WO2020082974A1 - 光源装置 - Google Patents

光源装置 Download PDF

Info

Publication number
WO2020082974A1
WO2020082974A1 PCT/CN2019/107987 CN2019107987W WO2020082974A1 WO 2020082974 A1 WO2020082974 A1 WO 2020082974A1 CN 2019107987 W CN2019107987 W CN 2019107987W WO 2020082974 A1 WO2020082974 A1 WO 2020082974A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
transparent
wavelength conversion
layer
light source
Prior art date
Application number
PCT/CN2019/107987
Other languages
English (en)
French (fr)
Inventor
陈彬
张贤鹏
李屹
Original Assignee
深圳市绎立锐光科技开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市绎立锐光科技开发有限公司 filed Critical 深圳市绎立锐光科技开发有限公司
Publication of WO2020082974A1 publication Critical patent/WO2020082974A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/64Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction using wavelength conversion means distinct or spaced from the light-generating element, e.g. a remote phosphor layer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/40Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters with provision for controlling spectral properties, e.g. colour, or intensity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/30Semiconductor lasers

Definitions

  • the invention relates to the technical field of lighting, in particular to a light source device.
  • the existing illumination light sources are mainly LED, xenon and halogen light sources. These light sources have the disadvantages that the brightness is not high enough, the service life is not long enough, and the beam divergence angle is large, which results in insufficient illumination distance. As an emerging lighting technology, laser lighting has become a future lighting development trend due to its high brightness, long service life, and small beam collimation divergence angle.
  • the white light obtained by the red, green and blue laser has a large color gamut range, high brightness and high cost, and is suitable for application in the high-end display field.
  • the red, green, and blue lasers cover a narrow wavelength range and low display index, which is not practical.
  • the white light obtained by laser excitation of the wavelength conversion material also has the characteristics of high brightness, and is more economical than the red, green and blue laser solution, so it is a better choice for comparison.
  • a technical solution of a light source device for laser excitation of a wavelength conversion material includes a laser light source 1 and a wavelength conversion layer 2, wherein the wavelength conversion layer 2 is disposed in a groove 3 on a reflective wall surface.
  • the laser light source 1 emits blue laser light (as shown by the solid line B in the figure)
  • the wavelength conversion layer 2 contains a yellow light fluorescent material
  • the blue laser light is incident on the wavelength conversion layer 2 and is partially absorbed
  • the wavelength conversion layer 2 emits yellow light Light (as indicated by the dotted line Y in the figure)
  • yellow light and unabsorbed blue light are both emitted from the incident surface of the wavelength conversion layer 2.
  • the wavelength conversion layer 2 is an opaque layer, and the blue light entering the wavelength conversion layer 2 is basically absorbed.
  • the remaining blue light emitted from the light source device mainly comes from the position near the incident surface of the wavelength conversion layer 2, making the remaining The spot size of the blue light and the spot size of the incident laser light are substantially equal.
  • the yellow light comes from the light emitted from various positions when the blue light propagates in the wavelength conversion layer, and part of the light beam is reflected after multiple reflections in the wavelength conversion layer, resulting in a significantly larger yellow light spot relative to the blue light spot, resulting in a total
  • the edge of the exit spot is yellowish, and the color distribution is uneven.
  • a technical solution of another light source device for laser excitation of a wavelength conversion material includes a laser light source 1 ', a wavelength conversion layer 2', and a groove 3 'accommodating the wavelength conversion layer 2'.
  • the wavelength conversion layer 2 'of the technical solution is a transparent layer, and the unabsorbed blue light passes through the wavelength conversion layer 2' and reaches the bottom of the groove 3 ', and then is reflected and emitted .
  • the transparent wavelength conversion layer can convert 90% of the laser light into fluorescence within a short distance (such as 2% Ce concentration YAG less than 0.2mm thickness), so the remaining blue light is reflected back to the incident surface Can not diffuse to the entire incident surface of the wavelength conversion layer 2 '; yellow light is emitted at a full angle of 360 ° at various positions where blue light is absorbed, and can reflect the bottom and side walls of the groove 3' to fill the wavelength conversion layer 2 ' The entire incident surface. Therefore, under this technical solution, the blue light spot of the outgoing light is still smaller than the yellow light spot, resulting in uneven color distribution of the outgoing light.
  • the present invention provides a light source device with a uniform color of the emitted light, including a laser light source for emitting the first light; the wavelength conversion device, It is disposed on the optical path of the first light, and includes a transparent wavelength conversion layer and a transparent light guide layer that are sequentially arranged along the first light incident direction.
  • the transparent wavelength conversion layer includes a first surface, and the first surface is A light incident surface and a light exit surface of the wavelength conversion device; the wavelength conversion device further includes a light reflection structure disposed on a surface of the transparent light guide layer away from the transparent wavelength conversion layer; the transparent wavelength conversion layer absorption portion The first light emits second light with a wavelength range different from the first light, part of the first light enters the transparent light guide layer through the transparent wavelength conversion layer, and the outgoing light of the wavelength conversion device is The mixed light of the first light and the second light.
  • the present invention includes the following beneficial effects: by sequentially providing a transparent wavelength conversion layer and a transparent light guide layer in the direction of incidence of the first light, and on the surface of the transparent light guide layer away from the transparent wavelength conversion layer
  • the light reflection structure allows the first light that is not absorbed by the transparent wavelength conversion layer to enter the transparent light guide layer, and then is reflected back to the transparent wavelength conversion layer by the light reflection structure. This process causes the unabsorbed first light to pass through the transparent
  • the transmission of the optical layer increases the optical path and enlarges the cross-sectional area of the light beam, and finally expands the spot of the first light emitted by the wavelength conversion device to match the spot of the second light, thereby improving the color uniformity of the light emitted by the light source device .
  • the transparent wavelength conversion layer is a fluorescent single crystal or a transparent fluorescent ceramic.
  • the transparent wavelength conversion layer is Ce: YAG fluorescent single crystal.
  • the transparent light guide layer is a light guide medium layer with a refractive index greater than 1.
  • the transparent light guide layer is a sapphire layer.
  • an air gap is provided between the transparent wavelength conversion layer and the transparent light guide layer.
  • the light reaching the surface of the transparent wavelength conversion layer opposite to the first surface includes unabsorbed first light and second light emitted by the transparent wavelength conversion layer.
  • the first light is not scattered, usually light with a small divergence angle, and the light incident angle is small; and the second light is light emitted from 360 °, including the light incident angle from 0 ° to 90 °.
  • the air gap By setting the air gap, the first light can be directly transmitted, and part of the second light is totally reflected back to the transparent wavelength conversion layer at the interface position, thereby reducing the propagation and reflection of the second light in the transparent light guide layer. The light loss improves the light utilization rate of the second light.
  • the transparent wavelength conversion layer and the transparent light guide layer are integrally formed, or the transparent wavelength conversion layer and the transparent light guide layer are connected by an adhesive layer.
  • the transparent light guide layer further includes scattering particles.
  • the transparent light guide layer is an air layer.
  • the thickness of the transparent light guide layer is not less than 3 times the thickness of the transparent wavelength conversion layer.
  • the light reflection structure is a reflection groove, and the transparent wavelength conversion layer and the transparent light guide layer are disposed in the reflection groove.
  • the light reflecting structure is a reflective plating layer.
  • the reflective plating layer may be a metal reflective layer, such as silver or aluminum, or a dielectric reflective layer composed of multiple layer structures with different refractive indexes.
  • the light reflection structure is at least partially a diffuse reflection structure.
  • the diffuse reflection structure may be a layer structure containing diffuse reflection particles and glass frit, or may be a rough structure on the surface of the transparent light guide layer.
  • the first light is polarized light, and the first light is incident on the first surface obliquely at Brewster angle.
  • the light source device further includes a light guide device disposed between the laser light source and the wavelength conversion device, for guiding the first light to the first surface.
  • the light guiding device may be a mirror with holes, the first light enters the first surface through the small hole of the mirror, and the combined light of the first light and the second light emitted by the wavelength conversion device is reflected by the mirror After the shot.
  • the wavelength conversion device further includes a heat sink, which is disposed outside the light reflection structure, and the light reflection structure and the heat sink are connected by a thermally conductive adhesive.
  • FIG. 1 is a schematic structural diagram of a light source device according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic structural diagram of a light source device according to Embodiment 2 of the present invention.
  • Embodiment 3 is a schematic structural diagram of a light source device according to Embodiment 3 of the present invention.
  • Embodiment 4 is a schematic structural diagram of a light source device according to Embodiment 4 of the present invention.
  • FIG. 5 is a schematic structural diagram of a light source device according to Embodiment 5 of the present invention.
  • FIG. 6 is a schematic structural diagram of a light source device according to Embodiment 6 of the present invention.
  • wavelength conversion device 7 is a wavelength conversion device without a transparent light guide layer and a wavelength conversion device with a transparent light guide layer
  • the color distribution map of the outgoing light spot is the color distribution map of the outgoing light spot.
  • 8b is a technical solution of another light source device for laser excitation wavelength conversion material.
  • FIG. 1 is a schematic structural diagram of a light source device according to Embodiment 1 of the present invention.
  • the light source device 10 includes a laser light source 110 and a wavelength conversion device 120.
  • the laser light source 110 emits the first light L1.
  • the wavelength conversion device 120 is disposed on the optical path of the first light L1 (represented by a solid arrow in the figure) emitted by the laser light source 110, and includes a transparent wavelength conversion layer 121 and a transparent light guide layer 122 that are sequentially disposed along the first light incidence direction .
  • the transparent wavelength conversion layer 121 includes a first surface (not shown in the figure), and the first surface is a light incident surface and a light exit surface of the wavelength conversion device 120 at the same time.
  • the wavelength conversion device 120 further includes a light reflection structure 123 disposed on the surface of the transparent light guide layer 122 away from the transparent wavelength conversion layer 121.
  • the transparent wavelength conversion layer 121 absorbs part of the first light, and emits second light L2 (indicated by dotted arrows in the figure) whose wavelength range is different from the first light, and the other part of the first light that is not absorbed by the transparent wavelength conversion layer 121 passes through
  • the transparent wavelength conversion layer 121 enters the transparent light guide layer 122, and then is reflected back to the transparent wavelength conversion layer 121 by the light reflection structure 123, and then exits.
  • the light emitted by the final wavelength conversion device 120 is a mixed light of the first light L1 and the second light L2.
  • the laser light source 110 is a blue laser light source, and is a laser semiconductor light source.
  • the laser light source 110 in FIG. 1 shows a laser semiconductor light source.
  • a laser array light source composed of a plurality of laser diodes may also be used as the laser light source.
  • the transparent wavelength conversion layer 121 is a fluorescent single crystal, specifically, a Ce: YAG fluorescent single crystal.
  • the fluorescent single crystal has a stable structure, high luminous efficiency, and can absorb blue light and emit yellow light. It can be understood that, in other embodiments of the present invention, a combination of a laser light source with a different spectral characteristic and a transparent wavelength conversion layer may also be used, which will not be repeated here.
  • the transparent wavelength conversion layer may also be a transparent fluorescent ceramic, that is, a composite layer of a fluorescent luminescent material and a transparent ceramic matrix, for example, transparent alumina is used as the ceramic matrix and Ce: YAG is provided inside to emit light Fluorescent ceramic in the center.
  • a transparent fluorescent ceramic that is, a composite layer of a fluorescent luminescent material and a transparent ceramic matrix, for example, transparent alumina is used as the ceramic matrix and Ce: YAG is provided inside to emit light Fluorescent ceramic in the center.
  • the transparent wavelength conversion layer 121 of this embodiment is a single-layer structure of a single material. In other embodiments, the transparent wavelength conversion layer 121 may also be a multilayer structure including two or more wavelength conversion materials.
  • the transparent characteristics need to be satisfied so that the unabsorbed first light can pass through the transparent
  • the wavelength conversion layer and the transparent light guide layer otherwise, as in the technical solution of FIG. 8a in the background section, the first light is directly reflected near the incident surface of the wavelength conversion layer.
  • the transparent light guide layer 122 is a light guide medium layer with a refractive index greater than 1.
  • the transparent light guide layer 122 is a sapphire layer, and has both light guide and thermal conductivity properties.
  • the transparent wavelength conversion layer 121 and the transparent light guide layer 122 are connected by an adhesive layer (not shown in the figure).
  • the adhesive layer is a transparent adhesive layer and has a small light absorption rate.
  • the two when a suitable material is selected for the transparent wavelength conversion layer and the transparent light guide layer, the two may be integrally formed.
  • the transparent wavelength conversion layer is a transparent fluorescent ceramic with YAG as the matrix
  • the transparent light guide layer is pure phase undoped YAG
  • the preparation temperature of the two layers is similar, and can be obtained by integral molding.
  • integral molding also has additional effects-a large-sized double-layer structure can be prepared, and then a composite structure of a small-sized transparent wavelength conversion layer + a transparent light-guiding layer can be obtained by wire cutting and the like, which is applied to small-sized lighting Products.
  • the light reflection structure 123 is a reflection groove, and the transparent wavelength conversion layer 121 and the transparent light guide layer 122 are disposed in the reflection groove, so that only the first surface of the transparent wavelength conversion layer 121 is not exposed by the light reflection structure The coverage ensures that the light source device 10 has a unique light exit direction.
  • the light reflection structure 123 is at least partially a diffuse reflection structure, which can cause the first light L1 incident on the diffuse reflection structure to be diffusely reflected to further expand the divergence angle, thereby covering the entire first wavelength of the transparent wavelength conversion layer 121 Surface, so that the outgoing light spots of the first light L1 and the second light L2 match.
  • the surface covered by the transparent light guide layer 122 in the figure includes a side surface and a bottom surface, and the light reflection structure covered by at least one of them is a diffuse reflection structure.
  • the diffuse reflection structure in this embodiment is a mixed layer structure of diffuse reflection particles (such as white scattering particles such as aluminum oxide, titanium oxide, etc.) and glass frit, which is obtained by mixing the two and heating to soften / melt the layer structure.
  • the diffuse reflection structure may also be an uneven rough structure.
  • the wavelength conversion device 120 further includes a heat sink 124, which is disposed outside the light reflection structure 123.
  • the light reflection structure 123 and the heat sink 124 are connected by a thermally conductive adhesive, so that the heat generated by the transparent wavelength conversion layer 121 can be quickly extracted .
  • the heat sink 124 may also be provided with heat dissipation devices such as heat dissipation fins, fans, and thermoelectric refrigeration equipment.
  • the light source device 10 further includes a light guide device, which is disposed between the laser light source 110 and the wavelength conversion device 120, and is used to guide the first light L1 to the first surface of the transparent wavelength conversion layer 121 The mixed light of the first light and the second light emitted from the first surface of the wavelength conversion layer 121 is guided out.
  • the light guiding device includes a mirror 131 with a hole and a collection lens 132.
  • the first light L1 from the laser light source 110 passes through the small hole of the mirror 131 with a hole, converges and enters the first surface through the collection lens 132 ; Then, the mixed light of the first light L1 and the second light L2 emitted from the first surface is collected by the collection lens 132, except for a small amount of light leaking through the aperture of the apertured mirror 131, most of the light is reflected by the aperture
  • the mirror 131 reflects and enters the exit optical path.
  • the perforated mirror 131 can also be replaced with a small mirror, or an area-coated beam splitter, which realizes the incident light path and the exit light path through the difference in the optical expansion of the incident light and the exit light Of separation.
  • the light source device 10 of Embodiment 1 of the present invention has been described in detail above.
  • the unabsorbed first light can be made extra
  • the spot of the first light is expanded to match the spot of the second light, thereby improving the uniformity of the color of the emitted light.
  • a transparent light guide layer is added, it will inevitably have better color uniformity than the technical solution without a transparent light guide layer.
  • the inventors further conducted experimental verification.
  • the color distribution diagrams of the outgoing light spots of the wavelength conversion device without a transparent light guide layer and the wavelength conversion device with a transparent light guide layer As shown in FIG. 7, the color distribution diagrams of the outgoing light spots of the wavelength conversion device without a transparent light guide layer and the wavelength conversion device with a transparent light guide layer. Specifically, the a picture on the left shows the color distribution of the outgoing light spot on the first surface containing only the 0.2mm thick transparent wavelength conversion layer, the center is bluish, and the edge is yellowish; After the transparent light guide layer with a thickness of 0.6mm, the color distribution of the outgoing light spot on the first surface is obviously uniform on the entire surface.
  • the present inventors confirmed through further experiments that when the thickness of the transparent light guide layer 122 is not less than three times the thickness of the transparent wavelength conversion layer 121, it is possible to achieve better uniformity of the color of the emitted light.
  • FIG. 2 is a schematic structural diagram of a light source device according to Embodiment 2 of the present invention.
  • the light source device 20 includes a laser light source 210 and a wavelength conversion device 220, wherein the wavelength conversion device 220 includes a transparent wavelength conversion layer 221, a transparent light guide layer 222, and a light reflection structure 223.
  • the light reflection structure 223 in this embodiment is a reflective plating layer on the surfaces of the transparent wavelength conversion layer 221 and the transparent light guide layer 222.
  • the reflective plating layer may be a metal reflective layer, such as a silver reflective film layer or an aluminum reflective film layer.
  • the reflective plating layer may also be a dielectric reflective layer, that is, a reflective film layer composed of multiple layer structures with different refractive indexes.
  • This embodiment is particularly suitable for the above technical solution in which the transparent wavelength conversion layer and the transparent light guide layer are integrally formed.
  • the composite structure has very flat sides and can be coated without polishing, which is easy to realize low-cost mass production.
  • the reflective groove type light reflection structure is very difficult to process. Even if the groove is successfully processed, it is difficult to plate a reflective film in the small groove. Especially for the technical solution of the light reflection structure of the diffuse reflection layer, it is difficult to achieve high reflectance in a very thin thickness.
  • the light reflection structure is obtained by coating the outer surface of the integrally formed transparent wavelength conversion layer and the transparent light guide layer, which solves the practical manufacturing process problems of the small-sized wavelength conversion device and improves Product practicality.
  • FIG. 3 is a schematic structural diagram of a light source device according to Embodiment 3 of the present invention.
  • the light source device 30 includes a laser light source 310 and a wavelength conversion device 320, and the wavelength conversion device 320 includes a transparent wavelength conversion layer 321, a transparent light guide layer 322, a light reflection structure 323, and a heat sink 324.
  • the transparent light guide layer 322 further includes scattering particles 3221. Adding a small amount of scattering particles 3221 to the transparent light guide layer 322 will not significantly affect the light guide characteristics of the transparent light guide layer 322, and it will cause the light beam of the first light to be diffused and expanded, which is beneficial to realize the first The light spot expands.
  • FIG. 4 is a schematic structural diagram of a light source device according to Embodiment 4 of the present invention.
  • the light source device 40 includes a laser light source 410 and a wavelength conversion device 420.
  • the wavelength conversion device 420 includes a transparent wavelength conversion layer 421, a transparent light guide layer 422, a light reflection structure 423, and a heat sink 424.
  • the difference between this embodiment and the first embodiment is that the transparent wavelength conversion layer 421 and the transparent light guide layer 422 are not in direct contact or indirectly bonded through an adhesive layer, but an air gap 425 is provided between them.
  • the light reaching the surface of the transparent wavelength conversion layer opposite to the first surface includes unabsorbed first light and second light emitted by the transparent wavelength conversion layer.
  • the first light is not scattered, usually light with a small divergence angle, and the light incident angle is small; and the second light is light emitted from 360 °, including the light incident angle from 0 ° to 90 °.
  • the first light can be directly transmitted, and part of the second light is totally reflected back to the transparent wavelength conversion layer at the interface position, thereby reducing the propagation and reflection of the second light in the transparent light guide layer.
  • the light loss improves the light utilization rate of the second light.
  • FIG. 5 is a schematic structural diagram of a light source device according to Embodiment 5 of the present invention.
  • the light source device 50 includes a laser light source 510 and a wavelength conversion device 520.
  • the wavelength conversion device 520 includes a transparent wavelength conversion layer 521, a transparent light guide layer 522, a light reflection structure 523, and a heat sink 524.
  • the light reflection structure in this embodiment is a reflection groove.
  • the reflection groove in this embodiment includes a first segment and a second segment.
  • the first section of groove is close to the light exit end, which is used to accommodate the transparent wavelength conversion layer 521
  • the second section of groove contains the transparent light guide layer 522
  • the cross-sectional area of the first section of groove is larger than that of the second section of groove
  • the transparent wavelength conversion layer 521 is fixed in the reflective groove by the difference in size between the two grooves.
  • the transparent light guide layer 522 in this embodiment is an air layer.
  • This embodiment is equivalent to providing a cavity for beam spreading of the first light conduction between the transparent wavelength conversion layer 521 and the light reflection structure, so that the outgoing light spots of the first light and the second light match.
  • FIG. 6 is a schematic structural diagram of a light source device according to Embodiment 6 of the present invention.
  • the light source device 60 includes a laser light source 610 and a wavelength conversion device 620, wherein the wavelength conversion device 620 includes a transparent wavelength conversion layer 621, a transparent light guide layer 622, a light reflection structure 623, and a heat sink 624.
  • the light source device 60 of this embodiment further includes a light guide device, specifically, the light guide device includes a prism 633.
  • the first light in this embodiment is not directly incident on the first surface of the transparent wavelength conversion layer, but is obliquely incident on the first surface.
  • the first light of the laser emitted by the semiconductor laser has a very high degree of polarization.
  • the first light corresponds to the first surface obliquely incident in the P polarization state and the incident angle is Brewster angle, reflection will not occur.
  • the first light utilization rate is the highest.
  • the first light is incident on the first surface at the Brewster angle, and it can be considered that any light incident within this angular error range (eg, ⁇ 5 °) can be considered to be incident at the Brewster angle.
  • the prism 633 is provided to guide the first light, which avoids the laser light source directly facing the first surface to emit light, so that the light source device 60 has a higher structure compactness, and can further reduce the first surface
  • the distance from the light collection system improves the collection efficiency of the outgoing light.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Semiconductor Lasers (AREA)
  • Planar Illumination Modules (AREA)

Abstract

一种光源装置(10),包括激光光源(110),用于出射第一光(L1);波长转换装置(120),设置在第一光(L1)的光路上,包括沿第一光(L1)入射方向依次设置的透明波长转换层(121)和透明导光层(122),透明波长转换层(121)包括第一面,该第一面为波长转换装置(120)的光入射面和光出射面;波长转换装置(120)还包括光反射结构(123),设置于透明导光层(122)的远离透明波长转换层(121)的表面;透明波长转换层(121)吸收部分第一光(L1),并发出波长范围不同于第一光(L1)的第二光(L2),部分第一光(L1)经透明波长转换层(121)进入透明导光层(122)。与现有技术相比,未被吸收的第一光(L1)两次经过透明导光层(122)的传导,增加了光程,扩大了光束截面积,使得波长转换装置(120)出射的第一光(L1)的光斑扩大至与第二光(L2)的光斑匹配,从而提高了光源装置(10)出射光的颜色均匀性。

Description

光源装置 技术领域
本发明涉及照明技术领域,特别是涉及一种光源装置。
背景技术
现有的照明光源主要为LED、氙灯和卤素灯光源,这几种光源分别有亮度不够高、使用寿命不够长、光束发散角较大导致照明距离不够远等缺点。作为新兴的照明技术,激光照明由于其亮度高、使用寿命长,且激光光束准直发散角小等特性,成为未来照明的发展趋势。
为了得到能够为照明、显示所用的白光,需要利用红绿蓝三色激光或者通过激光激发波长转换材料(如荧光粉)的方式。其中,红绿蓝三色激光获得的白光具有大色域范围、高亮度以及高成本,适于应用到高端显示领域。对于照明领域,红绿蓝三色激光覆盖的波长范围窄、显示指数低,并不实用。激光激发波长转换材料的方式获得的白光,同样具有高亮度的特性,而且相对于红绿蓝三色激光的方案更具有经济性,因此成为相比之下的较优选择。
然而,在实际通过利用蓝光激光激发黄光荧光材料时,经常出现出射光颜色不均匀的情况,具体表现为中心偏蓝、边缘偏黄。
如图8a所示为一种激光激发波长转换材料的光源装置的技术方案,该光源装置包括激光光源1和波长转换层2,其中的波长转换层2设置在一反射壁面的凹槽3内。激光光源1发出蓝色激光(如图中B实线所示),波长转换层2包含黄光荧光材料,蓝色激光正入射到波长转换层2,部分被吸收,而后波长转换层2发出黄光(如图中Y虚线所示),黄光与未被吸收的蓝光共同从波长转换层2的入射面出射。在该技术方案中,波长转换层2为不透明层,进入到波长转换层2内部的蓝光基本被吸收,该光源装置出射的剩余蓝光主要来自于靠近波长转换层2的入射面的位置,使得剩余蓝光的光斑与入射的激光的光斑大小基本相等。而黄光则 来自于蓝光在波长转换层内传播时的各个位置发出的光,部分光束在波长转换层内多次反射后出射,导致黄光的光斑相对于蓝光光斑明显变大,从而导致总出射光斑边缘偏黄,颜色分布不均匀。
如图8b所示为另一种激光激发波长转换材料的光源装置的技术方案,该光源装置包括激光光源1’、波长转换层2’和容纳波长转换层2’的凹槽3’。与图a所示的技术方案不同的是,本技术方案的波长转换层2’为透明层,未被吸收的蓝光穿过波长转换层2’后到达凹槽3’的底部,而后被反射出射。透明的波长转换层在很短的距离内(比如2%Ce浓度的YAG在小于0.2mm厚度时),就能将90%的激光转换成荧光,因此剩余蓝光在被反射回入射面的过程中不能扩散到波长转换层2’的整个入射面;而黄光则在蓝光被吸收的各个位置360°全角度出射,通过凹槽3’的底部和侧壁的反射,能够充满波长转换层2’的整个入射面。因此,该技术方案下,出射光的蓝光光斑仍然小于黄光光斑,导致出射光颜色分布不均匀。
发明内容
针对上述现有技术的激光激发波长转换材料的光源装置出射光颜色不均匀的缺陷,本发明提供一种出射光颜色均匀的光源装置,包括激光光源,用于出射第一光;波长转换装置,设置在所述第一光的光路上,包括沿所述第一光入射方向依次设置的透明波长转换层和透明导光层,所述透明波长转换层包括第一面,该第一面为所述波长转换装置的光入射面和光出射面;所述波长转换装置还包括光反射结构,设置于所述透明导光层的远离所述透明波长转换层的表面;所述透明波长转换层吸收部分所述第一光,并发出波长范围不同于第一光的第二光,部分所述第一光经所述透明波长转换层进入所述透明导光层,所述波长转换装置的出射光为第一光与第二光的混合光。
与现有技术相比,本发明包括如下有益效果:通过在第一光的入射方向上依次设置透明波长转换层和透明导光层,并在透明导光层的远离透明波长转换层的表面设置光反射结构,使得未被透明波长转换层吸收的第一光进入到透明导光层,而后被光反射结构反射回透明波长转换层,该过程使得未被吸收的第一光两次经过透明导光层的传导,增加了光程, 扩大了光束截面积,最终使得波长转换装置出射的第一光的光斑扩大,与第二光的光斑相匹配,从而提高了光源装置的出射光颜色均匀性。
在一个实施方式中,所述透明波长转换层为荧光单晶或透明荧光陶瓷。
在一个具体实施方式中,透明波长转换层为Ce:YAG荧光单晶。
在一个实施方式中,所述透明导光层为折射率大于1的导光介质层。
在一个具体实施方式中,透明导光层为蓝宝石层。
在一个实施方式中,所述透明波长转换层与所述透明导光层之间设有空气间隔。该技术方案中,到达透明波长转换层的与第一面相对的表面的光包括未被吸收的第一光和透明波长转换层发出的第二光。其中,第一光未经散射,通常为小发散角的光,光入射角小;而第二光为360°发出的光,包含从0°到90°的光入射角。通过设置空气间隔,能够使得第一光直接透射,而部分第二光在该界面位置被全反射回透明波长转换层,从而减少了第二光在透明导光层内传播及被反射而带来的光损失,提高了第二光的光利用率。
在一个实施方式中,所述透明波长转换层与所述透明导光层一体成型,或者所述透明波长转换层与所述透明导光层通过胶层连接。
在一个实施方式中,所述透明导光层还包含散射颗粒。该技术方案使得入射至透明导光层的第一光能够被散射后光束扩大,能够在更短的距离内实现第一光的光斑扩大。
在一个实施方式中,所述透明导光层为空气层。
在一个实施方式中,所述透明导光层的厚度不小于所述透明波长转换层的厚度的3倍。
在一个实施方式中,所述光反射结构为反射凹槽,所述透明波长转换层和所述透明导光层设置于所述反射凹槽内。
在另一实施方式中,所述光反射结构为反射镀层。具体地,反射镀层可以为金属反射层,如银或铝,还可以为由多个折射率不同的层结构组成的介质反射层。
在一个实施方式中,所述光反射结构至少部分为漫反射结构。具体地,漫反射结构可以为包含漫反射颗粒与玻璃粉的层结构,还可以为透 明导光层表面的粗糙结构。
在一个实施方式中,所述第一光为偏振光,所述第一光以布儒斯特角斜入射至所述第一面。
在一个实施方式中,所述光源装置还包括光引导装置,设置于所述激光光源与所述波长转换装置之间,用于将所述第一光引导至所述第一面。具体地,光引导装置可以为一带孔的反射镜,第一光经反射镜的小孔入射至所述第一面,波长转换装置出射的第一光与第二光的合光被反射镜反射后出射。
在一个实施方式中,所述波长转换装置还包括热沉,设置于所述光反射结构外侧,所述光反射结构与所述热沉通过导热胶连接。
附图说明
图1为本发明实施例一的光源装置的结构示意图。
图2为本发明实施例二的光源装置的结构示意图。
图3为本发明实施例三的光源装置的结构示意图。
图4为本发明实施例四的光源装置的结构示意图。
图5为本发明实施例五的光源装置的结构示意图。
图6为本发明实施例六的光源装置的结构示意图。
图7为无透明导光层的波长转换装置与有透明导光层的波长转换装
置的出射光斑颜色分布图。
图8a为一种激光激发波长转换材料的光源装置的技术方案。
图8b为另一种激光激发波长转换材料的光源装置的技术方案。
具体实施方式
下面结合附图和实施方式对本发明实施例进行详细说明。
在本发明中如涉及“第一”、“第二”、“第三”等的描述仅用于描述目的,以便于描述方便,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”、“第三”的特征可以明示或者隐含地包括至少一个该特征。
请参见图1,为本发明实施例一的光源装置的结构示意图。光源装置10包括激光光源110和波长转换装置120。激光光源110出射第一光 L1。波长转换装置120设置在激光光源110发出的第一光L1(图中以实线箭头表示)的光路上,包括沿着第一光入射方向依次设置的透明波长转换层121和透明导光层122。其中,透明波长转换层121包括第一面(图中未标出),该第一面同时为波长转换装置120的光入射面和光出射面。
波长转换装置120还包括光反射结构123,设置于透明导光层122的远离透明波长转换层121的表面。
透明波长转换层121吸收部分第一光,并发出波长范围不同于第一光的第二光L2(图中以虚线箭头表示),另外部分的未被透明波长转换层121吸收的第一光经透明波长转换层121进入透明导光层122,而后被光反射结构123反射回到透明波长转换层121,然后出射。最终波长转换装置120的出射光为第一光L1与第二光L2的混合光。
本实施例中,激光光源110为蓝光激光光源,为激光半导体光源。图1中的激光光源110示出了一个激光半导体光源,在本发明的其他实施方式中,也可以采用多个激光二极管组成的激光阵列光源作为激光光源。
在本实施例中,透明波长转换层121为荧光单晶,具体地,为Ce:YAG荧光单晶。该荧光单晶结构稳定,发光效率高,能够吸收蓝光并发出黄光。可以理解,在本发明的其他实施方式中,也可以采用其他光谱特性的激光光源与透明波长转换层的组合,此处不再赘述。
在本实施例的变形实施例中,透明波长转换层也可以为透明荧光陶瓷,即荧光发光材料与透明陶瓷基质的复合层,例如以透明氧化铝作为陶瓷基质并在其内部设置Ce:YAG发光中心的荧光陶瓷。
本实施例的透明波长转换层121为单一材料的单层结构,在其他实施方式中,也透明波长转换层也可以为包含两种或两种以上的波长转换材料的多层结构。
需要注意的是,在本发明中,无论波长转换层是荧光单晶还是荧光陶瓷,无论是包含单一材料还是多种材料,都需要满足透明特性,使得未被吸收的第一光能够穿过透明波长转换层和透明导光层,否则将如背景技术部分的图8a的技术方案般,第一光直接在波长转换层的入射面附 近被反射。
在本实施例中,透明导光层122为折射率大于1的导光介质层。优选地,透明导光层122为蓝宝石层,兼具导光和导热性能。
本实施例中,透明波长转换层121与透明导光层122通过胶层(图中未示出)连接,该胶层为透明胶层,具有较小的光吸收率。
在本发明的其他实施方式中,当透明波长转换层与透明导光层选择合适的材料时,也可以使两者一体成型。例如透明波长转换层为以YAG为基质的透明荧光陶瓷,透明导光层为纯相无掺杂的YAG,则两层的制备温度相近,可以采用一体成型的方式得到。采用一体成型的方式还具有额外的效果——可以制备得到大尺寸的双层结构,然后通过线切割等方式获得小尺寸的透明波长转换层+透明导光层的复合结构,应用到小尺寸照明的产品中。
在本实施例中,光反射结构123为反射凹槽,透明波长转换层121和透明导光层122设置于反射凹槽内,使得仅有透明波长转换层121的第一面未被光反射结构覆盖,确保了光源装置10具有唯一的光出射方向。
在本实施例中,光反射结构123至少部分为漫反射结构,可以使得入射到漫反射结构的第一光L1被漫反射后发散角进一步扩大,从而能够覆盖透明波长转换层121的整个第一面,使得第一光L1与第二光L2的出射光斑匹配。例如图中透明导光层122被覆盖的表面包括侧面与底面,至少两者之一所覆盖的光反射结构为漫反射结构。
本实施例中的漫反射结构为漫反射颗粒(如氧化铝、氧化钛等白色散射颗粒)与玻璃粉的混合层结构,通过将两者混合后加热软化/熔融得到该层结构。在本发明的其他实施方式中,漫反射结构还可以为凹凸不平的粗糙结构。
在本实施例中,波长转换装置120还包括热沉124,设置于光反射结构123的外侧,光反射结构123与热沉124通过导热胶连接,以便将透明波长转换层121产生的热量快速导出。进一步地,热沉124的外侧还可以设置散热鳍片、风扇、热电制冷设备等散热器件。
在本实施例中,光源装置10还包括光引导装置,设置于激光光源 110与波长转换装置120之间,用于将第一光L1引导至透明波长转换层121的第一面,并将透明波长转换层121的第一面出射的第一光与第二光的混合光引导出射。具体地,光引导装置包括一带孔的反射镜131和一收集透镜132,来自激光光源110的第一光L1穿过带孔的反射镜131的小孔,经收集透镜132汇聚入射至第一面;而后,由第一面出射的第一光L1和第二光L2的混合光经收集透镜132收集后,除少量光经带孔反射镜131的小孔泄漏,大部分光被带孔的反射镜131反射而进入出射光路。
在本发明的其他实施方式中,带孔的反射镜131也可以替换为一个小反射镜,或者区域镀膜的分光片,通过入射光与出射光的光学扩展量的差异实现入射光路与出射光路的分离。
以上对本发明实施例一的光源装置10进行了详细描述,在本发明中,通过在透明波长转换层与光反射结构之间额外增加了透明导光层,能够使得未被吸收的第一光额外经过两个透明导光层的光程,将第一光的光斑扩大至与第二光光斑相匹配,从而实现出射光颜色均匀性的改善。只要增加了透明导光层,就必然比没有透明导光层的技术方案的颜色均匀性好。为了进一步定量的确定透明导光层对出射光颜色均匀性的影响,发明人进一步进行了实验验证。
如图7所示为无透明导光层的波长转换装置与有透明导光层的波长转换装置的出射光斑颜色分布图。具体地,左侧的a图为只含有0.2mm厚度透明波长转换层的第一面出射光斑颜色分布,中心偏蓝,边缘偏黄;而右侧的b图为0.2mm厚度透明波长转换层增加了0.6mm厚度透明导光层后的第一面出射光斑颜色分布,整个面的颜色分布明显均匀。
本发明人通过进一步实验确认,发现透明导光层122的厚度不小于透明波长转换层121的厚度的3倍时,能够达到较好的出射光颜色均匀性改善。
请参见图2,为本发明实施例二的光源装置的结构示意图。光源装置20包括激光光源210和波长转换装置220,其中波长转换装置220包括透明波长转换层221、透明导光层222和光反射结构223。
本实施例二与实施例一的不同之处在于,本实施例中的光反射结构 223为透明波长转换层221与透明导光层222的表面的反射镀层。该反射镀层可以为金属反射层,例如银反射膜层、铝反射膜层。该反射镀层还可以为介质反射层,即由多个折射率不同的层结构组成的反射膜层。
本实施例尤其适合上述透明波长转换层与透明导光层一体成型的技术方案,通过得到大尺寸的双层结构,然后通过线切割等方式获得小尺寸的透明波长转换层+透明导光层的复合结构,其侧面非常平整,无需抛光即可镀膜处理,容易实现低成本批量化生产。
此外,当波长转换装置的尺寸很小时,例如最大长度不超过1mm,那么反射凹槽式的光反射结构非常难加工,即使凹槽加工成功,也难以在细小的凹槽内镀反射膜。尤其对于漫反射层的光反射结构的技术方案,难以在很薄的厚度内实现高反射率。本实施例不通过挖槽,而是通过在一体成型的透明波长转换层和透明导光层的外表面镀膜的方式得到光反射结构,解决了小尺寸波长转换装置的实际制备工艺难题,提高了产品实用性。
本实施例的光学器件的其他描述及各器件之间的尺寸关系等描述,可以参照上述实施例一的描述,此处不再赘述。
请参见图3,为本发明实施例三的光源装置的结构示意图。光源装置30包括激光光源310和波长转换装置320,波长转换装置320包括透明波长转换层321、透明导光层322、光反射结构323和热沉324。
本实施例与实施例一的不同之处在于,透明导光层322还包含散射颗粒3221。在透明导光层322中增加少量的散射颗粒3221不会明显影响透明导光层322的导光特性,而且会使得第一光的光束被散射扩大,有利于在更短的距离内实现第一光的光斑扩大。
本实施例的其他器件的描述可以参考上述各实施例的描述,此处不再赘述。本实施例在透明导光层322中增加散射颗粒3221的技术方案也可以应用到实施例二的透明导光层中。
请参见图4,为本发明实施例四的光源装置的结构示意图。光源装置40包括激光光源410和波长转换装置420。其中,波长转换装置420包括透明波长转换层421、透明导光层422、光反射结构423和热沉424。
本实施例与实施例一的不同之处在于,透明波长转换层421与透明 导光层422并非直接接触或间接通过胶层粘接,而是之间设有空气间隔425。该技术方案中,到达透明波长转换层的与第一面相对的表面的光包括未被吸收的第一光和透明波长转换层发出的第二光。其中,第一光未经散射,通常为小发散角的光,光入射角小;而第二光为360°发出的光,包含从0°到90°的光入射角。通过设置空气间隔,能够使得第一光直接透射,而部分第二光在该界面位置被全反射回透明波长转换层,从而减少了第二光在透明导光层内传播及被反射而带来的光损失,提高了第二光的光利用率。
本实施例的其他器件的描述可以参考上述各实施例的描述,此处不再赘述。
请参见图5,为本发明实施例五的光源装置的结构示意图。光源装置50包括激光光源510和波长转换装置520。其中,波长转换装置520包括透明波长转换层521、透明导光层522、光反射结构523和热沉524。
本实施例中的光反射结构为反射凹槽,与实施例一不同的是,本实施例中的反射凹槽包括第一段和第二段。其中,第一段凹槽靠近光出射端,用于容纳透明波长转换层521,第二段凹槽容纳透明导光层522,而且第一段凹槽的截面积大于第二段凹槽的截面积,透明波长转换层521通过两段凹槽的尺寸差固定在反射凹槽内。
本实施例与实施例一的另一主要不同之处在于,本实施例中的透明导光层522为空气层。本实施例相当于在透明波长转换层521与光反射结构之间设置了一个用于第一光传导扩束的空腔,使得第一光与第二光的出射光斑匹配。
本实施例其他器件的描述可以参考上述各实施例的描述,此处不再赘述。
请参见图6,为本发明实施例六的光源装置的结构示意图。光源装置60包括激光光源610和波长转换装置620,其中波长转换装置620包括透明波长转换层621、透明导光层622、光反射结构623和热沉624。本实施例的光源装置60还包括光引导装置,具体地,光引导装置包括棱镜633。
与上述各实施例不同之处在于,本实施例中的第一光并非直接正入 射到透明波长转换层的第一面,而是斜入射至第一面。
半导体激光器发出的激光第一光具有很高的偏振度,当第一光相对应第一面以P偏振态斜入射,且入射角为布儒斯特角时,将不会发生反射,此时的第一光利用率最高。
在本发明中,第一光以布儒斯特角入射至第一面,可以认为在该角度误差范围内(如±5°)入射的光都可以认为是以布儒斯特角入射。
本实施例中,通过设置棱镜633对第一光进行引导,避免了激光光源直接正对着第一面出光,使得该光源装置60具有更高的结构紧凑性,并能进一步减小第一面与光收集系统的间距,提高出射光的收集效率。
本实施例的波长转换装置620的各器件的描述,可以参照上述各实施例的描述,此处不再赘述。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
以上所述仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (11)

  1. 一种光源装置,其特征在于,包括:
    激光光源,用于出射第一光;
    波长转换装置,设置在所述第一光的光路上,包括沿所述第一光入射方向依次设置的透明波长转换层和透明导光层,所述透明波长转换层包括第一面,该第一面为所述波长转换装置的光入射面和光出射面;
    所述波长转换装置还包括光反射结构,设置于所述透明导光层的远离所述透明波长转换层的表面;
    所述透明波长转换层吸收部分所述第一光,并发出波长范围不同于第一光的第二光,部分所述第一光经所述透明波长转换层进入所述透明导光层,所述波长转换装置的出射光为第一光与第二光的混合光。
  2. 根据权利要求1所述的光源装置,其特征在于,所述透明波长转换层为荧光单晶或透明荧光陶瓷。
  3. 根据权利要求1或2所述的光源装置,其特征在于,所述透明导光层为折射率大于1的导光介质层。
  4. 根据权利要求3所述的光源装置,其特征在于,所述透明波长转换层与所述透明导光层之间设有空气间隔。
  5. 根据权利要求3所述的光源装置,其特征在于,所述透明波长转换层与所述透明导光层一体成型,或者所述透明波长转换层与所述透明导光层通过胶层连接。
  6. 根据权利要求3所述的光源装置,其特征在于,所述透明导光层还包含散射颗粒。
  7. 根据权利要求1或2所述的光源装置,其特征在于,所述透明导光层为空气层。
  8. 根据权利要求1或2所述的光源装置,其特征在于,所述透明导光层的厚度不小于所述透明波长转换层的厚度的3倍。
  9. 根据权利要求1所述的光源装置,其特征在于,所述光反射结构为反射凹槽,所述透明波长转换层和所述透明导光层设置于所述反射凹槽内。
  10. 根据权利要求1所述的光源装置,其特征在于,所述光反射结构至少部分为漫反射结构。
  11. 根据权利要求1所述的光源装置,其特征在于,所述第一光为偏振光,所述第一光以布儒斯特角斜入射至所述第一面。
PCT/CN2019/107987 2018-10-23 2019-09-26 光源装置 WO2020082974A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811233571.4A CN111089231B (zh) 2018-10-23 2018-10-23 光源装置
CN201811233571.4 2018-10-23

Publications (1)

Publication Number Publication Date
WO2020082974A1 true WO2020082974A1 (zh) 2020-04-30

Family

ID=70331878

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/107987 WO2020082974A1 (zh) 2018-10-23 2019-09-26 光源装置

Country Status (2)

Country Link
CN (1) CN111089231B (zh)
WO (1) WO2020082974A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012209228A (ja) * 2011-03-30 2012-10-25 Ushio Inc 光源装置
CN102890398A (zh) * 2012-09-27 2013-01-23 深圳市绎立锐光科技开发有限公司 发光装置及相关投影系统
CN104534409A (zh) * 2014-12-15 2015-04-22 杨毅 波长转换装置和发光装置
CN204372585U (zh) * 2014-12-15 2015-06-03 杨毅 发光装置
CN204372822U (zh) * 2014-12-15 2015-06-03 杨毅 波长转换装置和发光装置
CN207364677U (zh) * 2017-10-10 2018-05-15 深圳市绎立锐光科技开发有限公司 一种发光装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102588752A (zh) * 2011-01-07 2012-07-18 晶元光电股份有限公司 发光装置
CN103968332B (zh) * 2013-01-25 2015-10-07 深圳市光峰光电技术有限公司 一种波长转换装置、发光装置及投影系统
CN104020633B (zh) * 2013-02-28 2015-12-09 深圳市绎立锐光科技开发有限公司 发光装置及相关投影系统
CN103615671B (zh) * 2013-10-28 2018-04-13 杨毅 光源
CN205002051U (zh) * 2015-10-07 2016-01-27 杨毅 波长转换装置、发光装置和灯具

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012209228A (ja) * 2011-03-30 2012-10-25 Ushio Inc 光源装置
CN102890398A (zh) * 2012-09-27 2013-01-23 深圳市绎立锐光科技开发有限公司 发光装置及相关投影系统
CN104534409A (zh) * 2014-12-15 2015-04-22 杨毅 波长转换装置和发光装置
CN204372585U (zh) * 2014-12-15 2015-06-03 杨毅 发光装置
CN204372822U (zh) * 2014-12-15 2015-06-03 杨毅 波长转换装置和发光装置
CN207364677U (zh) * 2017-10-10 2018-05-15 深圳市绎立锐光科技开发有限公司 一种发光装置

Also Published As

Publication number Publication date
CN111089231B (zh) 2022-08-19
CN111089231A (zh) 2020-05-01

Similar Documents

Publication Publication Date Title
TWI515506B (zh) 一種波長轉換裝置、發光裝置及投影系統
JP5525537B2 (ja) 発光装置
US7891844B2 (en) High performance LED lamp system
EP2064489B1 (en) Brightness enhancement method and apparatus of light emitting diodes
US10599026B2 (en) Wavelength conversion module, forming method of wavelength conversion module, and projection device
TWI598540B (zh) 波長轉換模組與應用其的光源模組
CN113701125A (zh) 透射式波长转换装置及其发光装置
CN110737167B (zh) 激光荧光光源及投影机
WO2020082974A1 (zh) 光源装置
TWI680307B (zh) 白光光源系統
JP6367515B1 (ja) 蛍光体素子および照明装置
WO2019159313A1 (ja) 白色光発生素子および照明装置
JP7484130B2 (ja) 波長変換素子、光源装置およびプロジェクター
CN112068390B (zh) 波长转换元件、光源装置和投影仪
CN113551203A (zh) 透射式波长转换装置及其发光装置
JP2018136377A (ja) 波長変換素子、光源装置およびプロジェクター
CN109424943B (zh) 波长转换装置和激光荧光转换型光源
JP2013093268A (ja) 波長変換型光源装置
WO2019006979A1 (zh) 波长转换装置和激光荧光转换型光源
WO2019008872A1 (ja) 蛍光体部材及び光源装置
WO2019006980A1 (zh) 波长转换装置和激光荧光转换型光源
CN109798489B (zh) 一种照明装置和汽车照明灯具
JP7294089B2 (ja) 光源装置およびプロジェクター
CN110050223A (zh) 光转换器件
JP6660484B2 (ja) 蛍光体素子および照明装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19875421

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19875421

Country of ref document: EP

Kind code of ref document: A1