WO2020080284A1 - 電力管理装置、電力管理システム及び電力管理方法 - Google Patents

電力管理装置、電力管理システム及び電力管理方法 Download PDF

Info

Publication number
WO2020080284A1
WO2020080284A1 PCT/JP2019/040198 JP2019040198W WO2020080284A1 WO 2020080284 A1 WO2020080284 A1 WO 2020080284A1 JP 2019040198 W JP2019040198 W JP 2019040198W WO 2020080284 A1 WO2020080284 A1 WO 2020080284A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
storage device
effect
power storage
power management
Prior art date
Application number
PCT/JP2019/040198
Other languages
English (en)
French (fr)
Inventor
三浩 北地
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to US17/285,092 priority Critical patent/US12000897B2/en
Priority to EP19874495.5A priority patent/EP3869656A4/en
Priority to JP2020553149A priority patent/JP7059394B2/ja
Publication of WO2020080284A1 publication Critical patent/WO2020080284A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • G06Q10/06315Needs-based resource requirements planning or analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/374Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] with means for correcting the measurement for temperature or ageing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/005Detection of state of health [SOH]

Definitions

  • the present invention relates to a power management device, a power management system, and a power management method.
  • the power of the facility includes power from the power system to the facility (tidal power) and power from the facility to the power system (reverse power).
  • VPP Virtual Power Plant
  • the power management system executes a balance control that controls the operation of the power storage device so that the power of one or more facilities approaches a target power, and a management unit that manages at least the usage status of the power storage device. And a control unit.
  • the control unit compares a first effect generated by operating the power storage device and a second effect generated by not operating the power storage device, and when the second effect is higher than the first effect Without performing the balance control, the balance control is performed when the first effect is higher than the second effect.
  • a power management method includes at least managing a usage state of a power storage device, a first effect generated by operating the power storage device, and a second effect generated by not operating the power storage device. And when the second effect is higher than the first effect, without performing balance control for controlling the operation of the power storage device so that the power of one or more facilities approaches the target power. Performing the balance control when the first effect is higher than the second effect.
  • FIG. 1 is a diagram showing a power management system 100 according to the embodiment.
  • FIG. 2 is a diagram showing the power management apparatus 200 according to the embodiment.
  • FIG. 3 is a diagram for explaining the capacity of the power storage device 310 according to the embodiment.
  • FIG. 4 is a diagram showing a first effect and a second effect according to the embodiment.
  • FIG. 5 is a diagram showing a power management method according to the embodiment.
  • the present invention has been made to solve the above-mentioned problems, and makes it possible to optimize the effects accompanying the introduction of a power storage device.
  • the power management system 100 includes a power management apparatus 200 and a facility 300.
  • a power management apparatus 200 includes a power management apparatus 200 and a facility 300.
  • facilities 300A to 300C are illustrated.
  • the power management apparatus 200 and the facility 300 are connected to the network 120.
  • the network 120 may provide a line between the power management apparatus 200 and the facility 300.
  • the network 120 may be the Internet.
  • the network 120 may be a dedicated line such as a VPN (Virtual Private Network).
  • the power management device 200 is a device managed by at least a business operator who manages the power storage device 310.
  • the power management apparatus 200 may be an apparatus managed by a business operator such as a power generation company, a power transmission and distribution company or a retailer, and a resource aggregator.
  • the resource aggregator is an electric power company that provides reverse power flow to a power generation company, a power transmission and distribution company, a retail company, and the like in VPP (Virtual Power Plant).
  • the resource aggregator may be an electric power company that produces surplus power (negative power) by reducing the power consumption of the facility 300 managed by the resource aggregator. Such surplus power may be regarded as generated power.
  • the resource aggregator may be a power provider that absorbs excess power due to an increase in power consumption of the facility 300 managed by the resource aggregator (for example, an increase in the amount of charge of the storage battery device).
  • the power management apparatus 200 may transmit, to the EMS 330 provided in the facility 300, a control message instructing control of the power storage device 310 provided in the facility 300.
  • the power management apparatus 200 may transmit a power flow control message (for example, DR; Demand Response) requesting control of power flow, or may send a reverse power flow control message requesting control of reverse power flow.
  • the power management apparatus 200 may send a power control message that controls the operating state of the distributed power sources.
  • the degree of control of the tidal current or the reverse tidal current may be represented by an absolute value (for example, XX kW) or a relative value (for example, XX%).
  • the degree of control of the tidal current or the reverse tidal current may be represented by two or more levels.
  • the degree of control of the tidal current or the reverse power flow may be represented by a power rate (RTP; Real Time Pricing) determined by the current power supply and demand balance, and a power rate (TOU; Time Of Use) determined by the past power supply and demand balance. May be represented by
  • the facility 300 includes a power storage device 310, a load device 320, and an EMS 330.
  • the power storage device 310 is a distributed power source that charges and discharges electric power.
  • the power storage device 310 includes a PCS (Power Conditioning System) and a storage battery cell.
  • PCS Power Conditioning System
  • the load device 320 is a device that consumes power.
  • the load device 320 is an air conditioner, a lighting device, an AV (Audio Visual) device, or the like.
  • EMS330 is a device (EMS; Energy Management System) that manages the power of the facility 300.
  • the EMS 330 may control the operating states of the power storage device 310 and the load device 320.
  • the EMS 330 is an example of a VEN (Virtual End Node).
  • the EMS 330 transmits a message including an information element indicating the usage status of the power storage device 310 to the power management apparatus 200.
  • the usage status of the power storage device 310 is used to identify the deterioration state (SOH; State of Health) of the power storage device 310.
  • the information element indicating the usage status of the power storage device 310 may include an information element indicating the current capacity of the power storage device 310 (for example, AC effective capacity (charge), AC effective capacity (discharge)), and the current resistance of the power storage device 310. It may include an information element indicating a value.
  • the information element indicating the usage status of the power storage device 310 may include an information element indicating a cumulative charge time and a cumulative discharge time of the power storage device 310, and an information element indicating a cumulative charge amount of the power storage device 310 (for example, AC integrated charging power).
  • the SOH may be measured by executing the maintenance mode in a predetermined cycle (for example, once every two years).
  • the SOH of the power storage device 310 may be estimated by ⁇ (capacity t1-degraded capacity) / initial capacity ⁇ ⁇ 100.
  • the capacity t1 is a capacity actually measured in the maintenance mode executed at the timing t1.
  • the deterioration capacity is estimated by the discharge amount and the charge amount ⁇ 1 kWh deterioration rate between the timing t1 and the current timing.
  • the 1 kWh deterioration rate can be specified by the guaranteed deterioration rate of power storage device 310.
  • the deterioration rate of 1 kWh may be represented by 1/3600.
  • the communication between the power management apparatus 200 and the EMS 330 may be performed according to the first protocol.
  • the communication between the EMS 330 and the power storage device 310 and the load device 320 may be performed according to a second protocol different from the first protocol.
  • a protocol conforming to Open ADR (Automated Demand Response) or an original dedicated protocol can be used.
  • a protocol conforming to ECHONET Lite, SEP (Smart Energy Profile) 2.0, KNX, or an original dedicated protocol can be used.
  • the first protocol and the second protocol may be different, and for example, both may be unique dedicated protocols as long as they are created according to different rules.
  • the power management apparatus 200 includes a management unit 210, a communication unit 220, and a control unit 230.
  • the power management apparatus 200 is an example of a VTN (Virtual Top Node).
  • the management unit 210 is configured by a memory such as a non-volatile memory or / and a storage medium such as an HDD (Hard disc drive).
  • the management unit 210 may be any other storage device.
  • the management unit 210 may be an optical storage device such as an optical disk or a magneto-optical disk.
  • the management unit 210 stores data regarding the facility 300 managed by the power management apparatus 200.
  • the facility 300 managed by the power management apparatus 200 may be the facility 300 having a contract with a power company.
  • the data regarding the facility 300 may be demand power supplied from the power grid 110 to the facility 300.
  • the data regarding the facility 300 may be data representing the type of the power storage device 310 provided in the facility 300 (identification number, manufacturer code, product code, and / or manufacturing number).
  • the data on the facility 300 may be specifications of the power storage device 310 provided in the facility 300.
  • the specifications may be the initial capacity (W) and the initial resistance value ( ⁇ ) of the power storage device 310.
  • the specifications may be specified by the type of power storage device 310.
  • the management unit 210 manages at least the usage status of the power storage device 310.
  • the usage status of power storage device 310 may be specified by a message received from EMS 330.
  • the usage status of power storage device 310 may be specified by the control history of the operation of power storage device 310.
  • the control unit 230 may include at least one processor. According to various embodiments, at least one processor may be implemented as a single integrated circuit (IC) or as multiple communicatively connected integrated circuits ICs and / or discrete circuits. Good.
  • the control unit 230 controls each component provided in the power management apparatus 200.
  • control unit 230 executes balance control that controls the operation of the power storage device 310 so that the power of one or more facilities 300 approaches the target power.
  • the operation of power storage device 310 includes discharging of power storage device 310, charging of power storage device 310, and / or standby of power storage device 310.
  • the target power may be set based on the peak power allowed for one or more facilities 300.
  • the peak power allowed in one or more facilities 300 is different from that of a business operator (hereinafter, operating business operator) managing the power management apparatus 200 (hereinafter, a higher entity (for example, a power company) and a business operator). If the total power of one or more facilities 300 exceeds the peak power, the operating business operator bears a penalty to the higher-order entity. Alternatively, it may be money or free power supply.
  • the target power may be set based on at least one of a request for reducing the flow power to one or more facilities 300 and a request for reducing the reverse flow power from one or more facilities 300.
  • the tidal flow reduction request may be transmitted to the power management apparatus 200 from the above-described upper entity.
  • the request for reducing the reverse flow rate may be transmitted from the upper entity to the power management apparatus 200.
  • the operating company acquires an incentive from the upper entity.
  • the incentive may be money or a free power supply.
  • control unit 230 compares the first effect produced by operating power storage device 310 with the second effect produced by not operating power storage device 310.
  • the control unit 230 does not execute the balance control when the second effect is higher than the first effect, and executes the balance control when the first effect is higher than the second effect. Details of the first effect and the second effect will be described later (see FIG. 4).
  • Capacity of power storage device The capacity of the power storage device according to the embodiment will be described below.
  • a lower limit SOC (State of Charge) and an upper limit SOC are set for the entire capacity of the power storage device 310.
  • the lower limit SOC is set to the first remaining amount
  • the upper limit SOC is set to the second remaining amount, which is a stored remaining amount higher than the first remaining amount.
  • the total capacity of power storage device 310 includes an unusable capacity (lower limit side) for protecting power storage device 310 and an emergency capacity (BCP; Business Continuity Plan) capacity for responding to an emergency such as a disaster.
  • BCP Business Continuity Plan
  • the lower limit SOC is set so that the remaining charge amount does not fall below the BCP capacity and the unusable capacity (lower limit side).
  • the first effect is an effect generated by operating power storage device 310.
  • the power management apparatus 200 calculates the first effect based on an incentive obtained by the operation of the power storage apparatus 310 or a penalty avoided by the operation of the power storage apparatus 310.
  • the incentive or penalty is a difference between the power of one or more facilities 300 and the target power, and is calculated based on the difference realized by operating the power storage device 310.
  • the penalty can be reduced by discharging the power storage device 310.
  • the incentive can be increased by discharging the power storage device 310.
  • the incentive can be increased by charging the power storage device 310.
  • the penalty can be reduced by discharging the power storage device 310 or charging the power storage device 310.
  • the first effect may be considered as an incentive acquired by the operation of the power storage device 310, or may be considered as a penalty avoided by the operation of the power storage device 310.
  • the second effect is an effect produced by not operating power storage device 310.
  • the power management apparatus 200 calculates the second effect based on the deterioration parameter associated with the charging or discharging of the power storage device 310 and the introduction cost of the power storage device 310.
  • the power management apparatus 200 calculates the deterioration cost of the power storage device 310 caused by the operation of the power storage device 310 based on the introduction cost and the deterioration parameter.
  • the second effect may be considered as a deterioration cost that can be avoided by not operating the power storage device 310.
  • the introduction cost may include the purchase cost of the power storage device 310, the installation cost of the power storage device 310, and the operation cost of the power storage device 310.
  • the deterioration parameter is a parameter indicating the deterioration rate of power storage device 310 caused by the operation of power storage device 310.
  • the deterioration rate may be a rate at which the power storage device 310 deteriorates in one cycle of discharging and charging.
  • the deterioration rate may be corrected based on the state of charge (SOC; State Of Charge) of the power storage device 310.
  • SOC state of charge
  • the deterioration rate may be corrected so as to increase as the SOC increases.
  • the deterioration rate may be corrected based on the charging or discharging time of the power storage device 310.
  • the deterioration rate is corrected to increase as the charging or discharging time of power storage device 310 increases.
  • the power management apparatus 200 determines at least one of the state of charge of the power storage device 310, the temperature of the power storage device 310, the rate of charging or discharging the power storage device 310, and the time of charging or discharging the power storage device 310.
  • the deterioration parameter may be corrected based on one of the parameters.
  • the deterioration rate is the state of charge of the power storage device 310 (for example, coefficient ⁇ ), the temperature of the power storage device 310 (for example, coefficient ⁇ ), the discharge rate of the power storage device 310 (for example, coefficient ⁇ ), the power storage device. It may be corrected based on the discharge time of 310 (for example, the coefficient ⁇ ). That is, the deterioration cost may be represented by 125 yen ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ .
  • the second effect deterioration cost avoided by non-operation of the power storage device 310
  • the first effect is 145 yen.
  • the second effect is higher than the first effect, and thus the power management apparatus 200 (control unit 230) does not execute the balance control.
  • the discharge rate is 70 kW
  • the second effect (the deterioration cost avoided by the non-operation of power storage device 310) is corrected to 140 yen, and the first effect is 138 yen. In such a case, the second effect is higher than the first effect, and thus the power management apparatus 200 (control unit 230) does not execute the balance control.
  • the power management apparatus 200 (the control unit 230) does not execute the balance control when the second effect is higher than the first effect, but executes the balance control when the first effect is higher than the second effect. .
  • the power management apparatus 200 calculates the first effect and the second effect at each discharge rate from 0 kW to 100 kW, and determines the discharge rate when the difference between the first effect and the second effect is the largest. You may decide.
  • the power management method may be performed based on a predetermined trigger.
  • the predetermined trigger may be that the total power of one or more facilities 300 exceeds the peak power, or may receive a request for reduction of the tidal power or the reverse tidal power, or the power of the one or more facilities 300.
  • the total may be dissociated from the imbalance power by a predetermined ratio (for example, ⁇ 3%) or more.
  • the power management apparatus 200 calculates the first effect.
  • the first effect may be considered as an incentive acquired by the operation of the power storage device 310, or may be considered as a penalty avoided by the operation of the power storage device 310.
  • the power management apparatus 200 may correct the first effect based on the discharge rate of the power storage device 310, the discharge time of the power storage device 310, and the like.
  • step S20 the power management apparatus 200 calculates the second effect.
  • the second effect may be considered as a deterioration cost that is avoided by not operating the power storage device 310.
  • power management apparatus 200 is based on at least one parameter of the state of charge of power storage device 310, the temperature of power storage device 310, the rate of charging or discharging power storage device 310, and the time of charging or discharging power storage device 310. Then, the deterioration parameter may be corrected.
  • step S30 the power management apparatus 200 determines whether the first effect is higher than the second effect. If the determination result is YES, the process of step S40 is performed. If the determination result is NO, the process of step S50 is performed.
  • step S50 balance control that controls the operation of the power storage device 310 so that the power of one or more facilities 300 approaches the target power is not executed.
  • the power management apparatus 200 executes balance control that controls the operation of the power storage device 310 so that the power of one or more facilities 300 approaches the target power when the second effect is higher than the first effect.
  • the balance control is executed when the first effect is higher than the second effect.
  • a comparison is made between a first effect produced by operating power storage device 310 and a second effect produced by not operating power storage device 310. Is done. Therefore, since deterioration of the power storage device 310 is difficult, the effect accompanying the introduction of the power storage device 310 can be optimized.
  • the electric power may be an instantaneous electric power (kW) or an integrated electric energy (kWh) for a certain period (for example, 30 minutes).
  • the power information message may include an information element indicating the instantaneous power (kW) or may include an information element indicating the integrated power amount (kWh).
  • the power management apparatus may manage one facility 300.
  • the power management device may be the EMS 330.
  • the EMS 330 provided in the facility 300 does not necessarily have to be provided in the facility 300.
  • some of the functions of the EMS 330 may be provided by a cloud server provided on the Internet. That is, you may think that EMS330 contains a cloud server.

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Human Resources & Organizations (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Power Engineering (AREA)
  • Tourism & Hospitality (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Theoretical Computer Science (AREA)
  • General Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • General Health & Medical Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Development Economics (AREA)
  • Educational Administration (AREA)
  • Public Health (AREA)
  • Game Theory and Decision Science (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

電力管理装置は、蓄電装置の使用状況を管理する管理部と、1以上の施設の電力を目標電力に近づけるように前記蓄電装置の動作を制御するバランス制御を実行する制御部と、を備える。前記制御部は、前記蓄電装置を動作することによって生じる第1効果と、前記蓄電装置を動作しないことによって生じる第2効果と、を比較し、前記第2効果が前記第1効果よりも高い場合に前記バランス制御を実行せずに、前記第1効果が前記第2効果よりも高い場合に前記バランス制御を実行する。

Description

電力管理装置、電力管理システム及び電力管理方法
 本発明は、電力管理装置、電力管理システム及び電力管理方法に関する。
 近年、リソースアグリゲータなどの事業者が施設の電力を管理する仕組みが提案されている。施設の電力は、電力系統から施設への電力(潮流電力)、施設から電力系統への電力(逆潮流電力)を含む。
 このようなケースにおいて、事業者によって管理される電力の需給バランスが崩れた場合には、事業者とは異なるエンティティ(例えば、電力会社)が需給バランスを維持する。事業者は、需給バランスの維持に伴うペナルティを負担する。
 上述した仕組みを実現するために、蓄電装置を分散電源として用いる技術(例えば、VPP(Virtual Power Plant))も提案されている(例えば、特許文献1)。
特開2015-116094号公報
 第1の特徴に係る電力管理装置は、蓄電装置の使用状況を少なくとも管理する管理部と、1以上の施設の電力を目標電力に近づけるように前記蓄電装置の動作を制御するバランス制御を実行する制御部と、を備える。前記制御部は、前記蓄電装置を動作することによって生じる第1効果と、前記蓄電装置を動作しないことによって生じる第2効果と、を比較し、前記第2効果が前記第1効果よりも高い場合に前記バランス制御を実行せずに、前記第1効果が前記第2効果よりも高い場合に前記バランス制御を実行する。
 第2の特徴に係る電力管理システムは、蓄電装置の使用状況を少なくとも管理する管理部と、1以上の施設の電力を目標電力に近づけるように前記蓄電装置の動作を制御するバランス制御を実行する制御部と、を備える。前記制御部は、前記蓄電装置を動作することによって生じる第1効果と、前記蓄電装置を動作しないことによって生じる第2効果と、を比較し、前記第2効果が前記第1効果よりも高い場合に前記バランス制御を実行せずに、前記第1効果が前記第2効果よりも高い場合に前記バランス制御を実行する。
 第3の特徴に係る電力管理方法は、蓄電装置の使用状況を少なくとも管理することと、前記蓄電装置を動作することによって生じる第1効果と、前記蓄電装置を動作しないことによって生じる第2効果と、を比較することと、前記第2効果が前記第1効果よりも高い場合に、1以上の施設の電力を目標電力に近づけるように前記蓄電装置の動作を制御するバランス制御を実行せずに、前記第1効果が前記第2効果よりも高い場合に前記バランス制御を実行することと、を含む。
図1は、実施形態に係る電力管理システム100を示す図である。 図2は、実施形態に係る電力管理装置200を示す図である。 図3は、実施形態に係る蓄電装置310の容量を説明するための図である。 図4は、実施形態に係る第1効果及び第2効果を示す図である。 図5は、実施形態に係る電力管理方法を示す図である。
 蓄電装置の導入には導入コストが必要とされる一方で、蓄電装置の充電又は放電によって蓄電装置が劣化する。従って、インラバンス料金を考慮して蓄電装置を制御しても、蓄電装置の導入に伴う効果が得られない可能性がある。
 そこで、本発明は、上述した課題を解決するためになされたものであり、蓄電装置の導入に伴う効果を最適化することを可能とする。
 以下において、実施形態について図面を参照しながら説明する。なお、以下の図面の記載において、同一又は類似の部分には、同一又は類似の符号を付している。
 但し、図面は模式的なものであり、各寸法の比率などは現実のものとは異なる場合があることに留意すべきである。従って、具体的な寸法などは以下の説明を参酌して判断すべきである。また、図面相互間においても互いの寸法の関係又は比率が異なる部分が含まれている場合があることは勿論である。
 [実施形態]
 (電力管理システム)
 以下において、実施形態に係る電力管理システムについて説明する。
 図1に示すように、電力管理システム100は、電力管理装置200と、施設300とを有する。図1では、施設300として、施設300A~施設300Cが例示されている。
 各施設300は、電力系統110に接続される。以下において、電力系統110から施設300への電力の流れを潮流と称し、施設300から電力系統110への電力の流れを逆潮流と称する。
 電力管理装置200及び施設300は、ネットワーク120に接続されている。ネットワーク120は、電力管理装置200と施設300との間の回線を提供すればよい。例えば、ネットワーク120は、インターネットであってもよい。ネットワーク120は、VPN(Virtual Private Network)などの専用回線であってもよい。
 電力管理装置200は、少なくとも蓄電装置310を管理する事業者によって管理される装置である。電力管理装置200は、発電事業者、送配電事業者或いは小売事業者、リソースアグリゲータなどの事業者によって管理される装置であってもよい。リソースアグリゲータは、VPP(Virtual Power Plant)において、発電事業者、送配電事業者及び小売事業者などに逆潮流の電力を提供する電力事業者である。リソースアグリゲータは、リソースアグリゲータによって管理される施設300の消費電力の削減によって余剰電力(ネガワット)を生み出す電力事業者であってもよい。このような余剰電力は発電電力と見做されてもよい。リソースアグリゲータは、リソースアグリゲータによって管理される施設300の消費電力の増大(例えば、蓄電池装置の充電量の増大)によって過剰な電力を吸収する電力事業者であってもよい。
 ここで、電力管理装置200は、施設300に設けられるEMS330に対して、施設300に設けられる蓄電装置310に対する制御を指示する制御メッセージを送信してもよい。例えば、電力管理装置200は、潮流の制御を要求する潮流制御メッセージ(例えば、DR;Demand Response)を送信してもよく、逆潮流の制御を要求する逆潮流制御メッセージを送信してもよい。電力管理装置200は、分散電源の動作状態を制御する電源制御メッセージを送信してもよい。潮流又は逆潮流の制御度合いは、絶対値(例えば、○○kW)で表されてもよく、相対値(例えば、○○%)で表されてもよい。或いは、潮流又は逆潮流の制御度合いは、2以上のレベルで表されてもよい。潮流又は逆潮流の制御度合いは、現在の電力需給バランスによって定められる電力料金(RTP;Real Time Pricing)によって表されてもよく、過去の電力需給バランスによって定められる電力料金(TOU;Time Of Use)によって表されてもよい。
 施設300は、蓄電装置310、負荷機器320及びEMS330を有する。
 蓄電装置310は、電力の充電及び電力の放電を行う分散電源である。例えば、蓄電装置310は、PCS(Power Conditioning System)及び蓄電池セルによって構成される。
 負荷機器320は、電力を消費する機器である。例えば、負荷機器320は、空調機器、照明機器、AV(Audio Visual)機器などである。
 EMS330は、施設300の電力を管理する装置(EMS;Energy Management System)である。EMS330は、蓄電装置310及び負荷機器320の動作状態を制御してもよい。EMS330は、VEN(Virtual End Node)の一例である。
 ここで、EMS330は、蓄電装置310の使用状況を示す情報要素を含むメッセージを電力管理装置200に送信する。蓄電装置310の使用状況は、蓄電装置310の劣化状態(SOH;State of Health)の特定に用いられる。蓄電装置310の使用状況を示す情報要素は、蓄電装置310の現在容量(例えば、AC実効容量(充電)、AC実効容量(放電))を示す情報要素を含んでもよく、蓄電装置310の現在抵抗値を示す情報要素を含んでもよい。蓄電装置310の使用状況を示す情報要素は、蓄電装置310の累積充電時間及び累積放電時間を示す情報要素を含んでもよく、蓄電装置310の累積充電量を示す情報要素(例えば、AC積算充電電力量計測値、AC瞬時充電電力量計測値、DC積算充電電力量計測値、DC瞬時充電電力量計測値、積算充電電力量計測値、瞬時充電電力計測値、及び/又は瞬時充電電圧計測値)及び累積放電量を示す情報要素(例えば、AC積算放電電力量計測値、AC瞬時放電電力量計測値、DC積算放電電力量計測値、DC瞬時放電電力量計測値、積算放電電力量計測値、瞬時放電電力計測値、及び/又は瞬時放電電圧計測値)を含んでもよい。蓄電装置310の使用状況を示す情報要素は、蓄電装置310の累積充放電サイクル数を示す情報要素を含んでもよい。
 例えば、蓄電装置310のSOHは、SOH=(現在容量/初期容量)×100によって実測されてもよく、SOH=(現在抵抗値/初期抵抗値)×100によって実測されてもよい。SOHは、所定周期(例えば、1回/2年)でメンテナンスモードを実行することによって実測されてもよい。
 例えば、蓄電装置310のSOHは、{(容量t1-劣化容量)/初期容量}×100によって推定されてもよい。容量t1は、タイミングt1で実行されたメンテナンスモードで実測される容量である。劣化容量は、タイミングt1と現在タイミングとの間における放電量及び充電量×1kWh劣化率によって推定される。1kWh劣化率は、蓄電装置310の保証劣化率によって特定可能である。例えば、6000回の充放電サイクルで20%の劣化率が保証される蓄電装置310であれば、1kWh劣化率は1/3600で表されてもよい。
 以下においては、実測されるSOH及び推定されるSOHを特に区別せずにSOHと称することもある。
 実施形態において、電力管理装置200とEMS330との間の通信は、第1プロトコルに従って行われてもよい。一方で、EMS330と蓄電装置310及び負荷機器320との間の通信は、第1プロトコルとは異なる第2プロトコルに従って行われてもよい。例えば、第1プロトコルとしては、Open ADR(Automated Demand Response)に準拠するプロトコル、或いは、独自の専用プロトコルを用いることができる。例えば、第2プロトコルは、ECHONET Liteに準拠するプロトコル、SEP(Smart Energy Profile)2.0、KNX、或いは、独自の専用プロトコルを用いることができる。なお、第1プロトコルと第2プロトコルは異なっていればよく、例えば、両方が独自の専用プロトコルであっても異なる規則で作られたプロトコルであればよい。
 (電力管理装置)
 以下において、実施形態に係る電力管理装置について説明する。図2に示すように、電力管理装置200は、管理部210と、通信部220と、制御部230とを有する。電力管理装置200は、VTN(Virtual Top Node)の一例である。
 管理部210は、不揮発性メモリなどのメモリ又は/及びHDD(Hard disc drive)などの記憶媒体によって構成される。管理部210は、他に任意の記憶装置とすることができ、例えば、管理部210は、光ディスクのような光学記憶装置としてもよいし、光磁気ディスクなどとしてもよい。
 管理部210は、電力管理装置200によって管理される施設300に関するデータを記憶する。電力管理装置200によって管理される施設300は、電力事業者と契約を有する施設300であってもよい。例えば、施設300に関するデータは、電力系統110から施設300に供給される需要電力であってもよい。施設300に関するデータは、施設300に設けられる蓄電装置310の種別を表すデータ(識別番号、メーカーコード、商品コード、及び/又は製造番号)であってもよい。施設300に関するデータは、施設300に設けられる蓄電装置310のスペックなどであってもよい。スペックは、蓄電装置310の初期容量(W)及び初期抵抗値(Ω)であってもよい。スペックは、蓄電装置310の種別によって特定されてもよい。
 実施形態では、管理部210は、蓄電装置310の使用状況を少なくとも管理する。蓄電装置310の使用状況は、EMS330から受信するメッセージによって特定されてもよい。電力管理装置200がEMS330に依存せずに蓄電装置310の動作を直接的に制御する場合には、蓄電装置310の使用状況は、蓄電装置310の動作の制御履歴によって特定されてもよい。
 通信部220は、通信モジュールによって構成される。通信モジュールは、IEEE802.11a/b/g/n、ZigBee、Wi-SUNなどの規格に準拠する無線通信モジュールであってもよく、IEEE802.3などの規格に準拠する有線通信モジュールであってもよい。通信部220は、各施設300(EMS330)と通信を行う。例えば、通信部220は、蓄電装置310の使用状況を示す情報要素を含むメッセージをEMS330から受信する。
 制御部230は、少なくとも1つのプロセッサを含んでもよい。種々の実施形態によれば、少なくとも1つのプロセッサは、単一の集積回路(IC)として、又は複数の通信可能に接続された集積回路IC及び/又はディスクリート回路(discrete circuits)として実現されてもよい。制御部230は、電力管理装置200に設けられる各構成を制御する。
 実施形態では、制御部230は、1以上の施設300の電力を目標電力に近づけるように蓄電装置310の動作を制御するバランス制御を実行する。蓄電装置310の動作は、蓄電装置310の放電、蓄電装置310の充電、及び/又は蓄電装置310の待機などを含む。
 ここで、目標電力は、1以上の施設300に許容されるピーク電力に基づいて設定されてもよい。1以上の施設300に許容されるピーク電力は、電力管理装置200を管理する事業者(以下、運営事業者)とは異なるエンティティ(以下、上位エンティティ(例えば、電力会社)と運営事業者との間の契約によって予め定められてもよい。ここで、1以上の施設300の電力合計がピーク電力を超える場合には、運営事業者は、上位エンティティに対してペナルティを負担する。例えば、ペナルティは、金銭であってもよく、無償の電力供給であってもよい。
 目標電力は、1以上の施設300への潮流電力の削減要請及び1以上の施設300からの逆潮流電力の削減要請の少なくともいずれか1つに基づいて設定されてもよい。潮流量の削減要請は、上述した上位エンティティから電力管理装置200に送信されてもよい。同様に、逆潮流量の削減要請は、上位エンティティから電力管理装置200に送信されてもよい。ここで、これらの削減要請に応じて潮流電力又は逆潮流電力を削減した場合に、運営事業者は、上位エンティティからインセンティブを取得する。インセンティブは、金銭であってもよく、無償の電力供給であってもよい。
 目標電力は、予め定められたインバランス計画によって設定されてもよい。インバランス計画は、上位エンティティと運営事業者との間の契約によって定められてもよい。例えば、運営事業者がインバランス計画を策定し、策定されたインバランス計画を上位エンティティが承認してもよい。インバランス計画は、時間軸上における目標電力の推移(以下、インバランス電力)を含む。ここで、1以上の施設300の電力合計がインバランス電力から所定割合(例えば、±3%)以上解離する場合には、運営事業者は、上位エンティティに対してペナルティを負担する。例えば、ペナルティは、金銭であってもよく、無償の電力供給であってもよい。
 このような前提下において、制御部230は、蓄電装置310を動作することによって生じる第1効果と、蓄電装置310を動作しないことによって生じる第2効果と、を比較する。制御部230は、第2効果が第1効果よりも高い場合にバランス制御を実行せずに、第1効果が第2効果よりも高い場合にバランス制御を実行する。第1効果及び第2効果の詳細については後述する(図4を参照)。
 (蓄電装置の容量)
 以下において、実施形態に係る蓄電装置の容量について説明する。
 図3に示すように、蓄電装置310の全体容量には、下限SOC(State of Charge)及び上限SOCが定められている。下限SOCは第1残量に設定され、上限SOCは第1残量よりも高い蓄電残量である第2残量に設定されている。さらに、蓄電装置310の全体容量は、蓄電装置310を保護するための使用不可容量(下限側)及び災害などの緊急事態に対応するために非常容量(BCP;Business Continuity Plan)容量を含む。下限SOCは、BCP容量及び使用不可容量(下限側)を蓄電残量が下回らないように定められる。例えば、下限SOCは、BCP容量及び使用不可容量(下限側)の合計値である。上限SOCは、蓄電容量が使用不可容量(上限側)に達しないように定められる。例えば、上限SOCは、全体容量から使用不可容量(上限側)を除いた値である。このような前提において、蓄電装置310が放電可能な蓄電残量(放電可能容量)は蓄電容量から下限SOCを除いた値である。蓄電装置310が充電可能な充電残量(充電可能容量)は上限SOCから蓄電容量を除いた値である。
 (第1効果及び第2効果の詳細)
 以下において、実施形態に係る第1効果及び第2効果の詳細について説明する。
 第1に、第1効果について説明する。上述したように、第1効果は、蓄電装置310を動作することによって生じる効果である。図4に示すように、電力管理装置200(制御部230)は、蓄電装置310の動作によって得られるインセンティブ又は蓄電装置310の動作によって免れるペナルティに基づいて第1効果を算出する。インセンティブ又はペナルティは、1以上の施設300の電力と目標電力との差異であって、蓄電装置310を動作することによって実現される差異に基づいて算出される。
 例えば、目標電力がピーク電力に基づいて設定される場合には、蓄電装置310の放電によってペナルティを減少することができる。目標電力が潮流電力の削減要請に基づいて設定される場合には、蓄電装置310の放電によってインセンティブを増加することができる。目標電力が逆潮流電力の削減要請に基づいて設定される場合には、蓄電装置310の充電によってインセンティブを増加することができる。目標電力がインバランス計画に基づいて設定される場合には、蓄電装置310の放電又は蓄電装置310の充電によってペナルティを減少することができる。言い換えると、第1効果は、蓄電装置310の動作によって取得されるインセンティブと考えてもよく、蓄電装置310の動作によって免れるペナルティと考えてもよい。
 第2に、第2効果について説明する。上述したように、第2効果は、蓄電装置310を動作しないことによって生じる効果である。図4に示すように、電力管理装置200(制御部230)は、蓄電装置310の充電又は放電に伴う劣化パラメータ及び蓄電装置310の導入コストに基づいて第2効果を算出する。詳細には、電力管理装置200(制御部230)は、導入コスト及び劣化パラメータに基づいて、蓄電装置310の動作によって生じる蓄電装置310の劣化コストを算出する。言い換えると、第2効果は、蓄電装置310を動作しないことによって免れる劣化コストと考えてもよい。
 例えば、導入コストは、蓄電装置310の購入コストを含んでもよく、蓄電装置310の設置コストを含んでもよく、蓄電装置310の運用コストを含んでもよい。劣化パラメータは、蓄電装置310の動作によって生じる蓄電装置310の劣化率を示すパラメータである。劣化率は、1サイクルの放電及び充電で蓄電装置310が劣化する率であってもよい。
 例えば、蓄電装置310が1000回のサイクルで蓄電装置310の容量が50%に減少するサイクル寿命特性を有しており、導入コストが100万円であるケースを例示する。このようなケースにおいて、1回のサイクルの劣化率は、50/1000=0.05で表すことができ、1回のサイクルの劣化コストは、100万円×0.05=500円で表すことができる。劣化率は、蓄電装置310の動作によって生じるSOHの減少率であってもよい。
 劣化率は、蓄電装置310の充電状態(SOC;State Of Charge)に基づいて補正されてもよい。劣化率は、SOCが高いほど大きくなるように補正されてもよい。
 劣化率は、蓄電装置310の温度に基づいて補正されてもよい。劣化率は、蓄電装置310の温度が高いほど大きくなるように補正されてもよい。蓄電装置310の温度は、蓄電装置310のセル温度であってもよく、蓄電装置310の環境温度であってもよい。
 劣化率は、蓄電装置310の充電又は放電のレートに基づいて補正されてもよい。劣化率は、蓄電装置310の充電又は放電のレートが高いほど大きくなるように補正されてもよい。
 劣化率は、蓄電装置310の充電又は放電の時間に基づいて補正されてもよい。劣化率は、蓄電装置310の充電又は放電の時間が長いほど大きくなるように補正される。
 このように、電力管理装置200(制御部230)は、蓄電装置310の充電状態、蓄電装置310の温度、蓄電装置310の充電又は放電のレート及び蓄電装置310の充電又は放電の時間の少なくともいずれか1つのパラメータに基づいて、劣化パラメータを補正してもよい。
 (第1効果及び第2効果の具体例)
 以下において、実施形態に係る第1効果及び第2効果の具体例について説明する。
 上述したように、1回のサイクルの劣化コストが100万円×0.05=500円で表されるケースにおいて、容量100%から容量50%まで放電を行うケースについて考える。このようなケースにおいて、放電に伴う劣化コストは、500円/4=125円で表される。
 上述したように、劣化率は、蓄電装置310の充電状態(例えば、係数α)、蓄電装置310の温度(例えば、係数β)、蓄電装置310の放電のレート(例えば、係数γ)、蓄電装置310の放電の時間(例えば、係数θ)に基づいて補正されてもよい。すなわち、劣化コストは、125円×α×β×γ×θによって表されてもよい。
 ここでは、蓄電装置310の放電のレートに着目して、第1効果及び第2効果の具体例について例示する。ここでは、放電のレートが高いほど第1効果及び第2効果が大きくなるように補正されるケースを例示する。
 例えば、放電のレートが100kWである場合において、第2効果(蓄電装置310の非動作によって免れる劣化コスト)は150円に補正され、第1効果は145円である。このような場合には、第2効果が第1効果よりも高いため、電力管理装置200(制御部230)は、バランス制御を実行しない。放電のレートが70kWである場合において、第2効果(蓄電装置310の非動作によって免れる劣化コスト)は140円に補正され、第1効果は138円である。このような場合には、第2効果が第1効果よりも高いため、電力管理装置200(制御部230)は、バランス制御を実行しない。放電のレートが30kWである場合において、第2効果(蓄電装置310の非動作によって免れる劣化コスト)は125円に補正され、第1効果は130円である。このような場合には、第1効果が第2効果よりも高いため、電力管理装置200(制御部230)は、バランス制御を実行する。
 すなわち、電力管理装置200(制御部230)は、第2効果が第1効果よりも高い場合にバランス制御を実行せずに、第1効果が第2効果よりも高い場合にバランス制御を実行する。
 また、電力管理装置200(制御部230)は、0kWから100kWまでの各放電レートにおける第1効果および第2効果を算出し、第1効果と第2効果の差分が最も大きい場合の放電レートを決定してもよい。
 (電力管理方法)
 以下において、実施形態に係る電力管理方法について説明する。図5に示すフローは、所定トリガーに基づいて行われてもよい。所定トリガーは、1以上の施設300の電力合計がピーク電力を上回ることであってもよく、潮流電力又は逆潮流電力の削減要請を受信することであってもよく、1以上の施設300の電力合計がインバランス電力から所定割合(例えば、±3%)以上解離することであってもよい。
 ステップS10において、電力管理装置200は、第1効果を算出する。第1効果は、蓄電装置310の動作によって取得されるインセンティブと考えてもよく、蓄電装置310の動作によって免れるペナルティと考えてもよい。ここで、電力管理装置200は、蓄電装置310の放電のレート、蓄電装置310の放電の時間などに基づいて、第1効果を補正してもよい。
 ステップS20において、電力管理装置200は、第2効果を算出する。第2効果は、蓄電装置310を動作しないことによって免れる劣化コストと考えてもよい。ここで、電力管理装置200は、蓄電装置310の充電状態、蓄電装置310の温度、蓄電装置310の充電又は放電のレート及び蓄電装置310の充電又は放電の時間の少なくともいずれか1つのパラメータに基づいて、劣化パラメータを補正してもよい。
 ステップS30において、電力管理装置200は、第1効果が第2効果よりも高いか否かを判定する。判定結果がYESである場合には、ステップS40の処理が行われる。判定結果がNOである場合には、ステップS50の処理が行われる。
 ステップS40において、電力管理装置200は、1以上の施設300の電力を目標電力に近づけるように蓄電装置310の動作を制御するバランス制御を実行する。
 ステップS50において、1以上の施設300の電力を目標電力に近づけるように蓄電装置310の動作を制御するバランス制御を実行しない。
 図5では省略しているが、電力管理装置200は、蓄電装置310の使用状況を少なくとも管理する。蓄電装置310の使用状況は、EMS330から受信するメッセージによって特定されてもよい。電力管理装置200がEMS330に依存せずに蓄電装置310の動作を直接的に制御する場合には、蓄電装置310の使用状況は、蓄電装置310の動作の制御履歴によって特定されてもよい。使用状況を管理するステップは、EMS330からメッセージを受信する毎に行われてもよく、EMS330に制御メッセージを送信する毎に行われてもよい。
 (作用及び効果)
 実施形態では、電力管理装置200は、第2効果が第1効果よりも高い場合に、1以上の施設300の電力を目標電力に近づけるように蓄電装置310の動作を制御するバランス制御を実行せずに、第1効果が第2効果よりも高い場合に、バランス制御を実行する。このような構成によれば、バランス制御を実行するか否かを判定する場合に、蓄電装置310を動作することによって生じる第1効果と蓄電装置310を動作しないことによって生じる第2効果との比較が行われる。従って、蓄電装置310の劣化が苦慮されるため、蓄電装置310の導入に伴う効果を最適化することができる。
 [その他の実施形態]
 本発明は上述した実施形態によって説明したが、この開示の一部をなす論述及び図面は、この発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなろう。
 実施形態では特に触れていないが、電力とは、瞬時電力(kW)であってもよく、一定期間(例えば、30分)の積算電力量(kWh)であってもよい。例えば、電力情報メッセージは、瞬時電力(kW)を示す情報要素を含んでもよく、積算電力量(kWh)を示す情報要素を含んでもよい。
 実施形態では、電力管理装置が複数の施設300を管理するケースについて例示した。しかしながら、電力管理装置が1つの施設300を管理してもよい。このようなケースにおいて、電力管理装置は、EMS330であってもよい。
 実施形態では特に触れていないが、施設300は、蓄電装置310に加えて、太陽光、風力、水力、地熱などの自然エネルギーを用いて発電を行う装置を含んでもよく、燃料電池装置を含んでもよい。燃料電池装置は、固体酸化物型燃料電池(SOFC:Solid Oxide Fuel Cell)、固体高分子型燃料電池(PEFC:Polymer Electrolyte Fuel Cell)、リン酸型燃料電池(PAFC:Phosphoric Acid Fuel Cell)、溶融炭酸塩型燃料電池(MCFC:Molten Carbonate Fuel Cell)などである。
 実施形態では、バランス制御の対象として蓄電装置310を例示した。しかしながら、実施形態はこれに限定されるものではない。バランス制御の対象は、他の分散電源であってもよい。例えば、バランス制御の対象は、燃料電池装置であってもよい。燃料電池装置の劣化パラメータとしては、燃料電池装置の停止回数、燃料電池装置の起動回数などを用いることができる。
 実施形態では、電力管理装置200は、管理部210を有する。しかしながら、実施形態はこれに限定されるものではない。管理部210は、インターネット上に設けられるクラウドサーバであってもよい。
 実施形態では特に触れていないが、施設300に設けられるEMS330は、必ずしも施設300内に設けられていなくてもよい。例えば、EMS330の機能の一部は、インターネット上に設けられるクラウドサーバによって提供されてもよい。すなわち、EMS330がクラウドサーバを含むと考えてもよい。
 実施形態では、第1プロトコルがOpen ADR2.0に準拠するプロトコルであり、第2プロトコルがECHONET Liteに準拠するプロトコルであるケースについて例示した。しかしながら、実施形態はこれに限定されるものではない。第1プロトコルは、電力管理装置200とEMS330との間の通信で用いるプロトコルとして規格化されたプロトコルであればよい。第2プロトコルは、施設300で用いるプロトコルとして規格化されたプロトコルであればよい。
 本願は、日本国特許出願第2018-194125号(2018年10月15日出願)の優先権を主張し、その内容の全てが本願明細書に組み込まれている。

Claims (9)

  1.  蓄電装置の使用状況を少なくとも管理する管理部と、
     1以上の施設の電力を目標電力に近づけるように前記蓄電装置の動作を制御するバランス制御を実行する制御部と、を備え、
     前記制御部は、
      前記蓄電装置を動作することによって生じる第1効果と、前記蓄電装置を動作しないことによって生じる第2効果と、を比較し、
      前記第2効果が前記第1効果よりも高い場合に前記バランス制御を実行せずに、前記第1効果が前記第2効果よりも高い場合に前記バランス制御を実行する、電力管理装置。
  2.  前記制御部は、前記蓄電装置の充電又は放電に伴う劣化パラメータ及び前記蓄電装置の導入コストに基づいて前記第2効果を算出する、請求項1に記載の電力管理装置。
  3.  前記制御部は、前記蓄電装置の充電状態、前記蓄電装置の温度、前記蓄電装置の充電又は放電のレート及び前記蓄電装置の充電又は放電の時間の少なくともいずれか1つのパラメータに基づいて前記劣化パラメータを補正する、請求項2に記載の電力管理装置。
  4.  前記制御部は、前記1以上の施設の電力と前記目標電力との差異であって、前記蓄電装置を動作することによって実現される差異に基づいて前記第1効果を算出する、請求項1乃至請求項3のいずれか1項に記載の電力管理装置。
  5.  前記目標電力は、前記1以上の施設に許容されるピーク電力に基づいて設定される、請求項1乃至請求項4のいずれか1項に記載の電力管理装置。
  6.  前記目標電力は、前記1以上の施設への潮流電力の削減要請及び前記1以上の施設からの逆潮流電力の削減要請の少なくともいずれか1つに基づいて設定される、請求項1乃至請求項5のいずれか1項に記載の電力管理装置。
  7.  前記目標電力は、予め定められたインバランス計画によって設定される、請求項1乃至請求項6のいずれか1項に記載の電力管理装置。
  8.  蓄電装置の使用状況を少なくとも管理する管理部と、
     1以上の施設の電力を目標電力に近づけるように前記蓄電装置の動作を制御するバランス制御を実行する制御部と、を備え、
     前記制御部は、
      前記蓄電装置を動作することによって生じる第1効果と、前記蓄電装置を動作しないことによって生じる第2効果と、を比較し、
      前記第2効果が前記第1効果よりも高い場合に前記バランス制御を実行せずに、前記第1効果が前記第2効果よりも高い場合に前記バランス制御を実行する、電力管理システム。
  9.  蓄電装置の使用状況を少なくとも管理することと、
     前記蓄電装置を動作することによって生じる第1効果と、前記蓄電装置を動作しないことによって生じる第2効果と、を比較することと、
     前記第2効果が前記第1効果よりも高い場合に、1以上の施設の電力を目標電力に近づけるように前記蓄電装置の動作を制御するバランス制御を実行せずに、前記第1効果が前記第2効果よりも高い場合に前記バランス制御を実行することと、を含む電力管理方法。
PCT/JP2019/040198 2018-10-15 2019-10-11 電力管理装置、電力管理システム及び電力管理方法 WO2020080284A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/285,092 US12000897B2 (en) 2018-10-15 2019-10-11 Power management apparatus, power management system and power management method
EP19874495.5A EP3869656A4 (en) 2018-10-15 2019-10-11 ENERGY MANAGEMENT APPARATUS, ENERGY MANAGEMENT SYSTEM, AND ENERGY MANAGEMENT METHOD
JP2020553149A JP7059394B2 (ja) 2018-10-15 2019-10-11 電力管理装置、電力管理システム及び電力管理方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-194125 2018-10-15
JP2018194125 2018-10-15

Publications (1)

Publication Number Publication Date
WO2020080284A1 true WO2020080284A1 (ja) 2020-04-23

Family

ID=70284611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/040198 WO2020080284A1 (ja) 2018-10-15 2019-10-11 電力管理装置、電力管理システム及び電力管理方法

Country Status (3)

Country Link
EP (1) EP3869656A4 (ja)
JP (1) JP7059394B2 (ja)
WO (1) WO2020080284A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023112843A (ja) * 2022-02-02 2023-08-15 株式会社豊田中央研究所 エネルギ管理装置、エネルギ管理システム、エネルギ管理方法、および、コンピュータプログラム

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013128727A1 (ja) * 2012-02-28 2013-09-06 日本電気株式会社 調整機器制御システム、調整機器制御方法および記録媒体
WO2014136705A1 (ja) * 2013-03-04 2014-09-12 株式会社 東芝 複数電池を有する二次電池システム及び充放電電力等の配分方法
JP2015116094A (ja) 2013-12-13 2015-06-22 株式会社東芝 充放電制御装置及び蓄電池制御システム
JP2016077139A (ja) * 2014-10-08 2016-05-12 パナソニックIpマネジメント株式会社 蓄電システムの制御方法及び蓄電システム制御装置
US20160380460A1 (en) * 2015-06-24 2016-12-29 Wind Inertia Technologies, S.L. Method and electrical energy storage unit for the of electrical power supply to a power grid node
JP2017112655A (ja) * 2015-12-14 2017-06-22 株式会社日立製作所 電力貯蔵システム管理装置、電力貯蔵システム管理方法、電力貯蔵システム
JP2018194125A (ja) 2017-05-19 2018-12-06 トヨタ自動車株式会社 車両用動力伝達装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6790833B2 (ja) * 2015-01-15 2020-11-25 日本電気株式会社 蓄電池制御システム、蓄電池制御方法、及び、記録媒体

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013128727A1 (ja) * 2012-02-28 2013-09-06 日本電気株式会社 調整機器制御システム、調整機器制御方法および記録媒体
WO2014136705A1 (ja) * 2013-03-04 2014-09-12 株式会社 東芝 複数電池を有する二次電池システム及び充放電電力等の配分方法
JP2015116094A (ja) 2013-12-13 2015-06-22 株式会社東芝 充放電制御装置及び蓄電池制御システム
JP2016077139A (ja) * 2014-10-08 2016-05-12 パナソニックIpマネジメント株式会社 蓄電システムの制御方法及び蓄電システム制御装置
US20160380460A1 (en) * 2015-06-24 2016-12-29 Wind Inertia Technologies, S.L. Method and electrical energy storage unit for the of electrical power supply to a power grid node
JP2017112655A (ja) * 2015-12-14 2017-06-22 株式会社日立製作所 電力貯蔵システム管理装置、電力貯蔵システム管理方法、電力貯蔵システム
JP2018194125A (ja) 2017-05-19 2018-12-06 トヨタ自動車株式会社 車両用動力伝達装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3869656A4

Also Published As

Publication number Publication date
US20210349151A1 (en) 2021-11-11
EP3869656A1 (en) 2021-08-25
EP3869656A4 (en) 2022-11-09
JPWO2020080284A1 (ja) 2021-09-24
JP7059394B2 (ja) 2022-04-25

Similar Documents

Publication Publication Date Title
JPWO2020004053A1 (ja) 管理サーバ、管理システム、及び管理方法
JP7014903B2 (ja) 機器管理サーバ、機器管理システム及び機器管理方法
US20210050726A1 (en) Power management server and power management method
WO2020080284A1 (ja) 電力管理装置、電力管理システム及び電力管理方法
WO2018043689A1 (ja) 電力管理方法、電力管理サーバ、ローカル制御装置及び電力管理システム
WO2020017428A1 (ja) 電力管理サーバ、エネルギー蓄積装置及び電力管理方法
JP7136971B2 (ja) 電源管理方法及び電源管理装置
JP2019030123A (ja) 電源管理方法、電源管理サーバ及び電源管理装置
JP6975125B2 (ja) 電力管理サーバ及び電力管理方法
JP7178429B2 (ja) 電力供給方法及び電力管理装置
JP2023005861A (ja) 電力管理装置、電力管理システム及び電力管理方法
US12000897B2 (en) Power management apparatus, power management system and power management method
JP7386915B2 (ja) 電力管理サーバ及び電力管理方法
JP7480075B2 (ja) 蓄電装置管理システム及び蓄電装置管理方法
WO2021060143A1 (ja) 電力管理システム及び電力管理方法
JP7208095B2 (ja) サーバ装置及び制御方法
JP2020124022A (ja) 電力管理装置、蓄電装置及び電力管理方法
JP7354394B2 (ja) 電力管理装置及び電力管理方法
JP7004819B2 (ja) 分散電源システム、制御装置、及び分散電源制御方法
WO2021060142A1 (ja) 電力管理システム及び電力管理方法
JP6781274B2 (ja) 電源制御方法、電源制御装置及び電源制御システム
JP2022169292A (ja) 電力管理装置、電力管理システム及び電力管理方法
JP2023005124A (ja) 電力管理装置、電力管理システム及び電力管理方法
JP2023109296A (ja) 電力システム及び制御方法
JP2022087790A (ja) 電力管理サーバ及び電力管理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19874495

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020553149

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019874495

Country of ref document: EP

Effective date: 20210517