WO2020080437A1 - 液状組成物、樹脂複合材、液状封止材、封止材及び電子デバイス - Google Patents

液状組成物、樹脂複合材、液状封止材、封止材及び電子デバイス Download PDF

Info

Publication number
WO2020080437A1
WO2020080437A1 PCT/JP2019/040756 JP2019040756W WO2020080437A1 WO 2020080437 A1 WO2020080437 A1 WO 2020080437A1 JP 2019040756 W JP2019040756 W JP 2019040756W WO 2020080437 A1 WO2020080437 A1 WO 2020080437A1
Authority
WO
WIPO (PCT)
Prior art keywords
zeolite
resin composite
epoxy resin
composite material
liquid composition
Prior art date
Application number
PCT/JP2019/040756
Other languages
English (en)
French (fr)
Inventor
良治 大西
才華 大坪
紀子 片桐
武脇 隆彦
丹娜 銭
勝司 池田
純 松井
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Publication of WO2020080437A1 publication Critical patent/WO2020080437A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/04Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof using at least one organic template directing agent, e.g. an ionic quaternary ammonium compound or an aminated compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape

Definitions

  • the present invention relates to a liquid composition, a resin composite material, a liquid encapsulant, an encapsulant, and an electronic device. More specifically, the present invention relates to a liquid composition capable of obtaining a cured product having a low storage elastic modulus and a liquid encapsulant containing the same. The present invention also relates to a resin composite material having a low storage elastic modulus, being hard to be thermally deformed, and having excellent tensile properties, an encapsulant made of the resin composite material, and an electronic device encapsulated using the same.
  • the epoxy resin has a problem of deformation such as warpage in a manufacturing process and durability (peeling of parts) during use because of its high average coefficient of thermal expansion (CTE). Therefore, when a filler such as alumina or silica (glass flake) is used in combination with the epoxy resin, there is a trade-off relationship that the CTE is lowered but the flexibility is lowered (the storage elastic modulus is raised). That is, since the epoxy curable encapsulant has high elasticity, the internal stress applied to the encapsulant is larger than the temperature change during curing and use. In particular, when used as a sealing material for a device having a size of several cm or more, warpage and cracks are likely to occur. On the other hand, it has been proposed that the storage elastic modulus and the average thermal expansion coefficient when the thermosetting resin composition is cured fall within a certain range (see Patent Document 1).
  • the present inventors have conducted a detailed study on a resin composite material suitable as a sealing material for electronic devices such as power device applications.
  • the study was repeated regarding the temperature change of the thermal expansion coefficient of the resin composite material.
  • the resin composite material is used as an encapsulant for electronic devices, the encapsulant has a high temperature during mounting, such as curing, and is cooled to room temperature after curing and mounting.
  • the difference in the coefficient of thermal expansion from the peripheral member is large, there is a concern that problems such as warpage due to the difference in the coefficient of expansion and peeling at the adhesive interface may occur during the cooling step to room temperature. Therefore, it is preferable to lower the coefficient of thermal expansion under high temperature conditions.
  • the operating environment temperature after mounting is in a lower temperature range than that during curing.
  • this temperature range it is preferable to have a coefficient of expansion of a certain level or more to reduce the difference in coefficient of expansion between the encapsulant and the peripheral member and reduce the load in the long term.
  • the elasticity is low and the tensile elongation is high.
  • Patent Document 1 also discloses an average thermal expansion coefficient of 70 to 210 ° C. It was only there.
  • the resin composite material When the resin composite material is used as a sealing material for an electronic device or the like, the resin composite material often comes into contact with a metal member such as wiring. Therefore, it was decided to study to obtain a resin composite material having a strong adhesive force in the state of being in contact with the metal member. Further, when the resin composite material is used for a flexible substrate or the like, a large stress is generated at the interface between the sealing material and other peripheral members as the curvature increases. Therefore, the material used is required to have excellent tensile properties and the like. Therefore, it was decided to investigate also a resin composite material having excellent tensile properties.
  • the present invention provides a resin composite material capable of reducing the coefficient of thermal expansion while maintaining flexibility (while maintaining a low storage elastic modulus), and a liquid composition capable of obtaining the resin composite material.
  • Providing is the first issue.
  • the second object of the present invention is to provide a resin composite material having a high CTE at a low temperature and a low CTE at a high temperature, and a liquid composition capable of obtaining the resin composite material.
  • a third object of the present invention is to provide a resin composite material having excellent tensile properties and a liquid composition capable of obtaining the resin composite material.
  • a fourth object of the present invention is to provide a resin composite material having a strong adhesive force in contact with a metal member and a liquid composition capable of obtaining the resin composite material.
  • the present invention is suitable for use as a sealing material for electronic devices and the like, and even in power device applications, a resin composite material in which warpage and cracks hardly occur and a liquid composition capable of obtaining the resin composite material. Is to provide the
  • the present inventors diligently studied the above problems. As a result, it has been found that the zeolite-containing epoxy resin composite material containing a specific amount of zeolite having a specific particle diameter and having specific physical properties can solve at least any one of the above-mentioned problems 1 to 5. Then, they found that a particularly preferable zeolite-containing epoxy resin composite material can solve two or more problems of the above-mentioned first to fifth, and arrived at the present invention. Further, by curing a liquid composition having a specific physical property by containing a specific amount of an epoxy resin and zeolite having a specific particle size, a resin composite material capable of solving at least any one of the above-mentioned problems 1 to 5 is obtained. I found that And, it has been found that particularly preferable liquid composition can solve two or more problems of the first to fifth aspects.
  • the gist of the present invention is as follows.
  • the average thermal expansion coefficient of the cured product cured at a gel fraction of 80% or more at 25 ° C or more and 50 ° C or less is ⁇ (25 to 50), and the average thermal expansion coefficient at 175 ° C or more and 200 ° C or less is ⁇ ( A liquid composition having an ⁇ (25 to 50) / ⁇ (175 to 200) of more than 1.00 when defined as 175 to 200) .
  • a sealing material comprising the zeolite-containing epoxy resin composite material according to any one of [8] to [18].
  • An electronic device comprising a member made of the zeolite-containing epoxy resin composite material according to any one of [8] to [18].
  • a zeolite-containing epoxy resin composite material that exhibits at least one of the following effects 1 to 5, and a liquid composition that can obtain the resin composite material.
  • the first effect of the present invention it is possible to obtain a zeolite-containing epoxy resin composite material and a resin composite material which can reduce the coefficient of thermal expansion while maintaining flexibility (while maintaining a low storage elastic modulus).
  • a liquid composition capable of
  • the second effect of the present invention it is possible to provide a zeolite-containing epoxy resin composite material having a high thermal expansion coefficient at a low temperature and a low thermal expansion coefficient at a high temperature, and a liquid composition capable of obtaining the resin composite material.
  • the third effect of the present invention it is possible to provide a zeolite-containing epoxy resin composite material having excellent tensile properties and a liquid composition capable of obtaining the resin composite material.
  • the fourth effect of the present invention it is possible to provide a resin composite material having a strong adhesive force in a state of being in contact with a metal member and a liquid composition capable of obtaining the resin composite material.
  • the fifth effect of the present invention it is possible to obtain a resin composite material that can be suitably used as a sealing material for electronic devices and the like, and is unlikely to cause warpage or cracks even in power device applications, and to obtain the resin composite material. It is possible to provide a liquid composition capable of
  • Example 5 is a graph showing changes in the coefficient of thermal expansion with temperature of the resin composite materials produced in Example 2, Comparative Example 1, Comparative Example 3 and Reference Example 1.
  • FIG. 1 is a diagram schematically showing a resin composite material according to an embodiment of the present invention.
  • the resin composite material 1 will be described in detail below.
  • the zeolite-containing epoxy resin composite material (hereinafter, also simply referred to as “composite material” and “resin composite material”), which is an embodiment of the present invention, contains an epoxy resin and a specific amount of zeolite having a specific particle diameter, Has physical properties.
  • a liquid composition which is another embodiment of the present invention contains an epoxy resin precursor and a specific amount of zeolite having a specific particle diameter, and has specific physical properties (hereinafter, in the resin composite material and the liquid composition.
  • the contained zeolite is referred to as "zeolite”
  • the epoxy resin contained in the resin composite material is referred to as "epoxy resin”
  • the epoxy resin precursor contained in the liquid composition may be referred to as "epoxy resin precursor”. is there.).
  • the zeolite may be in a secondary or higher order particle state in which primary particles are aggregated.
  • the average primary particle diameter in that state (hereinafter, also simply referred to as “average particle diameter” or “particle diameter”) is 15 nm or more and 1000 nm or less.
  • the average primary particle size of the zeolite is preferably 20 nm or more, more preferably 25 nm or more, further preferably 30 nm or more, particularly preferably 40 nm, most preferably 50 nm or more.
  • the average primary particle diameter of the zeolite is preferably 500 nm or less, more preferably 300 nm or less, further preferably 200 nm or less, particularly preferably 175 nm or less, even more preferably 150 nm or less, very particularly preferably 125 nm or less, most preferably It is 100 nm or less.
  • Zeolites having a small average primary particle diameter as described above are also referred to as "nanozeolites".
  • the average primary particle size of the zeolite is preferably large in that the zeolite skeleton can be easily maintained and good crystallinity can be easily maintained.
  • the zeolite is small in terms of facilitating uniform dispersion of zeolite in the resin composite material and facilitating interaction with the resin. That is, when the average primary particle diameter of the zeolite is within the above range, the zeolite tends to be uniformly dispersed in the resin composite material, and further, the transparency of the obtained resin composite material tends to be high. That is, in the composite material, the haze value of the obtained resin composite material becomes small by being in this particle size range, and blue light which is important when used as an optical member such as a sealing material, In particular, the transmittance of light having a wavelength of 450 nm tends to increase, which is preferable.
  • the average primary particle diameter of the zeolite is obtained by measuring the particle diameter of 30 or more arbitrarily selected primary particles in the observation of the particles by a scanning electron microscope (SEM) and averaging the particle diameters of the primary particles. At that time, the particle diameter means the diameter of a circle having an area equal to the projected area of the particle and having the maximum diameter (equivalent circle diameter).
  • the content of zeolite contained in the resin composite material or the liquid composition is 1% by mass or more and 50% by mass or less.
  • the content of zeolite is preferably 5% by mass or more, more preferably 10% by mass or more, and further preferably 20% by mass or more.
  • the content of zeolite is preferably 45% by mass or less, more preferably 40% by mass or less, particularly preferably 35% by mass or less, and most preferably 30% by mass or less. It is preferable that the content of zeolite is large in that it is easy to obtain a resin composite material having excellent thermal expansion properties.
  • the content of zeolite is preferably low from the viewpoint of easily obtaining a resin composite material having excellent storage elastic modulus, thermal expansion property, tensile property and / or adhesive property.
  • the content of the zeolite is preferably small in view of low viscosity of the liquid composition, excellent handleability, and easy injection into narrow voids by the underfill method. From these viewpoints, the above range is preferable.
  • the liquid composition contains zeolite and an epoxy resin precursor.
  • the cured product cured to a gel fraction of 80% or more may satisfy at least one of the following (physical property 1) and (physical property 2), but both of these two physical properties are satisfied. It is preferable.
  • (Physical Properties 1) Storage elastic modulus at 100 ° C. is 1 to 1000 MPa.
  • (Physical properties 2) When the average thermal expansion coefficient between 25 ° C and 50 ° C is ⁇ (25 to 50) and the average thermal expansion coefficient between 175 ° C and 200 ° C is ⁇ (175 to 200) , ⁇ (25 ⁇ 50) / ⁇ (175 to 200) is more than 1.00.
  • the resin composite material 1 contains zeolite 2 and an epoxy resin 3.
  • the resin composite material may satisfy at least one of the following (Physical properties 3) to (Physical properties 6), but it is preferable that two or more of these are satisfied, and it is further preferable that three or more are satisfied, It is particularly preferable to fill four.
  • (Physical properties 3) Storage elastic modulus at 100 ° C. is 1 to 1000 MPa.
  • Zeolite> The zeolite will be described.
  • (Construction) Zeolite is a compound containing silicon or aluminum and oxygen as a basic unit of TO 4 unit (T element is an element other than oxygen constituting the skeleton).
  • Specific examples of the zeolite include crystalline porous aluminosilicate, crystalline porous aluminophosphate (ALPO), crystalline porous silicoaluminophosphate (SAPO), and the like.
  • SAPO Composite Building Units
  • Zeolite is composed of structural units called Composite Building Units (hereinafter, sometimes referred to as “CBU”) in which several TO 4 units (several to several tens) are connected. Therefore, it has regular channels (tubular pores) and cavities.
  • CBU Composite Building Units
  • the crystal structure of CBU and the zeolite to be described later can be indicated by a code that defines the structure of the zeolite defined by International Zeolite Association (IZA).
  • IZA International Zeolite Association
  • the structure of zeolite is based on an X-ray diffraction pattern obtained by an X-ray structure analyzer (for example, a tabletop X-ray diffractometer D2PHASER manufactured by BRUKER), and the zeolite structure database 2018 version (http: // www. .Iza-structure.org / databases /).
  • the zeolite is preferably an aluminosilicate.
  • the total amount of Si atoms and Al atoms contained in the zeolite is preferably 70% by mass or more, and more preferably 80% by mass or more.
  • the total amount of Si atoms and Al atoms contained in the zeolite is preferably 99% by mass or less.
  • One type of zeolite may be used alone, or two or more types may be used in any combination and ratio.
  • the above-mentioned effects obtained in the liquid composition and the resin composite material are likely to be more remarkable, in particular, the resin precursor or the resin, by containing a small amount of a filler called zeolite, while maintaining a low storage elastic modulus, thermal expansion
  • the liquid composition and the resin composite material preferably contain a zeolite having the following preferable structure from the viewpoint that the characteristics can be significantly improved.
  • Zeolite preferably contains at least one of d6r and mtw as CBU. That is, it is preferable that the zeolite-containing epoxy resin composite material contains 1 mass% or more of zeolite containing either d6r or mtw as (CBU), and an epoxy resin.
  • Examples of the zeolite having d6r as CBU include AEI, AFT, AFV, AFX, AVL, CHA, EAB, EMT, ERI, FAU, GME, JSR, KFI, LEV, LTL, LTN, MOZ, MSO, MWW, OFF, Examples thereof include SAS, SAT, SAV, SBS, SBT, SFW, SSF, SZR, TSC, and -WEN type zeolite.
  • zeolite having mtw as CBU, * BEA, BEC, CSV, GON, ISV, ITG, * -ITN, IWS, MSE, MTW, SFH, SFN, SSF, * -SSO, UOS, and UOV type are used.
  • Examples include zeolite having a structure. Further, in order to have a three-dimensional interaction with a part of the epoxy groups contained in the epoxy resin, it is more preferable that the zeolite further has a three-dimensional channel.
  • a zeolite having a structure of an 8-membered oxygen ring or less is particularly preferable from the viewpoint of easily forming fine particles.
  • the zeolite having a structure of 8-membered oxygen ring or less examples include AEI, AFT, AFX, CHA, ERI, KFI, SAT, SAV, SFW, and zeolite having a TSC type structure.
  • zeolite having an AEI, AFX, CHA, and ERI type structure is more preferable because it has a stable structure even when it is made into fine particles, and most preferably, it has a CHA structure.
  • the structure having an oxygen 8-membered ring means that the number of oxygen is the highest among the pores composed of oxygen forming the zeolite skeleton and T element (elements other than oxygen forming the skeleton). In this case, it means a structure in which the number of oxygen elements is eight.
  • the ratio of zeolite having the above-mentioned preferable structure is usually 30% by mass or more from the viewpoint of easily improving the thermal expansion property while keeping the storage elastic modulus low. %, Preferably 50% by mass or more, more preferably 70% by mass or more, and further preferably 90% by mass or more.
  • the average coefficient of thermal expansion of zeolite is not particularly limited as long as the liquid composition and the resin composite material exhibit preferable performance.
  • the average coefficient of thermal expansion of zeolite is preferably low in that a small amount tends to lower the average coefficient of thermal expansion of the composition and the composite material. Therefore, the average coefficient of thermal expansion of zeolite at 100 ° C. is usually less than 0 ppm / K, preferably ⁇ 2 ppm / K or less, more preferably ⁇ 3 ppm / K or less, and further preferably ⁇ 5 ppm / K or less. And particularly preferably -7 ppm / K or less, and most preferably -10 ppm / K or less.
  • the average coefficient of thermal expansion of the zeolite is preferably high in that the difference between the average coefficient of thermal expansion of the resin and the average coefficient of thermal expansion of the resin is small and it is difficult for the zeolite and the resin to separate. Therefore, the average coefficient of thermal expansion of zeolite at 100 ° C. is usually ⁇ 1000 ppm / K or more, preferably ⁇ 900 ppm / K or more, more preferably ⁇ 800 ppm / K or more, and further preferably ⁇ 700 ppm / K. K or more, particularly preferably -500 ppm / K or more, most preferably -300 ppm / K or more.
  • the resin composite has a low content of zeolite and can also maintain high flexibility, while suppressing embrittlement and deformation. , Good image clarity, and high transparency can be combined.
  • the average thermal expansion coefficient of zeolite can be measured by calculating the lattice constant using an X-ray diffractometer D8ADVANCE manufactured by BRUKER and X-ray diffraction analysis software JADE.
  • the framework density of zeolite is not particularly limited as long as the effect of the present invention is not impaired.
  • the framework density of zeolite is preferably low in that structural vibration of zeolite is likely to occur and the average coefficient of thermal expansion tends to be low. Therefore, the framework density of zeolite is preferably 17.0 T / 1000 ⁇ 3 or less, more preferably 16.0 T / 1000 ⁇ 3 or less.
  • the framework density of the zeolite is preferably high in that the structural stability of the finely divided zeolite tends to be high.
  • the framework density of zeolite is preferably 12.0T / 1000 ⁇ 3 or more, more preferably 13.0T / 1000 ⁇ 3 or more, and further preferably 14.0T / 1000 ⁇ 3 or more.
  • the framework density indicates the number of T atoms existing per unit volume of zeolite, and is a value determined by the structure of zeolite. In the present specification, the numerical values described in the IZA zeolite structure database 2017 version (http://www.iza-structure.org/databases/) may be used.
  • Framework density is greater than 16.0T / 1000 ⁇ 3, examples of 17.0T / 1000 ⁇ 3 or less of the zeolite, CSV, ERI, ITG, LTL , LTN, MOZ, MSE, OFF, SAT, SFH, SFN, Examples thereof include SSF, * -SSO, and -WEN type structure zeolites.
  • Framework density is greater than 15.0T / 1000 ⁇ 3, examples of 16.0T / 1000 ⁇ 3 or less of the zeolite, AEI, AFT, AFV, AFX , AVL, * BEA, BEC, EAB, GME, * - ITN , LEV, MWW, and SFW-type zeolites.
  • CHA, ISV, IWS, KFI, SAS, and SAV-type zeolites can be mentioned as examples of the zeolite having a framework density of more than 14.0T / 1000 ⁇ 3 and not more than 15.0T / 1000 ⁇ 3 .
  • Examples of zeolites having a framework density in the range of 14.0T / 1000 ⁇ 3 or less include EMT, FAU, JSR, SBS, SBT, and TSC-type zeolites.
  • the silica / alumina molar ratio of the zeolite (may be referred to as “SAR”, “Si / Al 2 molar ratio”, or “Si / Al 2 ratio”) is an aspect that does not impair the effects of the present invention. However, it is not particularly limited.
  • the SAR (Si / Al 2 ratio) of zeolite is preferably high in terms of suppressing absorption of moisture in the air and easily controlling the amount of counter cations.
  • SAR (Si / Al 2 ratio) of zeolite is usually 0.1 or more, preferably 0.5 or more, more preferably 3 or more, further preferably 4 or more, particularly preferably 9 or more, most preferably 12 or more. Is.
  • the SAR (Si / Al 2 ratio) of zeolite is preferably low in terms of easy production at low cost. Therefore, the SAR (Si / Al 2 ratio) of zeolite is usually 2000 or less, preferably 1000 or less, more preferably 500 or less, and further preferably 100 or less. When the Si / Al 2 ratio is within the above range, the amount of counter cations can be easily controlled, and the manufacturing cost of zeolite can be reduced.
  • the molar ratio of the oxide of the element replaced is alumina or silica. It may be converted as a molar ratio of. Specifically, when gallium is used instead of aluminum, the molar ratio of gallium oxide may be converted to the molar ratio of alumina.
  • the Si / Al 2 ratio of zeolite can be adjusted by the ratio of the raw material silicon-containing compound and aluminum-containing compound, the type and amount of the structure directing agent, the use of seed crystals, the synthesis conditions such as temperature and time, and the like.
  • the Si / Al 2 molar ratio of zeolite can be measured by the method described in Examples below.
  • the counter cation of zeolite is not particularly limited as long as the effect of the present invention is not impaired.
  • Zeolite counter cation is usually a structure directing agent, a proton, an alkali metal ion, an alkaline earth metal ion, preferably a structure directing agent, a proton, an alkali metal ion, more preferably a structure directing agent, a proton.
  • Li ions, Na ions, and K ions more preferably structure directing agents, protons, and Li ions, and particularly preferably protons.
  • the counter cation of the zeolite is a structure directing agent, since it is more flexible than the alkali metal ion or the alkaline earth metal ion, the zeolite is more likely to exhibit the average thermal expansion coefficient of less than 0 ppm / K. Is preferred.
  • the counter cation of zeolite is preferably a proton because the average thermal expansion coefficient of the resin composite material is easily lowered.
  • the zeolite is preferably as-made (structure-directing agent-containing type), proton type, or alkali metal type, and more preferably as-made, proton type, Li type, Na type, or K type. , More preferably as-made, proton type and Li type, and most preferably proton type.
  • the structure directing agent is a template used in the production of zeolite, as described later.
  • the crystallinity of zeolite is not particularly limited as long as the effect of the present invention is not impaired. The reason is that it is presumed that the Composite Building Unit (CBU) is a factor that leads to the average coefficient of thermal expansion of the resin composite rather than the structure defined by the IZA code.
  • the crystallinity of the zeolite is compared with the X-ray diffraction peak of the zeolite based on a certain X-ray diffraction peak obtained by an X-ray diffractometer (for example, a tabletop X-ray diffractometer D2PHASER manufactured by BRUKER). You can ask for it.
  • the crystallinity of LTA type zeolite of Scientific Reports 2016, 6, and Article number: 29210 can be mentioned.
  • the zeolite may be subjected to a surface treatment such as a silylation treatment within a range that does not impair the effects of the present invention.
  • the surface treatment is not limited to physical treatment or chemical treatment.
  • the liquid composition and the resin composite material contain the epoxy resin precursor or the epoxy resin and the zeolite, the above-mentioned excellent physical properties are easily exhibited.
  • the storage elastic modulus is not made much higher than that of the epoxy resin, and the increase in the thermal expansion coefficient in the high temperature region is suppressed (decreased).
  • a dispersant was used by exhibiting an interaction between the epoxy group contained in the epoxy resin, the amino group and / or the carboxyl group contained in the curing agent, and the Si—OH group on the surface of the zeolite.
  • the zeolite is dispersed appropriately so that the viscosity of the liquid composition, the storage elastic modulus of the resin composite material, the thermal expansion characteristics, the tensile characteristics, and the adhesiveness are improved. To be done. Further, it can be considered that the dispersibility of the zeolite becomes more appropriate especially when the epoxy resin has a low storage elastic modulus.
  • the interaction between zeolite and epoxy resin is further estimated as follows.
  • the zeolite contains the above-mentioned preferable structure as CBU, particularly d6r and mtw
  • the zeolite is likely to interact with a part of the structure containing the epoxy group contained in the epoxy resin.
  • the amount of polar groups in the epoxy resin is larger when the epoxy group equivalent is lower, and it is easy to interact with the zeolite.
  • the storage elastic modulus of the epoxy resin is low, it is easy to follow the thermal deformation of the zeolite.
  • the reason why the liquid composition and the resin composite material contain the epoxy resin precursor or the epoxy resin and the zeolite to exhibit the excellent thermal expansion property is presumed as follows.
  • a small particle size filler having an acid point called zeolite and having a specific crystal structure is partially incorporated in the skeleton of the epoxy resin, and the polar group contained in the epoxy resin and the -It can be considered that the ionically interacting effect has an effect. That is, in the low temperature range, it shows a high average thermal expansion coefficient that reflects the average thermal expansion coefficient of the epoxy resin. On the other hand, in the high temperature range, the low thermal expansion of zeolite due to the interaction between the zeolite and the epoxy resin is followed by the epoxy resin of low storage elasticity, and the average thermal expansion coefficient of the composite as a whole is considered to decrease.
  • Method for producing zeolite A known method can be applied to the method for producing zeolite. For example, when a CHA-type zeolite is manufactured, it can be manufactured by referring to the method described in Japanese Patent No. 4896110.
  • the synthesis time or temperature may be controlled more than usual to perform hydrothermal synthesis, or the zeolite obtained by hydrothermal synthesis may be wet-processed with a bead mill, a ball mill, or the like. It may be crushed by crushing and / or crushed.
  • Examples of the crushing device used for the above crushing and / or crushing include “OB Mill” manufactured by Freund Turbo Co., “Nano Getter”, “Nano Getter Mini”, and “Nano Getter Mini” manufactured by Ashizawa Finetech Co., Ltd. "Star Mill”, “Labo Star”, “Star Burst” manufactured by Sugino Machine Ltd., and the like.
  • the crystallinity of zeolite after pulverization is lowered, but it can be recrystallized in a solution containing alumina, silica, etc. as in the method described in JP-A-2014-189476. .
  • a dispersant may be used during wet pulverization. The above solvent and dispersant will be described later.
  • the centrifuge used for centrifugation a commercially available device (for example, Centrifuge H-36 manufactured by Kokusan Co., Ltd. and Hitachi Micro High Speed Centrifuge CF15RN manufactured by Hitachi Koki) can be used.
  • Epoxy resin The epoxy resin can be obtained by curing the epoxy resin precursor.
  • epoxy resin examples include alcohol type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, naphthalene type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, phenol aralkyl type epoxy resin, biphenyl type epoxy resin. , Various epoxy resins such as triphenylmethane type epoxy resin, dicyclopentadiene type epoxy resin, glycidyl ester type epoxy resin, glycidyl amine type epoxy resin, and polyfunctional phenol type epoxy resin.
  • the epoxy resin is preferably a phenoxy-type epoxy resin having at least one skeleton selected from the group consisting of a naphthalene skeleton, a fluorene skeleton, a biphenyl skeleton, an anthracene skeleton, a pyrene skeleton, a xanthene skeleton, an adamantane skeleton and a dicyclopentadiene skeleton.
  • a phenoxy type epoxy resin having a fluorene skeleton and / or a biphenyl skeleton is particularly preferable because the heat resistance is further enhanced.
  • the epoxy resin is preferably an epoxy resin having at least one skeleton selected from the group consisting of a bisphenol A skeleton, a bisphenol F skeleton, and a biphenyl skeleton, from the viewpoint of easy production and heat resistance.
  • the epoxy resin preferably does not have a siloxane structure typified by phenyl siloxane and methyl siloxane because a resin composite material having a strong adhesive force in a state of being in contact with a metal member can be easily obtained.
  • the epoxy resin contained in the resin composite material of the present invention may be only one kind, or two or more kinds of resins may be used in an arbitrary combination and ratio.
  • the epoxy resin precursor is preferably a precursor that can be cured to obtain these epoxy resins.
  • the molecular weight of the epoxy resin precursor is a polystyrene-equivalent mass average molecular weight (Mw) value measured by gel permeation chromatography (GPC), and is usually 100 or more, preferably 200 or more, and more preferably 300 or more.
  • Mw polystyrene-equivalent mass average molecular weight
  • GPC gel permeation chromatography
  • the molecular weight of the epoxy resin precursor is usually 200,000 or less, preferably 100,000 or less, more preferably 50,000 or less.
  • the number average molecular weight (Mn) of the epoxy resin precursor is usually 100 or more, preferably 2000 or more, more preferably 300 or more.
  • the number average molecular weight of the epoxy resin is usually 100,000 or less, preferably 80,000 or less, more preferably 50,000 or less.
  • the molecular weight of the epoxy resin precursor is within the above range, solubility in a solvent, viscosity, etc. are easy to handle in a normal production facility, and adhesiveness in the resin composite material is high, which is preferable. Further, it is also preferable in terms of interaction with zeolite. Further, when the molecular weight of the epoxy resin precursor is within the above lower limit range, the toughness and handleability of the resin composite material are improved, which is preferable.
  • the viscosity of the liquid composition is low, it is easy to handle, it is easy to inject into narrow voids by the underfill method, and the toughness and adhesiveness of the resin composite are also excellent.
  • the value (Mw / Mn) obtained by dividing Mw of the epoxy resin by Mn is usually 1.5 or more, preferably 2 or more, and more preferably 2.5 or more.
  • the upper limit is usually 5 or less, preferably 4.5 or less, and more preferably 4 or less. Within the above range, the solubility of the resin at the time of mixing with a solvent or another component and the uniformity of the zeolite in the resin composite material are likely to be high, and a resin composite material having excellent smoothness can be easily obtained.
  • the epoxy group equivalent (or epoxy equivalent) of the epoxy resin precursor can be measured by the method shown in JIS K7236.
  • the epoxy group equivalent of the epoxy resin precursor is usually 50 or more, preferably 80 or more, more preferably 100 or more, further preferably 120 or more, particularly preferably 150 or more.
  • the epoxy group equivalent of the epoxy resin precursor is usually 100,000 or less, preferably 10,000 or less, more preferably 3000 or less, further preferably 1500 or less, particularly preferably 1000 or less.
  • the epoxy equivalent of the epoxy resin precursor is low, the amount of epoxy groups and hydroxyl groups generated after the reaction increases, so that the interaction between the zeolite and the epoxy resin increases, and the cured product obtained by curing the liquid composition and the high temperature of the resin composite material.
  • the coefficient of thermal expansion in the region becomes low and the adhesiveness to metal is excellent.
  • the epoxy equivalent of the epoxy resin precursor is large, the crosslinking density becomes low, which is preferable from the viewpoint of flexibility and stretchability.
  • As a method for adjusting the epoxy group equivalent of the epoxy resin precursor it is possible to adjust by a method such as reducing the degree of polymerization in the epoxy resin skeleton or introducing a skeleton having a small molecular weight.
  • the storage elastic modulus of the epoxy resin is not particularly limited as long as an excellent effect is exhibited.
  • the storage elastic modulus of the epoxy resin is preferably low from the viewpoint that the storage elastic modulus of the resin composite is low and the resin composite can be easily adjusted to a desired thermal expansion property when used in combination with zeolite.
  • the storage elastic modulus at 100 ° C. of the epoxy resin is preferably 0.1 MPa or higher, more preferably 0.5 MPa or higher, and particularly preferably 1 MPa or higher.
  • the epoxy resin is preferably 1000 MPa or less, more preferably 500 MPa or less, and particularly preferably 300 MPa.
  • a method of adjusting the storage elastic modulus of the epoxy resin in addition to the selection of each component such as the resin and the curing agent, for example, (a) a method of introducing a molecular skeleton for expressing flexibility in the main chain of the epoxy resin, A method of adding (b) a plasticizer or a reactive diluent and a method of (c) adding an elastomer or a thermoplastic resin as a modifier can be used.
  • (A) As a method for introducing a molecular skeleton for expressing flexibility into the main chain of the epoxy resin, it is possible to use an epoxy resin having a skeleton of polyoxyalkylene, polyester, urethane or the like. As such an epoxy resin, a commercially available epoxy resin having flexibility can be used.
  • jER871 manufactured by Mitsubishi Chemical Corporation
  • jER872 manufactured by Mitsubishi Chemical Company
  • YX7105 manufactured by Mitsubishi Chemical Company
  • YL7175-1000 manufactured by Mitsubishi Chemical Company
  • YL7410 manufactured by Mitsubishi Chemical Company
  • urethane modified Epoxy resin CTBN modified BPA type epoxy resin
  • EO modified BPA type epoxy resin EPICLON EXA-4816 (manufactured by DIC)
  • EPICLON EXA-4850 manufactured by DIC
  • EPICLON TSR-960 manufactured by DIC
  • EPICLON TSR- 601 manufactured by DIC
  • EPICLON 1650-75MPX manufactured by DIC
  • Rikaresin BEO-60E manufactured by Shin Nippon Rika
  • Rikaresin BEO-20E manufactured by Shin Nippon Rika
  • the (b) plasticizer is not particularly limited, and examples thereof include ester compounds synthesized from acid and alcohol. Acids used include phthalic acid, tetrahydrophthalic acid, hexahydrophthalic acid, trimellitic acid, pyromellitic acid, adipic acid, sebacic acid, azelaic acid, maleic acid, itaconic acid, phosphoric acid, citric acid, epoxycyclohexyldicarboxylic acid. Acid, benzoic acid, etc. are mentioned. Further, by introducing an epoxy group into the plasticizer, bleed-out of the plasticizer can be suppressed and a uniform composition can be produced.
  • Examples of such a compound include Sansocizer E-PS, Sansocizer E-PO, Sansocizer E-4030, Sansocizer E-6000, Sansocizer E-2000H, Sansocizer E-9000H (all manufactured by Shin Nippon Rika Co., Ltd. ), Epoxidized soybean oil, epoxidized linseed oil, epoxidized fatty acid octyl ester, epoxidized fatty acid alkyl ester, and Adeka Sizer (made by ADEKA).
  • Examples of the reactive diluent include YED series (YED111N, YED111AN, YED122, YED188, YED216M, YED216D, etc.) manufactured by Mitsubishi Chemical Co., PG-207N (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), Neotote S (Nippon Steel & Sumikin Chemical). Manufactured by Nagase ChemteX Co., Ltd., Celoxide 2021P, 2081, 2000 (manufactured by Daicel) and the like.
  • Elastomers and thermoplastic resins added as modifiers include, for example, polyester, polyamide, epoxidized vegetable oil, polyvinyl butyral, polyvinyl acetal, modified polyvinyl butyral, modified polyvinyl acetal, silicone oil, MQ resin and the like. . It is preferable to adjust the storage elastic modulus of the epoxy resin to a desired range by a method of introducing a molecular skeleton that exhibits flexibility. The storage elastic moduli of the epoxy resin, the cured product of the liquid composition described later, and the resin composite material can be measured by the method described in Examples described later.
  • Epoxy resins typically have an average coefficient of thermal expansion greater than 0 ppm / K.
  • the average coefficient of thermal expansion of the resin is not particularly limited as long as the resin composite material exhibits favorable performance.
  • the average coefficient of thermal expansion of the epoxy resin is usually higher than 0 ppm / K, preferably 10 ppm / K or higher, more preferably in the measurement range in the temperature range of 0 ° C. or higher and the glass transition temperature of the resin or lower. Is 20 ppm / K or more, more preferably 30 ppm / K or more, and particularly preferably 50 ppm / K or more.
  • the average coefficient of thermal expansion of the epoxy resin is usually 5000 ppm / K or less, preferably 2000 ppm / K or less, more preferably 1000 ppm / K or less, further preferably 800 ppm / K or less, and particularly preferably Is 600 ppm / K or less, and most preferably 400 ppm / K or less.
  • the difference in the expansion coefficient between the cured product of the liquid composition or the resin composite material and the peripheral members is small, and it is easy to follow the deformation, It is preferable from the viewpoint of long-term durability.
  • the average thermal expansion coefficient of the resin can be measured as described below, like the average thermal expansion coefficient of the cured product of the liquid composition and the resin composite material.
  • the average thermal expansion coefficient of the resin, the cured product of the liquid composition, and the resin composite material can be measured by thermomechanical analysis according to the method according to JIS K7197 (2012).
  • a thermomechanical analyzer TMA / SS6100 manufactured by SII Nano Technology Co., Ltd. can be used to measure the expansion and contraction of a sheet-shaped resin composite material.
  • the average coefficient of thermal expansion (CTE) of the resin composite material in the temperature range of 23 ° C. to 200 ° C. is measured in the tensile mode.
  • the sample shape has a width of 3 mm and a chuck interval of 20 mm.
  • the temperature is raised at a temperature rising rate of 2 ° C./min, and then the temperature is lowered at 4 ° C./min.
  • the average coefficient of thermal expansion of the resin composite material is obtained from the slope of the graph during the second temperature decrease.
  • the adjustment of the average coefficient of thermal expansion of the epoxy resin is, in addition to the selection of the type of each component such as the resin and the curing agent, for example, the introduction of a tonic component such as an aromatic ring into the resin skeleton and the increase of the crosslinking density by controlling the molecular weight, etc. Thereby, the average coefficient of thermal expansion can be lowered.
  • the epoxy resin is preferably an epoxy resin having at least one skeleton selected from the group consisting of naphthalene skeleton, fluorene skeleton, biphenyl skeleton, anthracene skeleton, pyrene skeleton, xanthene skeleton, adamantane skeleton and dicyclopentadiene skeleton.
  • an epoxy resin having a fluorene skeleton and / or a biphenyl skeleton is particularly preferable because it has excellent heat resistance, and particularly, a phenoxy type epoxy resin having at least one skeleton of a bisphenol A skeleton, a bisphenol F skeleton and a biphenyl skeleton. Is preferred.
  • the glass transition temperature (Tg) of the epoxy resin is usually ⁇ 130 ° C. or higher, preferably ⁇ 110 ° C. or higher, more preferably ⁇ 80 ° C. or higher, further preferably ⁇ 70 ° C. or higher, particularly preferably ⁇ 60 ° C. or higher. is there. Further, it is usually 90 ° C or lower, preferably 70 ° C or lower, more preferably 50 ° C or lower, and further preferably 30 ° C or lower. Within the above range, the resin composite material can reduce the thermal expansion coefficient while keeping the storage elastic modulus at the use environment temperature low.
  • the glass transition temperature of the resin can be determined from the tan ⁇ peak in viscoelasticity measurement.
  • the glass transition temperature of the epoxy resin in addition to the selection of the type of each component such as the resin and the curing agent, for example, the introduction of a heat-resistant structure such as an aromatic ring or a double bond portion into the resin skeleton, the interaction It is possible to use a method such as introduction of a polar group having a large molecular weight, increasing the crosslink density by controlling the molecular weight, or the like.
  • Epoxy resin precursor refers to an epoxy group-containing compound that can be cured to obtain an epoxy resin. That is, the epoxy group-containing compound is a compound having an epoxy group in the molecule, and is a compound capable of constituting a thermosetting resin by addition reaction or self-polymerization reaction with a curing agent and / or a curing catalyst described later.
  • the epoxy resin precursor contained in the liquid composition may be only one kind, or two or more kinds of resins may be used in an arbitrary combination and ratio.
  • the epoxy group-containing compound examples include bisphenols such as bisphenol A, bisphenol F, bisphenol B, bisphenol C, bisphenol AD, and bisphenol acetophenone; bifunctional phenol epoxy resins such as biphenol, catechol, resorcin, hydroquinone, and dihydroxynaphthalene; Bifunctional glycidyl ether type epoxy resin, bifunctional glycidyl ester type epoxy resin, bifunctional glycidyl amine type epoxy resin, bifunctional aliphatic epoxy resin, bifunctional alicyclic epoxy resin, bifunctional heterocyclic epoxy resin, hydrogenated It is possible to use an epoxy resin such as a hydrogenated epoxy resin such as a bisphenol A type epoxy resin. Among them, from the viewpoint of rigidity and heat resistance, the epoxy group-containing compound is preferably a bisphenol A type epoxy resin or a bisphenol F type epoxy resin.
  • epoxy resin precursor those obtained by mixing and reacting two or more kinds of epoxy resins can be preferably used.
  • at least one of the two or more kinds of epoxy resins is preferably a bifunctional aliphatic epoxy group-containing compound from the viewpoint of flexibility of the obtained epoxy resin.
  • the bifunctional aliphatic epoxy group-containing compound may be an aliphatic epoxy group-containing compound having a purity of 90% by mass or more derived from diglycidyl ether which is obtained by distilling and purifying dihalogenated diglycidyl ether after reacting a diol having 2 to 12 carbon atoms with epihalohydrin. Good.
  • glycidyl ether of dimethanol dimethanol.
  • 1,4-butanediol glycidyl ether, 1,6-hexanediol glycidyl ether, and 1,4-butanediol glycidyl ether Particularly preferred is the glycidyl ether of 4-cyclohexanedimethanol or the glycidyl ether of 2,2-dimethyl-1,3-propanediol. That is, what is obtained by mixing and reacting these bifunctional aliphatic epoxy group-containing compounds with a bisphenol A type epoxy group-containing compound and / or a bisphenol F type epoxy group-containing compound is an epoxy resin precursor. Particularly preferred.
  • a coupling agent a plasticizer, a diluent, a flexibility-imparting agent, a dispersant, a wetting agent, a colorant, a pigment, an ultraviolet absorber, a hindered amine light stabilizer, and the like.
  • a light stabilizer, an antioxidant, a defoaming agent, a release agent, a flow control agent and the like may be blended.
  • the blending amount of these is preferably 20 parts by mass or less based on 100 parts by mass of the sum of the epoxy resin precursor and the curing agent when a curing agent is used.
  • the lower limit is not particularly limited, but is preferably 0.1 part by mass or more.
  • the epoxy group-containing compound may be an epoxy silicone resin disclosed in International Publication WO2016 / 13622.
  • the viscosity of the epoxy resin precursor is preferably low in that the zeolite is easily dispersed in a high degree, the liquid composition is excellent in handleability, and the epoxy resin precursor is easily injected into a narrow void by the underfill method. On the other hand, it is preferably high in that the filler such as zeolite is unlikely to settle in the liquid composition. Therefore, the viscosity of the epoxy resin precursor at 25 ° C. and 1 atm is preferably 0.01 Pa ⁇ s or more, more preferably 0.05 Pa ⁇ s or more, and 0.1 Pa ⁇ s or more. Particularly preferred.
  • the viscosity of the epoxy resin precursor is preferably 5000 Pa ⁇ s or less, more preferably 3000 Pa ⁇ s or less, particularly preferably 1000 Pa ⁇ s or less, and particularly 500 Pa ⁇ s or less. Is most preferred.
  • the viscosities of the epoxy resin precursor and the liquid composition can be determined by using a B-type rotational viscometer (Brookfield viscometer) under the conditions of 25 ° C.
  • the viscosity of the epoxy resin precursor can be adjusted by reducing the molecular weight by controlling the repeating unit amount or reducing the amount of polar groups in the unit structure.
  • the method for producing the resin is not particularly limited, but a known method may be used. For example, it can be produced by the method described in 5th Edition Experimental Chemistry Course 26, Polymer Chemistry, Chapter 2, Polymer Synthesis (edited by the Chemical Society of Japan).
  • Liquid composition contains zeolite and an epoxy resin precursor.
  • the structures, types, and physical properties of the zeolite and the epoxy resin precursor are as described above.
  • the liquid composition may contain a component other than zeolite and an epoxy resin precursor, for example, a filler other than zeolite, a resin other than epoxy resin, a curing agent, a surface treatment agent, a dispersant, a surfactant, a solvent. Etc. may be contained.
  • the components contained in the liquid composition are NMR (nuclear magnetic resonance spectroscopy), IR (infrared spectroscopy), SEM (scanning electron microscope) analysis, IPC emission spectroscopy (high frequency inductively coupled plasma emission spectroscopy). Method), TGA (thermogravimetric analysis), DSC (differential scanning calorimetry) and the like.
  • the curing agent examples include a thermal curing agent that initiates a reaction by heat and a photopolymerization initiator that initiates a reaction by light.
  • a curing agent When a curing agent is used, it may be appropriately selected according to the manufacturing method.
  • a photopolymerization initiator may be selected for the photocuring method
  • a thermosetting agent thermo polymerization initiator
  • the photo-curing method is a curing method using ultraviolet rays, visible light and infrared rays, among the active energy ray curing methods.
  • the liquid composition is cured in an environment where it is difficult to irradiate with light, it is preferably cured by a thermosetting method, and the liquid composition preferably contains a thermosetting agent.
  • thermal curing agent examples include phenol type curing agents, amine type curing agents such as aliphatic amines, polyether amines, alicyclic amines and aromatic amines, acid anhydride type curing agents, amide type curing agents, urea type curing agents.
  • Curing agent tertiary amine, imidazole and its derivatives, organic phosphines, phosphonium salts, tetraphenylboron salt, organic acid dihydrazide, boron halide amine complex, polymercaptan curing agent, isocyanate curing agent, blocked isocyanate curing Agents and the like.
  • the curing agent equivalent is preferably the chemical equivalent (1.0) of the epoxy group and the active part (active hydrogen part, acid anhydride part).
  • the amount of the curing agent may be adjusted to adjust the physical properties after curing.
  • the compounding amount of the curing agent with respect to the epoxy group is preferably 0.4 or more, which is a chemical equivalent, more preferably 0.5 or more, and further preferably 0.6 or more.
  • the chemical equivalent is preferably 5.0 or less, more preferably 4.0 or less, still more preferably 3.0 or less. Within the above range, elution of unreacted components and insufficient crosslink density do not occur during use, and the heat resistance and moisture resistance of the resin composite material are good, which is preferable.
  • Curing agents other than these usually act mainly as a curing catalyst or a co-catalyst for the curing agent in the self-polymerization of the epoxy resin.
  • the compounding amount of such a curing agent is preferably 0.01 parts by weight or more, more preferably 0.05 parts by weight or more, and further preferably 0.1 parts by weight or more with respect to 100 parts by weight of the epoxy resin precursor.
  • the compounding amount of the curing agent is preferably 20 parts by weight or less, more preferably 15 parts by weight or less, and further preferably 10 parts by weight or less with respect to 100 parts by weight of the epoxy resin precursor.
  • the blending amount is large, the reaction is promoted.
  • the compounding amount is small, it is difficult for the resin composite material to suffer from deterioration of physical properties such as heat resistance and moisture resistance due to residual curing agent and bleed-out of the catalyst during use.
  • phenol-based curing agent examples include bisphenol A, bisphenol F, 4,4'-dihydroxydiphenylmethane, 4,4'-dihydroxydiphenyl ether, 1,4-bis (4-hydroxyphenoxy) benzene, 1,3-bis.
  • amine-based curing agents include ethylenediamine, 1,3-diaminopropane, 1,4-diaminopropane, hexamethylenediamine, 2,5-dimethylhexamethylenediamine, trimethylhexamethylenediamine, and aliphatic amines.
  • examples include diethylenetriamine, iminobispropylamine, bis (hexamethylene) triamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, N-hydroxyethylethylenediamine, tetra (hydroxyethyl) ethylenediamine.
  • polyether amines examples include triethylene glycol diamine, tetraethylene glycol diamine, diethylene glycol bis (propyl amine), polyoxypropylene diamine, polyoxypropylene triamines and the like.
  • alicyclic amines include isophoronediamine, metacenediamine, N-aminoethylpiperazine, bis (4-amino-3-methyldicyclohexyl) methane, bis (aminomethyl) cyclohexane, 3,9-bis (3-amino) Examples include propyl) -2,4,8,10-tetraoxaspiro (5,5) undecane, norbornenediamine and the like.
  • Aromatic amines include tetrachloro-p-xylenediamine, m-xylenediamine, p-xylenediamine, m-phenylenediamine, o-phenylenediamine, p-phenylenediamine, 2,4-diaminoanisole, 2,4 -Toluenediamine, 2,4-diaminodiphenylmethane, 4,4'-diaminodiphenylmethane, 4,4'-diamino-1,2-diphenylethane, 2,4-diaminodiphenylsulfone, 4,4'-diaminodiphenylsulfone, m-aminophenol, m-aminobenzylamine, benzyldimethylamine, 2-dimethylaminomethyl) phenol, triethanolamine, methylbenzylamine, ⁇ - (m-aminophenyl) ethylamine,
  • acid anhydride curing agent Specific examples of the acid anhydride-based curing agent include dodecenyl succinic anhydride, polyadipic anhydride, polyazelaic anhydride, polysebacic anhydride, poly (ethyloctadecanedioic acid) anhydride, poly (phenylhexadecanedioic acid).
  • amide-based curing agent examples include dicyandiamide and polyamide resin.
  • tertiary amine examples include 1,8-diazabicyclo (5,4,0) undecene-7, triethylenediamine, benzyldimethylamine, triethanolamine, dimethylaminoethanol, tris (dimethylaminomethyl) phenol and the like. .
  • Urea-based curing agents include 3- (3,4-dichlorophenyl) -1,1-dimethylurea, 3-phenyl-1,1-dimethylurea, toluenebis (dimethylurea), 4,4′-methylenebis (phenyl) Examples thereof include urea compounds such as dimethylurea).
  • imidazole type curing agent examples include 1-cyanoethyl-2-phenylimidazole, 2-phenylimidazole, 2-ethyl-4 (5) -methylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-methylimidazole.
  • organic phosphines examples include tributylphosphine, methyldiphenylphosphine, triphenylphosphine, diphenylphosphine and phenylphosphine.
  • phosphonium salt examples include tetraphenylphosphonium / tetraphenylborate, tetraphenylphosphonium / ethyltriphenylborate, tetrabutylphosphonium / tetrabutylborate and the like.
  • tetraphenylboron salt examples include 2-ethyl-4-methylimidazole tetraphenylborate and N-methylmorpholine tetraphenylborate.
  • Photopolymerization initiator examples include acetophenones, benzophenones, benzoin ethers, hydroxyketones, acylphosphine oxides, diazonium cation onium salts, iodonium cation onium salts, and sulfonium cation onium salts.
  • the photopolymerization initiator include 1- [4- (2-hydroxyethoxy) phenyl] -2-hydroxy-2-methyl-1-propan-1-one, 1-hydroxy-cyclohexylphenyl ketone, 2, 2-dimethoxy-1,2-diphenylethan-1-one, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, 2,4,6-trimethylbenzoylphenylethoxyphosphine oxide, 2-benzyl-2-dimethylamino-1 -(4-morpholinophenyl) butanone-1,2-hydroxy-2-methyl-1-phenylpropan-1-one, 2-methyl-1- [4-methylthio] phenyl] -2-morpholinopropane-1 -One, benzoin methyl ether, benzoin ethyl ether, benzoin isobutyl ether, Nazoin isopropyl ether, bis (2,4,6-trimethylbenzoyl) phenylphosphin
  • the curing agent may be used alone or in any combination of two or more in any ratio.
  • the curing agent may be present alone in the liquid composition or may form a complex with a solvent or the like. Also, it may form a multimer.
  • the curing agent may be completely decomposed, partially decomposed, or not decomposed after the resin composite material is manufactured.
  • the resin composition and the resin composite material may contain a filler other than zeolite.
  • fillers other than zeolite include powdery reinforcing agents and fillers.
  • fillers other than zeolite include metal oxides such as aluminum oxide and magnesium oxide; metal carbonates such as calcium carbonate and magnesium carbonate; diatomaceous earth powder, basic magnesium silicate, calcined clay, finely divided silica, molten Silicon compounds such as silica; metal hydroxides such as aluminum hydroxide; kaolin, mica, quartz powder, graphite, carbon black, carbon nanotubes, molybdenum disulfide, boron nitride, silicon nitride, aluminum nitride and the like.
  • a fibrous filler examples include glass fiber, ceramic fiber, carbon fiber, alumina fiber, silicon carbide fiber, boron fiber, aramid fiber, cellulose nanofiber, and cellulose nanocrystal. Further, a cloth or non-woven fabric of organic fibers or inorganic fibers can be used. Further, as these inorganic materials, those whose surface is subjected to surface treatment such as silane coupling agent, titanate coupling agent, aluminate coupling agent or primer treatment can be used. As the filler other than zeolite, one kind may be used alone, and two kinds or more may be used in optional combination and ratio.
  • the zeolite may be treated with a surface treating agent in order to prevent the agglomeration of the zeolite and to uniformly disperse the zeolite in the liquid composition as well as in the resin composite material after production.
  • a surface treating agent known ones may be used, and those mentioned as a dispersant described later, binder resins such as polyimine, polyester, polyamide, polyurethane and polyurea may be used as the surface-treating agent.
  • binder resins such as polyimine, polyester, polyamide, polyurethane and polyurea may be used as the surface-treating agent.
  • the surface treatment agent one type may be used alone, or two or more types may be used in optional combination and ratio.
  • the surface treatment agent may be completely decomposed, partially decomposed, or not decomposed after the resin composite material is manufactured.
  • the dispersant means a compound having an effect of uniformly dispersing zeolite in the liquid composition and in the resin composite material after production.
  • polysiloxane compounds such as methylhydrogenpolysiloxane, polymethoxysilane, dimethylpolysiloxane or dimethicone PEG-7 succinate and salts thereof; silane compounds and the like (methyldimethoxysilane, dimethyldimethoxysilane, methyltrimethoxysilane, phenyl Trimethoxysilane, dichlorophenylsilane, chlorotrimethylsilane, hexyltrimethoxysilane, octyltrimethoxysilane, decyltrimethoxysilane, dodecyltrimethoxysilane, dodecyltrichlorosilane, octadecyltrimethoxysilane, octadecyltrichlorosilane
  • the carboxylate amine compound means a compound having both a carboxyl group and an amino group
  • the phosphate amine compound means a compound having both a phosphate group and an amino group.
  • the dispersant of the amine phosphate compound is preferable because it has a particularly high affinity for zeolite.
  • One dispersant may be used alone, or two or more kinds may be used in any combination and ratio. May be.
  • the surface treatment agent described above and the surfactant described below may function as a dispersant.
  • the dispersant may be completely decomposed, partially decomposed or not decomposed after the resin composite material is manufactured.
  • the liquid composition may contain a surfactant for the purpose of preventing the resin composite material from being dented or unevenly dried due to adhesion of fine bubbles or foreign matter.
  • the surfactant is not particularly limited, and known surfactants (cationic surfactants, anionic surfactants, nonionic surfactants) can be used. Of these, a silicon-based surfactant, a fluorine-based surfactant, or an acetylene glycol-based surfactant is preferable.
  • the surfactant examples include Triton X100 (manufactured by Dow Chemical Co.) as a nonionic surfactant, Zonyl FS300 (manufactured by DuPont) as a fluorine-based surfactant, and BYK-310 as a silicon-based surfactant.
  • BYK-320, BYK-345 (manufactured by BYK-Chemie), and acetylene glycol-based surfactants include Surfynol 104, Surfynol 465 (manufactured by Air Products), Olfin EXP4036, or Olfin EXP4200 (manufactured by Nissin Chemical Industry). Is mentioned.
  • the surfactant one kind may be used alone, and two kinds or more may be used in optional combination and ratio.
  • the surfactant may be completely decomposed, partially decomposed, or not decomposed after the resin composite material is manufactured.
  • the surfactant can improve the wettability of the liquid composition.
  • the resin composite material can be produced without using a solvent by heating after kneading a composition containing a resin precursor and / or a resin and zeolite or the like.
  • the resin composite material can also be produced by applying a composition having higher fluidity by further containing a solvent.
  • the amount of the solvent is preferably small. From this viewpoint, the amount of the solvent in the liquid composition when contained in the liquid composition is preferably 10% by mass or less, more preferably 5% by mass or less, and particularly preferably 1% by mass or less.
  • Solvents include, for example, water; aliphatic hydrocarbons such as hexane, heptane, octane, isooctane, nonane or decane; aromatic hydrocarbons such as toluene, xylene, chlorobenzene or orthodichlorobenzene; methanol, ethanol, isopropanol, 2 -Alcohols such as butoxyethanol, 1-methoxy-2-propanol; ketones such as acetone, methyl ethyl ketone, cyclopentanone or cyclohexanone; esters such as ethyl acetate, butyl acetate or methyl lactate; chloroform, methylene chloride, dichloroethane, Halogenated hydrocarbons such as trichloroethane or trichloroethylene; ethers such as propylene glycol monomethyl ether acetate (PGMEA)
  • aromatic hydrocarbons such as toluene, xylene, chlorobenzene or ortho-dichlorobenzene, etc .
  • halogen hydrocarbons such as chloroform, methylene chloride, dichloroethane, trichloroethane or trichloroethylene
  • propylene glycol monomethyl ether acetate in view of high solubility of the resin.
  • Ethers such as (PGMEA), ethyl ether, tetrahydrofuran or dioxane
  • amides such as N-methylpyrrolidone, dimethylformamide or dimethylacetamide are preferable.
  • aromatic hydrocarbons such as toluene, xylene, chlorobenzene or orthodichlorobenzene are preferable because the resin containing a nuclear hydrogenated aromatic compound has high solubility.
  • the solvent one kind may be used alone, and two kinds or more may be used in optional combination and ratio. Further, the solvent may or may not remain in the resin composite material, and thus the boiling point of the solvent is not particularly limited.
  • the amount of the solvent may be adjusted so that the liquid composition has an appropriate viscosity and, after drying, a resin composite material having an appropriate thickness can be obtained.
  • the content of the solvent in the liquid composition is usually 5% by mass or more, preferably 10% by mass or more, more preferably 15% by mass or more, while usually 99% by mass or less, preferably It is 95 mass% or less, more preferably 90 mass% or less.
  • the content of zeolite in the raw material composition of the resin composite material (hereinafter also referred to as “ink” in some cases) including the solvent is usually 0.1% by mass or more, preferably 0.5% by mass.
  • Mass% or more more preferably 1 mass% or more, further preferably 5 mass% or more, particularly preferably 7 mass% or more, most preferably 10 mass% or more, while usually 80 mass% or less, preferably 70 mass% % Or less, more preferably 60% by mass or less, further preferably 50% by mass or less, particularly preferably 40% by mass or less, and most preferably 20% by mass or less.
  • the content of the zeolite may be adjusted so that the zeolite does not cause precipitation or the like and can keep the dispersed state for a long time.
  • the content of the resin in the ink is usually 0.5% by mass or more, preferably 1% by mass or more, more preferably 3% by mass or more, further preferably 5% by mass or more, particularly preferably 10% by mass or more, On the other hand, it is usually 90% by mass or less, preferably 85% by mass or less, more preferably 80% by mass or less, further preferably 75% by mass or less, and particularly preferably 70% by mass or less.
  • the resin content may be adjusted so that the resin is unlikely to cause precipitation or the like and can maintain a highly dispersed state for a long time.
  • the ink is preferably stable for 24 hours or longer, more preferably 1 week or longer.
  • the more stable the ink the larger the amount of ink that can be synthesized and the longer it can be stored, and the lower the manufacturing cost can be.
  • the stability of the ink can be evaluated by the formation of precipitates, changes in viscosity, and the like. The formation of the precipitate can be judged visually or by a dynamic light scattering particle size measuring device.
  • the liquid composition preferably has the following composition.
  • the following preferable amount in the liquid composition is particularly preferable when the ratio to the total solid content is within this range. Therefore, the preferable composition of the resin composite material is also preferably in the same range except that the resin precursor contained in the liquid composition is cured to be a resin.
  • the amount of the epoxy resin precursor contained in the liquid composition is preferably small with respect to the amount of the filler such as zeolite, from the viewpoint of easily obtaining a resin composite material having excellent heat dissipation properties, flame retardancy and thermal expansion properties.
  • the content of the epoxy resin precursor is preferably large in that it is easy to obtain a resin composite material having excellent storage elastic modulus, thermal expansion property, tensile property and / or adhesive property.
  • the content of the epoxy resin precursor is preferably high in terms of low viscosity of the liquid composition, excellent handleability, and easy injection into narrow voids by the underfill method. Therefore, the content of the epoxy resin (precursor) in the resin composite material or the liquid composition is preferably 50% by mass or more, more preferably 55% by mass or more, and further preferably 60% by mass or more. . On the other hand, the epoxy resin (precursor) is preferably 99% by mass or less, more preferably 90% by mass or less.
  • the content of the resin contained in the liquid composition is small in that it is easy to obtain a resin composite material having excellent heat dissipation properties, flame retardancy and thermal expansion properties. It is preferable.
  • the content of the resin is preferably large in that it is easy to obtain a resin composite material having excellent storage elastic modulus, thermal expansion properties, tensile properties and / or adhesiveness.
  • the resin content is preferably high in terms of low viscosity of the liquid composition, excellent handleability, and easy injection into narrow voids by the underfill method.
  • the content of the resin in the resin composite material or the liquid composition is preferably 50% by mass or more, more preferably 55% by mass or more, and further preferably 60% by mass or more.
  • the content of the resin is preferably 99% by mass or less, more preferably 90% by mass or less.
  • the content of zeolite in the resin composite material or the liquid composition is 1% by mass or more and 50% by mass or less.
  • the content of zeolite is preferably 5% by mass or more, more preferably 10% by mass or more, and further preferably 20% by mass or more.
  • the content of zeolite is preferably 45% by mass or less, more preferably 40% by mass or less. It is preferable that the content of zeolite is large in terms of easily obtaining a resin composite material having excellent flame retardancy and thermal expansion properties.
  • the content of zeolite is preferably low from the viewpoint of easily obtaining a resin composite material having excellent storage elastic modulus, thermal expansion property, tensile property and / or adhesive property.
  • the content of the zeolite is preferably small in view of low viscosity of the liquid composition, excellent handleability, and easy injection into narrow voids by the underfill method.
  • the content of the zeolite contained in the resin composite material or the liquid composition is preferably in the above range.
  • Fillers such as zeolite, other components other than the resin and solvent, the amount of the case of being included in the liquid composition, the zeolite or resin does not cause precipitation or the like, it may be adjusted in a range that can maintain a dispersed state .
  • the amount of the other components in the liquid composition is usually 0.001 mass% or more, preferably 0.003 mass% or more, more preferably 0.005 mass% or more, More preferably 0.01% by mass or more, particularly preferably 0.05% by mass or more, while usually 10% by mass or less, preferably 7% by mass or less, more preferably 5% by mass or less, further preferably 3% by mass. % Or less, particularly preferably 1% by mass or less.
  • the composition of the liquid composition is TGA (thermogravimetric analysis), NMR (nuclear magnetic resonance spectroscopy), IR (infrared spectroscopy), GC-MS (gas chromatography mass spectrometry) and SEM (scanning electron microscope). It can be confirmed by analysis.
  • the liquid composition is obtained by mixing a resin precursor with zeolite or the like.
  • the mixing can be performed by a conventionally known method.
  • a paint shaker for the purpose of improving uniformity, defoaming, etc., a paint shaker, a bead mill, a planetary mixer, a stirring type disperser, a homogenizer, a revolving stirring mixer, three rolls, a kneader, a single screw or a twin screw. It is preferable to mix using a general kneading device such as a shaft kneader and a stirrer.
  • a general kneading device such as a shaft kneader and a stirrer.
  • any two or three or more components may be mixed in advance, and then the remaining components may be mixed, or all of them may be mixed at once.
  • the liquid state means that the composition has low viscosity and the composition has fluidity.
  • the viscosity of the liquid composition is preferably low in that it is easy to handle and can be easily injected into a narrow void by an underfill method or the like. On the other hand, it is preferably high in that sedimentation of the filler such as zeolite hardly occurs. Therefore, the viscosity of the liquid composition at 25 ° C. and 1 atm is preferably 10 Pa ⁇ s or more, more preferably 15 Pa ⁇ s or more, and particularly preferably 20 Pa ⁇ s or more.
  • the viscosity of the epoxy resin precursor is preferably 2000 Pa ⁇ s or less, more preferably 1000 Pa ⁇ s or less, and particularly preferably 500 Pa ⁇ s or less.
  • the viscosity of the liquid composition at 25 ° C. and 1 atm can be measured by the method described in Examples below. This measuring method can also be applied to the case of measuring the viscosity of the epoxy resin precursor.
  • the viscosity of the liquid composition can be adjusted by the kind and amount ratio of the components such as the epoxy resin precursor and zeolite, the particle size and particle size distribution of zeolite, and the like. If a large amount of a low-viscosity epoxy resin precursor is used, the viscosity becomes low, and if a large amount of zeolite is added to a small amount of the high-viscosity epoxy resin precursor, the viscosity becomes high.
  • the viscosity can also be adjusted by blending plasticizers, various low-viscosity resins, petroleum resins, tackifiers, thickeners and the like. Furthermore, it also depends on the compatibility due to the combination of the epoxy resin precursor and the zeolite. Therefore, it is possible to obtain a liquid composition having a desired viscosity by actually adjusting the liquid composition and measuring the viscosity thereof.
  • the gel fraction of the cured product obtained by curing the liquid composition can be measured by the method described in Examples below.
  • the gel fraction can be increased by increasing the curing temperature, extending the curing time, and decreasing the molecular weight of the curing agent or the epoxy resin. Further, the gel fraction can be lowered by lowering the curing temperature, shortening the curing time, or increasing the molecular weight of the curing agent or the epoxy resin.
  • the liquid composition preferably has a storage elastic modulus at 100 ° C. of a cured product cured to a gel fraction of 80% or more at 1 MPa or more and 1000 MPa or less.
  • the storage elastic modulus of the cured product of the liquid composition is low in that the storage elastic modulus of the resin composite obtained by curing the liquid composition is low and it is easy to adjust to desired thermal expansion characteristics by using it in combination with zeolite. Is preferred.
  • the storage elastic modulus is preferably high in terms of rigidity, heat resistance and moisture resistance of the obtained cured product. Therefore, the storage elastic modulus at 100 ° C.
  • the storage elastic modulus at 100 ° C. of the cured product of the liquid composition is preferably 1000 MPa or less, more preferably 500 MPa or less, and particularly preferably 100 MPa or less.
  • the storage elastic modulus of the cured product of the liquid composition can be adjusted by the kind and amount ratio of the components such as the epoxy resin precursor and the filler such as zeolite, the particle size of the filler such as zeolite, the particle size distribution and the shape. .
  • the elasticity tends to be low.
  • the amount of the filler such as zeolite used is large, the elasticity tends to be high.
  • the storage elastic modulus tends to increase as the interaction between the epoxy resin precursor and the zeolite increases, and the elastic modulus tends to increase when the particle diameter of the filler such as zeolite is small.
  • the storage elastic modulus at 100 ° C. of the cured product of the liquid composition can be measured by the method described in Examples below. Further, the above measuring method can also be applied to the case of measuring the storage elastic modulus of an epoxy resin or a resin composite material.
  • the average thermal expansion coefficient of the cured product cured to a gel fraction of 80% or more is usually larger than 1 ppm / K (1 ppm / K) in the measurement range in the temperature range of 175 ° C. to 200 ° C. More than K), preferably 5 ppm / K or more, more preferably 10 ppm / K or more, further preferably 15 ppm / K or more, particularly preferably 20 ppm / K or more.
  • the average thermal expansion coefficient of the cured product of the liquid composition at 175 ° C. or higher and 200 ° C.
  • the average thermal expansion coefficient at 25 ° C. or higher and 50 ° C. or lower is usually preferably 1 ppm / K or higher, 5 ppm / K or higher, more preferably 10 ppm / K or higher, still more preferably 20 ppm / K or higher.
  • the average thermal expansion coefficient of the cured product of the liquid composition at 25 ° C. or higher and 50 ° C. or lower is usually 300 ppm / K or lower, 280 ppm / K or lower, preferably 260 ppm / K or lower, more preferably 240 ppm / K or lower. ..
  • the liquid composition When the cured product of the liquid composition is used as an encapsulant for electronic devices, the liquid composition usually has a high temperature during mounting such as curing, but is cooled to room temperature after mounting. At this time, if there is a large difference in the coefficient of thermal expansion between the cured product and the peripheral member, there is a concern that warpage due to the difference in the expandability during the cooling process or peeling at the adhesive interface may occur. Therefore, it is preferable to lower the coefficient of thermal expansion under high temperature conditions. On the other hand, the usage environment temperature of the cured product after mounting is usually in a lower temperature range than that during curing.
  • the difference in expansion coefficient between the member made of the cured product and the peripheral member is small and the long-term load is reduced by having an expansion coefficient of a certain value or more. Further, from the viewpoint of following the thermal stress due to such a difference in expansion coefficient, it is preferable that the elasticity is low and the tensile elongation is high. Therefore, the liquid composition, cured product obtained by curing the gel fraction of 80% or more, an average thermal expansion coefficient at 25 ° C. or higher 50 ° C. or less and ⁇ (25 ⁇ 50), the average heat in 175 ° C. or higher 200 ° C.
  • ⁇ (25 to 50) / ⁇ (175 to 200) is preferably more than 1.00.
  • the method for measuring ⁇ (25 to 50) / ⁇ (175 to 200) will be described in detail in Examples below.
  • ⁇ (25 to 50) / ⁇ (175 to 200) is more preferably 1.05 or more, and is 1.25 or more. Is particularly preferable and 2.0 or more is most preferable.
  • ⁇ (25 to 50) / ⁇ (175 to 200) is preferably 20.00 or less.
  • the average thermal expansion coefficient of the cured product obtained by curing the liquid composition to a gel fraction of 80% or more is the type of each component such as epoxy resin precursor and zeolite (average). It can be adjusted by the selection of the thermal expansion coefficient) and the amount ratio. If an epoxy resin precursor having a low expansion coefficient is used in a large amount, the expansion tends to be low. If an epoxy resin precursor having a high expansion coefficient is used in a large amount, the expansion tends to be high. Further, if a large amount of zeolite is added to the epoxy resin precursor, the expansion tends to be low.
  • the expansion coefficient can also be adjusted by the particle size, particle size distribution and shape of the filler such as zeolite. Furthermore, since the expansion coefficient also varies depending on the compatibility of the combination of the epoxy resin precursor and the zeolite, it is preferable to adjust the combination.
  • the average thermal expansion coefficient of the cured product of the liquid composition is as follows. Let the length of the cured product at x ° C. be l x . That is, the length of the cured product at 25 ° C is l 25 , the length of the cured product at 50 ° C is l 50 , the length of the cured product at 175 ° C is l 175 , and the length of the cured product at 200 ° C is l 200 . To do.
  • the average coefficient of thermal expansion ⁇ (25 to 50) at 25 ° C. or higher and 50 ° C. or lower is (l 50 ⁇ l 25 ) / (50-25) / l 25 .
  • the average coefficient of thermal expansion ⁇ (175 to 200) at 175 ° C. or higher and 200 ° C. or lower is (l 200 ⁇ l 175 ) / (200-175) / l 175 .
  • the average coefficient of thermal expansion of the cured product of the liquid composition can be measured by the method described in Examples below. Further, the above measuring method can also be applied to the case of measuring the average coefficient of thermal expansion of an epoxy resin or a resin composite material.
  • the method for producing the resin composite material is not particularly limited.
  • the resin composite material can be produced by curing the above liquid composition.
  • the resin composite material can be produced by kneading a composition containing a resin precursor and / or a resin and zeolite, and then heating the kneaded composition.
  • conditions such as the type of curing agent, heating temperature and time are appropriately selected according to the type of resin and the like.
  • the reactivity can be enhanced by using a low molecular weight resin precursor or a highly active curing agent, using two or more types of curing agents in combination, heating at high temperature, or heating for a long time.
  • the heating temperature is usually 30 ° C. or higher, preferably 50 ° C. or higher, more preferably 60 ° C. or higher, even more preferably 80 ° C. or higher, although it depends on the curing agent used and the like.
  • the heating temperature is usually 400 ° C or lower, preferably 350 ° C or lower, more preferably 300 ° C or lower, and further preferably 250 ° C or lower.
  • the method for producing the resin composite material also include a method in which the liquid composition of the present invention is applied to a support or the like and then heated and dried.
  • a resin precursor it can be produced by mixing a mixture of zeolite and a solvent with a resin material such as a monomer, a dimer and an oligomer, followed by heating and drying, followed by curing.
  • the resin composite material contains zeolite and an epoxy resin.
  • the resin composite material may further include the components contained in the liquid composition described above.
  • the composition of the resin composite material is the same as in the case where the liquid composition does not contain a solvent, except that the epoxy resin precursor is cured to become an epoxy resin.
  • the composition of the liquid composition is NMR (nuclear magnetic resonance spectroscopy), IR (infrared spectroscopy), SEM (scanning electron microscope) analysis, IPC emission spectroscopy (high frequency inductively coupled plasma emission spectroscopy), TGA It can be confirmed by (thermogravimetric analysis) and DSC (differential scanning calorimetry).
  • the preferred range of the storage elastic modulus of the resin composite material is that the deformation of the peripheral members during use is small, and it is difficult for interface peeling and cracks accompanied by stress to the resin composite material to occur, so that the above liquid composition is cured. It is the same as the preferable range of the storage elastic modulus of the cured product.
  • the storage elastic modulus of the resin composite material is low in that the internal stress of the peripheral members and the resin composite material caused by the temperature change during use is small, and in particular, in devices of several cm square or more, warpage and cracks are unlikely to occur. preferable.
  • the storage elastic modulus of the resin composite material is preferably high in terms of excellent mechanical reliability such as heat resistance and moisture resistance.
  • the storage elastic modulus of the resin composite material can be adjusted in the same manner as the method for adjusting the storage elastic modulus of a cured product obtained by curing the above liquid composition.
  • the average thermal expansion coefficient of the resin composite material includes ⁇ (25 to 50) and ⁇ (175 to 200) and ⁇ (25 to 50) / ⁇ (175 to 200) , and the preferable range is deformation due to temperature change. Since it is unlikely to cause breakage or breakage, it is the same as the preferable range of the average thermal expansion coefficient of the cured product obtained by curing the above liquid composition.
  • the average coefficient of thermal expansion of the resin composite material is preferably small because internal stress caused by a temperature change during use is small and deformation or damage is unlikely to occur.
  • the average coefficient of thermal expansion of the resin composite material is similar to the average coefficient of thermal expansion of the members (metals such as aluminum and copper used for patterns and wires, ceramics used for the substrate, etc.) adjacent to the resin composite material.
  • the lower limit of the average thermal expansion coefficient of the resin composite material is usually set to the lower limit of the average thermal expansion coefficient of the adjacent member.
  • the average coefficient of thermal expansion of the resin composite material can be adjusted in the same manner as the method for adjusting the average coefficient of thermal expansion of a cured product obtained by curing the above liquid composition.
  • the resin composite material can provide a zeolite-containing epoxy resin composite material having a storage elastic modulus and an average coefficient of thermal expansion which have not been obtained in the past.
  • x is an average thermal expansion coefficient (ppm / K)
  • y is a storage elastic modulus (MPa)
  • y ⁇ ⁇ 56000x + 1.4 ⁇ 107, y> 0, and more preferably y ⁇ ⁇ Zeolite-containing epoxy resin composites in the range of 56000x + 1.2x107, y> 0 can be provided.
  • the breaking elongation in a tensile test at 25 ° C. and 50% RH is 100% or more and less than 500%. Since the resin composite material is highly flexible and resistant to bending, cracks are less likely to occur by suppressing stress, and it is particularly suitable for applications in which stress is exerted on flexible substrates, etc. It is preferable that the breaking strength is high. On the other hand, from the viewpoint of rigidity and moisture resistance, it is preferable that the breaking elongation and breaking strength of the resin composite material in the tensile test are low.
  • the breaking elongation of the resin composite material in the tensile test is more preferably 120% or more, further preferably 130% or more.
  • the breaking elongation of the resin composite material in the tensile test is more preferably 450% or less, and further preferably 400% or less.
  • the tensile properties of the resin composite material can be adjusted by the types of the epoxy resin and zeolite, particularly the ratio and molecular weight of the bifunctional aliphatic epoxy group-containing compound, the ratio of the amounts, and the like.
  • the elongation rate becomes high, and if a large amount of zeolite is added to a small amount of the epoxy resin, the rigidity tends to become high. Further, the tensile properties are also different depending on the compatibility due to the combination of the epoxy resin and the zeolite, and when the epoxy resin is mixed with the zeolite having a small particle size, the interaction between the two is increased and the rigidity is easily increased.
  • the tensile elongation of the resin composite material can be measured by the method described in Examples below.
  • Another embodiment of the present invention is a zeolite-containing epoxy resin composite material having a tensile elongation at break of 100% or more and less than 500% at 25 ° C. and 50% RH.
  • Other characteristics and conditions other than the fracture elongation of the zeolite-containing epoxy resin composite material of the present embodiment can be applied in the same manner as the above-mentioned embodiment.
  • the resin composite material preferably has excellent adhesiveness to an adjacent member.
  • the resin composite material when used as a sealing material for an electronic device or the like, the resin composite material often comes into contact with a metal member such as wiring. Therefore, it is preferable that the adhesive force in contact with the metal member is strong.
  • the adhesiveness of the resin composite material is preferably weak because it can be easily separated and discarded. Therefore, the resin composite material has a peel strength of 0.1 N / in a T-type peel test measured in accordance with JIS-K6854-3 (1999) with SPCC (cold rolled steel sheet) at 25 ° C. and 50% RH. It is preferably mm or more and 8.0 N / mm or less.
  • the peel strength of the resin composite in a T-type peel test measured at 25 ° C. and 50% RH in accordance with JIS-K6854-3 (1999) with SPCC is preferably 0.1 N / mm or more. , 0.2 N / mm or more is more preferable, and 0.3 N / mm or more is particularly preferable.
  • the adhesive strength of the resin composite material is preferably 8.0 N / mm or less, more preferably 7.5 N / mm or less, and particularly preferably 7.0 N / mm or less.
  • the adhesiveness of the resin composite material to the adjacent member can be adjusted by the kind and amount ratio of the epoxy resin and zeolite.
  • the adhesiveness can be adjusted especially by the epoxy equivalent of the epoxy resin and the content of polar groups. If a large amount of epoxy resin having a large number of polar groups is used, the adhesive force will increase, while if a large amount of a filler such as zeolite is added to a small amount of the epoxy resin, the adhesive force tends to weaken. As described above, regarding the tensile properties, when many siloxane skeletons are present in the resin composition, it becomes difficult for the effect of containing a polar group to be exhibited, and the adhesive force is apt to be weakened.
  • the adhesive strength also varies depending on the compatibility of the combination of the epoxy resin and the zeolite, and the interaction between the polar group of the zeolite and the polarity of the epoxy resin improves the interfacial adhesion between the two, improving the adhesion of the resin composite material. Is easy to improve.
  • Another embodiment of the present invention has a peel strength of 0 in a T-type peel test measured according to JIS-K6854-3 (1999) with SPCC (cold rolled steel sheet) at 25 ° C. and 50% RH. It is a zeolite-containing epoxy resin composite material of 1 N / mm or more and 8.0 N / mm or less. Other characteristics and conditions other than the peel strength of the epoxy-containing epoxy resin composite material of the present embodiment can be applied in the same manner as the above-mentioned embodiment.
  • the resin composite material may have a block shape, a film shape, or a powder shape.
  • the shape of the resin composite material may be a desired shape depending on the application.
  • its thickness is preferably 10 ⁇ m or more, more preferably 20 ⁇ m or more, and particularly preferably 50 ⁇ m or more.
  • the thickness of the resin composite material is preferably 1000 ⁇ m or less, more preferably 800 ⁇ m or less, and particularly preferably 500 ⁇ m or less.
  • the thicker the resin composite material the more preferable because the stress can be dispersed.
  • the thinner the resin composite material the better the lightness and flexibility, which is preferable.
  • Molding of resin composites As a method of molding the resin composite material, a method generally used in resin molding can be used. At that time, the heating required for manufacturing the resin composite material and the heating for molding may be performed at the same time. Molding, that is, curing of the resin composite material can be performed under curing temperature conditions according to the respective compositions.
  • the curing temperature is preferably lower than 400 ° C, more preferably 370 ° C or lower, and particularly preferably 340 ° C or lower. On the other hand, the temperature is preferably 25 ° C. or higher, more preferably 40 ° C. or higher, further preferably 80 ° C. or higher, particularly preferably 90 ° C. or higher, most preferably 100 ° C. or higher. .
  • the curing temperature When the curing temperature is low, the stress caused by curing cooling is small. Further, it is easy to deal with a manufacturing process using a flexible substrate, such as a roll-to-roll method. On the other hand, a high curing temperature is preferable in that the curing time is shortened and the elution of unreacted components from the resin composite material due to the shortening is suppressed.
  • the resin composite material can be molded by laminating it on a desired support (laminating step) and then performing heat treatment (heat treatment step). .
  • the desired support may be removed after manufacturing.
  • a known drying method such as hot air drying or drying with an infrared heater can be adopted. Of these, hot air drying, which has a high drying rate, is preferable.
  • the heat treatment method may be omitted as long as it can be dried by air drying.
  • the heat treatment temperature is preferably lower than 400 ° C., more preferably 370 ° C. or lower, and particularly preferably 340 ° C. or lower.
  • the temperature of the heat treatment is preferably 80 ° C or higher, more preferably 90 ° C or higher, and particularly preferably 100 ° C or higher.
  • the heat treatment temperature is low, it is easy to cope with the manufacturing process using a flexible substrate, such as the roll-to-roll method.
  • a high heat treatment temperature is preferable because it is easy to remove the residual solvent in the sheet.
  • the heating time is not particularly limited, but is usually 30 seconds or longer, preferably 1 minute or longer, more preferably 2 minutes or longer, still more preferably 3 minutes or longer.
  • the heating time is usually 24 hours or less, preferably 12 hours or less, more preferably 1 hour or less, and further preferably 15 minutes or less. The above range is preferable because it is easily adapted to a practical manufacturing process such as a roll-to-roll method.
  • the material of the support on which the resin composite material is laminated is not particularly limited. Suitable examples of the material of the support include inorganic materials such as quartz, glass, sapphire, and titania; and flexible substrates.
  • the flexible support is a support having a radius of curvature of usually 0.1 mm or more and 10000 mm or less. In the case of manufacturing a flexible electronic device, the radius of curvature of the support is preferably 0.3 mm or more, and more preferably 1 mm or more, in order to achieve both flexibility and characteristics of the support. On the other hand, the radius of curvature of the support is preferably 3000 mm or less, and more preferably 1000 mm or less.
  • the radius of curvature can be obtained by using a confocal microscope (for example, shape measurement laser microscope VK-X200 manufactured by KEYENCE CORPORATION) for a support that is bent to the point where no fracture such as strain or crack appears.
  • a confocal microscope for example, shape measurement laser microscope VK-X200 manufactured by KEYENCE CORPORATION
  • the flexible support is a resin such as an epoxy resin; a paper material such as paper or synthetic paper; a metal foil such as silver, copper, stainless steel, titanium, or aluminum, the surface of which is coated or laminated to provide insulation. And other composite materials.
  • the roll-to-roll method can be easily manufactured, and the productivity is improved.
  • the support is a resin (when a resin base material is used), it is preferable to pay attention to the gas barrier property depending on the application. That is, a support having a high gas barrier property is preferable because it is difficult for outside air to pass through the support and the resin composite material is less likely to deteriorate. Therefore, when a resin base material is used, it is desirable to secure the gas barrier property by a method of providing a dense silicon oxide film or the like on at least one plate surface.
  • the shape of the support is not limited, and for example, a plate-shaped, film-shaped or sheet-shaped material can be used.
  • the thickness of the support is not limited.
  • the thickness of the support is usually 5 ⁇ m or more, preferably 20 ⁇ m or more.
  • the thickness of the support is usually 20 mm or less, preferably 10 mm or less.
  • the thickness of the support is preferably large in terms of strength.
  • the thickness of the support is preferably thin in terms of light weight and cost reduction.
  • the glass support soda glass, soda-lime glass, non-alkali glass, etc.
  • alkali-free glass is preferable because it has a small amount of ions eluted from the glass.
  • the film thickness is usually 0.01 mm or more, preferably 0.1 mm or more.
  • the film thickness of the glass substrate is usually 10 mm or less, preferably 5 mm or less.
  • the thickness of the glass substrate is preferably thick because it has high mechanical strength and is less likely to break. Further, the thickness of the glass substrate is preferable because it is lightweight.
  • the roll-to-roll method is a method in which a flexible support wound in a roll shape is unrolled, and is intermittently or continuously conveyed, and is processed before being wound by a winding roll. is there.
  • the roll-to-roll method is a production method suitable for mass production as compared with the sheet-to-sheet method because it is possible to collectively process long substrates on the order of km.
  • the size of the roll that can be used in the roll-to-roll system is not particularly limited as long as it can be handled by a roll-to-roll manufacturing apparatus.
  • the outer diameter of the roll core is usually 5 m or less, preferably 3 m or less, more preferably 1 m or less.
  • the outer diameter of the roll core is usually 1 cm or more, preferably 3 cm or more, more preferably 5 cm or more, further preferably 10 cm or more, and particularly preferably 20 cm or more.
  • the width of the roll is usually 5 cm or more, preferably 10 cm or more, more preferably 20 cm or more.
  • the width of the roll is usually 5 m or less, preferably 3 m or less, more preferably 2 m or less.
  • a resin composite material having a desired shape can be obtained by cutting out from a solid resin composite material molded by a molding method including heat treatment.
  • the resin constituting the resin composite material is a photocurable resin composite material (when a resin precursor that causes photopolymerization is used)
  • a light treatment step is performed in addition to the heat treatment step, so that the resin composite material can be smoothly processed. It is also possible to manufacture the resin composite material in a short time.
  • the time of the light treatment step is not particularly limited.
  • the time required for the phototreatment step is usually 30 seconds or longer, preferably 1 minute or longer, more preferably 2 minutes or longer, still more preferably 3 minutes or longer.
  • the time required for the light treatment step is usually 60 minutes or less, preferably 30 minutes or less, more preferably 20 minutes or less, and further preferably 10 minutes or less. It is preferable that the time of the light treatment step is within the above range because it can be adapted to a practical manufacturing process such as a roll-to-roll method.
  • the resin composite material can also be obtained by injecting the raw material composition into the space where the resin composite material is to be provided and then curing the composition.
  • a molding method is used in an underfill method or the like.
  • the resin composite material can be used, for example, as a catalyst module, a molecular sieve membrane module, an optical member, a moisture absorbing member, a food product, a building member, a constituent member of an electronic device, a packaging member, and the like. Above all, it is preferable to use it as a constituent member of an electronic device, for example, a base material, a getter material film, a sealing material, or the like, because the excellent physical properties of the resin composite material can be utilized.
  • Applications of the liquid composition described above and the resin composite material described above are not particularly limited.
  • the liquid composition and the resin composite material can be suitably used as an encapsulant, particularly preferably as an encapsulant for semiconductor devices, and also suitable for power device applications.
  • the power device means a semiconductor element for power control such as a rectifying diode, a power transistor, an insulated gate bipolar transistor, and a thyristor.
  • the power device may be a power module in which a plurality of elements are contained in one package, or an intelligent power module in which a control circuit, a drive circuit, a protection circuit, and the like are modularized.
  • the above-mentioned liquid composition and the above-mentioned resin composite material are, for example, in a power device, a semiconductor encapsulant, an adhesive (die bonding agent) for fixing a semiconductor element to a package, a lead frame, etc., and a structure constituting a package. It can be used for various applications such as materials.
  • an electronic device is one in which a semiconductor element for power control is sealed using a cured product of the above liquid composition and the above resin composite material.
  • the resin composite material described above is suitable for use as a member that comes into contact with a metal member such as wiring. Further, the resin composite material is suitable for applications such as flexible substrates where stress is applied. That is, the liquid composition described above is suitable for use as a liquid sealing material containing the composition. Further, the above resin composite material is suitable for use as a sealing material. Further, the member made of the resin composite material described above is suitable for use as an electronic device including the member.
  • An electronic device has two or more electrodes and controls a current flowing between the electrodes or a generated voltage by electricity, light, magnetism, or a chemical substance, or a light or an electric field by an applied voltage or current.
  • a device for generating a magnetic field Specifically, a resistor, a rectifier (diode), a switching element (transistor, thyristor), an amplifying element (transistor), a memory element, a chemical sensor, or the like, or a device obtained by combining or integrating these elements can be given.
  • a photodiode or a phototransistor that generates a photocurrent an electroluminescent element that emits light by applying an electric field
  • a photoelectric conversion element that generates electromotive force by light or an optical element such as a solar cell
  • the electronic device including the member made of the above resin composite material include a field effect transistor (FET) element, an electroluminescent element (LED), a photoelectric conversion element, or a solar cell.
  • FET field effect transistor
  • LED electroluminescent element
  • a photoelectric conversion element a solar cell.
  • a field effect transistor (FET) element The resin composite material described above can be used as a constituent element of a field effect transistor (FET) element.
  • a field effect transistor (FET) device has a semiconductor layer, an insulator layer, a source electrode, a gate electrode, and a drain electrode on a base material.
  • the above-mentioned resin composite material is preferably used as the base material and the insulating layer because it is unlikely to be deformed or damaged by heat.
  • FIG. 2 is a diagram schematically showing a structural example of the FET element. In FIG.
  • is a semiconductor layer
  • 12 is an insulator layer
  • 13 and 14 are source and drain electrodes
  • 15 is a gate electrode
  • 16 is a base material
  • 17 is a FET element.
  • 2A to 2D show FET elements having different structures, each shows an example of the structure of the FET element. There is no particular limitation on these constituent members that form the FET element and the manufacturing method thereof, and well-known techniques can be used. Note that in this specification, “semiconductor” is defined by the magnitude of carrier mobility in a solid state. As is well known, the carrier mobility is an index indicating how fast (or many) charges (electrons or holes) can be transferred.
  • the “semiconductor” has a carrier mobility at room temperature of usually 1.0 ⁇ 10 ⁇ 6 cm 2 / V ⁇ s or more, preferably 1.0 ⁇ 10 ⁇ 5 cm 2 / V ⁇ s or more, It is preferably 5.0 ⁇ 10 ⁇ 5 cm 2 / V ⁇ s or more, more preferably 1.0 ⁇ 10 ⁇ 4 cm 2 / V ⁇ s or more.
  • the carrier mobility can be measured, for example, by measuring the IV characteristic of the field effect transistor.
  • the FET element is usually produced on the base material 16.
  • the material of the base material 16 is not particularly limited as long as the effects of the present invention are not significantly impaired.
  • Preferable examples of the material of the base material 16 include inorganic materials such as quartz, glass, sapphire, and titania; the resin composite materials described above.
  • the above resin composite material having good tensile properties is also suitable as a flexible substrate.
  • the flexible base material is a base material that has both flexibility and characteristics as a support, and usually has a curvature radius of 0.1 mm or more and 10000 mm or less.
  • the radius of curvature can be obtained by using a confocal microscope (for example, a shape measurement laser microscope VK-X200 manufactured by KEYENCE CORPORATION) for a base material that is bent to the point where no fracture such as strain or crack appears.
  • a confocal microscope for example, a shape measurement laser microscope VK-X200 manufactured by KEYENCE CORPORATION
  • the characteristics of the FET can be improved by further treating the base material 16.
  • hydrophilicity / hydrophobicity of the base material 16 is adjusted to improve the film quality of the semiconductor layer 11 to be formed, and in particular, the characteristics of the interface portion between the base material 13 and the semiconductor layer 11 are improved.
  • a hydrophobizing treatment using hexamethyldisilazane, cyclohexene, octadecyltrichlorosilane, etc . an acid treatment using an acid such as hydrochloric acid, sulfuric acid, and acetic acid; sodium hydroxide, potassium hydroxide, Alkaline treatment using calcium hydroxide, ammonia, etc .; Ozone treatment; Fluorination treatment; Plasma treatment using oxygen, argon, etc .; Langmuir-Blodgett film formation treatment; Other insulator or semiconductor thin film formation treatment, etc. Is mentioned.
  • the above resin composite material is various resins, metal oxides, metal nitrides, ferroelectric metal oxides, resins in which these particles are dispersed, And resin composite materials including the resin composite materials described above.
  • Electroluminescent element (LED)>
  • the resin composite material described above can be used as a constituent element of an electroluminescent element (LED).
  • the electroluminescent device is a self-luminous device utilizing the principle that a fluorescent substance emits light by recombination energy of holes injected from an anode and electrons injected from a cathode when an electric field is applied.
  • FIG. 3 is a sectional view schematically showing an embodiment of the electroluminescent device. In FIG.
  • reference numeral 31 is a base material
  • 32 is an anode
  • 33 is a hole injection layer
  • 34 is a hole transport layer
  • 35 is a light emitting layer
  • 36 is an electron transport layer
  • 37 is an electron injection layer
  • 38 is a cathode
  • 39 is a cathode.
  • the electroluminescent element does not have to have all of these constituent members, and necessary constituent members can be arbitrarily selected.
  • the resin composite material described above is preferably used as a base material because it is unlikely to be deformed or damaged by heat.
  • the base material 31 serves as a support for the electroluminescent element 39, and its material is not particularly limited as long as the effects of the present invention are not significantly impaired.
  • the material of the base material 31 include inorganic materials such as quartz, glass, sapphire, and titania; the resin composite materials described above.
  • the above resin composite material having good tensile properties is also suitable as a flexible substrate.
  • a resin base material it is desirable to secure the gas barrier property by a method such as providing a dense silicon oxide film or the above resin composite material on at least one plate surface.
  • the thickness of the base material 31 is not limited, but is usually 5 ⁇ m or more, preferably 20 ⁇ m or more, while it is usually 20 mm or less, preferably 10 mm or less.
  • FIG. 4 is a sectional view schematically showing an embodiment of the photoelectric conversion element.
  • the photoelectric conversion element shown in FIG. 4 is a photoelectric conversion element used in a general thin film solar cell, but the photoelectric conversion element is not limited to the one shown in FIG.
  • a base material 56 In the photoelectric conversion element 57, a base material 56, a cathode (electrode) 51, an electron extraction layer (buffer layer) 52, an active layer 53, a hole extraction layer (buffer layer) 54, and an anode (electrode) 55 are formed in this order. It has a layered structure.
  • the electron extraction layer 52 and the hole extraction layer 54 do not necessarily have to be provided. There is no particular limitation on these constituent members constituting the photoelectric conversion element and the manufacturing method thereof, and well-known techniques can be used.
  • the resin composite material described above is preferably used as a base material because it is unlikely to be deformed or damaged by heat.
  • the photoelectric conversion element 57 has a base material 56 that normally serves as a support.
  • the material of the base material 56 is not particularly limited as long as the effects of the present invention are not significantly impaired.
  • Preferable examples of the material of the base material 56 include inorganic materials such as quartz, glass, sapphire or titania; and the resin composite material described above.
  • the above resin composite material having good tensile properties is also suitable as a flexible substrate.
  • a resin base material it is desirable to ensure gas barrier properties as with the base material of the above-described electroluminescent device (LED).
  • the shape of the base material 56 is not limited, and for example, a plate-shaped, film-shaped, or sheet-shaped material can be used.
  • the thickness of the base material 56 is not limited, but is usually 5 ⁇ m or more, preferably 20 ⁇ m or more, while it is usually 20 mm or less, preferably 10 mm or less.
  • FIG. 5 is a sectional view schematically showing the structure of the thin film solar cell.
  • the thin-film solar cell 111 usually includes a weather-resistant protective film 101, an ultraviolet blocking film 102, a gas barrier film 103, a getter material film 104, a sealing material 105, and a solar cell element 106.
  • the sealing material 107, the getter material film 108, the gas barrier film 109, and the backsheet 110 are provided in this order. Light is emitted from the side (lower side in FIG.
  • the thin-film solar cell 111 does not need to have all of these constituent members, and the necessary constituent members can be arbitrarily selected. Further, there is no particular limitation on these constituent members constituting the thin-film solar cell and the manufacturing method thereof, and well-known techniques can be used. Since the above-mentioned resin composite material is unlikely to be deformed or damaged by heat, the weather resistant protective film 101, the back sheet 110, the ultraviolet cut film 102, the gas barrier films 103 and 109, the getter material films 104 and 108, and the sealing material 105. , 107 are preferably used.
  • the weather resistant protective film 101 is a film that protects the solar cell element 106 from weather changes. By covering the solar cell element 106 with the weather resistant protective film 101, the solar cell element 106 and the like are protected from weather changes and the like, and the power generation capacity is maintained high. Since the weather resistant protective film 101 is located on the outermost surface layer of the thin film solar cell 111, it is a surface coating material for the thin film solar cell 111, such as weather resistance, heat resistance, transparency, water repellency, stain resistance and / or mechanical strength. It is preferable that the material has suitable properties as above and has the property of maintaining it for a long period of time even when exposed outdoors.
  • the weather resistant protective film 101 preferably transmits visible light from the viewpoint of not hindering the light absorption of the solar cell element 106.
  • the visible light transmittance is preferably 60% or more, and there is no upper limit.
  • the transmittance can be measured with a spectrophotometer (for example, UV-2500PC spectrophotometer manufactured by Shimadzu Corporation), and the visible light transmittance can be calculated by a method defined in JIS R3106 (1998).
  • the weather resistant protective film 101 since the thin-film solar cell 111 is often heated by receiving light, it is preferable that the weather resistant protective film 101 also has resistance to heat. From this viewpoint, the melting point of the constituent material of the weather resistant protective film 101 is usually 80 ° C. or higher and 400 ° C. or lower.
  • the material forming the weather resistant protective film 101 is arbitrary as long as it can protect the solar cell element 106 from weather changes.
  • the thickness of the weather resistant protective film 101 is not particularly limited, but is usually 10 ⁇ m or more and 200 ⁇ m or less.
  • the weather resistant protective film 101 may be subjected to a surface treatment such as at least one of corona treatment and plasma treatment in order to improve the adhesion with other films.
  • the weather resistant protective film 101 is preferably provided on the outermost side of the thin-film solar cell 111 as much as possible. This is because more of the constituent members of the thin-film solar cell 111 can be protected.
  • the ultraviolet cut film 102 is a film that prevents transmission of ultraviolet rays.
  • the ultraviolet cut film 102 is a film that prevents transmission of ultraviolet rays.
  • the ultraviolet cut film 102 By providing the ultraviolet cut film 102 on the light receiving portion of the thin-film solar cell 111 and covering the light receiving surface 106a of the solar cell element 106 with the ultraviolet cut film 102, the solar cell element 106 and the gas barrier films 103, 109, etc., if necessary, are exposed to ultraviolet rays. It is possible to protect from electricity and maintain high power generation capacity.
  • the transmittance of ultraviolet rays (for example, wavelength 300 nm) is preferably 50% or less, and there is no lower limit.
  • the ultraviolet cut film 102 transmits visible light from the viewpoint of not hindering the light absorption of the solar cell element 106.
  • the visible light transmittance is preferably 60% or more, and there is no upper limit.
  • the transmittance can be measured with a spectrophotometer (for example, UV-2500PC spectrophotometer manufactured by Shimadzu Corporation).
  • the ultraviolet blocking film 102 also has resistance to heat. From this viewpoint, the melting point of the constituent material of the ultraviolet cut film 102 is usually 80 ° C. or higher and 400 ° C. or lower.
  • the ultraviolet ray cut film 102 has high flexibility, good adhesiveness with an adjacent film, and can cut water vapor and oxygen.
  • the material forming the ultraviolet cut film 102 is arbitrary as long as it can weaken the intensity of ultraviolet rays.
  • the thickness of the ultraviolet cut film 102 is not particularly limited, but is usually 5 ⁇ m or more and 200 ⁇ m or less.
  • the ultraviolet blocking film 102 may be provided at a position that covers at least a part of the light receiving surface 106a of the solar cell element 106, but is preferably provided at a position that covers all of the light receiving surface 106a of the solar cell element 106. However, the ultraviolet cut film 102 may be provided at a position other than the position where the light receiving surface 106a of the solar cell element 6 is covered.
  • the gas barrier film 103 is a film that prevents permeation of water vapor and oxygen. By covering the solar cell element 106 with the gas barrier film 103, the solar cell element 106 can be protected from water vapor and oxygen, and the power generation capability can be maintained high. Further, the gas barrier film 103 preferably transmits visible light from the viewpoint of not hindering the light absorption of the solar cell element 106. For example, the visible light transmittance is preferably 60% or more, and there is no upper limit. The transmittance can be measured with a spectrophotometer (for example, UV-2500PC spectrophotometer manufactured by Shimadzu Corporation).
  • a spectrophotometer for example, UV-2500PC spectrophotometer manufactured by Shimadzu Corporation.
  • the gas barrier film 103 since the thin-film solar cell 111 is often heated by receiving light, it is preferable that the gas barrier film 103 also has resistance to heat. From this viewpoint, the melting point of the constituent material of the gas barrier film 103 is usually 80 ° C. or higher and 400 ° C. or lower.
  • the specific configuration of the gas barrier film 103 is arbitrary as long as it can protect the solar cell element 106 from water vapor and oxygen.
  • the thickness of the gas barrier film 103 is not particularly limited, but is usually 5 ⁇ m or more and 200 ⁇ m or less.
  • the gas barrier film 103 is not limited in its formation position as long as it can cover the solar cell element 106 and protect it from water vapor and oxygen, but the front surface of the solar cell element 106 (the surface on the light-receiving surface side; the lower surface in FIG. 5). And the back surface (the surface opposite to the light-receiving surface; the upper surface in FIG. 5) are preferably covered. This is because the front surface and the back surface of the thin-film solar cell 111 are often formed to have a larger area than other surfaces.
  • the gas barrier film 103 covers the front surface of the solar cell element 106, and the gas barrier film 9 described later covers the back surface of the solar cell element 106.
  • the back sheet 110 When a highly waterproof sheet such as a sheet in which a fluorine resin film is adhered to both sides of an aluminum foil is used as the back sheet 110 described below, at least one of the getter material film 108 and the gas barrier film 109 may be omitted depending on the application. May be.
  • the getter material film 104 is a film that absorbs at least one of moisture and oxygen. By covering the solar cell element 106 with the getter material film 104, the solar cell element 106 and the like are protected from at least one of moisture and oxygen, and the power generation capability is kept high.
  • the getter material film 104 unlike the gas barrier film 103 as described above, does not impede the permeation of water and / or oxygen but absorbs water and / or oxygen.
  • the getter material film 104 captures moisture that slightly penetrates into the space formed by the gas barrier films 103 and 109. It is possible to eliminate the influence of moisture on the solar cell element 106. Further, the getter material film 104 absorbs oxygen, so that when the solar cell element 106 is covered with the gas barrier films 103 and 109 or the like, oxygen that slightly penetrates into the space formed by the gas barrier films 103 and 109 is used as the getter material. The influence of oxygen captured on the film 104 on the solar cell element 106 can be eliminated.
  • the getter material film 104 preferably transmits visible light from the viewpoint of not hindering the light absorption of the solar cell element 106.
  • the visible light transmittance is preferably 60% or more, and there is no upper limit.
  • the transmittance can be measured with a spectrophotometer (for example, UV-2500PC spectrophotometer manufactured by Shimadzu Corporation).
  • the getter material film 104 since the thin-film solar cell 111 is often heated by receiving light, it is preferable that the getter material film 104 also have resistance to heat. From this viewpoint, the melting point of the constituent material of the getter material film 104 is usually 80 ° C. or higher and 400 ° C. or lower.
  • the material forming the getter material film 104 is arbitrary as long as it can absorb at least one of water and oxygen.
  • the thickness of the getter material film 104 is not particularly specified, but is usually 5 ⁇ m or more and 200 ⁇ m or less.
  • the position of the getter material film 104 is not limited as long as it is within the space formed by the gas barrier films 103 and 109, but the front surface of the solar cell element 106 (the surface on the light receiving surface side; the lower surface in FIG. 5). And the back surface (the surface opposite to the light-receiving surface; the upper surface in FIG. 5) are preferably covered. This is because, in the thin-film solar cell 111, the front surface and the back surface are often formed to have a larger area than the other surfaces, so that water and oxygen tend to infiltrate through these surfaces.
  • the getter material film 104 is preferably provided between the gas barrier film 103 and the solar cell element 106.
  • the getter material film 104 covers the front surface of the solar cell element 106
  • the getter material film 108 described below covers the back surface of the solar cell element 106
  • the getter material films 104 and 108 are the solar cell element 106 and the gas barrier film, respectively. It is located between 103 and 109.
  • a highly waterproof sheet such as a sheet in which a fluorine resin film is adhered to both sides of an aluminum foil is used as the back sheet 110 described below
  • at least one of the getter material film 108 and the gas barrier film 109 may be omitted depending on the application. May be.
  • the sealing material 105 is a film that reinforces the solar cell element 106. Since the solar cell element 106 is thin, its strength is usually weak, and thus the strength of the thin-film solar cell tends to be weak. However, the strength can be maintained high by the sealing material 105. Further, the sealing material 5 preferably has high strength from the viewpoint of maintaining the strength of the thin-film solar cell 111.
  • the specific strength is related to the strength of the weather-resistant protective film 101 and the backsheet 110 other than the encapsulant 105, and thus it is difficult to specify in general, but the thin-film solar cell 111 as a whole has good bending workability. It is desirable to have such strength that it does not cause peeling of the bent portion.
  • the sealing material 105 preferably transmits visible light from the viewpoint of not hindering the light absorption of the solar cell element 106.
  • the thickness of the encapsulant 105 is not particularly limited, but is usually 2 ⁇ m or more and 700 ⁇ m or less.
  • the T-type peel adhesion strength of the encapsulant 105 to the substrate is preferably strong in that long-term durability of the module can be secured. It is preferable that the T-type peeling adhesive strength is low in that when the solar cell is discarded, the base material or the barrier film and the adhesive can be separated and discarded.
  • the above-described resin composite material can be used as a constituent material of the encapsulating material 105 for the solar cell, but the organic solar cell and the inorganic solar cell, the organic electroluminescent element (LED), and the The resin composite material described above can also be used as a sealing material for electronic devices such as inorganic electroluminescent elements (LEDs) and electronic circuit boards.
  • the sealing material 105 also preferably has resistance to heat. From this point of view, the melting point of the constituent material of the sealing material 105 is usually 80 ° C. or higher and 400 ° C. or lower. Although there is no limitation on the position where the sealing material 105 is provided, it is usually provided so as to sandwich the solar cell element 106. This is for surely protecting the solar cell element 106. In this embodiment, the sealing material 105 and the sealing material 107 are provided on the front surface and the back surface of the solar cell element 106, respectively.
  • the solar cell element 106 is the same as the photoelectric conversion element 57 described above. That is, the thin film solar cell 111 can be manufactured using the photoelectric conversion element 57.
  • the sealing material 107 is the same film as the above-described sealing material 105, and the same material as the sealing material 107 can be used similarly except that the disposing position is different. Further, since the constituent member on the back side of the solar cell element 106 does not necessarily need to transmit visible light, a component that does not transmit visible light can be used.
  • the getter material film 108 is the same film as the getter material film 104 described above, and the same material as the getter material film 104 can be similarly used as necessary, except that the arrangement position is different. Further, since the constituent member on the back side of the solar cell element 106 does not necessarily need to transmit visible light, a component that does not transmit visible light can be used.
  • the gas barrier film 109 is the same film as the gas barrier film 103 described above, and the same film as the gas barrier film 109 can be similarly used as needed, except that the arrangement position is different. Further, since the constituent member on the back side of the solar cell element 106 does not necessarily need to transmit visible light, a component that does not transmit visible light can be used.
  • the back sheet 110 is the same film as the weather resistant protective film 101 described above, and the same material as the weather resistant protective film 101 can be used similarly except that the disposition position is different. Further, since the constituent member on the back side of the solar cell element 106 does not necessarily need to transmit visible light, a component that does not transmit visible light can be used. If the backsheet 110 is less likely to allow moisture and oxygen to permeate, the backsheet 110 can function as a gas barrier layer. Specifically, when a highly waterproof sheet such as a sheet in which a fluorine resin film is adhered to both sides of an aluminum foil is used as the back sheet 110, at least one of the getter material film 108 and the gas barrier film 109 is used depending on the application. Need not be used.
  • the thin-film solar cell 111 of this embodiment is usually a thin film member.
  • the thin film solar cell 111 is light and hard to break, and thus a highly safe solar cell can be obtained, and since it can be applied to a curved surface, it can be used for more purposes. Since it is thin and light, it is preferable in terms of distribution such as transportation and storage. Furthermore, since it is in the form of a film, it can be manufactured by a roll-to-roll method, and a significant cost reduction can be achieved.
  • the specific dimensions of the thin-film solar cell 111 are not limited, but their thickness is usually 300 ⁇ m or more and 3000 ⁇ m or less.
  • the method of manufacturing the thin-film solar cell 111 of the present embodiment is not limited, but for example, the solar cell manufacturing method of the embodiment of FIG. 6 includes a laminate sealing step after the laminated body shown in FIG. The method to do is mentioned.
  • the solar cell element 106 of the present embodiment is excellent in heat resistance and is therefore preferable in that deterioration due to the laminate sealing step is reduced.
  • the laminated body shown in FIG. 5 can be formed using a well-known technique.
  • the method of the laminate sealing step is not particularly limited as long as the effect of the present invention is not impaired, but for example, wet lamination, dry lamination, hot melt lamination, extrusion lamination, coextrusion molding lamination, extrusion coating, photocurable adhesive Examples include laminates and thermal laminates.
  • a laminate using a photo-curing adhesive that has a proven track record for sealing organic electroluminescent elements a hot-melt laminate or a thermal laminate that has a proven track record for solar cells are preferable, and a hot-melt laminate or a thermal laminate is a sheet-shaped encapsulant. Is more preferable because it can be used.
  • the solar cell particularly the above-mentioned thin film solar cell 111, and the thin film solar cell 111 can be used for any purpose.
  • the solar cell according to one embodiment is a solar cell for building materials, a solar cell for automobiles, a solar cell for interiors, a solar cell for railroads, a solar cell for ships, a solar cell for airplanes, a solar cell for spacecrafts, a solar cell for home appliances. It can be used as a battery, a solar cell for a mobile phone, or a solar cell for a toy.
  • the solar cell particularly the above-mentioned thin-film solar cell 111, may be used as it is or may be used as a constituent element of the solar cell module.
  • a solar cell module 113 including a solar cell in particular, the above-mentioned thin film solar cell 111 on a base material 112, and install the solar cell module 113 at a place of use. it can.
  • Si / Al 2 molar ratio of zeolite was determined by analyzing each zeolite by a fluorescent X-ray analysis (XRF) method.
  • XRF fluorescent X-ray analysis
  • the elemental peak intensities of silicon and aluminum by XRF (fluorescent X-ray) analysis are converted into molar ratios using a calibration curve prepared by ICP emission spectroscopy (high frequency inductively coupled plasma emission spectroscopy) analysis. did.
  • the analysis by the ICP method was performed using "ULTIMA 2C” manufactured by Horiba Ltd.
  • the XRF measurement was performed using "EDX-700" manufactured by Shimadzu Corporation.
  • the average thermal expansion coefficient of zeolite at 100 ° C. was measured by calculating the lattice constant using an X-ray diffractometer D8ADVANCE manufactured by BRUKER and X-ray diffraction analysis software JADE.
  • the glass transition temperature of the epoxy resin was measured by the dynamic viscoelasticity measuring method of JIS K-7244 method. Specifically, it was determined from the tan ⁇ peak in viscoelasticity measurement in the both-end tension mode using a dynamic viscoelasticity device “DVA-200” manufactured by IT Measurement and Control Co. (measurement temperature range: ⁇ 50 ° C. or higher). 300 ° C. or less, frequency: 1 Hz, heating rate: 3 ° C./min).
  • viscosity The viscosities of the epoxy resin precursor and the liquid composition at 25 ° C. and 1 atm are determined by placing each sample in a polycup container, stirring and cooling the container by placing it in a water tank at 25 ° C. When the temperature was within ⁇ 0.5 ° C, the rotor and the rotation speed were selected so that the torque was 20 to 95% by using a B type rotational viscometer (Brookfield viscometer), and the viscosity was measured. The viscosity (Pa ⁇ s) one minute after the measurement was started was taken as the viscosity of the epoxy resin precursor or the liquid composition.
  • the gel fraction of the resin composite material was measured by the following procedure. A resin composite material sample was cut out within a range of 0.1 to 0.2 g and placed on a wire mesh. The wire net was left standing for 24 hours while being immersed in acetone at 40 ° C. Then, the wire net was taken out from the acetone and vacuum dried. The ratio of the weight of the sample after immersion to the weight before immersion was defined as the gel fraction.
  • Storage elastic modulus The storage elastic moduli of the epoxy resin, the cured product of the liquid composition, and the resin composite material at 100 ° C. are measured by the dynamic viscoelasticity measurement method described in JIS K-7244 method. The measurement was performed in a double-end tension mode using DVA-200 (measurement temperature range: ⁇ 50 ° C. to 300 ° C., frequency: 1 Hz, heating rate: 3 ° C./min).
  • the average thermal expansion coefficient of the epoxy resin, the cured product of the liquid composition, and the resin composite material was measured as follows.
  • the average coefficient of thermal expansion (CTE) of each sample in the temperature range of 23 to 200 ° C. was measured in a tensile mode using a thermomechanical analyzer TMA / SS6100 manufactured by Hitachi High-Tech Science Co., Ltd.
  • the sample had a width of 3 mm and a chuck-to-chuck distance of 20 mm, and was heated at a temperature rising rate of 2 ° C./min, and then cooled at a temperature lowering rate of 4 ° C./min.
  • the average coefficient of thermal expansion ⁇ (25 to 50) and ⁇ (175 to 200) of each sample was determined from the slope of the graph during the second temperature increase.
  • the tensile elongation of the resin composite material was measured using a strip-shaped test piece obtained by connecting and cutting the resin composite material into a size of 100 mm ⁇ 10 mm ⁇ 0.1 mm.
  • the elongation of this test piece was measured by using a high temperature and humidity tensile tester “INTEXCO 200X” (manufactured by Intesco) at a chuck distance of 60 mm and a test speed of 100 mm / min, and the elongation was measured. From the measurement results, the elongation rate up to sample breakage was calculated as the tensile elongation.
  • the peel strength of the resin composite material was measured according to JIS-K6854-3 (1999). That is, one surface of a 300 mm ⁇ 25 mm ⁇ 0.5 mm cold rolled steel plate (also referred to as “SPCC”) is degreased and washed with ethanol, and then a release PET film (MRF75 Mitsubishi Chemical Co., Ltd.). Two SPCCs each having a release PET film laminated on one end of the one surface were prepared. First, the liquid composition was applied to the surface of one of the sheets, on the edge of which the release PET film was covered. Next, another SPCC was laminated thereon so that the side on which the release PET film was covered at the end was in contact with the liquid composition.
  • CHA-type zeolite synthesis> sodium hydroxide manufactured by Kishida Chemical Co., N, N, N-trimethyl-1-adamantaammonium hydroxide (TMAdaOH) manufactured by Sechem Co., as a structure directing agent (SDA; Structure Directing Agent), and water manufactured by Aldrich Co.
  • TMAdaOH structure directing agent
  • Aldrich Co structure directing agent
  • CHA-type zeolite with respect to SiO 2 was added to the mixture and mixed well, then the obtained mixture was put into a pressure vessel and rotated at 15 rpm in an oven at 160 ° C. Meanwhile, hydrothermal synthesis was performed for 24 hours. After suction filtration, washing, and drying. The obtained powder was calcined at 600 ° C. for 6 hours in the air flow to remove the structure directing agent (SDA) TMAdaOH to obtain a CHA-type zeolite.
  • SDA structure directing agent
  • the average primary particle diameter of the obtained zeolite was 100 nm.
  • the average linear expansion coefficient at 100 ° C. was ⁇ 9 ppm / K, and the Si / Al 2 molar ratio was 20.
  • the powder obtained was filtered, the unreacted silylating agent was removed with an acetone solvent, air-dried and then dried in an oven at 100 ° C. overnight.
  • amount of silylation was calculated by CHN analysis, it was found that 6.36 g of the silylating agent was treated with respect to 100 g of zeolite.
  • Example 1 Production of zeolite-containing epoxy resin composite film> 27.32 g of epoxy resin “YX7105” (epoxy equivalent: 440 to 520, 25 ° C., viscosity at 1 atm: 6 Pa ⁇ s, no siloxane structure) manufactured by Mitsubishi Chemical Co., Ltd. was placed in a container at 65 ° C. in an oven as an epoxy resin precursor. Preheated to 6.01 g of epoxy resin curing agent "ST14" (amine value: 415 to 455 KOHmg / g) manufactured by Mitsubishi Chemical Co., Ltd. and 10.0 g of CHA-type zeolite previously dehydrated at 200 ° C. added.
  • the weight ratio of "YX7105” and “ST14” was 100 g, and the amount of zeolite was 30 g.
  • the mixture was kneaded with a vacuum mixer at 1500 rpm for 5 minutes.
  • the viscosity of the liquid composition after kneading at 25 ° C. and 1 atm was 102 Pa ⁇ s.
  • 100 g of the epoxy resin “YX7105”, 17.45 g of ST14 has a chemical equivalent of 1.0. After kneading, it was molded into a 50 ⁇ m film using a test laminator, heat-treated at 40 ° C. for 16 hours, post-cured at 80 ° C.
  • Example 2 Adjustment of amount of curing agent> A resin composite material film 2 was obtained in the same manner as in Example 1 except that the amount of "ST14" was changed to 5.46 g. Average thermal expansion coefficient ⁇ (25 to 50) at 25 ° C to 50 ° C of the obtained resin composite material film, average thermal expansion coefficient ⁇ (175 to 200) at 175 ° C to 200 ° C and storage elastic modulus at 100 ° C Is shown in Table 1. Table 2 shows the tensile breaking elongation in the tensile test and the peel strength in the peel test.
  • Example 3 50 parts of zeolite> A resin composite material film 3 was obtained in the same manner as in Example 1 except that the CHA zeolite obtained in Synthesis Example 1 was 50 g with respect to 100 g of "YX7105" and "ST14" combined. Average thermal expansion coefficient ⁇ (25 to 50) at 25 ° C to 50 ° C of the obtained resin composite material film, average thermal expansion coefficient ⁇ (175 to 200) at 175 ° C to 200 ° C and storage elastic modulus at 100 ° C Is shown in Table 1.
  • Example 4 Silylating agent Curing agent> A resin composite material film 4 was obtained in the same manner as in Example 1 except that 10.0 g of the silylated CHA-type zeolite obtained in Synthesis Example 2 was used. Average thermal expansion coefficient ⁇ (25 to 50) at 25 ° C to 50 ° C of the obtained resin composite material film, average thermal expansion coefficient ⁇ (175 to 200) at 175 ° C to 200 ° C and storage elastic modulus at 100 ° C Is shown in Table 1.
  • Example 5 Silylating agent> A resin composite material film 5 was obtained in the same manner as in Example 2 except that 10.0 g of the silylated CHA-type zeolite obtained in Synthesis Example 2 was used. Average thermal expansion coefficient ⁇ (25 to 50) at 25 ° C to 50 ° C of the obtained resin composite material film, average thermal expansion coefficient ⁇ (175 to 200) at 175 ° C to 200 ° C and storage elastic modulus at 100 ° C Is shown in Table 1.
  • Example 2 Glass flakes> A resin composite material film 7 was obtained in the same manner as in Example 1 except that glass flakes manufactured by Nippon Electric Glass Co., Ltd. (average particle diameter 50 ⁇ m, aspect ratio 200 or more) were used instead of zeolite. Average thermal expansion coefficient ⁇ (25 to 50) at 25 ° C to 50 ° C of the obtained resin composite material film, average thermal expansion coefficient ⁇ (175 to 200) at 175 ° C to 200 ° C and storage elastic modulus at 100 ° C Is shown in Table 1. Further, a graph in which the vertical axis represents the storage elastic modulus and the horizontal axis represents the average thermal expansion coefficient is shown in FIG. 7.
  • Examples 1 to 5 have lower storage elastic modulus and average thermal expansion coefficient than Comparative Examples 1 and 2. This is because when a specific amount of zeolite with a specific particle size is used in the epoxy resin composite material, an interaction occurs between the zeolite and the epoxy resin, and the zeolite with a negative expansion coefficient contracts, causing pores in the resin. Rather than existing as, it was possible to efficiently suppress the thermal expansion of the resin, and obtain an effect different from the conventional relationship between the average thermal expansion coefficient and the storage elastic modulus, which is a trade-off against the addition amount. .
  • Examples 1 to 5 were smaller than those of Comparative Examples 1 and 2 under the high temperature condition and increased under the low temperature condition. Therefore, when the resin composite material according to the embodiment of the present invention is used as an encapsulant for electronic devices, when it is cooled after being cured and mounted, the difference in the coefficient of thermal expansion between the peripheral member and the peripheral member is small, and the warp or the adhesive interface is not affected. It is expected that problems such as peeling will not occur easily. Further, at the ambient temperature of use, there is little difference in the expansion coefficient from the peripheral members, and it is expected that the product can be used stably for a long period of time.
  • Example 1 it is expected from Example 1 that the liquid composition according to the embodiment of the present invention has excellent handleability, can be easily injected into a narrow void or the like by the underfill method, etc., and sedimentation of the filler such as zeolite hardly occurs. It was confirmed that the viscosity was appropriate.
  • a test laminator was used to form a 100 ⁇ m film, and heat treatment was performed at 80 ° C. for 30 minutes, and then the gel fraction was 80% or more at 120 ° C. for 1 hour, 150 ° C. for 1 hour, and 180 ° C. for 3 hours. It was cured to obtain a resin composite material.
  • Silica filler> A resin composite material was prepared in the same manner as in Example 2 except that silica SC2500-SQ (average primary particle diameter 20 nm) manufactured by Admatechs Co., Ltd. was used as the silica filler instead of zeolite and the silica filler was adjusted to 23% by weight. Obtained.
  • ⁇ Comparative Example 4 Large amount of silica filler> A resin composite material was obtained in the same manner as in Example 2 except that HL-3100 manufactured by Tatsumori Co., Ltd. was used as the silica filler instead of zeolite and the silica filler was changed to 60% by weight. Average thermal expansion coefficient ⁇ (25 to 50) of the obtained resin composite material at 25 ° C. to 50 ° C., average thermal expansion coefficient ⁇ (175 to 200) at 175 ° C. to 200 ° C., and storage elastic modulus at 100 ° C., Table 2 shows the tensile breaking elongation in the tensile test and the peel strength in the peel test.
  • ⁇ Comparative Example 5 Large amount of silica filler> A resin composite material was obtained in the same manner as in Example 2 except that HL-3100 manufactured by Tatsumori Co., Ltd. was used as the silica filler instead of zeolite, and the silica filler was 70% by weight. Average thermal expansion coefficient ⁇ (25 to 50) of the obtained resin composite material at 25 ° C. to 50 ° C., average thermal expansion coefficient ⁇ (175 to 200) at 175 ° C. to 200 ° C., and storage elastic modulus at 100 ° C., Table 2 shows the tensile breaking elongation in the tensile test and the peel strength in the peel test.
  • Epoxy silicone + silica filler> A resin composite material was obtained in the same manner as in Example 6 except that HL-3100 manufactured by Tatsumori Co., Ltd. was used as the silica filler instead of zeolite, and the silica filler was changed to 60% by weight.
  • Example 7 KCHA-type zeolite> Instead of the CHA-type zeolite obtained in Synthesis Example 1, 10 g of the KCHA-type zeolite obtained in Synthesis Example 3 was used (containing 23% by mass of zeolite), and the same procedure as in Example 2 was repeated.
  • Example 8 Linde T-type zeolite> Instead of the CHA-type zeolite obtained in Synthesis Example 1, 10 g of the Linde T-type zeolite obtained in Synthesis Example 4 was used (including 23% by mass of zeolite), and the resin composite was performed in the same manner as in Example 2. I got the material.
  • the average thermal expansion coefficient ⁇ (175 to 200) and the storage elastic modulus at 100 ° C. were decreased by a small amount of zeolite, and The temperature change of the thermal expansion coefficient of the resin composite material was small under high temperature conditions and increased under low temperature conditions. Therefore, it can be said that the zeolite-containing epoxy resin composite material is suitable as a sealing material for semiconductor devices and the like. Further, from Example 2, it was proved that the zeolite-containing epoxy resin composite material has excellent tensile properties and has a strong adhesive force in the state of being in contact with the metal member.
  • Comparison between Examples 2 and 7 to 8 and Comparative Examples 1 to 5 shows that the zeolite-containing epoxy resin composites have a significant decrease in average thermal expansion coefficient ⁇ (175 to 200) due to a small amount of zeolite, while storage elasticity It can be seen that the rate of decline is small. Further, by comparing Example 2 with Comparative Examples 4 and 5, it is found that the zeolite-containing epoxy resin composite material has a low average thermal expansion coefficient ⁇ (175 to 200) and a high tensile elongation at break. From the comparison between Example 2 and Comparative Example 5, it can be seen that the zeolite-containing epoxy resin composite material has higher peel strength with respect to the metal material.
  • FIG. 8 shows changes in the coefficient of thermal expansion with temperature for Example 2, Comparative Example 1, Comparative Example 3 and Reference Example 1. From FIG. 8, it can be seen that the coefficient of thermal expansion of the zeolite-containing epoxy resin composite material changes specifically due to temperature change.
  • a zeolite-containing epoxy resin composite material exhibiting at least one of the following effects 1 to 5 and a liquid composition capable of obtaining the resin composite material can be obtained.
  • a liquid composition capable of Further, according to the second effect of the present invention, it is possible to provide a zeolite-containing epoxy resin composite material having a high thermal expansion coefficient at a low temperature and a low thermal expansion coefficient at a high temperature, and a liquid composition capable of obtaining the resin composite material. According to the third effect of the present invention, it is possible to provide a zeolite-containing epoxy resin composite material having excellent tensile properties and a liquid composition capable of obtaining the resin composite material. According to the fourth effect of the present invention, it is possible to provide a resin composite material having a strong adhesive force in a state of being in contact with a metal member and a liquid composition capable of obtaining the resin composite material.
  • the fifth effect of the present invention it is possible to obtain a resin composite material that can be suitably used as a sealing material for electronic devices and the like, and is unlikely to cause warpage or cracks even in power device applications, and to obtain the resin composite material. It is possible to provide a liquid composition capable of

Abstract

可撓性を維持したまま(貯蔵弾性率を低く維持したまま)、熱膨張係数を低下させることができる樹脂複合材および該樹脂複合材を得ることができる液状組成物を提供することを第1の課題とする。特に、本発明は、CTEが低温で高く、高温で低い樹脂複合材および該樹脂複合材を得ることができる液状組成物を提供することを第2の課題とする。本発明は、引張特性に優れる樹脂複合材および該樹脂複合材を得ることができる液状組成物を提供することを第3の課題とする。そして、本発明は、金属部材と接した状態での接着力が強固な樹脂複合材および該樹脂複合材を得ることができる液状組成物を提供することを第4の課題とする。そして、本発明は、電子デバイス等の封止材に好適に使用でき、特にパワーデバイス用途であっても、反りやクラックが生じ難い樹脂複合材および該樹脂複合材を得ることができる液状組成物を提供することを第5の課題とする。ゼオライトとエポキシ樹脂前駆体とを含有する、液状組成物であって、前記ゼオライトの平均一次粒子径が15nm以上1000nm以下であり、前記ゼオライトの含有量が1質量%以上50質量%以下であり、ゲル分率80%以上に硬化させた硬化物の100℃における貯蔵弾性率が1MPa以上1000MPa以下である、液状組成物。また、ゼオライトとエポキシ樹脂とを含有する、ゼオライト含有エポキシ樹脂複合材であって、前記ゼオライトの平均一次粒子径が15~1000nmであり、前記ゼオライトの含有量が1~50質量%であり、100℃における貯蔵弾性率が1~1000MPaである、ゼオライト含有エポキシ樹脂複合材。

Description

液状組成物、樹脂複合材、液状封止材、封止材及び電子デバイス
 本発明は、液状組成物、樹脂複合材、液状封止材、封止剤及び電子デバイスに関する。さらに詳しくは、本発明は、低貯蔵弾性率の硬化物が得られる液状組成物及びこれを含有する液状封止材に関する。また、本発明は、貯蔵弾性率が低く、熱変形し難く、引張特性に優れる樹脂複合材、該樹脂複合材からなる封止材、これを用いて封止してなる電子デバイスに関する。
 近年、半導体封止材、あるいは半導体を載置したフレキシブル基板の需要が高まっている。
 半導体デバイス等で用いる封止材は、硬化時の収縮や使用時の発熱による、反りやクラックの発生がし難いことが求められる。特に、パワーデバイス用途で用いる封止材は、サイズが大きいため、反りやクラックが生じやすい。
 半導体デバイス用の封止材として、エポキシ硬化系やシリコーンゲル系等の各種の封止材が提案されている。しかしながら、一般的に、シリコーンゲル系封止材は、機械的信頼性が低いため、用途が限定される。また、エポキシ樹脂は、平均熱膨張係数(CTE)の高さから、製造プロセスでの反り等の変形や、使用中での耐久性(部品の剥離)に問題がある。そこで、エポキシ樹脂にアルミナ、シリカ(ガラスフレーク)といったフィラーを併用すると、CTEが低下する代わりに可撓性も下がってしまう(貯蔵弾性率が上がってしまう)トレードオフの関係にある。すなわち、エポキシ硬化系封止材は、高弾性のため、硬化及び使用中の温度変化より封止材にかかる内部応力が大きい。特に数cm以上のサイズのデバイスの封止材として用いた場合、反りやクラックが生じやすい。
 これに対し、熱硬化性樹脂組成物が硬化させた際の貯蔵弾性率及び平均熱膨張率を一定範囲に収めることが提案されている(特許文献1参照)。
国際公開第2016/13622号
 こうした状況に鑑み、本発明者らは、パワーデバイス用途等の電子デバイスの封止材等に好適な樹脂複合材について、詳細な検討を行った。特に、樹脂複合材の熱膨張係数の温度変化について、検討を繰り返した。樹脂複合材を電子デバイスの封止材に用いる場合、封止材の硬化など実装時は高温となり、硬化・実装後に室温へ冷却される。この際、周辺部材との熱膨張係数差が大きい場合、室温への冷却工程において膨張係数差に伴う反りや接着界面での剥離などの不具合が生じることが懸念される。このため、高温条件での熱膨張係数についてはより低くすることが好ましい。一方、実装後の使用環境温度としては硬化時より低い温度領域となる。この温度領域においては、一定以上の膨張率を有することにより封止材と周辺部材との膨張率差を低減させ、長期においての負荷を低減することが好ましい。また、このような膨張係数差による熱応力に追従させる観点より、低弾性、高引張伸度であることが好ましい。しかしながら、上述の従来知られている樹脂複合材は、熱膨張係数の温度変化については、何ら検討がなされておらず、特許文献1についても、70~210℃の平均熱膨張率が開示されているのみであった。
 樹脂複合材を電子デバイス等の封止材に用いる場合、樹脂複合材が配線等の金属製部材と接することが多い。そこで、金属製部材と接した状態での接着力が強固な樹脂複合材を得ることについても検討を行うこととした。
 また、樹脂複合材をフレキシブル基板等の用途に用いる場合、曲率の増大等に伴い封止材やその他の周辺部材界面に大きな応力が発生する。そのため、用いる材料には、引張特性等に優れることが求められる。そこで、引張特性に優れる樹脂複合材についても、検討を行うこととした。
 すなわち、本発明は、可撓性を維持したまま(貯蔵弾性率を低く維持したまま)、熱膨張係数を低下させることができる樹脂複合材および該樹脂複合材を得ることができる液状組成物を提供することを第1の課題とする。特に、本発明は、CTEが低温で高く、高温で低い樹脂複合材および該樹脂複合材を得ることができる液状組成物を提供することを第2の課題とする。本発明は、引張特性に優れる樹脂複合材および該樹脂複合材を得ることができる液状組成物を提供することを第3の課題とする。そして、本発明は、金属部材と接した状態での接着力が強固な樹脂複合材および該樹脂複合材を得ることができる液状組成物を提供することを第4の課題とする。そして、本発明は、電子デバイス等の封止材に好適に使用でき、特にパワーデバイス用途であっても、反りやクラックが生じ難い樹脂複合材および該樹脂複合材を得ることができる液状組成物を提供することを第5の課題とする。
 本発明者らは、上記課題について鋭意検討を行った。この結果、特定粒子径のゼオライトを特定量含有し、特定の物性を有するゼオライト含有エポキシ樹脂複合材により、上記第1~5の少なくとも何れか1つの課題を解決できることを見出した。そして、特に、好ましいゼオライト含有エポキシ樹脂複合材は、上記第1~5の2つ以上の課題を解決できることを見出し、本発明に到達した。また、エポキシ樹脂と特定粒子径のゼオライトを特定量含有し、特定の物性を有する液状組成物を硬化することにより、上記第1~5の少なくとも何れか1つの課題を解決できる樹脂複合材が得られることを見出した。そして、特に、好ましい液状組成物は、上記第1~5の2つ以上の課題を解決できることを見出した。
 即ち、本発明の要旨は以下の通りである。
[1]ゼオライトとエポキシ樹脂前駆体とを含有する、液状組成物であって、前記ゼオライトの平均一次粒子径が15nm以上1000nm以下であり、前記ゼオライトの含有量が1質量%以上50質量%以下であり、ゲル分率80%以上に硬化させた硬化物の100℃における貯蔵弾性率が1MPa以上1000MPa以下である、液状組成物。
[2]ゼオライトとエポキシ樹脂前駆体とを含有する、液状組成物であって、前記ゼオライトの平均一次粒子径が15nm以上1000nm以下であり、前記ゼオライトの含有量が1質量%以上50質量%以下であり、ゲル分率80%以上に硬化させた硬化物の25℃以上50℃以下における平均熱膨張係数をα(25~50)とし、175℃以上200℃以下における平均熱膨張係数をα(175~200)としたときに、α(25~50)/α(175~200)が1.00超である、液状組成物。
[3]前記ゼオライトが構造単位 Composite Building Unit(CBU)としてd6r及びmtwの少なくともいずれかを含む、[1]または[2]に記載の液状組成物。
[4]前記ゼオライトの100℃における平均熱膨張係数が0ppm/K未満である、[1]乃至[3]の何れかに記載の液状組成物。
[5]前記ゼオライトのSAR(Si/Al比)が3以上100以下である、[1]乃至[4]の何れかに記載の液状組成物。
[6]25℃、1atmにおける粘度が10Pa・s以上2000Pa・s以下である、[1]乃至[5]の何れかに記載の液状組成物。
[7]前記エポキシ樹脂前駆体がシロキサン構造を有しない、[1]乃至[6]の何れかに記載の液状組成物。
[8][1]乃至[7]の何れかに記載の液状組成物を硬化させてなる、ゼオライト含有エポキシ樹脂複合材。
[9]ゼオライトとエポキシ樹脂とを含有する、ゼオライト含有エポキシ樹脂複合材であって、前記ゼオライトの平均一次粒子径が15以上1000nm以下であり、前記ゼオライトの含有量が1質量%以上50質量%であり、100℃における貯蔵弾性率が1MPa以上1000MPa以下である、ゼオライト含有エポキシ樹脂複合材。
[10]ゼオライトとエポキシ樹脂とを含有する、ゼオライト含有エポキシ樹脂複合材であって、前記ゼオライトの平均一次粒子径が15nm以上1000nm以下であり、前記ゼオライトの含有量が1質量%以上50質量%以下であり、25℃以上50℃以下における平均熱膨張係数をα(25~50)とし、175℃以上200℃以下における平均熱膨張係数をα(175~200)としたときに、α(25~50)/α(175~200)が1.00超である、ゼオライト含有エポキシ樹脂複合材。
[11]25℃以上50℃以下における平均熱膨張係数α(25~50)、175℃以上200℃以下における平均熱膨張係数α(175~200)としたときに、α(25~50)/α(175~200)が1.00超である、[9]に記載のゼオライト含有エポキシ樹脂複合材。
[12]25℃、50%RHにおける引張試験の破断伸度が100%以上500%未満である、ゼオライト含有エポキシ樹脂複合材。
[13]25℃、50%RHにおけるSPCC(冷間圧延鋼板)とのJIS-K6854-3(1999)に準拠して測定したT型剥離試験での剥離強度が、0.1N/mm以上8.0N/mm以下である、ゼオライト含有エポキシ樹脂複合材。
[14]前記ゼオライトが構造単位 Composite Building Unit(CBU)としてd6r及びmtwの少なくともいずれかを含む、[9]乃至[13]の何れかに記載のゼオライト含有エポキシ樹脂複合材。
[15]前記ゼオライトの100℃における平均熱膨張係数が0ppm/K未満である、[9]乃至[14]の何れかに記載のゼオライト含有エポキシ樹脂複合材。
[16]前記ゼオライトのSAR(Si/Al比)が3以上100以下である、[9]乃至[15]の何れかに記載のゼオライト含有エポキシ樹脂複合材。
[17]前記エポキシ樹脂がシロキサン構造を有しない、[9]乃至[16]の何れかに記載のゼオライト含有エポキシ樹脂複合材。
[18]175℃以上200℃以下における平均熱膨張係数が1ppm/K超150ppm/K以下である、[9]乃至[17]の何れかに記載のゼオライト含有エポキシ樹脂複合材。
[19][1]乃至[7]の何れかに記載の液状組成物を含有する、液状封止材。
[20][8]乃至[18]の何れかに記載のゼオライト含有エポキシ樹脂複合材からなる、封止材。
[21][8]乃至[18]の何れかに記載のゼオライト含有エポキシ樹脂複合材からなる部材を備える、電子デバイス。
 本発明によれば、以下の、第1~5の、少なくとも何れかの効果を奏するゼオライト含有エポキシ樹脂複合材および該樹脂複合材を得ることができる液状組成物を提供することができる。本発明の第1の効果により、可撓性を維持したまま(貯蔵弾性率を低く維持したまま)、熱膨張係数を低下させることができるゼオライト含有エポキシ樹脂複合材および該樹脂複合材を得ることができる液状組成物を提供することができる。また、本発明の第2の効果により、熱膨張係数が低温で高く、高温で低い、ゼオライト含有エポキシ樹脂複合材および該樹脂複合材を得ることができる液状組成物を提供することができる。本発明の第3の効果により、引張特性に優れる、ゼオライト含有エポキシ樹脂複合材および該樹脂複合材を得ることができる液状組成物を提供することができる。本発明の第4の効果により、金属部材と接した状態での接着力が強固な、樹脂複合材および該樹脂複合材を得ることができる液状組成物を提供することができる。さらに、本発明の第5の効果により、電子デバイス等の封止材に好適に使用でき、特にパワーデバイス用途であっても、反りやクラックが生じ難い樹脂複合材および該樹脂複合材を得ることができる液状組成物を提供することができる。
本発明の一実施形態としてのゼオライトと樹脂とを含む樹脂複合材を模式的に表す図である。 本発明の一実施形態としての電界効果トランジスタ素子の構成を模式的に表す断面図である。 本発明の一実施形態としての電界発光素子の構成を模式的に表す断面図である。 本発明の一実施形態としての光電変換素子の構成を模式的に表す断面図である。 本発明の一実施形態としての太陽電池の構成を模式的に表す断面図である。 本発明の一実施形態としての太陽電池モジュールの構成を模式的に表す断面図である。 実施例1~5及び比較例1、2で測定したフィルムの100℃における貯蔵弾性率を縦軸に、平均熱膨張係数を横軸としたグラフである。 実施例2、比較例1、比較例3及び参考例1で作製した樹脂複合材の熱膨張率の温度変化を示すグラフである。
 以下に本発明の実施の形態を詳細に説明するが、これら説明は本発明の実施形態の一例(代表例)であり、本発明はその要旨を超えない限りこれらの内容に限定されない。
 図1は、本発明の一実施形態である樹脂複合材を模式的に表す図である。以下に、樹脂複合材1について、詳細に説明する。
<1.樹脂複合材及び液状組成物>
 本発明の一実施形態であるゼオライト含有エポキシ樹脂複合材(以下、単に「複合材」、「樹脂複合材」とも称する)は、エポキシ樹脂と、特定粒子径のゼオライトを特定量含有し、特定の物性を有する。
 また、本発明の別の実施形態である液状組成物は、エポキシ樹脂前駆体と、特定粒子径のゼオライトを特定量含有し、特定の物性を有する(以下、該樹脂複合材及び液状組成物に含有されるゼオライトを「ゼオライト」と称し、樹脂複合材に含有されるエポキシ樹脂を「エポキシ樹脂」と称し、液状組成物に含有されるエポキシ樹脂前駆体を「エポキシ樹脂前駆体」と称する場合がある。)。
 ゼオライトは、一次粒子が凝集した二次以上の高次粒子状態であってもよい。その状態での平均一次粒子径(以下、単に「平均粒子径」や「粒子径」とも称する)は、15nm以上、1000nm以下である。ゼオライトの平均一次粒子径は、好ましくは20nm以上、より好ましくは25nm以上、更に好ましくは30nm以上、特に好ましくは40nm、最も好ましくは50nm以上である。一方、ゼオライトの平均一次粒子径は、好ましくは500nm以下、より好ましくは300nm以下、更に好ましくは200nm以下、特に好ましくは175nm以下、さらに特に好ましくは150nm以下、ことさら特に好ましくは125nm以下、最も好ましくは100nm以下である。
 上記のような平均一次粒子径の小さなゼオライトは、「ナノゼオライト」とも称される。ゼオライトの平均一次粒子径は、ゼオライト骨格の維持が容易になり、良好な結晶性を保つことが可能となりやすい点では大きいことが好ましい。一方、樹脂複合材中にゼオライトが均一に分散し易くなるとともに、樹脂との間で相互作用が生じやすくなる点では小さいことが好ましい。すなわち、ゼオライトの平均一次粒子径が、上記範囲内であれば、樹脂複合材内にゼオライトが均一に分散しやすくなり、さらには、得られる樹脂複合材の透明性が高くなる傾向がある。すなわち、複合材においては、この粒子径の範囲であることで、得られる樹脂複合材のヘイズ値は小さくなり、また、封止材などの光学部材として使用した場合に重要な青の光、具体的には波長450nmの光の透過率も高くなる傾向があり好ましい。
 ゼオライトの平均一次粒子径は、走査電子顕微鏡(SEM)による粒子の観察において、任意に選択した30個以上の一次粒子について粒子径を測定し、その一次粒子の粒子径を平均して求める。その際、粒子径は、粒子の投影面積と等しい面積を持つ、最大径となる円の直径(円相当径)を意味するものとする。
 樹脂複合材または液状組成物に含有されるゼオライトの含有量は、1質量%以上、50質量%以下である。ゼオライトの含有量は、好ましくは5質量%以上であり、より好ましくは10質量%以上であり、さらに好ましくは20質量%以上である。一方、ゼオライトの含有量は、好ましくは45質量%以下であり、より好ましくは40質量%以下、特に好ましくは35質量%以下、最も好ましくは30質量%以下、である。ゼオライトの含有量は、熱膨張物性に優れる樹脂複合材を得やすい点では、多いことが好ましい。一方、ゼオライトの含有量は、貯蔵弾性率、熱膨張物性、引張特性および/または接着性に優れる樹脂複合材を得やすい点では、少ないことが好ましい。また、液状組成物の粘度が低く、取扱い性に優れ、アンダーフィル法により狭い空隙などに注入しやすい点でも、ゼオライトの含有量は少ないことが好ましい。これらの観点から、上記の範囲とすることが好ましい。
 液状組成物は、ゼオライトと、エポキシ樹脂前駆体と、を含有する。液状組成物は、ゲル分率80%以上に硬化させた硬化物が、以下の(物性1)および(物性2)のうち少なくとも1つを満たせばよいが、これらの2つの物性の両方を満たすことが好ましい。
 (物性1)100℃における貯蔵弾性率が1~1000MPaである。
 (物性2)25℃以上50℃以下における平均熱膨張係数をα(25~50)とし、175℃以上200℃以下における平均熱膨張係数をα(175~200)としたときに、α(25~50)/α(175~200)が1.00超である。
 図1に示すように、樹脂複合材1は、ゼオライト2と、エポキシ樹脂3と、を含有する。樹脂複合材は、以下の(物性3)~(物性6)のうち少なくとも1つを満たせばよいが、これらのうちの2つ以上を満たすことが好ましく、3つ以上を満たすことが更に好ましく、4つ満たすことが特に好ましい。
 (物性3)100℃における貯蔵弾性率が1~1000MPaである。
 (物性4)25℃以上50℃以下における平均熱膨張係数α(25~50)、175℃以上200℃以下における平均熱膨張係数α(175~200)としたときに、α(25~50)/α(175~200)が1.00超である。
 (物性5)25℃、50%RHにおける引張試験の破断伸度が100%以上500%未満である。
 (物性6)25℃、50%RHにおけるSPCC(冷間圧延鋼板)とのJIS-K6854-3(1999)に準拠して測定したT型剥離試験での剥離強度が0.1~8.0N/mmである。
<1.1.ゼオライト>
 ゼオライトについて説明する。
(構造)
 ゼオライトとは、ケイ素又はアルミニウムと、酸素と、を含んで構成される、TOユニット(T元素とは、骨格を構成する酸素以外の元素)を基本単位とする化合物である。ゼオライトは、具体的には、結晶性多孔質なアルミノケイ酸塩、結晶性多孔質なアルミノリン酸塩(ALPO)、又は結晶性多孔質なシリコアルミノリン酸塩(SAPO)等が挙げられる。ゼオライトは、このTOユニットが、いくつか(数個~数十個)つながった、Composite Building Unit(以下、「CBU」と称す場合がある。)と呼ばれる構造単位から成り立っている。そのために、規則的なチャンネル(管状細孔)とキャビティ(空洞)を有している。
 このCBUや後述するゼオライトの結晶構造に関しては、International Zeolite Association(IZA)が定めるゼオライトの構造を規定するコードで示すことができる。なお、ゼオライトの構造は、X線構造解析装置(例えば、BRUKER社製卓上型X線回析装置D2PHASER)により得られたX線回折パターンを基に、ゼオライト構造データベース2018年版(http://www.iza-structure.org/databases/)を用いて特定することができる。
 ゼオライトは、アルミノシリケートが好ましい。すなわち、ゼオライトに含まれるSi原子とAl原子の合計量は、70質量%以上であることが好ましく、80質量%以上であることが更に好ましい。一方、ゼオライトに含まれるSi原子とAl原子の合計量は、99質量%以下であることが好ましい。
 ゼオライトは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で用いてもよい。
 液状組成物および樹脂複合材において得られる上述の効果がより顕著になりやすく、特に、樹脂前駆体または樹脂に、ゼオライトというフィラーを少量含有させるだけで、貯蔵弾性率を低く維持したまま、熱膨張特性を大幅に改善させやすい点では、液状組成物および樹脂複合材には、以下の好ましい構造のゼオライトが含有されていることが好ましい。
 ゼオライトは、CBUとして、d6r及びmtwの少なくともいずれかの構造を含むものが好ましい。すなわち、ゼオライト含有エポキシ樹脂複合材は、(CBU)としてd6r及びmtwのいずれかを含むゼオライトを1質量%以上と、エポキシ樹脂と、を含有することが好ましい。
 CBUとして、d6rを有するゼオライトとしては、AEI、AFT、AFV、AFX、AVL、CHA、EAB、EMT、ERI、FAU、GME、JSR、KFI、LEV、LTL、LTN、MOZ、MSO、MWW、OFF、SAS、SAT、SAV、SBS、SBT、SFW、SSF、SZR、TSC、及び-WEN型構造のゼオライト等が挙げられる。
 また、CBUとして、mtwを有するゼオライトとしては、*BEA、BEC、CSV、GON、ISV、ITG、*-ITN、IWS、MSE、MTW、SFH、SFN、SSF、*-SSO、UOS、及びUOV型構造のゼオライト等が挙げられる。
 また、エポキシ樹脂が含有する、エポキシ基の一部との相互作用を、3次元的に有するために、3次元チャネルをさらに有するゼオライトであることがより好ましい。例えば、AEI、AFT、AFX、*BEA、BEC、CHA、EMT、ERI、FAU、GME、ISV、ITG、*-ITN、IWS、JSR、KFI、MOZ、MSE、OFF、SAT、SAV、SBS、SBT、SFW、SZR、TSC、UOS、UOV、及び-WEN型構造のゼオライトが挙げられる。
 これらのうち、微粒子化しやすいという観点から、特に酸素8員環以下の構造であるゼオライトが好ましい。酸素8員環以下の構造であるゼオライトは、AEI、AFT、AFX、CHA、ERI、KFI、SAT、SAV、SFW、及びTSC型構造のゼオライト等が挙げられる。これらの中でも、微粒子化しても構造が安定であることから、さらに好ましくは、AEI、AFX、CHA、ERI型構造のゼオライトがよく、もっとも好ましくは、CHA構造を有するものである。なお、本明細書において、酸素8員環を有する構造とは、ゼオライト骨格を形成する酸素とT元素(骨格を構成する酸素以外の元素)で構成される細孔の中で最も酸素数が多い場合の酸素元素の数が8である構造を意味する。
 ゼオライト全体を100質量%とした場合における、前述の好ましい構造のゼオライトの割合は、貯蔵弾性率を低く維持したまま、熱膨張特性を大幅に改善させやすい等の点から、通常30質量%以上であり、好ましくは50質量%以上であり、より好ましくは70質量%以上であり、さらに好ましくは90質量%以上である。
(平均熱膨張係数)
 ゼオライトの平均熱膨張係数は、液状組成物および樹脂複合材が好ましい性能を示す限りにおいて、特段の制限はない。ゼオライトの平均熱膨張係数は、少量で組成物及び複合材の平均熱膨張係数を低下させやすい点では、低いことが好ましい。そこで、ゼオライトの100℃における平均熱膨張係数は、通常0ppm/K未満であり、好ましくは-2ppm/K以下であり、より好ましくは-3ppm/K以下であり、さらに好ましくは-5ppm/K以下であり、特に好ましくは-7ppm/K以下であり、最も好ましくは-10ppm/K以下である。
 一方、ゼオライトの平均熱膨張係数は、樹脂の平均熱膨張係数との差が小さく、ゼオライトと樹脂が剥離し難い点では高いことが好ましい。そこで、ゼオライトの100℃における平均熱膨張係数は、通常、-1000ppm/K以上であり、好ましくは-900ppm/K以上であり、より好ましくは-800ppm/K以上であり、さらに好ましくは-700ppm/K以上であり、特に好ましくは-500ppm/K以上であり、最も好ましくは-300ppm/K以上である。すなわち、ゼオライトの平均熱膨張係数が、上記範囲であれば、樹脂複合材は、ゼオライトの含有量が少なく、高いフレキブル性も維持することができた上で、脆化や変形等を抑制しながら、良好な画像明瞭性、及び高い透明性を兼ね備えることができる。
 なお、ゼオライトの平均熱膨張係数は、BRUKER社製X線回折装置D8ADVANCEとX線回折解析ソフトJADEを用いて格子定数を算出することで、測定することができる。
(フレームワーク密度)
 ゼオライトのフレームワーク密度は、本発明の効果が損なわれない態様であれば、特段に限定されるものではない。ゼオライトのフレームワーク密度は、ゼオライトの構造振動が起こりやすく、平均熱膨張係数が低くなりやすい点では低いことが好ましい。そこで、ゼオライトのフレームワーク密度は、好ましくは、17.0T/1000Å以下、より好ましくは、16.0T/1000Å以下である。
 一方、ゼオライトのフレームワーク密度は、微粒子化されたゼオライトの構造安定性が高くなりやすい点では、高いことが好ましい。ゼオライトのフレームワーク密度は、好ましくは、12.0T/1000Å以上、より好ましくは、13.0T/1000Å以上、さらに好ましくは、14.0T/1000Å以上である。フレームワーク密度が、上記範囲内であると、ゼオライトを凝集させずに微粒子化しやすくなり、長期的に白濁を少なくすることができる。
 なお、フレームワーク密度とは、ゼオライトの単位体積あたりに存在するT原子の数を示し、ゼオライトの構造によって定まる値である。本明細書では、IZAのゼオライト構造データベース2017年版(http://www.iza-structure.org/databases/)に記載の数値を用いればよい。
 フレームワーク密度が、16.0T/1000Åより大きく、17.0T/1000Å以下のゼオライトの例としては、CSV、ERI、ITG、LTL、LTN、MOZ、MSE、OFF、SAT、SFH、SFN、SSF、*-SSO、-WEN型構造のゼオライトを挙げることができる。
 フレームワーク密度が、15.0T/1000Åより大きく、16.0T/1000Å以下のゼオライトの例としては、AEI、AFT、AFV、AFX、AVL、*BEA、BEC、EAB、GME、*-ITN、LEV、MWW、及びSFW型構造のゼオライトを挙げることができる。
 フレームワーク密度が、14.0T/1000Åより大きく、15.0T/1000Å以下のゼオライトの例としては、CHA、ISV、IWS、KFI、SAS、及びSAV型構造のゼオライトを挙げることができる。
 フレームワーク密度が、14.0T/1000Å以下の範囲に存在するゼオライトの例としては、EMT、FAU、JSR、SBS、SBT、及びTSC型構造のゼオライトを挙げることができる。
(シリカ/アルミナのモル比(SAR))
 ゼオライトのシリカ/アルミナのモル比(「SAR」、「Si/Alのモル比」、または「Si/Al比」と称する場合がある)は、本発明の効果が損なわれない態様であれば、特段に制限されるものではない。ゼオライトのSAR(Si/Al比)は、大気中の水分の吸収を抑制でき、カウンターカチオンの量を制御しやすい点では、高いことが好ましい。そこで、ゼオライトのSAR(Si/Al比)は、通常0.1以上、好ましくは0.5以上、より好ましくは3以上、さらに好ましくは4以上、特に好ましくは9以上、最も好ましくは12以上である。
 一方、ゼオライトのSAR(Si/Al比)は、安価に製造しやすい点では、低いことが好ましい。そこで、ゼオライトのSAR(Si/Al比)は、通常2000以下、好ましくは1000以下、より好ましくは500以下、さらに好ましくは100以下である。Si/Al比が、上記範囲内であると、カウンターカチオンの量を制御しやすく、また、ゼオライトの製造コストも安くすむ。
 なお、ケイ素、アルミニウムの代わりに、ガリウム、鉄、ホウ素、チタン、ジルコニウム、スズ、亜鉛、リン等の元素を用いた場合は、代わりになった該元素の酸化物のモル比を、アルミナ又はシリカのモル比として換算すればよい。具体的には、アルミニウムの代わりにガリウムを用いた場合は、酸化ガリウムのモル比をアルミナのモル比に換算すればよい。
 ゼオライトのSi/Al比は、原料のケイ素含有化合物とアルミニウム含有化合物の比率、構造規定剤の種類と量、種晶の使用、温度や時間等の合成条件等により調整できる。
 ゼオライトのSi/Alのモル比は、後述する実施例に記載の方法により測定することができる。
 また、ゼオライトのカウンターカチオンは、本発明の効果が損なわれない態様であれば、特段に限定されるものではない。ゼオライトのカウンターカチオンは、通常、構造規定剤、プロトン、アルカリ金属イオン、アルカリ土類金属イオンであり、好ましくは、構造規定剤、プロトン、アルカリ金属イオンであり、より好ましくは、構造規定剤、プロトン、Liイオン、Naイオン、Kイオンであり、さらに好ましくは、構造規定剤、プロトン、Liイオンであり、特に好ましくは、プロトンである。ゼオライトのカウンターカチオンが構造規定剤である場合には、アルカリ金属イオンやアルカリ土類金属イオンに比べ、柔軟性があるために、ゼオライトが、0ppm/K未満の平均熱膨張係数をより示しやすいために好ましい。また、アルカリ金属イオンやアルカリ土類金属イオンは、そのサイズが小さいほど、ゼオライトが、0ppm/K未満の平均熱膨張係数をより示しやすいために好ましい。なかでも、ゼオライトのカウンターカチオンは、プロトンである場合が、樹脂複合材の平均熱膨張係数を低下しやすいために、好ましい。すなわち、ゼオライトとしては、好ましくは、as-made(構造規定剤含有型)、プロトン型、アルカリ金属型であり、より好ましくは、as-made、プロトン型、Li型、Na型、K型であり、さらに好ましくは、as-made、プロトン型、Li型であり、最も好ましくは、プロトン型である。なお、構造規定剤とは、後述するように、ゼオライトの製造で用いるテンプレートのことである。
 ゼオライトの結晶度は、本発明の効果が損なわれない態様であれば、特段に限定されるものではない。その理由としては、IZAがコードで定める構造よりも、Composite Building Unit(CBU)が、樹脂複合材の平均熱膨張係数に繋がる因子であると推測されるからである。なお、ゼオライトの結晶度は、X線回折装置(例えば、BRUKER社製卓上型X線回析装置D2PHASER)で求めた、或るX線回折ピークを基準とするゼオライトのX線回折ピークと比較することで求めることができる。具体的な算出例として、Scientific Reports 2016、6、Article number:29210のLTA型ゼオライトの結晶度が挙げられる。
 ゼオライトは、本発明の効果が損なわれない範囲で、シリル化処理等の表面処理がされていてもよい。当該表面処理は、物理的な処理であるか、化学的処理であるかに限定されない。
(ゼオライトと物性との相関)
 液状組成物および樹脂複合材は、エポキシ樹脂前駆体またはエポキシ樹脂と、ゼオライトとを含有することにより、上述の優れた物性を発現しやすくなる。特に、これらのゼオライトが、エポキシ樹脂またはエポキシ樹脂前駆体に分散されることにより、貯蔵弾性率をエポキシ樹脂よりあまり高くせず、かつ高温領域での熱膨張係数の増大を抑制(低下)させることができる。
 上記の理由に関しては、以下のことが考えられる。例えば、(1)エポキシ樹脂が含有するエポキシ基、硬化剤が有するアミノ基および/またはカルボキシル基と、ゼオライト表面のSi-OH基との間で相互作用を発揮することにより、分散剤を用いたような分散機能が生じること、(2)エポキシ樹脂および/または硬化剤が含有する(極性)官能基の一部が、ゼオライトが有する酸点と反応して結合を作ること、(3)ゼオライトが小粒子径で表面積が大きいため、ゼオライトとエポキシ樹脂との界面相互作用が増加すること、等が考えられる。このようにして、ゼオライトとエポキシ樹脂との間で相互作用が生じることで、エポキシ樹脂複合材内にゼオライトが均一に分散しやすくなり、さらにエポキシ樹脂とゼオライトとの界面密着性が大きくなることにより、脆化や変形等を抑制しながら、貯蔵弾性率の維持と(特に高温領域における)熱膨張係数の増大の抑制(低下)とを兼ね備えることができると考えられる。そして、ゼオライトを特定量含有することにより、ゼオライトが、液状組成物の粘度、樹脂複合材の貯蔵弾性率、熱膨張特性、引張特性、接着性が向上するように適度に分散していると推定される。また、特に、エポキシ樹脂が低貯蔵弾性率であると、ゼオライトの分散性が更に適度になると考えらえる。
 ゼオライトとエポキシ樹脂との相互作用については、更に以下のように推定される。ゼオライトがCBUとして上述の好ましい構造、特にd6r及びmtwを含んでいると、ゼオライトがエポキシ樹脂の有するエポキシ基を含む一部の構造と相互作用しやすい。エポキシ樹脂の極性基の量は、エポキシ基当量が低い方が大きくなり、ゼオライトと相互作用しやすい。また、エポキシ樹脂の貯蔵弾性率が低いと、ゼオライトの熱変形に追従しやすい。
 また、液状組成物および樹脂複合材が、エポキシ樹脂前駆体またはエポキシ樹脂と、ゼオライトとを含有することにより、優れた熱膨張特性を発現する理由については、更に以下のように推定される。液状組成物および樹脂複合材において、ゼオライトという酸点を有し、特定の結晶構造である小粒径フィラーが、エポキシ樹脂の骨格に部分的に取り込まれ、エポキシ樹脂が有する極性基と、電気的・イオン的に相互作用を及ぼしていることが影響していると考えらえる。すなわち、低温域においては、エポキシ樹脂の平均熱膨張係数を反映した、高い平均熱膨張係数を示す。一方、高温域においては、ゼオライトとエポキシ樹脂との相互作用により、ゼオライトの低い熱膨張性に、低貯蔵弾性のエポキシ樹脂が追随することにより、複合材全体としての平均熱膨張係数が低下すると考えられる。
(ゼオライトの製造方法)
 ゼオライトの製造方法は、公知の方法を適用できる。例えば、CHA型のゼオライトを製造する場合、特許第4896110号公報に記載の方法を参照して製造することができる。平均粒子径の小さなゼオライトを製造する場合には、合成時間や温度を通常よりも制御して水熱合成すればよいし、または、水熱合成により得られたゼオライトを、ビーズミル、ボールミル等の湿式粉砕で解砕、及び/又は粉砕すればよい。
 上記の解砕、及び/又は粉砕に用いられる粉砕装置としては、例えば、フロイント・ターボ社製「OBミル」、アシザワ・ファインテック社製「ナノ・ゲッター」、「ナノ・ゲッター・ミニ」、「スターミル」、及び「ラボスター」、スギノマシン社製「スターバースト」等が挙げられる。また、一般的に、粉砕後のゼオライトの結晶性は、低下するが、特開2014-189476号公報に記載の方法のように、アルミナ、シリカ等を含む溶液中で再結晶化することができる。
 解砕、及び/又は粉砕後のゼオライトの再凝集を抑制する点で、溶媒中で湿式粉砕して、溶媒中に平均粒子径の小さなゼオライトを分散させることが好ましい。なかでも、平均粒子径を小さくできる点で、ビーズミルを行うことが特に好ましい。また、分散後の再凝集を抑制するために、湿式粉砕時に、分散剤を用いてもよい。上記、溶媒、及び分散剤は、後述する。
 また、解砕、及び/又は粉砕されたゼオライトが分散した分散液中のゼオライトの平均粒子径をさらに小さくする目的で、遠心分離を行うことも、平均粒子径の大きな粒子を取り除くことができ、樹脂複合材内により均一に分散しやすくなり、さらには、得られる樹脂複合材の透明性が高くなるので、好ましい。なお、遠心分離に用いる遠心機は、市販の装置(例えば、コクサン社製遠心機H-36、及び日立工機製日立微量高速遠心機CF15RN)を用いることができる。
<1.2.エポキシ樹脂>
 エポキシ樹脂は、エポキシ樹脂前駆体を硬化させることにより得ることができる。
(種類)
 エポキシ樹脂は、例えば、アルコール型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ナフタレン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ビフェニル型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、多官能フェノール型エポキシ樹脂等の、各種エポキシ樹脂が挙げられる。
 エポキシ樹脂としては、ナフタレン骨格、フルオレン骨格、ビフェニル骨格、アントラセン骨格、ピレン骨格、キサンテン骨格、アダマンタン骨格及びジシクロペンタジエン骨格からなる群から選択された少なくとも1つの骨格を有するフェノキシ型エポキシ樹脂が好ましい。中でも、耐熱性がより一層高められることから、フルオレン骨格及び/又はビフェニル骨格を有するフェノキシ型エポキシ樹脂が特に好ましい。
 エポキシ樹脂は、製造の容易さと耐熱性の観点から、とりわけビスフェノールA骨格、ビスフェノールF骨格及びビフェニル骨格のうちの少なくとも1つ以上の骨格を有するエポキシ樹脂であることが好ましい。
 エポキシ樹脂は、金属部材と接した状態での接着力が強固な樹脂複合材が得られやすいことから、フェニルシロキサン、メチルシロキサンなどに代表されるシロキサン構造を有さないことが好ましい。
 本発明の樹脂複合材に含まれるエポキシ樹脂は、1種類のみでも、2種類以上の樹脂を任意の組み合わせと比率で併用してもよい。
 そして、エポキシ樹脂前駆体は、硬化によりこれらのエポキシ樹脂が得られる前駆体が好ましい。
 エポキシ樹脂前駆体およびエポキシ樹脂の種類、骨格、シロキサン結合の有無は、NMR(核磁気共鳴分光法)、IR(赤外分光法)、DSC(示差走査熱量測定)および各種クロマトグラフィーにより確認することができる。
(平均分子量)
 エポキシ樹脂およびエポキシ樹脂前駆体の分子量は、特段の制限はない。
 エポキシ樹脂前駆体の分子量は、ゲル浸透クロマトグラフィー(GPC)により測定したポリスチレン換算の質量平均分子量(Mw)の値で、通常100以上、好ましくは200以上、より好ましくは300以上である。一方、エポキシ樹脂前駆体の分子量は、通常200000以下、好ましくは100000以下、より好ましくは50000以下である。また、エポキシ樹脂前駆体の数平均分子量(Mn)は、通常100以上、好ましくは2000以上、より好ましくは300以上である。
 一方、エポキシ樹脂の数平均分子量は、通常100000以下、好ましくは80000以下、より好ましくは50000以下である。エポキシ樹脂前駆体の分子量が上記範囲内であることで、溶媒に対する溶解性、粘度等が通常の製造設備で扱いやすく、樹脂複合材における接着性が高くなり好ましい。さらに、ゼオライトとの相互作用の点においても好ましい。また、エポキシ樹脂前駆体の分子量が上記の下限範囲内であれば、樹脂複合材における靭性やハンドリング性が高くなり好ましい。液状組成物の粘度が低く、取扱い性に優れ、アンダーフィル法により狭い空隙などに注入しやすく、樹脂複合材における靭性や接着性にも優れる。
 また、エポキシ樹脂のMwをMnで除した値(Mw/Mn)は、通常1.5以上、好ましくは2以上、より好ましくは2.5以上である。一方、その上限は、通常5以下、好ましくは4.5以下、より好ましくは4以下である。上記範囲内であることで、溶剤や他の成分との混合時における樹脂の溶解性や樹脂複合材中のゼオライトの均一性が高くなりやすく、平滑性に優れた樹脂複合材が得られやすい。
(エポキシ基当量)
 エポキシ樹脂前駆体のエポキシ基当量(またはエポキシ当量)は、JIS K 7236に示された方法により測定することができる。エポキシ樹脂前駆体のエポキシ基当量は、通常50以上、好ましくは80以上、より好ましくは100以上、さらに好ましくは120以上、特に好ましくは150以上である。一方、エポキシ樹脂前駆体のエポキシ基当量は、通常100000以下、好ましくは10000以下、より好ましくは3000以下、さらに好ましくは1500以下、特に好ましくは1000以下である。エポキシ樹脂前駆体のエポキシ当量が少ないと、エポキシ基および反応後に生じる水酸基量が多くなるため、ゼオライトとエポキシ樹脂の相互作用が増大し、液状組成物を硬化させた硬化物および樹脂複合材の高温領域での熱膨張係数が低くなり、金属との接着性に優れるため好ましい。一方、エポキシ樹脂前駆体のエポキシ当量が多いと、架橋密度が低くなり、柔軟性や伸縮性の観点で好ましい。
 エポキシ樹脂前駆体のエポキシ基当量を調整する方法としては、エポキシ樹脂骨格における重合度を低減させたり、分子量の小さい骨格を導入するなどの方法により調整することができる。
(貯蔵弾性率)
 エポキシ樹脂の貯蔵弾性率は、優れた効果が発現されれば、特段の制限はない。エポキシ樹脂の貯蔵弾性率は、樹脂複合体の貯蔵弾性率が低く、樹脂複合体がゼオライトとの併用により所望の熱膨張特性に調整しやすい点では、低いことが好ましい。一方、耐熱性や耐湿性に関わる架橋密度調整の点では、高いことが好ましい。そこで、エポキシ樹脂の100℃における貯蔵弾性率は、0.1MPa以上が好ましく、0.5MPa以上が更に好ましく、1MPa以上が特に好ましい。一方、エポキシ樹脂の100℃における貯蔵弾性率は、1000MPa以下が好ましく、500MPa以下が更に好ましく、300MPaが特に好ましい。
 エポキシ樹脂の貯蔵弾性率を調整する方法としては、樹脂や硬化剤等の各成分の選択に加え、例えば、(a)エポキシ樹脂の主鎖中に柔軟性を発現させる分子骨格を導入する方法、(b)可塑剤や反応性希釈剤を添加する方法、(c)エラストマーや熱可塑性樹脂を改質剤として添加する方法等を用いることができる。
(a)エポキシ樹脂の主鎖中に柔軟性を発現させる分子骨格を導入する方法としては、ポリオキシアルキレン、ポリエステル、ウレタン等の骨格を持つエポキシ樹脂を用いることがあげられる。かかるエポキシ樹脂として、市販の柔軟性をもつエポキシ樹脂を使用することができる。具体的には、例えばjER871(三菱化学社製)、jER872(三菱化学社製)、YX7105(三菱化学社製)、YL7175-1000(三菱化学社製)、YL7410(三菱化学社製)、ウレタン変性エポキシ樹脂、CTBN変性BPA型エポキシ樹脂、EO変性BPA型エポキシ樹脂、EPICLON EXA-4816(DIC社製)、EPICLON EXA-4850(DIC社製)、EPICLON TSR-960(DIC社製)、EPICLON TSR-601(DIC社製)、EPICLON 1650-75MPX(DIC社製)、リカレジンBEO-60E(新日本理化社製)、リカレジンBEO-20E(新日本理化社製)、リカレジンDME-100(新日本理化社製)等が挙げられる。
(b)可塑剤としては、特に限定されるものではないが、例えば、酸とアルコールから合成されたエステル化合物が挙げられる。使用される酸としてはフタル酸、テトラヒドロフタル酸、ヘキサヒドロフタル酸、トリメリット酸、ピロメリット酸、アジピン酸、セバシン酸、アゼライン酸、マレイン酸、イタコン酸、リン酸、クエン酸、エポキシシクロヘキシルジカルボン酸、安息香酸等が挙げられる。また、可塑剤にエポキシ基を導入することで可塑剤のブリードアウトを抑え均一な組成物が作製できる。かかる化合物としては、例えば、サンソサイザーE-PS、サンソサイザーE-PO、サンソサイザーE-4030、サンソサイザーE-6000、サンソサイザーE-2000H、サンソサイザーE-9000H(いずれも新日本理化社製)、エポキシ化大豆油、エポキシ化亜麻仁油、エポキシ化脂肪酸オクチルエステル、エポキシ化脂肪酸アルキルエステル、アデカサイザー(ADEKA社製)等が挙げられる。
(b)反応性希釈剤としては、例えば、三菱化学社製YEDシリーズ(YED111N、YED111AN、YED122、YED188、YED216M、YED216D等)、PG-207N(新日鉄住金化学社製)、ネオトートS(新日鉄住金化学社製)、デナコールシリーズ(ナガセケムテックス社製)、セロキサイド2021P、2081、2000(ダイセル社製)等が挙げられる。
(c)改質剤として添加するエラストマーや熱可塑性樹脂としては、例えば、ポリエステル、ポリアミド、エポキシ化植物油、ポリビニルブチラール、ポリビニルアセタール、変性ポリビニルブチラール、変性ポリビニルアセタール、シリコーンオイル、MQレジン等が挙げられる。
 柔軟性を発現させる分子骨格を導入する方法で、エポキシ樹脂の貯蔵弾性率を所望の範囲に調整することが好ましい。
 エポキシ樹脂、後述する液状組成物の硬化物および樹脂複合材の貯蔵弾性率は、後述する実施例に記載する方法で測定することができる。
(平均熱膨張係数)
 エポキシ樹脂は、通常、0ppm/Kより大きい平均熱膨張係数を有する。樹脂の平均熱膨張係数は、樹脂複合材が好ましい性能を示す限りにおいて、特段の制限はない。エポキシ樹脂の平均熱膨張係数は、0℃以上、該樹脂のガラス転移温度以下、の温度範囲中での測定範囲において、通常、0ppm/Kより大きく、好ましくは10ppm/K以上であり、より好ましくは20ppm/K以上であり、さらに好ましくは30ppm/K以上であり、特に好ましくは50ppm/K以上である。また、エポキシ樹脂の平均熱膨張係数は、通常5000ppm/K以下であり、好ましくは2000ppm/K以下であり、より好ましくは1000ppm/K以下であり、さらに好ましくは800ppm/K以下であり、特に好ましくは600ppm/K以下であり、最も好ましくは400ppm/K以下である。この範囲であると、半導体封止材やフレキシブル基盤として使用する温度領域において、液状組成物の硬化物や樹脂複合材と、周辺部材との膨張率差が小さくなり、変形等に追従しやすく、長期耐久性の観点より好ましい。また、樹脂複合材の脆化や変形等を抑制しやすく、長期的に白濁を少なくすることができやすい。
 なお、樹脂の平均熱膨張係数は、液状組成物の硬化物および樹脂複合材の平均熱膨張係数と同様に、以下の通りに、測定することができる。
 樹脂、液状組成物の硬化物および樹脂複合材の平均熱膨張係数は、JIS K7197(2012年)に準拠する方法により、熱機械分析によって測ることが出来る。例えば、エスアイアイ・ナノテクノロジー社製熱機械分析装置TMA/SS6100を使用して、シート状にした樹脂複合材の伸縮により測定出来る。具体的には、樹脂複合材の温度範囲23℃~200℃の平均熱膨張係数(CTE)を引張モードで測定する。なお、サンプル形状は幅3mm、チャック間隔20mmとし、昇温速度2℃/minで昇温させた後、降温速度4℃/min降温させる。2度目の降温時のグラフの傾きから樹脂複合材の平均熱膨張係数を求める。
 エポキシ樹脂の平均熱膨張係数率の調整は、樹脂や硬化剤等の各成分の種類の選択に加え、例えば、樹脂骨格への芳香環などの強直成分の導入、分子量制御による架橋密度増加する等により、平均熱膨張係数率を低くすることができる。
 エポキシ樹脂としては、ナフタレン骨格、フルオレン骨格、ビフェニル骨格、アントラセン骨格、ピレン骨格、キサンテン骨格、アダマンタン骨格及びジシクロペンタジエン骨格からなる群から選択された少なくとも1つの骨格を有するエポキシ樹脂が好ましい。中でも、耐熱性に優れることから、フルオレン骨格及び/又はビフェニル骨格を有するエポキシ樹脂が特に好ましく、とりわけビスフェノールA骨格、ビスフェノールF骨格及びビフェニル骨格のうちの少なくとも1つ以上の骨格を有するフェノキシ型エポキシ樹脂であることが好ましい。
(ガラス転移温度(Tg))
 エポキシ樹脂のガラス転移温度(Tg)は、通常-130℃以上、好ましくは-110℃以上、より好ましくは-80℃以上、さらに好ましくは-70℃以上であり、特に好ましくは-60℃以上である。また、通常90℃以下、好ましくは70℃以下、より好ましくは50℃以下、さらに好ましくは30℃以下である。上記範囲内であることで、樹脂複合材は、使用環境温度での貯蔵弾性率を低く維持したまま、熱膨張係数を低下させることができる。樹脂のガラス転移温度は、粘弾性測定におけるtanδピークから求めることができる。
 エポキシ樹脂のガラス転移温度を調整する方法としては、樹脂や硬化剤等の各成分の種類の選択に加え、例えば、樹脂骨格への芳香環や二重結合部などの耐熱構造の導入、相互作用の大きい極性基の導入、分子量制御により架橋密度の増加、等の方法を用いることができる。
<1.3.エポキシ樹脂前駆体>
 エポキシ樹脂前駆体は、硬化によりエポキシ樹脂を得ることができるエポキシ基含有化合物のことを言う。すなわち、エポキシ基含有化合物は、分子中にエポキシ基を有する化合物であり、後述する硬化剤および/または硬化触媒により付加反応または自己重合反応し、熱硬化性樹脂を構成し得る化合物である。液状組成物に含まれるエポキシ樹脂前駆体は、1種類のみでも、2種類以上の樹脂を任意の組み合わせと比率で併用してもよい。
 エポキシ基含有化合物は、例えば、ビスフェノールA、ビスフェノールF、ビスフェノールB、ビスフェノールC、ビスフェノールAD、ビスフェノールアセトフェノン等のビスフェノール類;ビフェノール、カテコール、レゾルシン、ヒドロキノン、ジヒドロキシナフタレン等の2官能フェノール型エポキシ樹脂;その他の2官能グリシジルエーテル型エポキシ樹脂、2官能グリシジルエステル型エポキシ樹脂、2官能グリシジルアミン型エポキシ樹脂、2官能脂肪族エポキシ樹脂、2官能脂環式エポキシ樹脂、2官能複素環式エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂等の水添型のエポキシ樹脂などのエポキシ樹脂を用いることが可能である。中でも剛性と耐熱性の観点から、エポキシ基含有化合物は、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂が好ましい。
 また、エポキシ樹脂前駆体としては、エポキシ樹脂を2種類以上混合して反応させることにより得たものを好ましく用いることができる。中でも、得られるエポキシ樹脂の柔軟性の観点から、前記2種類以上のエポキシ樹脂のうちの少なくとも1つは、2官能脂肪族エポキシ基含有化合物であることが好ましい。
 前記2官能脂肪族エポキシ基含有化合物としては、炭素数2~12のジオールとエピハロヒドリンを反応させた後、蒸留精製したジグリシジルエーテル由来の純度が90質量%以上の脂肪族エポキシ基含有化合物であればよい。例えば、エチレングリコールのグリシジルエーテル、プロピレングリコールのグリシジルエーテル、1,4-ブタンジオールのグリシジルエーテル、1,6-ヘキサンジオールのグリシジルエーテル、1,8オクタンジオールのグリシジルエーテル、1,10-デカンジオールのグリシジルエーテル、2,2-ジメチル-1,3-プロパンジオールのグリシジルエーテル、ジエチレングリコールのグリシジルエーテル、トリエチレングリコールのグリシジルエーテル、テトラエチレングリコールのグリシジルエーテル、ヘキサエチレングリコールのグリシジルエーテル、1,4-シクロヘキサンジメタノールのグリシジルエーテル等である。これらの中でも、エポキシ樹脂前駆体の低粘化効果が大きく、硬化物の耐熱性低下が少ないという観点から、1,4-ブタンジオールのグリシジルエーテル、1,6-ヘキサンジオールのグリシジルエーテル、1,4-シクロヘキサンジメタノールのグリシジルエーテル又は2,2-ジメチル-1,3-プロパンジオールのグリシジルエーテルが特に好ましい。すなわち、これらの2官能脂肪族エポキシ基含有化合物と、ビスフェノールA型エポキシ基含有化合物、および/またはビスフェノールF型エポキシ基含有化合物とを混合して反応させて得られるものが、エポキシ樹脂前駆体として特に好ましい。
 また、エポキシ樹脂前駆体に必要に応じて、カップリング剤、可塑剤、希釈剤、可撓性付与剤、分散剤、湿潤剤、着色剤、顔料、紫外線吸収剤、ヒンダードアミン系光安定剤等の光安定剤、酸化防止剤、脱泡剤、離型剤、流れ調整剤等が配合されていてもよい。これらの配合量は、エポキシ樹脂前駆体と、硬化剤を用いる場合は硬化剤との和100質量部に対して、20質量部以下が好ましい。一方、その下限は特に限定されないが、0.1質量部以上が好ましい。
 また、前述したものの他にエポキシ基含有化合物は、国際公開WO2016/13622号公報に開示されているエポキシシリコーン樹脂を用いてもよい。但し、金属部材と接した状態での接着力が強固な樹脂複合材が得られやすいこと、ゼオライトとの相互作用が起こりやすいこと、さらに電子材料用途として使用した場合にシリコーン骨格から発生する低分子量シロキサンが接点障害を生じる可能性がないことから、シロキサン結合を有しないことが好ましい。
(粘度)
 エポキシ樹脂前駆体の粘度は、ゼオライトが高分散しやすく、液状組成物が取扱い性に優れ、アンダーフィル法により狭い空隙などに注入しやすい点では、低いことが好ましい。一方、ゼオライト等のフィラーが液状組成物中で沈降し難い点では、高いことが好ましい。そこで、エポキシ樹脂前駆体の25℃、1atmにおける粘度は、0.01Pa・s以上であることが好ましく、0.05Pa・s以上であることが更に好ましく、0.1Pa・s以上であることが特に好ましい。一方で、エポキシ樹脂前駆体の粘度は、5000Pa・s以下であることが好ましく、3000Pa・s以下であることが更に好ましく、1000Pa・s以下であることが特に好ましく、500Pa・s以下であることが最も好ましい。
 エポキシ樹脂前駆体及び液状組成物の粘度は、B型回転粘度計(ブルックフィール粘度計)を用いて、25℃の条件下により測定した値により求めることができる。
 エポキシ樹脂前駆体の粘度の調整は、繰り返し単位量の制御などによる分子量の低減、単位構造中の極性基量の低減等の方法により、低くすることができる。
(樹脂の製造方法)
 樹脂の製造方法は、特段の制限はないが、公知の方法で製造すればよい。例えば、第5版実験化学講座26高分子化学第2章高分子合成(日本化学会編)に記載されている方法で製造することができる。
<1.4.液状組成物>
 液状組成物は、ゼオライトと、エポキシ樹脂前駆体と、を含有する。ゼオライト及びエポキシ樹脂前駆体の構造、種類、物性等については、上述した通りである。
(その他の成分)
 液状組成物は、ゼオライトとエポキシ樹脂前駆体以外の成分を含有していてもよく、例えば、ゼオライト以外のフィラー、エポキシ樹脂以外の樹脂、硬化剤、表面処理剤、分散剤、界面活性剤、溶媒等を含有していてもよい。
 液状組成物に含まれている成分は、NMR(核磁気共鳴分光法)、IR(赤外分光法)、SEM(走査型電子顕微鏡)分析、IPC発光分光分析法(高周波誘導結合プラズマ発光分光分析法)、TGA(熱重量分析)およびDSC(示差走査熱量測定)等により、確認することができる。
(硬化剤)
 硬化剤としては、熱により反応を開始する熱硬化剤と、光により反応を開始する光重合開始剤等が挙げられる。硬化剤を用いる場合は、製造方法に応じて適宜選択すればよい。例えば、光硬化方法であれば光重合開始剤を、熱硬化方法であれば熱硬化剤(熱重合開始剤)を選択すればよい。なお、光硬化方法とは、活性エネルギー線硬化方法の内、紫外線、可視光及び赤外線を用いる硬化方法である。液状組成物を、光を照射し難い環境で硬化させる場合は、熱硬化法で硬化するのが好ましく、液状組成物は、熱硬化剤を含有することが好ましい。
(熱硬化剤)
 熱硬化剤としては、例えば、フェノール系硬化剤、脂肪族アミン、ポリエーテルアミン、脂環式アミン、芳香族アミンなどのアミン系硬化剤、酸無水物系硬化剤、アミド系硬化剤、ウレア系硬化剤、第3級アミン、イミダゾール及びその誘導体、有機ホスフィン類、ホスホニウム塩、テトラフェニルボロン塩、有機酸ジヒドラジド、ハロゲン化ホウ素アミン錯体、ポリメルカプタン系硬化剤、イソシアネート系硬化剤、ブロックイソシアネート系硬化剤等が挙げられる。
 フェノール系硬化剤、アミン系硬化剤、酸無水物系硬化剤等は、エポキシ基含有化合物と反応することにより、エポキシ樹脂の骨格内に取り込まれる。そこで、液状組成物に配合される量としては、エポキシ基と活性部(活性水素部、無水酸部)が化学当量(1.0)となる硬化剤当量が最も好ましいが、粘度や反応速度、硬化後の物性の調整のため硬化剤の配合量を調整しても構わない。この場合、エポキシ基に対し、硬化剤の配合量として、化学当量の0.4以上が好ましく、0.5以上がより好ましく、0.6以上がさらに好ましい。また、化学当量として、5.0以下が好ましく、4.0以下がより好ましく、3.0以下がさらに好ましい。上記範囲内であることで、使用時における未反応成分の溶出や架橋密度不足が生じず、樹脂複合材の耐熱性や耐湿性が良好となるため好ましい。
 これら以外の硬化剤については、通常、主にエポキシ樹脂の自己重合における硬化触媒または硬化剤の助触媒として作用する。このような硬化剤の配合量としては、エポキシ樹脂前駆体100重量部に対し、0.01重量部以上が好ましく、0.05重量部以上がより好ましく、0.1重量部以上がさらに好ましい。一方、同硬化剤の配合量は、エポキシ樹脂前駆体100重量部に対し、20重量部以下が好ましく、15重量部以下がより好ましく、10重量部以下がさらに好ましい。配合量が多いと、反応が促進される。配合量が少ないと、樹脂複合材において、硬化剤の残留による耐熱性や耐湿性などの物性低下や使用時における触媒のブリードアウトが生じ難い。
(フェノール系硬化剤)
 フェノール系硬化剤の具体例としては、ビスフェノールA、ビスフェノールF、4,4’-ジヒドロキシジフェニルメタン、4,4’-ジヒドロキシジフェニルエーテル、1,4-ビス(4-ヒドロキシフェノキシ)ベンゼン、1,3-ビス(4-ヒドロキシフェノキシ)ベンゼン、4,4’-ジヒドロキシジフェニルスルフィド、4,4’-ジヒドロキシジフェニルケトン、4,4’-ジヒドロキシジフェニルスルホン、4,4’-ジヒドロキシビフェニル、2,2’-ジヒドロキシビフェニル、10-(2,5-ジヒドロキシフェニル)-10H-9-オキサ-10-ホスファフェナンスレン-10-オキサイド、フェノールノボラック、ビスフェノールAノボラック、o-クレゾールノボラック、m-クレゾールノボラック、p-クレゾールノボラック、キシレノールノボラック、ポリ-p-ヒドロキシスチレン、ハイドロキノン、レゾルシン、カテコール、t-ブチルカテコール、t-ブチルハイドロキノン、フルオログリシノール、ピロガロール、t-ブチルピロガロール、アリル化ピロガロール、ポリアリル化ピロガロール、1,2,4-ベンゼントリオール、2,3,4-トリヒドロキシベンゾフェノン、1,2-ジヒドロキシナフタレン、1,3-ジヒドロキシナフタレン、1,4-ジヒドロキシナフタレン、1,5-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン、1,7-ジヒドロキシナフタレン、1,8-ジヒドロキシナフタレン、2,3-ジヒドロキシナフタレン、2,4-ジヒドロキシナフタレン、2,5-ジヒドロキシナフタレン、2,6-ジヒドロキシナフタレン、2,7-ジヒドロキシナフタレン、2,8-ジヒドロキシナフタレン、上記ジヒドロキシナフタレンのアリル化物又はポリアリル化物、アリル化ビスフェノールA、アリル化ビスフェノールF、アリル化フェノールノボラック、アリル化ピロガロール等が例示される。
(アミン系硬化剤)
 アミン系硬化剤の具体例として、脂肪族アミン類としては、エチレンジアミン、1,3-ジアミノプロパン、1,4-ジアミノプロパン、ヘキサメチレンジアミン、2,5-ジメチルヘキサメチレンジアミン、トリメチルヘキサメチレンジアミン、ジエチレントリアミン、イミノビスプロピルアミン、ビス(ヘキサメチレン)トリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミン、N-ヒドロキシエチルエチレンジアミン、テトラ(ヒドロキシエチル)エチレンジアミン等が例示される。ポリエーテルアミン類としては、トリエチレングリコールジアミン、テトラエチレングリコールジアミン、ジエチレングリコールビス(プロピルアミン)、ポリオキシプロピレンジアミン、ポリオキシプロピレントリアミン類等が例示される。脂環式アミン類としては、イソホロンジアミン、メタセンジアミン、N-アミノエチルピペラジン、ビス(4-アミノ-3-メチルジシクロヘキシル)メタン、ビス(アミノメチル)シクロヘキサン、3,9-ビス(3-アミノプロピル)-2,4,8,10-テトラオキサスピロ(5,5)ウンデカン、ノルボルネンジアミン等が例示される。芳香族アミン類としては、テトラクロロ-p-キシレンジアミン、m-キシレンジアミン、p-キシレンジアミン、m-フェニレンジアミン、o-フェニレンジアミン、p-フェニレンジアミン、2,4-ジアミノアニソール、2,4-トルエンジアミン、2,4-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノ-1、2-ジフェニルエタン、2,4-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、m-アミノフェノール、m-アミノベンジルアミン、ベンジルジメチルアミン、2-ジメチルアミノメチル)フェノール、トリエタノールアミン、メチルベンジルアミン、α-(m-アミノフェニル)エチルアミン、α-(p-アミノフェニル)エチルアミン、ジアミノジエチルジメチルジフェニルメタン、α,α’-ビス(4-アミノフェニル)-p-ジイソプロピルベンゼン等が例示される。
(酸無水物系硬化剤)
 酸無水物系硬化剤の具体例としては、ドデセニル無水コハク酸、ポリアジピン酸無水物、ポリアゼライン酸無水物、ポリセバシン酸無水物、ポリ(エチルオクタデカン二酸)無水物、ポリ(フェニルヘキサデカン二酸)無水物、メチルテトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、無水メチルハイミック酸、テトラヒドロ無水フタル酸、トリアルキルテトラヒドロ無水フタル酸、メチルシクロヘキセンジカルボン酸無水物、メチルシクロヘキセンテトラカルボン酸無水物、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、ベンゾフェノンテトラカルボン酸無水物、エチレングリコールビストリメリテート二無水物、無水ヘット酸、無水ナジック酸、無水メチルナジック酸、5-(2,5-ジオキソテトラヒドロ-3-フラニル)-3-メチル-3-シクロヘキサン-1,2-ジカルボン酸無水物、3、4-ジカルボキシ-1,2,3,4-テトラヒドロ-1-ナフタレンコハク酸二無水物、1-メチル-ジカルボキシ-1,2,3,4-テトラヒドロ-1-ナフタレンコハク酸二無水物等が例示される。
(アミド系硬化剤)
 アミド系硬化剤としては、ジシアンジアミド、ポリアミド樹脂等が例示される。第3級アミンとしては、1,8-ジアザビシクロ(5,4,0)ウンデセン-7、トリエチレンジアミン、ベンジルジメチルアミン、トリエタノールアミン、ジメチルアミノエタノール、トリス(ジメチルアミノメチル)フェノール等が例示される。
(ウレア系硬化剤)
 ウレア系硬化剤としては、3-(3,4-ジクロロフェニル)-1,1-ジメチルウレア、3-フェニル-1,1-ジメチルウレア、トルエンビス(ジメチルウレア)、4,4’-メチレンビス(フェニルジメチルウレア)などのウレア化合物等が例示される。
(イミダゾール系硬化剤)
 イミダゾール及びその誘導体としては、1-シアノエチル-2-フェニルイミダゾール、2-フェニルイミダゾール、2-エチル-4(5)-メチルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、1-シアノ-2-フェニルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾールトリメリテイト、1-シアノエチル-2-フェニルイミダゾリウムトリメリテイト、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-エチル-4’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジンイソシアヌル酸付加体、2-フェニルイミダゾールイソシアヌル酸付加体、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール、及びこれらのイミダゾール類がエポキシ基含有化合物に付加した化合物等が例示される。
(有機ホスフィン類、ホスホニウム塩、テトラフェニルボロン塩)
 有機ホスフィン類としては、トリブチルホスフィン、メチルジフェニルホスフイン、トリフェニルホスフィン、ジフェニルホスフィン、フェニルホスフィン等が例示される。
 ホスホニウム塩としては、テトラフェニルホスホニウム・テトラフェニルボレート、テトラフェニルホスホニウム・エチルトリフェニルボレート、テトラブチルホスホニウム・テトラブチルボレート等が例示される。
 テトラフェニルボロン塩としては、2-エチル-4-メチルイミダゾール・テトラフェニルボレート、N-メチルモルホリン・テトラフェニルボレート等が例示される。
(光重合開始剤)
 光重合開始剤としては、例えば、アセトフェノン類、ベンゾフェノン類、ベンゾインエーテル類、ヒドロキシケトン類、アシルホスフィンオキシド類、ジアゾニウムカチオンオニウム塩、ヨードニウムカチオンオニウム塩又はスルホニウムカチオンオニウム塩等が挙げられる。
 光重合開始剤の具体例としては、1-[4-(2-ヒドロキシエトキシ)フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、1-ヒドロキシ-シクロヘキシルフェニルケトン、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキシド、2,4,6-トリメチルベンゾイルフェニルエトキシホスフィンオキシド、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)ブタノン-1,2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、2-メチル-1-[4-メチルチオ]フェニル]-2-モルフォリノプロパン-1-オン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソブチルエーテル、ベンゾインイソプロピルエーテル、ビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキシド、2-ヒドロキシ-2-メチル-[4-(1-メチルビニル)フェニル]プロパノールオリゴマー、イソプロピルチオキサントン、o-ベンゾイル安息香酸メチル、[4-(メチルフェニルチオ)フェニル]フェニルメタン、2,4-ジエチルチオキサントン、2-クロロチオキサントン、ベンゾフェノン、エチルアントラキノン、ベンゾフェノンアンモニウム塩、チオキサントンアンモニウム塩、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチル-ペンチルホスフィンオキシド、2,4,6-トリメチルベンゾフェノン、4-メチルベンゾフェノン、4,4’-ビスジエチルアミノベンゾフェノン、1,4-ジベンゾイルベンゼン、10-ブチル-2-クロロアクリドン、2,2’-ビス(o-クロロフェニル)-4,5,4’,5’-テトラキス(3,4,5-トリメトキシフェニル)-1,2’-ビイミダゾール、2,2’-ビス(o-クロロフェニル)-4,5,4’,5’-テトラフェニル-1,2’-ビイミダゾール、2-ベンゾイルナフタレン、4-ベンゾイルビフェニル、4-ベンゾイルジフェニルエーテル、アクリル化ベンゾフェノン、ジベンゾイル、ビス(η5-2,4-シクロペンタジエン-1-イル)-ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)-フェニル)チタニウム、o-メチルベンゾイルベンゾエート、p-ジメチルアミノ安息香酸エチルエステル、p-ジメチルアミノ安息香酸イソアミルエチルエステル、活性ターシャリーアミン、カルバゾール・フェノン系光重合開始剤、アクリジン系光重合開始剤、トリアジン系光重合開始剤、ベンゾイル、トリアリルスルホニウム、ヘキサフルオロホスフェート塩、六フッ化リン系芳香族スルホニウム塩、六フッ化アンチモン系芳香族スルホニウム塩、六フッ化アンチモン系芳香族スルホニウム塩、六フッ化アンチモン系芳香族スルホニウム塩、トリアリルスルホニウム、ヘキサフルオロアンチモン、4-メチルフェニル-[4-(2-メチルプロピル)フェニル]-ヘキサフルオロホスフェート(1-)、1,2-オクタンジオン、1-[4-(フェニルチオ)-2-(o-ベンゾイルオキシム)]、1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-1-(o-アセチルオキシム)、エチル-4-ジメチルアミノベンゾエート、エチル-4-ジメチルアミノベンゾエート、2-エチルヘキシル-4-ジメチルアミノベンゾエート、(9-オキソ9H-キサンテン-2-イル)フェニルヨードニウムヘキサフルオロホスフェート、ビス[4-n-アルキル(C10~13)フェニル]ヨードニウムヘキサフルオロホスフェート、ビス[4-n-アルキル(C10~13)フェニル]ヨードニウムヘキサフルオロアンチモン、トリフェニルスルホニムトリフルオロスルホネート、トリフェニルスルホニウムビシクロ[2.2.1]ヘプタン-1-メタンスルフォネート、(9-オキソ-9H-キサンテン-2-イル)フェニルスルホニウムヘキサフルオロホスフェート、p-アジドベンズアルデヒド、p-アジドアセトフェノン、p-アジド安息香酸、p-アジドベンズアルデヒド-2-スルホン酸ナトリウム塩、p-アジドベンザルアセトフェノン、4,4’-ジアジドカルコン、4,4’-ジアジドジフェニルスルフィド、3,3’-ジアジドジフェニルスルフィド、2,6-ビス-(4’-アジドベンザル)-4-メチルシクロヘキサン、1,3-ビス-(4’-アジドベンザル)-プロパノン、4,4’-ジアジドカルコン-2-スルホン酸ナトリウム塩、4,4’-ジアジドスチルベン-2,2’-ジスルホン酸ナトリウム塩、1,3’-ビス-(4’-アジドベンザル)-2’-ジスルホン酸ナトリウム塩-2-プロパノン、2,6-ビス-(4’-アジドベンザル)-2’-スルホン酸(ナトリウム塩)シクロヘキサノン、2,6-ビス-(4’-アジドベンザル)-2’-スルホン酸(ナトリウム塩)4-メチル-シクロヘキサノン、α-シアノ-4,4’-ジベンゾスチルベン、2,5-ビス-(4’-アジドベンザルスルホン酸ナトリウム塩)シクロペンタノン、3-スルホニルアジド安息香酸、4-スルホニルアジド安息香酸、シンナミン酸、α-シアノシンナミリデンアセトン酸、p-アジド-α-シアノシンナミン酸、p-フェニレンジアクリル酸、p-フェニレンジアクリル酸ジエチルエステル、ポリビニルシンナメート、ポリフェノキシ-イソプロピルシンナミリデンアセテート、ポリフェノキシ-イソプロピルα-シアノシンナミリデンアセテート、ナフトキノン(1,2)ジアジド(2)-4-スルホン酸ナトリウム塩、ナフトキノン(1,2)ジアジド(2)-5-スルホン酸ナトリウム塩、ナフトキノン(1,2)ジアジド(2)-5-スルホン酸エステル(I)、ナフトキノン(1,2)ジアジド(2)-5-スルホン酸エステル(II)、ナフトキノン(1,2)ジアジド(2)-4-スルホン酸塩、2,3,4,4’-テトラヒドロキシベンゾフェノントリ(ナフトキノンジアジドスルホン酸)エステル、ナフトキノン-1,2,5-(トリヒドロキシベンゾフェノン)トリエステル、1,4-イミノキノン-ジアジド(4)-2-スルフォアミド(I)、1-ジアゾ-2,5-ジエトキシ-4-p-トリメルカプトベンゼン塩、5-ニトロアセナフテン、N-アセチルアミノ-4-ニトロナフタレン、有機ホウ素化合物、これら以外の光によりカチオンを発生する光酸発生剤、光によりアニオンを発生する光塩基発生剤等が挙げられる。
 硬化剤は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。なお、硬化剤は、液状組成物中において、単独で存在していてもよいし、溶媒等とともに錯体を形成していてもよい。また、多量体を形成していてもよい。なお、硬化剤は、樹脂複合材の製造後は、完全に分解されても、一部分解されていても、分解されていなくてもよい。
(フィラー)
 樹脂組成物および樹脂複合材には、ゼオライト以外のフィラーが含まれていてもよい。ゼオライト以外のフィラーとしては、粉末状の補強剤や充填材等が挙げられる。ゼオライト以外のフィラーとしては、例えば、酸化アルミニウム、酸化マグネシウム等の金属酸化物;炭酸カルシウム、炭酸マグネシウム等の金属炭酸塩;ケイ藻土粉、塩基性ケイ酸マグネシウム、焼成クレイ、微粉末シリカ、溶融シリカ等のケイ素化合物;水酸化アルミニウム等の金属水酸化物;カオリン、マイカ、石英粉末、グラファイト、カーボンブラック、カーボンナノチューブ、二硫化モリブデン、窒化ホウ素、窒化ケイ素、窒化アルミニウム等である。
 また、繊維質のフィラーを用いてもよい。繊維質のフィラーとしては、例えば、ガラス繊維、セラミック繊維、カーボンファイバー、アルミナ繊維、炭化ケイ素繊維、ボロン繊維、アラミド繊維、セルロースナノファイバー、セルロースナノクリスタル等が挙げられる。また、有機繊維や無機繊維のクロスあるいは不織布を用いることもできる。更に、これらの無機材は、その表面をシランカップリング剤、チタネート系カップリング剤、アルミネート系カップリング剤あるいはプライマー処理する等の表面処理を行ったものも使用できる。
 ゼオライト以外のフィラーは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
(表面処理剤)
 ゼオライトの凝集を防ぎ、ゼオライトを液状組成物中、並びに製造後の樹脂複合材中に、均一に分散するために、ゼオライトは表面処理剤で処理されてもよい。表面処理剤は、公知のものを用いてよく、後述の分散剤として挙げるものや、ポリイミン、ポリエステル、ポリアミド、ポリウレタン、ポリ尿素等のバインダー樹脂等を表面処理剤として用いてもよい。表面処理剤は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。なお、表面処理剤は、樹脂複合材の製造後は、完全に分解されても、一部分解されていても、分解されていなくてもよい。
(分散剤)
 分散剤とは、液状組成物中、並びに製造後の樹脂複合材中に、ゼオライトを均一に分散する効果を奏する化合物を意味する。例えば、メチルハイドロジェンポリシロキサン、ポリメトキシシラン、ジメチルポリシロキサン又はジメチコンPEG-7コハク酸塩等のポリシロキサン化合物及びその塩;シラン化合物等(メチルジメトキシシラン、ジメチルジメトキシシラン、メチルトリメトキシシラン、フェニルトリメトキシシラン、ジクロロフェニルシラン、クロロトリメチルシラン、ヘキシルトリメトキシシラン、オクチルトリメトキシシラン、デシルトリメトキシシラン、ドデシルトリメトキシシラン、ドデシルトリクロロシラン、オクタデシルトリメトキシシラン、オクタデシルトリクロロシラン、トリフルオロプロピルトリメトキシシラン、ビニルトリメトキシシラン、3-アクリロキシプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-アミノプロピルトリエトキシラン、3-(2-アミノエチル)アミノプロピルトリメトキシシラン、ヘキサメチルジシロキサン、1,1,1,3,3,3-ヘキサメチルジシラザン、又は3-カルボキシプロピルトリメチルトリメトキシシラン等)の有機ケイ素化合物;ギ酸、酢酸、酪酸、ラウリン酸、ステアリン酸、オレイン酸、6-ヒドロキシヘキサン酸等のカルボン酸化合物;ラウリルエーテルリン酸又はトリオクチルホスフィン等の有機リン化合物;ジメチルアミン、トリブチルアミン、トリメチルアミン、シクロヘキシルアミン、エチレンジアミン又はポリエチレンイミン等のアミン化合物、カルボン酸アミン化合物、及びリン酸アミン化合物等が挙げられる。なお、カルボン酸アミン化合物とは、カルボキシル基とアミノ基の両方の官能基を有する化合物を、リン酸アミン化合物とは、リン酸基とアミノ基の両方の官能基を有する化合物を意味する。なかでも、リン酸アミン化合物の分散剤は、ゼオライトへの親和性が特に高いという理由から好ましい
 分散剤は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。前述の表面処理剤や後述の界面活性剤が、分散剤として機能することもある。なお、分散剤は、樹脂複合材の製造後は、完全に分解されても、一部分解されていても、分解されていなくてもよい。
(界面活性剤)
 樹脂複合材の製造時に、微小な泡もしくは異物の付着等により樹脂複合材に凹みや乾燥ムラの発生が起こること等を防止する目的で、液状組成物は、界面活性剤を含んでいてもよい。
 界面活性剤は、特段の制限はなく、公知の界面活性剤(カチオン系界面活性剤、アニオン系界面活性剤、ノニオン系界面活性剤)を用いることができる。なかでも、ケイ素系界面活性剤、フッ素系界面活性剤、又はアセチレングリコール系界面活性剤が好ましい。界面活性剤の具体例としては、ノニオン系界面活性剤としてトリトンX100(ダウケミカル社製)、フッ素系界面活性剤としてはゾニルFS300(デュポン社製)、ケイ素系界面活性剤としてはBYK-310、BYK-320、BYK-345(ビックケミー社製)、アセチレングリコール系界面活性剤としては、サーフィノール104、サーフィノール465(エアープロダクツ社製)、オルフィンEXP4036、又はオルフィンEXP4200(日信化学工業社製)が挙げられる。界面活性剤は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。なお、界面活性剤は、樹脂複合材の製造後は、完全に分解されても、一部分解されていても、分解されていなくてもよい。また、界面活性剤により、液状組成物の濡れ性を向上することができる。
(溶媒)
 樹脂複合材は、樹脂前駆体及び/又は樹脂とゼオライト等を含有する組成物を混練後に加熱することにより、溶媒を使用せずに製造することができる。但し、樹脂複合材は、更に溶媒を含有させることにより、流動性を高くした組成物を塗布することにより製造することもできる。特に、樹脂複合材の成形加工時の粘度調整が容易な点では、流動性を高くした組成物を塗布することが好ましい。
 また、液状組成物をアンダーフィル法等により狭い空隙などに注入する場合等の、液状組成物を乾燥させ難い環境で用いる場合は、溶媒の量は少ないことが好ましい。この観点では、液状組成物に含まれる場合の液状組成物中の溶媒の量は、10質量%以下が好ましく、5質量%以下が更に好ましく、1質量%以下が特に好ましい。
 溶媒は、特段の制限はない。溶媒は、例えば、水;ヘキサン、ヘプタン、オクタン、イソオクタン、ノナン又はデカン等の脂肪族炭化水素類;トルエン、キシレン、クロロベンゼン又はオルトジクロロベンゼン等の芳香族炭化水素類;メタノール、エタノール、イソプロパノール、2-ブトキシエタノール、1-メトキシ-2-プロパノール等のアルコール類;アセトン、メチルエチルケトン、シクロペンタノン又はシクロヘキサノン等のケトン類;酢酸エチル、酢酸ブチル又は乳酸メチル等のエステル類;クロロホルム、塩化メチレン、ジクロロエタン、トリクロロエタン又はトリクロロエチレン等のハロゲン炭化水素類;プロピレングリコールモノメチルエーテルアセテート(PGMEA)、エチルエーテル、テトラヒドロフラン又はジオキサン等のエーテル類;N-メチルピロリドン、ジメチルホルムアミド又はジメチルアセトアミド等のアミド類;等が挙げられる。なかでも、樹脂の溶解度が高い点で、トルエン、キシレン、クロロベンゼン又はオルトジクロロベンゼン等の芳香族炭化水素類;クロロホルム、塩化メチレン、ジクロロエタン、トリクロロエタン又はトリクロロエチレン等のハロゲン炭化水素類;プロピレングリコールモノメチルエーテルアセテート(PGMEA)、エチルエーテル、テトラヒドロフラン又はジオキサン等のエーテル類;N-メチルピロリドン、ジメチルホルムアミド又はジメチルアセトアミド等のアミド類が好ましい。特に、核水素化された芳香族化合物を含む樹脂の溶解性が高いという理由で、トルエン、キシレン、クロロベンゼン又はオルトジクロロベンゼン等の芳香族炭化水素類が好ましい。溶媒は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。また、溶媒は、樹脂複合材中に残留していても、していなくてもよいので、溶媒の沸点に、特段の制限はない。
 液状組成物に溶媒が含まれる場合の溶媒の量は、液状組成物が適度な粘度を持ち、乾燥後に適度な厚みを持った樹脂複合材が得られるように調整すればよい。溶媒が含まれる場合の液状組成物中の溶媒の含有量は、通常5質量%以上、好ましくは10質量%以上、より好ましくは15質量%以上であり、一方、通常99質量%以下、好ましくは95質量%以下、より好ましくは90質量%以下である。
 溶媒を用いる場合、溶媒も含めた樹脂複合材の原料組成物(以下、「インクと」言う場合がある。)中のゼオライトの含有率は、通常0.1質量%以上、好ましくは0.5質量%以上、より好ましくは1質量%以上、さらに好ましくは5質量%以上、特に好ましくは7質量%以上、最も好ましくは10質量%以上であり、一方、通常80質量%以下、好ましくは70質量%以下、より好ましくは60質量%以下、さらに好ましくは50質量%以下、特に好ましくは40質量%以下、最も好ましくは20質量%以下である。ゼオライトの含有率は、ゼオライトが沈殿等を起こすことがなく、分散状態を長く保てるよう調整すればよい。
 インク中の樹脂の含有量は、通常0.5質量%以上、好ましくは1質量%以上、より好ましくは3質量%以上、さらに好ましくは5質量%以上、特に好ましくは10質量%以上であり、一方、通常90質量%以下、好ましくは85質量%以下、より好ましくは80質量%以下、さらに好ましくは75質量%以下、特に好ましくは70質量%以下である。樹脂の含有率は、樹脂が沈殿等を起こし難く、高分散状態を長く保てるよう調整すればよい。
 インクは、24時間以上安定であることが好ましく、1週間以上安定であることがさらに好ましい。安定であればあるほど、インクの大量合成や長期保存が可能となり、製造コストを安くすることができる。なお、インクの安定性は、沈殿物の生成や粘度の変化等で評価することができる。沈殿物の生成は、目視や動的光散乱粒子径測定装置で判断することができる。
(組成)
 液状組成物は、以下の組成であることが好ましい。なお、以下の、液状組成物における好ましい量は、全固形分量に対する比率がこの範囲であると特に好ましい。そこで、樹脂複合材についての好ましい組成についても、液状組成物に含まれる樹脂前駆体が硬化されて、樹脂になった以外は、同じ範囲であることが好ましい。
 液状組成物に含まれるエポキシ樹脂前駆体の量は、特にゼオライト等のフィラーの量に対し、放熱特性、難燃性および熱膨張物性に優れる樹脂複合材を得やすい点では、少ないことが好ましい。一方、エポキシ樹脂前駆体の含有量は、貯蔵弾性率、熱膨張物性、引張特性および/または接着性に優れる樹脂複合材を得やすい点では多いことが好ましい。また、液状組成物の粘度が低く、取扱い性に優れ、アンダーフィル法により狭い空隙などに注入しやすい点でも、エポキシ樹脂前駆体の含有量は多いことが好ましい。
 そこで、樹脂複合材または液状組成物中のエポキシ樹脂(前駆体)の含有量は、好ましくは50質量%以上であり、より好ましくは55質量%以上であり、さらに好ましくは60質量%以上である。一方、エポキシ樹脂(前駆体)は、好ましくは99質量%以下であり、より好ましくは90質量%以下である。
 また、液状組成物がエポキシ樹脂以外の樹脂も含有する場合、液状組成物に含まれる樹脂の含有量は、放熱特性、難燃性および熱膨張物性に優れる樹脂複合材を得やすい点では、少ないことが好ましい。一方、樹脂の含有量は、貯蔵弾性率、熱膨張物性、引張特性および/または接着性に優れる樹脂複合材を得やすい点では多いことが好ましい。また、液状組成物の粘度が低く、取扱い性に優れ、アンダーフィル法により狭い空隙などに注入しやすい点でも、樹脂の含有量は多いことが好ましい。そこで、樹脂複合材または液状組成物中の樹脂の含有量は、好ましくは50質量%以上であり、より好ましくは55質量%以上であり、さらに好ましくは60質量%以上である。一方、樹脂の含有量は、好ましくは99質量%以下であり、より好ましくは90質量%以下である。
 樹脂複合材または液状組成物中のゼオライトの含有量は、1質量%以上、50質量%以下である。ゼオライトの含有量は、好ましくは5質量%以上であり、より好ましくは10質量%以上であり、さらに好ましくは20質量%以上である。一方、ゼオライトの含有量は、好ましくは45質量%以下であり、より好ましくは40質量%以下である。ゼオライトの含有量は、難燃性および熱膨張物性に優れる樹脂複合材を得やすい点では、多いことが好ましい。一方、ゼオライトの含有量は、貯蔵弾性率、熱膨張物性、引張特性および/または接着性に優れる樹脂複合材を得やすい点では、少ないことが好ましい。また、液状組成物の粘度が低く、取扱い性に優れ、アンダーフィル法により狭い空隙などに注入しやすい点でも、ゼオライトの含有量は少ないことが好ましい。以上の観点から、樹脂複合材または液状組成物中に含有されるゼオライトの含有量は、上記の範囲とすることが好ましい。
 ゼオライトなどのフィラー、樹脂および溶媒以外のその他の成分が、液状組成物に含まれる場合の量は、ゼオライトや樹脂が沈殿等を起こすことなく、分散状態を保つことができる範囲で調整すればよい。これらのその他の成分が含まれる場合の、液状組成物中のその他の成分の量は、通常0.001質量%以上、好ましくは0.003質量%以上、より好ましくは0.005質量%以上、さらに好ましくは0.01質量%以上、特に好ましくは0.05質量%以上であり、一方、通常10質量%以下、好ましくは7質量%以下、より好ましくは5質量%以下、さらに好ましくは3質量%以下、特に好ましくは1質量%以下である。
 液状組成物の組成は、TGA(熱重量分析)、NMR(核磁気共鳴分光法)、IR(赤外分光法)、GC-MS(ガスクロマトグラフィー質量分析法)およびSEM(走査型電子顕微鏡)分析により確認できる。
(液状組成物の製造方法)
 液状組成物は、樹脂前駆体とゼオライト等を混合することにより得られる。混合は、従来公知の方法により行うことができる。なお、混合する際に、均一性の向上、脱泡等を目的として、ペイントシェーカー、ビーズミル、プラネタリミキサー、攪拌型分散機、ホモジナイザー、自公転攪拌混合機、三本ロール、ニーダー、単軸又は二軸混練機等の一般的な混練装置、及びスターラー等を用いて混合することが好ましい。各構成成分の混合順序も、反応や沈殿物が発生する等の特段の問題がない限り、任意である。構成成分のうち、何れか2成分又は3成分以上を予め混合し、その後に残りの成分を混合してもよいし、一度に全部を混合してもよい。
(粘度)
 本発明において液状とは、組成物の粘度が低く、組成物が流動性を有することをいう。液状組成物の粘度は、取扱い性に優れ、アンダーフィル法などにより狭い空隙などに注入しやすい点では、低いことが好ましい。一方、ゼオライト等のフィラーの沈降が起こり難い点では、高いことが好ましい。そこで、液状組成物の25℃、1atmにおける粘度は、10Pa・s以上であることが好ましく、15Pa・s以上であることが更に好ましく、20Pa・s以上であることが特に好ましい。一方、エポキシ樹脂前駆体の粘度は、2000Pa・s以下であることが好ましく、1000Pa・s以下であることが更に好ましく、500Pa・s以下であることが特に好ましい。
 液状組成物の25℃、1atmにおける粘度は、後述する実施例に記載の方法により測定することができる。また、この測定方法は、エポキシ樹脂前駆体の粘度を測定する場合にも適用することができる。
 液状組成物の粘度は、エポキシ樹脂前駆体とゼオライト等の成分の種類と量比、ゼオライトの粒子径や粒度分布等により、調整することができる。低粘度のエポキシ樹脂前駆体を多量に用いると低粘度に、高粘度のエポキシ樹脂前駆体少量にゼオライトを多量に加えると高粘度になりやすい。また、粘度は、可塑剤や各種低粘度樹脂や石油樹脂、タッキファイヤー、増粘剤などの配合等により調整することもできる。更に、エポキシ樹脂前駆体とゼオライトの組み合わせによる相性によっても異なる。そこで、実際に液状組成物を調整し、その粘度を測定することにより所望の粘度の液状組成物を得ることもできる。
(ゲル分率)
 液状組成物を硬化させた硬化物のゲル分率は、後述する実施例に記載の方法により測定することができる。ゲル分率は、硬化温度を上げる、硬化時間を延ばす、硬化剤やエポキシ樹脂の分子量を下げることにより、上げることができる。また、ゲル分率は、硬化温度を下げる、硬化時間を短くする、硬化剤やエポキシ樹脂の分子量を上げることにより、下げることができる。
(貯蔵弾性率)
 液状組成物は、ゲル分率80%以上に硬化させた硬化物の100℃における貯蔵弾性率が1MPa以上、1000MPa以下であることが好ましい。
 液状組成物の硬化物の貯蔵弾性率は、液状組成物を硬化させて得られる樹脂複合体の貯蔵弾性率が低く、ゼオライトとの併用により所望の熱膨張特性に調整しやすい点では、低いことが好ましい。一方、得られる硬化物の剛性、耐熱性および耐湿性の点では、貯蔵弾性率は、高いことが好ましい。そこで、液状組成物の硬化物の100℃における貯蔵弾性率は、0.1MPa以上がより好ましく、0.5MPa以上が更に好ましく、1MPa以上が特に好ましい。一方、液状組成物の硬化物の100℃における貯蔵弾性率は、1000MPa以下が好ましく、500MPa以下が更に好ましく、100MPa以下が特に好ましい。
 液状組成物の硬化物の貯蔵弾性率は、エポキシ樹脂前駆体とゼオライト等のフィラー等の成分の種類と量比、ゼオライト等のフィラーの粒子径、粒度分布および形状等により、調整することができる。柔軟性の高い骨格を有することなどにより、低弾性なエポキシ樹脂前駆体を多量に用いると低弾性になりやすい。一方、ゼオライト等のフィラーの使用量が多いと高弾性になりやすい。また、貯蔵弾性率は、エポキシ樹脂前駆体とゼオライトとの相互作用が大きくなると高くなりやすく、ゼオライト等のフィラーの粒子径が小さいとより高弾性になりやすい。
 液状組成物の硬化物の100℃における貯蔵弾性率は、後述する実施例に記載の方法により測定することができる。
 また、上記の測定方法は、エポキシ樹脂や樹脂複合材の貯蔵弾性率を測定する場合にも適用することができる。
(平均熱膨張係数)
 液状組成物は、ゲル分率80%以上に硬化させた硬化物の平均熱膨張係数が、175℃以上200℃以下の温度範囲中での測定範囲において、通常、1ppm/Kより大きく(1ppm/K超であり)、好ましくは5ppm/K以上であり、より好ましくは10ppm/K以上であり、さらに好ましくは15ppm/K以上であり、特に好ましくは20ppm/K以上である。また、液状組成物の硬化物の175℃以上200℃以下における平均熱膨張係数は、通常300ppm/K以下であり、好ましくは250ppm/K以下であり、より好ましくは200ppm/K以下であり、さらに好ましくは180ppm/K以下であり、特に好ましくは150ppm/K以下である。この範囲であると、通常、使用する環境において、液状組成物の硬化物からなる部材と周辺部材との膨張率の差が小さくなりやすく、長期的な負荷が低減されやすい。そして、25℃以上50℃以下における平均熱膨張係数は、通常1ppm/K以上、5ppm/K以上が好ましく、10ppm/K以上がより好ましく、20ppm/K以上が更に好ましい。また、液状組成物の硬化物の25℃以上50℃以下における平均熱膨張係数は、通常300ppm/K以下、280ppm/K以下が好ましく、260ppm/K以下がより好ましく、240ppm/K以下が更に好ましい。
 液状組成物の硬化物を電子デバイスの封止材として用いる場合、液状組成物は、通常、硬化させるときなどの実装時に高温となるが、実装後に室温へ冷却される。この際に、硬化物と周辺部材との熱膨張係数の差が大きいと、冷却過程で膨張性の違いに起因する反りや接着界面での剥離などが生じることが懸念される。このため、高温条件での熱膨張係数については、より低くすることが好ましい。一方、実装後の硬化物の使用環境温度は、通常、硬化時より低い温度領域となる。この温度領域においては、一定以上の膨張率を有することにより、硬化物からなる部材と周辺部材との膨張率の差が小さく、長期における負荷が低減されていることが好ましい。また、このような膨張係数の違いによる熱応力に追従させる観点より、低弾性で高引張伸度であることが好ましい。そこで、液状組成物は、ゲル分率80%以上に硬化させた硬化物が、25℃以上50℃以下における平均熱膨張係数をα(25~50)とし175℃以上200℃以下における平均熱膨張係数をα(175~200)としたときに、α(25~50)/α(175~200)が1.00超であることが好ましい。α(25~50)/α(175~200)の測定法は、後述の実施例で詳述する。α(25~50)とα(175~200)の関係については、α(25~50)/α(175~200)が1.05以上であることが更に好ましく、1.25以上であることが特に好ましく、2.0以上であることが最も好ましい。一方、α(25~50)/α(175~200)が20.00以下であることが好ましい。
 液状組成物をゲル分率80%以上に硬化させた硬化物の平均熱膨張係数(上述の平均熱膨張係数の温度変化も含める)は、エポキシ樹脂前駆体とゼオライト等の各成分の種類(平均熱膨張係数の選択)と量比等により、調整することができる。低膨張係数のエポキシ樹脂前駆体を多量に用いると低膨張に、高膨張係数のエポキシ樹脂前駆体を多量に用いると高膨張になりやすい。また、エポキシ樹脂前駆体に対し、ゼオライトを多量に加えると低膨張になりやすい。また、膨張係数は、ゼオライト等のフィラーの粒子径、粒度分布および形状などによっても調整することができる。更に、膨張係数は、エポキシ樹脂前駆体とゼオライトの組み合わせによる相性によっても異なるので、組み合わせを調整することが好ましい。
 液状組成物の硬化物の平均熱膨張係数は、以下のとおりとする。x℃における硬化物の長さをlとする。すなわち、25℃における硬化物の長さをl25、50℃における硬化物の長さをl50、175℃における硬化物の長さをl175、200℃における硬化物の長さをl200とする。25℃以上50℃以下における平均熱膨張係数α(25~50)は、(l50-l25)/(50-25)/l25である。また、175℃以上200℃以下における平均熱膨張係数α(175~200)は、(l200-l175)/(200-175)/l175である。液状組成物の硬化物の平均熱膨張係数は、後述する実施例に記載の方法により測定することができる。また、上記の測定方法は、エポキシ樹脂や樹脂複合材の平均熱膨張係数を測定する場合にも適用することができる。
<1.5.樹脂複合材>
(樹脂複合材の製造方法)
 樹脂複合材の製造方法は、特段の制限はない。樹脂複合材は、上述の液状組成物を硬化させることにより、製造することができる。樹脂複合材は、樹脂前駆体及び/又は樹脂とゼオライト等を含有する組成物を混練後に加熱することにより、製造することができる。樹脂複合材は、硬化剤の種類、加熱温度と時間等の条件は、樹脂の種類等に応じて適宜選択する。例えば、低分子量の樹脂前駆体や高活性の硬化剤の使用、2種類以上の硬化剤の併用、高温加熱、長時間加熱などにより、反応性を高めることができる。加熱温度は、用いる硬化剤等にも影響されるが、通常は30℃以上であり、50℃以上が好ましく、60℃以上がより好ましく、80℃以上がさらに好ましい。一方で、加熱温度は、通常400℃以下であり、350℃以下が好ましく、300℃以下がより好ましく、250℃以下がさらに好ましい。硬化温度が上述の範囲内であると、短時間で高品質な樹脂複合材を得やすい。
 樹脂複合材の製造方法としては、本発明の液状組成物を支持体等に塗布した後に加熱乾燥する方法も挙げられる。また、樹脂前駆体を使用する場合、ゼオライトと、溶媒との混合物に、樹脂材料であるモノマー、ダイマー、オリゴマー等を混合して加熱により乾燥させた後に硬化させることにより、製造することができる。
(樹脂複合材の組成)
 樹脂複合材は、ゼオライトと、エポキシ樹脂とを含有する。樹脂複合材は、更に、上述の液状組成物に含まれる成分等を含んでいてもよい。ここで、樹脂複合材の組成は、エポキシ樹脂前駆体が硬化され、エポキシ樹脂になった以外は、上述の液状組成物が溶媒を含まない場合と同様である。
 液状組成物の組成は、NMR(核磁気共鳴分光法)、IR(赤外分光法)、SEM(走査型電子顕微鏡)分析、IPC発光分光分析法(高周波誘導結合プラズマ発光分光分析法)、TGA(熱重量分析)およびDSC(示差走査熱量測定)等により確認できる。
(貯蔵弾性率)
 樹脂複合材の貯蔵弾性率の好ましい範囲は、使用時における周辺部材への変形が少なく、樹脂複合材への応力を伴う界面剥離やクラックが発生し難いことから、上述の液状組成物を硬化させた硬化物の貯蔵弾性率の好ましい範囲と同様である。ここで、樹脂複合材の貯蔵弾性率は、使用中の温度変化によって生じる周辺部材と樹脂複合材内部応力が小さく、特に数cm角以上のデバイスにおいて、反りやクラックが生じ難い点では低いことが好ましい。一方、樹脂複合材の貯蔵弾性率は、耐熱性や耐湿性などの機械的信頼性に優れる点では高いことが好ましい。
 樹脂複合材の貯蔵弾性率は、上述の液状組成物を硬化させた硬化物の貯蔵弾性率の調整方法と同様にして調整することができる。
(平均熱膨張係数)
 樹脂複合材の平均熱膨張係数は、α(25~50)とα(175~200)およびα(25~50)/α(175~200)も含めて、その好ましい範囲は、温度変化による変形や破損が生じ難いことから、上述の液状組成物を硬化させた硬化物の平均熱膨張係数の好ましい範囲と同様である。ここで、樹脂複合材の平均熱膨張係数は、使用中の温度変化によって生じる内部応力が小さく、変形や破損が生じ難いことから小さいことが好ましい。一方、樹脂複合材の平均熱膨張係数は、樹脂複合材に隣接する部材(パターンやワイヤ等に用いられるアルミや銅等の金属、基板に用いられるセラミック等)の平均熱膨張係数と同程度であることが好ましい。平均熱膨張係数は、通常、こうした隣接部材より、樹脂複合材の方が大きいため、樹脂複合材の平均熱膨張係数の下限は、通常、隣接部材の平均熱膨張係数が下限とする。
 樹脂複合材の平均熱膨張係数は、上述の液状組成物を硬化させた硬化物の平均熱膨張係数の調整方法と同様にして調整することができる。
(貯蔵弾性率と平均熱膨張係数)
 樹脂複合材は、従来得られていなかった貯蔵弾性率と平均熱膨張係数の範囲を有するゼオライト含有エポキシ樹脂複合材を提供することができる。具体的には、x:平均熱膨張係数(ppm/K)、y:貯蔵弾性率(MPa)としたときにy≦-56000x+1.4×107、y>0の範囲、より好ましくはy≦-56000x+1.2×107、y>0の範囲のゼオライト含有エポキシ樹脂複合材を提供することができる。
(引張特性)
 樹脂複合材の引張特性は、25℃、50%RHにおける引張試験の破断伸度が100%以上、500%未満であることが好ましい。樹脂複合材は、高可撓性で曲げに強く、応力を抑制することでクラックが生じ難くなり、フレキシブル基板等の応力がかかる用途に特に好適になることから、引張試験での破断伸度や破断強度が高いことが好ましい。一方、剛性や耐湿性の観点から、樹脂複合材の引張試験での破断伸度や破断強度は、低いことが好ましい。そこで、樹脂複合材の引張試験での破断伸度は、120%以上であることがより好ましく、130%以上であることが更に好ましい。一方、樹脂複合材の引張試験での破断伸度は、450%以下であることがより好ましく、400%以下であることが更に好ましい。
 樹脂複合材の引張特性は、エポキシ樹脂とゼオライトの種類、特に2官能脂肪族エポキシ基含有化合物の割合や分子量、その量比等により、調整することができる。上述の柔軟性を有するエポキシ樹脂を多量に用いると伸び率が高くなり、少量のエポキシ樹脂に多量のゼオライトを加えると剛性が高くなりやすい。また、引張特性は、エポキシ樹脂とゼオライトの組み合わせによる相性によっても異なり、エポキシ樹脂に粒子径の小さいゼオライトを配合すると、両者間での相互作用が増し、剛性が増大しやすい。
 樹脂複合材の引張伸度は、後述する実施例に記載の方法により測定することができる。
 本発明の別の実施形態は、25℃、50%RHにおける引張試験の破断伸度が100%以上500%未満である、ゼオライト含有エポキシ樹脂複合材である。
 本実施形態のゼオライト含有エポキシ樹脂複合材の破断伸度を除く他の特性や条件等については、上述の実施形態と同様に適用することができる。
(接着性)
 樹脂複合材は、隣接部材に対する接着性に優れることが好ましい。特に、樹脂複合材を電子デバイス等の封止材に用いる場合、樹脂複合材が配線等の金属製部材と接することが多い。そこで、金属部材と接した状態での接着力が強固であることが好ましい。一方、分別廃棄しやすいことから、樹脂複合材の接着性は、弱いことが好ましい。そこで、樹脂複合材は、25℃、50%RHにおけるSPCC(冷間圧延鋼板)とのJIS-K6854-3(1999)に準拠して測定したT型剥離試験での剥離強度が0.1N/mm以上、8.0N/mm以下であることが好ましい。樹脂複合材の25℃、50%RHにおける、SPCCとのJIS-K6854-3(1999)に準拠して測定したT型剥離試験での剥離強度が、0.1N/mm以上であることが好ましく、0.2N/mm以上であることが更に好ましく、0.3N/mm以上であることが特に好ましい。一方、樹脂複合材の接着強度は、8.0N/mm以下であることが好ましく、7.5N/mm以下であることが更に好ましく、7.0N/mm以下であることが特に好ましい。
 樹脂複合材の隣接部材に対する接着性は、エポキシ樹脂とゼオライトの種類と量比等により、調整することができる。接着性は、特に、エポキシ樹脂のエポキシ当量や極性基の含有量などにより調整することができる。極性基が多いエポキシ樹脂を多量に用いると、接着力が増し、一方、少量のエポキシ樹脂にゼオライト等のフィラーを多量に加えると接着力が弱くなりやすい。引張特性は、前述のとおり、樹脂組成物中にシロキサン骨格が多く存在すると、極性基が含まれる効果が発現し難くなり、接着力が弱くなりやすい。また、接着力は、エポキシ樹脂とゼオライトの組み合わせによる相性によっても異なり、ゼオライトが有する極性基とエポキシ樹脂が有する極性の相互作用により、両者の界面密着性が向上することにより、樹脂複合材の接着性も向上しやすい。
 本発明の別の実施形態は、25℃、50%RHにおけるSPCC(冷間圧延鋼板)とのJIS-K6854-3(1999)に準拠して測定したT型剥離試験での剥離強度が、0.1N/mm以上8.0N/mm以下である、ゼオライト含有エポキシ樹脂複合材、である。
 本実施形態のエポキシ含有エポキシ樹脂複合材の剥離強度を除く他の特性や条件等については、上述の実施形態と同様に適用することができる。
(樹脂複合材の形状)
 樹脂複合材は、ブロック状であっても、フィルム状であっても、粉状であっても構わない。樹脂複合材の形状は、用途に応じて所望の形状とすればよい。樹脂複合材がフィルム状等である場合、その厚みは、10μm以上であることが好ましく、20μm以上であることが更に好ましく、50μm以上であることが特に好ましい。一方、樹脂複合材の厚みは、1000μm以下であることが好ましく、800μm以下であることが更に好ましく、500μm以下であることが特に好ましい。樹脂複合材の厚みは、厚いほど応力分散が可能である点で好ましい。一方、樹脂複合材の厚みは、薄いほど軽量性やフレキシビリティが向上するため好ましい。
<1.6.樹脂複合材の成形>
 樹脂複合材を成形する方法は、樹脂の成形で一般に用いられる方法を用いることができる。その際、樹脂複合材の製造に必要な加熱と、成形のための加熱を同時に行ってもよい。樹脂複合材の成形、すなわち硬化は、それぞれの組成に応じた硬化温度条件で行うことができる。
 硬化温度は、400℃未満であることが好ましく、370℃以下であることがさらに好ましく、340℃以下であることが特に好ましい。一方、25℃以上であることが好ましく、40℃以上であることがより好ましく、80℃以上であることが更に好ましく、90℃以上であることが特に好ましく、100℃以上であることが最も好ましい。硬化温度が低いと、硬化冷却による応力が小さく。また、ロールツーロール法のような、フレキシブル基材を用いる製造工程においても対応しやすい。一方、硬化温度が高いと、硬化時間の短縮、それに伴う樹脂複合材からの未反応成分の溶出が抑えられる点で好ましい。
 加熱、加圧などにより流動性を有する樹脂複合材の場合には、所望の支持体に積層し(積層工程)、次いで熱処理を行うこと(熱処理工程)により、樹脂複合材を成形することができる。なお、所望の支持体は、製造後取り除いてもよい。熱処理方法としては、例えば、熱風乾燥、赤外線ヒーターによる乾燥等の公知の乾燥方法が採用できる。なかでも、乾燥速度が速い熱風乾燥が好適である。風乾で乾燥できるのであれば、熱処理方法を省略してもよい。熱処理の温度は、400℃未満であることが好ましく、370℃以下であることがさらに好ましく、340℃以下であることが特に好ましい。一方、熱処理の温度は、80℃以上であることが好ましく、90℃以上であることが更に好ましく、100℃以上であることが特に好ましい。熱処理温度が低いと、ロールツーロール法のような、フレキシブル基材を用いる製造工程においても対応しやすい。また、熱処理温度が高いと、シート中の残存溶媒を除去しやすい点で好ましい。加熱時間は、特に限定されないが、通常30秒以上、好ましくは1分以上、より好ましくは2分以上、さらに好ましくは3分以上である。一方、加熱時間は、通常24時間以下、好ましくは12時間以下、より好ましくは1時間以下、さらに好ましくは15分以下である。上記の範囲にあることは、ロールツーロール法のような実用的な製造工程に適合しやすい点で好ましい。
 樹脂複合材を積層する支持体の材質は、特に限定されない。支持体の材質の好適な例としては、石英、ガラス、サファイア又はチタニア等の無機材料;及びフレキシブル基材が挙げられる。
 フレキシブルな支持体とは、曲率半径が通常、0.1mm以上であり、10000mm以下の支持体である。なお、フレキシブルな電子デバイスを製造する場合は、屈曲性と支持体としての特性を両立するために、支持体の曲率半径が0.3mm以上であることが好ましく、1mm以上であることがさらに好ましく、一方で、支持体の曲率半径が3000mm以下であることが好ましく、1000mm以下であることがさらに好ましい。なお、曲率半径は、ひずみや割れ等の破壊が現れないところまで曲げた支持体を、共焦点顕微鏡(例えば、キーエンス社製形状測定レーザマイクロスコープVK-X200)で求めることができる。フレキシブルな支持体の具体例としては、限定されるわけではない。フレキシブルな支持体は、エポキシ樹脂等の樹脂;紙又は合成紙等の紙材料;銀、銅、ステンレス、チタン、アルミニウム等の金属箔に、絶縁性を付与するために表面をコート又はラミネートしたもの等の複合材料が挙げられる。なお、これらの中でも、フレキシブルな支持体を使用することができると、ロールツーロール方式による製造がしやすく、生産性が向上する。
 支持体が樹脂である場合(樹脂基材を使用する場合)には、用途によっては、ガスバリア性に留意することが好ましい。すなわち、ガスバリア性の高い支持体が、支持体を外気が通過し難くなり、樹脂複合材が劣化し難くなるので好ましい。このため、樹脂基材を使用する場合には、少なくとも一方の板面に緻密な酸化ケイ素膜等を設ける等の方法により、ガスバリア性を確保するのが望ましい。
 支持体の形状に制限はなく、例えば、板状、フィルム状又はシート状等のものを用いることができる。また、支持体の厚みに制限はない。支持体の厚みは、通常5μm以上、好ましくは20μm以上である。一方、支持体の厚みは、通常20mm以下、好ましくは10mm以下である。支持体の厚みは、強度の点で厚いことが好ましい。支持体の厚みは、軽量でコスト削減になる点で薄いことが好ましい。
 ガラスの支持体(ガラス基板)としては、ソーダガラス、青板ガラス又は無アルカリガラス等が挙げられる。ガラスからの溶出イオンが少ない点で、これらの中でも無アルカリガラスが好ましい。支持体の材質がガラスである場合の膜厚は、通常0.01mm以上、好ましくは0.1mm以上である。一方、ガラス基板の膜厚は、通常10mm以下、好ましくは5mm以下である。ガラス基材の厚みは、機械的強度が強く、割れにくくなるために、厚いことが好ましい。また、ガラス基材の厚みは、軽量であることから好ましい。
 なお、ロールツーロール方式とは、ロール状に巻かれたフレキシブルな支持体を繰り出して、間欠的、或いは連続的に搬送しながら、巻き取りロールにより巻き取られるまでの間に加工を行う方式である。ロールツーロール方式によれば、kmオーダの長尺基板を一括処理することが可能であるため、シートツーシート方式に比べて量産化に適した生産方式である。ロールツーロール方式に用いることのできるロールの大きさは、ロールツーロール方式の製造装置で扱える限り特に限定されない。ロール芯の外径は、通常5m以下、好ましくは3m以下、より好ましくは1m以下である。一方、ロール芯の外径は、通常1cm以上、好ましくは3cm以上、より好ましくは5cm以上、さらに好ましくは10cm以上、特に好ましくは20cm以上である。これらの径が上記上限以下であるとロールの取り扱い性が高い点で好ましく、上記下限以上であると、以下の各工程で成膜される層が、曲げ応力により破壊される可能性が低くなる点で好ましい。ロールの幅は、通常5cm以上、好ましくは10cm以上、より好ましくは20cm以上である。一方、ロールの幅は、通常5m以下、好ましくは3m以下、より好ましくは2m以下である。幅が上限以下であるとロールの取り扱い性が高い点で好ましく、下限以上であると、樹脂複合材の用途の自由度が高くなるため好ましい。
 なお、必ずしも支持体を用いる必要はなく、熱処理を含む成形方法で成形した固形状の樹脂複合材から、削り出すことによって、所望の形状の樹脂複合材を得ることもできる。
 また、樹脂複合材を構成する樹脂が、光硬化性樹脂複合材である場合(光重合を起こす樹脂前駆体を用いる場合)、熱処理工程に加えて、さらに光処理工程を行うことにより、円滑に、短時間で、樹脂複合材を製造することも可能である。なお、光処理工程を行う場合は、上述の光重合開始剤を用いることが好ましい。光重合開始剤を含むことにより、より短時間で硬化させることができる。
 光処理工程の時間は、特に限定されない。光処理工程に要する時間は、通常30秒以上、好ましくは1分以上、より好ましくは2分以上、さらに好ましくは3分以上である。一方、光処理工程に要する時間は、通常60分以下、好ましくは30分以下、より好ましくは20分以下、さらに好ましくは10分以下である。光処理工程の時間が上記の範囲にあることは、ロールツーロール法のような実用的な製造工程に適合できる点で好ましい。
 樹脂複合材は、原料組成物を、樹脂複合材を設けたい空間に注入後に硬化させることにより、得ることもできる。こうした成形法は、アンダーフィル法などで用いられる。
<2.用途>
 樹脂複合材の用途としては、例えば、触媒モジュール、分子篩膜モジュール、光学部材、吸湿部材、食品、建築部材、及び電子デバイスの構成部材や包装部材等に用いることができる。なかでも、電子デバイスの構成部材、例えば基材、ゲッター材フィルム、封止材等に用いることは、樹脂複合材の優れた物性を活かせるので、好ましい。
 上述の液状組成物および上述の樹脂複合材の用途は特に限定されない。該液状組成物および該樹脂複合材は、封止材に好適に使用でき、特に半導体デバイスの封止材として用いることが好ましく、パワーデバイス用途にも好適である。ここで、パワーデバイスとは、整流ダイオード、パワートランジスタ、絶縁ゲートバイポーラトランジスタ、サイリスタ等の電力制御用の半導体素子を意味する。また、パワーデバイスは、複数の素子を1つのパッケージに納めたパワーモジュール、制御回路・駆動回路・保護回路等も含めてモジュール化したインテリジェントパワーモジュールであってもよい。上述の液状組成物および上述の樹脂複合材は、パワーデバイスにおいて、例えば、半導体の封止材、半導体素子をパッケージ、リードフレーム等に固定するための接着剤(ダイボンド剤)、パッケージを構成する構造材料等の各種の用途に使用することができる。中でも封止材として用いるのが特に好ましい。上述のとおり、本発明の一実施形態に係る電子デバイスは、上述の液状組成物の硬化物および上述の樹脂複合材を用いて電力制御用の半導体素子を封止してなるものである。
 また、上述の樹脂複合材は、配線等の金属製部材と接する部材として用いることに適している。また、該樹脂複合材は、フレキシブル基板等の応力がかかる用途に適している。
 すなわち、上述の液状組成物は、これを含有する液状封止材として用いることに適している。また、上述の樹脂複合材は封止材として用いることに適している。さらに、上述の樹脂複合材からなる部材は、これを備える、電子デバイスとして用いることに適している。
<2.1.電子デバイス>
 電子デバイスは、2個以上の電極を有し、その電極間に流れる電流や生じる電圧を、電気、光、磁気又は化学物質等により制御するデバイス、あるいは、印加した電圧や電流により、光や電場、磁場を発生させる装置である。具体的には、抵抗器、整流器(ダイオード)、スイッチング素子(トランジスタ、サイリスタ)、増幅素子(トランジスタ)、メモリー素子、若しくは化学センサー等、又はこれらの素子を組み合わせ若しくは集積化したデバイスが挙げられる。また、光電流を生じるフォトダイオード若しくはフォトトランジスタ、電界を印加することにより発光する電界発光素子、及び光により起電力を生じる光電変換素子若しくは太陽電池等の光素子も挙げることができる。
 なかでも、上述の樹脂複合材からなる部材を備える電子デバイスの好ましい例としては、電界効果トランジスタ(FET)素子、電界発光素子(LED)、光電変換素子又は太陽電池が挙げられる。これらのデバイスで、樹脂複合材の有する上述の特性は、有効に活かすことができる。以下、詳細に説明する。
<2.2.電界効果トランジスタ(FET)素子>
 上述の樹脂複合材は、電界効果トランジスタ(FET)素子の構成要素として用いることができる。本発明の一実施形態に係る電界効果トランジスタ(FET)素子は、基材上に、半導体層と、絶縁体層と、ソース電極と、ゲート電極と、ドレイン電極とを有する。
 上述の樹脂複合材は、熱による変形や破損が起こり難いことから、基材および絶縁体層として好ましく用いられる。
 図2は、FET素子の構造例を模式的に表す図である。図2において、11が半導体層、12が絶縁体層、13及び14がソース電極及びドレイン電極、15がゲート電極、16が基材、17がFET素子をそれぞれ示す。図2(A)~(D)にはそれぞれ異なる構造のFET素子が記載されているが、どれもFET素子の構造例を示している。FET素子を構成するこれらの構成部材及びその製造方法について特段の制限はなく、周知技術を用いることができる。
 なお、本明細書において「半導体」とは、固体状態におけるキャリア移動度の大きさによって定義される。キャリア移動度とは、周知であるように、電荷(電子又は正孔)がどれだけ速く(又は多く)移動されうるかを示す指標となるものである。具体的には、「半導体」は、室温におけるキャリア移動度が通常1.0×10-6cm/V・s以上、好ましくは1.0×10-5cm/V・s以上、より好ましくは5.0×10-5cm/V・s以上、さらに好ましくは1.0×10-4cm/V・s以上であることが望ましい。なお、キャリア移動度は、例えば電界効果トランジスタのIV特性の測定、等により測定できる。
(基材(16))
 FET素子は、通常基材16上に作製する。基材16の材料は、本発明の効果を著しく損なわない限り特に限定されない。基材16の材料の好適な例は、石英、ガラス、サファイア又はチタニア等の無機材料;上述の樹脂複合材が挙げられる。特に、上述の樹脂複合材で、引張特性が良好なものは、フレキシブル基材としても好適である。
 フレキシブル基材とは、屈曲性と支持体としての特性を両立する基材であり、通常、曲率半径が通常、0.1mm以上であり、10000mm以下の基材である。曲率半径は、ひずみや割れ等の破壊が現れないところまで曲げた基材を、共焦点顕微鏡(例えば、キーエンス社製形状測定レーザマイクロスコープVK-X200)で求めることができる。
 上述の樹脂複合材を基材として用いる場合、さらに、基材16に処理を施すことにより、FETの特性を向上させることができる。これは基材16の親水性/疎水性を調整することにより、成膜される半導体層11の膜質を向上させること、特に基材13と半導体層11との界面部分の特性を改良することによるものと推定される。このような基材処理としては、ヘキサメチルジシラザン、シクロヘキセン、オクタデシルトリクロロシラン等を用いた疎水化処理;塩酸、硫酸、及び酢酸等の酸を用いた酸処理;水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、及びアンモニア等を用いたアルカリ処理;オゾン処理;フッ素化処理;酸素やアルゴン等を用いたプラズマ処理;ラングミュアブロジェット膜の形成処理;その他の絶縁体又は半導体の薄膜の形成処理等が挙げられる。
(絶縁体層(12))
 FET素子の絶縁体層12に用いられる材料としては、例えば、上述の樹脂複合材を各種樹脂、金属酸化物、金属窒化物、強誘電性金属酸化物、これらの粒子が分散されている樹脂、及び上述の樹脂複合材を含む樹脂複合材等が挙げられる。
<2.3.電界発光素子(LED)>
 上述の樹脂複合材は、電界発光素子(LED)の構成要素として用いることができる。電界発光素子は、電界を印加することにより、陽極より注入された正孔と陰極より注入された電子との再結合エネルギーによって蛍光性物質が発光する原理を利用した自発光素子である。
 図3は、電界発光素子の一実施形態を模式的に示す断面図である。図3において、符号31は基材、32は陽極、33は正孔注入層、34は正孔輸送層、35は発光層、36は電子輸送層、37は電子注入層、38は陰極、39は電界発光素子を示している。なお、電界発光素子がこれらの構成部材を全て有する必要はなく、必要な構成部材を任意に選択することができる。上述の樹脂複合材は、熱による変形や破損が起こり難いことから、基材として好ましく用いられる。
(基材(31))
 基材31は、電界発光素子39の支持体となるものであり、その材料は、本発明の効果を著しく損なわない限り特に限定されない。基材31の材料の好適な例としては、石英、ガラス、サファイア又はチタニア等の無機材料;上述の樹脂複合材が挙げられる。特に、上述の樹脂複合材で、引張特性が良好なものは、フレキシブル基材としても好適である。
 樹脂基材を使用する場合には、少なくとも一方の板面に緻密な酸化ケイ素膜や上述の樹脂複合材等を設ける等の方法により、ガスバリア性を確保するのが望ましい。基材31の膜厚に制限はないが、通常5μm以上、好ましくは20μm以上であり、一方、通常20mm以下、好ましくは10mm以下である。
<2.4.光電変換素子>
 上述の樹脂複合材は、光電変換素子の構成要素として用いることができる。本発明の一実施形態に係る光電変換素子は、少なくとも一対の電極と、該電極間に存在する活性層と、を有する。また、光電変換素子は、基材、電子取り出し層、及び正孔取り出し層を含むその他の構成要素を有していてもよい。
 図4は、光電変換素子の一実施形態を模式的に表す断面図である。図4に示される光電変換素子は、一般的な薄膜太陽電池に用いられる光電変換素子であるが、光電変換素子が、図4に示されるものに限られるわけではない。光電変換素子57は、基材56、カソード(電極)51、電子取り出し層(バッファ層)52、活性層53、正孔取り出し層(バッファ層)54及びアノード(電極)55がこの順に形成された層構造を有する。なお、必ずしも電子取り出し層52及び正孔取り出し層54を設ける必要はない。光電変換素子を構成するこれらの構成部材及びその製造方法について特段の制限はなく、周知技術を用いることができる。上述の樹脂複合材は、熱による変形や破損が起こり難いことから、基材として好ましく用いられる。
(基材(56))
 光電変換素子57は、通常は支持体となる基材56を有する。基材56の材料は、本発明の効果を著しく損なわない限り特に限定されない。基材56の材料の好適な例としては、石英、ガラス、サファイア又はチタニア等の無機材料;及び上述の樹脂複合材が挙げられる。特に、上述の樹脂複合材で、引張特性が良好なものは、フレキシブル基材としても好適である。樹脂基材を使用する場合には、上述の電界発光素子(LED)の基材と同様に、ガスバリア性を確保するのが望ましい。
 基材56の形状に制限はなく、例えば、板状、フィルム状又はシート状等のものを用いることができる。また、基材56の膜厚に制限はないが、通常5μm以上、好ましくは20μm以上であり、一方、通常20mm以下、好ましくは10mm以下である。
<2.5.太陽電池>
 上述の樹脂複合材を部材として備えた光電変換素子57は、太陽電池、なかでも薄膜太陽電池の太陽電池素子として使用されることが好ましい。図5には、薄膜太陽電池の構成を模式的に表す断面図が示されている。図5に表すように、薄膜太陽電池111は、通常、耐候性保護フィルム101と、紫外線カットフィルム102と、ガスバリアフィルム103と、ゲッター材フィルム104と、封止材105と、太陽電池素子106と、封止材107と、ゲッター材フィルム108と、ガスバリアフィルム109と、バックシート110と、をこの順に備える。耐候性保護フィルム101が形成された側(図5中下方)から光が照射されて、太陽電池素子106が発電する。なお、薄膜太陽電池111は、これらの構成部材を全て有する必要はなく、必要な構成部材を任意に選択することができる。また、薄膜太陽電池を構成するこれらの構成部材及びその製造方法について特段の制限はなく、周知技術を用いることができる。上述の樹脂複合材は、熱による変形や破損が起こり難いことから、耐候性保護フィルム101、バックシート110、紫外線カットフィルム102、ガスバリアフィルム103、109、ゲッター材フィルム104、108及び封止材105、107として好ましく用いられる。
(耐候性保護フィルム(101))
 耐候性保護フィルム101は、天候変化から太陽電池素子106を保護するフィルムである。耐候性保護フィルム101で太陽電池素子106を覆うことにより、太陽電池素子106等を天候変化等から保護し、発電能力を高く維持するようにしている。耐候性保護フィルム101は、薄膜太陽電池111の最表層に位置するため、耐候性、耐熱性、透明性、撥水性、耐汚染性及び/又は機械強度等の、薄膜太陽電池111の表面被覆材として好適な性能を備え、しかもそれを屋外暴露において長期間維持する性質を有することが好ましい。
 また、耐候性保護フィルム101は、太陽電池素子106の光吸収を妨げない観点から可視光を透過させることが好ましい。例えば、可視光線透過率が60%以上であることが好ましく、上限に制限はない。透過率は、分光光度計(例えば、島津製作所製分光光度計UV-2500PC)で測定することができ、可視光線透過率は、JIS R3106(1998年)に定義された方法により算出できる。さらに、薄膜太陽電池111は光を受けて熱せられることが多いため、耐候性保護フィルム101も熱に対する耐性を有することが好ましい。この観点から、耐候性保護フィルム101の構成材料の融点は、通常80℃以上400℃以下である。
 耐候性保護フィルム101を構成する材料は、天候変化から太陽電池素子106を保護することができるものであれば任意である。耐候性保護フィルム101の厚みは、特に規定されないが、通常10μm以上200μm以下である。耐候性保護フィルム101には、他のフィルムとの接着性の改良のために、コロナ処理及びプラズマ処理のうち少なくとも一方等の表面処理を行ってもよい。耐候性保護フィルム101は、薄膜太陽電池111においてできるだけ外側に設けることが好ましい。薄膜太陽電池111の構成部材のうちより多くのものを保護できるようにするためである。
(紫外線カットフィルム(102))
 紫外線カットフィルム102は、紫外線の透過を防止するフィルムである。紫外線カットフィルム102を薄膜太陽電池111の受光部分に設け、紫外線カットフィルム102で太陽電池素子106の受光面106aを覆うことにより、太陽電池素子106及び必要に応じてガスバリアフィルム103、109等を紫外線から保護し、発電能力を高く維持することができるようになっている。
 紫外線カットフィルム102に要求される紫外線の透過抑制能力の程度は、紫外線(例えば、波長300nm)の透過率が50%以下であることが好ましく、下限に制限はない。また、紫外線カットフィルム102は、太陽電池素子106の光吸収を妨げない観点から可視光を透過させることが好ましい。例えば、可視光線透過率が60%以上であることが好ましく、上限に制限はない。透過率は、分光光度計(例えば、島津製作所製分光光度計UV-2500PC)で測定することができる。
 さらに、薄膜太陽電池111は、光を受けて熱せられることが多いため、紫外線カットフィルム102も熱に対する耐性を有することが好ましい。この観点から、紫外線カットフィルム102の構成材料の融点は、通常80℃以上400℃以下である。また、紫外線カットフィルム102は、柔軟性が高く、隣接するフィルムとの接着性が良好であり、水蒸気や酸素をカットしうることが好ましい。
 紫外線カットフィルム102を構成する材料は、紫外線の強度を弱めることができるものであれば任意である。紫外線カットフィルム102の厚みは、特に規定されないが、通常5μm以上200μm以下である。紫外線カットフィルム102は、太陽電池素子106の受光面106aの少なくとも一部を覆う位置に設ければよいが、好ましくは太陽電池素子106の受光面106aの全てを覆う位置に設ける。ただし、太陽電池素子6の受光面106aを覆う位置以外の位置にも紫外線カットフィルム102が設けられていてもよい。
(ガスバリアフィルム(103))
 ガスバリアフィルム103は、水蒸気及び酸素の透過を防止するフィルムである。ガスバリアフィルム103で太陽電池素子106を被覆することにより、太陽電池素子106を、水蒸気及び酸素から保護し、発電能力を高く維持することができる。
 また、ガスバリアフィルム103は、太陽電池素子106の光吸収を妨げない観点から可視光を透過させることが好ましい。例えば、可視光線透過率が60%以上であることが好ましく、上限に制限はない。透過率は、分光光度計(例えば、島津製作所製分光光度計UV-2500PC)で測定することができる。さらに、薄膜太陽電池111は光を受けて熱せられることが多いため、ガスバリアフィルム103も熱に対する耐性を有することが好ましい。この観点から、ガスバリアフィルム103の構成材料の融点は、通常80℃以上400℃以下である。ガスバリアフィルム103の具体的な構成は、太陽電池素子106を水蒸気及び酸素から保護できる限り任意である。
 ガスバリアフィルム103の厚みは、特に規定されないが、通常5μm以上200μm以下である。ガスバリアフィルム103は、太陽電池素子106を被覆して、水蒸気及び酸素から保護できればその形成位置に制限は無いが、太陽電池素子106の正面(受光面側の面。図5では下側の面)及び背面(受光面とは反対側の面。図5では上側の面)を覆うことが好ましい。薄膜太陽電池111においては、その正面及び背面が他の面よりも大面積に形成されることが多いためである。本実施形態ではガスバリアフィルム103が太陽電池素子106の正面を覆い、後述するガスバリアフィルム9が太陽電池素子106の背面を覆うようになっている。なお、後述するバックシート110としてアルミ箔の両面にフッ素系樹脂フィルムを接着したシート等の防水性の高いシートを用いる場合は、用途によりゲッター材フィルム108及びガスバリアフィルム109のうち少なくとも一方を用いなくてもよい。
(ゲッター材フィルム(104))
 ゲッター材フィルム104は、水分及び酸素のうち少なくとも一方を吸収するフィルムである。ゲッター材フィルム104で太陽電池素子106を覆うことにより、太陽電池素子106等を水分及び酸素のうち少なくとも一方から保護し、発電能力を高く維持するようにしている。ここで、ゲッター材フィルム104は上記のようなガスバリアフィルム103とは異なり、水分及び/又は酸素の透過を妨げるものではなく、水分及び/又は酸素を吸収するものである。
 水分を吸収するフィルムを用いることにより、ガスバリアフィルム103等で太陽電池素子106を被覆した場合に、ガスバリアフィルム103及び109で形成される空間に僅かに浸入する水分をゲッター材フィルム104が捕捉して水分による太陽電池素子106への影響を排除できる。また、ゲッター材フィルム104が酸素を吸収することにより、ガスバリアフィルム103及び109等で太陽電池素子106を被覆した場合に、ガスバリアフィルム103及び109で形成される空間に僅かに浸入する酸素をゲッター材フィルム104が捕捉して酸素による太陽電池素子106への影響を排除できる。さらに、ゲッター材フィルム104は、太陽電池素子106の光吸収を妨げない観点から可視光を透過させることが好ましい。例えば、可視光線透過率が60%以上であることが好ましく、上限に制限はない。透過率は、分光光度計(例えば、島津製作所製分光光度計UV-2500PC)で測定することができる。さらに、薄膜太陽電池111は、光を受けて熱せされることが多いため、ゲッター材フィルム104も熱に対する耐性を有することが好ましい。この観点から、ゲッター材フィルム104の構成材料の融点は、通常80℃以上400℃以下である。
 ゲッター材フィルム104を構成する材料は、水分及び酸素のうち少なくとも一方を吸収することができるものであれば任意である。
 ゲッター材フィルム104の厚みは、特に規定されないが、通常5μm以上200μm以下である。ゲッター材フィルム104は、ガスバリアフィルム103及び109で形成される空間内であればその形成位置に制限は無いが、太陽電池素子106の正面(受光面側の面。図5では下側の面)及び背面(受光面とは反対側の面。図5では上側の面)を覆うことが好ましい。薄膜太陽電池111においては、その正面及び背面が他の面よりも大面積に形成されることが多いため、これらの面を介して水分及び酸素が浸入する傾向があるからである。この観点から、ゲッター材フィルム104はガスバリアフィルム103と太陽電池素子106との間に設けることが好ましい。本実施形態では、ゲッター材フィルム104が太陽電池素子106の正面を覆い、後述するゲッター材フィルム108が太陽電池素子106の背面を覆い、ゲッター材フィルム104、108がそれぞれ太陽電池素子106とガスバリアフィルム103、109との間に位置するようになっている。なお、後述するバックシート110としてアルミ箔の両面にフッ素系樹脂フィルムを接着したシート等の防水性の高いシートを用いる場合は、用途によりゲッター材フィルム108及びガスバリアフィルム109のうち少なくとも一方を用いなくてもよい。
(封止材(105))
 封止材105は、太陽電池素子106を補強するフィルムである。太陽電池素子106は薄いため通常は強度が弱く、ひいては薄膜太陽電池の強度が弱くなる傾向があるが、封止材105により強度を高く維持することが可能である。また、封止材5は、薄膜太陽電池111の強度保持の観点から強度が高いことが好ましい。具体的強度については、封止材105以外の耐候性保護フィルム101やバックシート110の強度とも関係することになり一概には規定しにくいが、薄膜太陽電池111全体が、良好な曲げ加工性を有し、折り曲げ部分の剥離を生じないような強度を有するのが望ましい。
 また、封止材105は、太陽電池素子106の光吸収を妨げない観点から可視光を透過させることが好ましい。封止材105の厚みは、特に規定されないが、通常2μm以上700μm以下である。
 封止材105の基板に対するT型剥離接着強さは、モジュールの長期耐久性を確保できる点で強いことが好ましい。T型剥離接着強さは、太陽電池を廃棄する際に、基材やバリアフィルムと接着材を分別して廃棄できる点で低いことが好ましい。
 なお、ここでは、太陽電池用の封止材105の構成材料として、上述の樹脂複合材を用いる事ができると述べているが、有機太陽電池及び無機太陽電池、有機電界発光素子(LED)及び無機電界発光素子(LED)等の電子デバイス、及び電子回路基板の封止材としても、上述の樹脂複合材を用いることができる。
 また、薄膜太陽電池111は、光を受けて熱せられることが多いため、封止材105も熱に対する耐性を有することが好ましい。この観点から、封止材105の構成材料の融点は、通常80℃以上400℃以下である。
 封止材105を設ける位置に制限は無いが、通常は太陽電池素子106を挟み込むように設ける。太陽電池素子106を確実に保護するためである。本実施形態では、太陽電池素子106の正面及び背面にそれぞれ封止材105及び封止材107を設けるようにしている。
(太陽電池素子(106))
 太陽電池素子106は、前述の光電変換素子57と同様である。すなわち、光電変換素子57を用いて薄膜太陽電池111を製造することができる。
(封止材(107))
 封止材107は、上述した封止材105と同様のフィルムであり、配設位置が異なる他は、封止材107と同様のものを同様に用いることができる。また、太陽電池素子106よりも背面側の構成部材は、必ずしも可視光を透過させる必要が無いため、可視光を透過させないものを用いることもできる。
(ゲッター材フィルム(108))
 ゲッター材フィルム108は、上述したゲッター材フィルム104と同様のフィルムであり、配設位置が異なる他は、ゲッター材フィルム104と同様のものを同様に必要に応じて用いることができる。また、太陽電池素子106よりも背面側の構成部材は、必ずしも可視光を透過させる必要が無いため、可視光を透過させないものを用いることもできる。
(ガスバリアフィルム(109))
 ガスバリアフィルム109は、上述したガスバリアフィルム103と同様のフィルムであり、配設位置が異なる他は、ガスバリアフィルム109と同様のものを同様に必要に応じて用いることができる。また、太陽電池素子106よりも背面側の構成部材は、必ずしも可視光を透過させる必要が無いため、可視光を透過させないものを用いることもできる。
(バックシート(110))
 バックシート110は、上述した耐候性保護フィルム101と同様のフィルムであり、配設位置が異なる他は、耐候性保護フィルム101と同様のものを同様に用いることができる。また、太陽電池素子106よりも背面側の構成部材は、必ずしも可視光を透過させる必要が無いため、可視光を透過させないものを用いることもできる。また、このバックシート110が、水分及び酸素を透過させ難いものであれば、バックシート110をガスバリア層として機能させることも可能である。具体的には、バックシート110として、アルミ箔の両面にフッ素系樹脂フィルムを接着したシート等の防水性の高いシートを用いる場合には、用途によりゲッター材フィルム108及びガスバリアフィルム109のうち少なくとも一方を用いなくてもよい。
(寸法等)
 本実施形態の薄膜太陽電池111は、通常、膜状の薄い部材である。このように膜状の部材として薄膜太陽電池111を形成することにより、薄膜太陽電池111を建材、自動車又はインテリア等に容易に設置できる。薄膜太陽電池111は、軽く、割れにくく、従って安全性の高い太陽電池が得られ、また曲面にも適用可能であるため、さらに多くの用途に使用しうる。薄くて軽いため輸送や保管等流通面でも好ましい。さらに、膜状であるためロールツーロール方式の製造が可能であり大幅なコストカットが可能である。薄膜太陽電池111の具体的な寸法には、制限は無いが、その厚みは、通常300μm以上3000μm以下である。
(製造方法)
 本実施形態の薄膜太陽電池111の製造方法には、制限は無いが、例えば、図6の形態の太陽電池製造方法としては、図5に示される積層体を作成した後に、ラミネート封止工程を行う方法が挙げられる。本実施形態の太陽電池素子106は、耐熱性に優れるため、ラミネート封止工程による劣化が低減される点で好ましい。
 図5に示される積層体作成は、周知の技術を用いて行うことができる。ラミネート封止工程の方法は、本発明の効果を損なわなければ特に制限はないが、例えば、ウェットラミネート、ドライラミネート、ホットメルトラミネート、押出しラミネート、共押出成型ラミネート、押出コーティング、光硬化接着剤によるラミネート、サーマルラミネート等が挙げられる。なかでも有機電界発光素子の封止で実績のある光硬化接着剤によるラミネート、太陽電池で実績のあるホットメルトラミネート又はサーマルラミネートが好ましく、さらに、ホットメルトラミネート又はサーマルラミネートがシート状の封止材を使用できる点でより好ましい。
 太陽電池、特には上述した薄膜太陽電池111の用途に制限はなく、任意の用途に用いることができる。例えば、一実施形態に係る太陽電池は、建材用太陽電池、自動車用太陽電池、インテリア用太陽電池、鉄道用太陽電池、船舶用太陽電池、飛行機用太陽電池、宇宙機用太陽電池、家電用太陽電池、携帯電話用太陽電池又は玩具用太陽電池として用いることができる。
(太陽電池モジュール)
 太陽電池、特には上述した薄膜太陽電池111は、そのまま用いてもよいし、太陽電池モジュールの構成要素として用いてもよい。例えば、図6に示すように、太陽電池、特には上述した薄膜太陽電池111を基材112上に備える太陽電池モジュール113を作製し、この太陽電池モジュール113を使用場所に設置して用いることができる。
 以下、実施例により本発明をさらに具体的に説明するが、本発明は、その要旨を超えない限り、以下の実施例により制限されるものではない。なお、ゼオライト、液状組成物および樹脂複合材等の評価や分析は、下記の方法により行った。
<分析および評価>
(ゼオライトのSi/Alのモル比)
 ゼオライトのSi/Alのモル比は、各ゼオライトを、蛍光X線分析(XRF)法により分析することにより求めた。ここで、XRF(蛍光X線)法分析によるシリコンとアルミニウムの元素ピーク強度は、ICP発光分光分析法(高周波誘導結合プラズマ発光分光分析法)分析により作成した検量線を用いて、モル比に換算した。ICP法による分析は、株式会社堀場製作所製「ULTIMA 2C」を用いて行った。XRF測定は、株式会社島津製作所製「EDX-700」を用いて行った。
(ゼオライトの平均熱膨張係数)
 ゼオライトの100℃における平均熱膨張係数は、BRUKER社製X線回折装置D8ADVANCEとX線回折解析ソフトJADEを用いて格子定数を算出することで、測定した。
(エポキシ樹脂のガラス転移温度)
 エポキシ樹脂のガラス転移温度は、JIS K-7244法の動的粘弾性測定法により測定した。具体的には、アイティー計測制御株式会社製動的粘弾性装置「DVA-200」を用いて、両持ち引張モードでの粘弾性測定におけるtanδピークから求めた(測定温度範囲:-50℃以上300℃以下、周波数:1Hz、昇温速度:3℃/分)。
(粘度)
 エポキシ樹脂前駆体および液状組成物の25℃、1atmにおける粘度は、ポリカップ容器に、各試料を投入し、撹拌した後、この容器を25℃の水槽につけることにより冷却し、試料の温度が25±0.5℃以内になったら、B型回転粘度計(ブルックフィール粘度計)を用いて、トルクが20~95%になるようにローターおよび回転数を選定し、粘度を測定した。測定を開始してから1分後における粘度(Pa・s)を、エポキシ樹脂前駆体または液状組成物の粘度とした。
(ゲル分率)
 樹脂複合材のゲル分率は、以下の手順で測定した。樹脂複合材サンプルを0.1~0.2gの範囲内で切り出し、金網に設置した。その金網を、40℃のアセトンに浸漬させた状態で24時間静置した。その後、アセトンから金網を取り出し、真空乾燥後させた。サンプルの浸漬後の重量の、浸漬前の重量に対する割合をゲル分率とした。
(液状組成物の硬化法)
 液状組成物の硬化物の各物性は、液状組成物をゲル分率80%以上に硬化させた。この硬化物について各種物性を測定した。
(貯蔵弾性率)
 エポキシ樹脂、液状組成物の硬化物および樹脂複合材の100℃における貯蔵弾性率は、JIS K-7244法に記載の動的粘弾性測定法により、アイティー計測制御株式会社製動的粘弾性装置DVA-200を用いて、両持ち引張モードで測定した(測定温度範囲:-50℃以上300℃以下、周波数:1Hz、昇温速度:3℃/分)。
(平均熱膨張係数)
 エポキシ樹脂、液状組成物の硬化物および樹脂複合材の平均熱膨張係数は、以下のようにして測定した。各試料の温度範囲23~200℃の平均熱膨張係数(CTE)を、(株)日立ハイテクサイエンス社製熱機械分析装置TMA/SS6100を使用して、引張モードで測定した。なお、サンプルの形状は、幅3mm、チャック間距離20mmとし、昇温速度2℃/minで昇温させた後、降温速度4℃/min降温させた。2度目の昇温時のグラフの傾きから各試料の平均熱膨張係数α(25~50)およびα(175~200)を求めた。
(引張伸度)
 樹脂複合材の引張伸度測定は、樹脂複合材を100mm×10mm×0.1mmのサイズに接続切断した短冊状試験片を用いて行った。この試験片の伸びを、高温恒湿引張試験機「INTEXCO 200X」(株式会社インテスコ製)を用いて、チャック間距離60mm、テストスピード100mm/分で引張り、その伸びを測定した。測定結果より、サンプル破断までの伸び率を引張伸度として算出した。
(剥離強度)
 樹脂複合材の剥離強度測定は、JIS-K6854-3(1999)に準拠して実施した。すなわち、300mm×25mm×0.5mmの冷間圧延鋼板(「SPCC」とも称する)の片側の表面を、エタノールで脱脂洗浄した後、洗浄面の端部より50mmに離形PETフィルム(MRF75 三菱ケミカル(株)製)をかぶせた。この片面の端部に離形PETフィルムが積層されたSPCCを2枚用意した。まず、そのうちの1枚の、端部に離形PETフィルムがかぶせられた面に、液状組成物を塗布した。次に、この上に、もう1枚のSPCCを、端部に離形PETフィルムがかぶせられた側が液状組成物と接するように、積層した。このようにして、SPCC/液状組成物/SPCCの積層体を作製した。そして、後述する各実施例の硬化方法により、液状組成物を硬化させた。硬化後に離形PETフィルムを取り除き、SPCCの端部より50mm部分(剥離シロ部分)を90°に折り曲げることによりT型剥離試験片を作製した。高温恒湿引張試験機「INTEXCO 200X」(株式会社インテスコ製)を用いて100mm/分の速度によりT型剥離試験を実施した。
<合成例1:CHA型ゼオライト合成>
 容器に、キシダ化学社製水酸化ナトリウム、構造規定剤(SDA;Structure Directing Agent)として、セイケム社製N,N,N-トリメチル-1-アダマンタアンモニウム水酸化物(TMAdaOH)、アルドリッチ社製水酸化アルミニウム、日揮触媒化成社製Cataloid SI-30を順次加えた。得られた混合物の組成及びモル比は、SiO:Al:NaOH:TMAdaOH:HO=1.0:0.02:0.1:0.1:20であった。その後、種結晶として、SiOに対して2質量%のCHA型ゼオライトを混合物に加えて、よく混合した後、得られた混合物を耐圧容器に入れ、160℃のオーブン中で、15rpmで回転させながら、24時間水熱合成を行った。吸引濾過、洗浄した後に、乾燥した。得られた粉末を600℃、6時間、空気流通下で焼成することにより、構造規定剤(SDA)であるTMAdaOHを除去することでCHA型ゼオライトを得た。得られたゼオライトの平均一次粒子径は、100nmであった。また、100℃における平均線膨張係数は、-9ppm/K、Si/Alのモル比は20であった。
<合成例2:CHA型ゼオライトのシリル化処理>
 容器内に、富士フイルム和光純薬社製トルエン192.6gと、信越シリコーン社製シリル化剤「KBM-903」を2.94g入れ、窒素ガスで容器内を置換した。続いて、事前に200℃で脱水しておいた合成例1のCHA型ゼオライトを加え、窒素雰囲気においてオイルバスで80℃に加熱し、1時間シリル化処理を行った。得られた粉末を濾過し、アセトン溶媒で未反応のシリル化剤を除去し、風乾させた後に100℃のオーブンで一晩乾燥させた。CHN分析にてシリル化量を計算したところ、ゼオライト100gに対し、6.36gのシリル化剤が処理されていることが分かった。
<実施例1:ゼオライト含有エポキシ樹脂複合材フィルムの製造>
 容器に、エポキシ樹脂前駆体として、三菱ケミカル社製エポキシ樹脂「YX7105」(エポキシ当量:440~520、25℃、1atmにおける粘度:6Pa・s、シロキサン構造なし)を27.32g入れオーブンで65℃に予熱した、そこに三菱ケミカル社製エポキシ樹脂硬化剤「ST14」(アミン価:415~455KOHmg/g)6.01gと、事前に200℃で脱水をしておいたCHA型ゼオライト10.0gを加えた。重量比は「YX7105」と「ST14」を合わせて100gに対し、ゼオライトが30gとなった。真空ミキサーにて1500rpm、5分間混練した。混練後の液状組成物の25℃、1atmにおける粘度は、102Pa・sであった。エポキシ樹脂「YX7105」100gに対し、ST14を17.45gは、化学当量で1.0となる。
 混練後、テストラミネーターを用いて50μmのフィルムに成型し、40℃、16時間の加熱処理を行った後、80℃、6時間ポストキュアさせ、ゲル分率80%以上に硬化させ、樹脂複合材フィルムを得た。
 得られた樹脂複合材フィルム1の25℃以上50℃以下における平均熱膨張係数α(25~50)、175℃以上200℃以下における平均熱膨張係数α(175~200)及び100℃における貯蔵弾性率を表1に示す。
<実施例2:硬化剤の量調整>
 「ST14」の量を5.46gにすること以外は実施例1と同様にして、樹脂複合材フィルム2を得た。得られた樹脂複合材フィルムの25℃以上50℃以下における平均熱膨張係数α(25~50)、175℃以上200℃以下における平均熱膨張係数α(175~200)及び100℃における貯蔵弾性率を表1に示す。また、引張試験における引張破断伸度、剥離試験による剥離強度を表2に示す。
<実施例3:ゼオライト50部>
 「YX7105」と「ST14」を合わせて100gに対し、合成例1で得たCHAゼオライトが50gとなるようにすること以外は実施例1と同様にして、樹脂複合材フィルム3を得た。得られた樹脂複合材フィルムの25℃以上50℃以下における平均熱膨張係数α(25~50)、175℃以上200℃以下における平均熱膨張係数α(175~200)及び100℃における貯蔵弾性率を表1に示す。
<実施例4:シリル化剤 硬化剤>
 合成例2で得たシリル化CHA型ゼオライトを10.0g用いること以外は実施例1と同様にして、樹脂複合材フィルム4を得た。得られた樹脂複合材フィルムの25℃以上50℃以下における平均熱膨張係数α(25~50)、175℃以上200℃以下における平均熱膨張係数α(175~200)及び100℃における貯蔵弾性率を表1に示す。
<実施例5:シリル化剤>
 合成例2で得たシリル化CHA型ゼオライトを10.0g用いること以外は実施例2と同様にして、樹脂複合材フィルム5を得た。得られた樹脂複合材フィルムの25℃以上50℃以下における平均熱膨張係数α(25~50)、175℃以上200℃以下における平均熱膨張係数α(175~200)及び100℃における貯蔵弾性率を表1に示す。
<比較例1:ゼオライトなし>
 ゼオライトを入れないこと以外は実施例1と同様にして、樹脂複合材フィルム6を得た。得られた樹脂複合材フィルムの25℃以上50℃以下における平均熱膨張係数α(25~50)、175℃以上200℃以下における平均熱膨張係数α(175~200)及び100℃における貯蔵弾性率を表1に示す。
<比較例2:ガラスフレーク>
 ゼオライトの代わりに、日本電気硝子株式会社製ガラスフレーク(平均粒子径50μm、アスペクト比200以上)を用いること以外は実施例1と同様にして、樹脂複合材フィルム7を得た。得られた樹脂複合材フィルムの25℃以上50℃以下における平均熱膨張係数α(25~50)、175℃以上200℃以下における平均熱膨張係数α(175~200)及び100℃における貯蔵弾性率を表1に示す。また、貯蔵弾性率を縦軸にとり、平均熱膨張係数を横軸にとったグラフを図7に示す。
Figure JPOXMLDOC01-appb-T000001
 上記の表1より、実施例1~5は、比較例1及び2と比較して、貯蔵弾性率及び平均熱膨張係数が低いことが分かる。これは、エポキシ樹脂複合材内に特定粒径のゼオライトを特定量用いることにより、ゼオライトとエポキシ樹脂との間で相互作用が生じ、負の膨張係数を持つゼオライトが収縮して単に樹脂中に孔として存在するのではなく、効率的に樹脂の熱膨張を押さえ、従来の添加量に対し二律背反的な平均熱膨張係数と貯蔵弾性率との関係とは異なる効果を得ることができたものである。
 特に、樹脂複合材の熱膨張係数の温度変化については、実施例1~5は、何れも比較例1および2に対し、高温条件で小さく、低温条件で高くなっていた。そこで、本発明の実施形態に係る樹脂複合材を電子デバイスの封止材に用いる場合、硬化・実装後に冷却される際は、周辺部材との熱膨張係数の差が小さく、反りや接着界面での剥離などの不具合が起こり難いことが期待される。また、使用環境温度では、周辺部材との膨張率の差が少なく、長期間安定に使用できることが期待される。
 また、実施例1より、本発明の実施形態に係る液状組成物が取扱い性に優れ、アンダーフィル法などにより狭い空隙などに注入しやすく、且つゼオライト等のフィラーの沈降が起こり難いと期待される適度な粘度であることが裏付けられた。
<実施例6:エポキシシリコーン>
 容器に、信越シリコーン製のエポキシシリコーン樹脂「X―22―169B」10g入れ、事前に200℃で脱水をしておいた合成例1のCHA型ゼオライト3.152gを加えた。さらに、シリコーンオイルとしてメチルフェニルシロキサンを0.509g、硬化剤としてオクタン酸無水物を0.398gとガリウムアセチルアセトネートを0.011g、DPhSiOHを0.053g配合した。真空ミキサーを用いて、1500rpmで5分間混練することにより、液状樹脂組成物Bを得た。
 混練後、テストラミネーターを用いて100μmのフィルムに成型し、80℃、30分の加熱処理を行った後、120℃ 1時間、150℃ 1時間、180℃ 3時間でゲル分率80%以上に硬化させ、樹脂複合材を得た。得られた樹脂複合材の25℃以上50℃以下における平均熱膨張係数α(25~50)、175℃以上200℃以下における平均熱膨張係数α(175~200)及び100℃における貯蔵弾性率、引張試験における引張破断伸度、剥離試験による剥離強度を表2に示す。但し、剥離強度については、測定用試験片を作製する際に、液状組成物が硬化しなかったため、測定できなかった。
<比較例3:シリカフィラー>
 ゼオライトの代わりに、シリカフィラーとして、アドマテックス社製シリカSC2500-SQ(平均一次粒子径20nm)を用いて、シリカフィラーを23重量%とした以外は実施例2と同様にして、樹脂複合材を得た。得られた樹脂複合材の25℃以上50℃以下における平均熱膨張係数α(25~50)、175℃以上200℃以下における平均熱膨張係数α(175~200)及び100℃における貯蔵弾性率を表2に示す。
<比較例4:多量のシリカフィラー>
 ゼオライトの代わりに、シリカフィラーとして、株式会社龍森社製HL-3100を用いて、シリカフィラーを60重量%とした以外は実施例2と同様にして、樹脂複合材を得た。得られた樹脂複合材の25℃以上50℃以下における平均熱膨張係数α(25~50)、175℃以上200℃以下における平均熱膨張係数α(175~200)及び100℃における貯蔵弾性率、引張試験における引張破断伸度、剥離試験による剥離強度を表2に示す。
<比較例5:多量のシリカフィラー>
 ゼオライトの代わりに、シリカフィラーとして、株式会社龍森社製HL-3100を用いて、シリカフィラーを70重量%とした以外は実施例2と同様にして、樹脂複合材を得た。得られた樹脂複合材の25℃以上50℃以下における平均熱膨張係数α(25~50)、175℃以上200℃以下における平均熱膨張係数α(175~200)及び100℃における貯蔵弾性率、引張試験における引張破断伸度、剥離試験による剥離強度を表2に示す。
<比較例6:エポキシシリコーン+シリカフィラー>
 ゼオライトの代わりに、シリカフィラーとして、株式会社龍森社製HL-3100を用いて、シリカフィラーを60重量%とした以外は実施例6と同様にして、樹脂複合材を得た。得られた樹脂複合材の25℃以上50℃以下における平均熱膨張係数α(25~50)、175℃以上200℃以下における平均熱膨張係数α(175~200)及び100℃における貯蔵弾性率、引張試験における引張破断伸度、剥離試験による剥離強度を表2に示す。但し、剥離強度については、測定用試験片を作製する際に、液状組成物が硬化しなかったため、測定できなかった。
<比較例7:エポキシシリコーン+多量のシリカフィラー>
 ゼオライトの代わりに、シリカフィラーとして、株式会社龍森社製HL-3100を用いて、シリカフィラーを80重量%とした以外は実施例6と同様にして、樹脂複合材を得た。得られた樹脂複合材の25℃以上50℃以下における平均熱膨張係数α(25~50)、175℃以上200℃以下における平均熱膨張係数α(175~200)及び100℃における貯蔵弾性率、引張試験における引張破断伸度、剥離試験による剥離強度を表2に示す。但し、剥離強度については、測定用試験片を作製する際に、液状組成物が硬化しなかったため、測定できなかった。
<合成例3:KCHA型ゼオライトの合成>
 容器内に、水、キシダ化学社製水酸化カリウム、触媒化成工業社製FAU型ゼオライトUSY7を順次加えた。得られた混合物の組成は、SiO:Al:KOH:HO=1.0:0.143:0.582:36.2であった。この混合物をしっかり混合させた後、耐圧容器に入れ、100℃のオーブン中で静置させることにより、7日間水熱合成を行った。吸引濾過、洗浄後に、乾燥することにより、KCHA型ゼオライト(カリウムを含むCHA型ゼオライト)を得た。
 得られたゼオライトの平均一次粒子径は、200nmであった。また、100℃における平均熱膨張係数は、-9ppm/K、Si/Alのモル比は6であった。
<合成例4:Linde T型ゼオライトの合成方法)
 Chemical Engineering Journal、 230、380、2013を参考にして、以下の合成を行った。容器内に、水、キシダ化学社製水酸化ナトリウム、キシダ化学社製水酸化カリウム、構造規定剤(SDA)として、セイケム社製テトラメチルアンモニウム水酸化物(TMAOH)、浅田化学工業社製アルミン酸ソーダ(酸化アルミニウム20.13質量%、酸化ナトリウム18.9質量%)、アルドリッチ社製 AS-40コロイダルシリカを順次加えた。得られた混合物の組成は、SiO:Al:NaOH:KOH:TMAOH:HO=1.0:0.025::0.3:0.3:0.06:10であった。この混合物をしっかり混合させた後、耐圧容器に入れ、130℃のオーブン中で、15rpmで回転させながら、5日間水熱合成を行った。吸引濾過、洗浄した後に、乾燥させ、600℃、6時間、空気流通下で焼成することにより、OFF型とERI型の連晶である(OFF型もERI型もCBUとしてd6rを有する)、Linde T型ゼオライトを得た。
 得られたゼオライトの平均一次粒子径は、300nmであった。また、100℃における平均熱膨張係数は、-12ppm/K、Si/Alのモル比は6であった。
<実施例7:KCHA型ゼオライト>
 合成例1で得られたCHA型ゼオライトの代わりに、合成例3で得られたKCHA型ゼオライトを10g用いた(ゼオライトを23質量%含む)以外は、実施例2と同様にして、樹脂複合材を得た。得られた樹脂複合材の25℃以上50℃以下における平均熱膨張係数α(25~50)、175℃以上200℃以下における平均熱膨張係数α(175~200)及び100℃における貯蔵弾性率を表2に示す。
<実施例8:Linde T型ゼオライト>
 合成例1で得られたCHA型ゼオライトの代わりに、合成例4で得られたLinde T型ゼオライトを10g用いた(ゼオライトを23質量%含む)以外は、実施例2と同様にして、樹脂複合材を得た。得られた樹脂複合材の25℃以上50℃以下における平均熱膨張係数α(25~50)、175℃以上200℃以下における平均熱膨張係数α(175~200)及び100℃における貯蔵弾性率を表2に示す。
<参考例1:エポキシ樹脂jER828>
 容器に、三菱ケミカル社製汎用エポキシ樹脂jER828(エポキシ当量:380)を22.2g入れオーブンで65℃に予熱した、そこに、三菱ケミカル社製エポキシ樹脂硬化剤ST14(アミン価:415~455KOHmg/g)11.1gと、事前に200℃で脱水をしておいた合成例1のCHA型ゼオライト10.0gを加えた。重量比はjER828とST14を合わせて100gに対し、ゼオライトが30gとなった。真空ミキサーにて1500rpm、5分間混練した。混練後、テストラミネーターを用いて100μmのフィルムに成型し、40℃、16時間の加熱処理を行った後、80℃、2時間、120℃2時間でゲル分率80%以上に硬化させ、樹脂複合材を得た。得られた樹脂複合材の25℃以上50℃以下における平均熱膨張係数α(25~50)、175℃以上200℃以下における平均熱膨張係数α(175~200)及び100℃における貯蔵弾性率を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2より、実施例2、6~8のゼオライト含有エポキシ樹脂複合材は、何れも、少量のゼオライトにより、平均熱膨張係数α(175~200)および100℃における貯蔵弾性率が低くなり、且つ樹脂複合材の熱膨張係数の温度変化について、高温条件で小さく、低温条件で高くなっていた。そこで、ゼオライト含有エポキシ樹脂複合材は、半導体デバイス等の封止材に好適であると言える。また、実施例2より、ゼオライト含有エポキシ樹脂複合材は、引張特性に優れ、金属部材と接した状態での接着力が強固であることが裏付けられた。
 実施例2、7~8と、比較例1~5の比較により、ゼオライト含有エポキシ樹脂複合材は、何れも少量のゼオライトにより平均熱膨張係数α(175~200)が顕著に下がる一方、貯蔵弾性率の下がり方が小さいことがわかる。また、実施例2と、比較例4、5との比較により、ゼオライト含有エポキシ樹脂複合材は、平均熱膨張係数α(175~200)が低く、且つ引張破断伸度が高いことがわかる。実施例2と、比較例5との比較により、ゼオライト含有エポキシ樹脂複合材は、更に金属材料に対する剥離強度が高いことがわかる。
 なお、シロキサン構造を有するエポキシ樹脂を用いた実施例6と比較例6、7は、何れも剥離強度測定用の試験片を作製できなかった。
 実施例2、比較例1、比較例3および参考例1について、熱膨張率の温度変化を図8に示す。図8より、ゼオライト含有エポキシ樹脂複合材の熱膨張率が、温度変化により、特異的に変化することがわかる。
本発明の一実施形態であるゼオライト含有エポキシ樹脂複合材により、以下の、第1~5の、少なくとも何れかの効果を奏するゼオライト含有エポキシ樹脂複合材および該樹脂複合材を得ることができる液状組成物を提供することができる。本発明の第1の効果により、可撓性を維持したまま(貯蔵弾性率を低く維持したまま)、熱膨張係数を低下させることができるゼオライト含有エポキシ樹脂複合材および該樹脂複合材を得ることができる液状組成物を提供することができる。また、本発明の第2の効果により、熱膨張係数が低温で高く、高温で低い、ゼオライト含有エポキシ樹脂複合材および該樹脂複合材を得ることができる液状組成物を提供することができる。本発明の第3の効果により、引張特性に優れる、ゼオライト含有エポキシ樹脂複合材および該樹脂複合材を得ることができる液状組成物を提供することができる。本発明の第4の効果により、金属部材と接した状態での接着力が強固な、樹脂複合材および該樹脂複合材を得ることができる液状組成物を提供することができる。さらに、本発明の第5の効果により、電子デバイス等の封止材に好適に使用でき、特にパワーデバイス用途であっても、反りやクラックが生じ難い樹脂複合材および該樹脂複合材を得ることができる液状組成物を提供することができる。
1  樹脂複合材
2  ゼオライト
3  樹脂
11 半導体層
12 絶縁体層
13、14 ソース電極及びドレイン電極
15 ゲート電極
16 基材
17 FET素子
31 基材
32 陽極
33 正孔注入層
34 正孔輸送層
35 発光層
36 電子輸送層
37 電子注入層
38 陰極
39 電界発光素子
51 カソード
52 電子取り出し層
53 活性層
54 正孔取り出し層
55 アノード
56 基材
57 光電変換素子
101 耐候性保護フィルム
102 紫外線カットフィルム
103、109 ガスバリアフィルム
104、108 ゲッター材フィルム
105、107 封止材
106 太陽電池素子
110 バックシート
111 薄膜太陽電池
112 基材
113 太陽電池モジュール

Claims (21)

  1.  ゼオライトとエポキシ樹脂前駆体とを含有する、液状組成物であって、前記ゼオライトの平均一次粒子径が15nm以上1000nm以下であり、前記ゼオライトの含有量が1質量%以上50質量%以下であり、ゲル分率80%以上に硬化させた硬化物の100℃における貯蔵弾性率が1MPa以上1000MPa以下である、液状組成物。
  2.  ゼオライトとエポキシ樹脂前駆体とを含有する、液状組成物であって、前記ゼオライトの平均一次粒子径が15nm以上1000nm以下であり、前記ゼオライトの含有量が1質量%以上50質量%以下であり、ゲル分率80%以上に硬化させた硬化物の25℃以上50℃以下における平均熱膨張係数をα(25~50)とし、175℃以上200℃以下における平均熱膨張係数をα(175~200)としたときに、α(25~50)/α(175~200)が1.00超である、液状組成物。
  3.  前記ゼオライトが構造単位 Composite Building Unit(CBU)としてd6r及びmtwの少なくともいずれかを含む、請求項1または2に記載の液状組成物。
  4.  前記ゼオライトの100℃における平均熱膨張係数が0ppm/K未満である、請求項1乃至3の何れか1項に記載の液状組成物。
  5.  前記ゼオライトのSAR(Si/Al比)が3以上100以下である、請求項1乃至4の何れか1項に記載の液状組成物。
  6.  25℃、1atmにおける粘度が10Pa・s以上2000Pa・s以下である、請求項1乃至5の何れか1項に記載の液状組成物。
  7.  前記エポキシ樹脂前駆体がシロキサン構造を有しない、請求項1乃至6の何れか1項に記載の液状組成物。
  8.  請求項1乃至7の何れか1項に記載の液状組成物を硬化させてなる、ゼオライト含有エポキシ樹脂複合材。
  9.  ゼオライトとエポキシ樹脂とを含有する、ゼオライト含有エポキシ樹脂複合材であって、前記ゼオライトの平均一次粒子径が15以上1000nm以下であり、前記ゼオライトの含有量が1質量%以上50質量%であり、100℃における貯蔵弾性率が1MPa以上1000MPa以下である、ゼオライト含有エポキシ樹脂複合材。
  10.  ゼオライトとエポキシ樹脂とを含有する、ゼオライト含有エポキシ樹脂複合材であって、前記ゼオライトの平均一次粒子径が15nm以上1000nm以下であり、前記ゼオライトの含有量が1質量%以上50質量%以下であり、25℃以上50℃以下における平均熱膨張係数をα(25~50)とし、175℃以上200℃以下における平均熱膨張係数をα(175~200)としたときに、α(25~50)/α(175~200)が1.00超である、ゼオライト含有エポキシ樹脂複合材。
  11.  25℃以上50℃以下における平均熱膨張係数α(25~50)、175℃以上200℃以下における平均熱膨張係数α(175~200)としたときに、α(25~50)/α(175~200)が1.00超である、請求項9に記載のゼオライト含有エポキシ樹脂複合材。
  12.  25℃、50%RHにおける引張試験の破断伸度が100%以上500%未満である、ゼオライト含有エポキシ樹脂複合材。
  13.  25℃、50%RHにおけるSPCC(冷間圧延鋼板)とのJIS-K6854-3(1999)に準拠して測定したT型剥離試験での剥離強度が、0.1N/mm以上8.0N/mm以下である、ゼオライト含有エポキシ樹脂複合材。
  14.  前記ゼオライトが構造単位 Composite Building Unit(CBU)としてd6r及びmtwの少なくともいずれかを含む、請求項9乃至13の何れか1項に記載のゼオライト含有エポキシ樹脂複合材。
  15.  前記ゼオライトの100℃における平均熱膨張係数が0ppm/K未満である、請求項9乃至14の何れか1項に記載のゼオライト含有エポキシ樹脂複合材。
  16.  前記ゼオライトのSAR(Si/Al比)が3以上100以下である、請求項9乃至15の何れか1項に記載のゼオライト含有エポキシ樹脂複合材。
  17.  前記エポキシ樹脂がシロキサン構造を有しない、請求項9乃至16の何れか1項に記載のゼオライト含有エポキシ樹脂複合材。
  18.  175℃以上200℃以下における平均熱膨張係数が1ppm/K超150ppm/K以下である、請求項9乃至17の何れか1項に記載のゼオライト含有エポキシ樹脂複合材。
  19.  請求項1乃至7の何れか1項に記載の液状組成物を含有する、液状封止材。
  20.  請求項8乃至18の何れか1項に記載のゼオライト含有エポキシ樹脂複合材からなる、封止材。
  21.  請求項8乃至18の何れか1項に記載のゼオライト含有エポキシ樹脂複合材からなる部材を備える、電子デバイス。
PCT/JP2019/040756 2018-10-16 2019-10-16 液状組成物、樹脂複合材、液状封止材、封止材及び電子デバイス WO2020080437A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018195446A JP2022036344A (ja) 2018-10-16 2018-10-16 樹脂複合材及び電子デバイス
JP2018-195446 2018-10-16

Publications (1)

Publication Number Publication Date
WO2020080437A1 true WO2020080437A1 (ja) 2020-04-23

Family

ID=70284258

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/040756 WO2020080437A1 (ja) 2018-10-16 2019-10-16 液状組成物、樹脂複合材、液状封止材、封止材及び電子デバイス

Country Status (3)

Country Link
JP (1) JP2022036344A (ja)
TW (1) TW202028325A (ja)
WO (1) WO2020080437A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023210790A1 (ja) * 2022-04-28 2023-11-02 三菱ケミカル株式会社 ゼオライト、ゼオライトの製造方法、組成物、液状封止剤、樹脂複合材、封止材、封止材の製造方法、及び電子デバイス
EP4239029A4 (en) * 2020-11-02 2024-04-24 Mitsubishi Chem Corp ZEOLITE, METHOD FOR PRODUCING ZEOLITE, COMPOSITION, LIQUID COMPOSITION, LIQUID SEALING AGENT, RESIN COMPOSITE MATERIAL, SEALING MATERIAL, METHOD FOR MANUFACTURING SEALING MATERIAL, AND DEVICE

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI814313B (zh) * 2022-03-29 2023-09-01 辰展股份有限公司 可撓性散熱金屬板

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07126494A (ja) * 1993-11-02 1995-05-16 Mitsui Petrochem Ind Ltd エポキシ樹脂組成物、該組成物を接着剤として塗布し た気密封止用接合部材、及び該組成物から成形された 半導体装置用パッケージ、ならびにこれらを用いた半 導体装置
JP2006274186A (ja) * 2005-03-30 2006-10-12 Sumitomo Bakelite Co Ltd エポキシ樹脂組成物及び半導体装置
JP2018135430A (ja) * 2017-02-21 2018-08-30 旭化成株式会社 複合体
JP2018145431A (ja) * 2017-03-08 2018-09-20 パナソニックIpマネジメント株式会社 紫外線硬化性樹脂組成物、有機el発光装置の製造方法及び有機el発光装置
JP2018177999A (ja) * 2017-04-14 2018-11-15 旭化成株式会社 複合体
JP2019073704A (ja) * 2017-10-16 2019-05-16 三菱ケミカル株式会社 樹脂複合材及び電子デバイス

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07126494A (ja) * 1993-11-02 1995-05-16 Mitsui Petrochem Ind Ltd エポキシ樹脂組成物、該組成物を接着剤として塗布し た気密封止用接合部材、及び該組成物から成形された 半導体装置用パッケージ、ならびにこれらを用いた半 導体装置
JP2006274186A (ja) * 2005-03-30 2006-10-12 Sumitomo Bakelite Co Ltd エポキシ樹脂組成物及び半導体装置
JP2018135430A (ja) * 2017-02-21 2018-08-30 旭化成株式会社 複合体
JP2018145431A (ja) * 2017-03-08 2018-09-20 パナソニックIpマネジメント株式会社 紫外線硬化性樹脂組成物、有機el発光装置の製造方法及び有機el発光装置
JP2018177999A (ja) * 2017-04-14 2018-11-15 旭化成株式会社 複合体
JP2019073704A (ja) * 2017-10-16 2019-05-16 三菱ケミカル株式会社 樹脂複合材及び電子デバイス

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4239029A4 (en) * 2020-11-02 2024-04-24 Mitsubishi Chem Corp ZEOLITE, METHOD FOR PRODUCING ZEOLITE, COMPOSITION, LIQUID COMPOSITION, LIQUID SEALING AGENT, RESIN COMPOSITE MATERIAL, SEALING MATERIAL, METHOD FOR MANUFACTURING SEALING MATERIAL, AND DEVICE
WO2023210790A1 (ja) * 2022-04-28 2023-11-02 三菱ケミカル株式会社 ゼオライト、ゼオライトの製造方法、組成物、液状封止剤、樹脂複合材、封止材、封止材の製造方法、及び電子デバイス

Also Published As

Publication number Publication date
TW202028325A (zh) 2020-08-01
JP2022036344A (ja) 2022-03-08

Similar Documents

Publication Publication Date Title
WO2020080437A1 (ja) 液状組成物、樹脂複合材、液状封止材、封止材及び電子デバイス
JP6669653B2 (ja) 多価カルボン酸およびそれを含有する多価カルボン酸組成物、エポキシ樹脂組成物、熱硬化性樹脂組成物、それらの硬化物並びに光半導体装置
CN110291151B (zh) 树脂组合物、成形体、层叠体、涂布材料及粘接剂
JP7263729B2 (ja) 樹脂複合材及び電子デバイス
JP7115520B2 (ja) 封止用フィルム及び封止構造体
US11446845B2 (en) Method for manufacturing FRP precursor and method for manufacturing FRP
JP6919575B2 (ja) プリプレグ、プリント配線板、半導体パッケージ及びプリント配線板の製造方法
JP7355010B2 (ja) ゼオライト含有ポリイミド樹脂複合材、ゼオライト含有ポリイミド樹脂前駆体組成物、フィルム、及び電子デバイス
EP2357079A2 (en) Multilayer film and a production method for same
WO2021132148A1 (ja) 積層体及びその製造方法並びに自動車用外装材
JP2013206902A (ja) パワー半導体モジュール用部品の製造方法
JP7452001B2 (ja) 発光素子パッケージ及びその製造方法
JP6884192B2 (ja) エポキシ樹脂硬化剤組成物、それを含有するエポキシ樹脂組成物、その硬化物
JP7435920B2 (ja) 架橋性樹脂組成物、及び、硬化物
JP7414162B2 (ja) 発光素子パッケージ及びその製造方法
JP7215300B2 (ja) 硬化性樹脂組成物
TWI763782B (zh) 密封板片及半導體裝置的製造方法
JP5276193B1 (ja) 積層体の製造方法
KR20220056134A (ko) 밀봉 용도의 수지 조성물
CN117981477A (zh) 树脂片材、印刷布线板、半导体芯片封装及半导体装置
JP2016106236A (ja) 面光源用基板および面光源照明
CN114479349A (zh) 树脂组合物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19874161

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19874161

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP