WO2020084848A1 - 免震ユニットおよび免震装置 - Google Patents

免震ユニットおよび免震装置 Download PDF

Info

Publication number
WO2020084848A1
WO2020084848A1 PCT/JP2019/028348 JP2019028348W WO2020084848A1 WO 2020084848 A1 WO2020084848 A1 WO 2020084848A1 JP 2019028348 W JP2019028348 W JP 2019028348W WO 2020084848 A1 WO2020084848 A1 WO 2020084848A1
Authority
WO
WIPO (PCT)
Prior art keywords
seismic isolation
damping device
housing
cylinder
isolation unit
Prior art date
Application number
PCT/JP2019/028348
Other languages
English (en)
French (fr)
Inventor
加藤 篤
淳治 高木
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2020547017A priority Critical patent/JP6797341B2/ja
Priority to US17/269,260 priority patent/US11401726B2/en
Publication of WO2020084848A1 publication Critical patent/WO2020084848A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
    • E04H9/021Bearing, supporting or connecting constructions specially adapted for such buildings
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
    • E04H9/021Bearing, supporting or connecting constructions specially adapted for such buildings
    • E04H9/0235Anti-seismic devices with hydraulic or pneumatic damping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/023Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using fluid means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F5/00Liquid springs in which the liquid works as a spring by compression, e.g. combined with throttling action; Combinations of devices including liquid springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F7/00Vibration-dampers; Shock-absorbers

Definitions

  • the present invention relates to a seismic isolation unit and a seismic isolation device for suppressing transmission of shaking caused by an earthquake to a structure or equipment when an earthquake occurs.
  • the seismic isolation unit or seismic isolation device is installed between the structure or equipment that is the target of seismic isolation and the foundation, and separates the seismic isolation target from the foundation when an earthquake occurs. By doing so, it is possible to suppress the transmission of the vibration of the earthquake from the foundation to the seismic isolation target, and to provide an effect of reducing the acceleration generated in the seismic isolation target when the earthquake occurs.
  • a seismic isolation unit that can be used many times against repeated earthquakes even in an environment without electricity, and that can be rigid if it is not an earthquake. (For example, refer to Patent Document 1).
  • a preload spring unit including an elastic body to which a preload is applied is provided.
  • the interval is not changed when the external force applied to the preload spring unit is equal to or less than the preload, and the interval is changed when the external force exceeds the preload.
  • a coned disc spring or a coil spring is used as an elastic body.
  • liquid pressure spring that uses a compressible liquid as a buffer member that does not operate under a small load but operates under a large load (for example, see Patent Document 2).
  • Patent Document 2 when an external force exceeding a certain value is applied, the piston rod enters the inside of the cylinder, and the volume inside the cylinder becomes smaller than that at the initial stage. This increases the pressure of the compressible fluid enclosed inside the cylinder. The increased pressure serves as a reaction force to generate a restoring action, and at the same time, the energy applied in the process of the fluid being compressed and restored is attenuated and absorbed.
  • the preload spring unit of the seismic isolation unit disclosed in FIG. 1 or FIG. 13 of Patent Document 1 uses a coned disc spring or a coil spring as an elastic body.
  • a preload spring unit an abrupt load change occurs when the Belleville spring or the coil spring that is compressed and deformed by the external force exceeding the preload returns to the initial position. Therefore, there is a problem that a large impact load is generated between the arm portion connected to the disc spring or the coil spring and the housing.
  • the hydraulic spring disclosed in Patent Document 2 has a damping action, the impact load can be suppressed to be small when returning to the initial position.
  • the fluid pressure spring operates by compressing the internal fluid with respect to the external force in the compression direction, but does not operate due to the contact between the piston and the cylinder with respect to the external force in the pulling direction. Therefore, in order to apply and operate the seismic isolation unit, there is a problem that an appropriate number of hydraulic springs must be arranged in an appropriate direction.
  • the present invention has been made to solve the above problems.
  • an seismic isolation unit capable of providing rigidity when an earthquake is isolated but not an earthquake, an impact load generated at the time of restoration is provided.
  • the purpose of the present invention is to provide a seismic isolation unit and a seismic isolation device that can reduce the vibration.
  • the seismic isolation unit is provided between a first connecting portion and a second connecting portion, which are arranged at a predetermined interval in a seismic isolation direction, and between the first connecting portion and the second connecting portion. And a movement restricting portion to which an external force is applied from the direction of seismic isolation, wherein the movement restricting portion has one end connected to the first connecting portion and one end connected to the second connecting portion.
  • a force is provided which is provided between the first casing and the second connector and reduces the gap when the gap between the first connecting part and the second connecting part is large, and when the gap is small, the gap is generated.
  • a vibration damping portion that generates a force in the direction of increasing the first damping device; and a connecting member that connects the first damping device and the second damping device to each other.
  • the device and the second damping device respectively include a cylinder whose both ends are closed, a compressible fluid which is enclosed in the cylinder and which is preloaded, and one end of the cylinder, and one end of which is the cylinder.
  • the piston having the other end provided outside the cylinder, the piston causing the fluid to increase in pressure by entering the inside of the cylinder.
  • the cylinder is connected to the connecting member, the other end of the piston of the first damping device is connected to the one end of the first housing, and the other end of the piston of the second damping device is connected to the second It is connected to the other end of the housing.
  • a seismic isolation unit and a seismic isolation device that can suppress the impact load generated at the time of restoration in a seismic isolation unit that can provide rigidity when an earthquake is isolated but is not an earthquake are provided. There is an effect that can be obtained.
  • FIG. 1A is a schematic plan view of a seismic isolation unit according to the first embodiment of the present invention.
  • FIG. 1B is a schematic cross-sectional view taken along the line AA of the seismic isolation unit shown in FIG.
  • FIG. 2 is a sectional view for explaining the operation and structure of the seismic isolation unit shown in FIG.
  • the seismic isolation unit is connected to a seismic isolation target connection portion, which is a seismic isolation target connection portion that is not to transmit vibration, and a structure that vibrates due to an earthquake.
  • the second connection portion 5b which is the vibration side connection portion, and the movement restriction portion 6 are mainly provided.
  • the first connecting portion 5a and the second connecting portion 5b are arranged at predetermined intervals in the seismic isolation direction, which is the direction of seismic isolation.
  • the movement restricting unit 6 is provided between the first connecting unit 5a and the second connecting unit 5b.
  • the movement restricting portion 6 has one end in the seismic isolation direction connected to the first connection portion 5a and the other end connected to the second connection portion 5b.
  • the movement restricting unit 6 includes a distance between the first connecting unit 5a and the second connecting unit 5b between the first connecting unit 5a and the second connecting unit 5b when the external force applied in the seismic isolation direction exceeds a threshold value. This allows the second connecting portion 5b to move so that That is, the movement restriction unit 6 is a unit that can expand and contract in the seismic isolation direction.
  • the movement restriction unit 6 includes a first housing 4a, a second housing 4b, a first damping device 21, a second damping device 22, a vibration damping unit 1, and a connecting member 3. Between the first connecting portion 5a and the second connecting portion 5b located at both ends of the seismic isolation unit, the first housing 4a, the first damping device 21 housed in the first housing 4a, and The vibration damping unit 1, the second housing 4b, and the second damping device 22 housed in the second housing 4b are arranged in a line in the seismic isolation direction.
  • the connecting member 3 connects the first damping device 21 and the second damping device 22.
  • the first housing 4a and the second housing 4b are arranged on both sides of the vibration damping unit 1 in the seismic isolation direction.
  • the first damping device 21 is housed inside the first housing 4a.
  • the second damping device 22 is housed inside the second housing 4b.
  • the first housing 4a and the second housing 4b have a cylindrical shape with both ends closed.
  • one end 41a is connected to the first connecting portion 5a
  • the other end 42a is connected to the vibration damping portion 1.
  • the second housing 4b has one end 41b, which is one end, connected to the second connecting portion 5b, and the other end 42b, which is connected to the vibration damping portion 1.
  • the first connecting portion 5a and the second connecting portion 5b are composed of metal fittings for cylinders such as clevis. As a result, the first housing 4a, the vibration damping portion 1, and the second housing 4b are arranged in a line between the first connecting portion 5a and the second connecting portion 5b.
  • first housing 4a is connected to the first connecting portion 5a and the second housing 4b is connected to the second connecting portion 5b, but they may be connected in the opposite direction. That is, in the first housing 4a, the end portion 41a which is one end is connected to the second connection portion 5b, and the end portion 42a which is the other end is connected to the vibration damping portion 1. Then, the second housing 4b may be configured such that the end portion 41b which is one end is connected to the first connecting portion 5a and the end portion 42b which is the other end is connected to the vibration damping portion 1.
  • the vibration damping unit 1 is a damping device that generates a resistance force according to the moving speed and damps the input vibration. From a different point of view, the vibration damping unit 1 generates a force for decreasing the gap when the gap between the first connecting portion 5a and the second connecting portion 5b increases, and reduces the gap when the gap decreases. Generates a force that increases the distance.
  • any known damping device can be applied, and here it is a viscous damper.
  • the vibration damping unit 1 has one end connected to the end 42a that is the other end of the first housing 4a. The other end of the vibration damping unit 1 is connected to the end 42b which is the other end of the second housing 4b.
  • the first damping device 21 has a cylinder 21b, a compressible fluid 21c, and a piston 21a.
  • the fluid 21c is enclosed in the cylinder 21b and is preloaded.
  • the piston 21a is reciprocally provided in the cylinder 21b.
  • the piston 21a includes a piston head and a piston rod.
  • the piston head is provided inside the cylinder 21b.
  • the piston rod penetrates one end of the cylinder 21b, and the end portion is exposed to the outside of the cylinder. That is, the piston 21a has one end provided inside the cylinder 21b and the other end provided outside the cylinder 21b.
  • the operation of the first damping device 21 will be described.
  • a pressing force that exceeds the preload applied to the fluid 21c is applied to the piston 21a
  • the end of the cylinder 21b on the side where the piston rod penetrates and the piston head are separated.
  • the piston 21a enters the inside of the cylinder 21b, and the volume inside the cylinder 21b becomes smaller than that at the initial time.
  • the fluid 21c sealed inside the cylinder 21b is compressed and its pressure is increased. This increased pressure serves as a reaction force to generate a restoring action, and the fluid 21c attenuates and absorbs energy in the process of compression and restoration.
  • the piston 21a When the pressing force applied to the piston 21a is released, the piston 21a is returned to its original initial position by the reaction force of the pressurized fluid 21c. When a tensile force is applied to the piston 21a, the piston 21a does not move due to the contact between the end of the cylinder 21b on the side where the piston rod penetrates and the piston head.
  • the second damping device 22 includes a cylinder 22b whose both ends are closed, a compressible fluid 22c which is enclosed in the cylinder 22b and is preloaded, and a piston. 22a and has the same configuration as the first damping device 21.
  • the first damping device 21 and the second damping device 22 have the impact load in addition to the restoring force for returning the operated piston 21a (22a) to the initial position when the pressing force is applied. It also has a damping force that alleviates Further, by setting the preload applied to the fluid 21c (22c) inside the cylinder 21b (22b), the piston 21a (22a) is not moved by a small load, and the piston 21a (22a) is not moved by a large load for the first time. Can be generated.
  • the first damping device 21 and the second damping device 22 have a high rigidity when a pressing force equal to or less than the preload is applied in the main axis direction, and a low rigidity when a pressing force exceeding the preload is applied. It can be configured to have.
  • the preload applied to the first damping device 21 and the second damping device 22 is designed to have a value larger than the load acting on the seismic isolation unit during normal operation, so that high rigidity is obtained when the seismic isolation function is not operating. It is desirable to have. That is, it is preferable that the relationship between the load and the displacement of the first damping device 21 and the second damping device 22 changes as shown in FIG.
  • FIG. 3 is a graph showing the relationship between load and displacement in the first damping device 21 and the second damping device 22.
  • the horizontal axis represents the displacement of the gap between one end of the cylinder 21b (22b) and the piston head of the piston 21a (22a) in the first damping device 21 and the second damping device 22.
  • the vertical axis represents the load applied to the first damping device 21 and the second damping device 22.
  • the upper side of the vertical axis shows the compressive load, and the lower side shows the tensile load.
  • the distance between one end of the cylinder 21b (22b) and the piston head of the piston 21a (22a) is zero displacement in the normal state, which is the initial position.
  • Region 6a shows a case where a compressive load equal to or lower than the preload acts on the first damping device 21 and the second damping device 22.
  • Area 6b shows a case where a compressive load exceeding the preload acts on the first damping device 21 and the second damping device 22.
  • Area 6c shows a case where a tensile load is applied to the first damping device 21 and the second damping device 22.
  • the first damping device 21 is housed inside the first housing 4a, one end of which is connected to the first housing 4a, and the other end of which is connected to the connecting member 3.
  • the second damping device 22 is housed inside the second housing 4b, and has one end connected to the second housing 4b and the other end connected to the connecting member 3.
  • the piston rod that is the other end of the piston 21a of the first damping device 21 is connected to the end portion 41a that is one end of the first housing 4a. Therefore, the external force applied to the first housing 4a is transmitted to the piston 21a.
  • the piston rod that is the other end of the piston 22a of the second damping device 22 is connected to the end portion 42b that is the other end of the second housing 4b. Therefore, the external force applied to the second housing 4b is transmitted to the piston 22a.
  • the seismic isolation unit is a unit that can expand and contract.
  • FIG. 4 shows a configuration example in which the seismic isolation unit shown in FIG. 2 is installed in one horizontal direction.
  • FIG. 4 shows the seismic isolation unit installed in one direction in the horizontal direction, that is, the first direction
  • another seismic isolation unit is also provided in the direction intersecting the first direction in the horizontal plane, that is, the second direction.
  • Install a seismic unit (not shown).
  • the second direction is preferably a direction orthogonal to the first direction in the horizontal plane. That is, the seismic isolation device that is the configuration example shown in FIG. 4 is connected to the seismic isolation target that is movably supported in the horizontal plane, with the first direction in the horizontal plane as the seismic isolation direction.
  • the first seismic isolation unit which is a seismic isolation unit, and the seismic isolation unit shown in FIG. 2, which is connected to the seismic isolation target, with a second direction different from the first direction in the horizontal plane as the seismic isolation direction. It is equipped with a two-way seismic isolation unit.
  • two or more seismic isolation units may be installed in at least one of the first direction and the second direction.
  • a plurality of seismic isolation units may be installed so as to sandwich the seismic isolation target. A larger seismic isolation effect can be obtained by increasing the number of seismic isolation units.
  • the seismic isolation unit is installed between a horizontal plate-shaped seismic isolation layer 10 arranged at the bottom of the seismic isolation target 9 such as a building or precision equipment, and the ground-side foundation portion 11. To be done.
  • the seismic isolation target 9 exists on the seismic isolation layer 10.
  • the seismic isolation unit is drawn larger than it actually is.
  • a wall portion 13 is formed so as to project from the base portion 11 toward the seismic isolation layer 10 side.
  • a wall portion 14 is formed at a position facing the wall portion 13 so as to project from the seismic isolation layer 10 toward the foundation portion 11 side.
  • the seismic isolation unit is arranged so as to connect between the opposing wall 13 and wall 14.
  • a linear guide 12 is installed between the wall 14 and the foundation 11.
  • the linear guide 12 is a guide mechanism that moves smoothly without being constrained in the horizontal direction.
  • the linear guide 12 is also installed between the wall portion 13 and the seismic isolation layer 10.
  • Sliding bearings other than the linear guide 12 may be used.
  • laminated rubber, sliding bearings, rolling bearings, etc. may be used.
  • the weight of the seismic isolation target 9 and the seismic isolation layer 10 is supported by the wall portion 13 and the wall portion 14 via the horizontal linear guide 12.
  • the seismic isolation unit reduces the vibration of the seismic isolation target 9 and the seismic isolation layer 10.
  • the seismic isolation layer 10 and the seismic isolation target 9 are seismically isolated from the vibration of the earthquake in the horizontal direction.
  • a seismic isolation device that combines multiple seismic isolation units shown in Fig. 2 may be used.
  • a seismic isolation device (not shown) that includes seismic isolation units in the Z direction, the X direction, and the Y direction (three axis directions) may be used.
  • the X direction is one direction in the horizontal plane
  • the Y direction is a direction orthogonal to the X direction in the horizontal plane
  • the Z direction is a vertical direction.
  • a vertical seismic isolation unit that is connected to the seismic isolation target existing on the upper side and that makes the vertical direction the seismic isolation direction
  • a first direction seismic isolation unit that makes the first direction in the horizontal plane the seismic isolation direction
  • a horizontal plane a horizontal plane.
  • the first direction seismic isolation unit and the second direction seismic isolation unit are connected to the seismic isolation target via the vertical direction seismic isolation unit.
  • the vertical seismic isolation unit can realize the seismic isolation function against the vibration in the vertical direction.
  • the first direction seismic isolation unit in the horizontal plane can realize a seismic isolation function against vibration in the first direction, which is one direction in the horizontal plane.
  • the second-direction seismic isolation unit in the horizontal plane can realize a seismic isolation function against vibration in the second direction intersecting the first direction in the horizontal plane.
  • the seismic isolation function can be realized in the directions along the vertical direction and the three directions in the horizontal plane.
  • the seismic isolation device may be configured by combining seismic isolation units in two of the three directions.
  • the seismic isolation units may be combined in four or more directions instead of three directions.
  • FIG. 5 (a) shows the first damping device 21 and the second damping device 22 side when the external force in the compression direction, which is the direction in which the movement restriction portion 6 compresses, acts on the seismic isolation unit in the seismic isolation direction. It is a figure which shows the transmission path of a load. The direction of compression is indicated by arrow 7. The load transmission path is indicated by a broken line.
  • the piston 22a of the second damping device 22 When an external force in the compression direction acts, the piston 22a of the second damping device 22 is pulled from the second housing 4b. The load received by the piston 22a is transmitted to the connecting member 3 through the cylinder 22b that contacts the piston 22a. The load transmitted to the connecting member 3 is transmitted from the connecting member 3 to the cylinder 21b of the first damping device 21, the fluid 21c, and the piston 21a in this order. That is, a tensile force is applied to the second damping device 22. A pressing force is applied to the first damping device 21.
  • FIG. 5B is a diagram showing a load transmission path on the side of the vibration damping unit 1 when an external force in the compression direction, which is the direction in which the movement restriction unit 6 compresses, acts on the seismic isolation unit in the seismic isolation direction. .
  • the load transmission path is indicated by a broken line.
  • the vibration damping unit 1 receives a load in the compression direction from the second housing 4b.
  • FIG. 6A shows the load on the side of the first damping device 21 and the second damping device 22 when an external force acts on the seismic isolation unit in the tensile direction, which is the direction in which the movement restricting portion 6 pulls in the seismic isolation direction. It is a figure which shows a transmission path.
  • the pulling direction is indicated by arrow 8.
  • the load transmission path is indicated by a broken line.
  • the load is transmitted from the connecting member 3 to the cylinder 22b and the piston 22a of the first damping device 21. That is, a pressing force is applied to the second damping device 22. A tensile force is applied to the first damping device 21.
  • FIG.6 (b) is a figure which shows the transmission path of the load of the vibration damping part 1 side when the external force of the tension direction which is the direction which the movement restraint part 6 pulls acts on a seismic isolation unit in a seismic isolation unit. .
  • the load transmission path is indicated by a broken line.
  • the vibration damping unit 1 receives a load in the pulling direction from the second housing 4b.
  • the first damping device 21 applies a pressing force to the seismic isolation unit when an external force (compressive force) is applied to the seismic isolation unit in a direction in which the distance between the first connecting portion 5a and the second connecting portion 5b is reduced.
  • the second damping device 22 applies a pressing force to the seismic isolation unit when an external force (tensile force) in a direction in which the distance between the first connecting portion 5a and the second connecting portion 5b becomes large is applied.
  • FIG. 7 shows a schematic diagram explaining the operation of the seismic isolation unit during an earthquake.
  • FIG. 7A shows a state in which an external force in the compression direction is applied to the seismic isolation unit.
  • FIG.7 (b) shows the initial position of a seismic isolation unit.
  • FIG. 7C shows a state in which an external force in the tensile direction is applied to the seismic isolation unit.
  • FIG. 7B shows an initial position of the seismic isolation unit, which is a normal state before vibration due to an earthquake is applied. In the initial position of the seismic isolation unit, one end of the cylinder 21b of the first damping device 21 and the piston head of the piston 21a are in contact with each other.
  • one end of the cylinder 22b of the second damping device 22 and the piston head of the piston 22a are in contact with each other.
  • the seismic isolation unit is applied with an external force in the compression direction that is larger than the preload applied to the first damping device 21 and the second damping device 22.
  • the direction of compression is indicated by arrow 7.
  • the second housing 4b receives a load in the direction of the arrow 7 and the piston 22a of the second damping device 22 is pulled from the second housing 4b. Therefore, one end of the cylinder 22b and the piston of the piston 22a are In contact with the head, the second damping device 22 does not compress.
  • the load applied to the piston 22a from the second housing 4b is transmitted to the connecting member 3 through the cylinder 22b.
  • the load is transmitted from the connecting member 3 to the cylinder 21b of the first damping device 21, and the pressing force is applied to the first damping device 21.
  • this pressing force exceeds the pre-pressure applied to the fluid 21c
  • the fluid 22c is compressed, and one end of the cylinder 21b and the piston head of the piston 21a are separated from each other. That is, the piston 21a enters the inside of the cylinder 21b, and the first damping device 21 is compressed.
  • the vibration damping unit 1 is compressed by the pressing force applied from the second housing 4b.
  • the second housing 4b moves toward the first housing 4a. That is, the movement restricting portion 6 is compressed, and the distance between the first connecting portion 5a and the second connecting portion 5b becomes smaller. At this time, a restoring force for returning the piston 21a to the original position and a damping force for suppressing the movement of the piston 21a act on the first damping device 21.
  • a damping force is applied to the vibration damping unit 1 in a direction that suppresses the movement of the second housing 4b. Since a large damping force generated by the vibration damping unit 1 is transmitted to the connecting portions 5a and 5b through the first casing 4a and the second casing 4b, a large load acts on the first damping device 21. do not do.
  • the seismic isolation unit is applied with an external force in the pulling direction that is larger than the preload applied to the first damping device 21 and the second damping device 22.
  • the pulling direction is indicated by arrow 8.
  • a pressing force is applied to the piston 22a of the second damping device 22 from the second housing 4b.
  • the fluid 22c is compressed, and one end of the cylinder 22b and the piston head of the piston 22a are separated from each other. That is, the piston 22a enters the inside of the cylinder 22b, and the second damping device 22 compresses.
  • the vibration damping unit 1 is pulled by the pulling force applied from the second housing 4b.
  • the load applied to the piston 22a from the second housing 4b is transmitted to the connecting member 3 through the fluid 22c and the cylinder 22b. Then, the load is transmitted from the connecting member 3 to the cylinder 21b of the first damping device 21, and a tensile force is applied to the first damping device 21. Since the piston 21a of the first damping device 21 is pulled from the connecting member 3, one end of the cylinder 21b comes into contact with the piston head of the piston 21a, and the first damping device 21 is not compressed.
  • the second housing 4b moves in a direction away from the first housing 4a. That is, the movement restricting portion 6 is pulled, and the distance between the first connecting portion 5a and the second connecting portion 5b increases. At this time, a restoring force for returning the piston 22a to the original position and a damping force for suppressing the movement of the piston 22a act on the second damping device 22. A damping force is applied to the vibration damping unit 1 in a direction that suppresses the movement of the second housing 4b. Since a large damping force generated by the vibration damping unit 1 is transmitted to the connecting portion 5a and the connecting portion 5b through the first casing 4a and the second casing 4b, a large load acts on the second damping device 22. do not do.
  • the vibration damping unit 1 when an external force exceeding the preload applied to the first damping device 21 and the second damping device 22 is applied to the seismic isolation unit during an earthquake, the vibration damping unit 1, the first damping device 21, and the second damping device 21
  • the movement restriction unit 6 expands and contracts due to the operation of the damping device 22.
  • the first damping device 21 and the second damping device 22 are a separating mechanism that operates against external force in both the compression direction and the tension direction.
  • the damping force of the vibration damping unit 1 absorbs the vibration energy due to the earthquake. As a result, it is possible to suppress the vibration caused by the earthquake from being transmitted from the second connecting portion 5b to the first connecting portion 5a and the seismic isolation target.
  • the seismic isolation unit can realize the function of automatically restoring the initial position after the earthquake. Even if a series of earthquakes are encountered, the seismic isolation unit can move to the maximum stroke each time because it returns to the initial position after the earthquake.
  • first damping device 21 and the second damping device 22 have a damping force in addition to the restoring force.
  • the impact load generated when one end of the cylinder 21b (22b) and the piston head of the piston 21a (22a) come into contact with each other again after being separated can be suppressed to a small value by the damping force.
  • the impact load can be suppressed to be small compared with the case where the compression-deformed disc spring or coil spring of the conventional seismic isolation device returns to the initial position. Therefore, it is not necessary to provide each of the first damping device 21 and the second damping device 22 with a shock absorber capable of relaxing the impact load, and it is possible to prevent the device from becoming large.
  • the seismic isolation unit connects the structure that vibrates due to the earthquake and the seismic isolation target while maintaining high rigidity. To do. As a result, it is possible to obtain a seismic isolation unit capable of maintaining high rigidity during normal operation while the seismic isolation function operates only when an earthquake occurs.
  • the movement restriction unit 6 uses the first damping device 21 and the second damping device 22 to which a preload is applied, and does not have a device that requires a power source. Therefore, the configuration is simpler than the case where a device requiring a power source is used, and the probability of failure can be reduced. Furthermore, the seismic isolation unit can be applied even in an environment where it is difficult to secure a power source, such as at the top of a mountain, or during a power outage.
  • the seismic isolation unit according to the present invention is particularly effective when applied to a precision instrument such as a telescope or an optical instrument as a seismic isolation target.
  • a precision instrument such as a telescope or an optical instrument as a seismic isolation target.
  • the seismic isolation unit according to the present invention it is possible to firmly connect the structure including the precision instrument to the ground so as not to affect the operation of the precision instrument such as the telescope under normal circumstances, for example, the observation operation. , It can be isolated during an earthquake. In other words, it is possible to prevent the vibration due to the earthquake from being transmitted to the precision equipment.
  • the social infrastructure such as the power grid will be damaged during an earthquake, and it is possible that sufficient power cannot be supplied to the seismic isolation unit.
  • the seismic isolation unit according to the present invention is composed only of mechanical elements such as the first damping device 21 and the second damping device 22, and is not affected by the presence or absence of electric power supply or the like. It can be used.
  • a linear encoder composed of a scanning head and scale tape may be placed. Since the seismic isolation unit according to the present invention automatically restores the initial position, the relative positional relationship between the scanning head and the scale tape does not substantially shift even after an earthquake, so that observation can be resumed in a short time.
  • Embodiment 2 A seismic isolation unit according to the second embodiment of the present invention will be described with reference to FIG. 8.
  • the seismic isolation unit according to the present embodiment is different from the seismic isolation unit according to Embodiment 1 in that the second connecting portion 5b that is the vibration side connecting portion also has a function as a position rotation displacement adjusting mechanism.
  • Other configurations are the same as those of the seismic isolation unit according to the first embodiment, and similar effects can be obtained.
  • the second connecting portion 5b includes a position displacement adjusting mechanism 15 and a rotational displacement adjusting mechanism 16.
  • the position displacement adjusting mechanism 15 includes a support portion 51 that is a plate-shaped member, an intermediate plate portion 52 that is a plate-shaped member that is arranged at a distance from the support portion 51, and between the support portion 51 and the intermediate plate portion 52. And a distance adjusting member that changes the distance between the two.
  • the distance adjusting member can change the distance between the support portion 51 and the intermediate plate portion 52.
  • the distance adjusting member is, for example, a jack or a screw.
  • the rotational displacement adjusting mechanism 16 includes an intermediate plate portion 52, a connecting portion 53 that is arranged at a distance from the intermediate plate portion 52, and a spherical bearing that connects the intermediate plate portion 52 and the connecting portion 53 at an arbitrary angle. Including.
  • the connecting portion 53 can be appropriately positioned and installed to the structure with, for example, 6 degrees of freedom. Therefore, it is possible to prevent the reaction force due to the restriction of the seismic isolation target by the connecting portion 53 from affecting the object having a weak rigidity such as precision equipment included in the seismic isolation target.
  • the rotational displacement adjustment mechanism 16 may be arranged on the movement restriction section 6 side.
  • the position displacement adjusting mechanism 15 and the rotational displacement adjusting mechanism 16 may be installed on the first connecting portion 5a side, or may be installed on both the first connecting portion 5a and the second connecting portion 5b. From a different point of view, in the seismic isolation unit, at least one of the first connecting portion 5a and the second connecting portion 5b is connected to the connecting object 53 in contact with an object to be connected and the movement restricting portion 6. It has a member for varying the connection angle and a distance adjusting member such as a spherical bearing which acts as a connection position adjusting part capable of adjusting the position and angle of the connecting part 53.
  • the seismic isolation target is supported without being affected by the reaction force because the seismic isolation target is provided with the position displacement adjusting mechanism 15 and the rotational displacement adjusting mechanism 16 which are connection position adjusting portions.
  • Precision equipment with low rigidity can also be seismically isolated.
  • vibration damping part 21 first damping device, 22 second damping device, 21a, 22a piston, 21b, 22b cylinder, 21c, 22c fluid, 3 connecting member, 4a first housing, 4b second housing Body, 5a First connection part, 5b Second connection part, 6 Movement restriction part, 6a Rigidity under compressive load less than preload, 6b Rigidity under compressive load exceeding preload, 6c Rigidity under tensile load , 7, compression direction, 8 tensile direction, 9 seismic isolation target, 10 seismic isolation layer, 11 foundation part, 12 linear guide, 13, 14 wall part, 15 position displacement adjustment mechanism, 16 rotational displacement adjustment mechanism, 51 support part, 52 Intermediate plate part, 53 connection part.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • General Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Acoustics & Sound (AREA)
  • Physics & Mathematics (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Vibration Prevention Devices (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

地震は免震するが地震でない場合には剛性を持たせることが可能な免震ユニットにおいて、圧縮方向および引張方向の両方で作動するために必要な離間機構部分で発生する衝撃荷重を小さく抑えることができる免震ユニットを得る。免震する方向に予め定められた間隔を隔てて配置された第1接続部(5a)及び第2接続部(5b)と、第1接続部(5a)と第2接続部(5b)との間に設けられ、免震する方向からの外力が加えられる移動制約部(6)とを備え、移動制約部(6)は、一端が第1接続部(5a)に接続される第1の筐体(4a)と、一端が第2接続部(5b)に接続される第2の筐体(4b)と、第1の筐体(4a)の内部に収納された第1の減衰装置(21)と、第2の筐体(4b)の内部に収納された第2の減衰装置(22)と、第1の筐体(4a)と第2の筐体(4b)との間に設けられた振動減衰部(1)と、第1の減衰装置(21)と第2の減衰装置(22)とを連結する連結部材(3)とを備え、第1の減衰装置(21)と第2の減衰装置(22)とはそれぞれ、シリンダ(21b,22b)と、可圧縮性の流体(21c,22c)と、ピストン(21a,22a)とを有する。

Description

免震ユニットおよび免震装置
 この発明は、構造物や機器に対して、地震発生時に地震による揺れの伝達を抑制するための免震ユニットおよび免震装置に関するものである。
 免震ユニットまたは免震装置は、免震対象である構造物や機器等と、基礎部との間に設置され、地震が発生した際に免震対象を基礎部から切り離す。そうすることにより、基礎部から地震の振動が免震対象へ伝達することを抑制し、地震発生時に免震対象に発生する加速度を緩和する効果をもたらす。このような免震ユニットにおいて、電気の無い環境でも繰り返される地震に対して何度も使用できるとともに、地震は免震するが地震でない場合は剛性を持たせることが可能な免震ユニットがあった(例えば、特許文献1参照)。特許文献1では、予圧を加えた弾性体から構成される予圧バネユニットを有するものである。この免震ユニットでは、予圧バネユニットに加わる外力が予圧以下である場合には間隔を変化させず、外力が予圧を超える場合に間隔が変化する。特許文献1の図1または図13に開示された予圧バネユニットでは、弾性体として皿バネ重ねたものまたはコイルバネが用いられる。
 また、小さな荷重では作動せず、大きな荷重で作動する緩衝部材として、可圧縮性の液体を用いた液体圧スプリングがある(例えば、特許文献2参照)。特許文献2では、一定値を超える外力が加わると、ピストンロッドがシリンダ内部へ侵入しシリンダ内部の容積が初期時に比べ小さくなる。これにより、シリンダの内部に封入された可圧縮性の流体の圧力が高まる。この高まった圧力が反力となり復元作用が生じると共に、流体が圧縮・復元する過程で加えられたエネルギーを減衰吸収する。
国際公開第2017/056265号 特開2008-175266号公報
 しかしながら、特許文献1の図1または図13に開示された免震ユニットの予圧バネユニットは、弾性体として皿バネ重ねたものまたはコイルバネが用いられる。このような予圧バネユニットにおいては、予圧を超える外力が加わり圧縮変形した皿バネまたはコイルバネが初期位置に戻る際に、急激な荷重の変化が起こる。そのため皿バネまたはコイルバネに接続されたアーム部と筐体との間に大きな衝撃荷重が発生するという課題がある。また、特許文献2に開示された液体圧スプリングは減衰作用を有するため、初期位置に戻る際に衝撃荷重を小さく抑えられる。しかし、この液体圧スプリングはその構造上、圧縮方向の外力に対しては内部の流体が圧縮され動作するが、引張り方向の外力に対しては、ピストンとシリンダが接触して動作しない。そのため、免震ユニットに適用し動作させるためには、液体圧スプリングを適切な個数、適切な方向に配置しなければならないという課題がある。
 この発明は、上記のような課題を解決するためになされたものであり、地震は免震するが地震でない場合には剛性を持たせることが可能な免震ユニットにおいて、復元時に発生する衝撃荷重を小さく抑えることができる免震ユニットおよび免震装置の提供を目的とする。
 この発明に係る免震ユニットは、免震する方向に予め定められた間隔を隔てて配置された第1接続部及び第2接続部と、第1接続部と第2接続部との間に設けられ、免震する方向からの外力が加えられる移動制約部とを備え、移動制約部は、一端が第1接続部に接続された第1の筐体と、一端が第2接続部に接続された第2の筐体と、第1の筐体の内部に収納された第1の減衰装置と、第2の筐体の内部に収納された第2の減衰装置と、第1の筐体と前記第2の筐体との間に設けられ、第1接続部と第2接続部との間の間隔が大きくなる際に間隔を小さくする向きの力を発生させ、間隔が小さくなる際に間隔を大きくする向きの力を発生させる振動減衰部と、第1の減衰装置と前記第2の減衰装置とを連結する連結部材とを備え、第1の減衰装置と第2の減衰装置とはそれぞれ、両端が閉塞されたシリンダと、シリンダの内部に封入されると共に予圧が加えられた可圧縮性の流体と、シリンダの一端を貫通し、一端が前記シリンダの内部に設けられ他端が前記シリンダの外部に設けられ、シリンダの内部への進入により流体に圧力上昇を生じさせるピストンとを有し、第1の減衰装置のシリンダと第2の減衰装置のシリンダとは、連結部材に接続され、第1の減衰装置のピストンの他端は、第1の筐体の前記一端に接続され、第2の減衰装置の前記ピストンの他端は、第2の筐体の前記他端に接続される。
 本発明によれば、地震は免震するが地震でない場合には剛性を持たせることが可能な免震ユニットにおいて、復元時に発生する衝撃荷重を小さく抑えることができる免震ユニットおよび免震装置を得ることができるという効果を奏する。
本発明の実施の形態1に係る免震ユニットの模式図である。 本発明の実施の形態1に係る免震ユニットの動作および構造を説明するための断面図である。 本発明の実施の形態1に係る免震ユニットの第1の減衰装置と第2の減衰装置とにおける荷重と変位との関係を示すグラフである。 本発明の実施の形態1に係る免震ユニットを含む免震装置を免震対象の基礎部に適用した構成例を示す模式図である。 本発明の実施の形態1に係る免震ユニットの圧縮方向の外力が作用したときの荷重の伝達経路を示す図である。 本発明の実施の形態1に係る免震ユニットの引張方向の外力が作用したときの荷重の伝達経路を示す図である。 本発明の実施の形態1に係る免震ユニットの地震時の動作を説明する模式図を示す。 本発明の実施の形態2に係る免震ユニットの動作および構造を説明するための断面図である。
 以下、本発明の実施の形態について図面を参照しながら詳細に説明する。なお、以下の図面において、同一または相当する部分には同一の符号を付し、その説明は繰り返さない。
 実施の形態1.
 本実施形態に係る免震ユニットは、例えば免震対象である大型望遠鏡を搭載する架台と、基礎部である地盤との間に適用される。図1(a)は、本発明の実施の形態1に係る免震ユニットの平面模式図である。図1(b)は図1に示した免震ユニットのA-A線における断面模式図である。図2は図1(a)に示した免震ユニットの動作および構造を説明するための断面図である。
 図2に示すように、免震ユニットは、振動を伝えない対象である免震対象に接続される免震対象接続部である第1接続部5aと、地震により振動する構造物に接続される振動側接続部である第2接続部5bと、移動制約部6とを主に備える。第1接続部5a及び第2接続部5bは、免震する方向である免震方向に予め定められた間隔を隔てて配置される。移動制約部6は、第1接続部5aと第2接続部5bとの間に設けられる。移動制約部6は、免震方向の一端が第1接続部5aに接続され、他端が第2接続部5bに接続される。移動制約部6は、第1接続部5aと第2接続部5bとから、免震方向に加えられた外力が閾値を超える場合に第1接続部5aと第2接続部5bとの間の間隔が変化するように第2接続部5bが移動することを可能にするものである。つまり、移動制約部6は、免震方向に伸縮可能なユニットとなっている。
 移動制約部6は、第1の筐体4aと、第2の筐体4bと、第1の減衰装置21と第2の減衰装置22と、振動減衰部1と、連結部材3とを備える。免震ユニットの両端部に位置する第1接続部5a及び第2接続部5bとの間に、第1の筐体4aと、第1の筐体4aに収納された第1の減衰装置21と、振動減衰部1と、第2の筐体4bと、第2の筐体4bに収納された第2の減衰装置22とが免震方向に一直線上に並んで配置されている。連結部材3は、第1の減衰装置21と第2の減衰装置22とを連結している。
 図2に示すように、第1の筐体4aと第2の筐体4bとが、振動減衰部1の免震方向における両側に配置される。第1の減衰装置21は、第1の筐体4aの内部に収納される。第2の減衰装置22は、第2の筐体4bの内部に収納される。
 第1の筐体4aと、第2の筐体4bとは、両端が塞がれた円筒状の形状を有している。第1の筐体4aは、一端である端部41aが第1接続部5aに接続され、他端である端部42aが振動減衰部1に接続される。第2の筐体4bは、一端である端部41bが第2接続部5bに接続され、他端である端部42bが振動減衰部1に接続される。第1接続部5aと第2接続部5bとは、例えばクレビス等のシリンダ用金具から構成される。これにより、第1接続部5aと第2接続部5bとの間に、第1の筐体4a、振動減衰部1、第2の筐体4bが一直線上に並んで配置される。ここでは、第1の筐体4aが第1接続部5aに接続され、第2の筐体4bが第2接続部5bに接続されているが、逆向きに接続してもよい。つまり、第1の筐体4aは、一端である端部41aが第2接続部5bに接続され、他端である端部42aが振動減衰部1に接続される。そして、第2の筐体4bは、一端である端部41bが第1接続部5aに接続され、他端である端部42bが振動減衰部1に接続される構成としてもよい。
 振動減衰部1は、移動速度に応じて抵抗力を発生し、入力された振動を減衰させる減衰装置である。また異なる観点から言えば、振動減衰部1は、第1接続部5aと第2接続部5bの間の間隔が大きくなる際に間隔を小さくする向きの力を発生させ、間隔が小さくなる際に間隔を大きくする向きの力を発生させる。振動減衰部1は、周知の任意の減衰装置を適用することができ、ここでは粘性ダンパーである。振動減衰部1は、一端が第1の筐体4aの他端である端部42aに接続される。振動減衰部1の他端は第2の筐体4bの他端である端部42bに接続される。
 第1の減衰装置21は、シリンダ21bと、可圧縮性の流体21cと、ピストン21aとを有する。流体21cは、シリンダ21bの内部に封入されると共に予圧が加えられている。ピストン21aは、シリンダ21b内に往復動自在に設けられる。ピストン21aは、ピストンヘッドとピストンロッドとから成る。ピストンヘッドは、シリンダ21bの内部に設けられる。ピストンロッドは、シリンダ21bの一端を貫通しており、端部がシリンダの外部に出ている。つまりピストン21aは、一端がシリンダ21bの内部に設けられ、他端がシリンダ21bの外部に設けられる。
 第1の減衰装置21の動作を説明する。ピストン21aに、流体21cに加えられた予圧力を超える押圧力が加えられると、シリンダ21bのピストンロッドが貫通している側の端部とピストンヘッドが離間する。そして、ピストン21aがシリンダ21b内部へ進入し、シリンダ21b内部の容積が初期時に比べ小さくなる。これにより、シリンダ21b内部に密封された流体21cが圧縮されその圧力が高まる。この高まった圧力が反力となり復元作用が生じると共に、流体21cが圧縮および復元の過程でエネルギーを減衰吸収する。ピストン21aへ加えられる押圧力が解消されると、ピストン21aは、加圧された流体21cの反力により元の初期位置に復帰される。ピストン21aに引張力が加えられた場合は、シリンダ21bのピストンロッドが貫通している側の端部とピストンヘッドとの接触により、ピストン21aは移動しない。
 第2の減衰装置22は、第1の減衰装置21と同様に、両端が閉塞されたシリンダ22bと、シリンダ22bの内部に封入されると共に予圧が加えられた可圧縮性の流体22cと、ピストン22aとを有するものであり、第1の減衰装置21と同様の構成である。
 上記により、第1の減衰装置21と第2の減衰装置22とは、押圧力が加えられたことにより、動作したピストン21a(22a)を初期位置に戻すための復元力に加えて、衝撃荷重を緩和する減衰力も有する構成となる。また、シリンダ21b(22b)内部の流体21c(22c)に加える予圧を設定することで、小さな荷重ではピストン21a(22a)の移動を生じさせず、大きな荷重で初めてピストン21a(22a)の移動を生じさせることができる。つまり、第1の減衰装置21及び第2の減衰装置22の主軸方向に予圧以下の押圧力が加えられた場合、高い剛性を有し、予圧を超える押圧力が加えられた場合、低い剛性を有する構成とすることができる。
 第1の減衰装置21と第2の減衰装置22とに加える予圧力は、通常時に免震ユニットに作用する荷重より大きい値に設計することで、免震機能が作動していないときには高い剛性を有することが望ましい。つまり第1の減衰装置21と第2の減衰装置22との荷重と変位との関係は、図3に示すように変化することが好ましい。
 図3は、第1の減衰装置21と第2の減衰装置22とにおける荷重と変位との関係を示すグラフである。図3(a)において、横軸は第1の減衰装置21と第2の減衰装置22とにおけるシリンダ21b(22b)の一端とピストン21a(22a)のピストンヘッドとの間の間隔の変位を示す。縦軸は第1の減衰装置21と第2の減衰装置22とに加えられる荷重を示している。縦軸の上側が圧縮荷重を示し、下側が引張り荷重を示す。なお、シリンダ21b(22b)の一端とピストン21a(22a)のピストンヘッドとの間の間隔は、初期位置である通常の状態を変位ゼロとする。図3(a)の領域6a、領域6b、領域6cでの、第1の減衰装置21及び第2の減衰装置22の状態を図3(b)に示す。領域6aは、第1の減衰装置21及び第2の減衰装置22に予圧力以下の圧縮荷重が作用した場合を示す。領域6bは、第1の減衰装置21及び第2の減衰装置22に予圧力を超える圧縮荷重が作用した場合を示す。領域6cは、第1の減衰装置21及び第2の減衰装置22に引張荷重が作用した場合を示す。
 図3(a)の領域6a、領域6cに示すように荷重が所定の予圧力より小さい場合は、第1の減衰装置21及び第2の減衰装置22の剛性が支配的であり、荷重の変化に対して変位の増減は極めて小さくなっている。一方、図3(a)の領域6bに示すように荷重が所定の予圧力より大きくなる場合は、荷重の変化に対して変位の増減が相対的に大きくなっている。
 ここで、第1の減衰装置21は、第1の筐体4aの内部に収納されると共に、一端が第1の筐体4aに接続され、他端が連結部材3に接続される。第2の減衰装置22は、第2の筐体4bの内部に収納されると共に、一端が第2の筐体4bに接続され、他端が連結部材3に接続される。詳しくは、第1の減衰装置21のピストン21aの他端であるピストンロッドは、第1の筐体4aの一端である端部41aに接続される。よって、第1の筐体4aに加えられた外力は、ピストン21aに伝えられる。第2の減衰装置22のピストン22aの他端であるピストンロッドは、第2の筐体4bの他端である端部42bに接続される。よって、第2の筐体4bに加えられた外力は、ピストン22aに伝えられる。
 シリンダ21bにおいてピストンロッドが貫通している側の端部と反対側の端部と、シリンダ22bにおいてピストンロッドが貫通している側の端部と反対側の端部とは、連結部材3に接続される。これにより、第1の減衰装置21のシリンダ21bと第2の減衰装置22のシリンダ22bとは、連結され、決められた間隔を維持して連動して動作する。よって、連結部材3は、第1の減衰装置21に加えられた力を第2の減衰装置22に伝え、第2の減衰装置22に加えられた力を第1の減衰装置21に伝える。このように、構成することで、免震ユニットは、伸縮可能なユニットとなっている。
 次に、図2に示した免震ユニットの適用例を、図4を参照しながら説明する。図4には、図2に示した免震ユニットを水平方向の一方向に設置した場合の構成例を示している。なお、図4では水平方向の一方向すなわち第1方向に設置した免震ユニットを示しているが、この構成例では水平面内において第1方向と交差する方向すなわち第2方向にも、別の免震ユニット(図示しない)を設置する。第2方向は、水平面内において、好ましくは第1方向と直交する方向である。つまり、図4に示した構成例である免震装置は、水平面内の第1方向を免震方向にして、水平面内で移動可能に支持されている免震対象に接続される図2に示した免震ユニットである第1方向免震ユニットと、水平面内で第1方向と異なる第2方向を免震方向にして、免震対象に接続される図2に示した免震ユニットである第2方向免震ユニットとを備える。このような免震装置では、第1方向および第2方向のどちらか少なくとも一方で、2つ以上の免震ユニットを設置してもよい。この場合、免震対象を挟むように複数の免震ユニットを設置してもよい。免震ユニットの数を増やすことにより、より大きな免震効果を得ることができる。
 図4に示すように、免震ユニットは、建築物や精密機器など免震対象9の下部に配置された水平な板状の免震層10と、地盤側の基礎部11との間に設置される。免震層10の上に免震対象9が存在する。図4では免震ユニットを実際よりも大きく書いている。免震層10の免震ユニットが設置された端部に、基礎部11から壁部13が免震層10側に向けて突出して形成されている。また、壁部13と対向する位置に、免震層10から基礎部11側に向けて壁部14が突出して形成されている。免震ユニットは、対向する壁部13と壁部14との間をつなぐように配置されている。
 なお、壁部14と基礎部11の間にはリニアガイド12が設置されている。ここで、リニアガイド12は水平方向に拘束がなくスムーズに動くガイド機構である。また、壁部13と免震層10の間にもリニアガイド12が設置されている。リニアガイド12以外の滑り支承を使用してもよい。例えば、積層ゴム、滑り軸受け、転がり軸受けなどを使用してもよい。
 図4に示すような水平免震の場合は、免震対象9と免震層10の重量を水平方向のリニアガイド12を介して、壁部13と壁部14とが支持している。このような構成により、地震時に、基礎部11が振動しても、免震ユニットにより免震対象9および免震層10の振動は緩和される。この結果、免震層10並びに免震対象9は水平方向における地震の振動に関して免震される。
 また、図2に示した免震ユニットを複数組み合わせた免震装置としてもよい。例えば、免震ユニットをZ方向、X方向およびY方向(3軸方向)に備えた免震装置(図示しない)としてもよい。X方向が水平面内の1方向であり、Y方向が水平面内でX方向と直交する方向であり、Z方向が鉛直方向である。詳しくは、上側に存在する免震対象に接続され、鉛直方向を免震方向にする鉛直方向免震ユニットと、水平面内の第1方向を免震方向にする第1方向免震ユニットと、水平面内で第1方向と異なる第2方向を免震方向にする第2方向免震ユニットとを備える免震装置である。第1方向免震ユニットと第2方向免震ユニットとは、鉛直方向免震ユニットを介して免震対象に接続される。
 このような免震装置によると、鉛直方向免震ユニットにより、鉛直方向での振動に対する免震機能を実現できる。また、水平面内の第1方向免震ユニットにより、水平面内の一方向である第1方向での振動に対する免震機能を実現できる。また、水平面内の第2方向免震ユニットにより、水平面内において第1方向と交差する第2方向での振動に対する免震機能を実現できる。このように、鉛直方向と水平面内の3方向に沿った方向で免震機能を実現できる。なお、3つの方向のうち2つの方向に免震ユニットを組み合わせて免震装置を構成してもよい。また、3つの方向ではなく、4つ以上の方向に免震ユニットを組み合わせてもよい。
 次に、図5~図7を参照しながら本実施形態に係る免震ユニットの動作を説明する。図5(a)は免震ユニットに、免震方向において、移動制約部6が圧縮する方向である圧縮方向の外力が作用したときの第1の減衰装置21及び第2の減衰装置22側の荷重の伝達経路を示す図である。圧縮方向を矢印7で示す。荷重の伝達経路を破線で示す。
 圧縮方向の外力が作用すると、第2の減衰装置22のピストン22aは、第2の筐体4bから引張られる。ピストン22aが受けた荷重は、ピストン22aと接触するシリンダ22bを通じて連結部材3へと荷重が伝わる。連結部材3へと荷重が伝わった荷重は、連結部材3から、第1の減衰装置21のシリンダ21b、流体21c、ピストン21aの順に伝わる。つまり、第2の減衰装置22には、引張力が加えられる。第1の減衰装置21には、押圧力が加えられる。
 図5(b)は免震ユニットに、免震方向において、移動制約部6が圧縮する方向である圧縮方向の外力が作用したときの振動減衰部1側の荷重の伝達経路を示す図である。荷重の伝達経路を破線で示す。振動減衰部1は、第2の筐体4bから圧縮方向の荷重を受ける。
 図6(a)は免震ユニットに免震方向において移動制約部6が引張する方向である引張方向の外力が作用したときの第1の減衰装置21及び第2の減衰装置22側の荷重の伝達経路を示す図である。引張方向を矢印8で示す。荷重の伝達経路を破線で示す。引張方向の外力が作用すると、第2の減衰装置22のピストン22aは、第2の筐体4bから押圧される。ピストン22aが受けた荷重は、ピストン22a、流体22c、シリンダ22bの順に伝わりを通じて連結部材3へと伝わる。そして連結部材3から、第1の減衰装置21のシリンダ22b、ピストン22aに荷重が伝わる。つまり、第2の減衰装置22には、押圧力が加えられる。第1の減衰装置21には、引張力が加えられる。
 図6(b)は免震ユニットに、免震方向において、移動制約部6が引張する方向である引張方向の外力が作用したときの振動減衰部1側の荷重の伝達経路を示す図である。荷重の伝達経路を破線で示す。振動減衰部1は、第2の筐体4bから引張方向の荷重を受ける。
 したがって、第1の減衰装置21は、免震ユニットに第1接続部5aと第2接続部5bの間の間隔が小さくなる向きの外力(圧縮力)が印加された場合に、押圧力が加えられる。第2の減衰装置22は、免震ユニットに第1接続部5aと第2接続部5bの間の間隔が大きくなる向きの外力(引張力)が印加された場合に、押圧力が加えられる。
 図7に地震時の免震ユニットの動作を説明する模式図を示す。図7(a)は免震ユニットに対して圧縮方向の外力が加えられた状態を示す。図7(b)は、免震ユニットの初期位置を示す。図7(c)は、免震ユニットに対して引張方向の外力が加えられた状態を示す。図7(b)は、免震ユニットの初期位置であり、地震による振動が加えられる前の通常状態である。免震ユニットは初期位置では、第1の減衰装置21のシリンダ21bの一端とピストン21aのピストンヘッドとが接触した状態である。また、第2の減衰装置22のシリンダ22bの一端とピストン22aのピストンヘッドとが接触した状態である。免震ユニットに加えられる外力が予圧以下の場合は、図7(b)に示すように、免震ユニットは初期位置から動くことなく、主軸方向の長さは通常時の長さになる。
 図7(a)に示すように、免震ユニットに、第1の減衰装置21及び第2の減衰装置22に加えられた予圧力より大きい圧縮方向の外力が加えられるとする。圧縮方向を矢印7で示す。このとき、第2の筐体4bが矢印7の方向の荷重を受け、第2の減衰装置22のピストン22aが第2の筐体4bから引張されるため、シリンダ22bの一端とピストン22aのピストンヘッドとが接触し、第2の減衰装置22は圧縮しない。また、第2の筐体4bからピストン22aに加わった荷重は、シリンダ22bを通じて連結部材3へと伝わる。そして、連結部材3から第1の減衰装置21のシリンダ21bへ荷重が伝わり、第1の減衰装置21に押圧力が加わる。この押圧力が流体21cに加えられた予圧力を超える場合に、流体22cが圧縮され、シリンダ21bの一端とピストン21aのピストンヘッドとが離間する。つまり、ピストン21aがシリンダ21bの内部に進入し、第1の減衰装置21が圧縮される。同時に、振動減衰部1は、第2の筐体4bから押圧力が加えられ圧縮する。
 この結果、図7(a)に示すように、第2の筐体4bが第1の筐体4aの方へ移動する。つまり、移動制約部6が圧縮され、第1接続部5aと第2接続部5bの間の間隔が小さくなる。このとき、第1の減衰装置21には、ピストン21aを元の位置に戻す復元力およびピストン21aの移動を抑制する向きの減衰力が働く。振動減衰部1には、第2の筐体4bの移動を抑制する向きの減衰力が働く。振動減衰部1によって生じる大きな減衰力は、第1の筐体4aと第2の筐体4bとを通して接続部5aと接続部5bとに伝わるため、第1の減衰装置21には大きな荷重が作用しない。
 図7(c)に示すように、免震ユニットに、第1の減衰装置21及び第2の減衰装置22に加えられた予圧力より大きい引張方向の外力が加えられるとする。引張方向を矢印8で示す。このとき、第2の減衰装置22のピストン22aは第2の筐体4bから押圧力が加えられる。この押圧力が流体22cに加えられた予圧力を超える場合に、流体22cが圧縮し、シリンダ22bの一端とピストン22aのピストンヘッドとが離間する。つまり、ピストン22aがシリンダ22bの内部に進入し、第2の減衰装置22が圧縮する。同時に、振動減衰部1は、第2の筐体4bから引張力が加えられ引張する。また、第2の筐体4bからピストン22aに加わった荷重は、流体22c、シリンダ22bを通じて連結部材3に伝わる。そして、連結部材3から第1の減衰装置21のシリンダ21bへ荷重が伝わり、第1の減衰装置21に引張力が加わる。第1の減衰装置21のピストン21aは連結部材3から引張されるため、シリンダ21bの一端とピストン21aのピストンヘッドとが接触し、第1の減衰装置21は圧縮されない。
 この結果、図7(c)に示すように、第2の筐体4bが第1の筐体4aと離れる方向へ移動する。つまり、移動制約部6が引張され、第1接続部5aと第2接続部5bの間の間隔が大きくなる。このとき、第2の減衰装置22には、ピストン22aを元の位置に戻す復元力およびピストン22aの移動を抑制する向きの減衰力が働く。振動減衰部1には、第2の筐体4bの移動を抑制する向きの減衰力が働く。振動減衰部1によって生じる大きな減衰力は、第1の筐体4aと第2の筐体4bとを通して接続部5aと接続部5bとに伝わるため、第2の減衰装置22には大きな荷重が作用しない。
 すなわち地震時、免震ユニットに、第1の減衰装置21及び第2の減衰装置22に加えられた予圧力を超える外力が加わると、振動減衰部1及び第1の減衰装置21及び第2の減衰装置22の動作により移動制約部6が伸縮する。言い換えると、第1の減衰装置21及び第2の減衰装置22は、圧縮方向および引張方向の両方の外力に対して作動する離間機構となる。このとき振動減衰部1の減衰力により、地震による振動エネルギーを吸収する。この結果、地震による振動が第2接続部5bから第1接続部5aおよび免震対象に伝わることを抑制することができる。
 また、地震後は第1の減衰装置21、第2の減衰装置22の復元力により第1の筐体4a、第2の筐体4bは地震前の初期位置に戻される。よって、免震ユニットは、地震後には初期位置に自動で復元する機能を実現できる。連続した地震に遭遇しても場合でも、地震後に初期位置に戻っているため、その都度、免震ユニットが最大ストロークまで可動できる。
 さらに、第1の減衰装置21および第2の減衰装置22が復元力に加え、減衰力を有している。地震時には、図7(a)の圧縮荷重作用時と図7(c)の引張荷重作用時の状態が繰り返される。このとき、シリンダ21b(22b)の一端とピストン21a(22a)のピストンヘッドとが離間後に再度接触するときに発生する衝撃荷重は、減衰力により小さく抑えることができる。従来の免震装置の圧縮変形した皿バネまたはコイルバネが初期位置に戻る際と比較しても衝撃荷重を小さく抑えることができる。そのため、第1の減衰装置21および第2の減衰装置22にそれぞれ衝撃荷重を緩和可能な緩衝装置を設ける必要がなく、装置の大型化を防ぐことができる。
 また、地震発生時以外の外部からの振動などの外力が予圧力を超えない場合には、第1接続部5aと第2接続部5bとの間隔は移動制約部6によって維持されている。よって、第1接続部5aと第2接続部5bとの間の間隔は変化することなく、免震ユニットは高い剛性を維持した状態で地震により振動する構造物と免震対象との間を連結する。この結果、地震発生時のみに免震機能が動作する一方、通常時には高い剛性を保つことが可能な免震ユニットを得ることができる。
 また、移動制約部6は予圧を与えられた第1の減衰装置21および第2の減衰装置22を利用しており、とくに電源を必要とするような機器を有さない。そのため、電源が必要な機器を用いた場合より構成が簡単であり、故障の発生確率を低くできる。さらに、山頂等の電源の確保が難しいような環境や、停電時であっても、免震ユニットを適用することができる。
 本発明に係る免震ユニットは、免震対象として望遠鏡や光学機器などの精密機器に適用した場合に特に効果的である。本発明に係る免震ユニットを用いることにより、通常時は望遠鏡などの精密機器の動作、例えば観測動作などに影響を与えないようしっかりと地盤に精密機器を含む構造物を接続することができる一方、地震時には免震させることができる。つまり、精密機器に対して地震による振動が伝わることを抑制できる。また、地震時は電力網などの社会基盤がダメージを受けることが想定され、免震ユニットに十分電力を供給できない状況が考えられる。そのような状況に対し、本発明に係る免震ユニットは第1の減衰装置21および第2の減衰装置22などの機械要素のみで構成されており、電力の供給の有無などに左右されず常時使用可能である。
 さらに、望遠鏡の方位軸周りの角度検出には、走査ヘッドとスケールテープから成るリニアエンコーダが配置される場合がある。本発明に係る免震ユニットは、初期位置に自動で復元する機能により、地震後にも走査ヘッドとスケールテープの相対位置関係がほぼずれないため、短時間で観測を再開することが可能である。
 実施の形態2.
 図8を参照して、本発明の実施形態2に係る免震ユニットを説明する。本実施の形態に係る免震ユニットは、振動側接続部である第2接続部5bが位置回転変位調整機構としての機能も有する点が、実施の形態1に係る免震ユニットと異なる。その他の構成は、実施の形態1に係る免震ユニットと同様の構成であり、同様の効果を得ることができる。
 図8に示すように、第2接続部5bは、位置変位調整機構15と回転変位調整機構16とを含む。位置変位調整機構15は、板状部材である支持部51と、支持部51と間隔を隔てて配置された板状部材である中間板部52と、支持部51と中間板部52との間の間隔を変更する距離調整部材とを含む。距離調整部材により支持部51と中間板部52との間の距離を変更することができる。距離調整部材は、例えばジャッキやねじなどである。
 回転変位調整機構16は、中間板部52と、中間板部52と間隔を隔てて配置された接続部53と、中間板部52と接続部53とを任意の角度で接続する球面軸受とを含む。このような第2接続部5bを用いることにより、免震ユニットを使用する際に、接続部53を構造物に対し、例えば6自由度で適切に位置調整し設置することができる。そのため、接続部53による免震対象の拘束による反力が、免震対象に含まれる精密機器などの弱い剛性を有する対象に影響することを防止できる。なお、回転変位調整機構16を移動制約部6側に配置してもよい。
 なお、位置変位調整機構15と回転変位調整機構16とは、第1接続部5a側に設置してもよいし、第1接続部5aと第2接続部5bの両方に設置してもよい。異なる観点から言えば、免震ユニットは、第1接続部5aおよび第2接続部5bの少なくともいずれか一方は、接続する対象物に接触して接続される接続部53と、移動制約部6に対する接続部53の位置および角度を調整可能な接続位置調整部として作用する球面軸受などの接続角度を可変にする部材および距離調整部材を有する。
 本実施の形態の免震ユニットによれば、接続位置調整部である位置変位調整機構15および回転変位調整機構16を備えることにより、免震対象が反力の影響を受けずに支持されるので、剛性の弱い精密機器なども免震対象とすることができる。
 今回開示された実施の形態はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。
1 振動減衰部、21 第1の減衰装置、22 第2の減衰装置、21a,22a ピストン、21b,22b シリンダ、21c,22c 流体、3 連結部材、4a 第1の筐体、4b 第2の筐体、5a 第1接続部、5b 第2接続部、6 移動制約部、6a 予圧力以下の圧縮荷重作用時の剛性、6b 予圧力を超える圧縮荷重作用時の剛性、6c 引張荷重作用時の剛性、7 圧縮方向、8 引張方向、9 免震対象、10 免震層、11 基礎部、12 リニアガイド、13,14 壁部、15 位置変位調整機構、16 回転変位調整機構、51 支持部、52 中間板部、53 接続部。

Claims (5)

  1.  免震する方向に予め定められた間隔を隔てて配置された第1接続部及び第2接続部と、
     前記第1接続部と前記第2接続部との間に設けられ、前記免震する方向からの外力が加えられる移動制約部とを備え、
     前記移動制約部は、一端が前記第1接続部に接続された第1の筐体と、一端が前記第2接続部に接続された第2の筐体と、前記第1の筐体の内部に収納された第1の減衰装置と、前記第2の筐体の内部に収納された第2の減衰装置と、前記第1の筐体と前記第2の筐体との間に設けられ、前記第1接続部と前記第2接続部との間の前記間隔が大きくなる際に前記間隔を小さくする向きの力を発生させ、前記間隔が小さくなる際に前記間隔を大きくする向きの力を発生させる振動減衰部と、前記第1の減衰装置と前記第2の減衰装置とを連結する連結部材とを備え、
     前記第1の減衰装置と前記第2の減衰装置とはそれぞれ、両端が閉塞されたシリンダと、前記シリンダの内部に封入されると共に予圧が加えられた可圧縮性の流体と、前記シリンダの一端を貫通し、一端が前記シリンダの内部に設けられ他端が前記シリンダの外部に設けられ、前記シリンダの内部への進入により前記流体に圧力上昇を生じさせるピストンとを有し、
     前記第1の減衰装置の前記シリンダと前記第2の減衰装置の前記シリンダとは、前記連結部材に接続され、
     前記第1の減衰装置の前記ピストンの他端は、前記第1の筐体の前記一端に接続され、
     前記第2の減衰装置の前記ピストンの他端は、前記第2の筐体の前記他端に接続される免震ユニット。
  2.  前記第1の減衰装置の前記シリンダの他端と前記第2の減衰装置の前記シリンダの他端とが、前記連結部材に接続された請求項1に記載の免震ユニット。
  3.  前記第1接続部及び前記第2接続部の少なくともいずれか一方は、接続する対象物に接触して接続される接続部と、前記移動制約部に対する前記接続部の位置および角度を調整可能な接続位置調整部とを有する請求項1または請求項2に記載の免震ユニット。
  4.  水平面内の第1方向を前記免震する方向にして、水平面内で移動可能に支持されている免震対象に接続される請求項1から請求項3のいずれか1項に記載の免震ユニットである第1方向免震ユニットと、水平面内で前記第1方向と異なる第2方向を前記免震する方向にして、前記免震対象に接続される請求項1から請求項3のいずれか1項に記載の免震ユニットである第2方向免震ユニットとを備えた免震装置。
  5.  免震対象が上側に存在し、鉛直方向を前記免震する方向にする請求項1から請求項3のいずれか1項に記載の免震ユニットである鉛直方向免震ユニットと、前記鉛直方向免震ユニットを介して前記免震対象に接続され、水平面内の第1方向を前記免震する方向にする請求項1から請求項3のいずれか1項に記載の免震ユニットである第1方向免震ユニットと、前記鉛直方向免震ユニットを介して前記免震対象に接続され、水平面内で前記第1方向と異なる第2方向を前記免震する方向にする請求項1から請求項3のいずれか1項に記載の免震ユニットである第2方向免震ユニットとを備える免震装置。
PCT/JP2019/028348 2018-10-23 2019-07-18 免震ユニットおよび免震装置 WO2020084848A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020547017A JP6797341B2 (ja) 2018-10-23 2019-07-18 免震ユニットおよび免震装置
US17/269,260 US11401726B2 (en) 2018-10-23 2019-07-18 Base isolation unit and base isolation apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018198948 2018-10-23
JP2018-198948 2018-10-23

Publications (1)

Publication Number Publication Date
WO2020084848A1 true WO2020084848A1 (ja) 2020-04-30

Family

ID=70331512

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/028348 WO2020084848A1 (ja) 2018-10-23 2019-07-18 免震ユニットおよび免震装置

Country Status (3)

Country Link
US (1) US11401726B2 (ja)
JP (1) JP6797341B2 (ja)
WO (1) WO2020084848A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111305054B (zh) * 2020-02-21 2021-04-27 长安大学 一种油压式减隔震支座及其使用方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008175266A (ja) * 2007-01-17 2008-07-31 Oiles Ind Co Ltd 液体圧スプリング及びその製造方法
JP2016105021A (ja) * 2016-01-15 2016-06-09 オイレス工業株式会社 免震機構
WO2017056265A1 (ja) * 2015-09-30 2017-04-06 三菱電機株式会社 免震ユニットおよび免震装置
WO2018079673A1 (ja) * 2016-10-27 2018-05-03 三菱電機株式会社 免震装置、昇降装置および免震ユニット

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5538373A (en) * 1992-02-20 1996-07-23 Giddings & Lewis, Inc. Machine tool vibration isolation system
US5940180A (en) * 1994-10-11 1999-08-17 Giddings & Lewis Laser interferometer measurement system for use with machine tools
US7095482B2 (en) * 2001-03-27 2006-08-22 Nikon Corporation Multiple system vibration isolator
US8441615B2 (en) * 2008-09-04 2013-05-14 Nikon Corporation System for isolating an exposure apparatus
US9670983B2 (en) * 2013-04-17 2017-06-06 Honeywell International Inc. Isolators including damper assemblies having variable annuli and spacecraft isolation systems employing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008175266A (ja) * 2007-01-17 2008-07-31 Oiles Ind Co Ltd 液体圧スプリング及びその製造方法
WO2017056265A1 (ja) * 2015-09-30 2017-04-06 三菱電機株式会社 免震ユニットおよび免震装置
JP2016105021A (ja) * 2016-01-15 2016-06-09 オイレス工業株式会社 免震機構
WO2018079673A1 (ja) * 2016-10-27 2018-05-03 三菱電機株式会社 免震装置、昇降装置および免震ユニット

Also Published As

Publication number Publication date
US20210164254A1 (en) 2021-06-03
US11401726B2 (en) 2022-08-02
JP6797341B2 (ja) 2020-12-09
JPWO2020084848A1 (ja) 2021-02-15

Similar Documents

Publication Publication Date Title
JP6309170B2 (ja) 免震ユニットおよび免震装置
KR101508148B1 (ko) 전기제어 판넬에 설치되는 방진성능을 갖춘 3차원 지진격리시스템
JP2013142429A (ja) 免震機構
WO2017074175A1 (en) A nonlinear spring bracing device
WO2020084848A1 (ja) 免震ユニットおよび免震装置
CA2907567A1 (en) Disc and spring isolation bearing
CN110857718B (zh) 几何非线性隔振系统
JPH1136657A (ja) 免振装置
JP2001304331A (ja) 可変減衰要素
JP6249178B2 (ja) 制振構造
JPH02107843A (ja) 三次元免震装置
JP2008144860A (ja) 免震装置、及び免震構造物
JP4822133B2 (ja) 変位拡大機構および制振ダンパーならびに免震機構
KR101479282B1 (ko) 연직 방향 진동 저감 장치
JP6274172B2 (ja) 免震テーブル装置
JP7222219B2 (ja) 上下振動減衰装置、及び、上下振動減衰構造
JP2009024766A (ja) 上下免震機構
JP2022035468A (ja) 摩擦ダンパー機構
JP2016205413A (ja) 免震構造
JP5401260B2 (ja) 減衰装置
KR102518454B1 (ko) 건물용 3차원 면진장치
JP7573492B2 (ja) 免震機構および免震構造物
JP2005330799A (ja) 免震構造
JP6914407B2 (ja) 免震機構
JP7333545B2 (ja) ばね装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19876761

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020547017

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19876761

Country of ref document: EP

Kind code of ref document: A1