WO2020079956A1 - 熱延鋼板およびその製造方法 - Google Patents

熱延鋼板およびその製造方法 Download PDF

Info

Publication number
WO2020079956A1
WO2020079956A1 PCT/JP2019/033020 JP2019033020W WO2020079956A1 WO 2020079956 A1 WO2020079956 A1 WO 2020079956A1 JP 2019033020 W JP2019033020 W JP 2019033020W WO 2020079956 A1 WO2020079956 A1 WO 2020079956A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel sheet
hot
rolled steel
precipitate
Prior art date
Application number
PCT/JP2019/033020
Other languages
English (en)
French (fr)
Inventor
田中 裕二
孝子 山下
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2019565953A priority Critical patent/JP6687174B1/ja
Publication of WO2020079956A1 publication Critical patent/WO2020079956A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • C22C18/04Alloys based on zinc with aluminium as the next major constituent

Definitions

  • the present invention relates to a hot rolled steel sheet and a method for manufacturing the same.
  • cold-rolled steel sheets with excellent workability are used as outer panels for automobiles.
  • the cold rolled steel sheet may have a plated layer such as a hot dip galvanized layer or an alloyed hot dip galvanized layer on its surface.
  • IF steel plate is a steel plate in which solid solution C and solid solution N in the steel are reduced by the action of an alloying element such as Ti. More specifically, the IF steel sheet is obtained by hot rolling an ultra-low carbon steel containing a carbonitride forming element, producing carbonitride at the stage of the hot rolled steel sheet obtained, and dissolving C and solid solution in the steel. After reducing the molten N, it is manufactured through cold rolling and recrystallization annealing (Patent Document 1).
  • IF steel sheet has features such as deep drawability and other excellent workability. This is because a texture suitable for deep drawability is formed by the recrystallization phenomenon in the step of annealing the hot rolled steel sheet after cold rolling.
  • an object of the present invention is to provide a hot-rolled steel sheet having an excellent appearance that is evaluated after forming the cold-rolled steel sheet. Moreover, this invention also makes it the objective to provide the method of manufacturing the said hot-rolled steel sheet.
  • the present inventors have evaluated the appearance of a hot-rolled steel sheet in which a steel composition and a precipitate contained within a surface layer of 10 ⁇ m satisfy a specific condition are evaluated as a cold-rolled steel sheet ( The present invention has been completed based on the finding that the "external appearance") is excellent.
  • the present invention provides the following [1] to [4]. [1]% by mass, C: 0.0005% or more and 0.0100% or less, Si: 0.20% or less, Mn: 0.50% or less, P: 0.030% or less, S: 0.005% Or more and 0.030% or less, Ti: 0.020% or more and 0.100% or less, Al: 0.01% or more and 0.05% or less, N: 0.005% or less, and Cu: more than 0.005%.
  • Ti * (Ti%)-(24/7) ⁇ (N%)-(3/2) ⁇ (S%)-4 Ti * defined by ⁇ (C%) satisfies 0 ⁇ Ti * ⁇ 0.0200, and ⁇ (1/12) ⁇ (C%) ⁇ / ⁇ (1/32) ⁇ (S%) ⁇ ⁇ 1.00, where (Ti%), (N%), (S%) and (C%) are each T in the above steel composition.
  • N, S, and C which are contained within the surface layer of 10 ⁇ m and which satisfy the following formulas (1) and (2), satisfy the following formula (3) and further within the surface layer of 10 ⁇ m.
  • the steel composition further includes Nb: 0.001% or more and 0.010% or less, B: 0.0002% or more and 0.0015% or less, and Sb: 0.001% or more and 0.030% or less.
  • a slab having the steel composition according to any one of the above [1] to [3] is held at a heating temperature of 1200 ° C. or more and 1300 ° C.
  • the present invention it is possible to provide a hot-rolled steel sheet having an excellent appearance that is evaluated after being made into a cold-rolled steel sheet. Moreover, according to this invention, the method of manufacturing the said hot rolled steel plate can also be provided.
  • Cu is a Trump element that is not an element that is positively added and is difficult to remove by mixing it from iron resources.
  • IF steel sheet cold-rolled steel sheet
  • the appearance was sometimes insufficient. Therefore, the present inventors have made detailed studies on the relationship between the surface layer precipitates of the hot rolled steel sheet and the surface layer structure of the cold rolled steel sheet after cold rolling and annealing. The reason why the precipitates on the surface layer of the hot-rolled steel sheet were examined is that the morphology of the precipitates in the hot-rolling stage has a great influence on the recrystallization in the annealing after the cold rolling. As a result, the following findings were obtained.
  • precipitates observed in the hot-rolled steel sheets are mainly, TiC, TiN, TiS, Ti 4 C 2 S 2, MnS, Cu 2 S and their complexes.
  • Cu 2 S may be finely precipitated alone or may be complexly precipitated with coarse TiS.
  • the hot-rolled steel sheet in which Cu 2 S alone is finely precipitated is subjected to cold rolling and annealing, some non-recrystallized grains remain.
  • the amount of MnS increases, fine TiC precipitates increase, and unrecrystallized grains remain after cold rolling and annealing.
  • TiS and MnS Two kinds of sulfides, TiS and MnS, are precipitated in the austenite region, and Ti 4 C 2 S 2 and Cu 2 S are not observed. MnS melts at a temperature of 1200 ° C. or higher.
  • Part of TiS precipitated in the austenite region melts in the ferrite region. In the winding step, S dissolved from TiS is reprecipitated as Ti 4 C 2 S 2 , Cu 2 S and MnS.
  • the size of TiS precipitated in the austenite region is less than 100 nm, TiS is completely melted in the ferrite region, and fine and independent MnS or Cu 2 S is precipitated.
  • S fixed as MnS can be reduced by heating to 1200 ° C. or higher in the austenite region.
  • TiS is coarsened to a size of 100 nm or more, and even if Cu 2 S is re-precipitated in the ferrite region, composite precipitation is performed on coarse TiS.
  • the amount of S dissolved from TiS reprecipitated as MnS can be suppressed, and S can be fixed together with C as Ti 4 C 2 S 2 .
  • the present invention has been made based on the above findings.
  • the hot rolled steel sheet of the present invention is, in mass%, C: 0.0005% or more and 0.0100% or less, Si: 0.20% or less, Mn: 0.50% or less, P: 0.030% or less, S. : 0.005% or more and 0.030% or less, Ti: 0.020% or more and 0.100% or less, Al: 0.01% or more and 0.05% or less, N: 0.005% or less, and Cu: More than 0.005% and 0.100% or less, and the balance is Fe and unavoidable impurities.
  • Ti * (Ti%)-(24/7) ⁇ (N%)-(3/2) ⁇ ( Ti * defined by (S%)-4 ⁇ (C%) satisfies 0 ⁇ Ti * ⁇ 0.0200, and ⁇ (1/12) ⁇ (C%) ⁇ / ⁇ (1/32) X (S%) ⁇ ⁇ 1.00, where (Ti%), (N%), (S%) and (C%) are the above steels, respectively.
  • the content of Ti, N, S and C in the formation which is contained within 10 ⁇ m of the surface layer and which satisfies the following formulas (1) and (2), satisfies the following formula (3), and further, A hot rolled steel sheet, in which the precipitate b contained within the surface layer of 10 ⁇ m and satisfying the following formulas (4) and (5) satisfies the following formula (6).
  • the thickness of the hot-rolled steel sheet of the present invention is not particularly limited, but is, for example, 2.0 mm or more and 4.5 mm or less, and preferably 2.3 mm or more and 4.0 mm or less.
  • the precipitates observed as a microstructure in the hot rolled steel sheet of the present invention will be described.
  • As a method for grasping the state of the precipitates on the steel sheet there is a chemical analysis method in which only the mother phase of the steel sheet is melted, the precipitates are extracted, and the extracted precipitates are quantitatively analyzed.
  • this method it is difficult to determine whether a plurality of types of deposits are deposited individually or in combination. Therefore, in the present invention, the state of the precipitates of the hot-rolled steel sheet is grasped by analyzing the composition of each precipitate using an electron microscope.
  • the composition analysis is performed by energy dispersive X-ray spectroscopy (EDS) for examining the intensity of characteristic X-rays. Since the composite precipitates have different compositions depending on the locations of the precipitates, the precipitates that are spatially continuously connected are regarded as one particle, and the composition of the entire particles is taken as the composition of the precipitate.
  • EDS energy dispersive X-ray spectroscopy
  • the precipitates that are spatially continuously connected are regarded as one particle, and the composition of the entire particles is taken as the composition of the precipitate.
  • 1000 or more compositions are analyzed and statistically analyzed.
  • "within 10 micrometers of surface layers" of a hot rolled steel sheet means “within 10 micrometers in the thickness direction from the surface which does not contain a scale" of a hot rolled steel sheet.
  • [S], [Ti], [Mn], and [Cu] represent the numbers of atoms of S, Ti, Mn, and Cu in the precipitate a, respectively.
  • the state of precipitation of Cu 2 S can be known by the amount of Cu contained in TiS. Whether or not the precipitate is TiS can be determined by the composition analysis of the particles. Specifically, when the total number of atoms of S, Ti, Mn, and Cu is 100%, a precipitate in which the number of S atoms is 20% or more and the number of Ti atoms is 20% or more, that is, the above
  • the precipitate (precipitate a) satisfying the expressions (1) and (2) can be determined to be TiS.
  • Ti 4 C 2 S 2 is also determined as TiS, but there is no problem in knowing the precipitation state of Cu 2 S and MnS.
  • the precipitate a determined to be TiS when the number of Cu atoms is 1% or more and 5% or less, when the total number of Ti and Cu atoms is 100%, that is, the above formula (3 2), Cu 2 S is compounded and precipitated in TiS, and the single and fine Cu 2 S precipitation that suppresses recrystallization is suppressed.
  • the precipitate a when the number of Cu atoms is less than 1% when the total number of Ti and Cu atoms is 100%, that is, 1%> [Cu] / ([Ti] + [Cu]) In such a case, Cu 2 S alone is finely precipitated. If Cu 2 S is finely precipitated by itself, recrystallization in the annealing after cold rolling is suppressed and the appearance is inferior. Although it is difficult to directly analyze Cu 2 S that is finely precipitated alone, by examining the amount of Cu 2 S that is complexly precipitated with TiS, fine Cu 2 S is independently precipitated. It can be determined whether or not there is.
  • the precipitate a when the number of Cu atoms is more than 5% when the total number of Ti and Cu atoms is 100%, that is, [Cu] / ([Ti] + [Cu])> When it is 5%, the amount of Cu contained in the steel becomes excessive, the amount of Cu 2 S precipitation on the surface is large, the amount of Ti 4 C 2 S 2 decreases, the TiC precipitation increases, and the hot brittleness is poor. Or
  • Precipitate b the precipitate b contained within the surface layer of the hot rolled steel sheet within 10 ⁇ m and satisfying the following formulas (4) and (5) satisfies the following formula (6).
  • [S], [Ti], [Mn], and [Cu] represent the numbers of atoms of S, Ti, Mn, and Cu in the precipitate b, respectively.
  • MnS fixes S and facilitates precipitation of fine TiC. Therefore, in the present invention, precipitation of MnS is suppressed.
  • the precipitation state of MnS can be known by composition analysis using an electron microscope, as in the above.
  • MnS includes those that are independently precipitated in the austenite region, those that are finely precipitated alone in the ferrite region, and those that are compounded and precipitated with TiS in the ferrite region, both of which are bonded to S.
  • the number of atoms of Mn is 20% or less when the total number of atoms of S and Mn is 100%.
  • the amount of S fixed to MnS decreases, the precipitation of Ti 4 C 2 S 2 increases, and the precipitation of fine TiC decreases.
  • the number of Mn atoms is preferably 15% or less. That is, it is preferable to satisfy the following formula (7). (7) [Mn] / ([S] + [Mn]) ⁇ 15%
  • C is a solid solution strengthening element and contributes to an increase in yield strength, but it is preferable to reduce it as much as possible in order to obtain an IF steel sheet having excellent workability such as deep drawability. If the amount of C is too large, fine TiC tends to precipitate, and it becomes difficult to reduce the solid solution C. Therefore, the C content is 0.0100% or less, preferably 0.0040% or less, and more preferably 0.0030% or less. On the other hand, if the C content is less than 0.0005%, the decarburization cost increases, so the C content is 0.0005% or more, preferably 0.0010% or more.
  • Si is a solid solution strengthening element, but it deteriorates the scale appearance and, when performing a plating treatment, lowers the plating wettability. Therefore, the Si amount is 0.20% or less, preferably 0.15% or less, and more preferably 0.10% or less.
  • the lower limit of the amount of Si is not particularly limited, but is, for example, 0.01% or more.
  • Mn is a solid solution strengthening element, but if added excessively, MnS precipitates, Ti 4 C 2 S 2 decreases, and fine TiC easily precipitates. Therefore, the Mn content is 0.50% or less, preferably 0.40% or less, and more preferably 0.30% or less.
  • the lower limit of the amount of Mn is not particularly limited, but is, for example, 0.01% or more.
  • P is a solid solution strengthening element, but if it is added excessively, it causes hot cracking and also reduces the uniformity of scale. Therefore, the P amount is 0.030% or less, preferably 0.023% or less, and more preferably 0.015% or less.
  • the lower limit of the amount of P is not particularly limited, but is, for example, 0.001% or more.
  • S is an important element in the present invention, and has a role of fixing the solid solution C as Ti 4 C 2 S 2 .
  • the S amount is 0.005% or more, preferably 0.010% or more.
  • the amount of S is 0.030% or less, preferably 0.025% or less, and more preferably 0.015% or less.
  • Ti 0.020% or more and 0.100% or less
  • the austenite region other suppress MnS precipitated by fixing S as TiS become the core of Cu 2 S precipitation, there is a role of preventing a single precipitation of fine Cu 2 S .
  • Ti has a role of reducing solid solution C as Ti 4 C 2 S 2 .
  • the amount of Ti is 0.020% or more, preferably 0.030% or more.
  • the Ti amount is 0.100% or less, preferably 0.080% or less, more preferably 0.070% or less, and 0.060% or less. % Or less is more preferable.
  • Al functions as a deoxidizer.
  • the amount of Al is 0.01% or more, preferably 0.02% or more.
  • the Al amount is 0.05% or less, preferably 0.04% or less.
  • N 0.005% or less
  • the N content is 0.005% or less, preferably 0.004% or less.
  • the lower limit of the amount of N is not particularly limited, but is, for example, 0.001% or more.
  • ⁇ Cu: more than 0.005% and 0.100% or less ⁇ Cu: more than 0.005% and 0.100% or less.
  • the Cu content is set to 0.100% or less.
  • the Cu content is preferably 0.030% or less, more preferably 0.027% or less, and further preferably 0.023% or less, because the appearance is more excellent.
  • the amount of Cu exceeds 0.030%, the amount of Cu 2 S precipitation on the surface increases, Ti 4 C 2 S 2 precipitation is suppressed, and fine TiC may easily precipitate. Therefore, when the Cu content is more than 0.030%, it is preferable to further contain Sb as described later. At this time, the Sb amount is preferably 0.001% or more and 0.030% or less.
  • the steel composition in the hot-rolled steel sheet of the present invention is further Nb: 0.001% or more and 0.010% or less, B: 0.0002% or more and 0.0015% or less, and Sb: 0.001% or more and 0.001% or more. It is preferable to contain at least one selected from the group consisting of 030% or less.
  • Nb forms a carbonitride like Ti and has the effect of reducing solid solution C and solid solution N.
  • the Nb amount is preferably 0.001% or more, more preferably 0.003% or more.
  • the Nb content is preferably 0.010% or less, more preferably 0.005% or less.
  • B is an element effective in strengthening the grain boundary of the IF steel sheet, and when secondary work embrittlement resistance is required, the B content is preferably 0.0002% or more, more preferably 0.0003% or more. , 0.0004% or more is more preferable. On the other hand, if added excessively, not only the effect may be saturated but also the hot rolling resistance may increase. Therefore, the B content is preferably 0.0015% or less, more preferably 0.0012% or less, and It is more preferably 0.0010% or less.
  • the addition of Sb has the effect of suppressing the surface enrichment of Cu.
  • a large amount of Cu 2 S is deposited on the surface, S is depleted, Ti 4 C 2 S 2 deposition is suppressed, and fine TiC deposition is suppressed on the surface.
  • the Sb content is preferably 0.001% or more, more preferably 0.002% or more, still more preferably 0.003% or more.
  • the Sb content is preferably 0.030% or less, more preferably 0.015% or less, and further preferably 0.012% or less.
  • the balance is Fe and inevitable impurities.
  • Ti * (Ti%)-(24/7) x (N%)-(3/2) x (S%)-4 x (C%).
  • the defined Ti * satisfies 0 ⁇ Ti * ⁇ 0.0200.
  • (Ti%), (N%), (S%) and (C%) represent the contents of Ti, N, S and C in the above steel composition, respectively. This definition is derived by multiplying the following two equations by 48.
  • ⁇ Ti * (1/48) ⁇ (Ti%) ⁇ (1/14) ⁇ (N%) ⁇ (1/32) ⁇ (S%) ⁇ (1/12) ⁇ (C %) 0 ⁇ (1/48) ⁇ Ti * ⁇ (1/48) ⁇ 0.0200 Ti is added to reduce solute C and solute N.
  • N can be fixed in the austenite region by adding more Ti than N in atomic number.
  • Ti is further precipitated as TiS in the austenite region, and the remaining Ti fixes C in the ferrite region. In order to obtain such an effect, 0 ⁇ Ti * . If this is not satisfied, C cannot be fixed completely.
  • Ti * ⁇ 0.02 the amount of solid solution Ti is large, and the nitridation of the surface layer occurs during annealing, so that fine TiN is generated. Therefore, Ti * ⁇ 0.0200 is set, Ti * ⁇ 0.0180 is preferable, Ti * ⁇ 0.0150 is more preferable, and Ti * ⁇ 0.0130 is further preferable.
  • the steel composition of the hot rolled steel sheet according to the present invention satisfies ⁇ (1/12) ⁇ (C%) ⁇ / ⁇ (1/32) ⁇ (S%) ⁇ ⁇ 1.00.
  • (S%) and (C%) represent the contents of S and C in the above steel composition, respectively.
  • This rule is derived from the following equation. (1/32) x (S%)> (1/12) x (C%) S precipitates in various forms such as Cu 2 S, TiS, MnS, and Ti 4 C 2 S 2 and affects the precipitation of fine TiC.
  • S ⁇ C in the number of atoms C tends to be precipitated as fine TiC, but when S> C is satisfied in the number of atoms, C is precipitated as Ti 4 C 2 S 2 .
  • production method of the present invention a preferred embodiment of the method for producing the hot-rolled steel sheet of the present invention described above (hereinafter, also simply referred to as “production method of the present invention”) will be described.
  • a slab having the above-described steel composition is held at a heating temperature of 1200 ° C. or more and 1300 ° C. or less for 4 hours or more, and then hot rolling is performed at a finish rolling temperature of Ar 3 points or more, and then,
  • the method for producing a hot-rolled steel sheet is the method of producing a hot-rolled steel sheet by winding at a winding temperature of 680 ° C. or higher and 750 ° C. or lower.
  • the slab having the above-mentioned steel composition is obtained, for example, by continuously casting molten steel having the above-mentioned steel composition.
  • the heating temperature and holding time of the slab are important for controlling the precipitation state of Cu 2 S and MnS.
  • the heating temperature is preferably 1210 ° C or higher, more preferably 1220 ° C or higher. If the heating temperature is less than 1200 ° C, MnS will be precipitated. Further, the size of TiS becomes less than 100 nm, TiS is completely melted in the ferrite region, and fine Cu 2 S alone is precipitated.
  • the heating temperature is set to 1300 ° C or lower, preferably 1280 ° C or lower, and more preferably 1260 ° C or lower. If the holding time is less than 4 hours, MnS remains undissolved even if the heating temperature is 1200 ° C. or higher. In addition, TiS does not coarsen to 100 nm or more, and Cu 2 S cannot be compositely precipitated on coarse TiS in the ferrite region. Therefore, the holding time is set to 4 hours or longer, preferably 5 hours or longer. The upper limit of the holding time is not particularly limited, but is, for example, 10 hours or less, preferably 8 hours or less.
  • ⁇ Ar hot rolling at a finish rolling temperature of 3 points or more> If the finish rolling temperature is lower than the Ar 3 point, ferrite is generated, and the rolling structure becomes extremely uneven. Therefore, hot rolling is performed at a finish rolling temperature of 3 points or more of Ar.
  • the finish rolling temperature is preferably Ar 3 points + 100 ° C. or less because the scale loss becomes small.
  • Ar 3 points (unit: ° C.) are calculated from the following formula. Each element symbol in the following formulas represents the content (unit: mass%) of each element in the steel composition of the slab.
  • Ar 3 910-310 ⁇ C-80 ⁇ Mn-20 ⁇ Cu-15 ⁇ Cr-55 ⁇ Ni-80 ⁇ Mo
  • the coiling temperature is important in controlling the precipitation morphology of MnS and carbon.
  • TiS is melted and S is precipitated as Ti 4 C 2 S 2 and Cu 2 S.
  • the heating temperature of the slab is 1200 ° C. or higher and 1300 ° C. or lower and the holding time is 4 hours or longer, TiS that precipitates in the austenite region is coarse, so that TiS remains undissolved and Ti 4 C 2 S 2 and Cu 2 S are combined with TiS and precipitated.
  • the winding temperature is 680 ° C. or higher, preferably 685 ° C. or higher, and more preferably 690 ° C. or higher.
  • the winding temperature is 750 ° C or lower, preferably 740 ° C or lower, and more preferably 730 ° C or lower.
  • the treatment performed on the hot-rolled steel sheet of the present invention is not particularly limited, and, for example, the following conventionally known treatments can be performed.
  • the conditions for various treatments are not particularly limited, and may be according to a conventional method.
  • the hot rolled steel sheet of the present invention is subjected to cold rolling to obtain a cold rolled steel sheet.
  • pickling may be performed in order to remove the scale formed on the surface.
  • the reduction ratio of cold rolling is, for example, about 50 to 90% when manufacturing an automobile outer plate.
  • the cold-rolled steel sheet thus obtained is washed (recrystallization annealing) after being washed to remove degreasing and stains of the rolling oil.
  • the annealing temperature is preferably 700 ° C. or higher and Ac 3 transformation point or lower.
  • the cold rolled steel sheet after annealing is plated.
  • a cold rolled steel sheet having a plating layer on the surface is obtained.
  • the plating treatment include hot dip galvanizing treatment, hot dip galvanizing treatment and alloying treatment, and electrogalvanizing treatment.
  • the hot dip galvanizing treatment and the alloying treatment are performed, an alloyed hot dip galvanized layer is formed on the surface of the cold rolled steel sheet.
  • the conditions for various plating treatments are not particularly limited, and may be in accordance with a conventional method.
  • temper rolling may be performed.
  • the rolling ratio of the temper rolling is, for example, about 0.5 to 1.5%.
  • a molten steel having a steel composition shown in Table 1 or Table 2 below was vacuum-degassed and continuously cast to obtain a slab.
  • the obtained slab was heated and held under the conditions shown in Table 3 or Table 4 below, hot-rolled to a plate thickness of 3.5 mm, and wound to obtain a hot-rolled steel plate.
  • the obtained hot-rolled steel sheet was pickled with hydrochloric acid, cold-rolled at a rolling reduction of 80%, and then annealed at an annealing temperature of 840 ° C to obtain a cold-rolled steel sheet.
  • the obtained cold rolled steel sheet was further subjected to hot dip galvanizing treatment and alloying treatment to obtain an alloyed hot dip galvanized steel sheet.
  • the hot-dip galvanizing treatment the cold-rolled steel sheet was immersed in a hot-dip galvanizing bath (bath temperature: 470 ° C., bath composition: Zn-0.14 mass% Al), and the adhesion amount of the plating layer was 45 g / m 2 per side. I adjusted it so that.
  • the alloying temperature of the alloying treatment was 520 ° C.
  • the composition of precipitates contained in the surface layer within 10 ⁇ m was analyzed. Specifically, first, the hot-rolled steel sheet after pickling was cut into 10 mm ⁇ 10 mm ⁇ plate thickness to obtain a test piece. After polishing one side surface of the test piece by 5 ⁇ m, the polished surface was further electrolytically polished by using a 10% AA-based electrolytic solution (10% by volume of acetylacetone-1% by weight of tetramethylammonium chloride-methanol) to remove precipitates. Liberated. The liberated precipitate was transferred to a C vapor deposition film to obtain a replica sample.
  • the replica sample is placed on a mesh made of Ni, placed in a sample holder for scanning transmission electron microscope (STEM) observation, set in the sample chamber of the scanning electron microscope (SEM), and the composition analysis of the precipitate is performed by SEM.
  • STEM scanning transmission electron microscope
  • SEM scanning electron microscope
  • a contrast different from that of the C vapor deposition film, which is a support film was used as a precipitate, and the entire spatially continuous particles were irradiated with an electron beam, and elemental analysis was performed by EDS.
  • the accelerating voltage of the electron beam was 15 kV, and the electron beam was irradiated for 5 seconds per particle to record an X-ray spectrum.
  • the elements were quantified based on the X-ray intensity.
  • the precipitate a satisfying the above formulas (1) and (2) was determined to be TiS. Different particles were measured and an X-ray spectrum was recorded until the number of analyzed precipitates a determined to be TiS was 1000 or more. About 1000 or more TiS particles (precipitate a), X-ray spectra were integrated to obtain a TiS total spectrum with a good SN ratio. The reason for the integration is that the analysis for 5 seconds per spectrum has a poor SN ratio in the spectrum, and the presence and quantification of trace Cu cannot be confirmed. Quantitative analysis of Ti and Cu was performed on the TiS total spectrum, and the value (unit:%) of [Cu] / ([Ti] + [Cu]) was obtained for the precipitate a. The results are shown in Table 3 or Table 4 below.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

冷延鋼板とした後に評価される外観が優れる熱延鋼板を提供する。上記熱延鋼板は、質量%で、C:0.0005~0.0100%、Si:0.20%以下、Mn:0.50%以下、P:0.030%以下、S:0.005~0.030%、Ti:0.020~0.100%、Al:0.01~0.05%、N:0.005%以下、および、Cu:0.005%超0.100%以下、を含み、残部はFeおよび不可避的不純物からなり、特定の式で定義されるTiが、0<Ti<0.0200を満たし、かつ、{(1/12)×(C%)}/{(1/32)×(S%)}<1.00を満たす鋼組成を有し、表層10μm以内に含まれる析出物aが特定の式(3)を満たし、表層10μm以内に含まれる析出物bが特定の式(6)を満たす。

Description

熱延鋼板およびその製造方法
 本発明は、熱延鋼板およびその製造方法に関する。
 自動車用外板として、例えば、加工性に優れた冷延鋼板が使用されている。冷延鋼板は、その表面に、溶融亜鉛めっき層や合金化溶融亜鉛めっき層などのめっき層を有していてもよい。
 このような冷延鋼板として、いわゆるIF(Interstitial Free)鋼板が知られている。IF鋼板は、鋼中の固溶Cおよび固溶NをTi等の合金元素の作用により減らした鋼板である。
 より詳細には、IF鋼板は、炭窒化物形成元素を含有する極低炭素鋼を熱間圧延し、得られる熱延鋼板の段階で炭窒化物を生成させ、鋼中の固溶Cおよび固溶Nを低減させた後、冷間圧延および再結晶焼鈍を経て製造される(特許文献1)。
特開2011-231373号公報
 IF鋼板は、深絞り性等の加工性に優れる特徴を持つ。これは、熱延鋼板を冷間圧延後に焼鈍する工程において、深絞り性に適した集合組織が再結晶現象により形成されるためである。
 しかしながら、鋼中に微細な析出物が多量に存在すると、析出物のピン止め効果により再結晶が抑制され未再結晶粒が残存することがある。未再結晶粒が局所的に残存すると、加工性が局所的に低下し、加工後に形状不均一が生じることがある。
 本発明者らが、特許文献1に記載された熱延鋼板を冷延鋼板とした後に、特定の条件下で外観を評価したところ、外観が不十分である場合があった。
 そこで、本発明は、冷延鋼板とした後に評価される外観が優れる熱延鋼板を提供することを目的とする。
 また、本発明は、上記熱延鋼板を製造する方法を提供することも目的とする。
 本発明者らは、上記目的を達成するために鋭意検討した結果、鋼組成および表層10μm以内に含まれる析出物が特定条件を満たす熱延鋼板が、冷延鋼板とした後に評価される外観(以下、単に「外観」ともいう)が優れることを見出し、本発明を完成させた。
 すなわち、本発明は、以下の[1]~[4]を提供する。
 [1]質量%で、C:0.0005%以上0.0100%以下、Si:0.20%以下、Mn:0.50%以下、P:0.030%以下、S:0.005%以上0.030%以下、Ti:0.020%以上0.100%以下、Al:0.01%以上0.05%以下、N:0.005%以下、および、Cu:0.005%超0.100%以下、を含み、残部はFeおよび不可避的不純物からなり、Ti=(Ti%)-(24/7)×(N%)-(3/2)×(S%)-4×(C%)で定義されるTiが、0<Ti<0.0200を満たし、かつ、{(1/12)×(C%)}/{(1/32)×(S%)}<1.00を満たす鋼組成を有し、ただし、(Ti%)、(N%)、(S%)および(C%)は、それぞれ、上記鋼組成におけるTi、N、SおよびCの含有量を表し、表層10μm以内に含まれ、かつ、下記式(1)および(2)を満たす析出物aが、下記式(3)を満たし、更に、表層10μm以内に含まれ、かつ、下記式(4)および(5)を満たす析出物bが、下記式(6)を満たす、熱延鋼板。
(1)[S]/([S]+[Ti]+[Mn]+[Cu])≧20%
(2)[Ti]/([S]+[Ti]+[Mn]+[Cu])≧20%
(3)1%≦[Cu]/([Ti]+[Cu])≦5%
(4)[S]/([S]+[Ti]+[Mn]+[Cu])≧20%
(5)[Mn]/([S]+[Ti]+[Mn]+[Cu])>0%
(6)[Mn]/([S]+[Mn])≦20%
 ただし、[S]、[Ti]、[Mn]および[Cu]は、それぞれ、上記析出物aおよび上記析出物bにおけるS、Ti、MnおよびCuの原子数を表す。
 [2]上記鋼組成が、更に、Nb:0.001%以上0.010%以下、B:0.0002%以上0.0015%以下、および、Sb:0.001%以上0.030%以下、からなる群から選ばれる少なくとも1種を含有する、上記[1]に記載の熱延鋼板。
 [3]Cu:0.030%超0.100%以下、であって、かつ、Sb:0.001%以上0.030%以下、である、上記[2]に記載の熱延鋼板。
 [4]上記[1]~[3]のいずれかに記載の鋼組成を有するスラブを、1200℃以上1300℃以下の加熱温度で4時間以上保持してから、Ar点以上の仕上げ圧延温度で熱間圧延を施し、その後、680℃以上750℃以下の巻取温度で巻き取り、熱延鋼板を得る、熱延鋼板の製造方法。
 本発明によれば、冷延鋼板とした後に評価される外観が優れる熱延鋼板を提供することができる。
 また、本発明によれば、上記熱延鋼板を製造する方法を提供することもできる。
[本発明者らが得た知見]
 Cuは、積極的に添加される元素ではなく、鉄資源から混入して除去が困難なトランプエレメントである。Cu量が0.005%超である熱延鋼板を冷延鋼板(IF鋼板)としたときに、外観が不十分である場合があった。
 そこで、本発明者らは、熱延鋼板の表層の析出物と、冷間圧延および焼鈍後の冷延鋼板の表層組織との関係について、詳細に検討を重ねた。熱延鋼板の表層の析出物を調べたのは、熱延段階での析出物の形態が、冷間圧延後の焼鈍での再結晶に大きな影響を与えるためである。その結果、次の知見を得た。
 1)熱延鋼板で観察される析出物は、主に、TiC、TiN、TiS、Ti、MnS、CuSおよびこれらの複合である。
 2)CuSは、単独で微細に析出する場合と、粗大なTiSに複合して析出する場合とがある。
 3)CuSが単独で微細に析出した熱延鋼板に冷間圧延および焼鈍を施すと、一部に未再結晶粒が残存する。
 4)MnS量が増大すると、微細なTiC析出物が増え、冷間圧延および焼鈍の後に、未再結晶粒が残存する。
 すなわち、Cuを0.005%超含む極低炭素鋼において、再結晶を抑制する有害な微細析出物は、単独で析出するCuSと、TiCである。
 Cuを含む硫化物の析出を完全に抑制するのは困難であるが、粗大な析出物に複合させれば、再結晶に対しては無害である。
 また、炭素を、微細なTiCではなく、粗大なTiとして析出させると、再結晶が抑制されにくい。そのため、Tiとして析出可能なSを固定してしまうMnSの析出を抑制すればよい。
 そこで、微細なCuSおよびTiCの析出を抑制するため、更に詳細に熱延鋼板の析出物について調べて、以下の知見を得た。
 5)オーステナイト域で析出する硫化物は、TiSおよびMnSの2種類であり、TiおよびCuSは観察されない。MnSは1200℃以上の温度で溶解する。
 6)オーステナイト域で析出したTiSは、フェライト域で一部が溶ける。巻取り工程では、TiSから溶けたSが、Ti、CuSおよびMnSとして再析出する。
 7)オーステナイト域で析出するTiSの大きさが100nm未満であると、フェライト域でTiSが完全に溶け、微細かつ単独のMnSまたはCuSが析出する。オーステナイト域で析出するTiSの大きさが100nm以上であると、フェライト域でTiSが溶け残り、溶け残ったTiSに、MnS、CuSおよび/またはTiが複合して析出する。
 8)巻取り温度が680℃未満では、巻取り温度の低下に伴いTiSから溶けたSのうち、MnSとして再析出する量が増加する。結果として、Tiの析出が減り、炭素がTiCとして析出する。
 よって、オーステナイト域で1200℃以上に加熱することにより、MnSとして固定されるSを減らすことができる。更に長時間保持することによりTiSが100nm以上の大きさに粗大化し、フェライト域でCuSが再析出しても粗大なTiSに複合析出する。また、巻取り温度を適切に制御することにより、TiSから溶けたSがMnSとして再析出する量を抑制し、SをCとともにTiとして固定できる。
 本発明は、以上のような知見に基づいて、なされたものである。
[熱延鋼板]
 本発明の熱延鋼板は、質量%で、C:0.0005%以上0.0100%以下、Si:0.20%以下、Mn:0.50%以下、P:0.030%以下、S:0.005%以上0.030%以下、Ti:0.020%以上0.100%以下、Al:0.01%以上0.05%以下、N:0.005%以下、および、Cu:0.005%超0.100%以下、を含み、残部はFeおよび不可避的不純物からなり、Ti=(Ti%)-(24/7)×(N%)-(3/2)×(S%)-4×(C%)で定義されるTiが、0<Ti<0.0200を満たし、かつ、{(1/12)×(C%)}/{(1/32)×(S%)}<1.00を満たす鋼組成を有し、ただし、(Ti%)、(N%)、(S%)および(C%)は、それぞれ、上記鋼組成におけるTi、N、SおよびCの含有量を表し、表層10μm以内に含まれ、かつ、下記式(1)および(2)を満たす析出物aが、下記式(3)を満たし、更に、表層10μm以内に含まれ、かつ、下記式(4)および(5)を満たす析出物bが、下記式(6)を満たす、熱延鋼板である。
(1)[S]/([S]+[Ti]+[Mn]+[Cu])≧20%
(2)[Ti]/([S]+[Ti]+[Mn]+[Cu])≧20%
(3)1%≦[Cu]/([Ti]+[Cu])≦5%
(4)[S]/([S]+[Ti]+[Mn]+[Cu])≧20%
(5)[Mn]/([S]+[Ti]+[Mn]+[Cu])>0%
(6)[Mn]/([S]+[Mn])≦20%
 ただし、[S]、[Ti]、[Mn]および[Cu]は、それぞれ、上記析出物aおよび上記析出物bにおけるS、Ti、MnおよびCuの原子数を表す。
 本発明の熱延鋼板は、冷延鋼板とした後に評価される外観が優れる。
 本発明の熱延鋼板の板厚は、特に限定されないが、例えば、2.0mm以上4.5mm以下であり、2.3mm以上4.0mm以下が好ましい。
 〈ミクロ組織〉
 まず、本発明の熱延鋼板において、ミクロ組織として観察される析出物について説明する。本発明においては、熱延鋼板の表層10μm以内に含まれる析出物の状態を把握し、制御することが重要である。
 鋼板の析出物の状態を把握する手法としては、鋼板の母相のみを溶かして、析出物を抽出し、抽出した析出物を定量分析する化学分析的手法が用いられることがある。しかし、この手法では、複数種類の析出物が単独で析出しているか複合して析出しているかを判定することが困難である。
 このため、本発明において、熱延鋼板の析出物の状態は、個々の析出物を、電子顕微鏡を用いて組成分析することにより把握する。組成分析は、特性X線の強度を調べるエネルギー分散型X線分光(EDS)により行なう。
 複合析出物は、析出物の場所により異なる組成を示すため、空間的に連続してつながった析出物は一つの粒子と見なし、この粒子全体の組成を析出物の組成とする。
 熱延鋼板の表層10μm以内に含まれる、以下に説明する析出物について、1000個以上組成分析を行ない、統計分析する。
 なお、熱延鋼板の「表層10μm以内」とは、熱延鋼板の「スケールを含まない表面から厚さ方向に10μm以内」を意味する。
 《析出物a》
 本発明においては、熱延鋼板の表層10μm以内に含まれ、かつ、下記式(1)および(2)を満たす析出物aが、下記式(3)を満たす。
(1)[S]/([S]+[Ti]+[Mn]+[Cu])≧20%
(2)[Ti]/([S]+[Ti]+[Mn]+[Cu])≧20%
(3)1%≦[Cu]/([Ti]+[Cu])≦5%
 ただし、[S]、[Ti]、[Mn]および[Cu]は、それぞれ、上記析出物aにおけるS、Ti、MnおよびCuの原子数を表す。
 CuSについては、単独で析出する微細なCuSの析出を抑制し、粗大なTiSに複合して析出させることが重要である。CuSの析出状態は、TiSに含まれるCu量によって知ることができる。
 析出物がTiSであるか否かは、粒子の組成分析により判定できる。
 具体的には、S、Ti、MnおよびCuの原子数の合計を100%としたときに、Sの原子数が20%以上、Tiの原子数が20%以上である析出物、すなわち、上記式(1)および(2)を満たす析出物(析出物a)は、TiSであると判定できる。
 この場合、TiもTiSと判定されるが、CuSおよびMnSの析出状態を知るうえでは、問題ない。
 そして、TiSであると判定された析出物aについて、TiおよびCuの原子数の合計を100%としたときにCuの原子数が1%以上5%以下である場合、すなわち、上記式(3)を満たす場合は、CuSはTiSに複合して析出しており、再結晶を抑制する単独かつ微細なCuSの析出は抑制される。
 析出物aについて、TiおよびCuの原子数の合計を100%としたときにCuの原子数が1%未満である場合、すなわち、1%>[Cu]/([Ti]+[Cu])である場合は、CuSは単独で微細に析出している。CuSは、単独で微細に析出すると、冷間圧延後の焼鈍での再結晶が抑制され、外観が劣る。単独で微細に析出したCuSを直接的に分析することは困難であるが、TiSに複合して析出したCuSの量を調べることで、微細なCuSが単独で析出しているか否かを判定できる。
 一方、析出物aについて、TiおよびCuの原子数の合計を100%としたときにCuの原子数が5%超である場合、すなわち、[Cu]/([Ti]+[Cu])>5%である場合は、鋼中に含まれるCu量が過剰となる場合であり、表面のCuS析出が多くTiが減りTiC析出が増加したり、熱間脆性が劣ったりする。
 《析出物b》
 更に、本発明においては、熱延鋼板の表層10μm以内に含まれ、かつ、下記式(4)および(5)を満たす析出物bが、下記式(6)を満たす。
(4)[S]/([S]+[Ti]+[Mn]+[Cu])≧20%
(5)[Mn]/([S]+[Ti]+[Mn]+[Cu])>0%
(6)[Mn]/([S]+[Mn])≦20%
 ただし、[S]、[Ti]、[Mn]および[Cu]は、それぞれ、上記析出物bにおけるS、Ti、MnおよびCuの原子数を表す。
 MnSについて説明する。MnSは、Sを固定し、微細なTiCを析出しやすくする。このため、本発明においては、MnSの析出を抑制する。MnSの析出状態は、上記と同様に、電子顕微鏡を用いた組成分析により知ることができる。
 MnSは、オーステナイト域で単独で析出するもの、フェライト域で単独で微細に析出するもの、および、フェライト域でTiSに複合して析出するものがあるが、いずれも、Sと結合する。
 このため、析出物に含まれるS、Ti、MnおよびCuの原子数の合計を100%としたときに、Sの原子数が20%以上であり、かつ、Mnが含まれている場合には、すなわち、上記式(4)および(5)を満たす場合には、この析出物は、MnSとして析出していると判定できる。
 MnS析出の完全な抑制は困難であるが、MnSであると判定された析出物bについて、SおよびMnの原子数の合計を100%としたときに、Mnの原子数が20%以下である場合、すなわち、上記式(6)を満たす場合は、MnSに固定されるSが少なくなり、Tiの析出が増え、微細なTiCの析出が減る。
 析出物bにおいて、SおよびMnの原子数の合計を100%としたときに、Mnの原子数は15%以下が好ましい。すなわち、下記式(7)を満たすことが好ましい。
(7)[Mn]/([S]+[Mn])≦15%
 〈鋼組成〉
 次に、本発明の熱延鋼板の鋼組成について説明する。以下の鋼組成の説明において、特に断わりの無い限り、「%」は「質量%」を表す。
 《C:0.0005%以上0.0100%以下》
 Cは、固溶強化元素であり降伏強度の上昇に寄与するが、深絞り性等の加工性に優れるIF鋼板を得るためには、極力低減することが好ましい。
 C量が多すぎると、微細なTiCが析出しやすくなり、かつ、固溶Cを減らすことが困難となる。このため、C量は、0.0100%以下であり、0.0040%以下が好ましく、0.0030%以下がより好ましい。
 一方、C量を0.0005%未満にすると脱炭コストの増大を招くことから、C量は、0.0005%以上であり、0.0010%以上が好ましい。
 《Si:0.20%以下》
 Siは、固溶強化元素であるが、スケール外観を悪化させ、かつ、めっき処理を施す場合はめっき濡れ性を低下させる。このため、Si量は、0.20%以下であり、0.15%以下が好ましく、0.10%以下がより好ましい。
 Si量は、下限は特に限定されないが、例えば、0.01%以上である。
 《Mn:0.50%以下》
 Mnは、固溶強化元素であるが、過度に添加すると、MnSが析出して、Tiを減らし、微細なTiCが析出しやすくなる。このため、Mn量は、0.50%以下であり、0.40%以下が好ましく、0.30%以下がより好ましい。
 Mn量は、下限は特に限定されないが、例えば、0.01%以上である。
 《P:0.030%以下》
 Pは、固溶強化元素であるが、過度に添加すると、熱間割れの原因となり、また、スケールの均一性も低下する。このため、P量は、0.030%以下であり、0.023%以下が好ましく、0.015%以下がより好ましい。
 P量は、下限は特に限定されないが、例えば、0.001%以上である。
 《S:0.005%以上0.030%以下》
 Sは、本発明において重要な元素であり、固溶CをTiとして固定する役割を持つ。S量が少なすぎると、微細なTiCとして析出するCが増える。このため、S量は、0.005%以上であり、0.010%以上が好ましい。
 一方、Sが多すぎると熱間割れの原因となることから、S量は、0.030%以下であり、0.025%以下が好ましく、0.015%以下がより好ましい。
 《Ti:0.020%以上0.100%以下》
 Tiは、本発明において重要な元素であり、オーステナイト域ではTiSとしてSを固定してMnS析出を抑制するほか、CuS析出の核となり、微細なCuSの単独析出を防ぐ役割がある。また、Tiは、Tiとして固溶Cを減らす役割を持つ。このような効果を得るために、Ti量は、0.020%以上であり、0.030%以上が好ましい。
 一方、Tiが多すぎると微細なTiCが析出しやすくなることから、Ti量は、0.100%以下であり、0.080%以下が好ましく、0.070%以下がより好ましく、0.060%以下が更に好ましい。
 《Al:0.01%以上0.05%以下》
 Alは、脱酸材として機能する。その効果を得るために、Al量は、0.01%以上であり、0.02%以上が好ましい。
 一方、Alを多量に含有しても、その効果は飽和することから、Al量は、0.05%以下であり、0.04%以下が好ましい。
 《N:0.005%以下》
 Nは、IF鋼板の延性および深絞り性を低下させる作用を持つことから、少ないほど好ましい。このため、N量は、0.005%以下であり、0.004%以下が好ましい。
 N量は、下限は特に限定されないが、例えば、0.001%以上である。
 《Cu:0.005%超0.100%以下》
 上述したように、Cu量が0.005%超であると外観が不十分な場合があるが、本発明は、Cu量が0.005%超であっても良好な外観が得られるようにするものである。一方、Cuが過剰であると粒界割れが生じることから、Cu量は0.100%以下とする。外観がより優れるという理由から、Cu量は0.030%以下が好ましく、0.027%以下がより好ましく、0.023%以下が更に好ましい。
 Cu量が0.030%超である場合、表面のCuS析出量が増え、Ti析出が抑制されて、微細なTiCが析出しやすいことがある。このため、Cu量が0.030%超である場合は、後述するように、更にSbを含有することが好ましい。このとき、Sb量は、0.001%以上0.030%以下が好ましい。
 《Nb、BおよびSn》
 本発明の熱延鋼板における鋼組成は、更に、Nb:0.001%以上0.010%以下、B:0.0002%以上0.0015%以下、および、Sb:0.001%以上0.030%以下、からなる群から選ばれる少なくとも1種を含有することが好ましい。
 (Nb:0.001%以上0.010%以下)
 Nbは、Tiと同様に炭窒化物を形成し、固溶Cおよび固溶Nを低減する効果を持つ。そのような効果を得るために、Nb量は、0.001%以上が好ましく、0.003%以上がより好ましい。
 一方、Nbが過剰に含まれると焼鈍での再結晶が抑制され得ることから、Nb量は、0.010%以下が好ましく、0.005%以下がより好ましい。
 (B:0.0002%以上0.0015%以下)
 Bは、IF鋼板の粒界強化に有効な元素であり、耐二次加工脆性が必要とされる場合には、B量は、0.0002%以上が好ましく、0.0003%以上がより好ましく、0.0004%以上が更に好ましい。
 一方、過剰に添加すると、効果が飽和するばかりでなく、熱間圧延抵抗が増加する場合があることから、B量は、0.0015%以下が好ましく、0.0012%以下がより好ましく、0.0010%以下が更に好ましい。
 (Sb:0.001%以上0.030%以下)
 上述したCuは、熱延鋼板の表面に濃化しやすい元素であるが、Sbの添加によりCuの表面濃化を抑える効果がある。これにより、多量のCuSが表面に析出しSが枯渇してTi析出が抑制され微細なTiCが表面に析出することが抑制される。また、表面の窒化を抑制し、焼鈍での表層の微細なTiNの析出を抑制する効果がある。このような効果を得るために、Sb量は、0.001%以上が好ましく、0.002%以上がより好ましく、0.003%以上が更に好ましい。
 一方、Sbが過剰に含まれると表面スケールが不均一になることから、Sb量は、0.030%以下が好ましく、0.015%以下がより好ましく、0.012%以下が更に好ましい。
 《残部》
 上記鋼組成において、残部は、Feおよび不可避的不純物である。
 《Ti
 更に、本発明の熱延鋼板の鋼組成は、Ti=(Ti%)-(24/7)×(N%)-(3/2)×(S%)-4×(C%)で定義されるTiが、0<Ti<0.0200を満たす。ただし、(Ti%)、(N%)、(S%)および(C%)は、それぞれ、上記鋼組成におけるTi、N、SおよびCの含有量を表す。
 この規定は、下記2式に48をかけることにより導かれる。
 (1/48)×Ti=(1/48)×(Ti%)-(1/14)×(N%)-(1/32)×(S%)-(1/12)×(C%)
 0<(1/48)×Ti<(1/48)×0.0200
 Tiは、固溶Cおよび固溶Nを減らすために添加される。Tiを原子数でNよりも多く添加することにより、オーステナイト域でNを固定できる。Tiはオーステナイト域では更にTiSとして析出し、残ったTiがフェライト域でCを固定する。このような効果を得るため、0<Tiとする。これを満たさない場合は、Cを完全に固定できない。このような効果がより優れるという理由から、0.0004≦Tiが好ましく、0.0007≦Tiがより好ましく、0.0010≦Tiが更に好ましい。
 一方、Ti≧0.02であると、固溶Tiが多く、焼鈍で表層の窒化が生じ、微細なTiNが生成する。このため、Ti<0.0200とし、Ti≦0.0180が好ましく、Ti≦0.0150がより好ましく、Ti≦0.0130が更に好ましい。
 《{(1/12)×(C%)}/{(1/32)×(S%)}<1.00》
 本発明の熱延鋼板の鋼組成は、{(1/12)×(C%)}/{(1/32)×(S%)}<1.00を満たす。ただし、(S%)および(C%)は、それぞれ、上記鋼組成におけるSおよびCの含有量を表す。
 この規定は、下記式より導かれる。
 (1/32)×(S%)>(1/12)×(C%)
 Sは、CuS、TiS、MnS、Tiなどの様々な形態で析出し、微細なTiCの析出に影響を及ぼす。原子数でS≦Cである場合はCが微細なTiCとして析出しやすくなるが、原子数でS>Cを満たすことにより、CがTiとして析出する。
[熱延鋼板の製造方法]
 次に、上述した本発明の熱延鋼板を製造する方法の好適態様(以下、単に「本発明の製造方法」ともいう)について説明する。
 本発明の製造方法は、上述した鋼組成を有するスラブを、1200℃以上1300℃以下の加熱温度で4時間以上保持してから、Ar点以上の仕上げ圧延温度で熱間圧延を施し、その後、680℃以上750℃以下の巻取温度で巻き取り、熱延鋼板を得る、熱延鋼板の製造方法である。
 上述した鋼組成を有するスラブは、例えば、上述した鋼組成を有する溶鋼を連続鋳造することにより、得られる。
 〈1200℃以上1300℃以下の加熱温度で4時間以上保持〉
 スラブの加熱温度および保持時間は、CuSおよびMnSの析出状態を制御するために重要である。加熱温度を1200℃以上とすることにより、鋳造時などに析出するMnSを固溶させ、更に、SをTiSとして固定できる。加熱温度は、1210℃以上が好ましく、1220℃以上がより好ましい。
 加熱温度が1200℃未満であると、MnSが析出する。また、TiSの大きさが100nm未満となり、フェライト域でTiSが完全に溶けて、微細なCuSが単独で析出する。
 加熱温度が1300℃超であると、TiSが溶け始めて固溶Sが増大し、フェライト域で単独で微細に析出するCuSが析出する。また、エネルギー消費が大きく、スケールロスも大きくなる。このため、加熱温度は1300℃以下とし、1280℃以下が好ましく、1260℃以下がより好ましい。
 保持時間は、4時間未満であると、加熱温度が1200℃以上であってもMnSが溶け残る。また、TiSが100nm以上に粗大化せず、フェライト域でCuSを粗大TiSに複合析出させることができない。このため、保持時間は4時間以上とし、5時間以上が好ましい。
 保持時間は、上限は特に限定されないが、例えば、10時間以下であり、8時間以下が好ましい。
 〈スケール除去および粗圧延〉
 上記条件で加熱保持されたスラブは、後述する熱間圧延が施される前に、スケール除去および粗圧延が施されることが好ましい。
 〈Ar点以上の仕上げ圧延温度で熱間圧延〉
 仕上げ圧延温度がAr点未満の温度であると、フェライトが生成するため、圧延組織が極めて不均一になる。このため、Ar点以上の仕上げ圧延温度で熱間圧延する。
 一方、仕上げ圧延温度は、スケールロスが小さくなることから、Ar点+100℃以下が好ましい。Ar点(単位:℃)は、下記式から求める。下記式中の各元素記号は、それぞれ、スラブの鋼組成における各元素の含有量(単位:質量%)を表す。
 Ar=910-310×C-80×Mn-20×Cu-15×Cr-55×Ni-80×Mo
 〈680℃以上750℃以下の巻取温度で巻き取り〉
 MnSおよび炭素の析出形態を制御するうえで、巻取温度は重要である。巻取温度を680℃以上750℃以下とすることにより、TiSが溶け、SがTiおよびCuSとして析出する。このとき、スラブの加熱温度が1200℃以上1300℃以下であって、かつ、保持時間が4時間以上であれば、オーステナイト域で析出するTiSが粗大であるため、TiSが溶け残り、TiおよびCuSがTiSに複合して析出する。
 巻取温度が680℃未満であると、Tiの析出が抑制されて、MnSおよび微細なTiCが析出する。このため、巻取温度は、680℃以上であり、685℃以上が好ましく、690℃以上がより好ましい。
 一方、巻取温度が750℃超であると、スケールロスが大きくなる。このため、巻取温度は、750℃以下であり、740℃以下が好ましく、730℃以下がより好ましい。
[熱延鋼板に施される処理]
 本発明の熱延鋼板に対して施される処理については、特に限定されず、例えば、以下に示すような従来公知の処理を施すことができる。各種処理の条件は、特に限定されず、常法に従えばよい。
 例えば、本発明の熱延鋼板に、冷間圧延を施して冷延鋼板を得る。冷間圧延の前に、表面に生成したスケールを除去するため、酸洗を行なってもよい。冷間圧延の圧下率は、自動車用外板を製造する際には、例えば50~90%程度である。
 次いで、得られた冷延鋼板は、圧延油の脱脂や汚れを除くために洗浄された後、焼鈍(再結晶焼鈍)される。焼鈍温度は、例えば、700℃以上Ac変態点以下が好ましい。
 焼鈍後の冷延鋼板に対して、めっき処理が施される。こうして、表面にめっき層を有する冷延鋼板が得られる。めっき処理としては、例えば、溶融亜鉛めっき処理、溶融亜鉛めっき処理および合金化処理、ならびに、電気亜鉛めっき処理が挙げられる。溶融亜鉛めっき処理および合金化処理を行なう場合、冷延鋼板の表面には、合金化溶融亜鉛めっき層が形成される。各種めっき処理の条件も、特に限定されず、常法に従えばよい。
 めっき処理後、調質圧延を行なってもよい。調質圧延の圧延率は、例えば、0.5~1.5%程度である。
 以下に、実施例を挙げて本発明を具体的に説明する。ただし、本発明はこれらに限定されない。
 〈製造〉
 下記表1または表2に示す鋼組成を有する溶鋼を、真空脱ガス処理後、連続鋳造することにより、スラブを得た。次いで、得られたスラブを、下記表3または表4に示す条件で、加熱保持し、板厚3.5mmまで熱間圧延し、巻き取りを行ない、熱延鋼板を得た。
 次に、得られた熱延鋼板を、塩酸を用いて酸洗し、80%の圧下率で冷間圧延した後、840℃の焼鈍温度で焼鈍し、冷延鋼板を得た。得られた冷延鋼板に、更に、溶融亜鉛めっき処理および合金化処理を施して、合金化溶融亜鉛めっき鋼板を得た。溶融亜鉛めっき処理では、冷延鋼板を溶融亜鉛めっき浴(浴温:470℃、浴組成:Zn-0.14質量%Al)に浸漬し、めっき層の付着量が片面あたり45g/mとなるように調整した。合金化処理の合金化温度は、520℃とした。
 〈熱延鋼板のミクロ組織〉
 得られた酸洗後の熱延鋼板について、表層10μm以内に含まれる析出物の組成分析を行なった。具体的には、まず、酸洗後の熱延鋼板を、10mm×10mm×板厚に切断し、試験片を得た。試験片の片側表面を5μm研磨した後、10%AA系電解液(10体積%のアセチルアセトン-1質量%の塩化テトラメチルアンモニウム-メタノール)を用いて、研磨表面を更に電解研磨し、析出物を遊離させた。遊離した析出物を、C蒸着膜に転写してレプリカ試料とした。レプリカ試料を、Ni製のメッシュに乗せ、走査型透過電子顕微鏡(STEM)観察用の試料ホルダーに設置し、走査型電子顕微鏡(SEM)の試料室にセットし、SEMで析出物の組成分析を行なった。より詳細には、支持膜であるC蒸着膜とは異なるコントラストを析出物とし、空間的に連続した粒子全体に電子線を照射し、EDSにより元素分析を行なった。電子線の加速電圧は15kVとし、1粒子あたり5秒間、電子線を照射して、X線スペクトルを記録した。X線の強度をもとに、元素を定量した。
 上述した式(1)および(2)を満たす析出物aをTiSであると判定した。
TiSであると判定される析出物aの分析数が1000個以上になるまで、異なる粒子を測定し、X線スペクトルを記録した。1000個以上のTiS粒子(析出物a)について、X線スペクトルを積算し、SN比の良いTiS合計スペクトルを得た。積算した理由は、1スペクトルあたり5秒間の分析では、スペクトルのSN比が悪く、微量Cuの存在の確認および定量ができないためである。TiS合計スペクトルに対して、TiおよびCuの定量分析を行ない、析出物aについて、[Cu]/([Ti]+[Cu])の値(単位:%)を求めた。結果を下記表3または表4に示す。
 同様に、上述した式(4)および(5)を満たす析出物bの分析数が1000個以上になるまで、異なる粒子を測定し、X線スペクトルを記録した。X線スペクトルを積算して得られた合計スペクトルに対して、SおよびMnの定量分析を行ない、析出物bについて、[Mn]/([S]+[Mn])の値(単位:%)を求めた。結果を下記表3または表4に示す。
 〈外観〉
 得られた合金化溶融亜鉛めっき鋼板から、圧延方向30mm、圧延直角方向100mmの試験板を切り出した。切り出した試験板に対して、圧延直角方向に10%引張加工を加えた。引張加工後の試験板の表面を、800番の砥石で圧延直角方向(引張方向と平行な方向)に砥石掛けし、圧延方向に沿った筋状欠陥の有無を目視で確認した。筋状欠陥が生じていた場合には「×」を、筋状欠陥が生じていなかった場合には「○」を下記表3または表4に記載した。「○」であれば外観に優れるものとして評価できる。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 上記表1~表4中、下線部は、本発明の範囲外または好適範囲外を示す。
 上記表1~表4に示す結果から明らかなように、発明例の熱延鋼板を用いた場合は、外観が優れていた。
 これに対して、鋼組成が本発明の範囲外である、上述した式(1)および(2)を満たす析出物aが上述した式(3)を満たさない、および/または、上述した式(4)および(5)を満たす析出物bが上述した式(6)を満たさない比較例の熱延鋼板を用いた場合は、外観が不十分であった。

Claims (4)

  1.  質量%で、
     C:0.0005%以上0.0100%以下、
     Si:0.20%以下、
     Mn:0.50%以下、
     P:0.030%以下、
     S:0.005%以上0.030%以下、
     Ti:0.020%以上0.100%以下、
     Al:0.01%以上0.05%以下、
     N:0.005%以下、および、
     Cu:0.005%超0.100%以下、
    を含み、残部はFeおよび不可避的不純物からなり、
     Ti=(Ti%)-(24/7)×(N%)-(3/2)×(S%)-4×(C%)で定義されるTiが、0<Ti<0.0200を満たし、かつ、
     {(1/12)×(C%)}/{(1/32)×(S%)}<1.00を満たす鋼組成を有し、
     ただし、(Ti%)、(N%)、(S%)および(C%)は、それぞれ、前記鋼組成におけるTi、N、SおよびCの含有量を表し、
     表層10μm以内に含まれ、かつ、下記式(1)および(2)を満たす析出物aが、下記式(3)を満たし、
    (1)[S]/([S]+[Ti]+[Mn]+[Cu])≧20%
    (2)[Ti]/([S]+[Ti]+[Mn]+[Cu])≧20%
    (3)1%≦[Cu]/([Ti]+[Cu])≦5%
     更に、表層10μm以内に含まれ、かつ、下記式(4)および(5)を満たす析出物bが、下記式(6)を満たす、熱延鋼板。
    (4)[S]/([S]+[Ti]+[Mn]+[Cu])≧20%
    (5)[Mn]/([S]+[Ti]+[Mn]+[Cu])>0%
    (6)[Mn]/([S]+[Mn])≦20%
     ただし、[S]、[Ti]、[Mn]および[Cu]は、それぞれ、前記析出物aおよび前記析出物bにおけるS、Ti、MnおよびCuの原子数を表す。
  2.  前記鋼組成が、更に、
     Nb:0.001%以上0.010%以下、
     B:0.0002%以上0.0015%以下、および、
     Sb:0.001%以上0.030%以下、
    からなる群から選ばれる少なくとも1種を含有する、請求項1に記載の熱延鋼板。
  3.  Cu:0.030%超0.100%以下、
    であって、かつ、
     Sb:0.001%以上0.030%以下、
    である、請求項2に記載の熱延鋼板。
  4.  請求項1~3のいずれか1項に記載の鋼組成を有するスラブを、1200℃以上1300℃以下の加熱温度で4時間以上保持してから、Ar点以上の仕上げ圧延温度で熱間圧延を施し、その後、680℃以上750℃以下の巻取温度で巻き取り、熱延鋼板を得る、熱延鋼板の製造方法。
PCT/JP2019/033020 2018-10-17 2019-08-23 熱延鋼板およびその製造方法 WO2020079956A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019565953A JP6687174B1 (ja) 2018-10-17 2019-08-23 熱延鋼板およびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-195545 2018-10-17
JP2018195545 2018-10-17

Publications (1)

Publication Number Publication Date
WO2020079956A1 true WO2020079956A1 (ja) 2020-04-23

Family

ID=70284554

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/033020 WO2020079956A1 (ja) 2018-10-17 2019-08-23 熱延鋼板およびその製造方法

Country Status (2)

Country Link
JP (1) JP6687174B1 (ja)
WO (1) WO2020079956A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010095753A (ja) * 2008-10-15 2010-04-30 Sumitomo Metal Ind Ltd 熱延鋼板およびその製造方法
JP2011231373A (ja) * 2010-04-28 2011-11-17 Jfe Steel Corp 合金化溶融亜鉛めっき鋼板およびその製造方法
JP2011236469A (ja) * 2010-05-11 2011-11-24 Jfe Steel Corp 冷延鋼板およびその製造方法
JP2012012672A (ja) * 2010-07-01 2012-01-19 Jfe Steel Corp 冷延鋼板
WO2017212906A1 (ja) * 2016-06-10 2017-12-14 Jfeスチール株式会社 燃料電池のセパレータ用ステンレス鋼板およびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010095753A (ja) * 2008-10-15 2010-04-30 Sumitomo Metal Ind Ltd 熱延鋼板およびその製造方法
JP2011231373A (ja) * 2010-04-28 2011-11-17 Jfe Steel Corp 合金化溶融亜鉛めっき鋼板およびその製造方法
JP2011236469A (ja) * 2010-05-11 2011-11-24 Jfe Steel Corp 冷延鋼板およびその製造方法
JP2012012672A (ja) * 2010-07-01 2012-01-19 Jfe Steel Corp 冷延鋼板
WO2017212906A1 (ja) * 2016-06-10 2017-12-14 Jfeスチール株式会社 燃料電池のセパレータ用ステンレス鋼板およびその製造方法

Also Published As

Publication number Publication date
JP6687174B1 (ja) 2020-04-22
JPWO2020079956A1 (ja) 2021-02-15

Similar Documents

Publication Publication Date Title
EP2762590B1 (en) Galvanized steel sheet and method of manufacturing same
WO2010061972A1 (ja) 成形性に優れた高強度冷延鋼板、高強度溶融亜鉛めっき鋼板およびそれらの製造方法
JP6123957B1 (ja) 高強度鋼板およびその製造方法
EP3950975A1 (en) Steel sheet
JP6311843B2 (ja) 薄鋼板およびめっき鋼板、並びに、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法
CN111511945A (zh) 高强度冷轧钢板及其制造方法
JP5446430B2 (ja) 冷延鋼板と合金化溶融亜鉛めっき鋼板およびそれらの製造方法
JP6111522B2 (ja) 高強度溶融亜鉛めっき鋼板及びその製造方法
WO2018143318A1 (ja) 溶融亜鉛めっき鋼板およびその製造方法
JP5391607B2 (ja) 外観に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
WO2014119259A1 (ja) 高強度熱延鋼板およびその製造方法
WO2013111362A1 (ja) 合金化溶融亜鉛めっき鋼板
EP2993247B1 (en) Galvanized steel sheet and production method therefor
EP3617336A1 (en) High strength steel sheet and method for manufacturing same
JP6131872B2 (ja) 高強度薄鋼板およびその製造方法
JP6744003B1 (ja) 鋼板
WO2021079754A1 (ja) 高強度鋼板およびその製造方法
JP5655363B2 (ja) 合金化溶融亜鉛めっき鋼板およびその製造方法
JPWO2021079753A1 (ja) 高強度鋼板およびその製造方法
WO2017131052A1 (ja) 温間加工用高強度鋼板およびその製造方法
JP2013104114A (ja) 曲げ加工性に優れた冷延鋼板およびその製造方法
JP4957829B2 (ja) 冷延鋼板およびその製造方法
JP6687174B1 (ja) 熱延鋼板およびその製造方法
CN114945694A (zh) 钢板及其制造方法
CN114761596B (zh) 钢板及其制造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019565953

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19873711

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19873711

Country of ref document: EP

Kind code of ref document: A1