WO2019006980A1 - 波长转换装置和激光荧光转换型光源 - Google Patents

波长转换装置和激光荧光转换型光源 Download PDF

Info

Publication number
WO2019006980A1
WO2019006980A1 PCT/CN2017/114708 CN2017114708W WO2019006980A1 WO 2019006980 A1 WO2019006980 A1 WO 2019006980A1 CN 2017114708 W CN2017114708 W CN 2017114708W WO 2019006980 A1 WO2019006980 A1 WO 2019006980A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorescent
incident
angle
light
wavelength conversion
Prior art date
Application number
PCT/CN2017/114708
Other languages
English (en)
French (fr)
Inventor
李乾
陈雨叁
许颜正
Original Assignee
深圳市光峰光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市光峰光电技术有限公司 filed Critical 深圳市光峰光电技术有限公司
Publication of WO2019006980A1 publication Critical patent/WO2019006980A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/04Optical design
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/40Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters with provision for controlling spectral properties, e.g. colour, or intensity
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence

Definitions

  • the present invention relates to a wavelength conversion device and a laser fluorescence conversion type light source using the same.
  • laser light sources have become an important development direction of projection light sources and illumination sources.
  • the mainstream technology is mainly divided into two types, one is RGB three-color laser technology, and the other is laser phosphor technology.
  • the three-color laser technology adopts red, green and blue three-color laser modules, and has the advantages that the three-color components of R, G, and B can be independently adjusted, and the utilization rate of laser light energy reaches 100%.
  • the "speckle" defect is likely to occur in the projected picture, and the human eye can view the picture with speckle defects for a long time, which is likely to damage the eyes and damage the eyesight.
  • the technical solution of the laser phosphor technology concentrates the blue laser on a high-speed rotating fluorescent wheel, and converts the blue laser into other colors such as red-green light through a wavelength conversion material such as a phosphor on the fluorescent wheel. Get color output light.
  • the advantage is that there is no speckle problem, and the high-speed rotating fluorescent wheel is beneficial to the loss of heat.
  • due to the dependence of the technical solution on the fluorescent wheel its application in a frequently vibrating environment (such as in-vehicle equipment) is limited, and product reliability is also reduced.
  • the present invention is intended to provide a novel wavelength conversion device and a laser-excited fluorescent material light source using the package structure.
  • a wavelength conversion device comprising a package housing and a fluorescent component, the fluorescent component containing a fluorescent material and capable of converting incident light into emitted light of different wavelengths.
  • the package housing is formed in a rectangular parallelepiped shape and has four sides and a closed end surface, and the other end of the package housing opposite to the closed end surface is an open exit end, and the four sides of the package housing Relative of one side
  • the two sides are light incident surfaces and are formed with an incident light window for transmitting incident light, the surface of the incident light window being provided with an optical film allowing passage of a specific light beam, and among the four sides
  • the inner surfaces of the other two sides other than the light incident surface and the inner surface of the closed end surface are specular reflective surfaces;
  • the fluorescent component is disposed in a cavity inside the package housing, and the fluorescent component is formed as a sheet-like shape and one end connected to the closed end surface, the incident light window facing an upper surface and a lower surface of the fluorescent component; and the upper surface and the lower
  • the fluorescent component is comprised of a multiphase fluorescent ceramic.
  • the multiphase fluorescent ceramic material is a multiphase ceramic of YAG:Ce and Al 2 O 3 .
  • the length of the fluorescent component is no more than 3/4 of the length of the package housing.
  • the fluorescent component has a thickness in the range of 200 to 500 ⁇ m, a length in the range of 8 to 15 mm, and a width in the range of 1.5 to 4 mm.
  • the package housing is made of a metallic material.
  • the Lambertian reflective layer has a thickness in the range of 30 to 60 ⁇ m and a width in the range of 1 to 2 mm.
  • a total area of each of the Lambertian reflective layers disposed on the upper surface or the lower surface of the fluorescent component is the upper surface or the lower surface of the fluorescent component 1/4 to 1/2 of the area.
  • the Lambertian reflective layer on the upper surface of the fluorescent component and the Lambertian reflective layer on the lower surface of the fluorescent component are staggered.
  • the optical film that allows a particular beam of light to pass through is an angle selective filter film that is only capable of transmitting a beam of light incident at an angle of incidence within a predetermined range over a predetermined range of wavelengths.
  • the angle selective filter film is a blue light transmitting film that can only be selected by the angle of the blue light beam incident at an incident angle in the range of -8.5° to +8.5°.
  • the optical film that allows a particular light beam to pass includes a first angle selective filter film and a second angle selective filter film, the first angle selective filter film being only permeable to the first wavelength range a light beam incident at an incident angle within a predetermined range, the second angle selection filter film being only capable of transmitting a light beam incident at an incident angle within the predetermined range in a second wavelength range, and a first angle selection filter film is opposed to a region of the surface of the fluorescent component that is not provided with the Lambertian reflective layer, the second angle selection filter film is interposed between the cavity and the cavity
  • the Lambertian reflective layers are opposite.
  • the first angle selective filter film selects a blue light transmissive film only through an angle of a blue light beam incident at an incident angle in a range of -8.5° to +8.5°
  • the second angle Selecting the filter film is to select the red light transmitting film only through the angle of the red light beam incident at an incident angle in the range of -8.5° to +8.5°
  • the fluorescent component is composed of yellow fluorescent ceramic
  • the first angle selection filter film is a blue light transmission film that can only be selected through an angle of a blue light beam incident at an incident angle in the range of -8.5° to +8.5°
  • the second angle selection filter film can only be transparent.
  • the green light transmitting film is selected by the angle of the green light beam incident at an incident angle in the range of -8.5° to +8.5°
  • the fluorescent component is composed of an orange fluorescent ceramic.
  • the fluorescent component may further have a multi-layered structure including a first fluorescent layer, a bonding reflective layer, and a second fluorescent layer, which are sequentially stacked, each of the Lambertian reflective layers Arranging on the surfaces of the first fluorescent layer and the second fluorescent layer, a lower surface and an upper surface of the adhesive reflective layer are bonded to the first fluorescent layer and the second fluorescent layer, respectively, and Light beams from the first fluorescent layer and the second fluorescent layer can be reflected separately.
  • the first phosphor layer and the second phosphor layer may be the same phosphor layer.
  • the first fluorescent layer and the second fluorescent layer have a thickness ranging from 200 ⁇ m to 500 ⁇ m.
  • the Lambertian reflective layer on the surface of the first phosphor layer is disposed opposite the Lambertian reflective layer on the surface of the second phosphor layer.
  • the optical film that allows a specific light beam to pass through includes a first angle selective filter film and a second angle selective filter film
  • the first angle selection filter film is only capable of transmitting a light beam incident at an incident angle within a predetermined range within a first wavelength range
  • the second angle selection filter film being only permeable to the second wavelength range a light beam incident at an incident angle within a predetermined range
  • the first angle selection filter film is opposed to a region of the surface of the fluorescent component not provided with the Lambertian reflection layer via the cavity, the A two-angle selection filter membrane is opposed to the Lambertian reflector layer across the cavity.
  • the first angle selective filter film is a blue light transmitting film that can only select an angle of a blue light beam incident at an incident angle in a range of -8.5° to +8.5°.
  • the two-angle selection filter film is a red light transmissive film that can only be selected by an angle of a red light beam incident at an incident angle in the range of -8.5° to +8.5°, and the first fluorescent layer and the second fluorescent layer Is composed of a yellow fluorescent ceramic; or the first angle selective filter film is a blue light transmitting film that can only be selected by an angle of a blue light beam incident at an incident angle in a range of -8.5° to +8.5°,
  • the second angle selection filter film selects the green light transmissive film only through the angle of the green light beam incident at an incident angle in the range of -8.5° to +8.5°, and the first fluorescent layer and the second fluorescent light
  • the layer is composed of orange fluorescent ceramics.
  • a laser fluorescence conversion type light source comprising a laser device and the above-described wavelength conversion device, the laser device serving as an incident of the wavelength conversion device And a laser beam emitted from the laser device can be irradiated to the surface of the fluorescent component through the optical film from opposite light incident surfaces of the package housing.
  • the laser beam emitted from the laser device may be irradiated only to a region on the surface of the fluorescent component where the Lambert reflective layer is not provided, as needed.
  • the fixed package of the fluorescent component can be realized, and the movable package device requiring a motor drive such as a color wheel can be discarded, thereby having better shock resistance during the light-emitting process.
  • the area ratio of the Lambert reflective layer can be controlled, the blue laser light or the red laser light is reflected by the Lambertian surface as needed, and the light can be easily combined to adjust the color coordinates of the emitted light.
  • the wavelength conversion device and the laser-excited fluorescent material light source according to the present invention face the incident light window on both sides of the package housing facing the upper surface of the fluorescent component by disposing the fluorescent component in a cavity in the package housing And a lower surface, and the remaining two sides and the closed end surface of the package housing are arranged as specular reflection surfaces, so that incident light can be incident from two surfaces of the fluorescent component to undergo light conversion, and thereafter continuously reflected from the package housing
  • the exit end of the opening exits to obtain a high lumen density exit light at the exit end of the opening.
  • the present invention provides a Lambertian reflective layer on the upper and lower surfaces of the fluorescent component, which eliminates the coherence of the light to overcome the speckle defect in the image, reduces the number of times the light repeatedly enters the fluorescent component, and thus reduces the light. The loss further increases the lumen density of the exiting light.
  • FIG. 1 is a cross-sectional view showing a first embodiment of a wavelength conversion device according to the present invention.
  • Fig. 2 is a plan view schematically showing an arrangement pattern of a Lambertian reflection layer on a surface of a fluorescent member in the wavelength conversion device shown in Fig. 1.
  • 3 to 5 are plan views schematically showing a modification of the arrangement pattern of the Lambertian reflection layer on the surface of the fluorescent member in the wavelength conversion device according to the present invention.
  • Figure 6 is a cross-sectional view illustrating a second embodiment of a wavelength conversion device in accordance with the present invention.
  • Fig. 7 is a plan schematic view showing an arrangement pattern of laser incident windows in the wavelength conversion device shown in Fig. 6.
  • Figure 8 is a cross-sectional view illustrating a third embodiment of a wavelength conversion device in accordance with the present invention.
  • FIG. 1 shows a cross-sectional view of a wavelength conversion device 100 in accordance with a first embodiment of the present invention.
  • the wavelength conversion device 100 includes a package housing 110 and a fluorescent assembly 102.
  • the package housing 110 is formed as a rectangular parallelepiped having a cavity therein, including four side faces and a closed end face 103.
  • the horizontal direction in FIG. 1 is referred to as the length direction of the package case 110 and the fluorescent member 102
  • the vertical direction in FIG. 1 is referred to as the thickness direction of the package case 110 and the fluorescent member 102
  • the The direction perpendicular to the paper surface is referred to as the width direction of the package housing 110 and the fluorescent member 102.
  • the package housing 110 is formed of a material having high thermal conductivity.
  • the package housing 110 may be made of a metal material such as aluminum or copper, or may be made of a ceramic material having a high thermal conductivity.
  • the inner surface of the package housing 110 has a high reflectance of 98% or more, so that specular reflection or near specular reflection can be formed on the light beam incident thereon.
  • the inner surfaces of the other two side faces of the package casing 110 excluding the light incident surface are formed as a highly reflective layer close to the mirror surface or provided with a highly reflective film.
  • the fluorescent component 102 is disposed in a cavity within the package housing 110 for converting incident incident light in a certain wavelength range into a laser light in other wavelength ranges to effect wavelength conversion.
  • the fluorescent component 102 can be constructed of a multiphase fluorescent ceramic.
  • the multiphase ceramic refers to a ceramic matrix composite material, which is a small branch under the broad category of "composite material”.
  • the so-called “complex phase” mainly refers to the presence of two or more substances "phases" in the material composition, so it is also called “multiphase ceramics”. There is a large amount of scattering phase inside the fluorescent component 102 composed of such a multiphase fluorescent ceramic material.
  • the “scattering phase” refers to a second phase material different from the main phase material, and its function is to form a scattering effect on the incident excitation light, thereby increasing the absorption rate of the excitation light, thereby improving the light conversion to the excitation light. effectiveness. Therefore, the ceramic main phase and the scattering phase together constitute a multiphase ceramic material, and the scattering phase is dispersed as a second phase material in the ceramic main phase. Since there are a large number of such scattering phases, the light beams are scattered multiple times as they propagate inside the fluorescent component 102.
  • the multiphase fluorescent ceramic material may be any suitable complex phase fluorescent ceramic material known, such as a composite ceramic composed of YAG:Ce (or LuAG:Ce) and Al 2 O 3 , wherein Al 2 O 3 is a ceramic main phase, YAG :Ce serves as a scattering center as a scattering phase.
  • YAG a composite ceramic of Ce and Al 2 O 3 is preferred, and its blue light absorption is between 85% and 95%.
  • the multiphase fluorescent ceramic material of the present invention is preferred because of its excellent high temperature resistance, heat dissipation properties and luminescent properties.
  • a phosphor layer encapsulated by an organic substance such as silica gel in general LED illumination is selected, firstly, it is impossible to achieve high lumen density light emission at a thin thickness, and as the incident light power is increased, even if aging/pyrolysis is not considered, The luminous efficiency will also gradually lag behind that of multiphase fluorescent ceramics. Secondly, its mechanical properties and high temperature resistance are far less than those of multiphase fluorescent ceramics.
  • the fluorescent component 102 can also be constructed of fluorescent glass.
  • the fluorescent glass 102 may be formed by mixing and sintering a phosphor, a glass frit, and an organic carrier, so that the phosphor is embedded in the glass forming the continuous phase, wherein the glass frit preferably uses a glass having a high refractive index and high thermal stability.
  • the glass frit preferably uses a glass having a high refractive index and high thermal stability.
  • borosilicate lead-free glass can also be selected.
  • the fluorescent member 102 is formed into a rectangular parallelepiped shape.
  • the fluorescent member 102 has a thickness in the thickness direction of 200 to 500 ⁇ m, a length in the longitudinal direction of 8 to 15 mm, and a width in the width direction of 1.5 to 4 mm.
  • the length of the fluorescent component 102 is less than the length of the package housing 110.
  • the length of the fluorescent component 102 is no more than 3/4 of the length of the package housing such that the exiting light can achieve a uniform distribution of light by more reflections before exiting from the exit end.
  • One end face of the rectangular parallelepiped of the fluorescent component 102 is strong
  • the solid surface is connected to the inner surface of the closed end face 103 of the package housing 110.
  • the manner in which the fluorescent component 102 is coupled to the package housing 110 can be any connection of known low thermal resistance, such as soldering, high thermal conductivity adhesive bonding, and the like.
  • At least one Lambertian reflector layer 105 is disposed on the upper and lower surfaces of the fluorescent component 102 opposite the incident light window 104 of the package housing 110, respectively.
  • “Lambertian reflectance layer” means a reflective layer whose surface is a Lambertian surface.
  • the reflection brightness of the Lambertian reflector layer is constant when viewed from any angle. In other words, the brightness of its surface is isotropic and the luminous intensity follows the Lambertian cosine law.
  • At least one Lambertian reflective layer 105 is arranged in a predetermined pattern. When a plurality of Lambertian reflection layers 105 are arranged, each of the Lambertian reflection layers 105 has a predetermined gap therebetween. As shown in FIGS.
  • each of the Lambertian reflection layers 105 disposed on the upper surface of the fluorescent member 102 and the Lambertian reflective layers 105 disposed on the lower surface of the fluorescent member 102 are staggered, that is, Each of the Lambertian reflection layers 105 is opposed to the incident surface of the incident light via the fluorescent member 102.
  • the arrangement can make the fluorescent component 102 be irradiated with incident light at various portions along the length direction, thereby improving the utilization ratio of the fluorescent component 102, thereby improving the light emission efficiency.
  • Each Lambert reflective layer 105 has a thickness of 30-60 ⁇ m, and the arrangement length (or the length of the Lambert reflective layer) in the width direction of the fluorescent component 102 is equal to the entire width of the fluorescent component, at the length of the fluorescent component 102.
  • the arrangement width in the direction (or the width of the Lambert reflection layer) ranges from 1 to 2 mm.
  • the area of each Lambert reflective layer 105 should be at least greater than the spot area of the incident light that opposes the phosphor assembly 102 therewith.
  • the total area of the plurality of Lambertian reflection layers 105 disposed on the upper surface (lower surface) of the fluorescent member 102 accounts for 1/4 to 1/2 of the area of the upper surface (lower surface) of the fluorescent member 102, and the area ratio is taken into consideration.
  • the manner in which the Lambert reflective layer 105 is disposed on the surface of the fluorescent component 102 can be, for example, any known suitable coating means, such as dispensing or spraying by a dispenser.
  • the incident light 101 in Fig. 1 is incident light incident on the upper and lower surfaces of the fluorescent component 102 through the incident light window 104 (in this case, the incident light is also excitation light).
  • the incident position of the incident light corresponds to a position on the surface of the fluorescent component 102 where the Lambert reflective layer 105 is not disposed.
  • the incident light 101 can be emitted by a uniformly arranged blue laser light emitting array.
  • the blue laser illuminating array can be realized by densely arranging multiple blue laser diode arrays, or by using multiple blue
  • the light emitted by the light laser diode is guided into the optical fiber and then guided to each incident light window, respectively, and the light from the light source can be guided to the incident light window by a specific light distribution by the light shaping device.
  • an additional optical film may be plated on the surface of the incident light window 104 such that only a particular beam of light is permeable.
  • the optical film may be an angle selective filter film that transmits only light beams incident at a predetermined range of incident angles within a predetermined wavelength range.
  • the angle selective filter film may be a blue light transmissive film selected only by the angle of blue light incident at an incident angle in the range of -8.5° to +8.5°. It should be understood that the range of the above incident angles is merely an example, and may be other angle ranges.
  • the incident light is controlled to be incident perpendicularly to the light incident surface at an angle of approximately 0[deg.], and the optical film is also arranged to allow only a specific wavelength of light incident at 0[deg.] to be transmitted, minimizing the return of light from the fluorescent component 102 to the incident light.
  • the window 104 escapes the cavity and improves light output efficiency.
  • the incident light 101 emitted from the incident light source is irradiated to the upper and lower surfaces of the fluorescent member 102 through the incident light window 104 located on opposite sides of the package casing 110. More specifically, the incident light 101 is irradiated to a portion of the upper and lower surfaces of the fluorescent member 102 where the Lambert reflective layer 105 is not provided. The incident light 101 forms a center of illumination at the surface spot of the fluorescent component 102.
  • the laser is emitted from the illuminating center at a full angle, wherein a 2 ⁇ azimuth laser is emitted toward the outside of the fluorescent component 102 to enter the inner cavity of the package housing 110; and another 2 ⁇ azimuth laser is directed toward the fluorescent component 102.
  • Internal emission Since the thickness of the fluorescent component 102 is very thin, this portion is emitted from the incident surface of the incident light 101 after being reflected by the Lambertian reflection layer 105 disposed on the opposite side surface of the fluorescent component 102, and also enters the package housing 110. Internal cavity.
  • All of the exiting light entering the internal cavity cannot pass through the optical film of the incident light window 104, but is reflected multiple times in the cavity by the highly reflective inner surface of the packaged housing and the Lambertian reflector layer 105 disposed on the surface of the fluorescent component 102. After sufficient light combining and homogenization, it finally emerges from the exit end (the right end in FIG. 1) of the opening of the package housing 110.
  • the Lambertian reflection layer 105 is provided on the surface of the fluorescent member 102, the number of times the light beam traveling inside the cavity re-enters the inside of the fluorescent member 102 is greatly reduced, the optical loss is reduced, and the light extraction efficiency is improved. .
  • the fluorescent component in the wavelength conversion device 100 according to the first embodiment of the present invention is fixedly packaged, and the outgoing light can be made more uniform in various directions.
  • each of the Lambertian reflection layers 105 extends in the width direction of the fluorescent member 102, and each of the Lambertian reflection layers 105 disposed on the upper surface of the fluorescent member 102 and the respective Lambers disposed on the lower surface of the fluorescent member 102
  • the reflective layers 105 are staggered.
  • the arrangement pattern of the Lambertian reflective layer is not limited thereto, but may be arbitrarily changed according to design requirements. For example, as shown in FIG.
  • each Lambert reflective layer 105 may extend along the length direction of the fluorescent component 102, and each of the Lambertian reflective layers 105 disposed on the upper surface of the fluorescent component 102 is disposed under the fluorescent component 102.
  • the Lambertian reflective layers 105 of the surface are staggered.
  • the respective Lambertian reflection layers 105 disposed on the upper surface of the fluorescent member 102 and the Lambertian reflection layers 105 disposed on the lower surface of the fluorescent member 102 may be partially overlapped. More specifically, as shown in FIG. 5, the respective Lambertian reflective layers 105 disposed on the upper surface of the fluorescent component 102 and the Lambertian reflective layers 105 disposed on the lower surface of the fluorescent component 102 may even face each other.
  • a 2 ⁇ azimuth received laser light that is emitted toward the inside of the fluorescent component 102 is not reflected by the Lambertian reflection layer 105 when it reaches the opposite side surface of the fluorescent component 102. Instead, it exits directly from the other side of the fluorescent component 102.
  • the exiting light in the cavity is not transparent to the optical film of the incident light window 104, but rather the highly reflective inner surface of the packaged housing within the cavity of the package housing and
  • the Lambertian reflector layer 105 disposed on the surface of the fluorescent component 102 is reflected multiple times, and after sufficient light combining and homogenization, finally exits from the exit end (the right end in FIG. 1) of the opening of the package housing 110.
  • the utilization rate of the Lambertian reflection layer thus arranged is lower than that of the arrangement pattern in Fig. 1, substantially the same functions and effects can be achieved.
  • the incident light 101 is incident only on the surface of the fluorescent component 102 where the Lambertian reflective layer 105 is not disposed.
  • the incident light may also be partially incident on the surface of the fluorescent component where the Lambertian reflective layer is disposed, the incident light is directly reflected by the Lambertian reflective layer, and then in the cavity of the package housing. After multiple reflections, it is emitted.
  • the technical solution reduces the loss of incident light in the fluorescent component, and on the other hand, directly decoheres the incident light through the Lambertian reflector.
  • FIG. 6 illustrates a wavelength conversion device 200 in accordance with a second embodiment of the present invention.
  • the configuration of the wavelength conversion device 200 is substantially the same as that of the wavelength conversion device 100 of the first embodiment.
  • the wavelength conversion device 200 includes a package housing 210 and a fluorescent assembly 202.
  • the package housing 210 is formed as a rectangular parallelepiped having a cavity inside.
  • One end of the package housing 210 is a closed end formed with a closed end surface 203.
  • the other end is open.
  • Two opposite surfaces of the package housing 210 extending in the longitudinal direction are provided with an incident light window 204.
  • One end face of the fluorescent component 202 is securely coupled to the inner surface of the closed end face 203 of the package housing 210.
  • a Lambertian reflective layer 205 is disposed on the upper and lower surfaces of the fluorescent component 202.
  • the wavelength conversion device 200 of the second embodiment can be used in the case where the incident light is a two-color laser.
  • the incident light is a two-color laser.
  • a red laser light 206 is incident.
  • the biggest difference between the technical solution according to the present embodiment and the technical solution of the first embodiment is that the incident light window 204 of the package housing 210 faces the area of the Lambert reflective layer and does not face Lambert.
  • the regions of the reflective layer are provided with different optical films, including a first angle selective filter and a second angle selective filter.
  • FIG. 7 shows a pattern example of different optical films disposed on the surface of the incident light window 204 of the package housing 210. As shown in FIG. 6 and FIG.
  • the angle of the red light incident at the incident angle within the range selects the red light transmitting film; in the region 208 of the incident light window 204 corresponding to the region where the fluorescent member 202 is not provided with the Lambertian reflective layer 205, the above-described angle-selected blue light transmission is plated membrane. That is, the angle selection red light transmitting film is opposed to the Lambertian reflection layer 205 via a cavity inside the package casing 210.
  • the proportion of the red light component in the emitted mixed white light can be adjusted by adjusting the ratio of the total area of each of the Lambertian reflection layers 205 to the surface area of the fluorescent member 202.
  • the blue laser light 201 and the red laser light 206 emitted from the incident light source are respectively irradiated to the fluorescent component through the incident light window 204 located on opposite sides of the package housing 210.
  • the angle of 204 selects red light transmissive film region 207 to illuminate Lambertian reflective layer 105 on the surface of fluorescent component 202.
  • the blue laser 201 acts as an excitation light to form a center of illumination at the surface spot of the fluorescent component 202.
  • the laser is emitted from the illuminating center at a full angle, wherein a 2 ⁇ azimuth laser is emitted toward the outside of the fluorescent component 202 to enter the inner cavity of the package housing 210; and another 2 ⁇ azimuth laser is directed toward the fluorescent component 202.
  • Internal emission Since the thickness of the fluorescent component 202 is very thin, this part is mostly affected by the laser.
  • the Lambertian reflection layer 205 disposed on the opposite side surface of the fluorescent member 202 is reflected from the incident surface of the excitation light 201 and also enters the internal cavity of the wavelength conversion device 200.
  • the red laser light 206 is irradiated on the surface of the Lambertian reflection layer 205, and thus is uniformly scattered to the inside of the cavity of the wavelength conversion device 200. All of the light beams entering the cavity (including the laser light exiting from the fluorescent component 202 and the red laser light 206 reflected by the Lambertian reflective layer 205) are encapsulated within the cavity by the highly reflective inner surface of the housing and on the surface of the fluorescent component 202 The Lambertian reflection layer 205 is reflected multiple times, and after sufficient light combining and homogenization, finally exits from the exit end (the right end in FIG. 6) of the opening of the package housing 210.
  • the Lambertian reflector layer 205 functions at least as follows: (1) the laser light in the reflective fluorescent component 202; (2) the incident red laser light; and (3) the isotropic scattering. Eliminates the speckle defects of the red laser.
  • the angle selection filter film disposed on the incident light window 204 of the package housing 210 is not limited to the combination of the angle selection blue transmission film and the angle selection red light transmission film described above, but may be transparent according to design requirements.
  • the filter film combination is selected by the angles of the light of other colors as long as they can respectively transmit light in the first wavelength range (corresponding to the first angle selection filter film) and light in the second wavelength range (corresponding to the second angle selection) Filter film) is fine.
  • the arrangement pattern of the Lambertian reflection layer on the surface of the fluorescent component 202 of the wavelength conversion device 200 according to the second embodiment can also be arbitrarily arranged as needed.
  • the arrangement pattern of the Lambertian reflective layer is changed, the arrangement pattern of the two different angle selection filter films disposed on the incident light window 204 is also changed correspondingly, as long as one of the angle selection filter films is interposed between the cavities It is opposite to the Lambertian reflector on the fluorescent component.
  • the wavelength conversion device 200 can realize the component ratio of the light beam (for example, red light, blue light, or the like) of a specific color in the emitted white light as needed, and can make the light beams of different colors uniform in the cavity. Heguang. In addition, speckle defects of the incident laser light can be eliminated.
  • the component ratio of the light beam for example, red light, blue light, or the like
  • a part of the blue light and the red light may be incident on the Lambertian reflection layer, and the part of the blue light may be directly reflected after being reflected multiple times, and the coherence is eliminated.
  • FIG. 8 illustrates a wavelength conversion device 300 in accordance with a third embodiment of the present invention.
  • the wavelength conversion device 300 includes a package housing 310 and a fluorescent component 302 having a closed end face 303.
  • the wavelength conversion device 300 according to the third embodiment of the present invention is a modification of the above-described wavelength conversion device 200, and can be used in the case of incident multicolor laser light. In the following description, descriptions of components of the wavelength conversion device 300 that are substantially the same as those of the wavelength conversion device 200 will be omitted.
  • the fluorescent component 302 disposed in the package housing 310 has a multi-layered structure.
  • the multilayer structure includes a first fluorescent layer 3021, a bonded reflective layer 3023, and a second fluorescent layer 3022 which are sequentially stacked.
  • the first fluorescent layer 3021 and the second fluorescent layer 3022 are also composed of a multi-phase fluorescent ceramic or fluorescent glass.
  • the first fluorescent layer 3021 and the second fluorescent layer 3022 may be the same or different fluorescent layers.
  • the materials for forming the first fluorescent layer 3021 and the second fluorescent layer 3022 may each be a composite ceramic composed of YAG:Ce (or LuAG:Ce) and Al 2 O 3 .
  • YAG: a composite ceramic of Ce and Al 2 O 3 is preferred, and its blue light absorption is between 85% and 95%.
  • the thickness of the first fluorescent layer 3021 and the second fluorescent layer 3022 ranges from 200 ⁇ m to 500 ⁇ m, respectively.
  • the adhesive reflective layer 3023 is an adhesive layer having a high reflectance surface, and the first fluorescent layer 3021 and the second fluorescent layer 3022 are bonded to the lower surface and the upper surface of the adhesive reflective layer 3023, respectively.
  • the lower surface and the upper surface of the adhesive reflective layer 3023 are capable of reflecting the light beams from the first fluorescent layer 3021 and the second fluorescent layer 3022, respectively.
  • the adhesive reflective layer 3023 may be printed with high reflection on the upper and lower surfaces.
  • a thin substrate having a high thermal conductivity of the layer, the first fluorescent layer 3021 and the second fluorescent layer 3022 are bonded to the lower surface and the upper surface of the thin substrate by an adhesive. Since the adhesive reflective layer 3023 is provided, the laser light emitted to the inside of the fluorescent layer in the first fluorescent layer 3021 and the second fluorescent layer 3022 is not reflected by the Lambertian reflection layer 305 disposed on the opposite side of the fluorescent member, but Reflected by the adhesive reflective layer 3023. Therefore, as shown in FIG.
  • the Lambertian reflection layers 305 disposed on the surfaces of the first fluorescent layer 3021 and the second fluorescent layer 3022 may be oppositely arranged.
  • the Lambertian reflection layer 305 disposed on the surfaces of the first fluorescent layer 3021 and the second fluorescent layer 3022 may be alternately arranged as in the first embodiment and the second embodiment.
  • the Lambertian reflective layer disposed on the fluorescent component 302 and the optical film disposed on the incident light window 304 may also adopt other layout patterns as long as one of them The optical film may be opposed to the Lambertian reflective layer on the fluorescent component via the cavity.
  • the wavelength conversion device 300 can be used for the case where the multicolor laser light is incident, in addition to the various effects of the wavelength conversion device 200 described in the second embodiment.
  • the wavelength The conversion device 300 can achieve the same effects as the wavelength conversion device 200 in the second embodiment.
  • the first fluorescent layer 3021 and the second fluorescent layer 3022 are different fluorescent ceramic layers or fluorescent glass layers, it is possible to make more choices in the color combination of the incident laser light.
  • the first fluorescent layer 3021 may be a yellow fluorescent ceramic layer, and the light beam 301a incident from the lower side of FIG.
  • the light beam 301b may be a red laser light; meanwhile, the second fluorescent layer 3022 may be an orange fluorescent ceramic layer
  • the light beam 301a incident from above of FIG. 8 may be a blue laser light, and the light beam 301b may be a green laser light.
  • the incident light window 304 disposed above is alternately disposed with the green light transmitting film selected from the angle of the green light incident only at, for example, an incident angle in the range of -8.5° to +8.5°, and the above The angle is selected as a blue light transmitting film.
  • a combination of the filter film and the fluorescent component material can be selected by changing the color of the incident laser light in the above embodiments and the corresponding angle as needed.
  • a combination of "blue laser + orange fluorescent ceramic (glass) + green laser” can obviously also be used in the second embodiment described above.
  • the present invention can also provide a laser fluorescence conversion type light source.
  • the laser fluorescence conversion type light source according to the present invention includes at least a laser light source and a wavelength conversion device.
  • the wavelength conversion device can be any wavelength conversion device as described above.
  • the laser light emitted from the laser light source is incident into the wavelength conversion device from the opposite sides of the wavelength conversion device through the transmission film of the incident light window.
  • a fluorescent ceramic provided with a Lambertian reflective layer by means of a surface in the wavelength conversion device, the incident laser light undergoes wavelength conversion and/or diffuse reflection in the wavelength conversion device, combined to form a desired outgoing light, and then from the end face of the wavelength conversion device Exit.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)
  • Optical Filters (AREA)

Abstract

一种波长转换装置(100)和含有该装置(100)的激光荧光转换型光源。波长转换装置(100)包括封装壳体(110)和荧光组件(102),荧光组件(102)含有荧光材料并用于波长转换。封装壳体(110)被形成为长方体状且具有四个侧面和一个封闭端面(103),封装壳体(110)的与封闭端面(103)相对的另一端是开口的出射端,封装壳体的四个侧面之中的相对的两个侧面是光入射面并且形成有入射光窗口(104),入射光窗口(104)的表面设置有允许特定光束透过的光学膜,并且另两个侧面的内表面和封闭端面(103)的内表面为镜面反射表面;荧光组件(102)设置在封装壳体(110)内部的空腔中,荧光组件(102)被形成为薄片状且一端连接至封闭端面(103),入射光窗口(104)面对荧光组件(102)的上表面和下表面;并且荧光组件(102)的上表面和下表面分别设置有至少一个朗伯反射层(105)。

Description

波长转换装置和激光荧光转换型光源 技术领域
本发明涉及波长转换装置以及使用该波长转换装置的激光荧光转换型光源。
背景技术
近年来,激光光源已经成为投影光源和照明光源的重要发展方向。目前,在众多的激光光源的产品中,主流的技术主要分为两种,一种是RGB三色激光技术,另一种是激光荧光粉技术。
三色激光技术采用红绿蓝三种颜色激光模组,其优点是可以独立进行R、G、B的三色分量的调节,其激光光能的利用率达到100%。但是,该技术方案中,投射出来的画面中容易出现“散斑”缺陷,人眼长时间观看有散斑缺陷的画面,很容易伤害眼睛,损伤视力。
而激光荧光粉技术的技术方案将蓝色激光会聚到一个高速旋转的荧光轮上,通过荧光轮上的波长转换材料如荧光粉等,将蓝色激光转换为其他颜色的光如红绿光,以获得彩色输出光。其优点是没有散斑问题,而且高速旋转的荧光轮有利于热量的散失。但是,由于该技术方案对荧光轮的依赖,限制了其在频繁振动的环境下的应用(如车载设备),也降低了产品可靠性。
因此,一种可靠性高、具有高流明密度光输出能力的发光装置的技术方案亟待开发。
发明内容
为了解决上述问题,本发明期望提供一种全新的波长转换装置以及采用该封装结构的激光激发荧光材料光源。
根据本发明的一个实施方式,提供了一种波长转换装置,所述波长转换装置包括封装壳体和荧光组件,所述荧光组件含有荧光材料并且能够将入射光转换成不同波长的出射光。所述封装壳体被形成为长方体状且具有四个侧面和一个封闭端面,所述封装壳体的与所述封闭端面相对的另一端是开口的出射端,所述封装壳体的所述四个侧面之中的相对的 两个侧面是光入射面并且形成有用于透过入射光的入射光窗口,所述入射光窗口的表面设置有允许特定光束透过的光学膜,并且所述四个侧面之中的除所述光入射面之外的另两个侧面的内表面和所述封闭端面的内表面为镜面反射表面;所述荧光组件设置在所述封装壳体内部的空腔中,所述荧光组件被形成为薄片状且一端连接至所述封闭端面,所述入射光窗口面对所述荧光组件的上表面和下表面;并且所述荧光组件的所述上表面和所述下表面分别设置有至少一个朗伯反射层。
在一个实施方式中,所述荧光组件是由复相荧光陶瓷构成的。优选地,所述复相荧光陶瓷材料为YAG:Ce和Al2O3的复相陶瓷。
在一个实施方式中,所述荧光组件的长度不大于所述封装壳体的长度的3/4。
在一个实施方式中,所述荧光组件的厚度范围为200~500μm,长度范围为8~15mm,宽度范围为1.5~4mm。
在一个实施方式中,所述封装壳体是由金属材料制成的。
在一个实施方式中,所述朗伯反射层的厚度范围为30~60μm,宽度范围为1~2mm。
在一个实施方式中,布置在所述荧光组件的所述上表面或所述下表面上的各所述朗伯反射层的总面积为所述荧光组件的所述上表面或所述下表面的面积的1/4~1/2。
在一个实施方式中,位于所述荧光组件的所述上表面的所述朗伯反射层与位于所述荧光组件的所述下表面的所述朗伯反射层是交错布置的。
在一个实施方式中,允许特定光束透过的所述光学膜是角度选择滤光膜,所述角度选择滤光膜仅能够透过预定波长范围内的以预定范围内的入射角入射的光束。例如,所述角度选择滤光膜是只能透过以-8.5°至+8.5°范围内的入射角入射的蓝色光束的角度选择蓝光透射膜。可替代地,允许特定光束透过的所述光学膜包括第一角度选择滤光膜和第二角度选择滤光膜,所述第一角度选择滤光膜仅能够透过第一波长范围内的以预定范围内的入射角入射的光束,所述第二角度选择滤光膜仅能够透过第二波长范围内的以所述预定范围内的入射角入射的光束,并且所述 第一角度选择滤光膜隔着所述空腔与所述荧光组件的表面的未设置有所述朗伯反射层的区域相对,所述第二角度选择滤光膜隔着所述空腔与所述朗伯反射层相对。
在一个实施方式中,所述第一角度选择滤光膜是只能透过以-8.5°至+8.5°范围内的入射角入射的蓝色光束的角度选择蓝光透射膜,所述第二角度选择滤光膜是只能透过以-8.5°至+8.5°范围内的入射角入射的红色光束的角度选择红光透射膜,并且所述荧光组件是由黄色荧光陶瓷构成的;或者所述第一角度选择滤光膜是只能透过以-8.5°至+8.5°范围内的入射角入射的蓝色光束的角度选择蓝光透射膜,所述第二角度选择滤光膜是只能透过以-8.5°至+8.5°范围内的入射角入射的绿色光束的角度选择绿光透射膜,并且所述荧光组件是由橙色荧光陶瓷构成的。
另外,在一个实施方式中,所述荧光组件还可以具有多层结构,所述多层结构包括依次层叠的第一荧光层、粘接反射层和第二荧光层,各所述朗伯反射层布置在所述第一荧光层和所述第二荧光层的表面上,所述粘接反射层的下表面和上表面分别粘接至所述第一荧光层和所述第二荧光层,并且能够分别反射来自所述第一荧光层和所述第二荧光层的光束。在一些情况下,所述第一荧光层和所述第二荧光层可以是相同的荧光层。
在一个实施方式中,所述第一荧光层和所述第二荧光层的厚度范围均为200μm~500μm。
在一个实施方式中,位于所述第一荧光层的表面上的所述朗伯反射层与位于所述第二荧光层的表面上的所述朗伯反射层是相对布置的。
在一个实施方式中,当所述荧光组件具有如上所述的多层结构时,允许特定光束透过的所述光学膜包括第一角度选择滤光膜和第二角度选择滤光膜,所述第一角度选择滤光膜仅能够透过第一波长范围内的以预定范围内的入射角入射的光束,所述第二角度选择滤光膜仅能够透过第二波长范围内的以所述预定范围内的入射角入射的光束,并且所述第一角度选择滤光膜隔着所述空腔与所述荧光组件的表面的未设置有所述朗伯反射层的区域相对,所述第二角度选择滤光膜隔着所述空腔与所述朗伯反射层相对。
例如,在一个实施方式中,所述第一角度选择滤光膜是只能透过以-8.5°至+8.5°范围内的入射角入射的蓝色光束的角度选择蓝光透射膜,所述第二角度选择滤光膜是只能透过以-8.5°至+8.5°范围内的入射角入射的红色光束的角度选择红光透射膜,并且所述第一荧光层和所述第二荧光层是由黄色荧光陶瓷构成的;或者所述第一角度选择滤光膜是只能透过以-8.5°至+8.5°范围内的入射角入射的蓝色光束的角度选择蓝光透射膜,所述第二角度选择滤光膜是只能透过以-8.5°至+8.5°范围内的入射角入射的绿色光束的角度选择绿光透射膜,并且所述第一荧光层和所述第二荧光层是由橙色荧光陶瓷构成的。
根据本发明的另一实施例,还提供了一种激光荧光转换型光源,所述激光荧光转换型光源包括激光装置和上述的波长转换装置,所述激光装置用作所述波长转换装置的入射光源,所述激光装置发出的激光光束能够从所述封装壳体的相对的两个所述光入射面透过所述光学膜照射至所述荧光组件的表面。根据需要,所述激光装置发出的所述激光光束可以仅照射至所述荧光组件的表面上的未设置有所述朗伯反射层的区域。
根据本发明,能够实现荧光组件的固定式封装,摒弃了色轮等需要马达驱动的运动式封装装置,从而在发光过程中具有较好的抗震性。另外,由于能够通过控制朗伯反射层的面积占比,根据需要使蓝色激光或红色激光经过朗伯面反射后合光,因此能够便利地调节出射光的色坐标。
此外,根据本发明的波长转换装置和激光激发荧光材料光源通过将荧光组件设置在封装壳体内的空腔中,使封装壳体的两个侧面上的入射光窗口分别面对荧光组件的上表面和下表面,并将封装壳体的其余两个侧面及封闭端面设置为镜面反射面,使得入射光能够从荧光组件的两个表面入射而发生光转换,并且此后经不断反射从封装壳体的开口的出射端出射,从而在开口的出射端获得高流明密度的出射光。另外,本发明在荧光组件的上下表面设置有朗伯反射层,在消除了光的相干性从而克服图像中的散斑缺陷的同时,减少了光反复进入荧光组件的次数,因而还减少了光损失,进一步提高了出射光的流明密度。
附图说明
图1是示出了根据本发明的波长转换装置的第一实施例的横截面图。
图2是示出了在图1所示的波长转换装置中朗伯反射层在荧光组件表面的布置图案的平面示意图。
图3至图5分别是示出了在根据本发明的波长转换装置中朗伯反射层在荧光组件表面的布置图案的变型例的平面示意图。
图6是图示了根据本发明的波长转换装置的第二实施例的横截面图。
图7是示出了图6中所示的波长转换装置中的激光入射窗口的布置图案的平面示意图。
图8是图示了根据本发明的波长转换装置的第三实施例的横截面图。
具体实施方式
下面,将参照附图详细说明根据本发明的各具体实施例。需要强调的是,附图中的所有尺寸仅是示意性的并且不一定是按照真实比例图示的,因而不具有限定性。
第一实施例
图1示出了根据本发明第一实施例的波长转换装置100的横截面图。波长转换装置100包括封装壳体110和荧光组件102。如图1所示,封装壳体110被形成为内部具有空腔的长方体,包括四个侧面和一个封闭端面103。这里,将图1中的水平方向称为封装壳体110和荧光组件102的长度方向,将图1中的垂直方向称为封装壳体110和荧光组件102的厚度方向,将图1中的与纸面垂直的方向称为封装壳体110和荧光组件102的宽度方向。封装壳体110的沿长边方向延伸的两个相对侧面表面(图中为上表面和下表面)被用作接收入射光的光入射面并且设置有入射光窗口104。封装壳体110的与入射窗口垂直的两个端面中的一端是形成有封闭端面103的封闭端。封装壳体110的与封闭端面103相对的另一端是开口的并且被用作出射光的出射端。封装壳体110是由具有高热导率的材料形成的。例如,封装壳体110可以是由铝或铜等金属材料制成的,也可以是高热导率的陶瓷材料制成。封装壳体110的内表面具有98%以上的高反射率,因而能够对入射其上的光束形成镜面反射或近似镜面反射。例如,封装壳体110的除光入射面之外的另两个侧面的内表面被形成为接近镜面的高反射层或者设置有高反射膜。
荧光组件102设置在封装壳体110内的空腔中,用于将入射的处于 某波长范围内的激发光转换成处于其它波长范围内的受激光,从而实现波长转换。荧光组件102可以由复相荧光陶瓷构成。这里,复相陶瓷是指陶瓷基复合材料,其是“复合材料”大范畴下的一个小分支。所谓“复相”主要是指材料组分中存在两种或两种以上的物质“相”,故又称“多相陶瓷”。在由这样的复相荧光陶瓷材料构成的荧光组件102的内部具有较多的散射相。这里,“散射相”是指有别于主相材料的第二相材料,其功能是对入射的激发光形成一种散射效果,从而提升激发光的吸收率,进而提升对激发光的光转换效率。因此,陶瓷主相和散射相共同组成复相陶瓷材料,并且散射相作为第二相物质弥散在陶瓷主相中。由于存在大量的这样的散射相,所以光束在荧光组件102内部传播时会被多次散射。复相荧光陶瓷材料可以是已知的任何合适的复相荧光陶瓷材料,例如YAG:Ce(或LuAG:Ce)和Al2O3构成的复合陶瓷,其中Al2O3为陶瓷主相,YAG:Ce作为发光中心的同时作为散射相,当然,可以理解,可以在主相材料和第二相材料的基础上增加第三相作为独立的散射相。YAG:Ce和Al2O3的复相陶瓷是优选的,其蓝光吸收率在85%~95%之间。本发明优选复相荧光陶瓷材料是由于该材料优异的耐高温性能、散热性能和发光性能。如果选择一般LED照明中的硅胶等有机物封装的荧光粉层,首先其无法在较薄的厚度实现高流明密度的发光,随着入射光功率的提高,即使不考虑老化/热解等情况,其发光效率也将渐渐落后于复相荧光陶瓷;其次,其机械性能、耐高温性能远逊于复相荧光陶瓷。
在本发明其他实施方式中,荧光组件102也可以由荧光玻璃构成。例如,荧光玻璃102可以是由荧光粉、玻璃粉和有机载体混合烧结形成的,使得荧光粉嵌入在形成连续相的玻璃中,其中,玻璃粉优选采用具有高折射率和高热稳定性的玻璃,例如硼硅酸盐无铅玻璃。当然,也可以选择已知的其它荧光玻璃。
如图1中所示,荧光组件102被形成为长方体的薄片状。荧光组件102在厚度方向上的厚度范围为200~500μm,在长度方向上的长度范围为8~15mm,在宽度方向上的宽度范围为1.5~4mm。荧光组件102的长度小于封装壳体110的长度。优选地,荧光组件102的长度不大于封装壳体的长度的3/4,以使得出射光在从出射端出射前能够通过更多次的反射达到光分布均匀化的效果。荧光组件102的长方体薄片的一个端面牢 固地连接至封装壳体110的封闭端面103的内表面。荧光组件102与封装壳体110的连接方式可以是已知的低热阻的任何连接方式,例如焊接、高热导率粘接剂粘接等。
在荧光组件102的与封装壳体110的入射光窗口104相对的上表面和下表面分别设置有至少一个朗伯反射层105。这里,“朗伯反射(Lambertian reflectance)层”是指表面为朗伯面的反射层。因而,当入射幅照度一定时,从任何角度观察朗伯反射层的表面时,其反射亮度为一个常数。换言之,其表面的亮度是各向同性的且发光强度遵守朗伯余弦定律。至少一个朗伯反射层105按照预定的图案排列。当布置有多个朗伯反射层105时,各朗伯反射层105之间具有预定的间隙。如图1和图2所示,优选地,布置在荧光组件102的上表面的各朗伯反射层105与布置在荧光组件102的下表面的各朗伯反射层105是交错排列的,也就是说,各朗伯反射层105隔着荧光组件102与入射光的入射表面相对。该排列方式可以使得荧光组件102沿长度方向的各个部位都能够被入射光照射,从而提高了荧光组件102的利用率,进而提高了光出射效率。每个朗伯反射层105的厚度为30-60μm,并且在荧光组件102的宽度方向上的布置长度(或称为朗伯反射层的长度)等于荧光组件的整个宽度,在荧光组件102的长度方向上的布置宽度(或称为朗伯反射层的宽度)的范围为1~2mm。如图1中所示,各朗伯反射层105的面积至少应大于隔着荧光组件102与其相对的入射光的光斑面积。布置在荧光组件102的上表面(下表面)上的多个朗伯反射层105的总面积占荧光组件102的上表面(下表面)面积的1/4~1/2,该面积占比兼顾了荧光组件102的发光利用率和朗伯反射层105的反射利用率,在使得荧光组件102具有足够高的发光效率的同时,尽可能多的利用朗伯反射层105避免光过多次地进入荧光组件102。朗伯反射层105在荧光组件102表面上的设置方式例如可以是任何已知的合适的涂覆方式,例如点胶机点涂或喷涂。
图1中的101为通过入射光窗口104入射至荧光组件102的上下两个表面的入射光(在此例中入射光也是激发光)。入射光的入射位置与荧光组件102的表面上未设置有朗伯反射层105的位置相对应。例如,入射光101可以是由均匀排布的蓝色激光发光阵列发出的。蓝色激光发光阵列可以通过多个蓝光激光二极管阵列密排实现,也可以通过将多颗蓝 光激光二极管发出的光导入光纤,然后分别引导至各个入射光窗口,还可以是通过光整形装置将来自光源的光以特定的光分布引导至入射光窗口。根据入射光窗口104的透射性能和反射性能的设计需要,在入射光窗口104的表面可以镀有额外的光学膜,使得仅有特定的光束能够透过。例如,所述光学膜可以是角度选择滤光膜,其只能透过预定波长范围内的以预定范围的入射角入射的光束。例如,所述角度选择滤光膜可以是只能透过以-8.5°至+8.5°范围内的入射角入射的蓝光的角度选择蓝光透射膜。应当理解,上述入射角度的范围仅仅是示例,也可以是其它的角度范围。理想情况下,控制入射光以近似0°角垂直入射到光入射面,光学膜也设置成仅允许0°入射的特定波长的光透射,可以最大限度的减少光从荧光组件102返回到入射光窗口104而逃脱出空腔,提高光输出效率。
在根据本发明第一实施例的波长转换装置100工作时,从入射光源出射的入射光101透过位于封装壳体110的相对两侧的入射光窗口104照射至荧光组件102的上下表面。更确切地,入射光101照射至荧光组件102的上下表面上的未设置有朗伯反射层105的部分。入射光101在荧光组件102的表面光斑处形成一个发光中心。受激光以全角度从发光中心出射,其中一个2π方位角的受激光朝着荧光组件102外部出射,进入封装壳体110的内部空腔;另外一个2π方位角的受激光朝着荧光组件102的内部出射。由于荧光组件102的厚度非常薄,这部分受激光绝大部分被设置在荧光组件102的对侧表面的朗伯反射层105反射后从入射光101的入射表面出射,也进入封装壳体110的内部空腔。所有进入内部空腔的出射光无法透过入射光窗口104的光学膜,而是在空腔内被封装壳体的高反射内表面和设置于荧光组件102表面的朗伯反射层105多次反射,在经过充分的合光和匀光之后,最终从封装壳体110的开口的出射端(图1中的右端)出射。在这个过程中,由于在荧光组件102的表面上设置有朗伯反射层105,所以大大减少了在空腔内行进的光束重新进入荧光组件102内部的次数,减少了光损耗,提高了出光效率。
因此,根据本发明第一实施例的波长转换装置100中的荧光组件被固定封装,并且能够使出射光在各个方向上更加均匀。
另外,应当理解的是,虽然在图1和图2示出的波长转换装置100 中,每一个朗伯反射层105是沿着荧光组件102的宽度方向延伸的,并且布置在荧光组件102的上表面的各朗伯反射层105与布置在荧光组件102的下表面的各朗伯反射层105是交错排列的。但是,在根据本发明的第一实施例的波长转换装置100中,朗伯反射层的布置图案不限于此,而是可以根据设计需要任意改变。例如,如图3所示,每一个朗伯反射层105可以沿着荧光组件102的长度方向延伸,并且布置在荧光组件102的上表面的各朗伯反射层105与布置在荧光组件102的下表面的各朗伯反射层105是交错排列的。另外,如图4所示,布置在荧光组件102的上表面的各朗伯反射层105与布置在荧光组件102的下表面的各朗伯反射层105可以是部分重叠的。更特别地,如图5所示,布置在荧光组件102的上表面的各朗伯反射层105与布置在荧光组件102的下表面的各朗伯反射层105甚至可以是相互面对的。在此情况下,与图1中所示的情况不同,朝着荧光组件102的内部出射的一个2π方位角的受激光在到达荧光组件102的对侧表面时不被朗伯反射层105反射,而是直接从荧光组件102的另一侧出射。此后,与图1中所示的情况类似,在空腔中的出射光无法透过入射光窗口104的光学膜,而是在封装壳体的空腔内被封装壳体的高反射内表面和设置于荧光组件102表面的朗伯反射层105多次反射,在经过充分的合光和匀光之后,最终从封装壳体110的开口的出射端(图1中的右端)出射。与图1中的布置图案相比,虽然这样布置的朗伯反射层的利用率较低,但也能实现基本相同的功能和效果。
本实施例中,入射光101仅入射至荧光组件102的表面上未设置有朗伯反射层105的位置。在本发明的其他实施方式中,入射光也可以部分入射至荧光组件的表面上设置有朗伯反射层的位置,该部分入射光直接被朗伯反射层反射,而后在封装壳体的空腔中多次反射后出射。该技术方案一方面减少了入射光在荧光组件的损耗,另一方面通过朗伯反射层直接对入射光消相干。
第二实施例
图6图示了根据本发明第二实施例的波长转换装置200。波长转换装置200的结构与第一实施例的波长转换装置100大致相同。波长转换装置200包括封装壳体210和荧光组件202。封装壳体210被形成为内部具有空腔的长方体。封装壳体210的一端是形成有封闭端面203的封闭端, 另一端开口。封装壳体210的沿长边方向延伸的两个相对表面设置有入射光窗口204。荧光组件202的一个端面牢固地连接至封装壳体210的封闭端面203的内表面。荧光组件202的上表面和下表面上设置有朗伯反射层205。在下面的说明中,将省略对波长转换装置200的与波长转换装置100大致相同的部件的说明。
第二实施例的波长转换装置200能够用于入射光为双色激光的情况。例如,如图6所示,除了作为激发光的蓝色激光201之外,还入射有红色激光206。为了实现上述功能,根据本实施例的技术方案与第一实施例的技术方案的最大区别在于:封装壳体210的入射光窗口204在面对着朗伯反射层的区域和未面对朗伯反射层的区域设置有不同的光学膜,包括第一角度选择滤光膜和第二角度选择滤光膜。图7示出了封装壳体210的入射光窗口204的表面上布置的不同光学膜的图案示例。如图6和图7所示,在入射光窗口204的与荧光组件202设置有朗伯反射层205的区域相面对的区域207内镀有只能透过例如以-8.5°至+8.5°范围内的入射角入射的红光的角度选择红光透射膜;在入射光窗口204的与荧光组件202未设置有朗伯反射层205的区域相对应的区域208内镀有上述角度选择蓝光透射膜。即,角度选择红光透射膜隔着封装壳体210内部的空腔与朗伯反射层205相对。另外,可以通过调节各朗伯反射层205的总面积占荧光组件202的表面积的比来调节出射的混合白光中的红光成分的占比。
在根据本发明第二实施例的波长转换装置200工作时,从入射光源出射的蓝色激光201和红色激光206分别透过位于封装壳体210的相对两侧的入射光窗口204照射至荧光组件202的上下表面。更具体地,蓝色激光201透过入射光窗口204的角度选择蓝光透射膜区域208照射至荧光组件202的表面上的未设置有朗伯反射层105的部分;红色激光206透过入射光窗口204的角度选择红光透射膜区域207照射至荧光组件202的表面上的朗伯反射层105。一方面,蓝色激光201作为激发光在荧光组件202的表面光斑处形成一个发光中心。受激光以全角度从发光中心出射,其中一个2π方位角的受激光朝着荧光组件202外部出射,进入封装壳体210的内部空腔;另外一个2π方位角的受激光朝着荧光组件202的内部出射。由于荧光组件202的厚度非常薄,这部分受激光绝大部分 被设置在荧光组件202的对侧表面的朗伯反射层205反射后从激发光201的入射表面出射,也进入波长转换装置200的内部空腔。另一方面,红色激光206照射在朗伯反射层205的表面,因而被均匀地散射至波长转换装置200的空腔内部。所有进入空腔的光束(包括从荧光组件202中出射的受激光和被朗伯反射层205反射的红色激光206)在空腔内被封装壳体的高反射内表面和设置于荧光组件202表面的朗伯反射层205多次反射,在经过充分的合光和匀光之后,最终从封装壳体210的开口的出射端(图6中的右端)出射。在第二实施例中,朗伯反射层205至少起着如下三种功能:(1)反射荧光组件202中的受激光;(2)反射入射的红色激光;(3)通过各向同性的散射,消除了红色激光的散斑缺陷。
另外,应当理解,设置在封装壳体210的入射光窗口204的角度选择滤光膜不限于上述的角度选择蓝光透射膜和角度选择红光透射膜的组合,而是可以根据设计需要采用能够透过其它颜色的光的角度选择滤光膜组合,只要它们能够分别透过第一波长范围内的光(对应第一角度选择滤光膜)和第二波长范围内的光(对应第二角度选择滤光膜)就可以了。此外,与在第一实施例中类似地,根据第二实施例的波长转换装置200的荧光组件202的表面上的朗伯反射层的布置图案也可以根据需要任意布置。当朗伯反射层的布置图案改变时,设置于入射光窗口204的两种不同的角度选择滤光膜的布置图案也相应地进行改变,只要使其中一种角度选择滤光膜隔着空腔与荧光组件上的朗伯反射层相对即可。
根据第二实施例的波长转换装置200能够实现根据需要调整出射白光中的特定颜色的光束(例如,红光、蓝光等)的成分占比,并且能够使不同颜色的光束在空腔内被均匀合光。此外,还能够消除入射激光的散斑缺陷。
在本实施例的变形实施方式中,还可以使得部分蓝光与红光一同入射至朗伯反射层,该部分蓝光可以直接经多次反射后出射,并被消除相干性。
第三实施例
图8图示了根据本发明第三实施例的波长转换装置300。波长转换装置300包括封装壳体310和荧光组件302,封装壳体310具有封闭端面 303。根据本发明第三实施例的波长转换装置300是上述波长转换装置200的变型,能够用于入射多色激光的情况。在下面的说明中,将省略对波长转换装置300的与波长转换装置200大致相同的部件的说明。
波长转换装置300与波长转换装置200的最大区别在于:设置于封装壳体310内的荧光组件302具有多层结构。具体地,所述多层结构包括依次层叠的第一荧光层3021、粘接反射层3023和第二荧光层3022。与第一实施例和第二实施例中的荧光组件类似地,第一荧光层3021和第二荧光层3022也是由复相荧光陶瓷或荧光玻璃构成的。但是,根据入射光的颜色,第一荧光层3021和第二荧光层3022可以是相同或不同的荧光层。例如,用于形成第一荧光层3021和第二荧光层3022的材料均可以是由YAG:Ce(或LuAG:Ce)和Al2O3构成的复合陶瓷。YAG:Ce和Al2O3的复相陶瓷是优选的,其蓝光吸收率在85%~95%之间。第一荧光层3021和第二荧光层3022的厚度范围分别为200μm~500μm。粘接反射层3023是具有高反射率表面的粘接层,第一荧光层3021和第二荧光层3022分别粘接在粘接反射层3023的下表面和上表面。也即是,粘接反射层3023的下表面和上表面分别能够反射来自第一荧光层3021和第二荧光层3022的光束,例如,粘接反射层3023可以是在上下表面均印刷有高反射层的具有高热导率的薄基板,第一荧光层3021和第二荧光层3022通过粘接剂被粘接至薄基板的下表面和上表面。由于设置了粘接反射层3023,在第一荧光层3021和第二荧光层3022中产生向荧光层的内部出射的受激光不是被设置于荧光组件对侧的朗伯反射层305反射,而是被粘接反射层3023反射。因此,如图8所示,设置于第一荧光层3021和第二荧光层3022表面上的朗伯反射层305可以是相对布置的。当然,在本实施例中,设置于第一荧光层3021和第二荧光层3022表面上的朗伯反射层305也可以与第一实施例和第二实施例中那样交错布置。此外,与第一实施例和第二实施例中类似地,设置于荧光组件302上的朗伯反射层以及设置于入射光窗口304上的光学膜还可以采用其它的布置图案,只要其中一种光学膜隔着空腔与荧光组件上的朗伯反射层相对即可。
根据本实施例的波长转换装置300除了能够获得第二实施例中所述的波长转换装置200的各种效果之外,还能够用于多色激光入射的情况。例如,当第一荧光层3021和第二荧光层3022是相同的荧光层时,波长 转换装置300能够实现与与第二实施例中的波长转换装置200相同的效果。当第一荧光层3021和第二荧光层3022是不同的荧光陶瓷层或荧光玻璃层时,能够使入射激光的颜色组合有更多选择。例如,第一荧光层3021可以是黄色荧光陶瓷层,且从图8的下方入射的光束301a可以是蓝色激光,光束301b可以是红色激光;同时,第二荧光层3022可以是橙色荧光陶瓷层,从图8的上方入射的光束301a可以是蓝色激光,光束301b可以是绿色激光。在此情况下,设置于上方的入射光窗口304相对应地交替设置有只能透过例如以-8.5°至+8.5°范围内的入射角入射的绿光的角度选择绿光透射膜和上述角度选择蓝光透射膜。
应当理解,上述第一实施例至第三实施例中的说明仅是示例性的而非限制性的。例如,可以根据需要改变上述各实施例中的入射激光的颜色、对应的角度选择滤光膜和荧光组件材料的组合方案。例如,“蓝色激光+橙色荧光陶瓷(玻璃)+绿色激光”的组合显然也可以用于上述第二实施例。
本发明还能够提供一种激光荧光转换型光源。根据本发明的激光荧光转换型光源至少包括激光光源和波长转换装置。波长转换装置可以是如上所述的任意波长转换装置。激光光源发出的激光从波长转换装置的相对两侧透过入射光窗口的透射膜入射至波长转换装置内。借助于波长转换装置内的表面设置了朗伯反射层的荧光陶瓷,入射的激光在波长转换装置内经过波长转换和/或漫反射,合光成期望的出射光,然后从波长转换装置的端面出射。
尽管在上面已经参照附图说明了根据本发明的波长转换装置和激光荧光转换型光源,但是本发明不限于此,且本领域技术人员应理解,在不偏离本发明随附权利要求书限定的实质或范围的情况下,可以做出各种改变、组合、次组合以及变型。

Claims (21)

  1. 一种波长转换装置,所述波长转换装置包括封装壳体和荧光组件,所述荧光组件含有荧光材料并且能够将入射光转换成不同波长的出射光,其特征在于,
    所述封装壳体被形成为长方体状且具有四个侧面和一个封闭端面,所述封装壳体的与所述封闭端面相对的另一端是开口的出射端,所述封装壳体的所述四个侧面之中的相对的两个侧面是光入射面并且形成有用于透过入射光的入射光窗口,所述入射光窗口的表面设置有允许特定光束透过的光学膜,并且所述四个侧面之中的除所述光入射面之外的另两个侧面的内表面和所述封闭端面的内表面为镜面反射表面;
    所述荧光组件设置在所述封装壳体内部的空腔中,所述荧光组件被形成为薄片状且一端连接至所述封闭端面,所述入射光窗口面对所述荧光组件的上表面和下表面;并且
    所述荧光组件的所述上表面和所述下表面分别设置有至少一个朗伯反射层。
  2. 根据权利要求1所述的波长转换装置,其特征在于,所述荧光组件是由复相荧光陶瓷构成的。
  3. 根据权利要求2所述的波长转换装置,其特征在于,所述复相荧光陶瓷材料为YAG:Ce和Al2O3的复相陶瓷。
  4. 根据权利要求1至3中任一项所述的波长转换装置,其特征在于,所述荧光组件的长度不大于所述封装壳体的长度的3/4。
  5. 根据权利要求1至3中任一项所述的波长转换装置,其特征在于,所述封装壳体是由金属材料制成的。
  6. 根据权利要求1至3中任一项所述的波长转换装置,其特征在于, 所述荧光组件的厚度范围为200~500μm,长度范围为8~15mm,宽度范围为1.5~4mm。
  7. 根据权利要求1至3中任一项所述的波长转换装置,其特征在于,所述朗伯反射层的厚度范围为30~60μm,宽度范围为1~2mm。
  8. 根据权利要求1至3中任一项所述的波长转换装置,其特征在于,布置在所述荧光组件的所述上表面或所述下表面上的各所述朗伯反射层的总面积为所述荧光组件的所述上表面或所述下表面的面积的1/4~1/2。
  9. 根据权利要求1至3中任一项所述的波长转换装置,其特征在于,位于所述荧光组件的所述上表面的所述朗伯反射层与位于所述荧光组件的所述下表面的所述朗伯反射层是交错布置的。
  10. 根据权利要求1至3中任一项所述的波长转换装置,其特征在于,允许特定光束透过的所述光学膜是角度选择滤光膜,所述角度选择滤光膜仅能够透过预定波长范围内的以预定范围内的入射角入射的光束。
  11. 根据权利要求10所述的波长转换装置,其特征在于,所述角度选择滤光膜是只能透过以-8.5°至+8.5°范围内的入射角入射的蓝色光束的角度选择蓝光透射膜。
  12. 根据权利要求1或2所述的波长转换装置,其特征在于,允许特定光束透过的所述光学膜包括第一角度选择滤光膜和第二角度选择滤光膜,所述第一角度选择滤光膜仅能够透过第一波长范围内的以预定范围内的入射角入射的光束,所述第二角度选择滤光膜仅能够透过第二波长范围内的以所述预定范围内的入射角入射的光束,并且
    所述第一角度选择滤光膜隔着所述空腔与所述荧光组件的表面的未设置有所述朗伯反射层的区域相对,所述第二角度选择滤光膜隔着所述空腔与所述朗伯反射层相对。
  13. 根据权利要求12所述的波长转换装置,其特征在于,
    所述第一角度选择滤光膜是只能透过以-8.5°至+8.5°范围内的入射角入射的蓝色光束的角度选择蓝光透射膜,所述第二角度选择滤光膜是只能透过以-8.5°至+8.5°范围内的入射角入射的红色光束的角度选择红光透射膜,并且所述荧光组件是由黄色荧光陶瓷构成的;或者
    所述第一角度选择滤光膜是只能透过以-8.5°至+8.5°范围内的入射角入射的蓝色光束的角度选择蓝光透射膜,所述第二角度选择滤光膜是只能透过以-8.5°至+8.5°范围内的入射角入射的绿色光束的角度选择绿光透射膜,并且所述荧光组件是由橙色荧光陶瓷构成的。
  14. 根据权利要求1或2所述的波长转换装置,其特征在于,所述荧光组件具有多层结构,所述多层结构包括依次层叠的第一荧光层、粘接反射层和第二荧光层,各所述朗伯反射层布置在所述第一荧光层和所述第二荧光层的表面上,
    所述粘接反射层的下表面和上表面分别粘接至所述第一荧光层和所述第二荧光层,并且能够分别反射来自所述第一荧光层和所述第二荧光层的光束。
  15. 根据权利要求14所述的波长转换装置,其特征在于,所述第一荧光层和所述第二荧光层是相同的荧光层。
  16. 根据权利要求14所述的波长转换装置,其特征在于,所述第一荧光层和所述第二荧光层的厚度范围均为200μm~500μm。
  17. 根据权利要求14所述的波长转换装置,其特征在于,位于所述第一荧光层的表面上的所述朗伯反射层与位于所述第二荧光层的表面上的所述朗伯反射层是相对布置的。
  18. 根据权利要求14所述的波长转换装置,其特征在于,允许特定光束透过的所述光学膜包括第一角度选择滤光膜和第二角度选择滤光 膜,所述第一角度选择滤光膜仅能够透过第一波长范围内的以预定范围内的入射角入射的光束,所述第二角度选择滤光膜仅能够透过第二波长范围内的以所述预定范围内的入射角入射的光束,并且
    所述第一角度选择滤光膜隔着所述空腔与所述荧光组件的表面的未设置有所述朗伯反射层的区域相对,所述第二角度选择滤光膜隔着所述空腔与所述朗伯反射层相对。
  19. 根据权利要求18所述的波长转换装置,其特征在于,
    所述第一角度选择滤光膜是只能透过以-8.5°至+8.5°范围内的入射角入射的蓝色光束的角度选择蓝光透射膜,所述第二角度选择滤光膜是只能透过以-8.5°至+8.5°范围内的入射角入射的红色光束的角度选择红光透射膜,并且所述第一荧光层和所述第二荧光层是由黄色荧光陶瓷构成的;或者
    所述第一角度选择滤光膜是只能透过以-8.5°至+8.5°范围内的入射角入射的蓝色光束的角度选择蓝光透射膜,所述第二角度选择滤光膜是只能透过以-8.5°至+8.5°范围内的入射角入射的绿色光束的角度选择绿光透射膜,并且所述第一荧光层和所述第二荧光层是由橙色荧光陶瓷构成的。
  20. 一种激光荧光转换型光源,其特征在于,所述激光荧光转换型光源包括激光装置和如权利要求1至19中任一项所述的波长转换装置,所述激光装置用作所述波长转换装置的入射光源,所述激光装置发出的激光光束能够从所述封装壳体的相对的两个所述光入射面透过所述光学膜照射至所述荧光组件的表面。
  21. 根据权利要求20所述的激光荧光转换型光源,其特征在于,所述激光装置发出的所述激光光束仅照射至所述荧光组件的表面上的未设置有所述朗伯反射层的区域。
PCT/CN2017/114708 2017-07-05 2017-12-06 波长转换装置和激光荧光转换型光源 WO2019006980A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710541651.5A CN109424941B (zh) 2017-07-05 2017-07-05 波长转换装置和激光荧光转换型光源
CN201710541651.5 2017-07-05

Publications (1)

Publication Number Publication Date
WO2019006980A1 true WO2019006980A1 (zh) 2019-01-10

Family

ID=64950550

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/114708 WO2019006980A1 (zh) 2017-07-05 2017-12-06 波长转换装置和激光荧光转换型光源

Country Status (2)

Country Link
CN (1) CN109424941B (zh)
WO (1) WO2019006980A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111025831B (zh) * 2019-12-03 2023-01-13 青岛海信激光显示股份有限公司 激光投影设备及光转换机构

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060203468A1 (en) * 2004-03-30 2006-09-14 Goldeneye, Inc. Light recycling illumination systems with wavelength conversion
CN101436635A (zh) * 2007-11-15 2009-05-20 晶元光电股份有限公司 发光装置及其制造方法
CN101969078A (zh) * 2010-08-06 2011-02-09 白金 一种选择性汇聚的光学器件
US20110044046A1 (en) * 2009-04-21 2011-02-24 Abu-Ageel Nayef M High brightness light source and illumination system using same
CN103968332A (zh) * 2013-01-25 2014-08-06 深圳市光峰光电技术有限公司 一种波长转换装置、发光装置及投影系统
CN104566231A (zh) * 2014-12-24 2015-04-29 杨毅 波长转换装置和发光装置
CN205447345U (zh) * 2016-03-01 2016-08-10 深圳市绎立锐光科技开发有限公司 一种波长转换装置和光源系统

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2477240A1 (en) * 2011-01-18 2012-07-18 Koninklijke Philips Electronics N.V. Illumination device
CN102324424A (zh) * 2011-09-22 2012-01-18 华南师范大学 一种荧光透明陶瓷透镜封装的白光led
CN103807810B (zh) * 2012-11-14 2015-07-29 深圳市光峰光电技术有限公司 波长转换装置及相关发光装置
CN104100933B (zh) * 2013-04-04 2016-08-10 深圳市绎立锐光科技开发有限公司 一种波长转换装置及其制作方法、相关发光装置
CN104446428B (zh) * 2013-09-23 2017-02-15 中国科学院上海硅酸盐研究所 一种用于白光led器件的复相透明陶瓷及其制备方法
CN104516178B (zh) * 2013-09-29 2016-08-10 中强光电股份有限公司 光机模块
WO2016050687A1 (en) * 2014-10-03 2016-04-07 Philips Lighting Holding B.V. A light concentrator for use in a lighting device
CN204256347U (zh) * 2014-12-16 2015-04-08 无锡视美乐激光显示科技有限公司 投影机的双模展现装置
JP2016133671A (ja) * 2015-01-20 2016-07-25 ソニー株式会社 光源装置およびプロジェクタ
CN106918008B (zh) * 2015-12-24 2022-01-14 深圳市绎立锐光科技开发有限公司 一种照明装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060203468A1 (en) * 2004-03-30 2006-09-14 Goldeneye, Inc. Light recycling illumination systems with wavelength conversion
CN101436635A (zh) * 2007-11-15 2009-05-20 晶元光电股份有限公司 发光装置及其制造方法
US20110044046A1 (en) * 2009-04-21 2011-02-24 Abu-Ageel Nayef M High brightness light source and illumination system using same
CN101969078A (zh) * 2010-08-06 2011-02-09 白金 一种选择性汇聚的光学器件
CN103968332A (zh) * 2013-01-25 2014-08-06 深圳市光峰光电技术有限公司 一种波长转换装置、发光装置及投影系统
CN104566231A (zh) * 2014-12-24 2015-04-29 杨毅 波长转换装置和发光装置
CN205447345U (zh) * 2016-03-01 2016-08-10 深圳市绎立锐光科技开发有限公司 一种波长转换装置和光源系统

Also Published As

Publication number Publication date
CN109424941A (zh) 2019-03-05
CN109424941B (zh) 2020-10-16

Similar Documents

Publication Publication Date Title
JP6786546B2 (ja) 波長変換装置、発光装置及び投影システム
TWI494604B (zh) 波長轉換濾光模組與光源系統
JP6852336B2 (ja) 発光装置
US9429830B2 (en) Fluorescent light emitting element and projector
JP6096937B2 (ja) 発光装置及び関連する投影システム
CN107272317B (zh) 荧光芯片及其波长转换装置的制备方法以及显示系统
CN208188568U (zh) 波长转换轮及投影装置
CN104516180A (zh) 光波长转换模块、照明系统以及投影装置
CN103713454A (zh) 发光装置及相关投影系统
CN102707551A (zh) 照明装置和投影装置
US10585293B2 (en) Light source and display system
US20220186910A1 (en) Light Source System and Lighting Apparatus
CN105022218A (zh) 照明装置和投影装置
US20170315431A1 (en) Lighting device including pump radiation source
CN102540656A (zh) 发光装置及投影系统
CN210072201U (zh) 波长转换模块以及投影装置
WO2020052228A1 (zh) 波长转换装置及光源系统
CN113671780A (zh) 发光单元、光源系统和激光投影设备
WO2019006980A1 (zh) 波长转换装置和激光荧光转换型光源
CN109424943B (zh) 波长转换装置和激光荧光转换型光源
CN113671776B (zh) 发光单元、光源系统和激光投影设备
CN107728412B (zh) 一种光源装置及相关投影系统
WO2019006979A1 (zh) 波长转换装置和激光荧光转换型光源
JP2021176152A (ja) 発光装置
JP6773156B2 (ja) 発光装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17916603

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17916603

Country of ref document: EP

Kind code of ref document: A1