WO2020080602A1 - 방진성 및 성형성이 우수한 고망간 강재의 제조방법 및 이에 의해 제조된 고망간 강재 - Google Patents

방진성 및 성형성이 우수한 고망간 강재의 제조방법 및 이에 의해 제조된 고망간 강재 Download PDF

Info

Publication number
WO2020080602A1
WO2020080602A1 PCT/KR2018/015601 KR2018015601W WO2020080602A1 WO 2020080602 A1 WO2020080602 A1 WO 2020080602A1 KR 2018015601 W KR2018015601 W KR 2018015601W WO 2020080602 A1 WO2020080602 A1 WO 2020080602A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel
manganese
manganese steel
steel material
Prior art date
Application number
PCT/KR2018/015601
Other languages
English (en)
French (fr)
Inventor
조원태
김응수
김성규
한태교
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to JP2021521374A priority Critical patent/JP7304415B2/ja
Priority to CN201880098648.3A priority patent/CN112840042A/zh
Priority to US17/282,481 priority patent/US20210381074A1/en
Publication of WO2020080602A1 publication Critical patent/WO2020080602A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention relates to a steel material used for a steel plate for automobiles or buildings, and more particularly, to a high-manganese steel material having excellent anti-vibration properties and moldability, which can be used where anti-vibration properties for noise reduction are required, and a method for manufacturing the same. .
  • high-manganese (Mn) anti-vibration steel is a type of steel that has high anti-vibration properties and excellent mechanical properties by converting noise energy into thermal energy due to the interfacial sliding of epsilon martensite during external impact, and is suitable for use in this purpose. .
  • high-manganese anti-vibration steel is made of hot-rolled or cold-rolled steel by adding a cold-rolling process or a process leading to steel-performing-hot rolling, and then applying post-heat treatment to the steel to provide epsilon martensite and / or recrystallization. Tissue is formed to secure dust-proof properties.
  • the post-heat treatment process performed to secure the anti-vibration properties is a high-cost heat treatment that applies a time exceeding 10 minutes, preferably 60 minutes or more, at a temperature of 900 ° C or higher, which makes generalization of high-manganese anti-vibration steel. It has acted as a blocking factor.
  • Patent Document 1 Korean Registered Patent No. 10-1736636
  • the present invention in providing a high-manganese anti-vibration steel, it is possible to omit the post-heat treatment process, which is essentially performed to improve the anti-vibration properties, while providing dust-proof properties and formability at a lower cost than in the prior art. It is intended to provide a method for manufacturing an excellent high-manganese steel and a high-manganese steel produced therefrom.
  • FDT ° C.
  • each element means the weight content.
  • Another aspect of the present invention as a steel material produced by the above-described manufacturing method, has the above-described alloy composition, includes an epsilon martensite and residual austenite phase in an area fraction of 90% or more as a microstructure, and is completely recrystallized structure, dust-proof and Provides a high-manganese steel material with excellent formability.
  • the present invention can provide high-manganese anti-vibration steel at a relatively low cost from the omission of the post-heat treatment process, and thus has a technical effect from an economical point of view and is universally applicable to fields requiring anti-vibration properties. It has the effect.
  • 1 is a graph showing a loss rate value at a strain rate of 900 (m / (m ⁇ 10 ⁇ 6 )) of invention steel and comparative steel according to FDT (° C.) in one embodiment of the present invention.
  • FIG. 2 is a graph showing a loss rate value at a strain of 200 to 900 (m / (m ⁇ 10 -6 )) in invention steel and comparative steel in one embodiment of the present invention.
  • Figure 3 shows a microstructure photograph of the invention steel according to an embodiment of the present invention.
  • Figure 4 shows the XRD measurement results of the invention steel and comparative steel according to an embodiment of the present invention.
  • FIG. 5 shows a method of measuring a loss rate with respect to a strain rate using a cantilever method.
  • the present inventors confirmed that in the case of the existing high-manganese anti-vibration steel, a high-cost heat treatment (aka, post-heat treatment process) should be applied to improve the anti-vibration properties, which in turn increases the manufacturing cost significantly and limits its generalization. Did.
  • a high-cost heat treatment aka, post-heat treatment process
  • the present inventors have studied in depth how to achieve both anti-vibration properties and excellent formability even if high-cost heat treatment is omitted. As a result, it is confirmed that the fraction of the epsilon martensite phase in steel can be maximized by optimizing the manufacturing process along with the control of the alloy composition, and thus, it is possible to provide a steel material having excellent anti-vibration properties and formability even with a series of hot rolling processes. , It came to complete the present invention.
  • a method of manufacturing a high-manganese steel material having excellent dust and moldability according to an aspect of the present invention can be prepared by preparing a steel slab having an alloy composition described below, and then hot rolling and cooling the same.
  • the content of each element means the weight content (% by weight).
  • Carbon (C) is an element that stabilizes austenite in steel and is advantageous for securing strength. However, if the content exceeds 0.1%, the fraction of dissolved C is excessively high, hindering hot workability, and there is a fear that dust resistance is greatly reduced.
  • C may be contained at 0.1% or less, and even when included at 0%, there is no difficulty in securing target physical properties.
  • Manganese (Mn) is an essential element for stably securing austenite and epsilon martensite structures.
  • it is necessary to contain the Mn in an amount of 8% or more in order to secure the epsilon martensite phase in a predetermined fraction or more without performing a separate heat treatment process.
  • the content exceeds 30%, the manufacturing cost increases, and in the process of refining a large amount of Mn, the content of phosphorus (P) increases, causing slab cracking.
  • P phosphorus
  • the content of Mn increases, internal grain boundary oxidation occurs excessively when the slab is heated to cause oxide defects on the steel surface, and there is a problem in that the surface properties are also inferior during plating.
  • Mn may be included in an amount of 8 to 30%, and more advantageously, in an amount of 14 to 20%.
  • Silicon (Si) is an element that is strengthened in solid solution, and is advantageous in improving yield strength by reducing crystal grain size due to solid solution effect.
  • Si content is increased, a silicon compound is formed on the surface of the steel sheet during hot rolling, thereby deteriorating pickling, and the surface quality of the hot rolled steel sheet is deteriorated.
  • the weldability is greatly reduced.
  • Si can be contained in an amount of 3.0% or less, and even when included in 0%, there is no difficulty in securing target physical properties.
  • Phosphorus (P) and sulfur (S) are elements inevitably contained in steel production, and it is advantageous to contain them as low as possible. Among them, when the P content exceeds 0.1%, segregation occurs, reducing the workability of the steel, and S forms a coarse manganese sulfide (MnS) when its content exceeds 0.02%, causing flange cracks. ), And has a problem of inhibiting the formability of the steel sheet, particularly, hole expandability.
  • P may be contained at 0.1% or less and S at 0.02% or less.
  • Nitrogen (N) is an element that forms nitride, and when its content exceeds 0.1%, the fraction of dissolved N becomes excessively high, inhibiting hot workability and elongation, and reducing dust resistance.
  • N is contained in an amount of 0.1% or less, and even if it is included in 0%, there is no difficulty in securing target physical properties.
  • Titanium (Ti) is an element that combines with carbon to form a carbide, and the formed carbide suppresses grain growth and is advantageous for grain size refinement. In addition, it has a scavenging effect by forming a compound with C and N, which is advantageous in improving dust resistance. When the Ti content exceeds 1.0%, excess titanium segregates on the grain boundaries to cause grain boundary embrittlement, or the formation of coarse precipitated phase inhibits the effect of inhibiting grain growth.
  • Ti may be included at 1.0% or less, and 0% is excluded.
  • Boron (B) has the effect of forming a high temperature compound at the grain boundary when added together with Ti to prevent grain boundary cracking.
  • B has the effect of forming a high temperature compound at the grain boundary when added together with Ti to prevent grain boundary cracking.
  • the content of B exceeds 0.01%, it is not preferable because the boron compound is formed to deteriorate the surface properties.
  • B may be contained in an amount of 0.01% or less, and even when included in 0%, there is no difficulty in securing target physical properties.
  • the steel materials of the present invention contain each element in the above-described composition, and when C and N are added together, it is preferable that their content sum (C + N, weight%) is 0.1% or less.
  • the C and N are interstitial solid-solution elements, and when combined with Ti and the like to form carbonitrides, the anti-vibration performance may be improved, but if the sum of their contents exceeds 0.1%, the fraction of dissolved C or dissolved N It becomes unfavorable because it increases, the hot workability and elongation decreases, and the dustproof property is reduced.
  • the content may be 0.1% or less.
  • the steel material of the present invention may further include an additional element in addition to the above-described alloy composition in order to improve the physical properties.
  • One aspect may further include at least one of nickel (Ni): 0.005 to 2.0% and chromium (Cr): 0.005 to 5.0%.
  • Nickel (Ni) is an element that effectively contributes to securing high temperature ductility. In order to obtain the above-described effect, it may be contained in an amount of 0.005% or more, and as the content increases, it is effective in preventing delayed destruction and slab crack. However, Ni is an expensive element and may be contained in an amount of 2.0% or less in consideration of this.
  • Chromium (Cr) reacts with external oxygen during hot rolling or annealing to form a Cr-based oxide film (Cr 2 O 3 ) with a thickness of 20 to 50 ⁇ m on the surface of steel, so that Mn, Si, etc. contained in the steel are surface layers. To prevent dissolution. From this, it contributes to the stabilization of the surface structure of the steel and has an effect of improving the plating surface properties. In order to obtain the above-described effect, it may contain Cr in an amount of 0.005% or more, but if the content exceeds 5.0%, chromium carbide is formed, which is not preferable because the processability and delayed fracture characteristics are lowered.
  • Another aspect may further include at least one of niobium (Nb): 0.005 to 0.5%, vanadium (V): 0.005 to 0.5%, and tungsten (W): 0.005 to 1.0%.
  • Nb niobium
  • V vanadium
  • W tungsten
  • Niobium (Nb) is an element that forms carbides by bonding with carbon in steel, and can obtain an effect of increasing strength or refining the particle size.
  • the precipitation phase is formed at a temperature lower than Ti, it is an element having a large precipitation effect by miniaturization of the crystal grain size and formation of the precipitation phase.
  • Nb may contain Nb in an amount of 0.005% or more.
  • the content exceeds 0.5%, excessive Nb segregates to the grain boundaries, causing grain boundary embrittlement, or the formation of coarse precipitated phase decreases the effect of inhibiting grain growth.
  • the rolling load is increased by delaying recrystallization during the hot rolling process.
  • Nb when added, it may be contained in an amount of 0.005 to 0.5%.
  • V Vanadium
  • W Tungsten
  • Vanadium (V) and tungsten (W) are elements that form carbonitrides by combining with C and N.
  • the elements form a fine precipitation phase at a low temperature, and thus have a large precipitation strengthening effect.
  • each may contain 0.005% or more, but in the case of V exceeding 0.5% or in the case of W exceeding 1.0%, the precipitation phase is excessively coarsened and the effect of inhibiting grain growth is lowered and hot brittleness Cause.
  • V when added, it can be added at 0.005 to 0.5% and when W is added at 0.005 to 1.0%.
  • the remaining component of the invention is Fe.
  • unintended impurities from the raw material or the surrounding environment may inevitably be mixed, and therefore cannot be excluded. Since these impurities are known to anyone skilled in the ordinary manufacturing process, they are not specifically mentioned in this specification.
  • the temperature of the steel slab is too low during heating, it may be carried out at least 1150 ° C or more because the rolling load may be excessively applied during the subsequent hot rolling.
  • the higher the heating temperature the more advantageous the subsequent hot rolling process can be performed.
  • the present invention contains a large amount of Mn, when heating at an excessively high temperature, there is a problem in that the surface quality is deteriorated due to severe internal oxidation, so the heating can be performed at 1350 ° C. or less, and more advantageous It can be carried out at 1300 ° C or lower.
  • the steel slab heated according to the above can be hot rolled to produce a hot rolled steel sheet. At this time, it is preferable to perform hot-finishing at a temperature (FDT (° C)) satisfying the following relational expression 1.
  • each element means the weight content.
  • the relational expression 1 is an equation derived through a number of experiments, and is an important factor in preparing a high-manganese steel material having excellent anti-vibration properties and formability targeted in the present invention.
  • the present invention can induce growth and recrystallization of austenite grains to a sufficient size by performing finish hot rolling at a temperature above the temperature at which complete recrystallization occurs, from which epsilon in the subsequent cooling and / or coiling process
  • the martensite phase can be stably secured.
  • the total reduction ratio may be 80% or more, more preferably 90% or more.
  • the total rolling reduction is 80% or more during the finish hot rolling, a recrystallization driving force can be sufficiently secured.
  • the hot-rolled steel sheet manufactured according to the above can be cooled, and it is preferable to cool down to 700 ° C or less.
  • the present invention it is preferable to terminate the cooling in the temperature range of 700 ° C. or less, more preferably 500 ° C. or less, and even more preferably room temperature to 300 ° C. during the cooling.
  • the cooling may be performed through normal water cooling (for example, a cooling rate of 10 ° C./s or higher), and when the cooling end temperature is from room temperature to 300 ° C., the cooling end temperature may be secured through rapid cooling.
  • the cooling rate for the rapid cooling is not particularly limited, but may be performed at a cooling rate of 50 ° C / s or more, for example, but may be performed at 200 ° C / s or less in consideration of facility specifications.
  • the room temperature is not particularly limited, but means about 20 to 35 ° C.
  • the present invention may further perform a winding process at that temperature after completing the cooling, which may be selectively performed in consideration of the thickness of the steel material and the like.
  • the high-manganese steel of the present invention obtained by completing the above-described cooling process includes an epsilon martensite phase with an area fraction of 90% or more, and thus does not contain a completely recrystallized structure, that is, a non-recrystallized structure, thereby ensuring high dust-proof properties and formability can do.
  • the high-manganese steel of the present invention can be obtained by the above-described manufacturing process, and also has the above-mentioned alloy composition, so the alloy composition of the steel is replaced by the above-mentioned matters.
  • the high-manganese steel of the present invention is composed of epsilon martensite and residual austenite phase having an area fraction of 90% or more (including 100%) as a microstructure.
  • the present invention is a completely recrystallized structure that does not contain any unrecrystallized structure, which can ensure excellent anti-vibration properties, and more preferably, include the epsilon martensite phase in an amount of 95% or more.
  • the high-manganese steel of the present invention contains the epsilon martensitic phase in a high fraction, and effectively removes residual dislocation by complete recrystallization, so that the epsilon martensite phase heats the impact energy when an external impact is applied. It contributes to the improvement of damping performance by increasing the conversion rate to energy.
  • the high-manganese steel material of the present invention is a microstructure that does not contain any phase (phase) other than the above-mentioned phase, for example, it is revealed that it does not contain any alpha re- ( ⁇ ')-martensitic phase at all Put it.
  • the present invention can form an epsilon martensite phase in a sufficient fraction even when omitting the high-cost heat treatment performed in the production of high-manganese anti-vibration steel, and excellent moldability can be ensured. Therefore, the high-manganese steel material of the present invention will have an economically advantageous technical effect compared to the conventional high-manganese anti-vibration steel.
  • Each of the hot-rolled steel sheets was manufactured by heating-hot rolling-cooling the steel slabs having the alloy composition of Table 1 under the conditions shown in Table 2 below. At this time, for comparison, post-heat treatment was performed on specific steel types, and the post-heat treatment was performed at 1000 ° C for 30 minutes, followed by air cooling.
  • the loss rate for the strain of 200 to 900 was measured by a cantilever method.
  • ⁇ '-M means alpha-dashi-martensite
  • means austenite
  • ⁇ -M means epsilon martensite phase.
  • the invention steels 1 to 6 are epsilon As the martensite phases are all formed at 95% or more, it is possible to secure the dust-proof property.
  • 1 is a graph showing the loss rate value at a strain of 900 (m / (m ⁇ 10 -6 )) of each specimen according to FDT (° C).
  • 2 is a graph showing the loss rate value at a strain of 200 to 900 (m / (m ⁇ 10 ⁇ 6 )) of some specimens.
  • Figure 3 shows a microstructure photograph of invention steel 4, it can be seen that most of the microstructure formed on the epsilon martensite phase.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

본 발명은 자동차용 또는 건축용 강판 등에 사용되는 강재에 관한 것으로서, 보다 상세하게는 소음 저감을 위한 방진 특성이 요구되는 곳에 사용될 수 있는 방진성 및 성형성이 우수한 고망간 강재와 이것을 제조하는 방법에 관한 것이다.

Description

방진성 및 성형성이 우수한 고망간 강재의 제조방법 및 이에 의해 제조된 고망간 강재
본 발명은 자동차용 또는 건축용 강판 등에 사용되는 강재에 관한 것으로서, 보다 상세하게는 소음 저감을 위한 방진 특성이 요구되는 곳에 사용될 수 있는 방진성 및 성형성이 우수한 고망간 강재와 이것을 제조하는 방법에 관한 것이다.
최근, 자동차의 제조 또는 건축 자재 등의 소재에 있어서 소음 저감은 제조업체들이 반드시 해결해야하는 이슈이다. 자동차 제조 업체의 경우, 소음이 크게 발생하는 엔진부, 오일펜 등의 구성품에 우수한 기계적 특성과 함께 방진 특성이 특히 요구된다. 또한, 건축 자재의 경우에는 층간 소음 규제가 강화됨에 따라 아파트를 포함한 복층 건물의 바닥판으로서 방진 특성이 우수한 강재의 개발이 요구되고 있는 실정이다.
한편, 고망간(Mn) 방진강은 외부 충격시 입실론 마르텐사이트의 계면 슬라이딩으로 인해 소음 에너지가 열 에너지로 전환되어 높은 방진 특성 및 우수한 기계적 성질을 가지고 있는 강종으로, 이와 같은 목적에 사용하기 적합하다.
일반적으로 고망간 방진강은 제강-연주-열연으로 이어지는 공정 또는 여기에 냉연 공정을 추가함으로써 열연 또는 냉연 강판을 제조한 다음, 그 강판에 후(後)열처리를 적용함으로써 입실론 마르텐사이트 및/또는 재결정 조직을 형성하여 방진 특성을 확보한다.
그런데, 방진 특성의 확보를 위해 행해지는 후(後)열처리 공정은 통상 900℃ 이상의 온도에서 10분을 초과하는 시간, 바람직하게는 60분 이상을 적용하는 고비용 열처리로서, 이는 고망간 방진강의 범용화를 막는 요인으로 작용하여 왔다.
현재, 소음 저감에 대한 요구가 지속적으로 증가하고 있는 바, 고비용 열처리인 후(後)열처리를 생략하면서도 방진 특성과 우수한 성형성의 양립이 가능한 강재를 개발할 필요가 있는 실정이다.
(특허문헌 1) 한국등록특허 제10-1736636호
본 발명의 일 측면은, 고망간 방진강을 제공함에 있어서, 방진 특성의 향상을 위해 필수적으로 행해지는 후(後)열처리 공정을 생략할 수 있으면서, 종래에 비해 저렴한 비용으로 방진 특성 및 성형성이 우수한 고망간 강재를 제조하는 방법 및 이로부터 제조된 고망간 강재를 제공하고자 하는 것이다.
본 발명의 과제는 상술한 사항에 한정되지 아니한다. 본 발명의 추가적인 과제는 명세서 전반적인 내용에 기술되어 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가지는 자라면 본 발명의 명세서에 기재된 내용으로부터 본 발명의 추가적인 과제를 이해하는데 아무런 어려움이 없을 것이다.
본 발명의 일 측면은, 중량%로 탄소(C): 0.1% 이하, 망간(Mn): 8~30%, 실리콘(Si): 3.0% 이하, 인(P): 0.1% 이하, 황(S): 0.02% 이하, 질소(N): 0.1% 이하, 티타늄(Ti): 1.0% 이하(0% 제외), 보론(B): 0.01% 이하, 잔부 Fe 및 기타 불가피한 불순물을 포함하는 강 슬라브를 1150~1350℃의 온도에서 가열하는 단계; 상기 가열된 강 슬라브를 마무리 열간압연하여 열연강판을 제조하는 단계; 및 상기 열연강판을 700℃ 이하로 냉각하는 단계를 포함하고, 상기 마무리 열간압연은 하기 관계식 1을 만족하는 온도(FDT(℃))에서 행하는 것을 특징으로 하는 방진성 및 성형성이 우수한 고망간 강재의 제조방법을 제공한다.
[관계식 1]
FDT(℃) ≥ 928 + (480×C) + (450×N) + (0.9×Mn) + (65×Ti)
(여기서, 각 원소들은 중량 함량을 의미한다)
본 발명의 다른 일 측면은, 상술한 제조방법에 의해 제조되는 강재로서, 상술한 합금조성을 가지고, 미세조직으로 면적분율 90% 이상의 입실론 마르텐사이트 및 잔부 오스테나이트 상을 포함하며, 완전 재결정 조직인 방진성 및 성형성이 우수한 고망간 강재를 제공한다.
본 발명에 의하면, 종래 고망간 방진강의 방진성 향상을 위해 요구되었던 후(後)열처리 공정을 생략하더라도 방진성 및 성형성이 우수한 고망간 강재를 제공할 수 있다.
또한, 본 발명은 상기 후(後)열처리 공정의 생략으로부터 상대적으로 저렴한 비용으로 고망간 방진강을 제공할 수 있으므로 경제적인 측면에서 기술적 효과가 있으며, 방진 특성이 요구되는 분야에 범용적으로 적용할 수 있는 효과가 있다.
도 1은 본 발명의 일 실시예에 있어서, 발명강 및 비교강들의 변형율 900(m/(m×10-6))에서의 손실율 값을 FDT(℃)에 따라 나타낸 그래프이다.
도 2는 본 발명의 일 실시예에 있어서, 발명강 및 비교강들의 변형율 200~900(m/(m×10-6))에서의 손실율 값을 나타낸 그래프이다.
도 3은 본 발명의 일 실시예에 따른 발명강의 미세조직 사진을 나타낸 것이다.
도 4는 본 발명의 일 실시예에 따른 발명강과 비교강의 XRD 측정 결과를 나타낸 것이다.
도 5는 캔틸레버 방식으로 변형율에 대한 손실율을 측정하는 방식을 도시한 것이다.
본 발명자들은 기존 고망간 방진강의 경우 방진 특성의 향상을 위해 고비용 열처리(일명, 후(後)열처리 공정)가 적용되어야 하고, 이는 결국 제조비용을 크게 상승시킬 뿐만 아니라, 범용화에 한계가 있음을 확인하였다.
이에, 본 발명자들은 고비용 열처리를 생략하더라도 방진 특성과 우수한 성형성을 양립할 수 있는 방안에 대하여 깊이 연구하였다. 그 결과, 합금조성의 제어와 함께 제조공정을 최적화함으로써 강 중 입실론 마르텐사이트 상의 분율을 최대화할 수 있고, 이로 인해 일련의 열연 공정만으로도 방진 특성 및 성형성이 우수한 강재를 제공할 수 있음을 확인하고, 본 발명을 완성하기에 이르렀다.
이하, 본 발명에 대하여 상세히 설명한다.
본 발명의 일 측면에 따른 방진성 및 성형성이 우수한 고망간 강재를 제조하는 방법은 후술하는 합금조성을 가지는 강 슬라브를 준비한 후, 이를 열간압연 및 냉각하여 제조할 수 있다.
우선, 본 발명에서 목표로 하는 고망간 강재를 얻고자 함에 있어서, 합금조성을 제한하는 이유에 대하여 상세히 설명한다. 이때, 특별한 언급이 없는 한, 각 원소들의 함량은 중량 함량(중량%)을 의미한다.
탄소(C): 0.1% 이하
탄소(C)는 강 내 오스테나이트를 안정화시키고, 강도 확보에 유리한 원소이다. 다만, 그 함량이 0.1%를 초과하게 되면 용존 C의 분율이 과도하게 높아져 열간가공성을 저해하고, 방진성이 크게 감소될 우려가 있다.
따라서, 본 발명에서는 C를 0.1% 이하로 함유할 수 있으며, 0%로 포함하여도 목표로 하는 물성 확보에는 무리가 없다.
망간(Mn): 8~30%
망간(Mn)은 오스테나이트와 입실론 마르텐사이트 조직을 안정하게 확보하는데에 필수적인 원소이다. 본 발명은 별도의 열처리 공정을 행하지 않고서도 일정 분율 이상으로 입실론 마르텐사이트 상을 확보하기 위하여, 상기 Mn을 8% 이상으로 함유할 필요가 있다. 다만, 그 함량이 30%를 초과하게 되면 오히려 제조비용이 상승하고, 다량의 Mn을 정련하는 과정에서 인(P)의 함량이 증가하여 슬라브 균열의 원인이 된다. 또한, Mn의 함량이 증가할수록 슬라브 가열시 내부 입계산화가 과도하게 발생하여 강 표면에 산화물 결함을 유발하고, 이후의 도금시 표면 특성도 열위하는 문제가 있다.
따라서, 본 발명에서는 Mn을 8~30%로 포함할 수 있으며, 보다 유리하게는 14~20%로 포함할 수 있다.
실리콘(Si): 3.0% 이하
실리콘(Si)은 고용강화되는 원소로서 고용효과에 의해 결정입도를 줄여 항복강도를 향상시키는데 유리하다. 그런데, 이러한 Si의 함량이 증가하면 열간압연시 강판 표면에 실리콘 화합물이 형성되어 산세성이 나빠지며, 열연강판의 표면품질이 저하된다. 또한, 과도하게 첨가시 용접성이 크게 저하된다.
따라서, 본 발명에서는 Si을 3.0% 이하로 함유할 수 있으며, 0%로 포함하여도 목표로 하는 물성 확보에는 무리가 없다.
인(P): 0.1% 이하 및 황(S): 0.02% 이하
인(P)과 황(S)은 강 제조시 불가피하게 함유되는 원소로서, 가능한 한 낮게 함유하는 것이 유리하다. 이 중 P의 함량이 0.1%를 초과하게 되면 편석(segregation)을 일으켜 강의 가공성을 감소시키고, S은 그 함량이 0.02%를 초과할 경우 조대한 망간황화물(MnS)을 형성하여 플랜지 크랙(flange crack)과 같은 결함을 야기하며, 강판의 성형성 특히, 구멍확장성을 저해하는 문제가 있다.
따라서, 본 발명에서는 P은 0.1% 이하, S은 0.02% 이하로 함유할 수 있다.
질소(N): 0.1% 이하
질소(N)는 질화물을 형성하는 원소로서, 그 함량이 0.1%를 초과하게 되면 용존 N의 분율이 과도하게 높아져 열간가공성과 연신율을 저해하고, 방진성을 감소시킨다.
따라서, 본 발명에서는 N를 0.1% 이하로 함유하며, 0%로 포함하여도 목표로 하는 물성 확보에는 무리가 없다.
티타늄(Ti): 1.0% 이하(0% 제외)
티타늄(Ti)은 탄소와 결합하여 탄화물을 형성하는 원소로서, 형성된 탄화물은 결정립 성장을 억제하여 결정입도 미세화에 유리하다. 또한, C, N과 화합물을 형성하여 스케빈징(scavenging) 효과를 가지고 있어, 방진성의 향상에 유리하다. 이러한 Ti의 함량이 1.0%를 초과하게 되면 과량의 티타늄이 결정립계에 편석하여 입계취화를 일으키거나, 조대한 석출상의 형성으로 결정립 성장의 억제 효과가 저해된다.
따라서, 본 발명에서는 Ti을 1.0% 이하로 포함할 수 있으며, 0%는 제외한다.
보론(B): 0.01% 이하
보론(B)은 Ti과 함께 첨가시 입계에 고온 화합물을 형성하여 입계 크랙을 방지하는 효과가 있다. 그런데, 이러한 B의 함량이 0.01%를 초과하게 되면 보론 화합물을 형성하여 표면 특성을 악화시키므로 바람직하지 못하다.
따라서, 본 발명에서는 B을 0.01% 이하로 함유할 수 있으며, 0%로 포함하여도 목표로 하는 물성 확보에는 무리가 없다.
본 발명의 강재는 상술한 조성으로 각각의 원소를 함유함에 있어서, C와 N를 복합첨가하는 경우 이들의 함량 합(C+N, 중량%)이 0.1% 이하인 것이 바람직하다.
상기 C와 N은 침입형 고용원소로서, Ti 등과 결합하여 탄질화물을 형성하는 경우에는 방진성능을 향상시킬 수는 있으나, 이들의 함량 합이 0.1%를 초과하게 되면 용존 C 또는 용존 N의 분율이 높아져 열간가공성 및 연신율이 저하되고, 방진성을 감소시킴으로 바람직하지 못하다.
따라서, 상기 C과 N의 복합첨가시 그 함량 합으로 0.1% 이하로 함유할 수 있다.
한편, 본 발명의 강재는 물성의 향상을 위하여 상술한 합금조성 이외에 추가적인 원소를 더 포함할 수 있다.
하나의 측면으로는 니켈(Ni): 0.005~2.0% 및 크롬(Cr): 0.005~5.0% 중 1종 이상을 더 포함할 수 있다.
니켈(Ni): 0.005~2.0%
니켈(Ni)은 고온 연성의 확보에 효과적으로 기여하는 원소이다. 상술한 효과를 얻기 위해서는 0.005% 이상으로 함유할 수 있으며, 그 함량이 증가할수록 내지연파괴 및 슬라브 크랙 등의 방지에도 유효하다. 다만, 상기 Ni은 고가의 원소로서 이를 고려하여 2.0% 이하로 함유할 수 있다.
크롬(Cr): 0.005~5.0%
크롬(Cr)은 열연 또는 소둔 공정시 외부 산소와 반응하여 강 표면에 20~50㎛의 두께로 Cr계 산화막(Cr2O3)을 우선적으로 형성함으로써, 강 중에 함유된 Mn, Si 등이 표층으로 용출되는 것을 방지한다. 이로부터 강 표층 조직의 안정화에 기여하고, 도금 표면특성을 향상시키는 효과가 있다. 상술한 효과를 얻기 위해서는 0.005% 이상으로 Cr을 함유할 수 있으나, 그 함량이 5.0%를 초과하게 되면 크롬 탄화물이 형성되어 오히려 가공성과 내지연파괴 특성이 저하되므로 바람직하지 못하다.
따라서, 본 발명에서 Cr의 첨가시 0.005~5.0%로 함유할 수 있다.
또 하나의 측면으로는 니오븀(Nb): 0.005~0.5%, 바나듐(V): 0.005~0.5% 및 텅스텐(W): 0.005~1.0% 중 1종 이상을 더 포함할 수 있다.
니오븀(Nb): 0.005~0.5%
니오븀(Nb)은 강 중 탄소와 결합하여 탄화물을 형성하는 원소로서, 강도 상승 또는 입도 미세화 효과를 얻을 수 있다. 일반적으로 Ti 보다 낮은 온도에서 석출상을 형성하므로, 결정립 크기의 미세화와 석출상 형성에 의한 석출 강화 효과가 큰 원소이다. 또한, 용존 C의 분율을 낮춰 방진성을 향상시키는 효과도 있다.
상술한 효과를 위해서는 0.005% 이상으로 Nb을 함유할 수 있다. 다만, 그 함량이 0.5%를 초과하게 되면 과량의 Nb이 결정립계에 편석하여 입계 취화를 일으키거나, 조대한 석출상의 형성으로 결정립 성장 억제 효과가 저하된다. 뿐만 아니라, 열간압연 공정시에 재결정을 지연시켜 압연하중을 상승시키는 문제가 있다.
따라서, 본 발명에서 Nb의 첨가시 0.005~0.5%로 함유할 수 있다.
바나듐(V): 0.005~0.5% 및 텅스텐(W): 0.005~1.0%
바나듐(V)과 텅스텐(W)은 C, N와 결합하여 탄질화물을 형성하는 원소로서, 본 발명에서 상기 원소들은 저온에서 미세한 석출상을 형성하므로 석출 강화 효과가 크다. 또한 용존 C와 용존 N의 분율을 낮춰 방진성을 향상시키는 효과가 있다.
상술한 효과를 위해서는 각각 0.005% 이상으로 함유할 수 있으나, V의 경우 0.5%를 초과하거나, W의 경우 1.0%를 초과하게 되면 석출상이 과도하게 조대화되어 결정립 성장 억제 효과가 저하되고, 열간취성의 원인이 된다.
따라서, 본 발명에서는 V의 첨가시 0.005~0.5%, W의 첨가시 0.005~1.0%로 첨가할 수 있다.
본 발명의 나머지 성분은 Fe다. 다만, 통상의 제조과정에서는 원료 또는 주위 환경으로부터 의도되지 않는 불순물들이 불가피하게 혼입될 수 있으므로, 이를 배제할 수는 없다. 이들 불순물들은 통상의 제조과정의 기술자라면 누구라도 알 수 있는 것이기 때문에 그 모든 내용을 특별히 본 명세서에서 언급하지는 않는다.
상술한 바에 따른 합금조성을 가지는 강 슬라브를 준비한 다음, 이를 가열할 수 있으며, 이때 1150~1350℃의 온도범위에서 가열하는 단계를 거칠 수 있다.
상기 강 슬라브의 가열시 온도가 너무 낮으면 후속되는 열간압연시 압연하중이 과도하게 걸릴 수 있으므로 적어도 1150℃ 이상에서 실시할 수 있다.
한편, 본 발명은 오스테나이트 결정립 크기(grain size)가 클수록 최종 미세조직으로 입실론 마르텐사이트 상의 분율을 높일 수 있는 바, 상기 가열시 온도가 높은 것이 유리하다. 또한, 상기 가열 온도가 높을수록 후속 열간압연 공정을 유리하게 행할 수 있다. 다만, 본 발명은 Mn을 다량으로 함유하고 있으므로 과도하게 높은 온도에서 가열을 행하는 경우에는 내부산화가 심하게 발생하여 표면품질이 나빠지는 문제가 있으므로, 상기 가열은 1350℃ 이하에서 행할 수 있으며, 보다 유리하게는 1300℃ 이하에서 행할 수 있다.
상술한 바에 따라 가열된 강 슬라브를 열간압연하여 열연강판으로 제조할 수 있다. 이때, 하기 관계식 1을 만족하는 온도(FDT(℃))에서 마무리 열간압연을 행하는 것이 바람직하다.
[관계식 1]
FDT(℃) ≥ 928 + (480×C) + (450×N) + (0.9×Mn) + (65×Ti)
(여기서, 각 원소들은 중량 함량을 의미한다)
상기 관계식 1은 다수의 실험을 통해 도출된 식으로서, 본 발명에서 목표로 하는 방진성 및 성형성이 우수한 고망간 강재를 제조하는데에 중요한 인자이다.
구체적으로, 본 발명은 완전 재결정이 일어나는 온도를 상회하는 온도에서 마무리 열간압연을 행함으로써 충분한 크기로 오스테나이트 결정립의 성장과 재결정을 유도할 수 있으며, 이로부터 후속하는 냉각 및/또는 권취 공정에서 입실론 마르텐사이트 상을 안정적으로 확보할 수 있다.
상기 마무리 열간압연시 온도가 상기 관계식 1에 의해 도출되는 온도 미만이면 오스테나이트 결정립의 성장과 재결정을 유도하기 어려워져 최종 미세조직으로 입실론 마르텐사이트 상을 충분히 형성할 수 없고, 미재결정 조직이 형성되어 방진성이 열위할 우려가 있다.
또한, 상기 마무리 열간압연시 총 압하율 80% 이상, 보다 바람직하게는 90% 이상으로 행할 수 있다. 상기 마무리 열간압연시 총 압하율이 80% 이상이면 재결정 구동력을 충분히 확보할 수 있다.
상기에 따라 제조된 열연강판을 냉각할 수 있으며, 이때 700℃ 이하로 냉각을 행하는 것이 바람직하다.
상기 냉각시 종료 온도가 700℃를 초과하게 되면 스케일(scale)이 과다하게 생성되어 스케일 제거에 과도한 공정이 요구되고, 분진으로 인한 공기 오염 등의 문제와 함께 후가공에 지장을 주게 되므로 바람직하지 못하다.
본 발명에서는 상온까지 냉각을 행하여도 무방하며, 이 경우 기존 후(後)열처리 공정에 의해 제조되는 고망간 방진강 대비 방진성을 더욱 우수하게 확보하는 효과가 있다 (하기 [표 3] 참조).
따라서, 본 발명에서는 상기 냉각시 700℃ 이하, 보다 바람직하게는 500℃ 이하, 보다 더 바람직하게는 상온~300℃의 온도범위에서 냉각을 종료하는 것이 바람직하다. 이와 같이, 냉각종료온도가 낮을수록 잔존 오스테나이트 양이 줄어들게 되므로 최종 미세조직에서 입실론 마르텐사이트 상을 확보하는데에 보다 유리하다.
한편, 상기 냉각은 통상의 수냉(예컨대, 10℃/s 이상의 냉각속도)을 통해 행할 수 있으며, 냉각종료온도가 상온~300℃인 경우에는 급속 냉각을 통해 냉각종료온도를 확보할 수 있다. 상기 급속 냉각시 냉각속도에 대해서는 특별히 한정하지 아니하나, 일 예로 50℃/s 이상의 냉각속도로 행할 수 있으며, 다만 설비 사양을 고려하여 200℃/s 이하로 행할 수 있을 것이다.
여기서, 상온은 특별히 한정하지 아니하나, 20~35℃ 정도를 의미한다.
본 발명은 상기 냉각을 완료한 후 그 온도에서 권취 공정을 더 행할 수 있으며, 이는 강재의 두께 등을 고려하여 선택적으로 행할 수 있을 것이다.
상술한 냉각 공정을 완료하여 얻은 본 발명의 고망간 강재는 면적분율 90% 이상으로 입실론 마르텐사이트 상을 포함하며, 완전 재결정 조직 즉, 미재결정 조직을 전혀 포함하지 않으므로 높은 방진 특성 및 성형성을 확보할 수 있다.
이하, 본 발명의 다른 일 측면에 따른 방진성 및 성형성이 우수한 고망간 강재에 대하여 상세히 설명한다.
상기 본 발명의 고망간 강재는 앞서 서술한 제조공정에 의해 얻어질 수 있으며, 또한 앞서 언급한 합금조성을 가지므로, 상기 강재의 합금조성에 대해서는 이미 언급한 사항으로 대체한다.
본 발명의 고망간 강재는 미세조직으로 면적분율 90% 이상(100% 포함)의 입실론 마르텐사이트 및 잔부 오스테나이트 상으로 구성되는 것이 바람직하다. 특히, 본 발명은 미재결정 조직을 전혀 함유하지 않는 완전 재결정 조직으로서, 방진성을 우수하게 확보할 수 있으며, 보다 바람직하게는 상기 입실론 마르텐사이트 상을 95% 이상으로 포함할 수 있다.
이와 같이, 본 발명의 고망간 강재는 입실론 마르텐사이트 상을 높은 분율로 포함하면서, 완전 재결정에 의해 잔류 전위(dislocation)를 효과적으로 제거함에 따라, 외부 충격이 가해졌을 때 입실론 마르텐사이트 상이 충격 에너지를 열 에너지로 전환하는 비율을 높여 댐핑(damping) 성능 향상에 기여한다.
한편, 본 발명의 고망간 강재는 미세조직으로서 상술한 상(phase) 이외의 어떠한 상(phase)도 포함하지 아니하며, 예를들어 알파다시(α')-마르텐사이트 상을 전혀 포함하지 아니한 것임을 밝혀둔다.
특별히, 본 발명은 종래 고망간 방진강 제조시 행해진 고비용 열처리를 생략함에도 충분한 분율로 입실론 마르텐사이트 상을 형성할 수 있고, 성형성도 우수하게 확보할 수 있다. 따라서, 본 발명의 고망간 강재는 종래의 고망간 방진강 대비 경제적으로 유리한 기술적 효과가 있다 할 것이다.
이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명하고자 한다. 다만, 하기의 실시예는 본 발명을 예시하여 보다 상세하게 설명하기 위한 것일 뿐, 본 발명의 권리범위를 한정하기 위한 것이 아니라는 점에 유의할 필요가 있다. 본 발명의 권리범위는 특허청구범위에 기재된 사항과 이로부터 합리적으로 유추되는 사항에 의해 결정되는 것이기 때문이다.
(실시예)
하기 표 1의 합금조성을 가지는 강 슬라브를 하기 표 2에 나타낸 조건으로 가열 - 열간압연 - 냉각하여 각각의 열연강판을 제조하였다. 이때, 비교를 위하여 특정 강종에 대해서는 후(後)열처리를 행하였으며, 상기 후(後)열처리는 1000℃에서 30분간 행한 다음 공냉하였다.
강종 합금조성(중량%) 관계식 1(FDT)
C Mn N Ti Cr
1 0.03 17.5 0.003 0.01 0.1 966
2 0.05 20 0.003 0.01 0 971
3 0.025 17 0.006 0.05 0 958
강종 시편번호 가열 마무리 열간압연 냉각 후열처리적용여부 구분
온도(℃) 장입시간(min) 목표FDT(℃) FDT(℃) 총 압하율(%) 종료온도(℃) 속도(℃/s)
1 #1 1250 120 ≥966 970 92.5 700 27 미적용 발명강 1
1 #2 1250 120 ≥966 870 92.5 700 17 미적용 비교강 1
1 #3 1250 120 ≥966 860 92.5 400 46 미적용 비교강 2
1 #4 1250 120 ≥966 890 92.5 400 11 미적용 비교강 3
1 #5 1250 120 ≥966 905 92.5 30 87.5 미적용 비교강 4
2 #6 1200 120 ≥971 975 92.5 30 94.5 미적용 발명강 2
2 #7 1200 120 ≥971 980 92.5 400 58 미적용 발명강 3
2 #8 1200 120 ≥971 880 92.5 400 5 적용 비교강 5
3 #9 1200 120 ≥958 966 90 30 93.6 미적용 발명강 4
3 #10 1300 120 ≥958 965 90 30 93.5 미적용 발명강 5
3 #11 1300 120 ≥958 982 90 30 95.2 미적용 발명강 6
3 #12 1200 120 ≥958 951 90 30 92.1 미적용 비교강 6
3 #13 1250 120 ≥958 923 90 400 52.3 미적용 비교강 7
3 #14 1250 120 ≥958 899 90 30 86.9 미적용 비교강 8
3 #15 1300 120 ≥958 926 90 30 89.6 미적용 비교강 9
이후, 제조된 각각의 열연강판에 대해 기계적 물성과 미세조직을 측정하고, 그 결과를 하기 표 3에 나타내었다.
이때, 기계적 물성의 측정을 위해 JIS 5호 인장시험편으로 제작한 다음, 항복강도(YS), 인장강도(TS) 및 연신율(T-El 및 U-El)을 측정하였다. 또한, 미세조직은 XRD(X-ray diffraction)를 이용하여 측정하였으며, 각 상(phase)의 분율은 각 상의 피크(peak) 강도(intensity)로부터 그 분율을 도출하였다.
그리고, 도 5에 나타낸 바와 같이 캔틸레버 방식으로 200~900(m/(m×10-6))의 변형율에 대한 손실율을 측정하였다. 이때, 변형율 900(m/(m×10-6))에서의 손실율 값(Xn = (1/π)ln(Xn/Xn+1))을 하기 표 3에 나타내었다.
구분 기계적 물성 미세조직(분율%) 손실율
YS(MPa) TS(MPa) T-El(%) U-El(%) α'-M γ ε-M
발명강 1 390 791 40.2 32 0 2.0 98.0 0.055
비교강 1 630 896 31.2 16 10.5 1.5 88.0 0.013
비교강 2 603 907 35.8 20 6.5 0.9 92.6 0.012
비교강 3 629 905 35.8 33 6.0 2.0 92.0 0.015
비교강 4 583 905 37.1 31 7.4 1.6 91.0 0.013
발명강 2 404 810 52.7 50 0 1.0 99.0 0.065
발명강 3 419 822 51.7 30 0 1.5 98.5 0.055
비교강 5 363 779 52.5 33 0 1.0 99.0 0.058
발명강 4 505 869 42.9 22.4 0 3.5 96.5 0.048
발명강 5 433 838 45.2 29.1 0 1.9 98.1 0.056
발명강 6 418 805 44.4 26.5 0 1.3 98.7 0.060
비교강 6 912 523 26.3 22 9.4 0.9 89.7 0.010
비교강 7 881 534 36.7 19.2 8.1 1.0 90.9 0.012
비교강 8 892 550 38.6 19.8 6.7 0 93.3 0.014
비교강 9 877 587 35.0 18.5 5.3 0.9 93.8 0.019
(표 3에서 α'-M는 알파다시-마르텐사이트, γ는 오스테나이트, ε-M는 입실론 마르텐사이트 상을 의미한다.)
상기 표 1 내지 3에 나타낸 바와 같이, 합금조성 및 제조조건 특히, 본 발명에서 제안하는 관계식 1을 만족하는 온도에서 마무리 열간압연을 행하고, 700℃ 이하에서 냉각을 종료한 발명강 1 내지 6은 입실론 마르텐사이트 상이 모두 95% 이상으로 형성됨에 따라 방진성을 우수하게 확보할 수 있다.
뿐만 아니라, 상기 발명강 1 내지 6 모두 총 연신율이 40%를 초과함에 따라 성형성도 우수함을 확인할 수 있다.
이는, 종래 후(後)열처리를 행하는 고망간 방진강(비교강 5 참조) 대비 동등 또는 그 이상으로 방진성과 성형성을 가지는 것임을 알 수 있다.
반면, 본 발명의 제조조건(관계식 1 등)을 만족하지 아니한 비교강 1 내지 4, 6 내지 9의 경우에는 알파다시(α')-마르텐사이트 상이 형성됨에 따라 방진성이 열위할 뿐만 아니라, 총 연신율도 40% 미만으로 확보되어 성형성도 열위하였다.
도 1은 각 시편들의 변형율 900(m/(m×10-6))에서의 손실율 값을 FDT(℃)에 따라 나타낸 그래프이다.
도 1에 나타낸 바와 같이, 본 발명의 관계식 1을 만족하는 온도에서 마무리 열간압연을 행한 발명강 1 내지 6만이 손실율이 0.05 이상으로 나타났으며, 이는 후(後)열처리를 행한 비교강 5와 동등 또는 그 이상의 효과를 가지는 것임을 알 수 있다.
도 2는 일부 시편들의 변형율 200~900(m/(m×10-6))에서의 손실율 값을 나타낸 그래프이다.
도 2에 나타낸 바와 같이, 발명강들의 경우 변형율이 높아질수록 손실율이 증가함을 확인할 수 있으며, 이는 후(後)열처리를 행한 비교강 5와 동등 또는 그 이상의 효과를 가지는 것임을 알 수 있다. 반면, 비교강들의 경우 변형율이 높아지더라도 손실율이 0.020을 초과하지 못함을 확인할 수 있다.
도 3은 발명강 4의 미세조직 사진을 나타낸 것으로서, 미세조직이 대부분 입실론 마르텐사이트 상으로 형성된 것을 확인할 수 있다.
도 4는 발명강 6과 비교강 6의 XRD 측정 결과를 나타낸 것이다.
도 4에 나타낸 바와 같이, 비교강 6에서는 알파다시(α')-마르텐사이트 상의 피크(peak)가 관찰되는 반면, 발명강 6은 입실론 마르텐사이트 상 및 오스테나이트 상의 피크만이 관찰되며, 입실론 마르텐사이트 상의 강도(intensity)가 더 큼을 확인할 수 있다.

Claims (10)

  1. 중량%로 탄소(C): 0.1% 이하, 망간(Mn): 8~30%, 실리콘(Si): 3.0% 이하, 인(P): 0.1% 이하, 황(S): 0.02% 이하, 질소(N): 0.1% 이하, 티타늄(Ti): 1.0% 이하(0% 제외), 보론(B): 0.01% 이하, 잔부 Fe 및 기타 불가피한 불순물을 포함하는 강 슬라브를 1150~1350℃의 온도에서 가열하는 단계;
    상기 가열된 강 슬라브를 마무리 열간압연하여 열연강판을 제조하는 단계; 및
    상기 열연강판을 700℃ 이하로 냉각하는 단계를 포함하고,
    상기 마무리 열간압연은 하기 관계식 1을 만족하는 온도(FDT, ℃)에서 행하는 것을 특징으로 하는 방진성 및 성형성이 우수한 고망간 강재의 제조방법.
    [관계식 1]
    FDT(℃) ≥ 928 + (480×C) + (450×N) + (0.9×Mn) + (65×Ti)
    (여기서, 각 원소들은 중량 함량을 의미한다)
  2. 제 1항에 있어서,
    상기 마무리 열간압연은 총 압하율 80% 이상으로 행하는 것인 방진성 및 성형성이 우수한 고망간 강재의 제조방법.
  3. 제 1항에 있어서,
    상기 냉각은 상온~300℃에서 종료하는 것인 방진성 및 성형성이 우수한 고망간 강재의 제조방법.
  4. 제 1항에 있어서,
    상기 냉각 후 면적분율 90% 이상으로 입실론 마르텐사이트 상을 포함하는 방진성 및 성형성이 우수한 고망간 강재의 제조방법.
  5. 제 1항에 있어서,
    상기 냉각 후 권취하는 단계를 더 포함하는 방진성 및 성형성이 우수한 고망간 강재의 제조방법.
  6. 제 1항에 있어서,
    상기 강 슬라브는 중량%로 니켈(Ni): 0.005~2.0% 및 크롬(Cr): 0.005~5.0% 중 1종 이상을 더 포함하는 방진성 및 성형성이 우수한 고망간 강재의 제조방법.
  7. 제 1항에 있어서,
    상기 강 슬라브는 중량%로 니오븀(Nb): 0.005~0.5%, 바나듐(V): 0.005~0.5% 및 텅스텐(W): 0.005~1.0% 중 1종 이상을 더 포함하는 방진성 및 성형성이 우수한 고망간 강재의 제조방법.
  8. 제 1항 내지 제 7항 중 어느 한 항의 제조방법에 의해 제조되는 강재로서,
    중량%로 탄소(C): 0.1% 이하, 망간(Mn): 8~30%, 실리콘(Si): 3.0% 이하, 인(P): 0.1% 이하, 황(S): 0.02% 이하, 질소(N): 0.1% 이하, 티타늄(Ti): 1.0% 이하(0% 제외), 보론(B): 0.01% 이하, 잔부 Fe 및 기타 불가피한 불순물을 포함하고,
    미세조직으로 면적분율 90% 이상의 입실론 마르텐사이트 및 잔부 오스테나이트 상으로 이루어지고, 완전 재결정 조직인 방진성 및 성형성이 우수한 고망간 강재.
  9. 제 8항에 있어서,
    상기 강재는 중량%로 니켈(Ni): 0.005~2.0% 및 크롬(Cr): 0.005~5.0% 중 1종 이상을 더 포함하는 방진성 및 성형성이 우수한 고망간 강재.
  10. 제 8항에 있어서,
    상기 강재는 중량%로 니오븀(Nb): 0.005~0.5%, 바나듐(V): 0.005~0.5% 및 텅스텐(W): 0.005~1.0% 중 1종 이상을 더 포함하는 방진성 및 성형성이 우수한 고망간 강재.
PCT/KR2018/015601 2018-10-18 2018-12-10 방진성 및 성형성이 우수한 고망간 강재의 제조방법 및 이에 의해 제조된 고망간 강재 WO2020080602A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021521374A JP7304415B2 (ja) 2018-10-18 2018-12-10 防振性及び成形性に優れた高マンガン鋼材の製造方法、並びにこの製造方法により製造された高マンガン鋼材
CN201880098648.3A CN112840042A (zh) 2018-10-18 2018-12-10 制造防震性和成型性优异的高锰钢材的方法及通过该方法制造的高锰钢材
US17/282,481 US20210381074A1 (en) 2018-10-18 2018-12-10 Method for producing high manganese steel material having excellent anti-vibration characteristics and formability, and high manganese steel produced thereby

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0124444 2018-10-18
KR1020180124444A KR102098501B1 (ko) 2018-10-18 2018-10-18 방진성 및 성형성이 우수한 고망간 강재의 제조방법 및 이에 의해 제조된 고망간 강재

Publications (1)

Publication Number Publication Date
WO2020080602A1 true WO2020080602A1 (ko) 2020-04-23

Family

ID=70284742

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/015601 WO2020080602A1 (ko) 2018-10-18 2018-12-10 방진성 및 성형성이 우수한 고망간 강재의 제조방법 및 이에 의해 제조된 고망간 강재

Country Status (5)

Country Link
US (1) US20210381074A1 (ko)
JP (1) JP7304415B2 (ko)
KR (1) KR102098501B1 (ko)
CN (1) CN112840042A (ko)
WO (1) WO2020080602A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115323274B (zh) * 2022-08-30 2023-07-04 鞍钢集团北京研究院有限公司 一种提高高强高韧Fe-Mn阻尼合金阻尼性能的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04272130A (ja) * 1991-02-28 1992-09-28 Kobe Steel Ltd ドリル加工性に優れた高Mn非磁性鋼の製造方法
KR101518599B1 (ko) * 2013-10-23 2015-05-07 주식회사 포스코 방진성이 우수한 고강도 고망간 강판 및 그 제조방법
KR20160078840A (ko) * 2014-12-24 2016-07-05 주식회사 포스코 항복 강도 및 성형성이 우수한 고강도 고망간강 및 그 제조방법
KR20160082611A (ko) * 2014-12-26 2016-07-08 주식회사 포스코 고망간 방진강판의 성형방법
KR101736636B1 (ko) * 2015-12-23 2017-05-17 주식회사 포스코 방진특성이 우수한 고Mn강판 및 그 제조방법

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3379355B2 (ja) * 1996-10-21 2003-02-24 住友金属工業株式会社 耐硫化物応力割れ性を必要とする環境で使用される高強度鋼材およびその製造方法
KR20140119216A (ko) * 2013-03-27 2014-10-10 주식회사 우진 고망간강 및 그 제조방법
KR101594670B1 (ko) * 2014-05-13 2016-02-17 주식회사 포스코 연성이 우수한 고강도 냉연강판, 용융아연도금강판 및 이들의 제조방법
KR101657828B1 (ko) * 2014-12-24 2016-10-04 주식회사 포스코 Pwht 후 인성이 우수한 고강도 압력용기용 강재 및 그 제조방법
KR101677396B1 (ko) * 2015-11-02 2016-11-18 주식회사 포스코 성형성 및 구멍확장성이 우수한 초고강도 강판 및 이의 제조방법
KR101736637B1 (ko) 2015-12-23 2017-05-17 주식회사 포스코 방진특성이 우수한 고Mn강판 및 그 제조방법
KR101726130B1 (ko) * 2016-03-08 2017-04-27 주식회사 포스코 성형성이 우수한 복합조직강판 및 그 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04272130A (ja) * 1991-02-28 1992-09-28 Kobe Steel Ltd ドリル加工性に優れた高Mn非磁性鋼の製造方法
KR101518599B1 (ko) * 2013-10-23 2015-05-07 주식회사 포스코 방진성이 우수한 고강도 고망간 강판 및 그 제조방법
KR20160078840A (ko) * 2014-12-24 2016-07-05 주식회사 포스코 항복 강도 및 성형성이 우수한 고강도 고망간강 및 그 제조방법
KR20160082611A (ko) * 2014-12-26 2016-07-08 주식회사 포스코 고망간 방진강판의 성형방법
KR101736636B1 (ko) * 2015-12-23 2017-05-17 주식회사 포스코 방진특성이 우수한 고Mn강판 및 그 제조방법

Also Published As

Publication number Publication date
JP7304415B2 (ja) 2023-07-06
CN112840042A (zh) 2021-05-25
US20210381074A1 (en) 2021-12-09
JP2022505375A (ja) 2022-01-14
KR102098501B1 (ko) 2020-04-07

Similar Documents

Publication Publication Date Title
WO2015174605A1 (ko) 연성이 우수한 고강도 냉연강판, 용융아연도금강판 및 이들의 제조방법
WO2017111510A1 (ko) 열간 가공성이 우수한 비자성 강재 및 그 제조방법
WO2016104975A1 (ko) Pwht 후 인성이 우수한 고강도 압력용기용 강재 및 그 제조방법
WO2020050573A1 (ko) 항복강도비가 우수한 초고강도 고연성 강판 및 그 제조방법
WO2016104881A1 (ko) 굽힘 특성이 우수한 hpf 성형부재 및 그 제조방법
WO2018117501A1 (ko) 굽힘 가공성이 우수한 초고강도 강판 및 이의 제조방법
WO2018117646A1 (ko) 극저온 충격인성이 우수한 후강판 및 이의 제조방법
WO2021125621A1 (ko) 저온 충격인성이 우수한 고경도 내마모강 및 이의 제조방법
WO2017188654A1 (ko) 항복비가 우수한 초고강도 고연성 강판 및 이의 제조방법
WO2018080108A1 (ko) 저온인성이 우수한 고강도 고망간강 및 그 제조방법
WO2017111524A1 (ko) 구멍확장성이 우수한 초고강도 강판 및 그 제조방법
WO2020111856A2 (ko) 연성 및 저온 인성이 우수한 고강도 강재 및 이의 제조방법
WO2020022778A1 (ko) 내충돌 특성이 우수한 고강도 강판 및 이의 제조방법
WO2019124890A1 (ko) 저온인성이 우수한 후강판 및 그 제조방법
WO2012043984A2 (ko) 수소유기균열 저항성이 우수한 라인 파이프용 강판 및 그 제조 방법
WO2018117507A1 (ko) 저온인성이 우수한 저항복비 강판 및 그 제조방법
WO2022119253A1 (ko) 굽힘가공성이 우수한 초고강도 냉연강판 및 그 제조방법
WO2020111628A1 (ko) 수소유기균열 저항성이 우수한 강재 및 그 제조방법
WO2019124765A1 (ko) 내충격특성이 우수한 고강도 강판 및 그 제조방법
WO2018084685A1 (ko) 항복비가 우수한 초고강도 강판 및 그 제조방법
WO2013154254A1 (ko) 재질 균일성이 우수한 고탄소 열연강판 및 이의 제조방법
WO2020080602A1 (ko) 방진성 및 성형성이 우수한 고망간 강재의 제조방법 및 이에 의해 제조된 고망간 강재
WO2016093513A2 (ko) 성형성이 우수한 복합조직강판 및 이의 제조방법
WO2022086049A1 (ko) 열적 안정성이 우수한 고강도 강판 및 이의 제조방법
WO2021125724A2 (ko) 내열성과 성형성이 우수한 냉연강판 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18937248

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021521374

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18937248

Country of ref document: EP

Kind code of ref document: A1