WO2020082690A1 - 一种适用于全海深的海底沉积物力学特性测量系统 - Google Patents

一种适用于全海深的海底沉积物力学特性测量系统 Download PDF

Info

Publication number
WO2020082690A1
WO2020082690A1 PCT/CN2019/080722 CN2019080722W WO2020082690A1 WO 2020082690 A1 WO2020082690 A1 WO 2020082690A1 CN 2019080722 W CN2019080722 W CN 2019080722W WO 2020082690 A1 WO2020082690 A1 WO 2020082690A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
underwater
probe
frame
penetration
Prior art date
Application number
PCT/CN2019/080722
Other languages
English (en)
French (fr)
Inventor
贾永刚
张红
刘晓磊
单红仙
Original Assignee
中国海洋大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国海洋大学 filed Critical 中国海洋大学
Priority to JP2021522500A priority Critical patent/JP6985782B1/ja
Priority to US16/632,509 priority patent/US11110997B2/en
Priority to EP19876753.5A priority patent/EP3855155B1/en
Publication of WO2020082690A1 publication Critical patent/WO2020082690A1/zh

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D1/00Investigation of foundation soil in situ
    • E02D1/02Investigation of foundation soil in situ before construction work
    • E02D1/04Sampling of soil
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47BTABLES; DESKS; OFFICE FURNITURE; CABINETS; DRAWERS; GENERAL DETAILS OF FURNITURE
    • A47B91/00Feet for furniture in general
    • A47B91/02Adjustable feet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/16Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving additional lift from hydrodynamic forces
    • B63B1/24Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving additional lift from hydrodynamic forces of hydrofoil type
    • B63B1/28Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving additional lift from hydrodynamic forces of hydrofoil type with movable hydrofoils
    • B63B1/30Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving additional lift from hydrodynamic forces of hydrofoil type with movable hydrofoils retracting or folding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B22/00Buoys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B22/00Buoys
    • B63B22/003Buoys adapted for being launched from an aircraft or water vehicle;, e.g. with brakes deployed in the water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D1/00Investigation of foundation soil in situ
    • E02D1/02Investigation of foundation soil in situ before construction work
    • E02D1/022Investigation of foundation soil in situ before construction work by investigating mechanical properties of the soil
    • E02D1/025Investigation of foundation soil in situ before construction work by investigating mechanical properties of the soil combined with sampling
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B15/00Supports for the drilling machine, e.g. derricks or masts
    • E21B15/02Supports for the drilling machine, e.g. derricks or masts specially adapted for underwater drilling
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B25/00Apparatus for obtaining or removing undisturbed cores, e.g. core barrels or core extractors
    • E21B25/16Apparatus for obtaining or removing undisturbed cores, e.g. core barrels or core extractors for obtaining oriented cores
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B25/00Apparatus for obtaining or removing undisturbed cores, e.g. core barrels or core extractors
    • E21B25/18Apparatus for obtaining or removing undisturbed cores, e.g. core barrels or core extractors the core receiver being specially adapted for operation under water
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • E21B49/001Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells specially adapted for underwater installations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M7/00Details of attaching or adjusting engine beds, frames, or supporting-legs on foundation or base; Attaching non-moving engine parts, e.g. cylinder blocks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L7/00Measuring the steady or quasi-steady pressure of a fluid or a fluent solid material by mechanical or fluid pressure-sensitive elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/10Devices for withdrawing samples in the liquid or fluent state
    • G01N1/12Dippers; Dredgers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N11/00Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties
    • G01N11/10Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by moving a body within the material
    • G01N11/12Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by moving a body within the material by measuring rising or falling speed of the body; by measuring penetration of wedged gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N11/00Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties
    • G01N11/10Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by moving a body within the material
    • G01N11/14Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by moving a body within the material by using rotary bodies, e.g. vane
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/30Investigating strength properties of solid materials by application of mechanical stress by applying a single impulsive force, e.g. by falling weight
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/40Investigating hardness or rebound hardness
    • G01N3/42Investigating hardness or rebound hardness by performing impressions under a steady load by indentors, e.g. sphere, pyramid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/24Earth materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S1/00Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
    • G01S1/70Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith using electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/38Seismology; Seismic or acoustic prospecting or detecting specially adapted for water-covered areas
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V9/00Prospecting or detecting by methods not provided for in groups G01V1/00 - G01V8/00
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B11/00Transmission systems employing sonic, ultrasonic or infrasonic waves
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B13/00Transmission systems characterised by the medium used for transmission, not provided for in groups H04B3/00 - H04B11/00
    • H04B13/02Transmission systems in which the medium consists of the earth or a large mass of water thereon, e.g. earth telegraphy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B2207/00Buoyancy or ballast means
    • B63B2207/02Variable ballast or buoyancy
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/10Devices for withdrawing samples in the liquid or fluent state
    • G01N2001/1031Sampling from special places
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/003Generation of the force
    • G01N2203/0032Generation of the force using mechanical means

Definitions

  • the invention belongs to the technical field of ocean observation, in particular, it relates to a measuring system for detecting the mechanical properties of seabed sediments.
  • the measuring device for the mechanical characteristics of submarine sediments continues to develop, and the working area continues to develop from shallow seas to deep seas.
  • the existing measurement devices are mainly deployed with cables, which can realize long-term stable observation on the seabed with a depth of less than 6000m.
  • the working water depth increases, especially when the observation area is the Haidou Abyss, the work will not be carried out due to the limitation of the length of the geological cable on the scientific research ship.
  • the existing working water depth is greater than 6000
  • the in-situ measurement device for the mechanical properties of sediment of m is deployed by carrying a submersible (such as the "Jiaolong").
  • the submersible is expensive to use once and cannot meet the task requirements of long-term continuous operation, so it is difficult to popularize and apply it.
  • the purpose of the present invention is to provide a measuring system for the mechanical characteristics of seabed sediments suitable for the whole sea depth.
  • the underwater measuring device adopts a cableless deployment method, which can measure the mechanical characteristics of seabed sediments of any depth Automatic recycling reduces the cost of scientific research.
  • a measurement system for the mechanical characteristics of submarine sediments suitable for the whole sea including a water monitoring unit and an underwater measurement device
  • the underwater measurement device includes an observation platform and a measurement mechanism mounted on the observation platform;
  • the observation The platform includes a frame-shaped body and a floating body, a wing plate, a height measuring device, a float ball cabin, a leveling mechanism, a counterweight, a release mechanism, and a hydroacoustic communication machine mounted on the frame-shaped body; wherein the height measuring device It is used to detect the height of the underwater measuring device from the bottom of the sea;
  • the floating ball cabin is in the shape of a floating ball, which is used to seal the system circuit while providing buoyancy.
  • the system circuit communicates with the water monitoring unit through the underwater acoustic communication machine to upload water
  • the leveling mechanism adjusts the posture of the frame-type main body to make the frame-type main body stand on the seabed sediments smoothly; after completion of the measurement operation, the water monitoring unit issues a load dumping instruction to control the release mechanism to abandon the configuration Weight, and control the wing to retract, so that the underwater measurement device floats out of the water surface under the action of the buoyancy of the floating body;
  • the measurement mechanism includes a conical penetration measurement mechanism for measuring the mechanical characteristics of submarine sediments, a spherical penetration One or more of
  • a slow-down oil cylinder is also provided in the observation platform, one end of the slow-down oil cylinder is hinged with the frame-shaped body, and the other end is hinged with the wing plate, and the system circuit receives water After the slow down command or the load dump command issued by the monitoring unit, the piston rod of the slow down cylinder is controlled to expand and contract to drive the wing plate to expand or retract.
  • wing plates are preferably arranged around the frame-shaped main body, and two slow down cylinders are preferably hinged on each wing plate.
  • the configuration of two slow-falling oil cylinders can provide greater driving force for the wing plate to overcome the greater seawater pressure and adapt to the requirements of deep-sea operations.
  • the present invention is provided with a plurality of leveling feet and a plurality of leveling cylinders in the leveling mechanism, the leveling feet are located at the bottom of the frame-shaped body, each The leveling feet are connected to a leveling cylinder; an attitude sensor is installed in the floating ball cabin to detect the attitude of the frame-type body and generate attitude data to send to the system circuit; the system circuit arrives at the frame-type body At the bottom of the sea, the leveling oil cylinder is controlled to drive the leveling feet to expand and contract according to the received posture data, so as to adjust the posture of the frame-shaped body so that it can stand on the seabed stably and reach a horizontal state.
  • the present invention is provided with a release cylinder, a fixed pulley, a cable and a hook in the release mechanism;
  • the fixed pulley is installed on the frame-shaped body, on which is wound the The cable, and one end of the cable is connected to the release cylinder and the other end is connected to the hook;
  • the hook is extended into the hanging hole of the counterweight by default, and the counterweight is hooked to increase the weight of the observation platform and make the underwater measurement device self Descending to the bottom of the sea; when recovering the underwater measuring device, the system circuit controls the release cylinder to lower the cable, so that the hook rotates under its own weight and disengages from the hanging hole of the counterweight, so that the counterweight is separated from the frame body and released Counterweight.
  • the floating body preferably includes a floating ball and a buoyancy plate, which are installed on the top of the frame-shaped main body, and the floating ball preferably includes a plurality of and arranged in an array structure.
  • the present invention is also equipped with an iridium star beacon and an optical beacon on the top of the frame-shaped body.
  • the iridium star beacon is measured underwater After exiting the water, a positioning signal is transmitted to the water monitoring unit to inform the scientific research vessel of the geographical coordinates of the underwater measuring device; the optical beacon automatically emits visible light after the underwater measuring device emits water, instructing the scientific research vessel to find its location.
  • the cone penetration measurement mechanism includes a bracket, a cone probe, a probe rod connected to the cone probe, and driving the probe rod to carry the cone probe
  • the bracket is installed on the frame-type body, and the pore water pressure sensor and the penetrating resistance sensor are installed inside the cone probe.
  • the spherical penetration measurement mechanism includes a bracket, a spherical probe, a probe connected to the spherical probe, and an penetration that drives the probe to carry the spherical probe up and down
  • the bracket is installed on the frame-type body, and the pore water pressure sensor and the penetration resistance sensor are installed inside the spherical probe.
  • the cross plate shear measuring mechanism includes a bracket, a cross plate probe, a probe rod connected to the cross plate probe, and the probe rod is driven to carry the cross plate probe
  • a penetrating drive mechanism that moves up and down and a shear drive device that drives the rotation of the cross plate probe, the bracket is mounted on the frame-type body, and a shear drive device for detecting the shear torque of the cross plate probe is installed in the shear drive device Torque sensor.
  • the sampling mechanism includes a bracket, a sampling tube, a penetration drive mechanism that drives the sampling tube to move up and down, and a hydraulic device that extracts submarine sediment to the sampling tube, the bracket Installed on the frame body.
  • the system circuit includes a data collection unit, a control unit, a power drive unit, and a battery; the battery supplies power to the data collection unit, the control unit, and the power drive unit; and the data collection unit collects the pore water pressure Sensors, penetrating resistance sensors and torque sensors output the inductive signals and transmit them to the control unit for calculating the mechanical characteristics of submarine sediments; the power drive unit is connected to the control unit for generating underwater measurement devices The required driving voltage.
  • the penetration drive mechanism includes a penetration oil cylinder, a pulley block, a steel cable wound on the pulley block, and a sliding plate drawn by the steel cable;
  • the pulley block includes a fixed pulley block A movable pulley block connected to a piston rod penetrating into the oil cylinder;
  • the system circuit controls the expansion and contraction of the piston rod penetrating into the cylinder to drive the movable pulley block to move up and down, thereby driving the steel cable to draw the skateboard Move up and down.
  • the probe rod in the conical penetration measurement mechanism, the probe rod in the spherical penetration measurement mechanism, and the sampling tube in the sampling mechanism are fixedly installed on the slide plates of their respective penetration drive mechanisms, and the probe rod or the sampling tube is driven by the slide plate Insert into or retrieve from submarine sediments.
  • the shear drive device includes a motor and a coupling, the motor is installed on a slide plate of the cross plate shear measurement mechanism penetrating the drive mechanism, and receives the The driving voltage, the rotating shaft of the motor is connected to the probe shaft connected to the cross plate probe through the coupling, and the cross plate probe is driven to rotate, destroying the seabed soil body, so as to achieve the measurement of the shear torque required for the soil body damage .
  • the hydraulic device includes a hydraulic cylinder and a sealing plug, the hydraulic cylinder is installed on a sliding plate of a driving mechanism in the sampling mechanism, and the sealing plug is located in the sampling tube
  • the piston rod of the hydraulic cylinder is connected to the hydraulic circuit to control the hydraulic cylinder to drive the sealing plug to move up to reduce the air pressure in the sampling tube to extract the sediment on the seabed.
  • the present invention preferably installs four floating ball compartments, and separates the data collection unit, control unit, power drive unit and battery in four different floating ball compartments, each floating ball A watertight connector is installed on the cabin, and a waterproof cable is connected between the watertight connectors. Circuits built in different floating ball cabins are electrically connected through the waterproof cable to transmit power and signals.
  • the present invention preferably uses transparent glass to make the floating ball compartment, and a space for installing a camera or a video camera is reserved in the floating ball compartment, thereby eliminating the need for additional mounting dedicated to sealing on the observation platform
  • the transparent box of the camera or video camera then achieves the purpose of simplifying the platform structure and installation operation.
  • the present invention sets the system circuit after the underwater measurement device ends the measurement operation and delays for a period of time, if it has not received the load dump command issued by the water monitoring unit, the water is considered The sound communicator is abnormal.
  • the system circuit controls the release mechanism to discard the counterweight and perform the recovery operation; if the system circuit fails, it is impossible to send a control signal to the release mechanism, you can set up a mechanism in the release mechanism A timing trigger device, the mechanical timing trigger device starts timing when the underwater measuring device is dropped, and automatically triggers the release mechanism to discard the counterweight when the timing reaches a set maximum time threshold.
  • the seabed sediment mechanical characteristic measurement system of the present invention can realize the cableless deployment of the underwater measurement device without the limitation of the length of the cable, and the working water depth can reach 11,000 meters or more, so it can be realized for the seabed sediment at the full sea depth In-situ measurement of mechanical properties to meet various scientific research needs.
  • the present invention can ensure that the underwater measuring device sinks and lands smoothly on its own by providing a slow-down mechanism and a release mechanism on the underwater measuring device, and can also ensure that the underwater measuring device can be successfully dumped and recovered on its own without the need for scientific research ships and With the assistance of submersibles, it is possible to independently carry out long-term continuous observation operations on the seabed at any depth, providing a comprehensive guarantee for the effective conduct of marine research.
  • FIG. 1 is a schematic structural view of an embodiment of an observation platform in a seabed sediment mechanical characteristic measurement system proposed by the present invention
  • FIG. 2 is a schematic structural view of an embodiment of the frame-shaped body in FIG. 1;
  • FIG. 3 is a schematic structural view of an embodiment of the counterweight in FIG. 1;
  • FIG. 4 is a schematic structural view of an embodiment of a counterweight and release mechanism
  • FIG. 5 is a schematic structural view of an embodiment of an underwater measurement device in a system for measuring the mechanical characteristics of submarine sediments at the full sea depth proposed by the present invention
  • FIG. 6 is a schematic structural view of an embodiment of the tapered penetration measuring mechanism in FIG. 5;
  • FIG. 7 is a schematic structural view of an embodiment of the spherical penetration measuring mechanism in FIG. 5;
  • FIG. 8 is a schematic structural view of an embodiment of the cross plate shear measuring mechanism in FIG. 5;
  • FIG. 9 is a schematic structural diagram of an embodiment of the sampling mechanism in FIG. 5;
  • FIG. 10 is a schematic structural view of an embodiment of the penetration drive mechanism in FIG. 6;
  • FIG. 11 is a circuit block diagram of an embodiment of a system for measuring the mechanical characteristics of submarine sediments applied to the whole sea depth proposed by the present invention.
  • the seabed sediment mechanical property measurement system of this embodiment includes two parts, a water monitoring unit and an underwater measurement device, as shown in FIG. 11.
  • the water monitoring unit can be placed on the scientific research ship, including the host computer and underwater acoustic communication machine.
  • the host computer communicates with the underwater measurement device through a hydroacoustic communication machine to realize real-time monitoring of the running trajectory of the underwater measurement device, the height from the seabed, the underwater working environment, and the working state, and to control the water by issuing remote commands
  • the lower measurement device performs operations such as slow descent, penetration, and recovery, and processes, displays, and stores and manages the measurement data of the mechanical characteristics of the seabed sediment uploaded by the underwater measurement device.
  • the underwater measurement device adopts a cableless deployment method, which can sink to the bottom of the sea at any depth, measure the mechanical characteristics of the seabed sediments, and float up to recover after the measurement task, to achieve reuse.
  • the underwater measurement device is mainly composed of an observation platform and a measurement mechanism mounted on the observation platform, as shown in FIG. 5.
  • the observation platform is a cableless seabed observation platform, which is mainly composed of a frame-shaped body 10 and a floating body 20, a wing plate 30, a height measuring device, a float ball cabin 40, a leveling mechanism 50,
  • the counterweight 60, the release mechanism 70 and the underwater acoustic communication machine 80 are composed of other parts, as shown in FIG.
  • the measuring mechanism is mainly a variety of measuring instruments used to measure the mechanical properties of seabed sediments, including but not limited to one of the cone penetration measuring mechanism 100, the spherical penetration measuring mechanism 200, and the cross plate shear measuring mechanism 300 Or more, it may further include a sampling mechanism 400, which is used to collect submarine sediment samples for future laboratory research.
  • the frame-shaped body 10 is used as the load-bearing body. It is preferably welded with titanium alloy material and high-strength aluminum alloy. While ensuring the bearing capacity and compressive strength, the overall weight of the load-bearing body 10 is reduced as much as possible for easy recycling .
  • the frame-shaped main body 10 is preferably designed into a rectangular cage structure, as shown in FIG. 2, so as to facilitate the installation of different measuring mechanisms and observation equipment thereon.
  • the floating body 20 can be installed on the top of the frame-shaped body 10 to provide the measuring device with sufficient upward buoyancy when the measuring device is recovered, so that the measuring device can float out of the water by itself .
  • the floating body 20 is preferably formed by combining a floating ball 21 and a buoyancy plate 22.
  • the top surface of the frame-shaped body 10 may be designed in a rectangular grid shape, and each floating grid 20 is installed with a floating ball 20 to arrange the floating balls 20 to form an array structure.
  • Four mounting bars 12 are welded to each rectangular grid 11 respectively, and each mounting bar 12 forms a triangle with one of the corners of the rectangular grid 11. Installing the mounting bar 12 can not only strengthen the rectangular grid 11 Function, and can facilitate the installation and fixation of the floating ball 20 in the rectangular grid 11.
  • the buoyancy plate 22 is wrapped around the top of the frame-shaped body 10 to increase the buoyancy while also buffering the impact force.
  • the wing plate 30 is installed in the middle of the frame-shaped body 10, below the buoyancy plate 22, and the distance between the wing plate 30 and the bottom of the frame-shaped body 10 is preferably 2/3 of the total height of the frame-shaped body 10, which can improve the mechanical The stability of the structure.
  • four wing plates 30 are preferably installed on the frame-shaped body 10 and distributed around the frame-shaped body 10.
  • Each wing panel 30 is designed as a streamlined wing surface, and the inside is hinged with the frame-shaped body 10.
  • the buffer cylinder 31 is used to drive the wing plate 30 to expand outward or retract inwardly relative to the frame-type body 10, specifically, one end (eg, the bottom of the cylinder) of the slow-down cylinder 31 can be hinged with the frame-type body 10 and the other (For example, the piston rod 32) is hinged with the bottom surface of the wing plate 30.
  • the piston rod 32 of the slow down cylinder 31 is controlled to extend, and the wing plate 30 can be pushed to expand to reduce the descending speed of the measuring device.
  • the piston rod 32 that controls the slow down cylinder 31 is retracted, and the wing plate 30 can be pulled back to reduce the descending resistance of the measuring device, so that the measuring device can quickly sink into the seabed.
  • Articulating the lowering oil cylinder 31 with the frame body 10 can make the lowering oil cylinder 31 automatically adjust the angle between the lower body 30 and the frame body 10 following the expansion or retraction of the wing 30 to adapt to the movement trajectory of the wing 30.
  • the extension length of the piston rod 32 of the slow-down cylinder 31 can be adjusted to adjust the deployment angle of the wing plate 30, which in turn can achieve the effect of multi-level speed-regulation and slow-down to realize the measurement device on the seabed Smooth landing.
  • this embodiment is preferably configured separately for each wing plate 30 As shown in FIG. 1, the two lowering oil cylinders 31 are hinged on the left and right sides of the bottom surface of the wing panel 30 to provide greater driving force for the wing panel 30.
  • the floating circuit module 40 is designed to encapsulate the system circuit in this embodiment.
  • the floating ball compartment 40 is preferably made of transparent glass, designed in the shape of a floating ball, and is installed on the orifice plate 13 at the bottom of the frame-shaped body 10.
  • the cabin used for packaging the system circuit is designed into a floating ball shape, which can provide auxiliary buoyancy for the measuring device while meeting the packaging requirements.
  • the float ball compartment 40 to be transparent, when a camera or video equipment is needed, the camera or video camera can be directly built into the float ball compartment 40 without the need to additionally mount a dedicated camera or camera on the observation platform.
  • the box of the camera can simplify the overall structure of the observation platform.
  • the present embodiment preferably installs four floating ball compartments 40 on the orifice plate 13 at the bottom of the frame-shaped body 10, so as to respectively package different functional circuits in the system circuit.
  • the system circuit of this embodiment mainly includes a data acquisition unit, a control unit, a power drive unit, and a battery.
  • the functional circuits of these four parts are divided into four different floating ball compartments 40 to form Data collection cabin, control cabin, power drive cabin and battery cabin.
  • At least one watertight connector 41 is provided on each floating ball compartment 40 respectively, a waterproof cable is connected between the watertight connectors 41 on different floating ball compartments 40, and the functional circuits built into the different floating ball compartments are electrically connected through the waterproof cable. Connect to transmit power, analog and / or digital signals.
  • the height measuring device (not shown in the figure) is preferably independent of the system circuit, is arranged on the frame-shaped body 10, and is connected to the data acquisition unit.
  • the height measuring device may be an altimeter, an acoustic rangefinder, etc., which uses the height measuring device to detect the height of the frame-type body 10 from the bottom of the sea, and generates an altitude detection signal to send to the data collection unit for processing to meet the data received by the control unit Format, sent to the control unit to achieve real-time monitoring of the lowering position of the measuring device.
  • a space for installing a camera or a camera may also be reserved in the data collection cabin, and the image data captured by the camera or the camera may be collected by the data collection unit and sent to the control unit.
  • the control cabin is mainly built with a control unit and an attitude sensor (such as a three-axis gyroscope, a three-axis accelerometer, a three-axis electronic compass, etc.) connected to the control unit, a temperature sensor, a humidity sensor, a barometric pressure sensor, a water leak sensor, etc.
  • the component is used to detect the tilt angle of the observation platform after landing and the environmental parameters in the floating ball compartment 40.
  • the control unit may include a controller (such as CPU, MCU, DSP, etc.) and a memory.
  • the controller serves as the control core of the entire system circuit, performs coordinated control on each functional circuit, and sends the processed measurement data to the memory for storage .
  • the power drive cabin is mainly built with a power drive unit, such as a motor drive circuit for driving the motor to operate, and is used to externally connect the measurement mechanism mounted on the observation platform.
  • a power drive unit such as a motor drive circuit for driving the motor to operate
  • the control unit can output a control signal to the power drive unit, and then generate a driving voltage to control the operation of the motor in the measuring mechanism to carry out the measurement of the mechanical properties of the seabed sediment or Sampling operations.
  • a lithium battery and a seawater battery are mainly built in the battery compartment to provide power supply for the observation platform and the measurement mechanism mounted on the observation platform.
  • the use of seawater batteries can meet the electricity demand of the measuring device for continuous operation under water for a long time.
  • a leveling mechanism 50 is installed on the bottom of the frame-shaped body 10, including a leveling foot 51 and a leveling cylinder 52, As shown in Figure 1.
  • the leveling cylinder 52 may be installed on the orifice plate 13 at the bottom of the frame-shaped main body 10 with the piston rod facing downward, and the leveling foot 51 may be connected. By adjusting the extension length of the piston rod of the leveling cylinder 52 to change the posture of the frame type body 10, the frame type body 10 is adjusted to a horizontal state.
  • a counterweight 60 is attached to the bottom of the frame-shaped body 10, a release mechanism 70 is attached to the frame-shaped body 10, and the counterweight 60 is hooked by the release mechanism 70.
  • the weight pull-down measuring device with a weight of 60 is used to sink into the seabed, and the mechanical properties of the sediment on the seabed are measured.
  • the control release mechanism 70 discards the counterweight 60 to separate the counterweight 60 from the frame body 10. Afterwards, the measuring device floated up under the joint action of the float 21, the buoyancy plate 22, and the float 40, floating out of the sea, waiting for the scientific research vessel to salvage and recover.
  • a fixed bracket 71 is installed on the frame-type main body 10, as shown in FIG. 1, a fixed pulley 72 and a hook 73 are installed on the fixed bracket 71.
  • a cable 74 is wound around the fixed pulley 72, and one end of the cable 74 is connected to the hook 73, and the other end is connected to the release cylinder 75.
  • the release cylinder 75 may be installed on the frame-type main body 10, and the piston rod of the release cylinder 75 is controlled to expand and contract, and the cable 74 is pulled up or down, and then the angle of the hook 73 is changed to achieve the hook 60 of the counterweight 60. Specifically, as shown in FIGS.
  • a hanging hole 61 can be opened on the counterweight 60.
  • the release cylinder 75 controls the piston rod to retract, and the cable 74 is pulled up, so that the hook 73 faces upward and Reach into the hanging hole 61 of the counterweight 60 to lift the counterweight 60.
  • the control release cylinder 75 extends its piston rod and lowers the cable 74.
  • the hook 73 rotates by a certain angle under the effect of its own gravity, and then detaches from the hanging hole 61 of the counterweight 60, as shown in FIG. 4, and the counterweight 60 is released.
  • the measuring device floats under the action of the floating body 20 and the floating ball compartment 40, and the counterweight 60 is discarded to realize recovery.
  • the counterweight 60 and the release mechanism 70 are preferably configured with four sets, which are arranged at the four bottom corners of the rectangular frame-shaped body 10 to balance the lower applied to the frame-shaped body 10 Tension to ensure the stability of the underwater measuring device during the dive.
  • a hydraulic station 14 is also installed on the observation platform, as shown in FIG. It is in the center position and communicates with the slow-down cylinder 31, the leveling cylinder 52 and the release cylinder 75 through different oil pipes. Solenoid valves are installed on the oil pipes connected to each oil cylinder.
  • the solenoid valve on the oil pipe connected to the controlled oil cylinder can be controlled to open through the system circuit, and then the hydraulic station 14 is controlled to the controlled oil cylinder Supply oil or pump oil to control the extension or retraction of the piston rod of the controlled oil cylinder, thus meeting the working needs of the controlled oil cylinder.
  • an iridium star beacon 15 and an optical beacon 16 are also installed on the top of the frame-shaped body 10, as shown in FIG. 1.
  • the Iridium beacon 15 can automatically transmit positioning signals, such as GPS signals, after the underwater measurement device is out of the water, and then send the geographic coordinates of the underwater measurement device to the water monitoring unit, so that the scientific research ship can quickly search in the sea The underwater measuring device.
  • the optical beacon 16 can automatically emit visible light after the underwater measuring device is out of water, and give an instruction to the scientific research ship in the form of an optical signal, so that the scientific research ship can find its location, and the underwater measuring device can be guaranteed even at night. Safe and fast recycling.
  • a hoisting mechanism 17 is also installed on the top of the frame-shaped main body 10 for cooperating with the salvage equipment on the scientific research ship, so as to facilitate the delivery and salvage of the underwater measurement device.
  • the cable can be used to connect the cable on the scientific research ship to the lifting mechanism 17 of the observation platform, and the underwater measuring device can be laid and recovered through the cable to make this embodiment
  • the underwater measurement device can support both cable and cableless deployment methods to expand the applicable field of the measurement system.
  • the underwater measurement device of this embodiment a variety of types of measurement mechanisms for measuring the mechanical properties of submarine sediments can be selected, and they are installed on the orifice plate 13 at the bottom of the frame-shaped body 10, and are controlled by various types of measurement mechanisms to penetrate In submarine sediments, the mechanical properties of submarine sediments can be detected.
  • the conical penetration measurement mechanism 100, the spherical penetration measurement mechanism 200, the cross plate shear measurement mechanism 300, and the sampling mechanism 400 are mounted on the observation platform as an example, as shown in FIG. 5.
  • the cone penetration measurement mechanism 100 of this embodiment mainly includes a bracket 110, a cone probe 101, a probe rod 102 connected to the cone probe 101, and a penetration drive that drives the probe rod 102 to carry the cone probe 101 up and down
  • the mechanism 120 is shown in FIG. 6.
  • the bracket 110 is mounted on the frame-type body 10 of the observation platform, and the penetration drive mechanism 120 is mounted on the bracket 110.
  • the penetration drive mechanism 120 includes a penetration oil cylinder 121, a sliding plate 122, a pulley block, a steel cable 123, and the like, as shown in FIGS. 6 and 10.
  • the penetration cylinder 121 is installed on the base 111 of the bracket 110.
  • the pulley group includes a fixed pulley group and a movable pulley group.
  • the movable pulley group is installed on a carrier 132, and the carrier 132 is installed on the penetration cylinder 121. On the piston rod, the penetration cylinder 121 drives the pulley block to move up and down.
  • the fixed pulley group includes four fixed pulleys: a first fixed pulley 124 and a second fixed pulley 125 are installed on the base 111 of the bracket 110, and a third fixed pulley 126 and a fourth fixed pulley 127 are installed on the top plate 112 of the bracket 110 In the moving pulley group, two shafts are connected and the upper moving pulley 128 and the lower moving pulley 129 are in an up-down position relationship.
  • the steel cable 123 is wound on the pulley group, and the winding sequence is: first fixed pulley 124 ⁇ lower movable pulley 129 ⁇ second fixed pulley 125 ⁇ third fixed pulley 126 ⁇ upper movable pulley 128 ⁇ fourth fixed pulley 127. Fix both ends of the steel cable 123 on the bracket 110, and install the sliding plate 122 on the steel cable 123, preferably on the steel cable between the second fixed pulley 125 and the third fixed pulley 126, using steel The cable 123 pulls the sliding plate 122 to move up and down.
  • a guide rail 130 may be further installed on the bracket 110, and the slide plate 122 is supported by the guide rail 130 so that the slide plate 122 can move up and down along the guide rail 130.
  • a clamping mechanism 131 is installed on the sliding plate 122, and the upper half of the probe rod 102 is clamped by the clamping mechanism 131 so that the probe rod 102 can follow the sliding plate 122 to move up and down.
  • the cone probe 101 is installed at the lower end of the probe rod 102, and the cone probe 101 is extended out of the base 111 of the bracket 110 with the cone head facing downward.
  • the control unit in the system circuit When it is necessary to use the cone penetration measuring mechanism 100 to measure the mechanical characteristics of the seabed sediments, the control unit in the system circuit outputs a control signal to control the hydraulic station 14 to supply hydraulic oil to the penetration cylinder 121, so that the penetration of the penetration cylinder 121
  • the piston rod extends and controls the pulley block to move up.
  • the down pulley 129 moves up, the steel cable 123 located between the second fixed pulley 125 and the third fixed pulley 126 is moved down, and then the sliding plate 123 is driven to move down, driving the probe rod 102 to carry the tapered probe 101 down and penetrate into In the bottom sediments.
  • a displacement sensor (not shown in the figure) may be further installed on the third fixed pulley 126, and the penetration depth of the conical probe 101 in the seabed sediment is calculated by detecting the rotation angle of the third fixed pulley 126.
  • the data acquisition unit in the system circuit can be used to receive the detection signal output by the displacement sensor and send it to the control unit, where the penetration depth of the cone probe 101 is calculated.
  • the cone water pressure sensor and penetration resistance sensor can be encapsulated inside the cone probe 102.
  • the cone water probe 102 detects the flow state of the seabed sediment and the magnitude of the water pressure through the pore water pressure sensor
  • the penetration resistance sensor detects the resistance to the cone probe 102.
  • the pore water pressure sensor and the penetrating resistance sensor send the generated sensing signal to the data acquisition unit in the system circuit, and then transmit it to the control unit after processing to calculate the mechanical characteristics of the seabed sediment.
  • the specific calculation method is the prior art, and this embodiment does not make a specific description.
  • the control unit combines the detection signals output by the displacement sensor, pore water pressure sensor and penetration resistance sensor to calculate the mechanical characteristics of the seabed sediment at different depths.
  • control unit After the mechanical characteristic measurement is completed, the control unit outputs a control signal to control the hydraulic station 14 to draw back hydraulic oil, retract the piston rod penetrating the cylinder 121, pull down the pulley block, and then locate the second fixed pulley 125 and the third fixed pulley
  • the steel cable 123 between 126 pulls the sliding plate 122 upward, drives the probe rod 102 to carry the conical probe 101 up, pulls out from the seabed sediment, restores to the original state, and completes the measurement task.
  • the spherical penetration measurement mechanism 200 of this embodiment mainly includes a bracket 210, a spherical probe 201, a probe 202 connected to the spherical probe 201, and a penetration drive mechanism 220 that drives the probe 202 to move the spherical probe 201 up and down, such as As shown in FIG. 7, the pore water pressure sensor and the penetration resistance sensor are enclosed in the spherical probe 201.
  • the connection relationship of the components in the spherical penetration measuring mechanism 200, the specific structure and working principle of the penetration driving mechanism 220 are the same as those of the above-mentioned cone penetration measuring mechanism 100, and this embodiment will not be described here.
  • the cross plate shear measurement mechanism 300 of this embodiment includes a bracket 310, a cross plate probe 301, a probe rod 302 connected to the cross plate probe 301, and a penetration drive mechanism that drives the probe rod 302 to carry the cross plate probe 301 up and down 320 and a shear driving device 330 that drives the cross plate probe 301 to rotate, as shown in FIG. 8.
  • the bracket 310 is mounted on the frame-type main body 100
  • the penetration drive mechanism 320 is mounted on the bracket 310
  • the specific structure and working principle of the penetration drive mechanism 320 are the same as the above-mentioned cone penetration measurement mechanism 100
  • the penetration drive mechanism 120 of the present embodiment will not be described in detail here.
  • the shear driving device 330 is installed on the sliding plate 322 penetrating into the driving mechanism 320, and the sliding driving device 330 is driven to move up and down by the sliding plate 322.
  • the shear driving device 330 is provided with a motor 331 and a coupling 332.
  • the motor 331 is mounted on the sliding plate 322 and receives the driving voltage output by the power driving unit in the system circuit to control the operation of the motor 331.
  • the rotating shaft of the motor 331 is connected to the probe shaft 302 through the coupling 332, and the cross plate probe 301 is driven to rotate by the motor 331.
  • a torque sensor is installed in the shear driving device 330 to detect the shear torque generated by the cross plate probe 301 when the soil structure of the submarine sediment is rotated and destroyed.
  • the working principle of the cross plate shear measuring mechanism 300 is: first, the slide unit 322 penetrating into the driving mechanism 320 is controlled by the control unit in the system circuit to carry the shear driving device 330 down, and at the same time, the shear driving device 330 is activated.
  • the motor 331 drives the cross plate probe 301 to rotate, so that the cross plate probe 301 penetrates into the seabed sediment while rotating.
  • the displacement signal detected by the displacement sensor and the torque signal detected by the torque sensor are sent to the data collection unit in the system circuit, processed by the data collection unit, and then transmitted to the control unit to calculate the mechanical properties of the seabed sediment at different depths.
  • the sampling mechanism 400 of this embodiment includes a bracket 410, a sampling tube 401, a penetration driving mechanism 420 that drives the sampling tube 401 to move up and down, and a hydraulic device 430 that extracts submarine sediment to the sampling tube 401, as shown in FIG.
  • the bracket 410 is mounted on the frame type body 100
  • the penetration drive mechanism 420 is mounted on the bracket 410
  • the specific structure and working principle of the penetration drive mechanism 420 are the same as the above-mentioned cone penetration measurement mechanism
  • the penetration drive mechanism 120 in 100 is not described in detail in this embodiment.
  • the hydraulic device 430 and the sampling tube 401 are installed on the sliding plate 422 penetrating into the driving mechanism 420, and the hydraulic device 430 and the sampling tube 401 are driven to move up and down by the sliding plate 422.
  • the hydraulic device 430 is provided with a hydraulic cylinder and a sealing plug.
  • the hydraulic cylinder is installed on the sliding plate 422 and connected to the hydraulic station 14 through an oil pipe. Put the sealing plug into the sampling tube 401 and connect the piston rod of the hydraulic cylinder.
  • the control unit in the system circuit first controls the penetration driving mechanism 420 to drive the sampling tube 401 to move down and penetrate into the submarine sediment. Then, by controlling the hydraulic station 14 to drive the piston rod of the hydraulic cylinder, the sealing plug is moved upward. Since the lower opening of the sampling tube 401 has penetrated into the seabed sediments, the upward movement of the sealing plug will cause the volume of the space in the sampling tube 401 from the lower opening to the sealing plug to increase, which in turn leads to the air pressure of the space Reduced, so that the seafloor sediment can automatically enter the sampling tube 401 under the pressure of the external pressure, so as to realize the collection of the seafloor sediment sample.
  • the sampling tube 401 is preferably designed into a cylindrical shape. By penetrating into the seabed sediment, a sample of the original sediment can be obtained, which is beneficial to the indoor measurement in the future.
  • the shipboard steel cable was used to lift the underwater measurement device to transfer to the sea surface, control the decoupling device to detach, and place the underwater measurement device into the sea.
  • the system circuit activates an altitude measurement device to detect the height of the underwater measurement device from the sea floor, and maintains communication with the water monitoring unit through the underwater acoustic communication machine 80.
  • the underwater measurement device sinks under the gravity of itself and the counterweight 60.
  • the underwater measurement device accelerates to dive.
  • the underwater measurement device gradually enters the state of uniform speed dive under the effect of buoyancy.
  • the water monitoring unit tracks the trajectory of the underwater measurement device in real time through a hydroacoustic communicator and feeds it back to the control unit in the system circuit.
  • the height measuring device detects the height of the underwater measuring device from the sea floor in real time, and transmits it to the control unit, and then uploads it to the water monitoring unit via the underwater acoustic communication machine 80.
  • the water monitoring unit issues a slow-down command when it detects that the height of the underwater measuring device from the seabed reaches the set height.
  • the control unit in the underwater measurement device After receiving the descent command, the control unit in the underwater measurement device outputs a descent control signal, controls the piston rod 32 of the descent cylinder 31 to extend, and pushes the wing plate 30 to expand to reduce the diving speed of the underwater measurement device And, according to the change of the height of the underwater measuring device from the bottom of the sea, the expansion angle of the wing panel 30 can be adjusted to realize the multi-level speed-regulation slow-down.
  • the wing 30 can be controlled to expand at an angle of 45 ° relative to the frame-shaped body 10 to reduce the diving speed of the underwater measuring device but not too slow.
  • the wing panel 30 can be controlled to further expand to an angle of 90 ° relative to the frame-shaped body 10, and the underwater measuring device can be controlled to descend slowly until it lands smoothly.
  • the control unit After the underwater measurement device has landed on the seabed smoothly, the control unit detects the inclination angle of the frame-type body 10 after landing on the seabed through the attitude sensor, and then outputs a leveling control signal, which controls the leveling cylinder 52 to drive the four leveling feet 51 to expand and contract until The frame-type body 10 is adjusted to a horizontal state.
  • the water monitoring unit issues the penetration command.
  • the control unit in the underwater measurement device After receiving the penetration command, the control unit in the underwater measurement device outputs a control signal to control the cone penetration measurement mechanism 100, the spherical penetration measurement mechanism 200, and the cross plate shear measurement
  • the probe is penetrated into the seabed sediment to measure the mechanical characteristics, and the measurement data of the mechanical characteristics are collected and calculated, and then uploaded to the water monitoring unit.
  • the control unit controls the sampling mechanism 400 to collect submarine sediment samples.
  • control unit After the underwater measurement mechanism completes the measurement operation, the control unit first controls the wing plate 30 to retract, and then controls the release mechanism 70 to discard the counterweight 60, so that the underwater measurement device floats without power under the buoyancy of the floating body 20 and the floating ball compartment 40. Realize recycling.
  • this embodiment proposes three sets of complementary release control schemes:
  • the first scheme the main control scheme, the water monitoring unit issues the load dump instruction after detecting that the underwater measuring device completes the measuring operation.
  • the control unit in the underwater measurement device receives the load dump instruction through the underwater acoustic communication machine 80, generates a load dump control signal, and controls the release mechanism 70 to discard the counterweight 60.
  • Second solution Remedy solution. If the underwater acoustic communication device 80 fails and cannot communicate normally with the water monitoring unit or the control unit, the control unit will not be able to receive the load dump command issued by the water monitoring unit. In response to this situation, this embodiment sets the control unit to reserve a period of waiting time (which can be determined according to the actual situation) after the underwater measurement device completes the measurement operation. After this period of waiting time, if the control unit has not received The load dump command issued by the water monitoring unit considers that the underwater acoustic communicator 80 is malfunctioning, automatically generates a load dump control signal, and automatically controls the release mechanism 70 to discard the counterweight 60.
  • a mechanical timing trigger device is provided in the release mechanism 70, and the maximum time threshold is set in advance according to actual working conditions.
  • the mechanical timing trigger device is turned on, and the working time of the underwater measuring device is recorded.
  • the timing reaches the set maximum time threshold, the system circuit is considered to be abnormal and the load dump control signal cannot be sent normally.
  • the release mechanism 70 can be triggered by the mechanical timing trigger device to abandon the counterweight 60 to ensure reliable recovery of the underwater measurement device.
  • one way can design the mechanical timing trigger device instead of the system circuit to generate the load dump control signal, and control the hydraulic station 14 to deliver hydraulic oil to the release cylinder 75 to control the piston of the release cylinder 75
  • the lever extends to disengage the hook 73 from the counterweight 60 and release the counterweight 60; another way can be to design a mechanical timing trigger to cut off the cable 74 when the timing reaches the set maximum time threshold to release the counterweight 60 .
  • the Iridium beacon 15 and the optical beacon 16 were activated, sending the geographic coordinates of the underwater measuring device to the water monitoring unit, and illuminating to guide the research vessel to quickly find its location.
  • the scientific research ship arrives at the location of the underwater measuring device, it can use a rope-throwing gun to launch the Kevlar cable, connect the underwater measuring device, and salvage the underwater measuring device.
  • the structure design of the underwater measuring device of this embodiment is scientific and reasonable, which can not only ensure the overall stable sinking and landing of the measuring device, but also ensure the successful recovery of the underwater measuring device. Carrying out long-term continuous observation operations provides a comprehensive guarantee for the effective development of seabed observations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • Remote Sensing (AREA)
  • Signal Processing (AREA)
  • Soil Sciences (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Geophysics (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Oceanography (AREA)
  • Acoustics & Sound (AREA)
  • Electromagnetism (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Underground Or Underwater Handling Of Building Materials (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

一种适用于全海深的海底沉积物力学特性测量系统,包括水上监测单元和水下测量装置,所述水下测量装置包括观测平台及测量机构;所述观测平台包括框架式主体(10)以及安装在框架式主体上的浮体(20)、翼板(30)、浮球舱(40)、调平机构(50)、配重(60)和释放机构(70);所述浮球舱密封系统电路,所述翼板(30)在水下测量装置下降至距离海底达到设定高度时展开,使水下测量装置平稳着陆;所述调平机构(50)在框架式主体(10)到达海底时调节水下测量装置水平立于海底;所述释放机构(70)在水下测量装置完成水下作业后,抛弃配重实现回收。所述测量机构包括锥形贯入测量机构(100)、球形贯入测量机构(200)、十字板剪切测量机构(300)或取样机构(400)。采用上述测量系统可以对全海深的海底沉积物实现力学特性测量。

Description

一种适用于全海深的海底沉积物力学特性测量系统 技术领域
本发明属于海洋观测技术领域,具体地说,是涉及一种用于探测海底沉积物力学特性的测量系统。
背景技术
现阶段,海洋研究已步入了全海深时代,水深范围从6000 m-11000 m左右的海域,被科学家称为“海斗深渊”(Hadal trench),是地球上最深的海洋区域。该区域主要分布在大陆边缘,由海沟组成,虽然只占全球海底面积的1%-2%,但是垂直深度占海洋全深度的45%,在海洋生态系统中具有重要意义。目前,对海斗深渊的研究已经成为海洋研究最新的前沿领域,这同时也标志着海洋科学已经进入全海深科考时代。众多以海底土体为基础的海洋工程应运而生,准确获取海底沉积物的力学特性对于深海科学研究、资源能源开发工程活动及海洋安全国防工程极其重要。
海底沉积物力学特性测量装置在此需求下不断发展,且工作区域由浅海向深海不断发展。现有测量装置的布放方式以有缆布放为主,可以在小于6000m深度的海底实现长期稳定的观测。但是,随着工作水深的增大,尤其是当观测区域为海斗深渊时,受限于科考船上地质缆绳长度的限制,工作将无法开展。为实现深海沉积物的原位检测,现有的工作水深大于6000 m的沉积物力学特性原位测量装置是通过搭载潜水器(例如“蛟龙号”)来实现布放的。但是,潜水器使用一次费用昂贵,且无法满足长期连续作业的任务需求,因此,难以推广应用。
技术问题
本发明的目的在于提供一种适用于全海深的海底沉积物力学特性测量系统,其水下测量装置采用无缆布放方式,可以对任意深度的海底沉积物进行力学特性测量,且可实现自动回收,降低了科研成本。
技术解决方案
为解决上述技术问题,本发明采用以下技术方案予以实现:
一种适用于全海深的海底沉积物力学特性测量系统,包括水上监测单元和水下测量装置,所述水下测量装置包括观测平台以及搭载在所述观测平台上的测量机构;所述观测平台包括框架式主体以及安装在所述框架式主体上的浮体、翼板、高度测量器件、浮球舱、调平机构、配重、释放机构和水声通信机;其中,所述高度测量器件用于检测水下测量装置距离海底的高度;所述浮球舱呈浮球形状,在提供浮力的同时用于密封系统电路,所述系统电路通过水声通信机与水上监测单元通信,上传水下测量装置距离海底的高度以及力学特性测量数据;所述水上监测单元在水下测量装置距离海底的高度达到设定高度时,下发缓降指令,控制所述翼板相对于框架式主体向外展开,以降低水下测量装置的下降速度;所述系统电路在水下测量装置到达海底时,控制所述调平机构调节框架式主体的姿态,使所述框架式主体平稳立于海底沉积物上;所述水上监测单元在结束测量作业后,下发抛载指令,控制所述释放机构抛弃所述配重,并控制所述翼板收回,使水下测量装置在所述浮体的浮力作用下浮出水面;所述测量机构包括用于测量海底沉积物力学特性的锥形贯入测量机构、球形贯入测量机构、十字板剪切测量机构中的一种或多种,和/或用于采集海底沉积物样本的取样机构。
进一步的,在所述观测平台中还设置有缓降油缸,所述缓降油缸的一端与所述框架式主体相铰接,另一端与所述翼板相铰接,所述系统电路在接收到水上监测单元下发的缓降指令或抛载指令后,通过控制所述缓降油缸的活塞杆伸缩,以驱动所述翼板展开或收回。
优选的,所述翼板优选设置四个,围绕所述框架式主体的四周布设,在每一个翼板上优选铰接两个缓降油缸。配置两个缓降油缸可以为翼板提供更大的驱动力,以克服更大的海水压力,适应深海作业需求。
作为所述调平机构的一种优选结构设计,本发明在所述调平机构中设置有多个调平支脚和多个调平油缸,所述调平支脚位于框架式主体的底部,每一个调平支脚连接一个调平油缸;在所述浮球舱中安装有姿态传感器,检测所述框架式主体的姿态,并生成姿态数据发送至所述系统电路;所述系统电路在框架式主体到达海底时,根据接收到的姿态数据控制调平油缸驱动所述调平支脚伸缩,以调节所述框架式主体的姿态,使其能够稳定立于海底并达到水平状态。
作为所述释放机构的一种优选结构设计,本发明在所述释放机构中设置有释放油缸、定滑轮、缆绳和挂钩;所述定滑轮安装在所述框架式主体上,其上缠绕所述缆绳,且缆绳的一端连接释放油缸,另一端连接挂钩;所述挂钩在默认状态伸入到配重的吊孔中,勾住所述配重,以增加观测平台的重量,使水下测量装置自行下降至海底;在回收水下测量装置时,所述系统电路控制所述释放油缸下放缆绳,使挂钩在自重下旋转,脱离所述配重的吊孔,使配重与框架式主体分离,释放配重。
优选的,所述浮体优选包括浮球和浮力板,安装在所述框架式主体的顶部,所述浮球优选包括多个,且排布形成阵列式结构。
为了便于科考船能够快速搜寻到浮出水面的水下测量装置,本发明在所述框架式主体的顶部还安装有铱星信标和光信标,所述铱星信标在水下测量装置出水后向水上监测单元发射定位信号,将水下测量装置的地理坐标告知科考船;所述光信标在水下测量装置出水后自动发射可见光,指示科考船发现其所在位置。
作为所述锥形贯入测量机构的一种优选结构设计,所述锥形贯入测量机构包括支架、锥形探头、连接锥形探头的探杆以及驱动所述探杆携带所述锥形探头上下运动的贯入驱动机构,所述支架安装在框架式主体上,在所述锥形探头的内部安装有孔隙水压力传感器和贯入阻力传感器。
作为所述球形贯入测量机构的一种优选结构设计,所述球形贯入测量机构包括支架、球形探头、连接球形探头的探杆以及驱动所述探杆携带所述球形探头上下运动的贯入驱动机构,所述支架安装在框架式主体上,在所述球形探头的内部安装有孔隙水压力传感器和贯入阻力传感器。
作为所述十字板剪切测量机构的一种优选结构设计,所述十字板剪切测量机构包括支架、十字板探头、连接十字板探头的探杆、驱动所述探杆携带所述十字板探头上下运动的贯入驱动机构以及驱动所述十字板探头转动的剪切驱动装置,所述支架安装在框架式主体上,在所述剪切驱动装置中安装有用于检测十字板探头剪切扭矩的扭矩传感器。
作为所述取样机构的一种优选结构设计,所述取样机构包括支架、取样管、驱动所述取样管上下运动的贯入驱动机构以及将海底沉积物抽取至取样管的液压装置,所述支架安装在框架式主体上。
进一步的,所述系统电路包括数据采集单元、控制单元、动力驱动单元和电池;所述电池为所述数据采集单元、控制单元和动力驱动单元供电;所述数据采集单元采集所述孔隙水压力传感器、贯入阻力传感器和扭矩传感器输出的感应信号,并传输至所述控制单元,用于计算海底沉积物的力学特性;所述动力驱动单元连接所述控制单元,用于生成水下测量装置所需的驱动电压。
作为所述贯入驱动机构的一种优选结构设计,所述贯入驱动机构包括贯入油缸、滑轮组、缠绕在滑轮组上的钢缆以及由所述钢缆牵引的滑板;所述滑轮组包括定滑轮组和动滑轮组,所述动滑轮组连接贯入油缸的活塞杆,所述系统电路控制所述贯入油缸的活塞杆伸缩,以带动所述动滑轮组上下位移,进而驱动所述钢缆牵引所述滑板上下位移。所述锥形贯入测量机构中的探杆、球形贯入测量机构中的探杆以及取样机构中的取样管分别固定安装在各自贯入驱动机构的滑板上,由滑板带动探杆或取样管插入到海底沉积物中或者从海底沉积物中收回。
作为所述剪切驱动装置的一种优选结构设计,所述剪切驱动装置包括电机和联轴器,所述电机安装在十字板剪切测量机构中的贯入驱动机构的滑板上,接收所述驱动电压,电机的转轴通过所述联轴器与连接十字板探头的探杆轴连接,驱动所述十字板探头旋转,破坏海底土体,以实现对土体破坏所需剪切扭矩的测量。
作为所述液压装置的一种优选结构设计,所述液压装置包括液压缸和密封塞,所述液压缸安装在取样机构中的贯入驱动机构的滑板上,所述密封塞位于所述取样管中,并连接所述液压缸的活塞杆,通过所述系统电路控制所述液压缸驱动密封塞上移,减小取样管中的空气压力,以抽取海底沉积物。
为了进一步增大测量装置的浮力,本发明优选安装四个浮球舱,将所述数据采集单元、控制单元、动力驱动单元和电池分置在四个不同的浮球舱中,每个浮球舱上安装有水密接插件,水密接插件之间连接有防水电缆,内置于不同浮球舱中的电路通过所述防水电缆电连接,以传输电源和信号。
为了便于安装照相或摄像器材,本发明优选采用透明玻璃制成所述浮球舱,在浮球舱中预留出照相机或摄像机的安装空间,由此无需在观测平台上另外挂载专用于密封照相机或摄像机的透明箱体,继而达到了简化平台结构和安装操作的目的。
为了实现水下测量装置的可靠回收,本发明设置所述系统电路在水下测量装置结束测量作业并延时一段时间后,若仍未接收到水上监测单元下发的抛载指令,则认为水声通信机异常,此时,系统电路自行控制所述释放机构抛弃所述配重,执行回收作业;若系统电路出现故障,无法向释放机构发送控制信号,则可以在所述释放机构中设置机械定时触发装置,所述机械定时触发装置在投放水下测量装置时启动计时,并在计时达到设定的最大时间阈值时,自动触发所述释放机构抛弃所述配重。采用上述两种备选回收策略,对释放机构实现互补控制,可以确保水下测量装置可靠回收。
有益效果
本发明的海底沉积物力学特性测量系统,可以对水下测量装置实现无缆布放,不受缆绳长度的限制,工作水深可以达到11000米甚至以上,因而可以针对全海深的海底沉积物实现力学特性的原位测量,满足各种科研需求。并且,本发明通过在水下测量装置上设置缓降机构和释放机构,既可以保证水下测量装置自行平稳下沉着陆,又可以确保水下测量装置自行成功抛载回收,无需科考船和潜水器的辅助,即可在任意深度的海底独立开展长期连续的观测作业,为海洋研究的有效进行提供了全面保障。
附图说明
图1是本发明所提出的适用于全海深的海底沉积物力学特性测量系统中的观测平台的一种实施例的结构示意图;
图2是图1中的框架式主体的一种实施例的结构示意图;
图3是图1中的配重的一种实施例的结构示意图;
图4是配重与释放机构的一种实施例的结构示意图;
图5是本发明所提出的适用于全海深的海底沉积物力学特性测量系统中的水下测量装置的一种实施例的结构示意图;
图6是图5中的锥形贯入测量机构的一种实施例的结构示意图;
图7是图5中的球形贯入测量机构的一种实施例的结构示意图;
图8是图5中的十字板剪切测量机构的一种实施例的结构示意图;
图9是图5中的取样机构的一种实施例的结构示意图;
图10是图6中的贯入驱动机构的一种实施例的结构示意图;
图11是本发明所提出的适用于全海深的海底沉积物力学特性测量系统的一种实施例的电路原理框图。
本发明的最佳实施方式
下面结合附图对本发明的具体实施方式进行详细地描述。
本实施例的海底沉积物力学特性测量系统包括水上监测单元和水下测量装置两部分,如图11所示。其中,水上监测单元可以布设在科考船上,包括上位机和水声通信机。所述上位机通过水声通信机与水下测量装置通信,实现对水下测量装置的运行轨迹、距离海底的高度、水下工作环境、工作状态的实时监测,并通过下发远程指令控制水下测量装置执行缓降、贯入、回收等操作,且对水下测量装置上传的海底沉积物力学特性测量数据进行处理、显示及数据库存储和管理。水下测量装置采用无缆布放方式,可以自行下沉至任意深度的海底,对海底沉积物的力学特性进行测量,并在测量任务结束后自行上浮回收,实现重复利用。
在本实施例中,水下测量装置主要由观测平台以及搭载在观测平台上的测量机构组成,如图5所示。其中,观测平台为无缆式海底观测平台,主要由框架式主体10以及安装在所述框架式主体10上的浮体20、翼板30、高度测量器件、浮球舱40、调平机构50、配重60、释放机构70和水声通信机80等部分组成,如图1所示。测量机构主要为各类用于对海底沉积物进行力学特性测量的测量仪器,包括但不限于锥形贯入测量机构100、球形贯入测量机构200、十字板剪切测量机构300中的一种或多种,也可以进一步包括取样机构400,以用于采集海底沉积物样本,便于日后的实验室研究。
在观测平台中,框架式主体10作为承载主体,优选采用钛合金材料和高强度的铝合金焊接而成,在保证承载力和抗压强度的同时,尽量减轻承载主体10的整体重量,便于回收。本实施例优选将框架式主体10设计成矩形笼式结构,如图2所示,以便于在其上安装不同测量机构和观测设备。作为本实施例的一种优选安装方式,可以将浮体20安装在框架式主体10的顶部,以用于在测量装置回收时,为测量装置提供足够的向上浮力,使测量装置能够自行浮出水面。本实施例优选采用浮球21和浮力板22相结合的方式构成所述浮体20。具体而言,可以将框架式主体10的顶面设计成矩形网格状,在每一个矩形网格11中分别安装一个浮球20,使浮球20排布形成阵列式结构。在每一个矩形网格11上分别焊接四根装配条12,每一根装配条12与矩形网格11的其中一个边角形成一个三角形,安装装配条12不仅可以对矩形网格11起到加固作用,而且可以方便浮球20在矩形网格11中的安装固定。将浮力板22包覆在框架式主体10的顶部四周,在增加浮力的同时,还可以起到缓冲撞击力的效果。
将翼板30安装在框架式主体10的中间部位,位于浮力板22的下方,优选设置翼板30到框架式主体10底部的距离占框架式主体10总高度的2/3,这样可以提高机械结构的稳定度。本实施例优选在框架式主体10上安装四块翼板30,分布在框架式主体10的四周。每一块翼板30均设计成流线型翼面,内侧与框架式主体10相铰接。使用缓冲油缸31驱动翼板30相对于框架式主体10向外展开或向内收回,具体而言,可以将缓降油缸31的一端(例如缸筒底部)与框架式主体10相铰接,另一端(例如活塞杆32)与翼板30的底面相铰接。控制缓降油缸31的活塞杆32伸出,可以推动翼板30展开,以降低测量装置的下降速度。反之,控制缓降油缸31的活塞杆32收回,可以拉回翼板30,以减小测量装置的下降阻力,使测量装置能够快速的沉入海底。将缓降油缸31与框架式主体10铰接,可以使缓降油缸31跟随翼板30的展开或收回而自动调整其与框架式主体10之间的角度,以适应翼板30的运动轨迹。根据测量装置的下潜深度,调节缓降油缸31的活塞杆32的伸出长度,可以对翼板30的展开角度进行调节,继而达到多级调速缓降的效果,实现测量装置在海床上的平稳着陆。
考虑到深海作业时,海底的压力很大,翼板30在展开时需要克服很大的阻力,为了保证翼板30在深海环境下能够可靠展开,本实施例优选针对每一个翼板30分别配置两个缓降油缸31,如图1所示,铰接在翼板30底面的左右两侧,为翼板30提供更大的推动力。
在框架式主体10的底部安装孔板13,如图2所示,在孔板13上开设大小不同的若干个装配孔,以用于安装浮球舱40、调平机构50以及需要搭载的测量机构100、200、300、400。
为了密封观测平台的系统电路,使系统电路能够适应水下工作环境,本实施例设计浮球舱40封装所述系统电路。所述浮球舱40优选采用透明玻璃制成,设计成浮球形状,安装在框架式主体10底部的孔板13上。将用于封装系统电路的舱体设计成浮球形状,可以在满足封装要求的同时,为测量装置提供辅助的上浮力。并且,通过将浮球舱40设计成透明状,在需要安装照相或摄像器材时,可以直接将照相机或摄像机内置于浮球舱40中,而无需另外在观测平台上挂载专用于封装照相机或摄像机的箱体,由此可以达到简化观测平台整体结构的目的。
为了获得更大的浮力,本实施例优选在框架式主体10底部的孔板13上安装四个浮球舱40,以分别用于封装系统电路中不同的功能电路。结合图11所示,本实施例的系统电路主要包括数据采集单元、控制单元、动力驱动单元和电池四部分,将这四部分功能电路分置于四个不同的浮球舱40中,以形成数据采集舱、控制舱、动力驱动舱和电池舱。在每一个浮球舱40上分别设置至少一个水密接插件41,在不同浮球舱40上的水密接插件41之间连接防水电缆,内置于不同浮球舱内的功能电路通过防水电缆实现电连接,以传输电源、模拟信号和/或数字信号。
其中,在数据采集舱中主要内置有数据采集单元,例如各种接口板、接口电路、采集仪等,用于连接搭载在观测平台上的各类测量机构,以采集各类测量机构检测到的测量数据,并进行数据处理后,发送至所述控制单元进行数据分析和存储。本实施例优选将高度测量器件(图中未示出)独立于系统电路,布设在框架式主体10上,并连接所述的数据采集单元。所述高度测量器件可以是高度计、声学测距仪等,利用高度测量器件检测框架式主体10距离海底的高度,并生成高度检测信号发送至数据采集单元,以处理成符合控制单元接收要求的数据格式,发送至控制单元,以实现对测量装置下降位置的实时监测。在数据采集舱中还可以预留出用于安装照相机或摄像机的空间,利用数据采集单元采集照相机或摄像机摄取到的图像数据,并发送至所述控制单元。
在控制舱中主要内置有控制单元以及连接所述控制单元的姿态传感器(例如三轴陀螺仪、三轴加速度计、三轴电子罗盘等)、温度传感器、湿度传感器、气压传感器、漏水传感器等感应元件,以用于检测观测平台着陆后的倾斜角度以及浮球舱40内的环境参数。所述控制单元可以包括控制器(例如CPU、MCU、DSP等)和存储器,控制器作为整个系统电路的控制核心,对各功能电路进行协调控制,并将处理后的测量数据发送至存储器进行保存。
在动力驱动舱中主要内置有动力驱动单元,例如用于驱动电机运行的电机驱动电路等,用于外接搭载在观测平台上的测量机构。在需要控制某些测量机构中的电机运行时,可以通过控制单元输出控制信号至所述动力驱动单元,继而生成驱动电压,控制测量机构中的电机运行,以开展海底沉积物的力学特性测量或者取样作业。
在所述电池舱中主要内置有锂电池和海水电池,用于为观测平台以及搭载在观测平台上的测量机构提供电力供应。使用海水电池可以满足测量装置水下长时间连续作业的用电需求。
为了使观测平台在海底着陆后能够保持水平状态,以确保某些测量数据的准确性,本实施例在框架式主体10的底部安装调平机构50,包括调平支脚51和调平油缸52,如图1所示。本实施例优选布设四个调平油缸52控制四个调平支脚51配合调节框架式主体10的平衡状态。具体而言,可以在将调平油缸52安装在框架式主体10底部的孔板13上,活塞杆朝下,连接调平支脚51。通过调节调平油缸52的活塞杆的伸出长度,以改变框架式主体10的姿态,将框架式主体10调整到水平状态。
在框架式主体10的底部安装配重60,框架式主体10上安装释放机构70,利用释放机构70挂接配重60。在测量装置入海后,利用配重60的重量下拉测量装置沉入海底,对海底的沉积物进行力学特性测量。待测量作业完成后,控制释放机构70抛弃配重60,使配重60与框架式主体10分离。尔后,测量装置在浮球21、浮力板22、浮球舱40的共同作用下上浮,浮出海面,等待科考船打捞回收。
作为所述释放机构70的一种优选结构设计,本实施例在框架式主体10上安装固定支架71,如图1所示,在固定支架71上安装定滑轮72和挂钩73,结合图4所示。在定滑轮72上缠绕缆绳74,并将缆绳74的一端连接到挂钩73上,另一端连接释放油缸75。所述释放油缸75可以安装在框架式主体10上,通过控制释放油缸75的活塞杆伸缩,以上拉或者下放缆绳74,继而改变挂钩73的角度,实现对配重60的钩取或释放。具体而言,结合图3、图4所示,可以在配重60上开设吊孔61,在默认状态下,释放油缸75控制其活塞杆缩回,上拉缆绳74,使挂钩73朝上且伸入到配重60的吊孔61中,吊起配重60。当需要抛弃配重60时,控制释放油缸75将其活塞杆伸出,下放缆绳74。此时,挂钩73在其自身重力的作用下旋转一定角度,继而从配重60的吊孔61中脱离,如图4所示的状态,实现配重60的释放。尔后,测量装置在浮体20和浮球舱40的作用下上浮,丢弃配重60实现回收。
作为本实施例的一种优选设计方案,所述配重60和释放机构70优选配置四套,布设在矩形框架式主体10的四个底角位置,以平衡施加到框架式主体10上的下拉力,保证水下测量装置在下潜过程中姿态平稳。
为了向缓降油缸31、调平油缸52、释放油缸75提供液压油,本实施例在观测平台上还安装有液压站14,如图1所示,优选安装框架式主体10底部孔板13的正中位置,并通过不同的油管分别连通所述的缓降油缸31、调平油缸52和释放油缸75。在连接每一个油缸的油管上分别安装电磁阀,在需要控制某一个油缸工作时,可以通过系统电路首先控制连接该被控油缸的油管上的电磁阀打开,然后控制液压站14向被控油缸供油或抽油,以控制被控油缸的活塞杆伸出或缩回,进而满足被控油缸的工作需要。
此外,本实施例在框架式主体10的顶部还安装有铱星信标15和光信标16,如图1所示。其中,铱星信标15可以在水下测量装置出水后自动发射定位信号,例如GPS信号,进而将水下测量装置的地理坐标发送至水上监测单元,以便于科考船在海域中快速搜寻到所述水下测量装置。所述光信标16可以在水下测量装置出水后自动发射可见光,以光信号的方式向科考船发出指示,以便于科考船发现其所在位置,即使在夜间也能保证水下测量装置的安全快速回收。
在框架式主体10的顶部还安装有吊装机构17,用于与科考船上的打捞设备相配合,以便于对水下测量装置进行投放和打捞。当待测海域的海水不深时,还可以采用有缆方式,将科考船上的缆绳连接到观测平台的吊装机构17上,通过缆绳布放和回收所述水下测量装置,使本实施例的水下测量装置可以支持有缆和无缆两种布放方式,以扩展测量系统的适用领域。
在本实施例的水下测量装置中,用于测量海底沉积物力学特性的测量机构可以选择多种类型,安装在框架式主体10底部的孔板13上,通过控制各类测量机构贯入到海底沉积物中,以检测出海底沉积物的力学特性。本实施例以在观测平台上搭载锥形贯入测量机构100、球形贯入测量机构200、十字板剪切测量机构300、取样机构400为例进行说明,如图5所示。
本实施例的锥形贯入测量机构100主要包括支架110、锥形探头101、连接锥形探头101的探杆102以及驱动所述探杆102携带所述锥形探头101上下运动的贯入驱动机构120,如图6所示。将所述支架110安装在观测平台的框架式主体10上,将贯入驱动机构120安装在所述支架110上。在所述贯入驱动机构120中包括贯入油缸121、滑板122、滑轮组、钢缆123等部分,结合图6和图10所示。其中,贯入油缸121安装在支架110的底座111上,滑轮组中包含有定滑轮组和动滑轮组,将动滑轮组安装在一个承载架132上,并将所述承载架132安装在贯入油缸121的活塞杆上,由贯入油缸121驱动动滑轮组上下位移。在所述定滑轮组中包括四个定滑轮:第一定滑轮124和第二定滑轮125安装在支架110的底座111上,第三定滑轮126和第四定滑轮127安装在支架110的顶板112上;在所述动滑轮组中包括两个轴心连接且呈上下位置关系的上动滑轮128和下动滑轮129。所述钢缆123缠绕在所述滑轮组上,其缠绕顺序为:第一定滑轮124→下动滑轮129→第二定滑轮125→第三定滑轮126→上动滑轮128→第四定滑轮127。将钢缆123的两端固定在支架110上,并将所述滑板122安装在钢缆123上,优选安装在位于第二定滑轮125和第三定滑轮126之间的钢缆上,利用钢缆123牵引所述滑板122上下移动。为了提高滑板122移动的稳定性,可以在支架110上进一步安装导轨130,利用导轨130支撑滑板122,使滑板122可以沿导轨130上下移动。在滑板122上安装夹持机构131,利用夹持机构131夹持探杆102的上半部分,使探杆102可以跟随滑板122上下位移。将锥形探头101安装在探杆102的下端,并使锥形探头101伸出支架110的底座111且锥头朝下。
在需要利用锥形贯入测量机构100对海底沉积物进行力学特性测量时,通过系统电路中的控制单元输出控制信号,控制液压站14为贯入油缸121提供液压油,使贯入油缸121的活塞杆伸出,控制动滑轮组上移。当下动滑轮129上移时,使位于第二定滑轮125和第三定滑轮126之间的钢缆123下移,继而驱动滑板123下移,带动探杆102携带锥形探头101下降,贯入到海底沉积物中。在第三定滑轮126上可以进一步安装位移传感器(图中未示出),通过检测第三定滑轮126的转动角度计算出锥形探头101的在海底沉积物中的贯入深度。在本实施例中,可以利用系统电路中的数据采集单元接收所述位移传感器输出的检测信号,并发送至控制单元,在控制单元中计算出锥形探头101的贯入深度。
在锥形探头102的内部可以封装孔隙水压力传感器和贯入阻力传感器,锥形探头102在贯入海底沉积物的过程中,通过孔隙水压力传感器检测海底沉积物的流动状态以及水压力的大小,通过贯入阻力传感器检测锥形探头102所受到的阻力。所述孔隙水压力传感器和贯入阻力传感器将生成的感应信号发送至系统电路中的数据采集单元,经处理后传输至控制单元,以计算出海底沉积物的力学特性。具体计算方法为现有技术,本实施例不做具体说明。控制单元结合位移传感器、孔隙水压力传感器和贯入阻力传感器输出的检测信号,即可计算出海底沉积物在不同深度的力学特性。
待完成力学特性测量后,控制单元输出控制信号,控制液压站14抽回液压油,使贯入油缸121的活塞杆缩回,下拉动滑轮组,继而使位于第二定滑轮125和第三定滑轮126之间的钢缆123牵引滑板122上移,驱动探杆102携带锥形探头101上升,从海底沉积物中拔出,回复原始状态,完成测量任务。
本实施例的球形贯入测量机构200主要包括支架210、球形探头201、连接球形探头201的探杆202以及驱动所述探杆202携带所述球形探头201上下运动的贯入驱动机构220,如图7所示,在球形探头201的内部封装有孔隙水压力传感器和贯入阻力传感器。所述球形贯入测量机构200中各部件的连接关系、贯入驱动机构220的具体结构以及工作原理同上述的锥形贯入测量机构100,本实施例在此不再展开说明。
本实施例的十字板剪切测量机构300包括支架310、十字板探头301、连接十字板探头301的探杆302、驱动所述探杆302携带所述十字板探头301上下运动的贯入驱动机构320以及驱动所述十字板探头301转动的剪切驱动装置330,如图8所示。将所述支架310安装在框架式主体100上,所述贯入驱动机构320安装在所述支架310上,且贯入驱动机构320的具体结构及工作原理同上述锥形贯入测量机构100中的贯入驱动机构120,本实施例在此不再详细说明。将剪切驱动装置330安装在贯入驱动机构320的滑板322上,由滑板322驱动剪切驱动装置330上下位移。在所述剪切驱动装置330中设置有电机331和联轴器332,将电机331安装在滑板322上,接收系统电路中的动力驱动单元输出的驱动电压,以控制电机331运转。将电机331的转轴通过联轴器332与探杆302轴连接,通过电机331驱动十字板探头301旋转。在剪切驱动装置330中安装扭矩传感器,以检测十字板探头301在旋转破坏海底沉积物的土体结构时产生的剪切扭矩。
所述十字板剪切测量机构300的工作原理为:首先通过系统电路中的控制单元控制贯入驱动机构320中的滑板322携带剪切驱动装置330下移,同时启动剪切驱动装置330中的电机331驱动十字板探头301转动,使十字板探头301一边旋转,一边贯入到海底沉积物中。将位移传感器检测到的位移信号以及扭矩传感器检测到的扭矩信号发送至系统电路中的数据采集单元,经由数据采集单元处理后传输至控制单元,以计算出海底沉积物在不同深度的力学特性。
本实施例的取样机构400包括支架410、取样管401、驱动所述取样管401上下运动的贯入驱动机构420以及将海底沉积物抽取至取样管401的液压装置430,如图9所示。其中,将所述支架410安装在框架式主体100上,所述贯入驱动机构420安装在所述支架410上,且贯入驱动机构420的具体结构及工作原理同上述锥形贯入测量机构100中的贯入驱动机构120,本实施例在此不再具体阐述。将液压装置430和取样管401安装在贯入驱动机构420的滑板422上,由滑板422驱动所述液压装置430和取样管401上下位移。在所述液压装置430中设置有液压缸和密封塞,将所述液压缸安装在滑板422上,并通过油管连接液压站14。将密封塞置入取样管401中,并连接所述液压缸的活塞杆。
在需要抽取海底沉积物时,系统电路中的控制单元首先控制贯入驱动机构420驱动取样管401下移,贯入到海底沉积物中。然后,通过控制液压站14驱动液压缸的活塞杆带动密封塞上移。由于取样管401的下部开口已贯入到海底沉积物中,因此密封塞上移会导致取样管401中从下部开口到密封塞的这段空间的体积增大,继而导致该段空间的空气压力减小,从而使得海底沉积物能够在外界压力的左右下自动进入到取样管401中,以实现对海底沉积物样本的采集。
本实施例优选将取样管401设计成圆柱形,通过贯入到海底沉积物中,可以获得沉积物原状样本,有利于日后的室内测量。
本实施例通过在观测平台上搭载多种类型的测量机构,不仅可以针对不同类型的沉积物选择使用适宜的测量机构进行力学测量,以满足不同类型沉积物力学特性的测量要求,而且还可以针对相同区域的海底沉积物,利用不同的测量机构同时或分时进行力学测量,以获取多组测量数据进行互相验证,由此提高海底沉积物力学特性测量结果的准确性。
下面对本实施例的海底沉积物力学特性测量系统的具体工作过程进行详细阐述。
利用科考船运载测量系统抵达待测海域的布放位置后,使用船载钢缆吊起水下测量装置转移至海面,控制脱钩器脱离,投放水下测量装置入海。
水下测量装置在入海后,系统电路启动高度测量器件检测水下测量装置距离海底的高度,并通过水声通信机80与水上监测单元保持通信。水下测量装置在自身及配重60的重力作用下下沉,初始阶段,水下测量装置加速下潜,在下降过程中,受浮力的作用,水下测量装置逐渐进入匀速下潜状态。在水下测量装置下潜过程中,水上监测单元通过水声通信机实时追踪水下测量装置的运动轨迹,并反馈给系统电路中的控制单元。高度测量器件实时检测水下测量装置距离海底的高度,并传输至控制单元,进而经由水声通信机80上传至水上监测单元。水上监测单元在检测到水下测量装置距离海底的高度到达设定高度时,下发缓降指令。水下测量装置中的控制单元在接收到缓降指令后,输出缓降控制信号,控制缓降油缸31的活塞杆32伸出,推动翼板30展开,以降低水下测量装置的下潜速度,并可以根据水下测量装置距离海底的高度变化,调节翼板30的展开角度,实现多级调速缓降。举例说明,当水下测量装置距离海底约200米时,可以控制翼板30相对框架式主体10展开45°夹角,以降低水下测量装置的下潜速度但不至于过缓。当水下测量装置距离海底约100米时,可以控制翼板30进一步展开,使其相对框架式主体10展开90°夹角,控制水下测量装置缓慢下潜,直到平稳着陆。
水下测量装置在海底平稳着陆后,控制单元通过姿态传感器检测框架式主体10着陆海床后的倾斜角度,进而输出调平控制信号,控制调平油缸52驱动四个调平支脚51伸缩,直到将框架式主体10调整到水平状态。
水上监测单元下发贯入指令,水下测量装置中的控制单元在接收到贯入指令后,输出控制信号,控制锥形贯入测量机构100、球形贯入测量机构200、十字板剪切测量机构300中的一种或多种运行,将其探头贯入到海底沉积物中,进行力学特性测量,并采集并计算出力学特性测量数据后,上传至水上监测单元。同时,控制单元控制取样机构400收集海底沉积物样本。
待水下测量机构完成测量作业后,控制单元首先控制翼板30收回,然后控制释放机构70抛弃配重60,使水下测量装置在浮体20和浮球舱40的浮力作用下无动力上浮,实现回收。
为了确保水下测量装置可靠回收,本实施例提出三套互补释放控制方案:
第一方案:主控方案,水上监测单元在检测到水下测量装置完成测量作业后,下发抛载指令。水下测量装置中的控制单元通过水声通信机80接收到所述抛载指令后,生成抛载控制信号,控制释放机构70抛弃配重60。
第二方案:补救方案,若水声通信机80故障,无法与水上监测单元或控制单元进行正常通信,则控制单元将无法接收到水上监测单元下发的抛载指令。针对这一情况,本实施例设置控制单元在水下测量装置完成测量作业后,预留一段等待时间(可以根据实际情况具体确定),在这段等待时间到达后,若控制单元仍未接收到水上监测单元下发的抛载指令,则认为水声通信机80失灵,自动生成抛载控制信号,自行控制释放机构70抛弃配重60。
第三方案:补救方案,在释放机构70中设置机械定时触发装置,并预先根据实际工作情况设定好最大时间阈值。在投放水下测量装置时,开启机械定时触发装置,记录水下测量装置的工作时长。当计时达到设定的最大时间阈值时,认为系统电路出现异常,无法正常发送抛载控制信号。此时,可以通过机械定时触发装置触发释放机构70抛弃配重60,确保水下测量装置可靠回收。为了实现机械定时触发装置对释放机构70的触发,一种方式可以设计机械定时触发装置代替系统电路生成抛载控制信号,控制液压站14向释放油缸75输送液压油,以控制释放油缸75的活塞杆伸出,使挂钩73从配重60上脱离,释放配重60;另一种方式可以设计机械定时触发装置在计时达到设定的最大时间阈值时切断缆绳74,以实现配重60的释放。
水下测量装置浮出水面后,铱星信标15和光信标16启动,向水上监测单元发送水下测量装置的地理坐标,并发光指引科考船快速发现其位置。科考船到达水下测量装置所在位置后,可以使用抛绳枪发射凯夫拉缆绳,连接水下测量装置,对水下测量装置进行打捞回收。
本实施例的水下测量装置结构设计科学合理,既可以保证测量装置整体平稳下沉着陆,又可以保证水下测量装置成功回收,不仅能够对海底沉积物实现力学特性测量,还可以对海底环境进行长期连续的观测作业,为海底观测的有效开展提供了全面保障。
当然,以上所述仅是本发明的一种优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

  1. 一种适用于全海深的海底沉积物力学特性测量系统,其特征在于,包括水上监测单元和水下测量装置,所述水下测量装置包括观测平台以及搭载在所述观测平台上的测量机构;
    所述观测平台包括框架式主体以及安装在所述框架式主体上的浮体、翼板、高度测量器件、浮球舱、调平机构、配重、释放机构和水声通信机;其中,所述高度测量器件用于检测水下测量装置距离海底的高度;所述浮球舱呈浮球形状,在提供浮力的同时用于密封系统电路,所述系统电路通过水声通信机与水上监测单元通信,上传水下测量装置距离海底的高度以及力学特性测量数据;所述水上监测单元在水下测量装置距离海底的高度达到设定高度时,下发缓降指令,控制所述翼板相对于框架式主体向外展开,以降低水下测量装置的下降速度;所述系统电路在水下测量装置到达海底时,控制所述调平机构调节框架式主体的姿态,使所述框架式主体平稳立于海底沉积物上;所述水上监测单元在结束测量作业后,下发抛载指令,控制所述释放机构抛弃所述配重,并控制所述翼板收回,使水下测量装置在所述浮体的浮力作用下浮出水面;
    所述测量机构包括用于测量海底沉积物力学特性的锥形贯入测量机构、球形贯入测量机构、十字板剪切测量机构中的一种或多种,和/或用于采集海底沉积物样本的取样机构。
  2. 根据权利要求1所述的适用于全海深的海底沉积物力学特性测量系统,其特征在于,所述观测平台还包括缓降油缸,所述缓降油缸的一端与所述框架式主体相铰接,另一端与所述翼板相铰接,所述系统电路在接收到水上监测单元下发的缓降指令或抛载指令后,通过控制所述缓降油缸的活塞杆伸缩,以驱动所述翼板展开或收回。
  3. 根据权利要求1所述的适用于全海深的海底沉积物力学特性测量系统,其特征在于,所述调平机构包括多个调平支脚和多个调平油缸,所述调平支脚位于框架式主体的底部,每一个调平支脚连接一个调平油缸;
    在所述浮球舱中安装有姿态传感器,检测所述框架式主体的姿态,并生成姿态数据发送至所述系统电路;所述系统电路在框架式主体到达海底时,根据接收到的姿态数据控制调平油缸驱动所述调平支脚伸缩,以调节所述框架式主体水平立于海底。
  4. 根据权利要求1所述的适用于全海深的海底沉积物力学特性测量系统,其特征在于,所述释放机构包括释放油缸、定滑轮、缆绳和挂钩;所述定滑轮安装在所述框架式主体上,其上缠绕所述缆绳,且缆绳的一端连接释放油缸,另一端连接挂钩;所述挂钩在默认状态伸入到配重的吊孔中,勾住所述配重,以增加观测平台的重量,使水下测量装置自行下降至海底;在回收水下测量装置时,所述系统电路控制所述释放油缸下放缆绳,使挂钩在自重下旋转,脱离所述配重的吊孔,使配重与框架式主体分离。
  5. 根据权利要求1所述的适用于全海深的海底沉积物力学特性测量系统,其特征在于,所述浮体包括浮球和浮力板,安装在所述框架式主体的顶部,所述浮球包括多个,排布形成阵列式结构。
  6. 根据权利要求1所述的适用于全海深的海底沉积物力学特性测量系统,其特征在于,在所述框架式主体的顶部还安装有铱星信标和光信标,所述铱星信标在水下测量装置出水后向水上监测单元发射定位信号,所述光信标在水下测量装置出水后自动发射可见光。
  7. 根据权利要求1所述的适用于全海深的海底沉积物力学特性测量系统,其特征在于,
    所述锥形贯入测量机构包括支架、锥形探头、连接锥形探头的探杆以及驱动所述探杆携带所述锥形探头上下运动的贯入驱动机构,所述支架安装在框架式主体上,在所述锥形探头的内部安装有孔隙水压力传感器和贯入阻力传感器;
    所述球形贯入测量机构包括支架、球形探头、连接球形探头的探杆以及驱动所述探杆携带所述球形探头上下运动的贯入驱动机构,所述支架安装在框架式主体上,在所述球形探头的内部安装有孔隙水压力传感器和贯入阻力传感器;
    所述十字板剪切测量机构包括支架、十字板探头、连接十字板探头的探杆、驱动所述探杆携带所述十字板探头上下运动的贯入驱动机构以及驱动所述十字板探头转动的剪切驱动装置,所述支架安装在框架式主体上,在所述剪切驱动装置中安装有用于检测十字板探头剪切扭矩的扭矩传感器;
    所述取样机构包括支架、取样管、驱动所述取样管上下运动的贯入驱动机构以及将海底沉积物抽取至取样管的液压装置,所述支架安装在框架式主体上;
    所述系统电路包括数据采集单元、控制单元、动力驱动单元和电池;所述电池为所述数据采集单元、控制单元和动力驱动单元供电;所述数据采集单元采集所述孔隙水压力传感器、贯入阻力传感器和扭矩传感器输出的感应信号,并传输至所述控制单元,用于计算海底沉积物的力学特性;所述动力驱动单元连接所述控制单元,用于生成水下测量装置所需的驱动电压。
  8. 根据权利要求7所述的适用于全海深的海底沉积物力学特性测量系统,其特征在于,
    所述贯入驱动机构包括贯入油缸、滑轮组、缠绕在滑轮组上的钢缆以及由所述钢缆牵引的滑板;所述滑轮组包括定滑轮组和动滑轮组,所述动滑轮组连接贯入油缸的活塞杆,所述系统电路控制所述贯入油缸的活塞杆伸缩,以带动所述动滑轮组上下位移,进而驱动所述钢缆牵引所述滑板上下位移;
    所述锥形贯入测量机构中的探杆、球形贯入测量机构中的探杆以及取样机构中的取样管分别固定安装在各自贯入驱动机构的滑板上;
    所述剪切驱动装置包括电机和联轴器,所述电机安装在十字板剪切测量机构中的贯入驱动机构的滑板上,接收所述驱动电压,电机的转轴通过所述联轴器与连接十字板探头的探杆轴连接;
    所述液压装置包括液压缸和密封塞,所述液压缸安装在取样机构中的贯入驱动机构的滑板上,所述密封塞位于所述取样管中,并连接所述液压缸的活塞杆,通过所述系统电路控制所述液压缸驱动密封塞上移,减小取样管中的空气压力,以抽取海底沉积物。
  9. 根据权利要求7所述的适用于全海深的海底沉积物力学特性测量系统,其特征在于,所述浮球舱由透明玻璃制成,包括四个,预留有照相机或摄像机的安装空间;所述数据采集单元、控制单元、动力驱动单元和电池分置在四个不同的浮球舱中,每个浮球舱上安装有水密接插件,水密接插件之间连接有防水电缆,内置于不同浮球舱中的电路通过所述防水电缆电连接。
  10. 根据权利要求1至9中任一项所述的适用于全海深的海底沉积物力学特性测量系统,其特征在于,
    所述系统电路在水下测量装置结束测量作业并延时一段时间后,若仍未接收到水上监测单元下发的抛载指令,则自行控制所述释放机构抛弃所述配重;
    在所述释放机构中设置有机械定时触发装置,所述机械定时触发装置在投放水下测量装置时启动计时,并在计时达到设定的最大时间阈值时,自动触发所述释放机构抛弃所述配重。
PCT/CN2019/080722 2018-10-24 2019-04-01 一种适用于全海深的海底沉积物力学特性测量系统 WO2020082690A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021522500A JP6985782B1 (ja) 2018-10-24 2019-04-01 フルデプスに適した海底堆積物の力学的性質測定システム
US16/632,509 US11110997B2 (en) 2018-10-24 2019-04-01 System for measuring mechanical properties of sea floor sediments at full ocean depths
EP19876753.5A EP3855155B1 (en) 2018-10-24 2019-04-01 Seabed sediment mechanical properties measurement system suitable for use at full sea depth

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811246959.8A CN109297803B (zh) 2018-10-24 2018-10-24 一种适用于全海深的海底沉积物力学特性测量系统
CN201811246959.8 2018-10-24

Publications (1)

Publication Number Publication Date
WO2020082690A1 true WO2020082690A1 (zh) 2020-04-30

Family

ID=65157756

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/080722 WO2020082690A1 (zh) 2018-10-24 2019-04-01 一种适用于全海深的海底沉积物力学特性测量系统

Country Status (5)

Country Link
US (1) US11110997B2 (zh)
EP (1) EP3855155B1 (zh)
JP (1) JP6985782B1 (zh)
CN (1) CN109297803B (zh)
WO (1) WO2020082690A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112051187A (zh) * 2020-08-26 2020-12-08 中交天津港湾工程研究院有限公司 海底基槽内不同深度处回淤物容重的原位测试及微扰动取样方法
CN112963681A (zh) * 2021-02-05 2021-06-15 中国建筑材料工业地质勘查中心安徽总队 一种地质勘查用图像采集机构及其采集方法
CN113624277A (zh) * 2021-07-27 2021-11-09 广西蓝合创讯数据科技有限公司 一种海洋环境监测装置
CN114235470A (zh) * 2021-12-03 2022-03-25 罗乾胜 一种独立水下矿石勘测岩石钻孔机
CN114355479A (zh) * 2022-03-16 2022-04-15 国家海洋技术中心 一种空投式台风海域气象海洋环境信息测量装置
CN114578447A (zh) * 2022-02-16 2022-06-03 青岛海洋地质研究所 拖曳式冷泉羽状流立体探测装置及探测方法
CN117533500A (zh) * 2023-11-10 2024-02-09 青岛海洋地质研究所 一种空海两栖航行器用水剖面参数采集组件
CN117704929A (zh) * 2024-02-06 2024-03-15 自然资源部第一海洋研究所 一种海底沉积物厚度变化测定装置及其方法

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109059876B (zh) * 2018-08-30 2023-10-13 中国人民解放军国防科技大学 空投式海气界面一体化探测装置及其方法
CN109297803B (zh) * 2018-10-24 2019-12-10 中国海洋大学 一种适用于全海深的海底沉积物力学特性测量系统
CN109823485B (zh) * 2019-03-06 2023-08-29 中国海洋大学 第二代滩浅海沉积物强度原位检测装置
CN109946149A (zh) * 2019-03-12 2019-06-28 中国人民解放军92859部队 一种海底表层沉积物力学特性分析测量系统
CN109946759B (zh) * 2019-05-08 2023-10-20 中国工程物理研究院核物理与化学研究所 一种水下探测片定位装置
US11192205B2 (en) * 2019-05-19 2021-12-07 Raytheon Technologies Corporation Self-leveling container for laser welding
CN110455616B (zh) * 2019-09-06 2022-10-28 中国科学院深海科学与工程研究所 一种十字板剪切试验装置
CN111610526B (zh) * 2020-04-28 2023-12-12 自然资源部第一海洋研究所 一种海床蚀积动态监测系统
CN111721581B (zh) * 2020-06-18 2021-04-20 中国海洋大学 海底沙波沉积物取样装置及方法
CN111896468B (zh) * 2020-08-06 2022-05-06 中国海洋大学 全海深原位探测装置控制系统
CN112097747A (zh) * 2020-09-05 2020-12-18 赵振伟 一种海洋探测系统及其探测装置
CN112455631B (zh) * 2020-11-24 2022-03-22 浙江大学 一种适用于深海探测的矩阵式传感器布放装置及布放方法
CN112748481B (zh) * 2020-12-22 2022-10-25 自然资源部第一海洋研究所 基于深水潜标的探空装置
CN112857474B (zh) * 2021-01-20 2022-10-28 河北建筑工程学院 一种河流雨季流量动态监测系统及其监测方法
CN114837478B (zh) * 2021-02-02 2023-07-07 中国电建集团华东勘测设计研究院有限公司 湿拖自安装式海上变电站和海底大数据中心整体结构及安装方法
CN112881272B (zh) * 2021-02-08 2022-10-11 中国船舶重工集团公司第七二五研究所 一种深海环境腐蚀试验装置
CN113063627B (zh) * 2021-04-06 2022-03-01 中国海洋大学 一种深海底边界层可控序列采水装置及布放方法
CN113029678A (zh) * 2021-04-14 2021-06-25 重庆交通大学 一种深水底部沉积物采样装置
CN113008623A (zh) * 2021-04-14 2021-06-22 重庆交通大学 一种水生态调查的深水沉积物采样方法
CN113552318B (zh) * 2021-06-21 2022-07-26 湖南湘达土地规划设计咨询有限公司 一种便于土地规划用土壤检测装置
CN113607112B (zh) * 2021-07-15 2024-04-05 浙江广川工程咨询有限公司 一种应用于水利水电安全的监测巡检管理装置
CN113405859B (zh) * 2021-08-20 2022-02-15 奥来国信(北京)检测技术有限责任公司 一种下潜深度可控型水环境检测用自动采样设备
CN113671562B (zh) * 2021-08-27 2024-04-23 中建华宸(海南)建设集团有限公司 一种海底勘探平台
CN113625366B (zh) * 2021-09-03 2024-02-23 中地装(重庆)地质仪器有限公司 海底综合勘探系统
CN113790871A (zh) * 2021-09-15 2021-12-14 宁波大学 一种水下压电致动仿生尾鳍性能测控系统及方法
CN113945422B (zh) * 2021-09-30 2024-02-27 自然资源部第一海洋研究所 一种海洋柱状采泥器及采泥方法
CN113969573B (zh) * 2021-10-18 2022-06-21 中国海洋大学 一种海底沉积物孔隙压力观测探杆重力式贯入装置及方法
CN114264986B (zh) * 2021-11-18 2023-12-05 青岛海洋地质研究所 近海底磁力梯度测量方法
CN114062048B (zh) * 2021-11-19 2022-05-31 中国海洋大学 模块化多层次时间序列深海沉积物孔隙流体采样器及方法
CN114137631A (zh) * 2021-11-29 2022-03-04 上海隧道工程有限公司 Mjs工法用钻杆的简易检测装置及方法
CN114304025B (zh) * 2022-01-10 2022-09-23 上海海洋大学 一种海洋养殖生物多网联采装置
CN114910299B (zh) * 2022-02-23 2023-03-24 南方海洋科学与工程广东省实验室(广州) 一种具有沉积物取样功能的深海原位长期实验平台
CN114636637B (zh) * 2022-05-07 2023-09-01 青岛海洋地质研究所 一种悬浮物浓度的原位测定装置及工作方法
CN114572352B (zh) * 2022-05-07 2022-07-26 山东省科学院海洋仪器仪表研究所 水下探测平台的远程自动布放装置及自动布放式探测平台
CN114878249B (zh) * 2022-05-12 2024-05-31 中国科学院武汉岩土力学研究所 一种用于海洋取样的海水多层原位取样系统及方法
CN115158541B (zh) * 2022-08-04 2024-04-05 自然资源部第二海洋研究所 一种海洋测绘安装装置及测绘方法
CN115372072A (zh) * 2022-08-15 2022-11-22 国家深海基地管理中心 安装于水下机器人的柱状沉积物孔隙水取样检测装置
CN115434297B (zh) * 2022-09-05 2023-07-21 中国长江三峡集团有限公司 海洋土强度测试设备
WO2024091715A1 (en) * 2022-10-27 2024-05-02 Schlumberger Technology Corporation Predicting site characterization properties for equipment foundations
KR102507441B1 (ko) * 2022-11-16 2023-03-09 주식회사 한국수산해양공학연구소 수중 오염물질의 샘플링 기능이 구비된 수중 드론
CN116007986B (zh) * 2022-12-15 2023-08-22 青岛地质工程勘察院(青岛地质勘查开发局) 一种具有水平纠正功能的海底沉积物探测取样装置
CN117022564B (zh) * 2023-08-09 2024-02-23 浙江致远环境科技股份有限公司 一种水体测量无人船及其使用方法
CN116858298B (zh) * 2023-09-01 2024-07-02 山东省煤田地质规划勘察研究院 一种用于勘探溶洞内部结构的探测装置及其勘探方法
CN117346829B (zh) * 2023-12-06 2024-02-23 科瑞工业自动化系统(苏州)有限公司 水下传感器检测、校正方法、检测装置及控制平台
CN117871809B (zh) * 2024-03-11 2024-06-21 自然资源部第一海洋研究所 一种用于海洋水质生态监测的水下机器人及使用方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2704680Y (zh) * 2004-06-25 2005-06-15 长沙矿山研究院 深海钻机可伸缩式支腿自动姿态调整与稳定装置
CN102320347A (zh) * 2011-07-05 2012-01-18 赵凤银 带有急减速、急转弯阻尼两用板装置的船舶或舰艇或潜艇
KR20150000168A (ko) * 2013-06-24 2015-01-02 대우조선해양 주식회사 Bop 장비 테스트 장치 및 방법
CN106707361A (zh) * 2017-01-20 2017-05-24 青岛海洋地质研究所 海床基静力贯入及取样平台
CN106841311A (zh) * 2017-01-18 2017-06-13 青岛海洋地质研究所 一种海床基多点原位长期观测系统
CN108146581A (zh) * 2017-12-19 2018-06-12 西北工业大学 一种水中装备布放及回收装置
CN207991994U (zh) * 2018-04-02 2018-10-19 中国海洋大学 一种海底沉积物液化后流变特性原位测量装置
CN109094742A (zh) * 2018-10-24 2018-12-28 中国海洋大学 一种适用于全海深的海底沉积物力学特性原位测量装置
CN109297803A (zh) * 2018-10-24 2019-02-01 中国海洋大学 一种适用于全海深的海底沉积物力学特性测量系统

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2884323B1 (fr) * 2005-04-07 2007-06-15 Geophysique Cie Gle Procede d'acquisition sismique au fond de la mer, equipement de guidage, ensemble d'acquisition sismique et installation d'acquisition sismique pour la mise en oeuvre de ce procede
KR101048528B1 (ko) * 2010-02-19 2011-07-12 한국지질자원연구원 해저 탐사장치 및 탐사방법
US20120289103A1 (en) * 2010-09-24 2012-11-15 Edison Thurman Hudson Unmanned Underwater Vehicle
US9873496B2 (en) * 2014-10-29 2018-01-23 Seabed Geosolutions B.V. Deployment and retrieval of seismic autonomous underwater vehicles
CN106092650A (zh) * 2016-08-03 2016-11-09 上海海洋大学 深海自潜自浮式浅表沉积物取样器
CN206205886U (zh) * 2016-09-29 2017-05-31 中交第三航务工程勘察设计院有限公司 用于勘探取样或原位测试的水下平台
US10543892B2 (en) * 2017-02-06 2020-01-28 Seabed Geosolutions B.V. Ocean bottom seismic autonomous underwater vehicle
KR101866480B1 (ko) * 2017-10-21 2018-06-11 주식회사 지오뷰 해저착저식 콘 관입시험장치
CN108645668A (zh) * 2018-07-09 2018-10-12 广州海洋地质调查局 孔隙水长期原位取样和分析装置及其方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2704680Y (zh) * 2004-06-25 2005-06-15 长沙矿山研究院 深海钻机可伸缩式支腿自动姿态调整与稳定装置
CN102320347A (zh) * 2011-07-05 2012-01-18 赵凤银 带有急减速、急转弯阻尼两用板装置的船舶或舰艇或潜艇
KR20150000168A (ko) * 2013-06-24 2015-01-02 대우조선해양 주식회사 Bop 장비 테스트 장치 및 방법
CN106841311A (zh) * 2017-01-18 2017-06-13 青岛海洋地质研究所 一种海床基多点原位长期观测系统
CN106707361A (zh) * 2017-01-20 2017-05-24 青岛海洋地质研究所 海床基静力贯入及取样平台
CN108146581A (zh) * 2017-12-19 2018-06-12 西北工业大学 一种水中装备布放及回收装置
CN207991994U (zh) * 2018-04-02 2018-10-19 中国海洋大学 一种海底沉积物液化后流变特性原位测量装置
CN109094742A (zh) * 2018-10-24 2018-12-28 中国海洋大学 一种适用于全海深的海底沉积物力学特性原位测量装置
CN109297803A (zh) * 2018-10-24 2019-02-01 中国海洋大学 一种适用于全海深的海底沉积物力学特性测量系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3855155A4 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112051187A (zh) * 2020-08-26 2020-12-08 中交天津港湾工程研究院有限公司 海底基槽内不同深度处回淤物容重的原位测试及微扰动取样方法
CN112051187B (zh) * 2020-08-26 2023-10-27 中交天津港湾工程研究院有限公司 海底基槽内不同深度处回淤物容重的原位测试及微扰动取样方法
CN112963681A (zh) * 2021-02-05 2021-06-15 中国建筑材料工业地质勘查中心安徽总队 一种地质勘查用图像采集机构及其采集方法
CN113624277A (zh) * 2021-07-27 2021-11-09 广西蓝合创讯数据科技有限公司 一种海洋环境监测装置
CN114235470A (zh) * 2021-12-03 2022-03-25 罗乾胜 一种独立水下矿石勘测岩石钻孔机
CN114578447A (zh) * 2022-02-16 2022-06-03 青岛海洋地质研究所 拖曳式冷泉羽状流立体探测装置及探测方法
CN114578447B (zh) * 2022-02-16 2024-04-12 青岛海洋地质研究所 拖曳式冷泉羽状流立体探测装置及探测方法
CN114355479A (zh) * 2022-03-16 2022-04-15 国家海洋技术中心 一种空投式台风海域气象海洋环境信息测量装置
CN117533500A (zh) * 2023-11-10 2024-02-09 青岛海洋地质研究所 一种空海两栖航行器用水剖面参数采集组件
CN117533500B (zh) * 2023-11-10 2024-06-04 青岛海洋地质研究所 一种空海两栖航行器用水剖面参数采集组件
CN117704929A (zh) * 2024-02-06 2024-03-15 自然资源部第一海洋研究所 一种海底沉积物厚度变化测定装置及其方法
CN117704929B (zh) * 2024-02-06 2024-05-03 自然资源部第一海洋研究所 一种海底沉积物厚度变化测定装置及其方法

Also Published As

Publication number Publication date
US11110997B2 (en) 2021-09-07
CN109297803A (zh) 2019-02-01
CN109297803B (zh) 2019-12-10
EP3855155B1 (en) 2022-09-28
US20200355590A1 (en) 2020-11-12
JP2022502672A (ja) 2022-01-11
EP3855155A1 (en) 2021-07-28
EP3855155A4 (en) 2021-12-01
JP6985782B1 (ja) 2021-12-22

Similar Documents

Publication Publication Date Title
WO2020082690A1 (zh) 一种适用于全海深的海底沉积物力学特性测量系统
CN109094742B (zh) 一种适用于全海深的海底沉积物力学特性原位测量装置
CN109278962B (zh) 一种适用于全海深的无缆式海底观测平台
CN109204747B (zh) 适用于全海深的无缆式海底观测系统
JP7245988B2 (ja) 海底鉱物資源揚収装置
CN209037795U (zh) 适用于全海深的海底沉积物力学特性原位测量装置
CN105644743B (zh) 一种三体构型的长期定点观测型水下机器人
CN103115798B (zh) 一种深水可视化可操控超长重力活塞式取样系统
CN104776834B (zh) 一种深海底孔隙水压力长期观测自动布放系统与方法
CN209037812U (zh) 适用于全海深的无缆式海底观测平台
CN106908045B (zh) 一种自钻无缆式海底变形长期观测装置
US11313207B2 (en) Deep-sea submarine gas hydrate collecting method and production house
US11939831B2 (en) Device, system and method for collecting samples from a bed of a waterbody
CN104792452B (zh) 一种自动升降的无缆式深海底孔隙水压力长期观测装置
CN106895828B (zh) 一种自钻无缆式海底变形长期观测装置的布放及回收方法
CN109025824A (zh) 一种铁甲蟹海底勘钻探机器人
NO20120539A1 (no) Anordning for undersjøisk transport av målesystemer
CN106441995A (zh) 一种水下深层沉积物柱状采集装置
CN113428298A (zh) 一种小型潜标系统及其布放和回收方法
US10793241B2 (en) Method and system for launching and recovering underwater vehicles with an autonomous base
CN114714830A (zh) 一种适用于极地工程的自适应两栖巡航地层勘测车
CN111856612A (zh) 海底地球物理数据采集装置和系统
Singleton et al. Design and Development of a Novel Autonomous Moored Profiler
Dawe et al. Subsea instrument deployments: Methodology and techniques using a work class remotely operated vehicle (ROV)
CN117166923A (zh) 一种系统集成的移动式海底浅钻装备及其布放方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19876753

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021522500

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019876753

Country of ref document: EP

Effective date: 20210423