
  • Polymers generally refer to those having a degree of polymerization of 100 or more (Polymer Physics: Phase Transition Dynamics, Masao Doi, p. 2, Iwanami Shoten, 1992). Although any liquid crystal compound can be used in the present invention, rod-like liquid crystal compounds or discotic liquid crystal compounds (disk-like liquid crystal compounds) are preferred.
  • the liquid crystal compound preferably has a polymerizable group from the viewpoint of fixing the alignment.
  • polymerizable groups include, for example, acryloyl groups, methacryloyl groups, epoxy groups, and vinyl groups.
  • the liquid crystal compound which has a polymerizable group is abbreviated as a "polymerizable liquid crystal compound.”
  • Rod-shaped liquid crystal compounds include azomethines, azoxys, cyanobiphenyls, cyanophenyl esters, benzoic acid esters, cyclohexanecarboxylic acid phenyl esters, cyanophenylcyclohexanes, cyano-substituted phenylpyrimidines, alkoxy-substituted phenylpyrimidines, Phenyldioxanes, tolanes and alkenylcyclohexylbenzonitriles are preferably used.
  • rod-like liquid crystal compounds are fixed by introducing a polymerizable group into the terminal structure of the rod-like liquid crystal compound (similar to the disk-like liquid crystal described below) and utilizing this polymerization and curing reaction.
  • a polymerizable nematic rod-like liquid crystal compound is cured with ultraviolet light is described in JP-A-2006-209073.
  • high-molecular-weight liquid crystal compounds can be used.
  • a high-molecular-weight liquid crystal compound is a polymer having a side chain corresponding to the low-molecular-weight liquid crystal compound as described above.
  • An optical compensatory sheet using a polymer liquid crystal compound is described in JP-A-5-53016.
  • the molecule of the discotic liquid crystal compound exhibits liquid crystallinity, which is a structure in which straight-chain alkyl groups, alkoxy groups, and substituted benzoyloxy groups are substituted radially as side chains of the mother core at the center of the molecule.
  • Compounds are also included. Molecules or aggregates of molecules are preferably compounds that have rotational symmetry and can be given a certain orientation.
  • a retardation layer formed from a composition containing a discotic liquid crystal compound does not need to exhibit liquid crystallinity in the state of being finally included in the retardation layer.
  • discotic liquid crystal compounds include compounds described in JP-A-8-50206.
  • the polymerization of discotic liquid crystalline molecules is described in JP-A-8-27284.
  • the discotic core and the polymerizable group are preferably a compound that bonds via a linking group, so that the alignment state can be maintained even during the polymerization reaction.
  • compounds described in Paragraph Nos. [0151] to [0168] in JP-A-2000-155216 can be mentioned.
  • the first optically anisotropic film is an optically anisotropic layer (hereinafter referred to as “optically anisotropic It is also abbreviated as the “active layer (A)”).
  • the in-plane retardation of the first optically anisotropic film at a wavelength of 550 nm is preferably 140 to 220 nm. 150 to 200 nm is more preferable in terms of further suppressing the tint of black (hereinafter also simply referred to as "the point of further suppressing the tint of black").
  • the refractive index of the first optically anisotropic film is preferably 1.50 or more and 1.70 or less, more preferably 1.55 or more and 1.55 or more, from the viewpoint of increasing the refractive index anisotropy and making the film thinner. It is more preferably 65 or less.
  • the angle formed by the in-plane slow axis of the first optically anisotropic film and the absorption axis of the polarizer is preferably 40 to 85°, more preferably 50 to 85°, and 65 to 85°. is more preferred.
  • the angle formed by the longitudinal direction of the antireflection film and the in-plane slow axis of the first optically anisotropic film is preferably 40 to 85°. ⁇ 85° is more preferred, and 65 to 85° is even more preferred.
  • the second optically anisotropic film of the antireflection film of the present invention has an optically anisotropic layer in which an oriented liquid crystal compound is fixed.
  • the same liquid crystal compound as described in the first optically anisotropic film can be used.
  • the second optically anisotropic film preferably comprises two or more optically anisotropic layers from the viewpoint of improving reflectance and color in oblique directions.
  • An optically anisotropic layer (hereinafter also abbreviated as “optically anisotropic layer (B)”) comprising a twisted rod-shaped liquid crystal compound fixed as a helical axis, and a vertically aligned rod-shaped liquid crystal compound fixed. More preferably, it is composed of a laminate with an optically anisotropic layer (hereinafter also abbreviated as “optically anisotropic layer (C)”).
  • the optically anisotropic layer (B) is an optically anisotropic layer formed by fixing a twisted rod-like liquid crystal compound having a helical axis in the thickness direction, and has a so-called chiral nematic phase having a helical structure. It is preferably a fixed layer.
  • the product ⁇ nd of the refractive index anisotropy ⁇ n of the optically anisotropic layer (B) measured at a wavelength of 550 nm and the thickness d of the optically anisotropic layer (B) is preferably 140 to 220 nm, and has a black tint. 150 to 210 nm is more preferable, and 160 to 200 nm is even more preferable, in terms of further suppressing sticking.
  • the refractive index anisotropy ⁇ n means the refractive index anisotropy of the optically anisotropic layer.
  • the above ⁇ nd is measured using an AxoScan (polarimeter) device manufactured by Axometrics using the company's device analysis software.
  • the twist angle of the liquid crystal compound (the twist angle of the orientation direction of the liquid crystal compound) is preferably 90 ⁇ 30° (in the range of 60 to 120°), and is preferably 90 ⁇ 20° ( 70 to 110°) is more preferable, and 90 ⁇ 10° (within the range of 80 to 100°) is even more preferable.
  • the torsion angle is measured using an AxoScan (polarimeter) device manufactured by Axometrics using the company's device analysis software.
  • the twist alignment of the liquid crystal compound means that the liquid crystal compound is twisted from one main surface to the other main surface of the optically anisotropic layer (B) about the thickness direction of the optically anisotropic layer (B). intended to be Accordingly, the alignment direction (in-plane slow axis direction) of the liquid crystal compound varies depending on the position in the thickness direction of the optically anisotropic layer (B).
  • chiral agent chiral agent
  • Various known chiral agents can be used as the chiral agent used to form the twisted alignment of the liquid crystal compound.
  • a chiral agent has a function of inducing a helical structure of a liquid crystal compound.
  • the chiral compound may be selected depending on the purpose, since the induced helical sense or helical pitch differs depending on the compound.
  • a known compound can be used as the chiral agent, but it preferably has a cinnamoyl group. Examples of chiral agents include Liquid Crystal Device Handbook (Chapter 3, Section 4-3, Chiral Agents for TN and STN, page 199, Japan Society for the Promotion of Science, 142nd Committee, 1989), and JP-A-2003-287623.
  • JP-A-2002-302487, JP-A-2002-80478, JP-A-2002-80851, JP-A-2010-181852 and JP-A-2014-034581 and the like are exemplified. be.
  • a chiral agent generally contains an asymmetric carbon atom, but an axially chiral compound or planar chiral compound that does not contain an asymmetric carbon atom can also be used as the chiral agent.
  • axially or planarly chiral compounds include binaphthyl, helicene, paracyclophane and derivatives thereof.
  • the chiral agent may have a polymerizable group. When both the chiral agent and the liquid crystal compound have a polymerizable group, the polymerization reaction of the polymerizable chiral agent and the polymerizable liquid crystal compound produces a repeating unit derived from the polymerizable liquid crystal compound and a repeating unit derived from the chiral agent.
  • the polymerizable group possessed by the polymerizable chiral agent is preferably the same type of group as the polymerizable group possessed by the polymerizable liquid crystal compound. Therefore, the polymerizable group of the chiral agent is also preferably an unsaturated polymerizable group, an epoxy group or an aziridinyl group, more preferably an unsaturated polymerizable group, and an ethylenically unsaturated polymerizable group. Especially preferred. Also, the chiral agent may be a liquid crystal compound.
  • isosorbide derivatives As chiral agents, isosorbide derivatives, isomannide derivatives, binaphthyl derivatives, and the like can be preferably used.
  • isosorbide derivative a commercially available product such as LC-756 manufactured by BASF may be used.
  • the content of the chiral agent in the liquid crystal composition is preferably 0.01 to 200 mol %, more preferably 1 to 30 mol % of the amount of the liquid crystal compound.
  • the optically anisotropic layer (C) is a layer formed by fixing a vertically aligned rod-like liquid crystal compound, and preferably a layer containing a photo-alignable polymer described later.
  • the in-plane retardation of the optically anisotropic layer (C) at a wavelength of 550 nm is preferably 0 to 10 nm.
  • the retardation in the thickness direction of the optically anisotropic layer (C) at a wavelength of 550 nm is preferably -120 to -20 nm.
  • the in-plane retardation is more preferably 0 to 5 nm in terms of further suppressing black tint.
  • the retardation in the thickness direction is more preferably ⁇ 110 to ⁇ 30 nm, more preferably ⁇ 100 to ⁇ 40 nm, in terms of further suppressing black tint.
  • the antireflection film of the present invention has, as the first optically anisotropic film, an optically anisotropic layer (A) formed by fixing a vertically aligned discotic liquid crystal compound, and the second optically anisotropic film. and an optically anisotropic layer (B) in which a twisted rod-shaped liquid crystal compound having a helical axis in the thickness direction is fixed, and an optically anisotropic layer (C) in which a vertically aligned rod-shaped liquid crystal compound is fixed.
  • specific embodiment having two layers of is preferred.
  • FIG. 1 is a schematic cross-sectional view of one embodiment of an antireflection film 100.
  • FIG. 2 shows the absorption axis of the polarizer 20 and the in-plane retardation of the optically anisotropic layer (A) 12 and the optically anisotropic layer (B) 14 in the antireflection film 100 shown in FIG. It is a figure which shows the relationship with an axis
  • the arrow in the polarizer 20 in FIG. 2 indicates the absorption axis
  • the arrow in the optically anisotropic layer (A) 12 and the optically anisotropic layer (B) 14 indicates the in-plane slow axis in each layer.
  • the twist direction of the liquid crystal compound is the in-plane slow axis on the front side (polarizer 20 side) surface of the optically anisotropic layer (B) 14 when observed from the white arrow in FIG.
  • the right twist (clockwise) or the left twist (counterclockwise) is determined based on .
  • the antireflection film 100 includes a polarizer 20, an optically anisotropic layer (A) 12, an optically anisotropic layer (B) 14, and an optically anisotropic layer (C) 16. in that order.
  • the antireflection film of the present invention has a specific adhesive layer (not shown) between the optically anisotropic layer (A) 12 and the optically anisotropic layer (B) 14 .
  • the angle ⁇ a1 between the absorption axis of the polarizer 20 and the in-plane slow axis of the optically anisotropic layer (A) 12 is 76°.
  • the in-plane slow axis of the optically anisotropic layer (A) 12 is rotated by ⁇ 76° (76° clockwise) with respect to the absorption axis of the polarizer 20 .
  • 2 and 3 show an aspect in which the in-plane slow axis of the optically anisotropic layer (A) 12 is at -76°, but the present invention is not limited to this aspect, and is -40°. It is preferably within the range of -85°, more preferably within the range of -50° to -85°, and even more preferably within the range of -65° to -85°.
  • the angle between the absorption axis of the polarizer 20 and the in-plane slow axis of the optically anisotropic layer (A) 12 is preferably within the range of 40 to 85°, more preferably within the range of 50 to 85°. and more preferably in the range of 65 to 85°.
  • the in-plane slow axis and the optical anisotropic The in-plane slow axis at the surface 122 of the optical layer (A) 12 on the optically anisotropic layer (B) 14 side is parallel.
  • the in-plane slow axis of the optically anisotropic layer (A) 12 and the surface 141 of the optically anisotropic layer (B) 14 on the side of the optically anisotropic layer (A) 12 is parallel to the in-plane slow axis at .
  • the present invention is not limited to this embodiment, and the in-plane slow axis of the optically anisotropic layer (A) 12 and the optically anisotropic layer (A) 12 side of the optically anisotropic layer (B) 14
  • the angle formed with the in-plane slow axis on the surface 141 is preferably within the range of 0 to 20°.
  • the optically anisotropic layer (B) 14 is, as described above, an optically anisotropic layer formed by fixing a rod-like liquid crystal compound twisted with its helical axis in the thickness direction. Therefore, as shown in FIGS. 2 and 3, the in-plane slow axis on the surface 141 of the optically anisotropic layer (B) 14 on the side of the optically anisotropic layer (A) 12 The in-plane slow axis on the surface 142 opposite to the optically anisotropic layer (A) 12 of B) 14 forms the above-described twist angle (81° in FIG. 2).
  • the angle ⁇ 2 between the surface 142 opposite to the 12 side and the in-plane slow axis is 81°.
  • the twist direction of the rod-like liquid crystal compound in the optically anisotropic layer (B) 14 is left twist (counterclockwise), and the twist angle is 81°.
  • the twist angle of the compound is preferably within the range of 80 ⁇ 30°. That is, the in-plane slow axis on the surface 141 of the optically anisotropic layer (B) 14 on the side of the optically anisotropic layer (A) 12 and the optically anisotropic layer (B) 14 of the optically anisotropic layer (B) 14 A)
  • the angle formed by the in-plane slow axis on the surface 142 opposite to the 12 side is preferably within the range of 80 ⁇ 30°.
  • the absorption axis of the polarizer 20 is used as a reference for the optically anisotropic layer (A) 12.
  • the in-plane slow axis is rotated clockwise by 76°, and the twist direction of the rod-like liquid crystal compound in the optically anisotropic layer (B) 14 is counterclockwise (left twist).
  • the twist direction of the rod-like liquid crystal compound is counterclockwise, but it may be twisted clockwise as long as it satisfies a predetermined angle relationship.
  • the in-plane slow axis of the optically anisotropic layer (A) 12 is counterclockwise with respect to the absorption axis of the polarizer 20.
  • the twist direction of the rod-like liquid crystal compound in the optically anisotropic layer (B) 14 may be clockwise (right twist).
  • the in-plane retardation of the optically anisotropic layer (A) is based on the absorption axis of the polarizer 20.
  • the phase axis rotates clockwise within the range of 40 to 85° (preferably 50 to 85°, more preferably 65 to 85°)
  • the optically anisotropic layer of the optically anisotropic layer (B) The twist direction of the rod-like liquid crystal compound in the optically anisotropic layer (B) is preferably counterclockwise with respect to the in-plane slow axis on the (A) side surface.
  • the in-plane retardation of the optically anisotropic layer (A) is measured with the absorption axis of the polarizer 20 as a reference.
  • the phase axis rotates counterclockwise within the range of 40 to 85° (preferably 50 to 85°, more preferably 65 to 85°)
  • the optical anisotropy of the optically anisotropic layer (B) The twist direction of the rod-like liquid crystal compound in the optically anisotropic layer (B) is preferably clockwise with respect to the in-plane slow axis on the surface of the layer (A).
  • the in-plane slow axis of the optically anisotropic layer (A) and the optically anisotropic layer (B ) with the in-plane slow axis on the surface of the optically anisotropic layer (A) is preferably in the range of 0 to 20°.
  • the antireflection film of the present invention may have an adhesion layer other than the specific adhesive layer described above, for example, between the polarizer and the first optically anisotropic film.
  • adhesion layer include known pressure-sensitive adhesive layers and adhesive layers.
  • the method for producing the antireflection film of the present invention is not particularly limited, and known methods can be employed.
  • a first optically anisotropic film and a second optically anisotropic film exhibiting predetermined optical properties are prepared, respectively, and optically anisotropic layers and substrates (for example, long supports) constituting these films are prepared. body, etc.) in a predetermined order via a specific pressure-sensitive adhesive layer, a pressure-sensitive adhesive layer, or an adhesive layer, an antireflection film can be produced.
  • a composition for forming an optically anisotropic layer is coated on a long support, and an optically anisotropic layer constituting a second optically anisotropic film (for example, the above-mentioned optically anisotropic After forming the optically anisotropic layer (C) and the optically anisotropic layer (B)) to obtain a laminate, a first layer formed by separately coating the composition for forming an optically anisotropic layer on the substrate is formed.
  • An antireflection film can be produced by laminating an optically anisotropic layer constituting an optically anisotropic film (for example, the optically anisotropic layer (A) described above) via a specific pressure-sensitive adhesive layer. .
  • the substrate, the composition for forming an optically anisotropic layer, and the like are described in detail below.
  • a transparent substrate is preferable as the substrate.
  • the transparent substrate means a substrate having a visible light transmittance of 60% or more, preferably 80% or more, more preferably 90% or more.
  • the thickness direction retardation value (Rth(550)) of the substrate at a wavelength of 550 nm is not particularly limited, but is preferably ⁇ 110 to 110 nm, more preferably ⁇ 80 to 80 nm.
  • the in-plane retardation value (Re(550)) of the substrate at a wavelength of 550 nm is not particularly limited, but is preferably 0 to 50 nm, more preferably 0 to 30 nm, even more preferably 0 to 10 nm.
  • Polymer films that can be used as substrates include, for example, cellulose acylate films (e.g., cellulose triacetate film (refractive index: 1.48), cellulose diacetate film, cellulose acetate butyrate film, cellulose acetate propionate film), Polyolefin films such as polyethylene and polypropylene, polyester films such as polyethylene terephthalate and polyethylene naphthalate, polyethersulfone films, polyacrylic films such as polymethylmethacrylate, polyurethane films, polycarbonate films, polysulfone films, polyether films, polymethylpentene films , polyether ketone film, (meth)acrylonitrile film, and polymer film having an alicyclic structure (norbornene resin (Arton: trade name, manufactured by JSR Corporation, amorphous polyo
  • the substrate may contain various additives (for example, optically anisotropic modifiers, wavelength dispersion modifiers, fine particles, plasticizers, UV inhibitors, deterioration inhibitors, release agents, etc.).
  • additives for example, optically anisotropic modifiers, wavelength dispersion modifiers, fine particles, plasticizers, UV inhibitors, deterioration inhibitors, release agents, etc.
  • the thickness of the substrate is not particularly limited, but is preferably 10 to 200 ⁇ m, more preferably 10 to 100 ⁇ m, even more preferably 20 to 90 ⁇ m.
  • the substrate may consist of a laminate of a plurality of sheets.
  • the substrate may be subjected to a surface treatment (eg, glow discharge treatment, corona discharge treatment, ultraviolet (UV) treatment, flame treatment) on the surface of the substrate to improve adhesion with the layer provided thereon.
  • a surface treatment eg, glow discharge treatment, corona discharge treatment, ultraviolet (UV) treatment, flame treatment
  • an adhesive layer undercoat layer
  • inorganic particles with an average particle size of about 10 to 100 nm are added to the substrate as a solid content in order to provide slipperiness during the transportation process and to prevent sticking between the back surface and the front surface after winding.
  • a polymer layer mixed with 5 to 40 mass % by mass ratio may be arranged on one side of the substrate.
  • the substrate may be a so-called temporary support.
  • the substrate may be peeled off from the optically anisotropic layer after the antireflection film of the invention is produced.
  • the surface of the substrate may be directly rubbed. That is, a substrate subjected to rubbing treatment may be used.
  • the direction of the rubbing treatment is not particularly limited, and an optimum direction is appropriately selected according to the direction in which the liquid crystal compound is to be oriented.
  • a treatment method that is widely employed as a liquid crystal alignment treatment step for LCDs (liquid crystal displays) can be applied. That is, a method of obtaining orientation can be used by rubbing the surface of the substrate in a given direction with paper, gauze, felt, rubber, nylon fiber, polyester fiber, or the like.
  • An alignment film may be arranged on the substrate.
  • the alignment film is formed by rubbing an organic compound (preferably polymer), oblique vapor deposition of an inorganic compound, formation of a layer having microgrooves, or organic compound (eg, ⁇ -tricosane) by the Langmuir-Blodgett method (LB film). acid, dioctadecylmethylammonium chloride, methyl stearate).
  • LB film Langmuir-Blodgett method
  • an alignment film is also known, in which an alignment function is produced by application of an electric field, application of a magnetic field, or light irradiation (preferably polarized light).
  • the alignment film also includes a photo-alignment film.
  • the thickness of the alignment film is not particularly limited as long as the alignment function can be exhibited. preferable.
  • the alignment film may be peelable from the optically anisotropic layer together with the substrate.
  • the liquid crystal compound contained in the composition for forming an optically anisotropic layer is as described above.
  • the rod-like liquid crystal compound and the discotic liquid crystal compound are appropriately selected according to the properties of the optically anisotropic layer to be formed.
  • the content of the polymerizable liquid crystal compound in the composition for forming an optically anisotropic layer is preferably 60 to 99% by mass, more preferably 70 to 98% by mass, based on the total solid content of the composition for forming an optically anisotropic layer. is more preferred.
  • the solid content means a component capable of forming an optically anisotropic layer from which the solvent has been removed.
  • the composition for forming an optically anisotropic layer may contain compounds other than the polymerizable liquid crystal compound.
  • the optically anisotropic layer-forming composition for forming the optically anisotropic layer (B) described above preferably contains a chiral agent in order to twist-align the liquid crystal compound.
  • the optically anisotropic layer-forming composition for forming the optically anisotropic layer (C) described above preferably contains a photo-orientable polymer.
  • the composition for forming an optically anisotropic layer may contain a polymerization initiator.
  • the polymerization initiator to be used is selected according to the type of polymerization reaction, and examples thereof include thermal polymerization initiators and photopolymerization initiators.
  • the content of the polymerization initiator in the composition for forming an optically anisotropic layer is preferably 0.01 to 20% by mass, more preferably 0.5 to 20% by mass, based on the total solid content of the composition for forming an optically anisotropic layer. 10% by mass is more preferred.
  • compositions for forming an optically anisotropic layer include, in addition to the above, polyfunctional monomers, alignment control agents (vertical alignment agents, horizontal alignment agents), surfactants, and adhesion improvement. agents, plasticizers, and solvents.
  • the procedure for forming the optically anisotropic layer is not particularly limited. Also referred to as "coating method”.) and the like.
  • the coating method is not particularly limited, and examples thereof include wire bar coating, extrusion coating, direct gravure coating, reverse gravure coating, and die coating.
  • the coating film coated on the substrate may be dried, if necessary.
  • the solvent can be removed from the coating film by performing a drying treatment.
  • the film thickness of the coating film is not particularly limited, it is preferably 0.1 to 20 ⁇ m, more preferably 0.2 to 15 ⁇ m, and even more preferably 0.5 to 10 ⁇ m.
  • the formed coating film is subjected to alignment treatment to align the polymerizable liquid crystal compound in the coating film.
  • the orientation treatment can be performed by drying the coating film at room temperature or by heating the coating film.
  • the liquid crystal phase formed by alignment treatment can generally be caused to transition by a change in temperature or pressure.
  • the transition can also be achieved by changing the composition ratio such as the amount of solvent.
  • the conditions for heating the coating film are not particularly limited, but the heating temperature is preferably 50 to 250° C., more preferably 50 to 150° C., and the heating time is preferably 10 seconds to 10 minutes.
  • the coating film may be cooled, if necessary, before the curing treatment (light irradiation treatment) to be described later.
  • the cooling temperature is preferably 20 to 200°C, more preferably 30 to 150°C.
  • the coating film in which the polymerizable liquid crystal compound is oriented is subjected to a curing treatment.
  • a curing treatment There are no particular limitations on the method of curing treatment performed on the coating film in which the polymerizable liquid crystal compound is oriented, and examples thereof include light irradiation treatment and heat treatment. Among them, light irradiation treatment is preferable, and ultraviolet irradiation treatment is more preferable, from the viewpoint of production aptitude.
  • the irradiation conditions for the light irradiation treatment are not particularly limited, but an irradiation amount of 50 to 1000 mJ/cm 2 is preferable.
  • the atmosphere during the light irradiation treatment is not particularly limited, a nitrogen atmosphere is preferred.
  • the optically anisotropic layer contains a photo-alignable polymer
  • a photo-alignment treatment for example, a coating film (including a cured film subjected to a curing treatment) of the polymerizable liquid crystal composition is irradiated with polarized light, or the coating film surface is irradiated with non-polarized light from an oblique direction. is mentioned.
  • the polarized light to be irradiated is not particularly limited, and examples thereof include linearly polarized light, circularly polarized light, and elliptically polarized light, with linearly polarized light being preferred.
  • the “oblique direction” in which non-polarized light is irradiated is not particularly limited as long as it is a direction inclined at a polar angle ⁇ (0 ⁇ 90°) with respect to the normal direction of the coating film surface, depending on the purpose. ⁇ is preferably 20 to 80°.
  • the wavelength of polarized light or non-polarized light is not particularly limited as long as it is light to which the photo-orientation group is sensitive.
  • Light sources for polarized or non-polarized light irradiation include, for example, xenon lamps, high-pressure mercury lamps, extra-high pressure mercury lamps, and metal halide lamps.
  • an interference filter or a color filter for the ultraviolet light or visible light obtained from such a light source the wavelength range to be irradiated can be limited.
  • a polarizing filter or a polarizing prism for the light from these light sources, linearly polarized light can be obtained.
  • the integrated amount of polarized or unpolarized light is not particularly limited, and is preferably 1 to 300 mJ/cm 2 , more preferably 5 to 100 mJ/cm 2 .
  • the illuminance of polarized or unpolarized light is not particularly limited, and is preferably 0.1-300 mW/cm 2 , more preferably 1-100 mW/cm 2 .
  • Organic EL display device has the antireflection film described above.
  • An antireflection film is usually provided on an organic EL display panel of an organic EL display device. That is, the organic EL display device of the present invention has an organic EL display panel and the antireflection film described above.
  • An organic EL display panel is a member in which a light-emitting layer or a plurality of organic compound thin films including a light-emitting layer are formed between a pair of electrodes of an anode and a cathode. It may have a layer, an electron transport layer, a protective layer, etc., and each of these layers may have other functions. Various materials can be used to form each layer.
  • Example 1-1 ⁇ Preparation of cellulose acylate film (substrate)> The following composition was put into a mixing tank, stirred, and heated at 90° C. for 10 minutes. Thereafter, the resulting composition was filtered through a filter paper with an average pore size of 34 ⁇ m and a sintered metal filter with an average pore size of 10 ⁇ m to prepare a dope.
  • the solid content concentration of the dope was 23.5% by mass
  • the amount of the plasticizer added was the ratio to the cellulose acylate
  • Cellulose acylate dope Cellulose acylate (acetyl substitution degree 2.86, viscosity average polymerization degree 310) 100 parts by mass sugar ester compound 1 (represented by formula (S4) below) 6.0 parts by mass sugar ester compound 2 (represented by formula (S5) below) 2.0 parts by mass silica particle dispersion (AEROSIL R972, Nippon Aerosil ( Co., Ltd.) 0.1 part by mass solvent (methylene chloride/methanol/butanol) ⁇
  • the dope prepared above was cast using a drum film-forming machine.
  • the dope was cast from a die in contact with a metal support cooled to 0° C., after which the resulting web (film) was stripped off.
  • the drum was made of SUS (Steel Use Stainless).
  • the web (film) obtained by casting is peeled off from the drum, and dried for 20 minutes in a tenter device using a tenter device in which both ends of the web are clipped and conveyed at 30 to 40 ° C. during film transportation. did. Subsequently, the web was post-dried by zone heating while being rolled. The resulting web was knurled and wound up.
  • the resulting cellulose acylate film had a thickness of 40 ⁇ m, an in-plane retardation Re(550) of 1 nm at a wavelength of 550 nm, and a thickness direction retardation Rth(550) of 26 nm at a wavelength of 550 nm.
  • the above cellulose acylate film was passed through a dielectric heating roll at a temperature of 60°C to raise the film surface temperature to 40°C, and then an alkaline solution having the composition shown below was applied to the band surface of the film using a bar coater.
  • the coating was applied at a coating amount of 14 ml/m 2 with a drier, and conveyed for 10 seconds under a steam type far-infrared heater manufactured by Noritake Co., Ltd. which was heated to 110°C. Subsequently, using the same bar coater, 3 ml/m 2 of pure water was applied.
  • the film was transported to a drying zone at 70° C. for 10 seconds and dried to prepare a cellulose acylate film saponified with an alkali.
  • Alignment film coating solution The following polyvinyl alcohol 10 parts by mass Water 371 parts by mass Methanol 119 parts by mass Glutaraldehyde (crosslinking agent) 0.5 parts by mass Citric acid ester (manufactured by Sankyo Chemical Co., Ltd.) 0.175 parts by mass ⁇
  • ⁇ Formation of optically anisotropic layer (A)> The alignment film prepared above was continuously subjected to rubbing treatment. At this time, the longitudinal direction of the long film was parallel to the conveying direction, and the angle formed by the longitudinal direction of the film (conveying direction) and the rotation axis of the rubbing roller was 76°. If the longitudinal direction (conveyance direction) of the film is 90° and the clockwise direction is represented by a positive value with the film width direction as the reference (0°) observed from the film side, the rotation axis of the rubbing roller is ⁇ 14°. It is in. In other words, the position of the rotation axis of the rubbing roller is the position rotated counterclockwise by 76° with respect to the longitudinal direction of the film.
  • An optically anisotropic layer coating solution (1a) containing a discotic liquid crystal compound having the following composition was applied onto the rubbed alignment film using a Giesser coater to form a composition layer. Thereafter, the resulting composition layer was heated with hot air at 110° C. for 2 minutes to dry the solvent and ripen the alignment of the discotic liquid crystal compound. Subsequently, the obtained composition layer was irradiated with UV (500 mJ/cm 2 ) at 80° C. to fix the orientation of the liquid crystal compound, and the optical anisotropic layer corresponding to the optically anisotropic layer (A) was applied. A layer (1a) was formed. The thickness of the optically anisotropic layer (1a) was 1.5 ⁇ m.
  • the retardation at 550 nm was 168 nm.
  • the average inclination angle of the discotic surface of the discotic liquid crystal compound with respect to the film plane was 90°, and it was confirmed that the liquid crystal compound was oriented perpendicularly to the film plane.
  • the angle of the slow axis of the optically anisotropic layer (1a) is parallel to the rotation axis of the rubbing roller, and the width direction of the film is 0° (the longitudinal direction is 90° counterclockwise and -90° clockwise). ), the slow axis was ⁇ 14° when viewed from the optically anisotropic layer (1a) side.
  • Discotic liquid crystal compound 1 below 80 parts by mass
  • Discotic liquid crystal compound 2 below 20 parts by mass
  • Alignment film interface alignment agent 1 below 0.55 parts by mass 0.05 parts by mass of the following fluorine-containing compound C 0.21 parts by mass of ethylene oxide-modified trimethylolpropane triacrylate (V#360, manufactured by Osaka Organic Chemical Co., Ltd.) 10 parts by mass Photopolymerization initiator (Irgacure 907, manufactured by BASF ) 3.0 parts by mass Methyl ethyl ketone 200 parts by mass ⁇
  • Alignment film interface alignment agent 1 Alignment film interface alignment agent 1
  • Fluorine-containing compound A in the following formula, a and b represent the content (% by mass) of each repeating unit with respect to all repeating units, a represents 90% by mass, and b represents 10% by mass. In addition, the weight average molecular weight was 15,000.)
  • Fluorine-containing compound B (The numerical value in each repeating unit represents the content (% by mass) with respect to all repeating units. The weight average molecular weight was 12,500.)
  • Fluorine-containing compound C (The numerical value in each repeating unit represents the content (% by mass) with respect to all repeating units. The weight average molecular weight was 12,500.)
  • optically anisotropic layer (1c) ⁇ Laminate formation of optically anisotropic layer (C) and optically anisotropic layer (B)> (Formation of optically anisotropic layer (1c))
  • An optically anisotropic layer coating solution (1c) containing a rod-like liquid crystal compound having the following composition was applied onto the cellulose acylate film prepared above using a Giesser coater to form a composition layer. After that, both ends of the film were held, and a cooling plate (9°C) was placed on the side of the film on which the coating film was formed so that the distance from the film was 5 mm, and the coating film of the film was formed.
  • a heater (75° C.) was installed on the side opposite to the surface so that the distance from the film was 5 mm, and dried for 2 minutes.
  • the precursor layer was formed by annealing for 1 minute at 120° C. with hot air.
  • the obtained precursor layer was irradiated with UV light (ultra-high pressure mercury lamp; UL750; manufactured by HOYA) at 7.9 mJ/cm 2 (wavelength: 313 nm) through a wire grid polarizer.
  • UV light ultra-high pressure mercury lamp; UL750; manufactured by HOYA
  • a composition layer having alignment controllability was formed. The film thickness of the formed composition layer was 0.5 ⁇ m.
  • the in-plane retardation Re at a wavelength of 550 nm was 0 nm
  • the thickness direction retardation Rth at a wavelength of 550 nm was -68 nm.
  • the average tilt angle of the long axis direction of the rod-like liquid crystal compound with respect to the film surface was 90°, and it was confirmed that the compound was oriented perpendicular to the film surface.
  • an optically anisotropic layer (1c) corresponding to the optically anisotropic layer (C) was formed.
  • Optically anisotropic layer-forming composition (1c) The following rod-shaped liquid crystal compound (A) 100 parts by mass Polymerizable monomer (A-400, manufactured by Shin-Nakamura Chemical Co., Ltd.) 4.0 parts by mass The following polymerization initiator S-1 (oxime type) 5.0 parts by mass The following Photoacid generator D-1 3.0 parts by mass Polymer M-1 2.0 parts by mass Vertical alignment agent S01 below 2.0 parts by mass Photo-alignment polymer A-1 below 2.0 parts by mass Methyl ethyl ketone 42.3 parts by mass methyl isobutyl ketone 627.5 parts by mass ⁇
  • Rod-shaped liquid crystal compound (A) (hereinafter referred to as a mixture of compounds)
  • Polymer M-1 (The numerical value in each repeating unit represents the content (% by mass) with respect to all repeating units. The weight average molecular weight was 60000.)
  • Photo-alignable polymer A-1 (The numerical value described in each repeating unit represents the content (% by mass) of each repeating unit with respect to all repeating units, and from the left repeating unit, 40% by mass, 25% by mass, 35% by mass, % by mass, and the weight average molecular weight was 69,300.)
  • optically anisotropic layer (1b) (Formation of optically anisotropic layer (1b)) Next, on the optically anisotropic layer (1c) prepared above, an optically anisotropic layer coating solution (1b) containing a rod-like liquid crystal compound having the following composition was applied using a Giesser coating machine, and the coating solution was heated at 80°C. Heated with hot air for 60 seconds. Subsequently, the obtained composition layer was irradiated with UV (500 mJ/cm 2 ) at 80° C. to fix the alignment of the liquid crystal compound, and the optical anisotropic layer corresponding to the optically anisotropic layer (B) was applied. A layer (1b) was formed.
  • the thickness of the optically anisotropic layer (1b) was 1.2 ⁇ m, ⁇ nd at a wavelength of 550 nm was 164 nm, and the twist angle of the liquid crystal compound was 81°. Assuming that the width direction of the film is 0° (the longitudinal direction is 90°), when viewed from the optically anisotropic layer (1b) side, the orientation axis angle of the liquid crystal compound is 14° on the air side and 14° on the optically anisotropic layer ( The side contacting 1c) was 95°.
  • the orientation axis angle of the liquid crystal compound contained in the optically anisotropic layer was determined by observing the substrate from the surface side of the optically anisotropic layer, with the width direction of the substrate being 0° as a reference, and rotating clockwise (clockwise). Hour is expressed as negative and counterclockwise (counterclockwise) hour as positive.
  • the twist angle of the liquid crystal compound is determined by observing the substrate from the surface side of the optically anisotropic layer, and using the orientation axis direction of the liquid crystal compound on the surface side (front side) as a reference, the liquid crystal compound on the substrate side (back side). When the direction of the orientation axis is clockwise (right), it is indicated as negative, and when it is counterclockwise (left), it is indicated as positive.
  • Fluorine-containing compound D (the numerical value in each repeating unit represents the content (% by mass) of all repeating units, the content of the repeating unit on the left is 76% by mass, and the content of the repeating unit on the right is 24% by mass. Also, the weight average molecular weight was 27,300.)
  • a laminate (1c-1b) in which the optically anisotropic layer (1c) and the optically anisotropic layer (1b) were directly laminated on the elongated cellulose acylate film was produced by the above procedure.
  • the surface of the optically anisotropic layer (1c) in contact with the optically anisotropic layer (1b) was confirmed by the method described above, it was confirmed that the photo-alignable polymer was present.
  • optically anisotropic layer (A), optically anisotropic layer (B) and optically anisotropic layer (C) The surface side of the optically anisotropic layer (1a) formed on the elongated cellulose acylate film prepared above, and the laminate (1c-1b) formed on the elongated cellulose acylate film prepared above. and the surface side of the optically anisotropic layer (1b) were laminated on a continuous machine using a 5 ⁇ m-thick acrylic adhesive (NCF-D692, manufactured by Lintec).
  • NCF-D692 5 ⁇ m-thick acrylic adhesive
  • the cellulose acylate film and alignment film on the optically anisotropic layer (1a) side were peeled off to expose the surface of the optically anisotropic layer (1a) in contact with the cellulose acylate film.
  • an optical film in which the optically anisotropic layer (1c), the optically anisotropic layer (1b), and the optically anisotropic layer (1a) are laminated in this order on the long cellulose acylate film. (1c-1b-1a) were obtained.
  • ⁇ Production of linear polarizing plate 1> The surface of the support of a cellulose triacetate film TJ25 (manufactured by Fuji Film Co., Ltd.; thickness 25 ⁇ m) was saponified with an alkali. Specifically, the support was immersed in a 1.5 N sodium hydroxide aqueous solution at 55° C. for 2 minutes, washed in a water washing bath at room temperature, and further treated with 0.1 N sulfuric acid at 30° C. neutralized using After neutralization, the support was washed in a water washing bath at room temperature and dried with warm air at 100° C. to obtain a polarizer protective film.
  • a rolled polyvinyl alcohol (PVA) film with a thickness of 60 ⁇ m was continuously stretched in the iodine aqueous solution in the longitudinal direction and dried to obtain a polarizer with a thickness of 13 ⁇ m.
  • the luminous efficiency correction single transmittance of the polarizer was 43%. At this time, the absorption axis direction and the longitudinal direction of the polarizer coincided.
  • the above polarizer protective film was attached to one surface of the above polarizer using the following PVA adhesive to prepare a linear polarizing plate 1 .
  • PVA adhesive 100 parts by mass of a polyvinyl alcohol-based resin having an acetoacetyl group (average degree of polymerization: 1200, degree of saponification: 98.5 mol%, degree of acetoacetylation: 5 mol%) and 20 parts by mass of methylol melamine were heated at 30°C.
  • a PVA adhesive was prepared as an aqueous solution adjusted to a solid content concentration of 3.7% by mass by dissolving in pure water under the temperature condition of .
  • the polarizer protective film, the polarizer, the optically anisotropic layer (1a), the optically anisotropic layer (1b) and the optically anisotropic layer (1c) are laminated in this order, and the absorption of the polarizer is
  • the angle between the axis and the slow axis of the optically anisotropic layer (1a) was -76°.
  • the orientation axis angle of the liquid crystal compound on the side of the optically anisotropic layer (1a) of the optically anisotropic layer (1b) was 14° with the width direction being 0° as a reference. coincided with the slow axis direction of
  • Examples 1-2 to 1-4 and Comparative Examples 1-1 to 1-3 An antireflection film was prepared in the same manner as in Example 1-1, except that an adhesive having a thickness and a thickness unevenness ⁇ shown in Table 1 below was used instead of the adhesive used in Example 1-1. made.
  • Example 2-1 and Comparative Example 2-1 instead of the adhesive used in Example 1-1, Example 1-1 was used, except that an adhesive having a thickness shown in Table 2 below and a thickness unevenness ⁇ (nm) / thickness ( ⁇ m) was used. An antireflection film was produced in the same manner.
  • the antireflection film in which the thickness unevenness ⁇ of the pressure-sensitive adhesive layer used for laminating the first optically anisotropic film and the second optically anisotropic film is 35 nm or more, the organic EL It was found that rainbow unevenness occurs when used in a display device (Comparative Examples 1-1 to 1-3). In addition, in Comparative Examples 1-3, the azimuth angle dependence of the tint change was strong, and the display performance in the oblique direction was inferior.
  • an antireflection film in which the thickness unevenness ⁇ of the pressure-sensitive adhesive layer used for laminating the first optically anisotropic film and the second optically anisotropic film is less than 35 nm the organic EL display device It was found that the occurrence of iridescent unevenness can be suppressed when used (Examples 1-1 to 1-4). In particular, from a comparison between Examples 1-1 and 1-4, when the thickness unevenness ⁇ of the pressure-sensitive adhesive layer is more than 3 nm, the first optically anisotropic film and the second optically anisotropic film It was found that air bubbles are less likely to enter during lamination.
  • the ratio of the pressure-sensitive adhesive layer used for laminating the first optically anisotropic film and the second optically anisotropic film [thickness unevenness ⁇ (nm)/thickness ( ⁇ m)] was 7.0. It was found that an antireflection film with a value of more than 0 causes iridescent unevenness when used in an organic EL display device (Comparative Example 2-1). On the other hand, the ratio of the pressure-sensitive adhesive layer used for laminating the first optically anisotropic film and the second optically anisotropic film [thickness unevenness ⁇ (nm)/thickness ( ⁇ m)] is 7.0 or less. It was found that the antireflection film can suppress the occurrence of iridescent unevenness when used in an organic EL display device (Example 2-1).

Abstract

The present invention addresses the problem of providing an antireflection film that can suppress the occurrence of iridescent unevenness when used in an organic EL display device, and also providing the organic EL display device. This antireflection film has a polarizer, a first optically anisotropic film, and a second optically anisotropic film in this order. The first optically anisotropic film and the second optically anisotropic film both have an optically anisotropic layer formed by fixing an oriented liquid crystal compound. The first optically anisotropic film and the second optically anisotropic film are laminated with an adhesive layer interposed therebetween, and the standard deviation σ of the film thickness value calculated when the thickness of the adhesive layer is measured with an interferometric film thickness meter is less than 35 nm.

Description

反射防止フィルムおよび有機エレクトロルミネッセンス表示装置Antireflection film and organic electroluminescent display device
 本発明は、反射防止フィルムおよび有機エレクトロルミネッセンス表示装置に関する。 The present invention relates to an antireflection film and an organic electroluminescence display device.
 屈折率異方性を持つ光学異方性層は、有機エレクトロルミネッセンス(EL)表示装置の反射防止膜、および、液晶表示装置の光学補償フィルムなどの種々の用途に適用されている。
 例えば、特許文献1においては、所定の光学特性を示す2種の光学異方性層を積層した位相差板が開示されている。
Optically anisotropic layers having refractive index anisotropy are applied to various uses such as antireflection films for organic electroluminescence (EL) displays and optical compensation films for liquid crystal displays.
For example, Patent Document 1 discloses a retardation plate in which two kinds of optically anisotropic layers exhibiting predetermined optical properties are laminated.
特許第5960743号Patent No. 5960743
 本発明者らは、特許文献1等に記載されている光学異方性層を複数層有する位相差板について検討したところ、光学異方性層同士を粘着剤層を介して積層させた場合には、反射防止フィルムとして有機EL表示装置に利用した際に、面内の色味ムラ(以下、「虹ムラ」と略す。)が発生することを明らかとした。 The present inventors have studied a retardation plate having a plurality of optically anisotropic layers described in Patent Document 1 and the like, and found that when the optically anisotropic layers are laminated via an adhesive layer, clarified that in-plane color unevenness (hereinafter abbreviated as "rainbow unevenness") occurs when the film is used as an antireflection film in an organic EL display device.
 そこで、本発明は、有機EL表示装置に利用した際に虹ムラの発生を抑制することができる反射防止フィルムおよび有機EL表示装置を提供することを課題とする。 Therefore, an object of the present invention is to provide an antireflection film and an organic EL display device that can suppress the occurrence of iridescent unevenness when used in an organic EL display device.
 本発明者らは、上記課題を達成すべく鋭意検討した結果、特定の粘着剤層を用いて光学異方性層同士を積層させた反射防止フィルムを用いると、有機EL表示装置に利用した際に虹ムラの発生を抑制できることを見出し、本発明を完成させた。
 すなわち、本発明者らは、以下の構成により上記課題を解決できることを見出した。
As a result of intensive studies by the present inventors in order to achieve the above problems, the use of an antireflection film in which optically anisotropic layers are laminated using a specific pressure-sensitive adhesive layer is effective when used in an organic EL display device. The inventors have found that the occurrence of iridescent unevenness can be suppressed, and have completed the present invention.
That is, the inventors have found that the above problems can be solved by the following configuration.
 [1] 偏光子と、第1の光学異方性フィルムと、第2の光学異方性フィルムとをこの順に有する反射防止フィルムであって、
 第1の光学異方性フィルムおよび第2の光学異方性フィルムが、いずれも、配向した液晶化合物を固定してなる光学異方性層を有し、
 第1の光学異方性フィルムおよび第2の光学異方性フィルムが、粘着剤層を介して積層されており、
 粘着剤層の厚みを干渉膜厚計で測定した際に算出される膜厚値の標準偏差σが35nm未満である、反射防止フィルム。
 [2] 偏光子と、第1の光学異方性フィルムと、第2の光学異方性フィルムとをこの順に有する反射防止フィルムであって、
 第1の光学異方性フィルムおよび第2の光学異方性フィルムが、いずれも、配向した液晶化合物を固定してなる光学異方性層を有し、
 第1の光学異方性フィルムおよび第2の光学異方性フィルムが、粘着剤層を介して積層されており、
 粘着剤層の厚み(μm)に対する、粘着剤層の厚みを干渉膜厚計で測定した際に算出される膜厚値の標準偏差σ(nm)の比率が、7.0以下である、反射防止フィルム。
 [3] 第1の光学異方性フィルムの屈折率が、1.50以上1.70以下である、[1]または[2]に記載の反射防止フィルム。
 [4] 粘着剤層の屈折率が、1.36以上1.53以下である、[1]~[3]のいずれかに記載の反射防止フィルム。
 [5] 第1の光学異方性フィルムの波長550nmにおける面内レタデーションが140~220nmである、[1]~[4]のいずれかに記載の反射防止フィルム。
 [6] 反射防止フィルムが長尺状であり、
 反射防止フィルムの長手方向と、第1の光学異方性フィルムの面内遅相軸とのなす角度が40~85°である、[1]~[5]のいずれかに記載の反射防止フィルム。
 [7] 第1の光学異方性フィルムが、垂直配向した円盤状液晶化合物を固定してなる光学異方性層である、[1]~[6]のいずれかに記載の反射防止フィルム。
 [8] 第2の光学異方性フィルムが、2層以上の光学異方性層から構成されている、[1]~[7]のいずれかに記載の反射防止フィルム。
 [9] 第2の光学異方性フィルムが、厚み方向を螺旋軸とする捩れ配向した棒状液晶化合物を固定してなる光学異方性層と、垂直配向した棒状液晶化合物を固定してなる光学異方性層との積層体から構成されている、[1]~[8]のいずれかに記載の反射防止フィルム。
 [10] 粘着剤層の厚みが2~20μmである、[1]~[9]のいずれかに記載の反射防止フィルム。
 [11] [1]~[10]のいずれかに記載の反射防止フィルムを有する、有機エレクトロルミネッセンス表示装置。
[1] An antireflection film comprising a polarizer, a first optically anisotropic film, and a second optically anisotropic film in this order,
Both the first optically anisotropic film and the second optically anisotropic film have an optically anisotropic layer formed by fixing an oriented liquid crystal compound,
The first optically anisotropic film and the second optically anisotropic film are laminated via an adhesive layer,
An antireflection film having a standard deviation σ of less than 35 nm of film thickness values calculated when the thickness of the pressure-sensitive adhesive layer is measured by an interference film thickness meter.
[2] An antireflection film comprising a polarizer, a first optically anisotropic film, and a second optically anisotropic film in this order,
Both the first optically anisotropic film and the second optically anisotropic film have an optically anisotropic layer formed by fixing an oriented liquid crystal compound,
The first optically anisotropic film and the second optically anisotropic film are laminated via an adhesive layer,
The ratio of the standard deviation σ (nm) of the film thickness value calculated when the thickness of the adhesive layer is measured with an interference film thickness gauge to the thickness (μm) of the adhesive layer is 7.0 or less. prevention film.
[3] The antireflection film of [1] or [2], wherein the first optically anisotropic film has a refractive index of 1.50 or more and 1.70 or less.
[4] The antireflection film according to any one of [1] to [3], wherein the pressure-sensitive adhesive layer has a refractive index of 1.36 or more and 1.53 or less.
[5] The antireflection film of any one of [1] to [4], wherein the first optically anisotropic film has an in-plane retardation of 140 to 220 nm at a wavelength of 550 nm.
[6] The antireflection film is elongated,
The antireflection film according to any one of [1] to [5], wherein the angle between the longitudinal direction of the antireflection film and the in-plane slow axis of the first optically anisotropic film is 40 to 85°. .
[7] The antireflection film of any one of [1] to [6], wherein the first optically anisotropic film is an optically anisotropic layer formed by fixing a vertically aligned discotic liquid crystal compound.
[8] The antireflection film of any one of [1] to [7], wherein the second optically anisotropic film is composed of two or more optically anisotropic layers.
[9] The second optically anisotropic film comprises an optically anisotropic layer in which a twisted rod-like liquid crystal compound having a helical axis in the thickness direction is fixed, and an optical film in which a vertically aligned rod-like liquid crystal compound is fixed. The antireflection film according to any one of [1] to [8], which is composed of a laminate with an anisotropic layer.
[10] The antireflection film according to any one of [1] to [9], wherein the pressure-sensitive adhesive layer has a thickness of 2 to 20 µm.
[11] An organic electroluminescence display device comprising the antireflection film according to any one of [1] to [10].
 本発明によれば、有機EL表示装置に利用した際に虹ムラの発生を抑制することができる反射防止フィルムおよび有機EL表示装置を提供できる。 According to the present invention, it is possible to provide an antireflection film and an organic EL display device that can suppress the occurrence of iridescent unevenness when used in an organic EL display device.
図1は、本発明の反射防止フィルムの一実施態様の概略断面図の例である。FIG. 1 is an example of a schematic cross-sectional view of one embodiment of the antireflection film of the present invention. 図2は、本発明の反射防止フィルムの一実施態様における、偏光子の吸収軸と、第1の光学異方性フィルムおよび第2の光学異方性フィルムのそれぞれの面内遅相軸との関係を示す図である。FIG. 2 shows the relationship between the absorption axis of the polarizer and the in-plane slow axes of the first optically anisotropic film and the second optically anisotropic film in one embodiment of the antireflection film of the present invention. FIG. 4 is a diagram showing relationships; 図3は、図1中の白矢印の方向から観察した際の偏光子の吸収軸と、第1の光学異方性フィルムおよび第2の光学異方性フィルムのそれぞれ面内遅相軸との角度の関係を示す概略図である。FIG. 3 shows the relationship between the absorption axis of the polarizer and the in-plane slow axes of the first optically anisotropic film and the second optically anisotropic film when observed from the direction of the white arrow in FIG. FIG. 4 is a schematic diagram showing the relationship of angles;
 以下、本発明について詳細に説明する。
 以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。
 なお、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
 また、本明細書において、各成分は、各成分に該当する物質を1種単独で用いても、2種以上を併用してもよい。ここで、各成分について2種以上の物質を併用する場合、その成分についての含有量とは、特段の断りが無い限り、併用した物質の合計の含有量を指す。
 また、本明細書において、「(メタ)アクリル」は、「アクリル」または「メタクリル」を表す表記であり、「(メタ)アクリロイル」は、「アクリロイル」または「メタクリロイル」を表す表記である。
 次いで、本明細書で用いられる用語について説明する。
The present invention will be described in detail below.
The description of the constituent elements described below may be made based on representative embodiments of the present invention, but the present invention is not limited to such embodiments.
In this specification, a numerical range represented by "-" means a range including the numerical values before and after "-" as lower and upper limits.
Moreover, in this specification, each component may use the substance applicable to each component individually by 1 type, or may use 2 or more types together. Here, when two or more substances are used in combination for each component, the content of the component refers to the total content of the substances used in combination unless otherwise specified.
Further, in this specification, "(meth)acryl" is a notation representing "acryl" or "methacryl", and "(meth)acryloyl" is a notation representing "acryloyl" or "methacryloyl".
Next, the terms used in this specification will be explained.
 本明細書において、遅相軸は、特別な断りがなければ、550nmにおける定義である。 In this specification, the slow axis is defined at 550 nm unless otherwise specified.
 本明細書において、Re(λ)およびRth(λ)は、それぞれ、波長λにおける面内のレタデーションおよび厚み方向のレタデーションを表す。特に記載がないときは、波長λは、550nmとする。
 本発明において、Re(λ)およびRth(λ)はAxoScan(Axometrics社製)において、波長λで測定した値である。AxoScanにて平均屈折率((nx+ny+nz)/3)と膜厚(d(μm))を入力することにより、
 遅相軸方向(°)
 Re(λ)=R0(λ)
 Rth(λ)=((nx+ny)/2-nz)×d
が算出される。
 なお、R0(λ)は、AxoScanで算出される数値として表示されるものであるが、Re(λ)を意味している。
In this specification, Re(λ) and Rth(λ) represent in-plane retardation and thickness direction retardation at wavelength λ, respectively. Unless otherwise specified, the wavelength λ is 550 nm.
In the present invention, Re(λ) and Rth(λ) are values measured at wavelength λ with AxoScan (manufactured by Axometrics). By entering the average refractive index ((nx+ny+nz)/3) and film thickness (d (μm)) in AxoScan,
Slow axis direction (°)
Re(λ)=R0(λ)
Rth(λ)=((nx+ny)/2−nz)×d
is calculated.
Note that R0(λ), which is displayed as a numerical value calculated by AxoScan, means Re(λ).
 本明細書において、屈折率nx、ny、および、nzは、アッベ屈折計(NAR-4T、アタゴ(株)製)を使用し、光源にナトリウムランプ(λ=589nm)を用いて測定する。また、波長依存性を測定する場合は、多波長アッベ屈折計DR-M2(アタゴ(株)製)にて、干渉フィルターとの組み合わせで測定できる。
 また、ポリマーハンドブック(JOHN WILEY&SONS,INC)、および、各種光学フィルムのカタログの値を使用できる。主な光学フィルムの平均屈折率の値を以下に例示する:セルロースアシレート(1.48)、シクロオレフィンポリマー(1.52)、ポリカーボネート(1.59)、ポリメチルメタクリレート(1.49)、および、ポリスチレン(1.59)。
In this specification, the refractive indices nx, ny, and nz are measured using an Abbe refractometer (NAR-4T, manufactured by Atago Co., Ltd.) using a sodium lamp (λ=589 nm) as the light source. Further, when measuring the wavelength dependence, it can be measured by using a multi-wavelength Abbe refractometer DR-M2 (manufactured by Atago Co., Ltd.) in combination with an interference filter.
Also, the values in the polymer handbook (JOHN WILEY & SONS, INC) and catalogs of various optical films can be used. Average refractive index values of main optical films are exemplified below: cellulose acylate (1.48), cycloolefin polymer (1.52), polycarbonate (1.59), polymethyl methacrylate (1.49), and polystyrene (1.59).
 本明細書中における「光」とは、活性光線または放射線を意味し、例えば、水銀灯の輝線スペクトル、エキシマレーザーに代表される遠紫外線、極紫外線(EUV光:Extreme Ultraviolet)、X線、紫外線、および電子線(EB:Electron Beam)などを意味する。なかでも、紫外線が好ましい。 The term "light" used herein means actinic rays or radiation, and includes, for example, the emission line spectrum of mercury lamps, far ultraviolet rays represented by excimer lasers, extreme ultraviolet rays (EUV light: Extreme Ultraviolet), X-rays, ultraviolet rays, and electron beam (EB). Among them, ultraviolet rays are preferable.
 本明細書において、「可視光」とは、380~780nmの光のことをいう。また、本明細書では、測定波長について特に付記がない場合は、測定波長は550nmである。
 また、本明細書において、角度の関係(例えば「直交」、「平行」等)については、本発明が属する技術分野において許容される誤差の範囲を含むものとする。具体的には、厳密な角度±10°未満の範囲内であることを意味し、厳密な角度との誤差は、±5°以下の範囲内であることが好ましく、±3°以下の範囲内であることがより好ましい。
As used herein, "visible light" refers to light of 380 to 780 nm. In this specification, the measurement wavelength is 550 nm unless otherwise specified.
Further, in this specification, the angular relationship (for example, "perpendicular", "parallel", etc.) shall include the range of error that is permissible in the technical field to which the present invention belongs. Specifically, it means that the exact angle is within a range of less than ±10°, and the error from the strict angle is preferably within a range of ±5° or less, and within a range of ±3° or less. is more preferable.
 本明細書において、棒状液晶化合物の水平配向とは、液晶化合物の長軸が層表面に対して水平に、かつ、同一方位に配列している状態をいう。
 ここで、水平とは、厳密に水平であることを要求するものでなく、層内の液晶化合物の平均分子軸と層表面とのなす傾斜角が20°未満の配向を意味するものとする。
 また、同一方位とは、厳密に同一方位であることを要求するものでなく、面内の任意の20か所の位置で遅相軸の方位を測定したとき、20か所での遅相軸の方位のうちの遅相軸方位の最大差(20個の遅相軸方位のうち、差が最大となる2つの遅相軸方位の差)が10°未満であることを意味するものとする。
 円盤状液晶化合物の垂直配向とは、液晶化合物の円盤軸が層表面に対して垂直に、かつ、同一方位に配列している状態をいう。
 ここで、垂直とは、厳密に垂直であることを要求するものでなく、層内の液晶化合物の円盤面と層表面とのなす傾斜角が70~110°の配向を意味するものとする。
 また、同一方位とは、厳密に同一方位であることを要求するものでなく、面内の任意の20か所の位置で遅相軸の方位を測定したとき、20か所での遅相軸の方位のうちの遅相軸方位の最大差(20個の遅相軸方位のうち、差が最大となる2つの遅相軸方位の差)が10°未満であることを意味するものとする。
In the present specification, the horizontal orientation of the rod-like liquid crystal compound refers to a state in which the major axes of the liquid crystal compound are aligned horizontally and in the same direction with respect to the layer surface.
Here, the term "horizontal" does not mean that the layer is strictly horizontal, but means an orientation in which the tilt angle between the average molecular axis of the liquid crystal compound in the layer and the layer surface is less than 20°.
Further, the same orientation does not strictly require the same orientation, but when the slow axis orientation is measured at arbitrary 20 positions in the plane, the slow axis The maximum difference in the slow axis orientations among the orientations of .
The vertical alignment of the discotic liquid crystal compound means a state in which the disc axis of the liquid crystal compound is aligned perpendicularly to the layer surface and in the same direction.
Here, the term "perpendicular" does not mean that the liquid crystal compound in the layer must be strictly perpendicular, but means that the liquid crystal compound in the layer has an inclination angle of 70 to 110° between the disc surface and the layer surface.
Further, the same orientation does not strictly require the same orientation, but when the slow axis orientation is measured at arbitrary 20 positions in the plane, the slow axis The maximum difference in the slow axis orientations among the orientations of .
 本明細書において、光学異方性層は、配向した液晶化合物を固定してなる層のことをいう。
 なお、「固定した」状態は、液晶化合物の配向が保持された状態である。具体的には、通常、0~50℃、より過酷な条件下では-30~70℃の温度範囲において、層に流動性がなく、また、外場もしくは外力によって配向形態に変化を生じさせることなく、固定された配向形態を安定に保ち続けることができる状態であることがより好ましい。
As used herein, the optically anisotropic layer refers to a layer formed by fixing an aligned liquid crystal compound.
The "fixed" state is a state in which the orientation of the liquid crystal compound is maintained. Specifically, the layer does not have fluidity at a temperature range of 0 to 50° C., or -30 to 70° C. under more severe conditions, and the orientation is changed by an external field or force. It is more preferable to be in a state in which the fixed alignment form can be stably maintained.
[反射防止フィルム]
 本発明の第1の実施態様に係る反射防止フィルムは、偏光子と、第1の光学異方性フィルムと、第2の光学異方性フィルムとをこの順に有する反射防止フィルムである。
 また、本発明の第1の実施態様に係る反射防止フィルムは、第1の光学異方性フィルムおよび第2の光学異方性フィルムが、いずれも、配向した液晶化合物を固定してなる光学異方性層を有する。
 また、本発明の第1の実施態様に係る反射防止フィルムは、第1の光学異方性フィルムおよび第2の光学異方性フィルムが、粘着剤層を介して積層されている。
 また、本発明の第1の実施態様に係る反射防止フィルムは、粘着剤層の厚みを干渉膜厚計で測定した際に算出される膜厚値の標準偏差σ(以下、「厚みムラσ」とも略す。)が35nm未満である。
[Anti-reflection film]
The antireflection film according to the first embodiment of the present invention is an antireflection film having a polarizer, a first optically anisotropic film, and a second optically anisotropic film in this order.
Further, in the antireflection film according to the first embodiment of the present invention, both the first optically anisotropic film and the second optically anisotropic film are optically anisotropic films in which an oriented liquid crystal compound is fixed. It has an anisotropic layer.
Also, in the antireflection film according to the first embodiment of the present invention, the first optically anisotropic film and the second optically anisotropic film are laminated via an adhesive layer.
In the antireflection film according to the first embodiment of the present invention, the standard deviation σ of the film thickness value calculated when the thickness of the pressure-sensitive adhesive layer is measured with an interference film thickness meter (hereinafter referred to as “thickness unevenness σ” ) is less than 35 nm.
 本発明の第2の実施態様に係る反射防止フィルムは、偏光子と、第1の光学異方性フィルムと、第2の光学異方性フィルムとをこの順に有する反射防止フィルムである。
 また、本発明の第2の実施態様に係る反射防止フィルムは、第1の光学異方性フィルムおよび第2の光学異方性フィルムが、いずれも、配向した液晶化合物を固定してなる光学異方性層を有する。
 また、本発明の第2の実施態様に係る反射防止フィルムは、第1の光学異方性フィルムおよび第2の光学異方性フィルムが、粘着剤層を介して積層されている。
 また、本発明の第2の実施態様に係る反射防止フィルムは、粘着剤層の厚み(μm)に対する、粘着剤層の厚みを干渉膜厚計で測定した際に算出される膜厚値の標準偏差σ(nm)の比率〔厚みムラσ(nm)/厚み(μm)〕が、7.0以下である。
 すなわち、本発明の第2の実施態様に係る反射防止フィルムは、粘着層の厚みに関する規定以外は、本発明の第1の実施態様に係る反射防止フィルムと同様である。
The antireflection film according to the second embodiment of the present invention is an antireflection film having a polarizer, a first optically anisotropic film, and a second optically anisotropic film in this order.
Further, in the antireflection film according to the second embodiment of the present invention, both the first optically anisotropic film and the second optically anisotropic film are optically anisotropic films in which an oriented liquid crystal compound is fixed. It has an anisotropic layer.
Also, in the antireflection film according to the second embodiment of the present invention, the first optically anisotropic film and the second optically anisotropic film are laminated via an adhesive layer.
Further, in the antireflection film according to the second embodiment of the present invention, the thickness (μm) of the pressure-sensitive adhesive layer is calculated when the thickness of the pressure-sensitive adhesive layer is measured with an interference film thickness meter. The ratio of deviation σ (nm) [thickness unevenness σ (nm)/thickness (μm)] is 7.0 or less.
That is, the antireflection film according to the second embodiment of the present invention is the same as the antireflection film according to the first embodiment of the present invention except for the thickness of the adhesive layer.
 ここで、本発明の第1の実施態様および第2の実施態様に係る反射防止フィルム(以下、区別を要しない場合は、単に「本発明の反射防止フィルム」と略す。)における、粘着剤層の厚みの値(単位:μm)、および、厚みムラσ(単位:nm)は、以下の条件で測定し、算出した値をいう。
 粘着剤層の厚みは、顕微分光膜厚計(OPTM、大塚電子製)を用いて、反射防止フィルムの反射率を測定し(対物レンズ:5倍)、同装置内の解析ソフトを用いてフーリエ変換することで算出する(演算波長:400~800nm、ベル関数:あり)。具体的には、上記条件のフーリエ変換によって計算されたパワースペクトルから、光学異方性層および粘着剤層のそれぞれの光学的膜厚に対応するピークを検出した後、粘着剤層の光学的膜厚を粘着剤層の屈折率で除することで、粘着剤層の厚みを算出する。この測定および算出を反射防止フィルムの任意の位置から3cmを1mm間隔で行い、31点の算出結果の平均値を「粘着剤層の厚み」とする。
 また、厚みムラσは、上記測定を反射防止フィルムの任意の位置から3cmを1mm間隔で行い、31点の粘着剤層の厚みを算出し、その標準偏差として算出する。
Here, the pressure-sensitive adhesive layer in the antireflection film according to the first embodiment and the second embodiment of the present invention (hereinafter simply abbreviated as "antireflection film of the present invention" when no distinction is required) The thickness value (unit: μm) and the thickness unevenness σ (unit: nm) refer to values calculated under the following conditions.
The thickness of the adhesive layer is determined by measuring the reflectance of the antireflection film (objective lens: 5x) using a microscopic spectroscopic film thickness meter (OPTM, manufactured by Otsuka Electronics), and Fourier analysis using the analysis software in the same device. Calculated by conversion (calculation wavelength: 400 to 800 nm, Bell function: available). Specifically, from the power spectrum calculated by the Fourier transform under the above conditions, after detecting the peak corresponding to the optical thickness of each of the optically anisotropic layer and the pressure-sensitive adhesive layer, the optical film of the pressure-sensitive adhesive layer The thickness of the adhesive layer is calculated by dividing the thickness by the refractive index of the adhesive layer. This measurement and calculation are performed at intervals of 1 mm for 3 cm from an arbitrary position on the antireflection film, and the average value of the calculation results of 31 points is taken as the "thickness of the pressure-sensitive adhesive layer."
Further, the thickness unevenness σ is calculated as the standard deviation of the thickness of the pressure-sensitive adhesive layer at 31 points obtained by performing the above measurement from an arbitrary position of the antireflection film at intervals of 3 cm and 1 mm.
 本発明においては、粘着剤層の厚みムラσが35nm未満であるか、または、比率〔厚みムラσ(nm)/厚み(μm)〕が7.0以下である反射防止フィルムを用いると、有機EL表示装置に利用した際に虹ムラの発生を抑制できる。
 これは、詳細には明らかではないが、本発明者らは以下のように推測している。
 すなわち、本発明の反射防止フィルムを用いると、有機EL表示装置に用いた際に視認側に配置される第1の光学異方性フィルムおよび第2の光学異方性フィルムのいずれか一方と、粘着剤層との界面で発生する干渉光を面内で均一化できるため、虹ムラの発生を抑制できたと考えられる。
In the present invention, the thickness unevenness σ of the adhesive layer is less than 35 nm, or the ratio [thickness unevenness σ (nm)/thickness (μm)] is 7.0 or less. It is possible to suppress the occurrence of iridescent unevenness when used in an EL display device.
Although this is not clear in detail, the present inventors presume as follows.
That is, when the antireflection film of the present invention is used, any one of the first optically anisotropic film and the second optically anisotropic film arranged on the viewing side when used in an organic EL display device, Interference light generated at the interface with the pressure-sensitive adhesive layer can be homogenized in the plane, so it is thought that the occurrence of iridescent unevenness could be suppressed.
 本発明の第1の実施態様に係る反射防止フィルムは、上述した通り、粘着剤層の厚みムラσが35nm未満であるが、第1の光学異方性フィルムと第2の光学異方性フィルムとの貼合時に気泡が混入し難くなる理由から、3nm超であることが好ましい。すなわち、粘着剤層の厚みムラσは、3nm超35nm未満であることが好ましく、5nm以上30nm以下であることがより好ましい。
 また、本発明の第2の実施態様に係る反射防止フィルムは、粘着剤層の比率〔厚みムラσ(nm)/厚み(μm)〕が7.0以下であるが、虹ムラの発生をより抑制することができる理由から、4.5以下であることが好ましい。なお、下限値は特に限定されないが、0.1以上であることが好ましい。
In the antireflection film according to the first embodiment of the present invention, as described above, the thickness unevenness σ of the pressure-sensitive adhesive layer is less than 35 nm, and the first optically anisotropic film and the second optically anisotropic film The thickness is preferably more than 3 nm because it is difficult for air bubbles to enter during lamination with the film. That is, the thickness unevenness σ of the pressure-sensitive adhesive layer is preferably more than 3 nm and less than 35 nm, more preferably 5 nm or more and 30 nm or less.
In the antireflection film according to the second embodiment of the present invention, the adhesive layer ratio [thickness unevenness σ (nm)/thickness (μm)] is 7.0 or less. Since it can be suppressed, it is preferably 4.5 or less. Although the lower limit is not particularly limited, it is preferably 0.1 or more.
 以下に、本発明の反射防止フィルムが有する、偏光子、第1の光学異方性フィルムおよび第2の光学異方性フィルム、ならびに、第1の光学異方性フィルムと第2の光学異方性フィルムとの積層に用いる粘着剤層(以下、「特定粘着剤層」と略す。)について詳述するが、本発明の特徴部分である特定粘着剤層について先に説明する。 The polarizer, the first optically anisotropic film and the second optically anisotropic film, and the first optically anisotropic film and the second optically anisotropic film of the antireflection film of the present invention are described below. The pressure-sensitive adhesive layer (hereinafter abbreviated as "specific pressure-sensitive adhesive layer") used for lamination with a flexible film will be described in detail, but the specific pressure-sensitive adhesive layer, which is a feature of the present invention, will be described first.
 〔特定粘着剤層〕
 本発明の反射防止フィルムが有する特定粘着剤層は、第1の態様においては厚みムラσが35nm未満であり、第2の態様においては比率〔厚みムラσ(nm)/厚み(μm)〕が7.0以下であれば、従来公知の粘着剤層を用いることができる。
[Specific adhesive layer]
The specific pressure-sensitive adhesive layer of the antireflection film of the present invention has a thickness unevenness σ of less than 35 nm in the first aspect, and a ratio [thickness unevenness σ (nm)/thickness (μm)] in the second aspect. If it is 7.0 or less, a conventionally known pressure-sensitive adhesive layer can be used.
 特定粘着剤層に含まれる粘着剤としては、例えば、ゴム系粘着剤、アクリル系粘着剤、シリコーン系粘着剤、ウレタン系粘着剤、ビニルアルキルエーテル系粘着剤、ポリビニルアルコール系粘着剤、ポリビニルピロリドン系粘着剤、ポリアクリルアミド系粘着剤、セルロース系粘着剤等が挙げられる。
 これらのうち、透明性、耐候性、耐熱性などの観点から、アクリル系粘着剤(感圧粘着剤)であるのが好ましい。
 アクリル系粘着剤としては、(メタ)アクリル系ポリマーを用い、通常、モノマー単位として、アルキル(メタ)アクリレートを主成分として含有する。
 (メタ)アクリル系ポリマーの主骨格を構成する、アルキル(メタ)アクリレートとしては、直鎖状または分岐鎖状のアルキル基の炭素数1~18のものを例示できる。これらは単独であるいは組み合わせて使用することが可能である。これらアルキル基の平均炭素数は3~9であるのが好ましい。また、フェノキシエチル(メタ)アクリレート、ベンジル(メタ)アクリレートのような芳香族環を含有するアルキル(メタ)アクリレートを用いることができる。芳香族環を含有するアルキル(メタ)アクリレートは、これを重合したポリマーを上記例示の(メタ)アクリル系ポリマーに混合して用いてもよく、上記アルキル(メタ)アクリレートと共重合して用いてもよい。透明性の観点から、共重合が好ましい。
 粘着剤の詳細については、例えば、特開2018-60014号公報の[0071]-[0084]に記載されている。当該公報の記載は、本明細書に参考として援用される。
Examples of adhesives contained in the specific adhesive layer include rubber-based adhesives, acrylic adhesives, silicone-based adhesives, urethane-based adhesives, vinyl alkyl ether-based adhesives, polyvinyl alcohol-based adhesives, and polyvinylpyrrolidone-based adhesives. Examples include pressure-sensitive adhesives, polyacrylamide-based pressure-sensitive adhesives, cellulose-based pressure-sensitive adhesives, and the like.
Among these, acrylic adhesives (pressure-sensitive adhesives) are preferable from the viewpoint of transparency, weather resistance, heat resistance, and the like.
As the acrylic pressure-sensitive adhesive, a (meth)acrylic polymer is used and usually contains alkyl (meth)acrylate as a main component as a monomer unit.
Examples of the alkyl (meth)acrylate constituting the main skeleton of the (meth)acrylic polymer include linear or branched alkyl groups having 1 to 18 carbon atoms. These can be used alone or in combination. The average carbon number of these alkyl groups is preferably 3-9. Alkyl (meth)acrylates containing an aromatic ring such as phenoxyethyl (meth)acrylate and benzyl (meth)acrylate can also be used. The alkyl (meth) acrylate containing an aromatic ring may be used by mixing a polymer obtained by polymerizing this with the (meth) acrylic polymer exemplified above, or may be used by copolymerizing with the alkyl (meth) acrylate. good too. From the viewpoint of transparency, copolymerization is preferred.
Details of the adhesive are described, for example, in [0071]-[0084] of JP-A-2018-60014. The description of the publication is incorporated herein by reference.
 特定粘着剤層を形成する方法は特に限定されないが、例えば、粘着剤の溶液を離型シート上に塗布し、乾燥した後に後、透明ポリマー層の表面に転写する方法;粘着剤の溶液を透明ポリマー層の表面に直接塗布し、乾燥させる方法;等により形成することができる。
 粘着剤の溶液は、例えば、トルエンや酢酸エチル等の溶剤に、粘着剤を溶解または分散させた10~40質量%程度の溶液として調製される。
 塗布法は、リバースコーティング、グラビアコーティング等のロールコーティング法、スピンコーティング法、スクリーンコーティング法、ファウンテンコーティング法、ディッピング法、スプレー法などを採用できる。
 ただし、シクロオレフィン系ポリマーのケミカルクラック抑制の観点からは、上記溶剤は残留しないように乾燥させることが好ましい。
The method for forming the specific pressure-sensitive adhesive layer is not particularly limited, but for example, a method of applying a pressure-sensitive adhesive solution onto a release sheet, drying it, and then transferring it to the surface of a transparent polymer layer; It can be formed by a method of applying directly to the surface of the polymer layer and drying.
The adhesive solution is prepared as a solution of about 10 to 40% by mass by dissolving or dispersing the adhesive in a solvent such as toluene or ethyl acetate.
As the coating method, a roll coating method such as reverse coating or gravure coating, a spin coating method, a screen coating method, a fountain coating method, a dipping method, a spray method, or the like can be employed.
However, from the viewpoint of suppressing chemical cracks in the cycloolefin polymer, it is preferable to dry so that the solvent does not remain.
 また、離型シートの構成材料としては、例えば、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレートなどの合成ポリマーフィルム;ゴムシート;紙;布;不織布;ネット;発泡シート;金属箔;等の適宜な薄葉体等が挙げられる。 Materials constituting the release sheet include, for example, synthetic polymer films such as polyethylene, polypropylene, and polyethylene terephthalate; rubber sheets; paper; cloth; mentioned.
 本発明においては、特定粘着剤層の屈折率は、1.36以上1.53以下であることが好ましく、本発明の効果が顕在化する理由から1.36以上1.49以下であることがより好ましい。 In the present invention, the refractive index of the specific pressure-sensitive adhesive layer is preferably 1.36 or more and 1.53 or less. more preferred.
 また、本発明においては、特定粘着剤層の厚みは、耐久性が良好となる理由から、2~20μmであることが好ましく、3~15μmであることがより好ましく、4~12μmであることがさらに好ましい。 Further, in the present invention, the thickness of the specific pressure-sensitive adhesive layer is preferably 2 to 20 μm, more preferably 3 to 15 μm, more preferably 4 to 12 μm, for the reason of good durability. More preferred.
 〔偏光子〕
 本発明の反射防止フィルムが有する偏光子は、自然光を特定の直線偏光に変換する機能を有する部材であればよく、例えば、吸収型偏光子が挙げられる。
 偏光子の種類は特に制限はなく、通常用いられている偏光子を利用でき、例えば、ヨウ素系偏光子、二色性染料を利用した染料系偏光子、および、ポリエン系偏光子が挙げられる。ヨウ素系偏光子および染料系偏光子は、一般に、ポリビニルアルコールにヨウ素または二色性染料を吸着させ、延伸することで作製される。
 なお、偏光子の片面または両面には、保護膜が配置されていてもよい。
[Polarizer]
The polarizer included in the antireflection film of the present invention may be any member as long as it has a function of converting natural light into specific linearly polarized light, and examples thereof include absorptive polarizers.
The type of polarizer is not particularly limited, and commonly used polarizers can be used. Examples thereof include iodine-based polarizers, dye-based polarizers using dichroic dyes, and polyene-based polarizers. Iodine-based polarizers and dye-based polarizers are generally produced by allowing polyvinyl alcohol to adsorb iodine or a dichroic dye and stretching the resultant.
A protective film may be arranged on one side or both sides of the polarizer.
 また、国際公開第2019/131943号公報および特開2017-83843号公報に記載されているように、偏光子として、ポリビニルアルコールをバインダーとして用いずに、液晶化合物および二色性有機色素(例えば、国際公開第2017/195833号公報に記載の光吸収性異方性膜に用いられる二色性アゾ色素)を用い、塗布により作製した塗布型偏光子を用いてもよい。すなわち、偏光子は重合性液晶化合物を含む組成物を用いて形成された偏光子であってもよい。
 この塗布型偏光子は、液晶化合物の配向を活用して、二色性有機色素を配向させる技術である。特開2012-83734号公報に記載されているように、重合性液晶化合物がスメクチック性を示すと、配向度を高める観点で好ましい。あるいは、国際公開第2018/186503号公報に記載されているように、色素を結晶化させることも配向度を高める観点で好ましい。国際公開第2019/131943号公報には、配向度を高めるために好ましい高分子液晶の構造が記載されている。
Further, as described in WO 2019/131943 and JP 2017-83843 A, as a polarizer, without using polyvinyl alcohol as a binder, a liquid crystal compound and a dichroic organic dye (e.g., A coated polarizer prepared by coating using a dichroic azo dye used in a light-absorbing anisotropic film described in International Publication No. 2017/195833 may be used. That is, the polarizer may be a polarizer formed using a composition containing a polymerizable liquid crystal compound.
This coated polarizer is a technique for orienting a dichroic organic dye by utilizing the orientation of a liquid crystal compound. As described in JP-A-2012-83734, when the polymerizable liquid crystal compound exhibits smectic properties, it is preferable from the viewpoint of increasing the degree of orientation. Alternatively, as described in International Publication No. 2018/186503, it is preferable to crystallize the dye from the viewpoint of increasing the degree of orientation. WO 2019/131943 describes a structure of polymer liquid crystals that is preferable for increasing the degree of orientation.
 延伸を行わず、液晶の配向性を利用して二色性有機色素を配向させた偏光子は下記の特徴を有する。厚みが0.1μm~5μm程度と非常に薄層化できること、特開2019-194685号公報に記載されているように折り曲げた時のクラックが入りにくいことや熱変形が小さいこと、特許6483486号公報に記載されるように50%を超えるような透過率の高い偏光板でも耐久性に優れること等、多くの長所を有する。
 これらの長所を生かして、高輝度や小型軽量が求められる用途、微細な光学系用途、曲面を有する部位への成形用途、フレキシブルな部位への用途が可能である。勿論、支持体を剥離して偏光子を転写して使用することも可能である。
A polarizer in which a dichroic organic dye is oriented by utilizing the orientation of liquid crystal without stretching has the following characteristics. It can be made very thin with a thickness of about 0.1 μm to 5 μm, and as described in JP-A-2019-194685, it is difficult for cracks to occur when bent and thermal deformation is small. As described in 1., even a polarizing plate with a high transmittance exceeding 50% has many advantages such as excellent durability.
By taking advantage of these advantages, it can be used for applications requiring high brightness, small size and light weight, applications for fine optical systems, applications for molding parts having curved surfaces, and applications for flexible parts. Of course, it is also possible to peel off the support and transfer the polarizer for use.
 偏光子の透過率は、省電力化の観点では、視感度補正単体透過率が40%以上であることが好ましく、44%以上であることがより好ましく、50%以上であることがさらに好ましい。上限は特に限定されず、60%以下であることが好ましい。
 本発明において、偏光子の視感度補正単体透過率は、自動偏光フィルム測定装置:VAP-7070(日本分光社製)を用いて測定する。視感度補正単体透過率は、次のようにして測定できる。粘着剤を介してガラスの上に偏光子を貼り付けたサンプル(5cm×5cm)を作製する。この際、偏光板保護フィルムをガラスと反対側(空気界面)側になるように偏光子に貼り付ける。このサンプルのガラスの側を光源に向けてセットして、測定する。
 偏光子保護膜の構成は特に制限されず、例えば、支持体または塗工層であってもよく、支持体と塗工層との積層体であってもよい。
 塗工層としては、公知の層を使用でき、例えば、ポリマーや、多官能モノマーを重合硬化して得られる層であってもよい。ポリマーとしては、(メタ)アクリルポリマーやシクロオレフィンポリマーが挙げられる。重合性モノマーとしては、ラジカル重合性またはカチオン重合性の化合物が挙げられる。
 偏光子と保護膜との貼り合わせ面は特に制限されず、例えば、湿熱経時で、偏光子からカリウムイオンやヨウ素イオンが拡散することを抑制する目的で、支持体と塗工層の塗工層面側を偏光子と貼り合わせてもよい。
Regarding the transmittance of the polarizer, the visibility correction single transmittance is preferably 40% or more, more preferably 44% or more, and even more preferably 50% or more, from the viewpoint of power saving. The upper limit is not particularly limited, and is preferably 60% or less.
In the present invention, the luminous efficiency correction single transmittance of the polarizer is measured using an automatic polarizing film measuring device: VAP-7070 (manufactured by JASCO Corporation). The visibility correction single transmittance can be measured as follows. A sample (5 cm×5 cm) is prepared by pasting a polarizer onto glass via an adhesive. At this time, the polarizing plate protective film is attached to the polarizer so as to face the opposite side (air interface) to the glass. Set the glass side of the sample toward the light source and measure.
The structure of the polarizer protective film is not particularly limited, and may be, for example, a support or a coating layer, or a laminate of a support and a coating layer.
As the coating layer, a known layer can be used, and for example, a layer obtained by polymerizing and curing a polymer or a polyfunctional monomer may be used. Polymers include (meth)acrylic polymers and cycloolefin polymers. Polymerizable monomers include radically polymerizable or cationically polymerizable compounds.
The bonding surface between the polarizer and the protective film is not particularly limited. A side may be laminated with a polarizer.
 〔第1の光学異方性フィルム〕
 本発明の反射防止フィルムが有する第1の光学異方性フィルムは、配向した液晶化合物を固定してなる光学異方性層を有する。
 ここで、液晶化合物は、その形状から、棒状タイプと円盤状タイプとに分類できる。さらに、それぞれ低分子と高分子タイプとがある。高分子とは一般に重合度が100以上のものを指す(高分子物理・相転移ダイナミクス,土井 正男 著,2頁,岩波書店,1992)。本発明では、いずれの液晶化合物を用いることもできるが、棒状液晶化合物またはディスコティック液晶化合物(円盤状液晶化合物)が好ましい。また、モノマーであるか、重合度が100未満の比較的低分子量な液晶化合物が好ましい。
 また、液晶化合物は、配向を固定させる観点から、重合性基を有していることが好ましい。このような重合性基としては、例えば、アクリロイル基、メタクリロイル基、エポキシ基、および、ビニル基が挙げられる。なお、以下では、重合性基を有する液晶化合物を「重合性液晶化合物」と略す。
 このような重合性液晶化合物を重合させることにより、液晶化合物の配向を固定することができる。なお、液晶化合物が重合によって固定された後においては、もはや液晶性を示す必要はない。
[First optically anisotropic film]
The first optically anisotropic film of the antireflection film of the present invention has an optically anisotropic layer in which an oriented liquid crystal compound is fixed.
Here, the liquid crystal compound can be classified into a rod-like type and a disk-like type according to its shape. Furthermore, there are low-molecular-weight and high-molecular-weight types, respectively. Polymers generally refer to those having a degree of polymerization of 100 or more (Polymer Physics: Phase Transition Dynamics, Masao Doi, p. 2, Iwanami Shoten, 1992). Although any liquid crystal compound can be used in the present invention, rod-like liquid crystal compounds or discotic liquid crystal compounds (disk-like liquid crystal compounds) are preferred. Further, a monomer or a relatively low-molecular-weight liquid crystal compound having a degree of polymerization of less than 100 is preferable.
Moreover, the liquid crystal compound preferably has a polymerizable group from the viewpoint of fixing the alignment. Such polymerizable groups include, for example, acryloyl groups, methacryloyl groups, epoxy groups, and vinyl groups. In addition, below, the liquid crystal compound which has a polymerizable group is abbreviated as a "polymerizable liquid crystal compound."
By polymerizing such a polymerizable liquid crystal compound, the orientation of the liquid crystal compound can be fixed. After the liquid crystal compound is fixed by polymerization, it is no longer necessary to exhibit liquid crystallinity.
 棒状液晶化合物としては、アゾメチン類、アゾキシ類、シアノビフェニル類、シアノフェニルエステル類、安息香酸エステル類、シクロヘキサンカルボン酸フェニルエステル類、シアノフェニルシクロヘキサン類、シアノ置換フェニルピリミジン類、アルコキシ置換フェニルピリミジン類、フェニルジオキサン類、トラン類及びアルケニルシクロヘキシルベンゾニトリル類が好ましく用いられる。これらの棒状液晶化合物の固定は、棒状液晶化合物の末端構造に重合性基を導入(後述の円盤状液晶と同様)し、この重合、硬化反応を利用して行われている。具体例としては、重合性ネマチック棒状液晶化合物を紫外線硬化した例が特開2006-209073号公報に記載されている。また、上述の低分子液晶化合物だけではなく、高分子液晶化合物も用いることができる。高分子液晶化合物は、以上のような低分子液晶化合物に相当する側鎖を有するポリマーである。高分子液晶化合物を用いた光学補償シートについては、特開平5-53016号公報等に記載がある。 Rod-shaped liquid crystal compounds include azomethines, azoxys, cyanobiphenyls, cyanophenyl esters, benzoic acid esters, cyclohexanecarboxylic acid phenyl esters, cyanophenylcyclohexanes, cyano-substituted phenylpyrimidines, alkoxy-substituted phenylpyrimidines, Phenyldioxanes, tolanes and alkenylcyclohexylbenzonitriles are preferably used. These rod-like liquid crystal compounds are fixed by introducing a polymerizable group into the terminal structure of the rod-like liquid crystal compound (similar to the disk-like liquid crystal described below) and utilizing this polymerization and curing reaction. As a specific example, an example in which a polymerizable nematic rod-like liquid crystal compound is cured with ultraviolet light is described in JP-A-2006-209073. Moreover, not only the low-molecular-weight liquid crystal compounds described above, but also high-molecular-weight liquid crystal compounds can be used. A high-molecular-weight liquid crystal compound is a polymer having a side chain corresponding to the low-molecular-weight liquid crystal compound as described above. An optical compensatory sheet using a polymer liquid crystal compound is described in JP-A-5-53016.
 円盤状液晶化合物としては、C.Destradeらの研究報告、Mol.Cryst.71巻、111頁(1981年)に記載されているベンゼン誘導体、C.Destradeらの研究報告、Mol.Cryst.122巻、141頁(1985年)、Physicslett,A,78巻、82頁(1990)に記載されているトルキセン誘導体、B.Kohneらの研究報告、Angew.Chem.96巻、70頁(1984年)に記載されたシクロヘキサン誘導体及びJ.M.Lehnらの研究報告、J.Chem.Commun.,1794頁(1985年)、J.Zhangらの研究報告、J.Am.Chem.Soc.116巻、2655頁(1994年)に記載されているアザクラウン系やフェニルアセチレン系マクロサイクルが含まれる。 As the discotic liquid crystal compound, C.I. Destrade et al., Mol. Cryst. 71, 111 (1981), benzene derivatives, C.I. Destrade et al., Mol. Cryst. 122, 141 (1985); Physicslett, A, 78, 82 (1990); Kohne et al., Angew. Chem. 96, 70 (1984) and the cyclohexane derivative described in J. Am. M. In the report of Lehn et al., J. Am. Chem. Commun. , 1794 (1985); In the report of Zhang et al., J. Am. Am. Chem. Soc. 116, 2655 (1994) include azacrown-based and phenylacetylene-based macrocycles.
 円盤状液晶化合物の分子としては、分子中心の母核に対して、直鎖のアルキル基、アルコキシ基、置換ベンゾイルオキシ基が母核の側鎖として放射線状に置換した構造である液晶性を示す化合物も含まれる。分子または分子の集合体が、回転対称性を有し、一定の配向を付与できる化合物であることが好ましい。円盤状液晶化合物を含有する組成物から形成する位相差層は、最終的に位相差層に含まれる状態で液晶性を示す必要はない。例えば、熱や光で反応する基を有する低分子の円盤状液晶性分子を、加熱又は光照射により重合反応等させて、高分子量化すると、液晶性を失うが、かかる高分子量化された化合物を含む位相差層も、もちろん本発明に利用することができる。円盤状液晶化合物の好ましい例には、特開平8-50206号公報に記載されている化合物が含まれる。また、円盤状液晶性分子の重合については、特開平8-27284公報に記載がある。 The molecule of the discotic liquid crystal compound exhibits liquid crystallinity, which is a structure in which straight-chain alkyl groups, alkoxy groups, and substituted benzoyloxy groups are substituted radially as side chains of the mother core at the center of the molecule. Compounds are also included. Molecules or aggregates of molecules are preferably compounds that have rotational symmetry and can be given a certain orientation. A retardation layer formed from a composition containing a discotic liquid crystal compound does not need to exhibit liquid crystallinity in the state of being finally included in the retardation layer. For example, when a low-molecular discotic liquid crystalline molecule having a group that reacts with heat or light is subjected to a polymerization reaction or the like by heating or light irradiation to obtain a high molecular weight, the liquid crystallinity is lost. Of course, a retardation layer containing can also be used in the present invention. Preferred examples of discotic liquid crystal compounds include compounds described in JP-A-8-50206. The polymerization of discotic liquid crystalline molecules is described in JP-A-8-27284.
 円盤状液晶性分子を重合により固定するためには、円盤状液晶性分子の円盤状コアに、置換基として重合性基を結合させる必要がある。円盤状コアと重合性基は、連結基を介して結合する化合物が好ましく、これにより重合反応においても配向状態を保つことができる。例えば、特開2000-155216号公報明細書中の段落番号[0151]~[0168]記載の化合物等が挙げられる。 In order to fix the discotic liquid crystalline molecules by polymerization, it is necessary to bond a polymerizable group as a substituent to the discotic core of the discotic liquid crystalline molecules. The discotic core and the polymerizable group are preferably a compound that bonds via a linking group, so that the alignment state can be maintained even during the polymerization reaction. For example, compounds described in Paragraph Nos. [0151] to [0168] in JP-A-2000-155216 can be mentioned.
 本発明においては、斜め方向の色味を改善する観点から、第1の光学異方性フィルムは、垂直配向した円盤状液晶化合物を固定してなる光学異方性層(以下、「光学異方性層(A)」とも略す。)であることが好ましい。 In the present invention, from the viewpoint of improving the color in the oblique direction, the first optically anisotropic film is an optically anisotropic layer (hereinafter referred to as "optically anisotropic It is also abbreviated as the “active layer (A)”).
 また、第1の光学異方性フィルムの波長550nmにおける面内レタデーションは、140~220nmが好ましく、本発明の反射防止フィルムを適用した有機EL表示装置の正面方向または斜め方向から視認した際の黒色の色味づきがより抑制される点(以下、単に「黒色の色味づきがより抑制される点」ともいう。)で、150~200nmがより好ましい。 In addition, the in-plane retardation of the first optically anisotropic film at a wavelength of 550 nm is preferably 140 to 220 nm. 150 to 200 nm is more preferable in terms of further suppressing the tint of black (hereinafter also simply referred to as "the point of further suppressing the tint of black").
 また、第1の光学異方性フィルムの屈折率は、屈折率異方性を高くし、薄膜化する観点から、1.50以上1.70以下であることが好ましく、1.55以上1.65以下であることがより好ましい。 The refractive index of the first optically anisotropic film is preferably 1.50 or more and 1.70 or less, more preferably 1.55 or more and 1.55 or more, from the viewpoint of increasing the refractive index anisotropy and making the film thinner. It is more preferably 65 or less.
 本発明においては、第1の光学異方性フィルムの面内遅相軸と偏光子の吸収軸とのなす角度は、40~85°が好ましく、50~85°がより好ましく、65~85°がさらに好ましい。 In the present invention, the angle formed by the in-plane slow axis of the first optically anisotropic film and the absorption axis of the polarizer is preferably 40 to 85°, more preferably 50 to 85°, and 65 to 85°. is more preferred.
 本発明の反射防止フィルムが長尺状である場合、反射防止フィルムの長手方向と、第1の光学異方性フィルムの面内遅相軸とのなす角度は、40~85°が好ましく、50~85°がより好ましく、65~85°がさらに好ましい。 When the antireflection film of the present invention is elongated, the angle formed by the longitudinal direction of the antireflection film and the in-plane slow axis of the first optically anisotropic film is preferably 40 to 85°. ~85° is more preferred, and 65 to 85° is even more preferred.
 〔第2の光学異方性フィルム〕
 本発明の反射防止フィルムが有する第2の光学異方性フィルムは、配向した液晶化合物を固定してなる光学異方性層を有する。
 ここで、液晶化合物については、上述した第1の光学異方性フィルムにおいて説明したものと同様のものが挙げられる。
[Second optically anisotropic film]
The second optically anisotropic film of the antireflection film of the present invention has an optically anisotropic layer in which an oriented liquid crystal compound is fixed.
Here, the same liquid crystal compound as described in the first optically anisotropic film can be used.
 本発明においては、斜め方向の反射率と色味を改善する観点から、第2の光学異方性フィルムが、2層以上の光学異方性層から構成されていることが好ましく、厚み方向を螺旋軸とする捩れ配向した棒状液晶化合物を固定してなる光学異方性層(以下、「光学異方性層(B)」とも略す。)と、垂直配向した棒状液晶化合物を固定してなる光学異方性層(以下、「光学異方性層(C)」とも略す。)との積層体から構成されていることがより好ましい。 In the present invention, the second optically anisotropic film preferably comprises two or more optically anisotropic layers from the viewpoint of improving reflectance and color in oblique directions. An optically anisotropic layer (hereinafter also abbreviated as "optically anisotropic layer (B)") comprising a twisted rod-shaped liquid crystal compound fixed as a helical axis, and a vertically aligned rod-shaped liquid crystal compound fixed. More preferably, it is composed of a laminate with an optically anisotropic layer (hereinafter also abbreviated as “optically anisotropic layer (C)”).
 <光学異方性層(B)>
 光学異方性層(B)は、上述した通り、厚み方向を螺旋軸とする捩れ配向した棒状液晶化合物を固定してなる光学異方性層であり、いわゆる螺旋構造を持ったキラルネマチック相を固定してなる層であることが好ましい。なお、上記相を形成する際には、ネマチック液晶相を示す液晶化合物と後述するカイラル剤とを混合したものが使用されることが好ましい。
<Optically Anisotropic Layer (B)>
As described above, the optically anisotropic layer (B) is an optically anisotropic layer formed by fixing a twisted rod-like liquid crystal compound having a helical axis in the thickness direction, and has a so-called chiral nematic phase having a helical structure. It is preferably a fixed layer. When forming the above phase, it is preferable to use a mixture of a liquid crystal compound exhibiting a nematic liquid crystal phase and a chiral agent to be described later.
 波長550nmで測定した光学異方性層(B)の屈折率異方性Δnと光学異方性層(B)の厚みdとの積Δndの値は、140~220nmが好ましく、黒色の色味づきがより抑制される点で、150~210nmがより好ましく、160~200nmがさらに好ましい。
 なお、屈折率異方性Δnとは、光学異方性層の屈折率異方性を意味する。
 上記Δndの測定方法は、Axometrics社のAxoScan(ポラリメーター)装置を用い同社の装置解析ソフトウェアを用いて測定する。
The product Δnd of the refractive index anisotropy Δn of the optically anisotropic layer (B) measured at a wavelength of 550 nm and the thickness d of the optically anisotropic layer (B) is preferably 140 to 220 nm, and has a black tint. 150 to 210 nm is more preferable, and 160 to 200 nm is even more preferable, in terms of further suppressing sticking.
The refractive index anisotropy Δn means the refractive index anisotropy of the optically anisotropic layer.
The above Δnd is measured using an AxoScan (polarimeter) device manufactured by Axometrics using the company's device analysis software.
 液晶化合物の捩れ角度(液晶化合物の配向方向の捩れ角度)は90±30°(60~120°の範囲内)が好ましく、黒色の色味づきがより抑制される点で、90±20°(70~110°の範囲内)がより好ましく、90±10°(80~100°の範囲内)がさらに好ましい。
 なお、捩れ角度の測定方法は、Axometrics社のAxoScan(ポラリメーター)装置を用い同社の装置解析ソフトウェアを用いて測定する。
 また、液晶化合物が捩れ配向するとは、光学異方性層(B)の厚み方向を軸として、光学異方性層(B)の一方の主表面から他方の主表面までの液晶化合物が捩れることを意図する。それに伴い、液晶化合物の配向方向(面内遅相軸方向)が、光学異方性層(B)の厚み方向の位置によって異なる。
The twist angle of the liquid crystal compound (the twist angle of the orientation direction of the liquid crystal compound) is preferably 90±30° (in the range of 60 to 120°), and is preferably 90±20° ( 70 to 110°) is more preferable, and 90±10° (within the range of 80 to 100°) is even more preferable.
The torsion angle is measured using an AxoScan (polarimeter) device manufactured by Axometrics using the company's device analysis software.
In addition, the twist alignment of the liquid crystal compound means that the liquid crystal compound is twisted from one main surface to the other main surface of the optically anisotropic layer (B) about the thickness direction of the optically anisotropic layer (B). intended to be Accordingly, the alignment direction (in-plane slow axis direction) of the liquid crystal compound varies depending on the position in the thickness direction of the optically anisotropic layer (B).
 (カイラル剤(キラル剤))
 液晶化合物の捩れ配向形成に用いられるカイラル剤として、公知の各種のカイラル剤が利用可能である。キラル剤は液晶化合物の螺旋構造を誘起する機能を有する。カイラル化合物は、化合物によって、誘起する螺旋のセンスまたは螺旋ピッチが異なるため、目的に応じて選択すればよい。
 カイラル剤としては、公知の化合物を用いることができるが、シンナモイル基を有することが好ましい。カイラル剤の例としては、液晶デバイスハンドブック(第3章4-3項、TN、STN用カイラル剤、199頁、日本学術振興会第142委員会編、1989)、ならびに、特開2003-287623号公報、特開2002-302487号公報、特開2002-80478号公報、特開2002-80851号公報、特開2010-181852号公報および特開2014-034581号公報等に記載される化合物が例示される。
(Chiral agent (chiral agent))
Various known chiral agents can be used as the chiral agent used to form the twisted alignment of the liquid crystal compound. A chiral agent has a function of inducing a helical structure of a liquid crystal compound. The chiral compound may be selected depending on the purpose, since the induced helical sense or helical pitch differs depending on the compound.
A known compound can be used as the chiral agent, but it preferably has a cinnamoyl group. Examples of chiral agents include Liquid Crystal Device Handbook (Chapter 3, Section 4-3, Chiral Agents for TN and STN, page 199, Japan Society for the Promotion of Science, 142nd Committee, 1989), and JP-A-2003-287623. Publications, JP-A-2002-302487, JP-A-2002-80478, JP-A-2002-80851, JP-A-2010-181852 and JP-A-2014-034581 and the like are exemplified. be.
 カイラル剤は、一般に不斉炭素原子を含むが、不斉炭素原子を含まない軸性不斉化合物または面性不斉化合物もカイラル剤として用いることができる。軸性不斉化合物または面性不斉化合物の例には、ビナフチル、ヘリセン、パラシクロファンおよびこれらの誘導体が含まれる。カイラル剤は、重合性基を有していてもよい。
 カイラル剤と液晶化合物とが、いずれも重合性基を有する場合は、重合性カイラル剤と重合性液晶化合物との重合反応により、重合性液晶化合物から誘導される繰り返し単位と、カイラル剤から誘導される繰り返し単位とを有するポリマーを形成することができる。この態様では、重合性カイラル剤が有する重合性基は、重合性液晶化合物が有する重合性基と、同種の基であることが好ましい。従って、カイラル剤の重合性基も、不飽和重合性基、エポキシ基またはアジリジニル基であることが好ましく、不飽和重合性基であることがさらに好ましく、エチレン性不飽和重合性基であることが特に好ましい。
 また、カイラル剤は、液晶化合物であってもよい。
A chiral agent generally contains an asymmetric carbon atom, but an axially chiral compound or planar chiral compound that does not contain an asymmetric carbon atom can also be used as the chiral agent. Examples of axially or planarly chiral compounds include binaphthyl, helicene, paracyclophane and derivatives thereof. The chiral agent may have a polymerizable group.
When both the chiral agent and the liquid crystal compound have a polymerizable group, the polymerization reaction of the polymerizable chiral agent and the polymerizable liquid crystal compound produces a repeating unit derived from the polymerizable liquid crystal compound and a repeating unit derived from the chiral agent. can form a polymer having repeating units with In this aspect, the polymerizable group possessed by the polymerizable chiral agent is preferably the same type of group as the polymerizable group possessed by the polymerizable liquid crystal compound. Therefore, the polymerizable group of the chiral agent is also preferably an unsaturated polymerizable group, an epoxy group or an aziridinyl group, more preferably an unsaturated polymerizable group, and an ethylenically unsaturated polymerizable group. Especially preferred.
Also, the chiral agent may be a liquid crystal compound.
 カイラル剤としては、イソソルビド誘導体、イソマンニド誘導体、および、ビナフチル誘導体等を好ましく用いることができる。イソソルビド誘導体は、BASF社製のLC-756等の市販品を用いてもよい。
 液晶組成物における、カイラル剤の含有量は、液晶化合物量の0.01~200モル%が好ましく、1~30モル%がより好ましい。
As chiral agents, isosorbide derivatives, isomannide derivatives, binaphthyl derivatives, and the like can be preferably used. As the isosorbide derivative, a commercially available product such as LC-756 manufactured by BASF may be used.
The content of the chiral agent in the liquid crystal composition is preferably 0.01 to 200 mol %, more preferably 1 to 30 mol % of the amount of the liquid crystal compound.
 <光学異方性層(C)>
 光学異方性層(C)は、垂直配向した棒状液晶化合物を固定してなる層であり、後述する光配向性ポリマーを含む層であることが好ましい。
 光学異方性層(C)の波長550nmにおける面内レタデーションは、0~10nmであることが好ましい。
 また、光学異方性層(C)の波長550nmにおける厚み方向のレタデーションは、-120~-20nmであることが好ましい。
 上記面内レタデーションは、黒色の色味づきがより抑制される点で、0~5nmがより好ましい。
 上記厚み方向のレタデーションは、黒色の色味づきがより抑制される点で、-110~-30nmがより好ましく、-100~-40nmがより好ましい。
<Optically Anisotropic Layer (C)>
The optically anisotropic layer (C) is a layer formed by fixing a vertically aligned rod-like liquid crystal compound, and preferably a layer containing a photo-alignable polymer described later.
The in-plane retardation of the optically anisotropic layer (C) at a wavelength of 550 nm is preferably 0 to 10 nm.
Further, the retardation in the thickness direction of the optically anisotropic layer (C) at a wavelength of 550 nm is preferably -120 to -20 nm.
The in-plane retardation is more preferably 0 to 5 nm in terms of further suppressing black tint.
The retardation in the thickness direction is more preferably −110 to −30 nm, more preferably −100 to −40 nm, in terms of further suppressing black tint.
 本発明の反射防止フィルムは、第1の光学異方性フィルムとして、垂直配向した円盤状液晶化合物を固定してなる光学異方性層(A)を有し、第2の光学異方性フィルムとして、厚み方向を螺旋軸とする捩れ配向した棒状液晶化合物を固定してなる光学異方性層(B)と、垂直配向した棒状液晶化合物を固定してなる光学異方性層(C)との2層を有している態様(以下、「特定態様」と略す。)が好ましい。 The antireflection film of the present invention has, as the first optically anisotropic film, an optically anisotropic layer (A) formed by fixing a vertically aligned discotic liquid crystal compound, and the second optically anisotropic film. and an optically anisotropic layer (B) in which a twisted rod-shaped liquid crystal compound having a helical axis in the thickness direction is fixed, and an optically anisotropic layer (C) in which a vertically aligned rod-shaped liquid crystal compound is fixed. (hereinafter abbreviated as "specific embodiment") having two layers of is preferred.
 上述した特定態様を図1~図3を用いて説明する。
 図1は、反射防止フィルム100の一実施態様の概略断面図である。
 また、図2は、図1に示す反射防止フィルム100における、偏光子20の吸収軸と、光学異方性層(A)12および光学異方性層(B)14のそれぞれの面内遅相軸との関係を示す図である。なお、図2中の偏光子20中の矢印は吸収軸を、光学異方性層(A)12および光学異方性層(B)14中の矢印はそれぞれの層中の面内遅相軸を表す。
 また、図3は、図1の白矢印から観察した際の、偏光子20の吸収軸(破線)と、光学異方性層(A)12および光学異方性層(B)14のそれぞれの面内遅相軸(実線)との角度の関係を示す図である。
 なお、面内遅相軸の回転角度は、図1中の白抜きの矢印から観察した際、偏光子20の吸収軸を基準(0°)に、反時計回り方向に正、時計回りに負の角度値をもって表す。
 また、液晶化合物の捩れ方向は、図1中の白抜きの矢印から観察した際、光学異方性層(B)14中の手前側(偏光子20側)の表面での面内遅相軸を基準に右捩れ(時計回り)か、左捩れ(反時計回り)を判断する。
The specific aspect described above will be described with reference to FIGS. 1 to 3. FIG.
FIG. 1 is a schematic cross-sectional view of one embodiment of an antireflection film 100. FIG.
2 shows the absorption axis of the polarizer 20 and the in-plane retardation of the optically anisotropic layer (A) 12 and the optically anisotropic layer (B) 14 in the antireflection film 100 shown in FIG. It is a figure which shows the relationship with an axis|shaft. The arrow in the polarizer 20 in FIG. 2 indicates the absorption axis, and the arrow in the optically anisotropic layer (A) 12 and the optically anisotropic layer (B) 14 indicates the in-plane slow axis in each layer. represents
3 shows the absorption axis (broken line) of the polarizer 20 and the respective absorption axes of the optically anisotropic layer (A) 12 and the optically anisotropic layer (B) 14 when observed from the white arrow in FIG. It is a figure which shows the relationship of the angle with an in-plane slow axis (solid line).
The rotation angle of the in-plane slow axis is positive in the counterclockwise direction and negative in the clockwise direction, with the absorption axis of the polarizer 20 as the reference (0°) when observed from the white arrow in FIG. is expressed as an angle value of
The twist direction of the liquid crystal compound is the in-plane slow axis on the front side (polarizer 20 side) surface of the optically anisotropic layer (B) 14 when observed from the white arrow in FIG. The right twist (clockwise) or the left twist (counterclockwise) is determined based on .
 反射防止フィルム100は、図1に示すように、偏光子20と、光学異方性層(A)12と、光学異方性層(B)14と、光学異方性層(C)16とをこの順で有する。なお、本発明の反射防止フィルムは、光学異方性層(A)12と光学異方性層(B)14との間に、図示しない特定粘着剤層を有する。
 図2~図3に示すように、偏光子20の吸収軸と光学異方性層(A)12の面内遅相軸とのなす角度φa1は、76°である。より具体的には、光学異方性層(A)12の面内遅相軸は、偏光子20の吸収軸に対して、-76°(時計回りに76°)回転している。なお、図2~図3においては、光学異方性層(A)12の面内遅相軸が-76°の位置にある態様を示すが、本発明はこの態様に制限されず、-40~-85°の範囲内になることが好ましく、-50~-85°の範囲内になることがより好ましく、-65~-85°の範囲内になることがさらに好ましい。つまり、偏光子20の吸収軸と光学異方性層(A)12の面内遅相軸とのなす角度は、40~85°の範囲内であることが好ましく、50~85°の範囲内であることがより好ましく、65~85°の範囲内であることがさらに好ましい。
 なお、図2に示すように、光学異方性層(A)12中において、光学異方性層(A)12の偏光子20側の表面121での面内遅相軸と、光学異方性層(A)12の光学異方性層(B)14側の表面122での面内遅相軸とは、平行である。
As shown in FIG. 1, the antireflection film 100 includes a polarizer 20, an optically anisotropic layer (A) 12, an optically anisotropic layer (B) 14, and an optically anisotropic layer (C) 16. in that order. The antireflection film of the present invention has a specific adhesive layer (not shown) between the optically anisotropic layer (A) 12 and the optically anisotropic layer (B) 14 .
As shown in FIGS. 2 and 3, the angle φa1 between the absorption axis of the polarizer 20 and the in-plane slow axis of the optically anisotropic layer (A) 12 is 76°. More specifically, the in-plane slow axis of the optically anisotropic layer (A) 12 is rotated by −76° (76° clockwise) with respect to the absorption axis of the polarizer 20 . 2 and 3 show an aspect in which the in-plane slow axis of the optically anisotropic layer (A) 12 is at -76°, but the present invention is not limited to this aspect, and is -40°. It is preferably within the range of -85°, more preferably within the range of -50° to -85°, and even more preferably within the range of -65° to -85°. That is, the angle between the absorption axis of the polarizer 20 and the in-plane slow axis of the optically anisotropic layer (A) 12 is preferably within the range of 40 to 85°, more preferably within the range of 50 to 85°. and more preferably in the range of 65 to 85°.
As shown in FIG. 2, in the optically anisotropic layer (A) 12, the in-plane slow axis and the optical anisotropic The in-plane slow axis at the surface 122 of the optical layer (A) 12 on the optically anisotropic layer (B) 14 side is parallel.
 図2~図3に示すように、光学異方性層(A)12の面内遅相軸と、光学異方性層(B)14の光学異方性層(A)12側の表面141での面内遅相軸とが、平行である。
 なお、本発明はこの態様に制限されず、光学異方性層(A)12の面内遅相軸と、光学異方性層(B)14の光学異方性層(A)12側の表面141での面内遅相軸とのなす角度は、0~20°の範囲内であることが好ましい。
 光学異方性層(B)14は、上述したように、厚み方向を螺旋軸とする捩れ配向した棒状液晶化合物を固定してなる光学異方性層である。そのため、図2~図3に示すように、光学異方性層(B)14の光学異方性層(A)12側の表面141での面内遅相軸と、光学異方性層(B)14の光学異方性層(A)12側とは反対側の表面142での面内遅相軸とは、上述した捩れ角度(なお、図2においては、81°)をなす。つまり、光学異方性層(B)14の光学異方性層(A)12側の表面141での面内遅相軸と、光学異方性層(B)14の光学異方性層(A)12側とは反対側の表面142での面内遅相軸とのなす角度φ2は、81°である。より具体的には、光学異方性層(B)14中における棒状液晶化合物の捩れ方向は、左捩れ(反時計回り)であり、その捩れ角度が81°である。
 なお、図2~図3においては、光学異方性層(B)14中の棒状液晶化合物の捩れ角度が81°の態様を示すが、この態様に限定されず、上述したように、棒状液晶化合物の捩れ角度は80±30°の範囲内であることが好ましい。つまり、光学異方性層(B)14の光学異方性層(A)12側の表面141での面内遅相軸と、光学異方性層(B)14の光学異方性層(A)12側とは反対側の表面142での面内遅相軸とのなす角度は、80±30°の範囲内であることが好ましい。
As shown in FIGS. 2 and 3, the in-plane slow axis of the optically anisotropic layer (A) 12 and the surface 141 of the optically anisotropic layer (B) 14 on the side of the optically anisotropic layer (A) 12 is parallel to the in-plane slow axis at .
The present invention is not limited to this embodiment, and the in-plane slow axis of the optically anisotropic layer (A) 12 and the optically anisotropic layer (A) 12 side of the optically anisotropic layer (B) 14 The angle formed with the in-plane slow axis on the surface 141 is preferably within the range of 0 to 20°.
The optically anisotropic layer (B) 14 is, as described above, an optically anisotropic layer formed by fixing a rod-like liquid crystal compound twisted with its helical axis in the thickness direction. Therefore, as shown in FIGS. 2 and 3, the in-plane slow axis on the surface 141 of the optically anisotropic layer (B) 14 on the side of the optically anisotropic layer (A) 12 The in-plane slow axis on the surface 142 opposite to the optically anisotropic layer (A) 12 of B) 14 forms the above-described twist angle (81° in FIG. 2). That is, the in-plane slow axis on the surface 141 of the optically anisotropic layer (B) 14 on the side of the optically anisotropic layer (A) 12 and the optically anisotropic layer (B) 14 of the optically anisotropic layer (B) 14 A) The angle φ2 between the surface 142 opposite to the 12 side and the in-plane slow axis is 81°. More specifically, the twist direction of the rod-like liquid crystal compound in the optically anisotropic layer (B) 14 is left twist (counterclockwise), and the twist angle is 81°.
2 and 3 show an embodiment in which the rod-like liquid crystal compound in the optically anisotropic layer (B) 14 has a twist angle of 81°, but the present invention is not limited to this embodiment. The twist angle of the compound is preferably within the range of 80±30°. That is, the in-plane slow axis on the surface 141 of the optically anisotropic layer (B) 14 on the side of the optically anisotropic layer (A) 12 and the optically anisotropic layer (B) 14 of the optically anisotropic layer (B) 14 A) The angle formed by the in-plane slow axis on the surface 142 opposite to the 12 side is preferably within the range of 80±30°.
 上述したように、図2~図3の態様では、偏光子20側から反射防止フィルム100を観察した際に、偏光子20の吸収軸を基準にして、光学異方性層(A)12の面内遅相軸が時計回りに76°回転しており、光学異方性層(B)14中における棒状液晶化合物の捩れ方向は反時計回り(左捩れ)である。
 図2~図3においては、棒状液晶化合物の捩れ方向が反時計回りの態様について詳述したが、所定の角度の関係を満たせば、時計回りの態様であってもよい。より具体的には、偏光子20側から反射防止フィルム100を観察した際に、偏光子20の吸収軸を基準にして、光学異方性層(A)12の面内遅相軸が反時計回りに76°回転しており、光学異方性層(B)14中における棒状液晶化合物の捩れ方向は時計回り(右捩れ)である態様であってもよい。
As described above, in the embodiments of FIGS. 2 and 3, when the antireflection film 100 is observed from the polarizer 20 side, the absorption axis of the polarizer 20 is used as a reference for the optically anisotropic layer (A) 12. The in-plane slow axis is rotated clockwise by 76°, and the twist direction of the rod-like liquid crystal compound in the optically anisotropic layer (B) 14 is counterclockwise (left twist).
In FIGS. 2 and 3, the twist direction of the rod-like liquid crystal compound is counterclockwise, but it may be twisted clockwise as long as it satisfies a predetermined angle relationship. More specifically, when the antireflection film 100 is observed from the polarizer 20 side, the in-plane slow axis of the optically anisotropic layer (A) 12 is counterclockwise with respect to the absorption axis of the polarizer 20. The twist direction of the rod-like liquid crystal compound in the optically anisotropic layer (B) 14 may be clockwise (right twist).
 つまり、図1に示す反射防止フィルム100においては、偏光子20側から反射防止フィルム100を観察した際に、偏光子20の吸収軸を基準として、光学異方性層(A)の面内遅相軸が時計回りに40~85°(50~85°が好ましく、65~85°がより好ましい)の範囲内で回転している場合、光学異方性層(B)の光学異方性層(A)側の表面での面内遅相軸を基準に、光学異方性層(B)中における棒状液晶化合物の捩れ方向が反時計回りであることが好ましい。
 また、図1に示す反射防止フィルム100においては、偏光子20側から反射防止フィルム100を観察した際に、偏光子20の吸収軸を基準として、光学異方性層(A)の面内遅相軸が反時計回りに40~85°(50~85°が好ましく、65~85°がより好ましい)の範囲内で回転している場合、光学異方性層(B)の光学異方性層(A)側の表面での面内遅相軸を基準に、光学異方性層(B)中における棒状液晶化合物の捩れ方向が時計回りであることが好ましい。なお、光学異方性層(B)中における棒状液晶化合物の捩れ方向が時計回りである場合においても、光学異方性層(A)の面内遅相軸と、光学異方性層(B)の光学異方性層(A)側の表面での面内遅相軸とのなす角度は、0~20°の範囲内であることが好ましい。
That is, in the antireflection film 100 shown in FIG. 1, when the antireflection film 100 is observed from the polarizer 20 side, the in-plane retardation of the optically anisotropic layer (A) is based on the absorption axis of the polarizer 20. When the phase axis rotates clockwise within the range of 40 to 85° (preferably 50 to 85°, more preferably 65 to 85°), the optically anisotropic layer of the optically anisotropic layer (B) The twist direction of the rod-like liquid crystal compound in the optically anisotropic layer (B) is preferably counterclockwise with respect to the in-plane slow axis on the (A) side surface.
In the antireflection film 100 shown in FIG. 1, when the antireflection film 100 is observed from the polarizer 20 side, the in-plane retardation of the optically anisotropic layer (A) is measured with the absorption axis of the polarizer 20 as a reference. When the phase axis rotates counterclockwise within the range of 40 to 85° (preferably 50 to 85°, more preferably 65 to 85°), the optical anisotropy of the optically anisotropic layer (B) The twist direction of the rod-like liquid crystal compound in the optically anisotropic layer (B) is preferably clockwise with respect to the in-plane slow axis on the surface of the layer (A). Even when the twist direction of the rod-like liquid crystal compound in the optically anisotropic layer (B) is clockwise, the in-plane slow axis of the optically anisotropic layer (A) and the optically anisotropic layer (B ) with the in-plane slow axis on the surface of the optically anisotropic layer (A) is preferably in the range of 0 to 20°.
 〔密着層〕
 本発明の反射防止フィルムは、例えば、偏光子と第1の光学異方性フィルムとの間などに、上述した特定粘着剤層以外の密着層を有していてもよい。
 密着層としては、公知の粘着剤層および接着剤層が挙げられる。
[Adhesion layer]
The antireflection film of the present invention may have an adhesion layer other than the specific adhesive layer described above, for example, between the polarizer and the first optically anisotropic film.
Examples of the adhesion layer include known pressure-sensitive adhesive layers and adhesive layers.
 〔反射防止フィルムの製造方法〕
 本発明の反射防止フィルムの製造方法は特に制限されず、公知の方法を採用できる。
 例えば、所定の光学特性を示す第1の光学異方性フィルムおよび第2の光学異方性フィルムをそれぞれ作製して、これらのフィルムを構成する光学異方性層と基板(例えば、長尺支持体など)とを、特定粘着剤層、粘着剤層または接着剤層を介して所定の順番に貼り合わせることにより、反射防止フィルムを製造できる。
 また、上述した貼り合わせる方法と、光学異方性層形成用組成物を用いて光学異方性層を形成する方法とを組み合わせてもよい。
 組み合わせた方法としては、長尺支持体上に光学異方性層形成用組成物を塗布して、第2の光学異方性フィルムを構成する光学異方性層(例えば、上述した光学異方性層(C)および光学異方性層(B))を形成し、積層体を得た後に、別途、基板上に光学異方性層形成用組成物を塗布して形成された第1の光学異方性フィルムを構成する光学異方性層(例えば、上述した光学異方性層(A))を、特定粘着剤層を介して貼り合わせることにより、反射防止フィルムを製造することができる。
 以下に、基板および光学異方性層形成用組成物などについて詳述する。
[Method for producing antireflection film]
The method for producing the antireflection film of the present invention is not particularly limited, and known methods can be employed.
For example, a first optically anisotropic film and a second optically anisotropic film exhibiting predetermined optical properties are prepared, respectively, and optically anisotropic layers and substrates (for example, long supports) constituting these films are prepared. body, etc.) in a predetermined order via a specific pressure-sensitive adhesive layer, a pressure-sensitive adhesive layer, or an adhesive layer, an antireflection film can be produced.
Moreover, you may combine the method of bonding mentioned above, and the method of forming an optically anisotropic layer using the composition for optically anisotropic layer forming.
As a combined method, a composition for forming an optically anisotropic layer is coated on a long support, and an optically anisotropic layer constituting a second optically anisotropic film (for example, the above-mentioned optically anisotropic After forming the optically anisotropic layer (C) and the optically anisotropic layer (B)) to obtain a laminate, a first layer formed by separately coating the composition for forming an optically anisotropic layer on the substrate is formed. An antireflection film can be produced by laminating an optically anisotropic layer constituting an optically anisotropic film (for example, the optically anisotropic layer (A) described above) via a specific pressure-sensitive adhesive layer. .
The substrate, the composition for forming an optically anisotropic layer, and the like are described in detail below.
 <基板>
 基板としては、透明基板が好ましい。なお、透明基板とは、可視光の透過率が60%以上である基板を意図し、その透過率は80%以上が好ましく、90%以上がより好ましい。
<Substrate>
A transparent substrate is preferable as the substrate. The transparent substrate means a substrate having a visible light transmittance of 60% or more, preferably 80% or more, more preferably 90% or more.
 基板の波長550nmにおける厚み方向のレタデーション値(Rth(550))は特に制限されないが、-110~110nmが好ましく、-80~80nmがより好ましい。
 基板の波長550nmにおける面内のレタデーション値(Re(550))は特に制限されないが、0~50nmが好ましく、0~30nmがより好ましく、0~10nmがさらに好ましい。
The thickness direction retardation value (Rth(550)) of the substrate at a wavelength of 550 nm is not particularly limited, but is preferably −110 to 110 nm, more preferably −80 to 80 nm.
The in-plane retardation value (Re(550)) of the substrate at a wavelength of 550 nm is not particularly limited, but is preferably 0 to 50 nm, more preferably 0 to 30 nm, even more preferably 0 to 10 nm.
 基板を形成する材料としては、光学性能透明性、機械的強度、熱安定性、水分遮蔽性、および、等方性などに優れるポリマーが好ましい。
 基板として用いることのできるポリマーフィルムとしては、例えば、セルロースアシレートフィルム(例えば、セルローストリアセテートフィルム(屈折率1.48)、セルロースジアセテートフィルム、セルロースアセテートブチレートフィルム、セルロースアセテートプロピオネートフィルム)、ポリエチレンおよびポリプロピレンなどのポリオレフィンフィルム、ポリエチレンテレフタレートおよびポリエチレンナフタレートなどのポリエステルフィルム、ポリエーテルスルホンフィルム、ポリメチルメタクリレートなどのポリアクリルフィルム、ポリウレタンフィルム、ポリカーボネートフィルム、ポリスルホンフィルム、ポリエーテルフィルム、ポリメチルペンテンフィルム、ポリエーテルケトンフィルム、(メタ)アクリルニトリルフィルム、並びに、脂環式構造を有するポリマーのフィルム(ノルボルネン系樹脂(アートン:商品名、JSR社製、非晶質ポリオレフィン(ゼオネックス:商品名、日本ゼオン社製)))が挙げられる。
 なかでも、ポリマーフィルムの材料としては、トリアセチルセルロース、ポリエチレンテレフタレート、または、脂環式構造を有するポリマーが好ましく、トリアセチルセルロースがより好ましい。
As a material for forming the substrate, a polymer that is excellent in optical performance transparency, mechanical strength, thermal stability, moisture shielding property, isotropy, and the like is preferable.
Polymer films that can be used as substrates include, for example, cellulose acylate films (e.g., cellulose triacetate film (refractive index: 1.48), cellulose diacetate film, cellulose acetate butyrate film, cellulose acetate propionate film), Polyolefin films such as polyethylene and polypropylene, polyester films such as polyethylene terephthalate and polyethylene naphthalate, polyethersulfone films, polyacrylic films such as polymethylmethacrylate, polyurethane films, polycarbonate films, polysulfone films, polyether films, polymethylpentene films , polyether ketone film, (meth)acrylonitrile film, and polymer film having an alicyclic structure (norbornene resin (Arton: trade name, manufactured by JSR Corporation, amorphous polyolefin (Zeonex: trade name, Nippon Zeon company))).
Among them, triacetyl cellulose, polyethylene terephthalate, or a polymer having an alicyclic structure is preferable as the material for the polymer film, and triacetyl cellulose is more preferable.
 基板には、種々の添加剤(例えば、光学的異方性調整剤、波長分散調整剤、微粒子、可塑剤、紫外線防止剤、劣化防止剤、剥離剤、など)が含まれていてもよい。 The substrate may contain various additives (for example, optically anisotropic modifiers, wavelength dispersion modifiers, fine particles, plasticizers, UV inhibitors, deterioration inhibitors, release agents, etc.).
 基板の厚みは特に制限されないが、10~200μmが好ましく、10~100μmがより好ましく、20~90μmがさらに好ましい。また、基板は複数枚の積層からなっていてもよい。基板はその上に設けられる層との接着を改善するため、基板の表面に表面処理(例えば、グロー放電処理、コロナ放電処理、紫外線(UV)処理、火炎処理)を実施してもよい。
 また、基板の上に、接着層(下塗り層)を設けてもよい。
 また、基板には、搬送工程でのすべり性を付与したり、巻き取った後の裏面と表面の貼り付きを防止したりするために、平均粒径が10~100nm程度の無機粒子を固形分質量比で5~40質量%混合したポリマー層を基板の片側に配置してもよい。
The thickness of the substrate is not particularly limited, but is preferably 10 to 200 μm, more preferably 10 to 100 μm, even more preferably 20 to 90 μm. Also, the substrate may consist of a laminate of a plurality of sheets. The substrate may be subjected to a surface treatment (eg, glow discharge treatment, corona discharge treatment, ultraviolet (UV) treatment, flame treatment) on the surface of the substrate to improve adhesion with the layer provided thereon.
Further, an adhesive layer (undercoat layer) may be provided on the substrate.
In addition, inorganic particles with an average particle size of about 10 to 100 nm are added to the substrate as a solid content in order to provide slipperiness during the transportation process and to prevent sticking between the back surface and the front surface after winding. A polymer layer mixed with 5 to 40 mass % by mass ratio may be arranged on one side of the substrate.
 基板は、いわゆる仮支持体であってもよい。つまり、本発明の反射防止フィルムを製造した後、基板を光学異方性層から剥離してもよい。 The substrate may be a so-called temporary support. In other words, the substrate may be peeled off from the optically anisotropic layer after the antireflection film of the invention is produced.
 また、基板の表面に直接ラビング処理を施してもよい。つまり、ラビング処理が施された基板を用いてもよい。ラビング処理の方向は特に制限されず、液晶化合物を配向させたい方向に応じて、適宜、最適な方向が選択される。
 ラビング処理は、LCD(liquid crystal display)の液晶配向処理工程として広く採用されている処理方法を適用できる。即ち、基板の表面を、紙、ガーゼ、フェルト、ゴム、ナイロン繊維、または、ポリエステル繊維などを用いて一定方向に擦ることにより、配向を得る方法を用いることができる。
Alternatively, the surface of the substrate may be directly rubbed. That is, a substrate subjected to rubbing treatment may be used. The direction of the rubbing treatment is not particularly limited, and an optimum direction is appropriately selected according to the direction in which the liquid crystal compound is to be oriented.
For the rubbing treatment, a treatment method that is widely employed as a liquid crystal alignment treatment step for LCDs (liquid crystal displays) can be applied. That is, a method of obtaining orientation can be used by rubbing the surface of the substrate in a given direction with paper, gauze, felt, rubber, nylon fiber, polyester fiber, or the like.
 基板上には、配向膜が配置されていてもよい。
 配向膜は、有機化合物(好ましくはポリマー)のラビング処理、無機化合物の斜方蒸着、マイクログルーブを有する層の形成、または、ラングミュア・ブロジェット法(LB膜)による有機化合物(例、ω-トリコサン酸、ジオクタデシルメチルアンモニウムクロライド、ステアリル酸メチル)の累積のような手段で形成できる。
 さらに、電場の付与、磁場の付与、または、光照射(好ましくは偏光)により、配向機能が生じる配向膜も知られている。
 配向膜としては、光配向膜も挙げられる。
 配向膜の厚さは、配向機能を発揮することができれば特に制限されないが、0.01~5.0μmが好ましく、0.05~3.0μmがより好ましく、0.5~1.0μmがさらに好ましい。
 配向膜は、基板とともに光学異方性層から剥離可能であってもよい。
An alignment film may be arranged on the substrate.
The alignment film is formed by rubbing an organic compound (preferably polymer), oblique vapor deposition of an inorganic compound, formation of a layer having microgrooves, or organic compound (eg, ω-tricosane) by the Langmuir-Blodgett method (LB film). acid, dioctadecylmethylammonium chloride, methyl stearate).
Furthermore, an alignment film is also known, in which an alignment function is produced by application of an electric field, application of a magnetic field, or light irradiation (preferably polarized light).
The alignment film also includes a photo-alignment film.
The thickness of the alignment film is not particularly limited as long as the alignment function can be exhibited. preferable.
The alignment film may be peelable from the optically anisotropic layer together with the substrate.
 <光学異方性層形成用組成物>
 光学異方性層形成用組成物に含まれる液晶化合物は、上述した通りである。なお、上述したように、形成される光学異方性層の特性に応じて、棒状液晶化合物および円盤状液晶化合物が適宜選択される。
 光学異方性層形成用組成物中における重合性液晶化合物の含有量は、光学異方性層形成用組成物の全固形分に対して、60~99質量%が好ましく、70~98質量%がより好ましい。
 なお、固形分とは、溶媒を除去した、光学異方性層を形成し得る成分を意味し、その性状が液体状であっても固形分とする。
<Composition for forming an optically anisotropic layer>
The liquid crystal compound contained in the composition for forming an optically anisotropic layer is as described above. As described above, the rod-like liquid crystal compound and the discotic liquid crystal compound are appropriately selected according to the properties of the optically anisotropic layer to be formed.
The content of the polymerizable liquid crystal compound in the composition for forming an optically anisotropic layer is preferably 60 to 99% by mass, more preferably 70 to 98% by mass, based on the total solid content of the composition for forming an optically anisotropic layer. is more preferred.
The solid content means a component capable of forming an optically anisotropic layer from which the solvent has been removed.
 光学異方性層形成用組成物は、重合性液晶化合物以外の他の化合物を含んでいてもよい。
 例えば、上述した光学異方性層(B)を形成するための光学異方性層形成用組成物は、液晶化合物を捩れ配向させるためには、キラル剤を含むことが好ましい。
 また、上述した光学異方性層(C)を形成するための光学異方性層形成用組成物は、光配向性ポリマーを含むことが好ましい。
The composition for forming an optically anisotropic layer may contain compounds other than the polymerizable liquid crystal compound.
For example, the optically anisotropic layer-forming composition for forming the optically anisotropic layer (B) described above preferably contains a chiral agent in order to twist-align the liquid crystal compound.
Moreover, the optically anisotropic layer-forming composition for forming the optically anisotropic layer (C) described above preferably contains a photo-orientable polymer.
 光学異方性層形成用組成物は、重合開始剤を含んでいてもよい。使用される重合開始剤は、重合反応の形式に応じて選択され、例えば、熱重合開始剤、および、光重合開始剤が挙げられる。
 光学異方性層形成用組成物中における重合開始剤の含有量は、光学異方性層形成用組成物の全固形分に対して、0.01~20質量%が好ましく、0.5~10質量%がより好ましい。
The composition for forming an optically anisotropic layer may contain a polymerization initiator. The polymerization initiator to be used is selected according to the type of polymerization reaction, and examples thereof include thermal polymerization initiators and photopolymerization initiators.
The content of the polymerization initiator in the composition for forming an optically anisotropic layer is preferably 0.01 to 20% by mass, more preferably 0.5 to 20% by mass, based on the total solid content of the composition for forming an optically anisotropic layer. 10% by mass is more preferred.
 光学異方性層形成用組成物に含まれていてもよい他の成分としては、上記以外にも、多官能モノマー、配向制御剤(垂直配向剤、水平配向剤)、界面活性剤、密着改良剤、可塑剤、および、溶媒が挙げられる。 Other components that may be contained in the composition for forming an optically anisotropic layer include, in addition to the above, polyfunctional monomers, alignment control agents (vertical alignment agents, horizontal alignment agents), surfactants, and adhesion improvement. agents, plasticizers, and solvents.
 <光学異方性層の形成方法>
 光学異方性層を形成する手順は特に制限されず、例えば、上述した光学異方性層形成用組成物を基板上に塗布して、必要に応じて乾燥処理を施す方法(以下、単に「塗布方法」ともいう。)などが挙げられる。
<Method for Forming Optically Anisotropic Layer>
The procedure for forming the optically anisotropic layer is not particularly limited. Also referred to as "coating method".) and the like.
 塗布方法は特に制限されず、例えば、ワイヤーバーコーティング法、押し出しコーティング法、ダイレクトグラビアコーティング法、リバースグラビアコーティング法、および、ダイコーティング法が挙げられる。
 なお、必要に応じて、組成物の塗布後に、基板上に塗布された塗膜を乾燥する処理を実施してもよい。乾燥処理を実施することにより、塗膜から溶媒を除去できる。
The coating method is not particularly limited, and examples thereof include wire bar coating, extrusion coating, direct gravure coating, reverse gravure coating, and die coating.
In addition, after coating the composition, the coating film coated on the substrate may be dried, if necessary. The solvent can be removed from the coating film by performing a drying treatment.
 塗膜の膜厚は特に制限されないが、0.1~20μmが好ましく、0.2~15μmがより好ましく、0.5~10μmがさらに好ましい。 Although the film thickness of the coating film is not particularly limited, it is preferably 0.1 to 20 μm, more preferably 0.2 to 15 μm, and even more preferably 0.5 to 10 μm.
 次に、形成された塗膜に、配向処理を施して、塗膜中の重合性液晶化合物を配向させる。
 配向処理は、室温により塗膜を乾燥させる、または、塗膜を加熱することにより行うことができる。配向処理で形成される液晶相は、サーモトロピック性液晶化合物の場合、一般に温度または圧力の変化により転移させることができる。リオトロピック性液晶化合物の場合には、溶媒量などの組成比によっても転移させることができる。
 なお、塗膜を加熱する場合の条件は特に制限されないが、加熱温度としては50~250℃が好ましく、50~150℃がより好ましく、加熱時間としては10秒間~10分間が好ましい。
 また、塗膜を加熱した後、後述する硬化処理(光照射処理)の前に、必要に応じて、塗膜を冷却してもよい。冷却温度としては20~200℃が好ましく、30~150℃がより好ましい。
Next, the formed coating film is subjected to alignment treatment to align the polymerizable liquid crystal compound in the coating film.
The orientation treatment can be performed by drying the coating film at room temperature or by heating the coating film. In the case of a thermotropic liquid crystal compound, the liquid crystal phase formed by alignment treatment can generally be caused to transition by a change in temperature or pressure. In the case of a lyotropic liquid crystal compound, the transition can also be achieved by changing the composition ratio such as the amount of solvent.
The conditions for heating the coating film are not particularly limited, but the heating temperature is preferably 50 to 250° C., more preferably 50 to 150° C., and the heating time is preferably 10 seconds to 10 minutes.
Moreover, after heating the coating film, the coating film may be cooled, if necessary, before the curing treatment (light irradiation treatment) to be described later. The cooling temperature is preferably 20 to 200°C, more preferably 30 to 150°C.
 次に、重合性液晶化合物が配向された塗膜に対して硬化処理を施す。
 重合性液晶化合物が配向された塗膜に対して実施される硬化処理の方法は特に制限されず、例えば、光照射処理および加熱処理が挙げられる。なかでも、製造適性の点から、光照射処理が好ましく、紫外線照射処理がより好ましい。
 光照射処理の照射条件は特に制限されないが、50~1000mJ/cmの照射量が好ましい。
 光照射処理の際の雰囲気は特に制限されないが、窒素雰囲気が好ましい。
Next, the coating film in which the polymerizable liquid crystal compound is oriented is subjected to a curing treatment.
There are no particular limitations on the method of curing treatment performed on the coating film in which the polymerizable liquid crystal compound is oriented, and examples thereof include light irradiation treatment and heat treatment. Among them, light irradiation treatment is preferable, and ultraviolet irradiation treatment is more preferable, from the viewpoint of production aptitude.
The irradiation conditions for the light irradiation treatment are not particularly limited, but an irradiation amount of 50 to 1000 mJ/cm 2 is preferable.
Although the atmosphere during the light irradiation treatment is not particularly limited, a nitrogen atmosphere is preferred.
 また、光学異方性層が光配向性ポリマーを含有している場合、配向制御能を付与する観点から、光配向処理を施すことが好ましい。
 光配向処理としては、例えば、重合性液晶組成物の塗膜(硬化処理が施された硬化膜を含む)に対して偏光、または塗膜表面に対して斜め方向から非偏光、を照射する方法が挙げられる。
Moreover, when the optically anisotropic layer contains a photo-alignable polymer, it is preferable to perform a photo-alignment treatment from the viewpoint of imparting alignment controllability.
As the photo-alignment treatment, for example, a coating film (including a cured film subjected to a curing treatment) of the polymerizable liquid crystal composition is irradiated with polarized light, or the coating film surface is irradiated with non-polarized light from an oblique direction. is mentioned.
 光配向処理において、照射する偏光は特に限定されず、例えば、直線偏光、円偏光、および、楕円偏光が挙げられ、直線偏光が好ましい。
 また、非偏光を照射する「斜め方向」とは、塗膜表面の法線方向に対して極角θ(0<θ<90°)傾けた方向である限り、特に限定されず、目的に応じて適宜選択できるが、θが20~80°が好ましい。
In the photo-alignment treatment, the polarized light to be irradiated is not particularly limited, and examples thereof include linearly polarized light, circularly polarized light, and elliptically polarized light, with linearly polarized light being preferred.
In addition, the “oblique direction” in which non-polarized light is irradiated is not particularly limited as long as it is a direction inclined at a polar angle θ (0<θ<90°) with respect to the normal direction of the coating film surface, depending on the purpose. θ is preferably 20 to 80°.
 偏光または非偏光における波長としては、光配向性基が感光する光であれば特に限定されず、例えば、紫外線、近紫外線、および、可視光線が挙げられ、250~450nmの近紫外線が好ましい。
 また、偏光または非偏光を照射するための光源としては、例えば、キセノンランプ、高圧水銀ランプ、超高圧水銀ランプ、および、メタルハライドランプが挙げられる。このような光源から得た紫外線または可視光線に対して、干渉フィルタまたは色フィルタなどを用いることで、照射する波長範囲を限定できる。また、これらの光源からの光に対して、偏光フィルタまたは偏光プリズムを用いることで、直線偏光を得ることができる。
The wavelength of polarized light or non-polarized light is not particularly limited as long as it is light to which the photo-orientation group is sensitive.
Light sources for polarized or non-polarized light irradiation include, for example, xenon lamps, high-pressure mercury lamps, extra-high pressure mercury lamps, and metal halide lamps. By using an interference filter or a color filter for the ultraviolet light or visible light obtained from such a light source, the wavelength range to be irradiated can be limited. In addition, by using a polarizing filter or a polarizing prism for the light from these light sources, linearly polarized light can be obtained.
 偏光または非偏光の積算光量は特に限定されず、1~300mJ/cmが好ましく、5~100mJ/cmがより好ましい。
 偏光または非偏光の照度は特に限定されず、0.1~300mW/cmが好ましく、1~100mW/cmがより好ましい。
The integrated amount of polarized or unpolarized light is not particularly limited, and is preferably 1 to 300 mJ/cm 2 , more preferably 5 to 100 mJ/cm 2 .
The illuminance of polarized or unpolarized light is not particularly limited, and is preferably 0.1-300 mW/cm 2 , more preferably 1-100 mW/cm 2 .
[有機EL表示装置]
 本発明の有機EL表示装置は、上述した反射防止フィルムを有する。通常、反射防止フィルムは、有機EL表示装置の有機EL表示パネル上に設けられる。つまり、本発明の有機EL表示装置は、有機EL表示パネルと、上述した反射防止フィルムとを有する。
[Organic EL display device]
The organic EL display device of the present invention has the antireflection film described above. An antireflection film is usually provided on an organic EL display panel of an organic EL display device. That is, the organic EL display device of the present invention has an organic EL display panel and the antireflection film described above.
 有機EL表示パネルは、陽極、陰極の一対の電極間に発光層もしくは発光層を含む複数の有機化合物薄膜を形成した部材であり、発光層のほか正孔注入層、正孔輸送層、電子注入層、電子輸送層、保護層などを有してもよく、またこれらの各層はそれぞれ他の機能を備えたものであってもよい。各層の形成にはそれぞれ種々の材料を用いることができる。 An organic EL display panel is a member in which a light-emitting layer or a plurality of organic compound thin films including a light-emitting layer are formed between a pair of electrodes of an anode and a cathode. It may have a layer, an electron transport layer, a protective layer, etc., and each of these layers may have other functions. Various materials can be used to form each layer.
 以下に実施例と比較例を挙げて本発明の特徴をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、および、処理手順は、本発明の趣旨を逸脱しない限り適宜変更できる。従って、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。 The features of the present invention will be described more specifically below with reference to examples and comparative examples. The materials, amounts used, ratios, processing details, and processing procedures shown in the following examples can be changed as appropriate without departing from the gist of the present invention. Therefore, the scope of the present invention should not be construed to be limited by the specific examples shown below.
[実施例1-1]
<セルロースアシレートフィルム(基板)の作製>
 下記組成物をミキシングタンクに投入し、攪拌して、さらに90℃で10分間加熱した。その後、得られた組成物を、平均孔径34μmのろ紙および平均孔径10μmの焼結金属フィルターでろ過して、ドープを調製した。ドープの固形分濃度は23.5質量%であり、可塑剤の添加量はセルロースアシレートに対する割合であり、ドープの溶剤は塩化メチレン/メタノール/ブタノール=81/18/1(質量比)である。
[Example 1-1]
<Preparation of cellulose acylate film (substrate)>
The following composition was put into a mixing tank, stirred, and heated at 90° C. for 10 minutes. Thereafter, the resulting composition was filtered through a filter paper with an average pore size of 34 μm and a sintered metal filter with an average pore size of 10 μm to prepare a dope. The solid content concentration of the dope was 23.5% by mass, the amount of the plasticizer added was the ratio to the cellulose acylate, and the dope solvent was methylene chloride/methanol/butanol = 81/18/1 (mass ratio). .
―――――――――――――――――――――――――――――――――
セルロースアシレートドープ
―――――――――――――――――――――――――――――――――
セルロースアシレート(アセチル置換度2.86、粘度平均重合度310)
                           100質量部
糖エステル化合物1(下記式(S4)に示す)      6.0質量部
糖エステル化合物2(下記式(S5)に示す)      2.0質量部
シリカ粒子分散液(AEROSIL R972、日本アエロジル(株)製)
                           0.1質量部
溶剤(塩化メチレン/メタノール/ブタノール)
―――――――――――――――――――――――――――――――――
―――――――――――――――――――――――――――――――――
Cellulose acylate dope――――――――――――――――――――――――――――――――――
Cellulose acylate (acetyl substitution degree 2.86, viscosity average polymerization degree 310)
100 parts by mass sugar ester compound 1 (represented by formula (S4) below) 6.0 parts by mass sugar ester compound 2 (represented by formula (S5) below) 2.0 parts by mass silica particle dispersion (AEROSIL R972, Nippon Aerosil ( Co., Ltd.)
0.1 part by mass solvent (methylene chloride/methanol/butanol)
―――――――――――――――――――――――――――――――――
 上記で作製したドープを、ドラム製膜機を用いて流延した。0℃に冷却された金属支持体上に接するようにドープをダイから流延し、その後、得られたウェブ(フィルム)を剥ぎ取った。なお、ドラムはSUS(Steel Use Stainless)製であった。 The dope prepared above was cast using a drum film-forming machine. The dope was cast from a die in contact with a metal support cooled to 0° C., after which the resulting web (film) was stripped off. The drum was made of SUS (Steel Use Stainless).
 流延されて得られたウェブ(フィルム)を、ドラムから剥離後、フィルム搬送時に30~40℃で、クリップでウェブの両端をクリップして搬送するテンター装置を用いてテンター装置内で20分間乾燥した。引き続き、ウェブをロール搬送しながらゾーン加熱により後乾燥した。得られたウェブにナーリングを施した後、巻き取った。
 得られたセルロースアシレートフィルムの膜厚は40μmであり、波長550nmにおける面内レタデーションRe(550)は1nm、波長550nmにおける厚み方向のレタデーションRth(550)は26nmであった。
(アルカリ鹸化処理)
 前述のセルロースアシレートフィルムを、温度60℃の誘電式加熱ロールを通過させ、フィルム表面温度を40℃に昇温した後に、フィルムのバンド面に下記に示す組成のアルカリ溶液を、バーコーターを用いて塗布量14ml/m2で塗布し、110℃に加熱した(株)ノリタケカンパニーリミテド製のスチーム式遠赤外ヒーターの下に、10秒間搬送した。続いて、同じくバーコーターを用いて、純水を3ml/m2塗布した。次いで、ファウンテンコーターによる水洗とエアナイフによる水切りを3回繰り返した後に、70℃の乾燥ゾーンに10秒間搬送して乾燥し、アルカリ鹸化処理したセルロースアシレートフィルムを作製した。
The web (film) obtained by casting is peeled off from the drum, and dried for 20 minutes in a tenter device using a tenter device in which both ends of the web are clipped and conveyed at 30 to 40 ° C. during film transportation. did. Subsequently, the web was post-dried by zone heating while being rolled. The resulting web was knurled and wound up.
The resulting cellulose acylate film had a thickness of 40 μm, an in-plane retardation Re(550) of 1 nm at a wavelength of 550 nm, and a thickness direction retardation Rth(550) of 26 nm at a wavelength of 550 nm.
(Alkaline saponification treatment)
The above cellulose acylate film was passed through a dielectric heating roll at a temperature of 60°C to raise the film surface temperature to 40°C, and then an alkaline solution having the composition shown below was applied to the band surface of the film using a bar coater. The coating was applied at a coating amount of 14 ml/m 2 with a drier, and conveyed for 10 seconds under a steam type far-infrared heater manufactured by Noritake Co., Ltd. which was heated to 110°C. Subsequently, using the same bar coater, 3 ml/m 2 of pure water was applied. Next, after repeating water washing with a fountain coater and draining with an air knife three times, the film was transported to a drying zone at 70° C. for 10 seconds and dried to prepare a cellulose acylate film saponified with an alkali.
――――――――――――――――――――――――――――――――
アルカリ溶液
――――――――――――――――――――――――――――――――
水酸化カリウム                   4.7質量部
水                        15.8質量部
イソプロパノール                 63.7質量部
界面活性剤:C1429O(CH2CH2O)20H     1.0質量部
プロピレングリコール               14.8質量部
――――――――――――――――――――――――――――――――
――――――――――――――――――――――――――――――――
Alkaline solution ――――――――――――――――――――――――――――――
Potassium hydroxide 4.7 parts by weight Water 15.8 parts by weight Isopropanol 63.7 parts by weight Surfactant: C14H29O ( CH2CH2O ) 20H 1.0 parts by weight Propylene glycol 14.8 parts by weight ――――――――――――――――――――――――――――――――
<配向膜の形成>
 セルロースアシレートフィルムのアルカリ鹸化処理を行った面に、下記組成の配向膜塗布液を#14のワイヤーバーで連続的に塗布した。60℃の温風で60秒間、さらに100℃の温風で120秒間乾燥した。
<Formation of Alignment Film>
An orientation film coating solution having the following composition was continuously applied to the alkali-saponified surface of the cellulose acylate film using a #14 wire bar. It was dried with hot air at 60°C for 60 seconds and then with hot air at 100°C for 120 seconds.
――――――――――――――――――――――――――――――――
配向膜塗布液
――――――――――――――――――――――――――――――――
下記ポリビニルアルコール               10質量部
水                         371質量部
メタノール                     119質量部
グルタルアルデヒド(架橋剤)            0.5質量部
クエン酸エステル(三協化学(株)製)      0.175質量部
――――――――――――――――――――――――――――――――
――――――――――――――――――――――――――――――――
Alignment film coating solution――――――――――――――――――――――――――――――――
The following polyvinyl alcohol 10 parts by mass Water 371 parts by mass Methanol 119 parts by mass Glutaraldehyde (crosslinking agent) 0.5 parts by mass Citric acid ester (manufactured by Sankyo Chemical Co., Ltd.) 0.175 parts by mass ――――――――――――――――――――――――
 ポリビニルアルコール
polyvinyl alcohol
<光学異方性層(A)の形成>
 上記作製した配向膜に連続的にラビング処理を施した。このとき、長尺状のフィルムの長手方向と搬送方向は平行であり、フィルムの長手方向(搬送方向)とラビングローラーの回転軸とのなす角度は76°とした。フィルムの長手方向(搬送方向)を90°とし、フィルム側から観察してフィルム幅手方向を基準(0°)に時計回り方向を正の値で表すと、ラビングローラーの回転軸は-14°にある。言い換えれば、ラビングローラーの回転軸の位置は、フィルムの長手方向を基準に、反時計回りに76°回転させた位置である。
<Formation of optically anisotropic layer (A)>
The alignment film prepared above was continuously subjected to rubbing treatment. At this time, the longitudinal direction of the long film was parallel to the conveying direction, and the angle formed by the longitudinal direction of the film (conveying direction) and the rotation axis of the rubbing roller was 76°. If the longitudinal direction (conveyance direction) of the film is 90° and the clockwise direction is represented by a positive value with the film width direction as the reference (0°) observed from the film side, the rotation axis of the rubbing roller is −14°. It is in. In other words, the position of the rotation axis of the rubbing roller is the position rotated counterclockwise by 76° with respect to the longitudinal direction of the film.
 上記ラビング処理した配向膜上に、ギーサー塗布機を用いて、下記の組成の円盤状液晶化合物を含む光学異方性層塗布液(1a)を塗布して、組成物層を形成した。その後、得られた組成物層に対して、溶媒の乾燥および円盤状液晶化合物の配向熟成のために、110℃の温風で2分間加熱した。続いて、得られた組成物層に対して80℃にてUV照射(500mJ/cm)を行い、液晶化合物の配向を固定化して、光学異方性層(A)に該当する光学異方性層(1a)を形成した。
 光学異方性層(1a)の厚みは、1.5μmであった。また、550nmにおけるレタデーションは168nmであった。円盤状液晶化合物の円盤面のフィルム面に対する平均傾斜角は90°であり、フィルム面に対して、垂直に配向していることを確認した。また、光学異方性層(1a)の遅相軸の角度はラビングローラーの回転軸と平行で、フィルムの幅方向を0°(長手方向は反時計回りを90°、時計回りを-90°)とすると、光学異方性層(1a)側から見たとき、遅相軸は-14°であった。
An optically anisotropic layer coating solution (1a) containing a discotic liquid crystal compound having the following composition was applied onto the rubbed alignment film using a Giesser coater to form a composition layer. Thereafter, the resulting composition layer was heated with hot air at 110° C. for 2 minutes to dry the solvent and ripen the alignment of the discotic liquid crystal compound. Subsequently, the obtained composition layer was irradiated with UV (500 mJ/cm 2 ) at 80° C. to fix the orientation of the liquid crystal compound, and the optical anisotropic layer corresponding to the optically anisotropic layer (A) was applied. A layer (1a) was formed.
The thickness of the optically anisotropic layer (1a) was 1.5 μm. Also, the retardation at 550 nm was 168 nm. The average inclination angle of the discotic surface of the discotic liquid crystal compound with respect to the film plane was 90°, and it was confirmed that the liquid crystal compound was oriented perpendicularly to the film plane. The angle of the slow axis of the optically anisotropic layer (1a) is parallel to the rotation axis of the rubbing roller, and the width direction of the film is 0° (the longitudinal direction is 90° counterclockwise and -90° clockwise). ), the slow axis was −14° when viewed from the optically anisotropic layer (1a) side.
――――――――――――――――――――――――――――――――
光学異方性層形成用組成物(1a)
――――――――――――――――――――――――――――――――
下記の円盤状液晶化合物1               80質量部
下記の円盤状液晶化合物2               20質量部
下記の配向膜界面配向剤1             0.55質量部
下記の含フッ素化合物A               0.1質量部
下記の含フッ素化合物B              0.05質量部
下記の含フッ素化合物C              0.21質量部
エチレンオキサイド変性トリメチロールプロパントリアクリレート
 (V#360、大阪有機化学(株)製)        10質量部
光重合開始剤(イルガキュア907、BASF製)   3.0質量部
メチルエチルケトン                 200質量部
――――――――――――――――――――――――――――――――
――――――――――――――――――――――――――――――――
Optically anisotropic layer-forming composition (1a)
――――――――――――――――――――――――――――――――
Discotic liquid crystal compound 1 below 80 parts by mass Discotic liquid crystal compound 2 below 20 parts by mass Alignment film interface alignment agent 1 below 0.55 parts by mass 0.05 parts by mass of the following fluorine-containing compound C 0.21 parts by mass of ethylene oxide-modified trimethylolpropane triacrylate (V#360, manufactured by Osaka Organic Chemical Co., Ltd.) 10 parts by mass Photopolymerization initiator (Irgacure 907, manufactured by BASF ) 3.0 parts by mass Methyl ethyl ketone 200 parts by mass ――――――――――――――――――――――――――――――――
 円盤状液晶化合物1
Discotic liquid crystal compound 1
 円盤状液晶化合物2
Discotic liquid crystal compound 2
 配向膜界面配向剤1
Alignment film interface alignment agent 1
 含フッ素化合物A(下記式中、aおよびbは、全繰り返し単位に対する各繰り返し単位の含有量(質量%)を表し、aは90質量%、bは10質量%を表す。また、重量平均分子量は15000であった。)
Fluorine-containing compound A (in the following formula, a and b represent the content (% by mass) of each repeating unit with respect to all repeating units, a represents 90% by mass, and b represents 10% by mass. In addition, the weight average molecular weight was 15,000.)
 含フッ素化合物B(各繰り返し単位中の数値は全繰り返し単位に対する含有量(質量%)を表す。また、重量平均分子量は12500であった。)
Fluorine-containing compound B (The numerical value in each repeating unit represents the content (% by mass) with respect to all repeating units. The weight average molecular weight was 12,500.)
 含フッ素化合物C(各繰り返し単位中の数値は全繰り返し単位に対する含有量(質量%)を表す。また、重量平均分子量は12500であった。)
Fluorine-containing compound C (The numerical value in each repeating unit represents the content (% by mass) with respect to all repeating units. The weight average molecular weight was 12,500.)
<光学異方性層(C)および光学異方性層(B)の積層体形成>
(光学異方性層(1c)の形成)
 上記作製したセルロースアシレートフィルムの上に、ギーサー塗布機を用いて、下記の組成の棒状液晶化合物を含む光学異方性層塗布液(1c)を塗布して、組成物層を形成した。その後、フィルムの両端を保持し、フィルムの塗膜が形成された面の側に、フィルムとの距離が5mmとなるように冷却板(9℃)を設置し、フィルムの塗膜が形成された面とは反対側に、フィルムとの距離が5mmとなるようにヒーター(75℃)を設置し、2分間乾燥させた。
 次いで、温風にて60℃1分間加熱し、酸素濃度が100ppm以下の雰囲気になるように窒素パージしながら365nmのUV-LEDを用いて、照射量100mJ/cmの紫外線を照射した。その後、温風にて120℃1分間アニーリングすることで、前駆体層を形成した。
 得られた前駆体層に、室温で、ワイヤーグリッド偏光子を通したUV光(超高圧水銀ランプ;UL750;HOYA製)を7.9mJ/cm(波長:313nm)照射することで、表面に配向制御能を有する組成物層を形成した。
 なお、形成した組成物層の膜厚は0.5μmであった。波長550nmにおける面内レタデーションReは0nmであり、波長550nmにおける厚み方向のレタデーションRthは-68nmであった。棒状液晶化合物の長軸方向のフィルム面に対する平均傾斜角は90°であり、フィルム面に対して、垂直に配向していることを確認した。
 このようにして、光学異方性層(C)に該当する光学異方性層(1c)を形成した。
<Laminate formation of optically anisotropic layer (C) and optically anisotropic layer (B)>
(Formation of optically anisotropic layer (1c))
An optically anisotropic layer coating solution (1c) containing a rod-like liquid crystal compound having the following composition was applied onto the cellulose acylate film prepared above using a Giesser coater to form a composition layer. After that, both ends of the film were held, and a cooling plate (9°C) was placed on the side of the film on which the coating film was formed so that the distance from the film was 5 mm, and the coating film of the film was formed. A heater (75° C.) was installed on the side opposite to the surface so that the distance from the film was 5 mm, and dried for 2 minutes.
Then, it was heated with hot air at 60° C. for 1 minute, and irradiated with UV rays of 100 mJ/cm 2 using a UV-LED of 365 nm while purging with nitrogen so that the atmosphere had an oxygen concentration of 100 ppm or less. After that, the precursor layer was formed by annealing for 1 minute at 120° C. with hot air.
At room temperature, the obtained precursor layer was irradiated with UV light (ultra-high pressure mercury lamp; UL750; manufactured by HOYA) at 7.9 mJ/cm 2 (wavelength: 313 nm) through a wire grid polarizer. A composition layer having alignment controllability was formed.
The film thickness of the formed composition layer was 0.5 μm. The in-plane retardation Re at a wavelength of 550 nm was 0 nm, and the thickness direction retardation Rth at a wavelength of 550 nm was -68 nm. The average tilt angle of the long axis direction of the rod-like liquid crystal compound with respect to the film surface was 90°, and it was confirmed that the compound was oriented perpendicular to the film surface.
Thus, an optically anisotropic layer (1c) corresponding to the optically anisotropic layer (C) was formed.
――――――――――――――――――――――――――――――――
光学異方性層形成用組成物(1c)
――――――――――――――――――――――――――――――――
下記の棒状液晶化合物(A)             100質量部
重合性モノマー(A-400、新中村化学工業社製)  4.0質量部
下記の重合開始剤S-1(オキシム型)        5.0質量部
下記の光酸発生剤D-1               3.0質量部
下記の重合体M-1                 2.0質量部
下記の垂直配向剤S01               2.0質量部
下記の光配向性ポリマーA-1            2.0質量部
メチルエチルケトン                42.3質量部
メチルイソブチルケトン             627.5質量部
――――――――――――――――――――――――――――――――
――――――――――――――――――――――――――――――――
Optically anisotropic layer-forming composition (1c)
――――――――――――――――――――――――――――――――
The following rod-shaped liquid crystal compound (A) 100 parts by mass Polymerizable monomer (A-400, manufactured by Shin-Nakamura Chemical Co., Ltd.) 4.0 parts by mass The following polymerization initiator S-1 (oxime type) 5.0 parts by mass The following Photoacid generator D-1 3.0 parts by mass Polymer M-1 2.0 parts by mass Vertical alignment agent S01 below 2.0 parts by mass Photo-alignment polymer A-1 below 2.0 parts by mass Methyl ethyl ketone 42.3 parts by mass methyl isobutyl ketone 627.5 parts by mass ――――――――――――――――――――――――――――――――
 棒状液晶化合物(A)(以下、化合物の混合物)
Rod-shaped liquid crystal compound (A) (hereinafter referred to as a mixture of compounds)
 重合開始剤S-1
Polymerization initiator S-1
 光酸発生剤D-1
Photoacid generator D-1
 重合体M-1(各繰り返し単位中の数値は全繰り返し単位に対する含有量(質量%)を表す。また、重量平均分子量は60000であった。)
Polymer M-1 (The numerical value in each repeating unit represents the content (% by mass) with respect to all repeating units. The weight average molecular weight was 60000.)
 垂直配向剤S01
Vertical alignment agent S01
 光配向性ポリマーA-1(各繰り返し単位中に記載の数値は、全繰り返し単位に対する、各繰り返し単位の含有量(質量%)を表し、左側の繰り返し単位から40質量%、25質量%、35質量%であった。また、重量平均分子量は69300であった。)
Photo-alignable polymer A-1 (The numerical value described in each repeating unit represents the content (% by mass) of each repeating unit with respect to all repeating units, and from the left repeating unit, 40% by mass, 25% by mass, 35% by mass, % by mass, and the weight average molecular weight was 69,300.)
(光学異方性層(1b)の形成)
 次いで、上記作製した光学異方性層(1c)の上に、ギーサー塗布機を用いて、下記の組成の棒状液晶化合物を含む光学異方性層塗布液(1b)を塗布し、80℃の温風で60秒間加熱した。続いて、得られた組成物層に対して80℃にてUV照射(500mJ/cm)を行い、液晶化合物の配向を固定化して、光学異方性層(B)に該当する光学異方性層(1b)を形成した。
 光学異方性層(1b)の厚みは1.2μmであり、波長550nmにおけるΔndは164nm、液晶化合物の捩れ角度は81°であった。フィルムの幅方向を0°(長手方向を90°)とすると、光学異方性層(1b)側から見たとき、液晶化合物の配向軸角度は、空気側が14°、光学異方性層(1c)に接する側が95°であった。
 なお、光学異方性層に含まれる液晶化合物の配向軸角度は、基板の幅方向を基準の0°として、光学異方性層の表面側から基板を観察し、時計回り(右回り)の時を負、反時計回り(左回り)の時を正として表してある。
 また、液晶化合物の捩れ角度は、光学異方性層の表面側から基板を観察し、表面側(手前側)にある液晶化合物の配向軸方向を基準に、基板側(奥側)の液晶化合物の配向軸方向が時計回り(右回り)の時を負、反時計回り(左回り)の時を正として表してある。
(Formation of optically anisotropic layer (1b))
Next, on the optically anisotropic layer (1c) prepared above, an optically anisotropic layer coating solution (1b) containing a rod-like liquid crystal compound having the following composition was applied using a Giesser coating machine, and the coating solution was heated at 80°C. Heated with hot air for 60 seconds. Subsequently, the obtained composition layer was irradiated with UV (500 mJ/cm 2 ) at 80° C. to fix the alignment of the liquid crystal compound, and the optical anisotropic layer corresponding to the optically anisotropic layer (B) was applied. A layer (1b) was formed.
The thickness of the optically anisotropic layer (1b) was 1.2 μm, Δnd at a wavelength of 550 nm was 164 nm, and the twist angle of the liquid crystal compound was 81°. Assuming that the width direction of the film is 0° (the longitudinal direction is 90°), when viewed from the optically anisotropic layer (1b) side, the orientation axis angle of the liquid crystal compound is 14° on the air side and 14° on the optically anisotropic layer ( The side contacting 1c) was 95°.
The orientation axis angle of the liquid crystal compound contained in the optically anisotropic layer was determined by observing the substrate from the surface side of the optically anisotropic layer, with the width direction of the substrate being 0° as a reference, and rotating clockwise (clockwise). Hour is expressed as negative and counterclockwise (counterclockwise) hour as positive.
The twist angle of the liquid crystal compound is determined by observing the substrate from the surface side of the optically anisotropic layer, and using the orientation axis direction of the liquid crystal compound on the surface side (front side) as a reference, the liquid crystal compound on the substrate side (back side). When the direction of the orientation axis is clockwise (right), it is indicated as negative, and when it is counterclockwise (left), it is indicated as positive.
――――――――――――――――――――――――――――――――
光学異方性層形成用組成物(1b)
――――――――――――――――――――――――――――――――
上記の棒状液晶化合物(A)              70質量部
下記の棒状液晶化合物(B)              30質量部
エチレンオキサイド変性トリメチロールプロパントリアクリレート
 (V#360、大阪有機化学(株)製)         4質量部
光重合開始剤(Irgacure819、BASF社製)  3質量部
下記の左捩れキラル剤(L1)           0.50質量部
下記の含フッ素化合物D              0.20質量部
メチルイソブチルケトン               126質量部
プロピオン酸エチル                 126質量部
――――――――――――――――――――――――――――――――
――――――――――――――――――――――――――――――――
Optically anisotropic layer-forming composition (1b)
――――――――――――――――――――――――――――――――
Rod-shaped liquid crystal compound (A) above 70 parts by weight Rod-shaped liquid crystal compound (B) below 30 parts by weight Ethylene oxide-modified trimethylolpropane triacrylate (V#360, manufactured by Osaka Organic Chemical Co., Ltd.) 4 parts by weight Photopolymerization initiator (Irgacure 819, manufactured by BASF) 3 parts by mass Left-handed chiral agent (L1) below 0.50 parts by mass Fluorinated compound D below 0.20 parts by mass Methyl isobutyl ketone 126 parts by mass Ethyl propionate 126 parts by mass --- ―――――――――――――――――――――――――――――
 棒状液晶化合物(B)
Rod-shaped liquid crystal compound (B)
 左捩れキラル剤(L1)〔下記式中、Buはブチル基を表す。〕
Left-handed chiral agent (L1) [In the following formula, Bu represents a butyl group. ]
 含フッ素化合物D(各繰り返し単位中の数値は全繰り返し単位に対する含有量(質量%)を表し、左側の繰り返し単位の含有量は76質量%で、右側の繰り返し単位の含有量は24質量%であった。また、重量平均分子量は27300であった。)
Fluorine-containing compound D (the numerical value in each repeating unit represents the content (% by mass) of all repeating units, the content of the repeating unit on the left is 76% by mass, and the content of the repeating unit on the right is 24% by mass. Also, the weight average molecular weight was 27,300.)
 上記手順によって、長尺状のセルロースアシレートフィルム上に、光学異方性層(1c)と光学異方性層(1b)とが直接積層された積層体(1c-1b)を作製した。なお、上述した方法で光学異方性層(1c)の光学異方性層(1b)と接する側の表面を確認したところ、光配向性ポリマーが存在していることが確認できた。 A laminate (1c-1b) in which the optically anisotropic layer (1c) and the optically anisotropic layer (1b) were directly laminated on the elongated cellulose acylate film was produced by the above procedure. When the surface of the optically anisotropic layer (1c) in contact with the optically anisotropic layer (1b) was confirmed by the method described above, it was confirmed that the photo-alignable polymer was present.
<光学異方性層(A)、光学異方性層(B)および光学異方性層(C)の積層体形成>
 上記作製した長尺状のセルロースアシレートフィルム上に形成した光学異方性層(1a)の表面側と、上記作製した長尺状のセルロースアシレートフィルム上に形成した積層体(1c-1b)の光学異方性層(1b)の表面側とを、厚み5μmのアクリル系粘着剤(NCF-D692、リンテック社製)を用いて、連続機に貼り合せた。
 続いて、光学異方性層(1a)側のセルロースアシレートフィルムおよび配向膜を剥離し、光学異方性層(1a)のセルロースアシレートフィルムに接していた面を露出させた。このようにして、長尺状のセルロースアシレートフィルム上に、光学異方性層(1c)、光学異方性層(1b)、光学異方性層(1a)がこの順に積層された光学フィルム(1c-1b-1a)を得た。
<Laminate formation of optically anisotropic layer (A), optically anisotropic layer (B) and optically anisotropic layer (C)>
The surface side of the optically anisotropic layer (1a) formed on the elongated cellulose acylate film prepared above, and the laminate (1c-1b) formed on the elongated cellulose acylate film prepared above. and the surface side of the optically anisotropic layer (1b) were laminated on a continuous machine using a 5 μm-thick acrylic adhesive (NCF-D692, manufactured by Lintec).
Subsequently, the cellulose acylate film and alignment film on the optically anisotropic layer (1a) side were peeled off to expose the surface of the optically anisotropic layer (1a) in contact with the cellulose acylate film. Thus, an optical film in which the optically anisotropic layer (1c), the optically anisotropic layer (1b), and the optically anisotropic layer (1a) are laminated in this order on the long cellulose acylate film. (1c-1b-1a) were obtained.
<直線偏光板1の作製>
 セルローストリアセテートフィルムTJ25(富士フイルム社製:厚み25μm)の支持体表面をアルカリ鹸化処理した。具体的には、55℃の1.5規定の水酸化ナトリウム水溶液に支持体を2分間浸漬した後、支持体を室温の水洗浴槽中で洗浄し、さらに30℃の0.1規定の硫酸を用いて中和した。中和した後、支持体を室温の水洗浴槽中で洗浄し、さらに100℃の温風で乾燥して、偏光子保護フィルムを得た。
 厚さ60μmのロール状ポリビニルアルコール(PVA)フィルムをヨウ素水溶液中で長手方向に連続して延伸し、乾燥して厚さ13μmの偏光子を得た。偏光子の視感度補正単体透過率は、43%であった。このとき、偏光子の吸収軸方向と長手方向は一致していた。
 上記の偏光子の片方の面に、上記偏光子保護フィルムを、下記PVA接着剤を用いて貼り合わせて、直線偏光板1を作製した。
<Production of linear polarizing plate 1>
The surface of the support of a cellulose triacetate film TJ25 (manufactured by Fuji Film Co., Ltd.; thickness 25 μm) was saponified with an alkali. Specifically, the support was immersed in a 1.5 N sodium hydroxide aqueous solution at 55° C. for 2 minutes, washed in a water washing bath at room temperature, and further treated with 0.1 N sulfuric acid at 30° C. neutralized using After neutralization, the support was washed in a water washing bath at room temperature and dried with warm air at 100° C. to obtain a polarizer protective film.
A rolled polyvinyl alcohol (PVA) film with a thickness of 60 μm was continuously stretched in the iodine aqueous solution in the longitudinal direction and dried to obtain a polarizer with a thickness of 13 μm. The luminous efficiency correction single transmittance of the polarizer was 43%. At this time, the absorption axis direction and the longitudinal direction of the polarizer coincided.
The above polarizer protective film was attached to one surface of the above polarizer using the following PVA adhesive to prepare a linear polarizing plate 1 .
(PVA接着剤の調製)
 アセトアセチル基を有するポリビニルアルコール系樹脂(平均重合度:1200,ケン化度:98.5モル%,アセトアセチル化度:5モル%)100質量部、および、メチロールメラミン20質量部を、30℃の温度条件下に、純水に溶解し、固形分濃度3.7質量%に調整した水溶液として、PVA接着剤を調製した。
(Preparation of PVA adhesive)
100 parts by mass of a polyvinyl alcohol-based resin having an acetoacetyl group (average degree of polymerization: 1200, degree of saponification: 98.5 mol%, degree of acetoacetylation: 5 mol%) and 20 parts by mass of methylol melamine were heated at 30°C. A PVA adhesive was prepared as an aqueous solution adjusted to a solid content concentration of 3.7% by mass by dissolving in pure water under the temperature condition of .
<反射防止フィルムの作製>
 上記作製した長尺状の光学フィルム(1c-1b-1a)の光学異方性層(1a)の表面と、上記作製した長尺状の直線偏光板の偏光子の表面(偏光子保護フィルムの反対側の面)とを、紫外線硬化型接着剤を用いて、連続的に貼り合せた。続いて、光学異方性層(1c)側のセルロースアシレートフィルムを剥離し、光学異方性層(1c)のセルロースアシレートフィルムに接していた面を露出させた。
 このようにして、光学フィルム(1c-1b-1a)と、直線偏光板とからなる反射防止フィルム(P1)を作製した。このとき、偏光子保護フィルム、偏光子、光学異方性層(1a)、光学異方性層(1b)および光学異方性層(1c)が、この順に積層されており、偏光子の吸収軸と光学異方性層(1a)の遅相軸がなす角度は-76°であった。また、幅方向を基準の0°として、光学異方性層(1b)の光学異方性層(1a)側の液晶化合物の配向軸角度は14°であり、光学異方性層(1a)の遅相軸方向と一致していた。
<Production of antireflection film>
The surface of the optically anisotropic layer (1a) of the long optical film (1c-1b-1a) produced above and the surface of the polarizer of the long linear polarizing plate produced above (polarizer protective film The opposite surface) was continuously bonded using an ultraviolet-curing adhesive. Subsequently, the cellulose acylate film on the optically anisotropic layer (1c) side was peeled off to expose the surface of the optically anisotropic layer (1c) that was in contact with the cellulose acylate film.
Thus, an antireflection film (P1) composed of the optical film (1c-1b-1a) and the linear polarizing plate was produced. At this time, the polarizer protective film, the polarizer, the optically anisotropic layer (1a), the optically anisotropic layer (1b) and the optically anisotropic layer (1c) are laminated in this order, and the absorption of the polarizer is The angle between the axis and the slow axis of the optically anisotropic layer (1a) was -76°. The orientation axis angle of the liquid crystal compound on the side of the optically anisotropic layer (1a) of the optically anisotropic layer (1b) was 14° with the width direction being 0° as a reference. coincided with the slow axis direction of
[実施例1-2~1-4および比較例1-1~1-3]
 実施例1-1で用いた粘着剤に代えて、下記表1に示す厚み、および、厚みムラσを有する粘着剤を用いた以外は、実施例1-1と同様の方法で反射防止フィルムを作製した。
[Examples 1-2 to 1-4 and Comparative Examples 1-1 to 1-3]
An antireflection film was prepared in the same manner as in Example 1-1, except that an adhesive having a thickness and a thickness unevenness σ shown in Table 1 below was used instead of the adhesive used in Example 1-1. made.
[実施例2-1および比較例2-1]
 実施例1-1で用いた粘着剤に代えて、下記表2に示す厚み、および、厚みムラσ(nm)/厚み(μm)を有する粘着剤を用いた以外は、実施例1-1と同様の方法で反射防止フィルムを作製した。
[Example 2-1 and Comparative Example 2-1]
Instead of the adhesive used in Example 1-1, Example 1-1 was used, except that an adhesive having a thickness shown in Table 2 below and a thickness unevenness σ (nm) / thickness (μm) was used. An antireflection film was produced in the same manner.
[評価]
 実施例1-1~1-4および比較例1-1~1-3、ならびに、実施例2-1および比較例2-1で作製した反射防止フィルムを用いて有機EL表示装置を作製し、以下の評価を行った。
[evaluation]
Examples 1-1 to 1-4 and Comparative Examples 1-1 to 1-3, and using the antireflection films produced in Examples 2-1 and Comparative Example 2-1 to produce an organic EL display device, The following evaluations were performed.
 〔有機EL表示装置の作製〕
(表示装置への実装)
 有機ELパネル搭載のSAMSUNG社製GALAXY S4を分解し、円偏光板を剥離して、そこに上記作製した反射防止フィルムを、偏光子保護フィルムが外側に配置されるように、感圧型粘着剤を用いて表示装置に貼り合せた。
[Production of organic EL display device]
(Mounting on display device)
GALAXY S4 manufactured by SAMSUNG equipped with an organic EL panel is disassembled, the circularly polarizing plate is peeled off, the antireflection film prepared above is placed there, and the polarizer protective film is placed on the outside. It was attached to a display device using
 〔表示性能の評価〕
(正面方向)
 作製した有機EL表示装置に黒表示をして、明光下において正面方向より観察し、色味づきを下記の基準で評価した。結果を下記表1および表2に示す。
 A:色味づきが全く視認されない、もしくは、視認されるものの、わずか。(許容)
 B:色味づきが視認されるが、反射光は小さく、使用上問題はない。(許容)
 C:色味づきが視認され、反射光も大きく、許容できない。
[Evaluation of display performance]
(front direction)
A black display was performed on the produced organic EL display device, and the display was observed from the front direction under bright light, and the tint was evaluated according to the following criteria. The results are shown in Tables 1 and 2 below.
A: Coloring is not visually recognized at all, or is slightly visible. (acceptable)
B: Coloring is visually recognized, but the reflected light is small, and there is no problem in use. (acceptable)
C: Coloring is visually recognized, reflected light is large, and unacceptable.
(斜め方向)
 作製した有機EL表示装置に黒表示をして、明光下において、極角45°から蛍光灯を映し込んで、全方位から反射光を観察した。色味変化の方位角依存性を下記の基準で評価した。結果を下記表1および表2に示す。
 A:色味差が全く視認されない、もしくは、視認されるものの、ごくわずか。(許容)
 B:色味差が視認されるが、反射光は小さく、使用上問題はない。(許容)
 C:色味差が視認され、反射光も大きく、許容できない。
(diagonal direction)
A black display was performed on the produced organic EL display device, a fluorescent lamp was projected from a polar angle of 45° under bright light, and reflected light was observed from all directions. The azimuth angle dependence of color change was evaluated according to the following criteria. The results are shown in Tables 1 and 2 below.
A: No color difference is visible at all, or it is visible, but is very slight. (acceptable)
B: Color difference is visually recognized, but reflected light is small, and there is no problem in use. (acceptable)
C: A color difference is visually recognized and reflected light is large, which is unacceptable.
(虹ムラ)
 作製した反射防止フィルムを、偏光子保護フィルムが外側に配置されるように、感圧型粘着剤を用いて鏡に貼り合せた。蛍光下(FPL-27EX-N)において、拡散板を介して、全方位から色味を観察した。色味変化の方位角依存性を下記の基準で評価した。結果を下記表1および表2に示す。
 A:面内に色味差が全く視認されない、もしくは、視認されるものの、ごくわずか。(許容)
 B:面内に色味差が視認されるものの、使用上問題はない。(許容)
 C:面内に色味差が視認され、許容できない。
 D:面内に明らかに強い色味差が視認され、許容できない。
(Rainbow unevenness)
The produced antireflection film was attached to a mirror using a pressure-sensitive adhesive such that the polarizer protective film was arranged on the outside. Under fluorescence (FPL-27EX-N), colors were observed from all directions through a diffusion plate. The azimuth angle dependence of color change was evaluated according to the following criteria. The results are shown in Tables 1 and 2 below.
A: No color difference is visually recognized in the plane, or it is visually recognized, but it is very slight. (acceptable)
B: Color difference is visually recognized in the plane, but there is no problem in use. (acceptable)
C: A color difference is visually recognized in the plane and is unacceptable.
D: A clearly strong color difference is visually recognized in the plane, which is unacceptable.
 〔貼合時の気泡の評価〕
 作製した有機EL表示装置に黒表示をして、明光下において正面方向と20°方向から観察し、気泡起因の欠陥を下記の基準で評価した。結果を下記表1および表2に示す。
 気泡あり:明らかに円形状に色抜けした跡が存在し、許容できない。
 気泡なし:目視で欠陥は観察されず、使用上問題はない。(許容)
[Evaluation of bubbles during lamination]
A black display was performed on the produced organic EL display device, and the display was observed from the front direction and the 20° direction under bright light, and defects caused by air bubbles were evaluated according to the following criteria. The results are shown in Tables 1 and 2 below.
Bubbles present: Clearly circular traces of color loss are present and are unacceptable.
No air bubbles: No defects are visually observed, and there is no problem in use. (acceptable)
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
 表1に示す結果から、第1の光学異方性フィルムと第2の光学異方性フィルムとの積層に用いる粘着剤層の厚みムラσが35nm以上となる反射防止フィルムであると、有機EL表示装置に利用した際に虹ムラが発生することが分かった(比較例1-1~1-3)。また、比較例1-3については、色味変化の方位角依存性が強く、斜め方向の表示性能が劣ることが分かった。
 これに対し、第1の光学異方性フィルムと第2の光学異方性フィルムとの積層に用いる粘着剤層の厚みムラσが35nm未満となる反射防止フィルムであると、有機EL表示装置に利用した際に虹ムラの発生を抑制できることが分かった(実施例1-1~1-4)。
 特に、実施例1-1と実施例1-4との対比から、粘着剤層の厚みムラσが3nm超であると、第1の光学異方性フィルムと第2の光学異方性フィルムとの貼合時に気泡が混入し難くなることが分かった。
From the results shown in Table 1, the antireflection film in which the thickness unevenness σ of the pressure-sensitive adhesive layer used for laminating the first optically anisotropic film and the second optically anisotropic film is 35 nm or more, the organic EL It was found that rainbow unevenness occurs when used in a display device (Comparative Examples 1-1 to 1-3). In addition, in Comparative Examples 1-3, the azimuth angle dependence of the tint change was strong, and the display performance in the oblique direction was inferior.
On the other hand, an antireflection film in which the thickness unevenness σ of the pressure-sensitive adhesive layer used for laminating the first optically anisotropic film and the second optically anisotropic film is less than 35 nm, the organic EL display device It was found that the occurrence of iridescent unevenness can be suppressed when used (Examples 1-1 to 1-4).
In particular, from a comparison between Examples 1-1 and 1-4, when the thickness unevenness σ of the pressure-sensitive adhesive layer is more than 3 nm, the first optically anisotropic film and the second optically anisotropic film It was found that air bubbles are less likely to enter during lamination.
 表2に示す結果から、第1の光学異方性フィルムと第2の光学異方性フィルムとの積層に用いる粘着剤層の比率〔厚みムラσ(nm)/厚み(μm)〕が7.0超となる反射防止フィルムであると、有機EL表示装置に利用した際に虹ムラが発生することが分かった(比較例2-1)。
 これに対し、第1の光学異方性フィルムと第2の光学異方性フィルムとの積層に用いる粘着剤層の比率〔厚みムラσ(nm)/厚み(μm)〕が7.0以下となる反射防止フィルムであると、有機EL表示装置に利用した際に虹ムラの発生を抑制できることが分かった(実施例2-1)。
From the results shown in Table 2, the ratio of the pressure-sensitive adhesive layer used for laminating the first optically anisotropic film and the second optically anisotropic film [thickness unevenness σ (nm)/thickness (μm)] was 7.0. It was found that an antireflection film with a value of more than 0 causes iridescent unevenness when used in an organic EL display device (Comparative Example 2-1).
On the other hand, the ratio of the pressure-sensitive adhesive layer used for laminating the first optically anisotropic film and the second optically anisotropic film [thickness unevenness σ (nm)/thickness (μm)] is 7.0 or less. It was found that the antireflection film can suppress the occurrence of iridescent unevenness when used in an organic EL display device (Example 2-1).
 10  光学フィルム
 12  光学異方性層(A)
 14  光学異方性層(B)
 16  光学異方性層(C)
 20  偏光子
 100  円偏光板
 121、122、141、142  表面
10 optical film 12 optically anisotropic layer (A)
14 optically anisotropic layer (B)
16 optically anisotropic layer (C)
20 polarizer 100 circularly polarizing plate 121, 122, 141, 142 surface

Claims (11)

  1.  偏光子と、第1の光学異方性フィルムと、第2の光学異方性フィルムとをこの順に有する反射防止フィルムであって、
     前記第1の光学異方性フィルムおよび前記第2の光学異方性フィルムが、いずれも、配向した液晶化合物を固定してなる光学異方性層を有し、
     前記第1の光学異方性フィルムおよび前記第2の光学異方性フィルムが、粘着剤層を介して積層されており、
     前記粘着剤層の厚みを干渉膜厚計で測定した際に算出される膜厚値の標準偏差σが35nm未満である、反射防止フィルム。
    An antireflection film comprising a polarizer, a first optically anisotropic film, and a second optically anisotropic film in this order,
    Both the first optically anisotropic film and the second optically anisotropic film have an optically anisotropic layer formed by fixing an oriented liquid crystal compound,
    The first optically anisotropic film and the second optically anisotropic film are laminated via an adhesive layer,
    The antireflection film, wherein the standard deviation σ of the film thickness value calculated when the thickness of the pressure-sensitive adhesive layer is measured by an interference film thickness meter is less than 35 nm.
  2.  偏光子と、第1の光学異方性フィルムと、第2の光学異方性フィルムとをこの順に有する反射防止フィルムであって、
     前記第1の光学異方性フィルムおよび前記第2の光学異方性フィルムが、いずれも、配向した液晶化合物を固定してなる光学異方性層を有し、
     前記第1の光学異方性フィルムおよび前記第2の光学異方性フィルムが、粘着剤層を介して積層されており、
     前記粘着剤層の厚み(μm)に対する、前記粘着剤層の厚みを干渉膜厚計で測定した際に算出される膜厚値の標準偏差σ(nm)の比率が、7.0以下である、反射防止フィルム。
    An antireflection film comprising a polarizer, a first optically anisotropic film, and a second optically anisotropic film in this order,
    Both the first optically anisotropic film and the second optically anisotropic film have an optically anisotropic layer formed by fixing an oriented liquid crystal compound,
    The first optically anisotropic film and the second optically anisotropic film are laminated via an adhesive layer,
    The ratio of the standard deviation σ (nm) of the film thickness value calculated when the thickness of the pressure-sensitive adhesive layer is measured by an interference film thickness gauge to the thickness (μm) of the pressure-sensitive adhesive layer is 7.0 or less. , anti-reflection film.
  3.  前記第1の光学異方性フィルムの屈折率が、1.50以上1.70以下である、請求項1に記載の反射防止フィルム。 The antireflection film according to claim 1, wherein the first optically anisotropic film has a refractive index of 1.50 or more and 1.70 or less.
  4.  前記粘着剤層の屈折率が、1.36以上1.53以下である、請求項1に記載の反射防止フィルム。 The antireflection film according to claim 1, wherein the pressure-sensitive adhesive layer has a refractive index of 1.36 or more and 1.53 or less.
  5.  前記第1の光学異方性フィルムの波長550nmにおける面内レタデーションが140~220nmである、請求項1に記載の反射防止フィルム。 The antireflection film according to claim 1, wherein the first optically anisotropic film has an in-plane retardation of 140 to 220 nm at a wavelength of 550 nm.
  6.  前記反射防止フィルムが長尺状であり、
     前記反射防止フィルムの長手方向と、前記第1の光学異方性フィルムの面内遅相軸とのなす角度が40~85°である、請求項1に記載の反射防止フィルム。
    The antireflection film is elongated,
    2. The antireflection film according to claim 1, wherein the longitudinal direction of said antireflection film forms an angle of 40 to 85° with the in-plane slow axis of said first optically anisotropic film.
  7.  前記第1の光学異方性フィルムが、垂直配向した円盤状液晶化合物を固定してなる光学異方性層である、請求項1に記載の反射防止フィルム。 The antireflection film according to claim 1, wherein the first optically anisotropic film is an optically anisotropic layer formed by fixing a vertically aligned discotic liquid crystal compound.
  8.  前記第2の光学異方性フィルムが、2層以上の光学異方性層から構成されている、請求項1に記載の反射防止フィルム。 The antireflection film according to claim 1, wherein the second optically anisotropic film is composed of two or more optically anisotropic layers.
  9.  前記第2の光学異方性フィルムが、厚み方向を螺旋軸とする捩れ配向した棒状液晶化合物を固定してなる光学異方性層と、垂直配向した棒状液晶化合物を固定してなる光学異方性層との積層体から構成されている、請求項1に記載の反射防止フィルム。 The second optically anisotropic film comprises an optically anisotropic layer in which a twisted rod-like liquid crystal compound having a helical axis in the thickness direction is fixed, and an optically anisotropic film in which a vertically aligned rod-like liquid crystal compound is fixed. 2. The antireflection film according to claim 1, which is composed of a laminate with an optical layer.
  10.  前記粘着剤層の厚みが2~20μmである、請求項1に記載の反射防止フィルム。 The antireflection film according to claim 1, wherein the pressure-sensitive adhesive layer has a thickness of 2 to 20 µm.
  11.  請求項1~10のいずれか1項に記載の反射防止フィルムを有する、有機エレクトロルミネッセンス表示装置。 An organic electroluminescence display device comprising the antireflection film according to any one of claims 1 to 10.
PCT/JP2023/006796 2022-02-25 2023-02-24 Antireflection film and organic electroluminescent display device WO2023163119A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022028365 2022-02-25
JP2022-028365 2022-02-25

Publications (1)

Publication Number Publication Date
WO2023163119A1 true WO2023163119A1 (en) 2023-08-31

Family

ID=87766162

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/006796 WO2023163119A1 (en) 2022-02-25 2023-02-24 Antireflection film and organic electroluminescent display device

Country Status (1)

Country Link
WO (1) WO2023163119A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0990125A (en) * 1995-09-22 1997-04-04 Sekisui Chem Co Ltd Polarizing plate and ellipsoid polarizing plate adhesive sheet
US20060045421A1 (en) * 2004-08-26 2006-03-02 Interuniversitair Microelektronica Centrum (Imec) Method for providing an optical interface and devices according to such methods
JP2006268007A (en) * 2005-02-25 2006-10-05 Nitto Denko Corp Method of producing elliptically polarizing plate and image display device using the elliptically polarizing plate
JP2013109354A (en) * 2010-09-03 2013-06-06 Nitto Denko Corp Adhesive optical film, manufacturing method of the same, and image display device
WO2014073616A1 (en) * 2012-11-07 2014-05-15 富士フイルム株式会社 Retardation plate, circularly polarizing plate, and organic el display device
WO2021182055A1 (en) * 2020-03-10 2021-09-16 住友化学株式会社 Layered optical film
WO2022030308A1 (en) * 2020-08-04 2022-02-10 富士フイルム株式会社 Optically anisotropic layer

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0990125A (en) * 1995-09-22 1997-04-04 Sekisui Chem Co Ltd Polarizing plate and ellipsoid polarizing plate adhesive sheet
US20060045421A1 (en) * 2004-08-26 2006-03-02 Interuniversitair Microelektronica Centrum (Imec) Method for providing an optical interface and devices according to such methods
JP2006268007A (en) * 2005-02-25 2006-10-05 Nitto Denko Corp Method of producing elliptically polarizing plate and image display device using the elliptically polarizing plate
JP2013109354A (en) * 2010-09-03 2013-06-06 Nitto Denko Corp Adhesive optical film, manufacturing method of the same, and image display device
WO2014073616A1 (en) * 2012-11-07 2014-05-15 富士フイルム株式会社 Retardation plate, circularly polarizing plate, and organic el display device
WO2021182055A1 (en) * 2020-03-10 2021-09-16 住友化学株式会社 Layered optical film
WO2022030308A1 (en) * 2020-08-04 2022-02-10 富士フイルム株式会社 Optically anisotropic layer

Similar Documents

Publication Publication Date Title
JP6231293B2 (en) Liquid crystal composition, retardation plate, circularly polarizing plate, and image display device
JP6770649B2 (en) Organic electroluminescence display device
WO2015064581A1 (en) Multilayer film, optically anisotropic laminate, circular polarizer, organic electroluminescent display, and manufacturing methods
JP2002372622A (en) Composite optical retardation plate, circularly polarizing plate and liquid crystal display, organic el display device
JP2002372623A (en) Composite optical retardation plate, circularly polarizing plate and liquid crystal display, organic el display device
US11841521B2 (en) Optical film, circularly polarizing plate, and organic electroluminescence display device
US11834600B2 (en) Liquid crystal composition, optical film, circularly polarizing plate for organic EL display, and method for producing optically anisotropic layer
JP4280597B2 (en) Production method of retardation plate
JP2018060152A (en) Set of polarizing plates for ips mode and ips mode liquid crystal display using the same
WO2019103143A1 (en) Long liquid crystal film, long polarizing plate, image display device, and method for producing long liquid crystal film
JP2023029317A (en) Optical film, circular polarizing plate, and display device
WO2023163119A1 (en) Antireflection film and organic electroluminescent display device
JP2018060150A (en) Set of polarizing plates for ips mode and ips mode liquid crystal display using the same
WO2022045188A1 (en) Optical film, circularly polarizing plate, and organic electroluminescence display device
WO2022045187A1 (en) Optical film, circularly polarizing plate, and organic electroluminescent display device
WO2022045185A1 (en) Circularly polarizing plate, organic electroluminescence display device, and display device
US20230176269A1 (en) Laminated film, circularly polarizing plate, and display device
JP7420956B2 (en) Optical films, circularly polarizing plates, organic electroluminescent display devices
WO2023276611A1 (en) Method for producing polarizing plate, method for producing organic electroluminescent display device, polarizing plate, organic electroluminescent display device, and liquid crystal display device
WO2022255105A1 (en) Phase difference film, circular polarizing plate, and display device
WO2021132616A1 (en) Optical film, circularly polarizing plate, and organic electroluminescence display device
US20230273360A1 (en) Phase difference plate, phase difference plate with temporary support, circularly polarizing plate, and display device
JP2018060149A (en) Set of polarizing plates and ips mode liquid crystal display using the same
JP6724729B2 (en) Polarizing plate set and IPS mode liquid crystal display device using the same
JP6699514B2 (en) Set of polarizing plates for IPS mode and IPS mode liquid crystal display device using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23760117

Country of ref document: EP

Kind code of ref document: A1