WO2020079775A1 - 測距装置及び測距方法 - Google Patents

測距装置及び測距方法 Download PDF

Info

Publication number
WO2020079775A1
WO2020079775A1 PCT/JP2018/038655 JP2018038655W WO2020079775A1 WO 2020079775 A1 WO2020079775 A1 WO 2020079775A1 JP 2018038655 W JP2018038655 W JP 2018038655W WO 2020079775 A1 WO2020079775 A1 WO 2020079775A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
pulse
pulses
time difference
transmission pulse
Prior art date
Application number
PCT/JP2018/038655
Other languages
English (en)
French (fr)
Inventor
栄実 野口
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2020551649A priority Critical patent/JPWO2020079775A1/ja
Priority to PCT/JP2018/038655 priority patent/WO2020079775A1/ja
Priority to US17/283,300 priority patent/US20210389432A1/en
Priority to EP18937474.7A priority patent/EP3869231B1/en
Publication of WO2020079775A1 publication Critical patent/WO2020079775A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4865Time delay measurement, e.g. time-of-flight measurement, time of arrival measurement or determining the exact position of a peak
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • G01S17/14Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves wherein a voltage or current pulse is initiated and terminated in accordance with the pulse transmission and echo reception respectively, e.g. using counters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • G01S17/26Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves wherein the transmitted pulses use a frequency-modulated or phase-modulated carrier wave, e.g. for pulse compression of received signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/484Transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/487Extracting wanted echo signals, e.g. pulse detection

Definitions

  • the present invention relates to a distance measuring device and a distance measuring method, and more particularly to a distance measuring device and a distance measuring method for performing distance measurement by transmitting a pulse and receiving a reflection thereof.
  • Time of Flight (ToF) method As a method for measuring the distance to a distance measurement target object.
  • a modulated optical pulse is radiated toward a distance measurement target object, and the reflection of the modulated light pulse from the distance measurement target object is received to reach the distance measurement target object. Calculate the distance.
  • the light pulse may be repeatedly transmitted periodically.
  • Patent Document 1 discloses a method of providing distance information of a scene by using a time-of-flight sensor or a time-of-flight camera.
  • the method according to US Pat. No. 6,096,898 is to emit a periodic optical signal towards a scene according to a modulated signal based on a clock timing having a reference frequency spread by a periodic perturbation having a perturbation frequency and a perturbation period; Receiving a reflection of the periodic optical signal from the, and evaluating the received reflection of the periodic optical signal for time-of-flight information over the set of measurement durations according to the modulated signal. , Deriving distance information from the time of flight information for the received reflections.
  • each measurement duration in the set is an integer or half-integer multiple of the perturbation period, and the average of the reference frequencies is kept constant throughout the set of measurement durations.
  • the time from the transmission of the optical pulse to the reception of the reflected light of the optical pulse is the transmission of the transmission pulse. It may be longer than the cycle. In such a case, it may not be possible to specify at what timing the received light is the reflected light of the transmission pulse transmitted. In other words, the received reflected light and the transmitted pulse may not be associated with each other. In such a case, the distance may not be properly measured.
  • the technique according to Patent Document 1 the emitted optical signal and the reflected light are not associated with each other. Therefore, the technique according to Patent Document 1 may not be able to perform appropriate distance measurement.
  • An object of the present disclosure is to solve such a problem, and it is possible to perform distance measurement appropriately without depending on the distance to the distance measurement target or the transmission cycle of the transmission pulse.
  • a distance measuring device and a distance measuring method are provided.
  • a distance measuring apparatus is a transmission pulse set configured by a plurality of transmission pulses in which the intensity of an optical signal changes in a pulse shape, and a time difference in which each of the plurality of transmission pulses is transmitted is the transmission pulse set
  • a generation unit configured to generate a transmission pulse set differently according to a transmission order, a transmission unit configured to repeatedly transmit the generated transmission pulse set, and a reflection pulse in which the transmission pulse is reflected by an object to be measured.
  • a specifying means for specifying a time difference when each of the plurality of received reflected pulses is received, a reception timing of the received reflected pulse, and the time difference specified for the reflected pulse.
  • Distance calculation means for calculating the distance to the object to be measured based on the transmission timing of the transmission pulse.
  • the distance measuring method is a transmission pulse set including a plurality of transmission pulses in which the intensity of an optical signal changes in a pulse shape, and the time difference between the transmission pulses is the transmission pulse set.
  • a transmission pulse set including a plurality of transmission pulses in which the intensity of an optical signal changes in a pulse shape
  • the time difference between the transmission pulses is the transmission pulse set.
  • to generate a transmission pulse set repeatedly transmits the generated transmission pulse set, the transmission pulse receives a reflection pulse reflected by the object to be measured, Based on the reception timing of the received reflection pulse and the transmission timing of the transmission pulse corresponding to the time difference specified with respect to the reflection pulse, the reception time difference of each of the received plurality of reflection pulses is specified. Then, the distance to the object to be measured is calculated.
  • a distance measuring device and a distance measuring method capable of appropriately performing distance measurement regardless of the distance to the distance measurement target or the transmission cycle of the transmission pulse.
  • FIG. 1 is a diagram showing a configuration of a distance measuring device according to a first embodiment.
  • FIG. 4 is a diagram for explaining the operation of the optical modulator according to the first embodiment.
  • 3 is a flowchart showing a distance measuring method executed by the distance measuring device according to the first embodiment.
  • 7 is a timing chart showing a relationship between a transmission pulse and a reflection pulse according to a comparative example.
  • FIG. 7 is a timing chart showing a relationship between a transmission pulse and a reflection pulse according to a comparative example.
  • 3 is a timing chart showing a relationship between a transmission pulse and a reflection pulse according to the first exemplary embodiment.
  • FIG. 6 is a diagram showing a configuration of a distance measuring device according to a second embodiment. It is a figure which shows the structure of the distance measuring device concerning Embodiment 3.
  • 9 is a timing chart showing a relationship between a transmission pulse and a reflection pulse according to the third embodiment. It is a figure which shows the structure of the distance measuring device concerning Embodiment 4.
  • 9 is a timing chart showing the relationship between a transmission pulse and a reflection pulse according to the fourth embodiment.
  • FIG. 1 is a diagram showing an outline of a distance measuring device 1 according to an embodiment of the present disclosure.
  • FIG. 2 is a diagram showing an outline of a distance measuring method executed by the distance measuring device 1 according to the embodiment of the present disclosure.
  • the ranging device 1 includes a generation unit 2 that functions as a generation unit, a transmission unit 4 that functions as a transmission unit, a reception unit 6 that functions as a reception unit, a specification unit 8 that functions as a specification unit, and a distance calculation unit. It has a functioning distance calculation unit 10.
  • the generation unit 2 generates a transmission pulse set including a plurality of transmission pulses in which the intensity of the optical signal changes like a pulse.
  • generation part 2 produces
  • the generation unit 2 may generate the transmission pulse set so that the plurality of transmission pulses forming the transmission pulse set have different frequency offsets with respect to the reference frequency.
  • the frequency offset is a shift (offset) with respect to a certain reference frequency.
  • the transmitter 4 repeatedly transmits the transmission pulse set generated by the generator 2 (step S14).
  • the receiving unit 6 receives the reflected pulse in which the transmitted pulse is reflected by the distance measurement target 90 (step S16).
  • the identification unit 8 identifies the time difference between the reception of the plurality of reflected pulses received by the reception unit 6 (step S18).
  • the distance calculation unit 10 determines the distance R to the object to be measured 90 based on the reception timing of the reflection pulse received by the reception unit 6 and the transmission timing of the transmission pulse corresponding to the time difference specified for the reflection pulse. Is calculated (step S20).
  • FIG. 3 is a diagram for explaining the outline of the method of calculating the distance to the distance measurement target 90 using the pulse.
  • FIG. 3 shows the operating principle of the ToF method.
  • the transmission unit 4 transmits the transmission pulses PlstA and PlstB at the transmission cycle (pulse cycle) Tp.
  • the pulse width which is the width of each transmission pulse, is Tw.
  • the reception unit 6 receives the reflection pulse PlsrA which is the reflected light.
  • the reception unit 6 receives the reflection pulse PlsrB that is the reflected light.
  • two transmission pulses PlstA and a transmission pulse PlstB are transmitted with a pulse cycle Tp, and a reflection pulse PlsrA and a reflection pulse PlsrB, which are respective reflected lights, are received.
  • the time difference Td may be longer than the pulse period Tp.
  • the pulse period Tp is short, the time difference Td may be longer than the pulse period Tp. That is, Td> Tp may be satisfied depending on the distance to the object 90 or the pulse cycle.
  • the next transmission pulse PlstB is transmitted before the reflection pulse PlsrA is received.
  • the received reflected pulse PlsrA is the reflected light of the transmission pulse PlstA or the reflected light of the transmission pulse PlstB
  • the distance cannot be properly measured. That is, when distance measurement is performed from the time difference between the transmission time of the transmission pulse PlstB and the reception time of the reflection pulse PlsrA, a distance shorter than the actual distance to the object 90 to be measured is calculated.
  • a transmission pulse set composed of a plurality of transmission pulses has a time difference in which each of the plurality of transmission pulses is transmitted depending on the transmission order of the transmission pulse set.
  • the distance measuring apparatus 1 according to the present embodiment generates the first transmission pulse set Ptset1 including the transmission pulse PlstA and the transmission pulse PlstA ′ accompanying the transmission pulse PlstA.
  • the distance measuring apparatus 1 according to the present embodiment generates the second transmission pulse set Ptset2 including the transmission pulse PlstB and the transmission pulse PlstB ′ accompanying the transmission pulse PlstB.
  • the time difference ⁇ T1 between the transmission time of the transmission pulse PlstA and the transmission time of the transmission pulse PlstA ′ is different from the time difference ⁇ T2 of the transmission time of the transmission pulse PlstB and the transmission time of the transmission pulse PlstB ′.
  • the distance measuring apparatus 1 according to the present embodiment is configured to specify the time difference between the reception time of the received reflection pulse PlsrA and the reception time of the reflection pulse PlsrA ′ reflected by the transmission pulse PlstA ′. .
  • the distance measuring apparatus 1 according to the present embodiment is configured to associate the transmission pulse PlstA and the reflection pulse PlsrA with each other. Therefore, the distance measuring device 1 and the distance measuring method according to the present embodiment can perform the distance measurement properly without depending on the distance to the object to be measured or the transmission cycle of the transmission pulse.
  • FIG. 4 is a diagram showing a configuration of the distance measuring device 100 according to the first embodiment.
  • the ranging device 100 according to the first embodiment includes a frequency offset generator 102, a modulation signal generation unit 104, an optical modulator 106, a light source 108, and an optical transmission unit 120 as a transmission system module.
  • the frequency offset generator 102, the modulation signal generation unit 104, the optical modulator 106, and the light source 108 form a pulse generation unit 110 that generates a transmission pulse set including a plurality of transmission pulses having different transmission time differences according to the transmission order. Composed.
  • the pulse generator 110 corresponds to the generator 2 shown in FIG.
  • the optical transmitter 120 corresponds to the transmitter 4 shown in FIG.
  • the distance measuring apparatus 100 has a light receiving unit 122, a light interference system unit 130, a photoelectric conversion unit 132, and an AD converter 134 as a reception system module.
  • the optical receiver 122 corresponds to the receiver 6 shown in FIG.
  • the distance measuring apparatus 100 according to the first embodiment includes bandpass filters 140-1 and 140-2, timing extracting units 150-1 and 150-2, a time difference identifying unit 154, and a distance calculating unit 160.
  • the time difference specifying unit 154 corresponds to the specifying unit 8 shown in FIG.
  • the distance calculation unit 160 corresponds to the distance calculation unit 10 shown in FIG.
  • the number of transmission pulses that make up the transmission pulse set is two. That is, the transmission pulse set has the transmission pulse Plst1 and the transmission pulse Plst2. Then, it is assumed that the time difference between these two transmission pulses is different depending on the transmission order of the transmission pulse set.
  • the frequency offsets of the two transmission pulses forming the transmission pulse set are f1 and f2, respectively. Therefore, the bandpass filters 140-1 and 140-2 correspond to the frequency offsets f1 and f2, respectively. Similarly, the timing extraction units 150-1 and 150-2 correspond to the frequency offsets f1 and f2, respectively.
  • each of the above-described constituent elements can be realized by a device or a circuit such as an arithmetic circuit.
  • the arithmetic circuit is, for example, an FPGA (field-programmable gate array) or the like. This also applies to the other embodiments.
  • the frequency offset generator 102 outputs frequency offset information, which is information indicating a plurality of frequency offsets that are offsets from the reference frequency f0, to the modulation signal generation unit 104.
  • the frequency offset information indicates the frequency offsets f1 and f2.
  • the frequency offset generator 102 may output the frequency offset information indicating the frequency offset f1 to the modulation signal generation unit 104 for each pulse period Tp1 of the transmission pulse Plst1.
  • the frequency offset generator 102 may output the frequency offset information indicating the frequency offset f2 to the modulation signal generation unit 104 for each pulse period Tp2 of the transmission pulse Plst2.
  • the frequency offset generator 102 does not always have to output the frequency offset information indicating the frequency offset f1 for each pulse period Tp1.
  • the frequency offset generator 102 does not always have to output the frequency offset information indicating the frequency offset f2 for each pulse period Tp2.
  • the frequency offset generator 102 may output the frequency offset information indicating the frequency offset f1, and then output the frequency offset information indicating the frequency offset f2 after the time difference ⁇ T has elapsed.
  • this time difference ⁇ T differs depending on the transmission order of the transmission pulse set. For example, as illustrated in FIG. 9 described later, a frequency offset generation time (corresponding to the transmission time) between the transmission pulse Plst1 (Plst1-1) and the transmission pulse Plst2 (Plst2-1) that form the first transmission pulse set Ptset1. The time difference of) is ⁇ T1.
  • the time difference between the frequency offset generation time (corresponding to the transmission time) between the transmission pulse Plst1 (Plst1-2) and the transmission pulse Plst2 (Plst2-2) that form the second transmission pulse set Ptset2 is ⁇ T2.
  • the time difference ⁇ T1 and the time difference ⁇ T2 are different.
  • the transmission pulses Plst2-1 and Plst2-2 correspond to the accompanying transmission pulses PlstA 'and PlstB' described above, respectively.
  • the modulation signal generation unit 104 generates a modulation signal for generating a transmission pulse according to the frequency offset information received from the frequency offset generator 102.
  • the modulation signal is an electric signal having a waveform corresponding to the frequency offsets f1 and f2.
  • the modulation signal generation unit 104 outputs the generated modulation signal to the optical modulator 106.
  • the modulation signal generation unit 104 outputs the measurement start trigger Trgt to the distance calculation unit 160 at the timing when the transmission pulse corresponding to the frequency offset f1 is transmitted.
  • the measurement start trigger Trgt indicates the transmission timing of each transmission pulse Plst1 (Plst1-1, Plst1-2, ...) In the transmission pulse set in each order.
  • the modulation signal generation unit 104 outputs the measurement start trigger Trgt1 to the distance calculation unit 160 at the timing of outputting the modulation signal corresponding to the frequency offset f1 of the transmission pulse Plst1-1 of the first transmission pulse set Ptset1. Output to.
  • the modulation signal generation unit 104 outputs the measurement start trigger Trgt2 to the distance calculation unit 160 at the timing of outputting the modulation signal corresponding to the frequency offset f1 of the transmission pulse Plst1-2 of the second transmission pulse set Ptset2. To do. Similarly, the modulation signal generation unit 104 outputs the measurement start trigger Trgtk to the distance calculation unit 160 at the timing of outputting the modulation signal corresponding to the frequency offset f1 of the transmission pulse Plst1-k of the k-th transmission pulse set Ptsetk. Output to.
  • the light source 108 generates an optical signal having a reference frequency f0 as shown in FIG. 5 described later.
  • the optical signal is input to the optical modulator 106 and the optical interference system unit 130.
  • the optical modulator 106 uses the modulation signal input from the modulation signal generation unit 104 and the optical signal input from the light source 108 (modulator input signal) to generate a plurality of transmission pulses having different frequency offsets f1 and f2. To generate.
  • the optical modulator 106 outputs an optical signal including the generated transmission pulse to the optical transmitter 120.
  • the optical modulator 106 is an AO modulator (acousto-optic modulator).
  • the optical modulator 106 modulates an optical signal (modulator input signal) using the modulation signal. Thereby, the optical modulator 106 generates a plurality of transmission pulses having different frequency offsets.
  • FIG. 5 is a diagram for explaining the operation of the optical modulator 106 according to the first embodiment.
  • the optical signal input to the optical modulator 106 (modulator input signal) is an optical signal having a constant frequency f0.
  • the modulation signal has a pulse-shaped waveform of frequency f1 and a pulse-shaped waveform of frequency f2.
  • the amplitude of the modulation signal is 0V except for the pulsed waveform.
  • Each waveform is a sine wave of width Tw.
  • the optical modulator 106 modulates the optical signal according to the pulse-shaped waveform of the modulation signal and outputs the modulated optical signal (modulator output signal).
  • This modulator output signal corresponds to the transmitted pulse.
  • the optical modulator 106 receives the pulse-shaped modulated signal of the frequency f1, it modulates the optical signal of the frequency f0 so as to shift by f1, and outputs the pulse of the frequency f0 + f1.
  • This pulse corresponds to the transmission pulse Plst1.
  • the optical modulator 106 receives the pulse-shaped modulated signal of the frequency f2, it modulates the optical signal of the frequency f0 so as to shift by f2 and outputs the pulse of the frequency f0 + f2.
  • the transmission pulse corresponds to the transmission pulse Plst2. Therefore, the transmission pulse indicates a signal in which the light intensity changes in a pulse shape. As described above, the transmission pulses Plst1 and Plst2 have different frequency offsets f1 and f2, respectively. Here, the broken line in the modulator output signal indicates the light intensity (envelope). In this way, the transmission pulse set Ptset including the transmission pulse Plst1 and the transmission pulse Plst2 is generated. Further, in FIG. 5, the transmission pulse Plst1 and the transmission pulse Plst2 may be arranged at intervals of the time difference ⁇ T. Here, as described above, this time difference ⁇ T differs depending on the transmission order of the transmission pulse set Ptset.
  • the optical transmission unit 120 transmits (irradiates) an optical signal including a plurality of transmission pulse sets (transmission pulses) to the distance measurement target 90.
  • the transmitted pulse is reflected by the distance measuring object 90 toward the distance measuring device 100.
  • the optical receiver 122 receives an optical signal including a plurality of reflected pulses reflected by the object 90 to be measured.
  • the frequencies of the plurality of received reflected pulses are f0 + f1 and f0 + f2.
  • the optical receiving unit 122 repeatedly receives the reflection pulse set Prset, which is a set of the reflection pulse Plsr1 having the frequency f0 + f1 and the reflection pulse Plsr2 having the frequency f0 + f2.
  • the optical interference system unit 130 detects the frequency offset of the reflected pulse (received light) by using the optical signal of the frequency f0 from the light source 108 as the reference light. Specifically, the optical interference system unit 130 causes the reference light from the light source 108 and the received light to interfere with each other to detect the beat frequency. Thereby, the optical interference system unit 130 detects the frequency offset of the reflected pulse.
  • the optical interference system unit 130 may be a mixer using an optical coupler. Further, for example, the optical interference system unit 130 may be a 90-degree hybrid circuit that interferes with reference light having two phases of 0 degree and 90 degrees as reference light.
  • the optical interference system unit 130 outputs the optical signals of the frequencies f1 and f2 corresponding to the frequency offset to the photoelectric conversion unit 132.
  • the photoelectric conversion unit 132 converts an optical signal from the optical interference system unit 130 into an electric signal.
  • the photoelectric conversion unit 132 may be, for example, a photoelectric converter that uses a photodetector or a balanced optical receiver that uses two photodetectors.
  • the AD converter 134 converts the electric signal, which is an analog signal converted by the photoelectric conversion unit 132, into a digital signal.
  • the electric signals indicating the frequencies f1 and f2 converted into digital signals by the AD converter 134 are output to the bandpass filters 140-1 and 140-2.
  • the band pass filter 140 has a frequency corresponding to a frequency offset as a center frequency.
  • the center frequencies of the bandpass filters 140-1 and 140-2 are frequencies f1 and f2, respectively. Therefore, bandpass filters 140-1 and 140-2 pass the electric signals indicating frequencies f1 and f2, respectively. Therefore, the bandpass filter 140 has a function as a separating unit that separates the optical signal for each frequency offset of the reflected pulse detected by the optical interference system unit 130.
  • the timing extraction unit 150 functions as a timing extraction unit that extracts the reception timing of the received reflection pulse.
  • the timing extraction units 150-1 and 150-2 extract the reception timings of the reflected pulses Plsr1 and Plsr2 having the frequency offsets f1 and f2, respectively.
  • the time difference specifying unit 154 specifies the time difference ⁇ T at which the reflected pulse having the frequency offsets f1 and f2, which is extracted by the timing extracting units 150-1 and 150-2, is received.
  • the time difference specifying unit 154 specifies the transmission pulse set Ptset corresponding to the specified time difference ⁇ T.
  • the reflection pulse set Prset and the transmission pulse set Ptset are associated with each other.
  • the time difference specifying unit 154 outputs the measurement stop trigger Trgr corresponding to the specified transmission pulse set Ptset to the distance calculating unit 160 at the reception timing of the reflected pulse having the frequency offset f1.
  • the time difference specifying unit 154 determines that the reflection pulse set Prset1 corresponding to this time difference ⁇ T1 corresponds to the transmission pulse set Ptset1. Then, the time difference specifying unit 154 outputs the measurement stop trigger Trgr1 corresponding to the transmission pulse set Ptset1 to the distance calculation unit 160 at the reception timing of the reflection pulse Plsr1-1 having the frequency offset f1. Similarly, when the time difference ⁇ T2 is specified, the time difference specifying unit 154 sets the measurement stop trigger Trgr2 corresponding to the transmission pulse set Ptset2 at the reception timing of the reflected pulse Plsr1-2 having the frequency offset f1. Output to 160.
  • the distance calculation unit 160 uses Equation 1 from the time difference (flight time) between the output timing of the measurement start trigger Trgt (first trigger signal) and the output timing of the measurement stop trigger Trgr (second trigger signal), The distance R to the distance measurement target 90 is calculated.
  • the distance calculation unit 160 calculates the distance R from the time difference between the output timing of the measurement start trigger Trgt1 corresponding to the first transmission pulse set Ptset1 and the output timing of the measurement stop trigger Trgr1 corresponding to the first reflection pulse set Prset1. To do.
  • the distance calculation unit 160 calculates the distance R from the time difference between the output timing of the measurement start trigger Trgt2 corresponding to the second transmission pulse set Ptset2 and the output timing of the measurement stop trigger Trgr2 corresponding to the second reflection pulse set Prset2. To do. Similarly, the distance calculation unit 160 calculates the distance R from the time difference between the output timing of the measurement start trigger Trgtk corresponding to the k-th transmission pulse set and the measurement stop trigger Trgrk corresponding to the k-th reflection pulse set. To do.
  • FIG. 6 is a flowchart showing a distance measuring method executed by the distance measuring device 100 according to the first embodiment.
  • the pulse generation unit 110 generates a transmission pulse set which is a set of two transmission pulses having different time differences ⁇ T according to the transmission order (step S102).
  • the optical transmission unit 120 transmits (irradiates) the optical signal including the transmission pulse set generated in the processing of S102 to the distance measurement target 90 (step S104).
  • the optical modulator 106 of the pulse generator 110 modulates the optical signal (modulator input signal) using the modulation signal generated by the modulation signal generator 104. Accordingly, the optical modulator 106 generates a transmission pulse set including two transmission pulses having different frequency offsets.
  • the measurement start trigger Trgt corresponding to one of the two transmission pulses (transmission pulse Plst1) can be output to the distance calculation unit 160 at the timing of S104.
  • the optical receiving unit 122 receives the optical signal including the reflected pulse (step S106).
  • the optical interference system unit 130 uses the reference light to detect the frequency offset of each reflected pulse (step S108).
  • the bandpass filter 140 separates the optical signal for each frequency offset, as described above (step S110). As a result, the optical signal is separated for each reflection pulse.
  • the timing extraction unit 150 extracts the reception timing for each separated reflection pulse as described above (step S112).
  • the time difference specifying unit 154 specifies the time difference at which the reflected pulse forming the reflected pulse set Prset is received (step S114).
  • the time difference specifying unit 154 outputs the measurement stop trigger Trgr corresponding to the specified time difference (step S116).
  • the distance calculation unit 160 calculates the distance R to the distance measurement target 90 using the measurement start trigger Trgt and the measurement stop trigger Trgr (step S118).
  • FIGS. 7 and 8 are timing charts showing the relationship between the transmission pulse and the reflection pulse according to the comparative example.
  • the transmission pulses PlstA, PlstB, PlstC are transmitted in the pulse cycle Tp. It is also assumed that the transmission pulses PlstA, PlstB, PlstC have the same frequency. Further, in the example shown in FIG. 7, it is assumed that the flight time until the transmission pulse is reflected by the distance measurement target 90 and returns is longer than the pulse period Tp.
  • the transmission pulse PlstA is transmitted.
  • the reflection pulse PlsrA which is the transmission pulse PlstA reflected by the distance measurement target 90 and returned, is received.
  • distance measurement may be performed using the time difference Tdiff1 'between the transmission timing of the transmission pulse PlstB and the reception timing of the reflection pulse PlsrA. As described above, if distance measurement is performed using the time difference Tdiff1 ', the distance is erroneously calculated.
  • the flight time required for the transmitted pulse to be reflected by the distance measurement target 90 and returned is shorter than the pulse cycle Tp. Furthermore, since the transmission pulse PlstA was not reflected, it is assumed that the reflection pulse PlsrA of the transmission pulse PlstA was not received. It is also assumed that the transmission pulse PlstB is reflected by the object to be measured and the reflection pulse PlsrB is received. In this case, distance measurement is performed using the time difference Tdiff2 between the transmission timing of the transmission pulse PlstB and the reception timing of the reflection pulse PlsrB. Although this distance measuring process is a correct process, it cannot be distinguished from the process shown in FIG.
  • the distance measuring apparatus 100 can measure the distance without lengthening the pulse period.
  • FIG. 9 is a timing chart showing the relationship between the transmission pulse and the reflection pulse according to the first embodiment.
  • the transmission pulse Plst1 is transmitted in the pulse cycle Tp1 and the transmission pulse Plst2 is transmitted in the pulse cycle Tp2 (> Tp1).
  • the flight time until the transmission pulse is reflected by the distance measurement target 90 and returns is longer than each pulse cycle Tp1, Tp2.
  • the frequency of the transmission pulse Plst1 is f0 + f1
  • the frequency of the transmission pulse Plst2 is f0 + f2. That is, the transmission pulse Plst1 has the frequency offset f1 and the transmission pulse Plst2 has the frequency offset f2.
  • the time relationship between the transmission pulse and the reflection pulse does not matter.
  • the transmission time of the transmission pulse Plst2-3 seems to be the same as the reception time of the reflection pulse Plsr1-2, but it does not matter whether these times are the same or not. This also applies to other timing charts.
  • the transmission pulse set Ptset1 is composed of a transmission pulse Plst1-1 having a frequency offset f1 and a transmission pulse Plst2-1 having a frequency offset f2. It is assumed that the time difference ⁇ T1 between the transmission time of the transmission pulse Plst1-1 and the transmission time of the transmission pulse Plst2-1 is 0, that is, the transmission pulse Plst1-1 and the transmission pulse Plst2-1 are transmitted at the same time. Further, at the transmission timing of the transmission pulse Plst1-1, the measurement start trigger Trgt1 is output to the distance calculation unit 160.
  • the transmission pulse set Ptset2 is composed of a transmission pulse Plst1-2 having a frequency offset f1 and a transmission pulse Plst2-2 having a frequency offset f2.
  • the measurement start trigger Trgt2 is output to the distance calculation unit 160 at the transmission timing of the transmission pulse Plst1-2.
  • the transmission pulse set Ptset3 is composed of transmission pulses Plst1-3 having a frequency offset f1 and transmission pulses Plst2-3 having a frequency offset f2.
  • the time difference ⁇ T3 between the transmission time of the transmission pulse Plst1-3 and the transmission time of the transmission pulse Plst2-3 is different from the time difference ⁇ T1 in the transmission pulse set Ptset1 and the time difference ⁇ T2 in the transmission pulse set Ptset2.
  • the measurement start trigger Trgt3 is output to the distance calculation unit 160 at the transmission timing of the transmission pulses Plst1-3.
  • the transmission pulse set Ptset4 is composed of transmission pulses Plst1-4 having a frequency offset f1 and transmission pulses Plst2-4 having a frequency offset f2.
  • the time difference ⁇ T4 between the transmission time of the transmission pulse Plst1-4 and the transmission time of the transmission pulse Plst2-4 is different from the time differences ⁇ T1, ⁇ T2, ⁇ T3.
  • the measurement start trigger Trgt4 is output to the distance calculation unit 160 at the transmission timing of the transmission pulses Plst1-4.
  • the transmission time differences ⁇ T1, ⁇ T2, ⁇ T3, and ⁇ T4 are much smaller than the transmission cycles of the transmission pulses Plst1 and Plst2. Further, the time differences ⁇ T1, ⁇ T2, ⁇ T3, ⁇ T4 need to be discriminable by the time difference specifying unit 154. Therefore, the time differences ⁇ T1, ⁇ T2, ⁇ T3, and ⁇ T4 are long enough to be discriminated from each other, but it is preferable to make them as short as possible. By making the time differences ⁇ T1, ⁇ T2, ⁇ T3, and ⁇ T4 as short as possible, it is possible to prevent one transmission pulse set Ptset from overlapping the next transmission pulse set Ptset. This also applies to the other embodiments.
  • the distance measuring apparatus 100 may transmit the transmission pulse set Ptset4 and then transmit the transmission pulse set Ptset5 composed of the transmission pulse Plst1 and the transmission pulse Plst2 that are transmitted at different time differences ⁇ T5.
  • the distance measuring apparatus 100 may transmit the transmission pulse set Ptset4 and then transmit the transmission pulse set Ptset1 again.
  • the transmission pulse set Ptset1 may be transmitted again after it is expected that the round-trip flight time of the optical signal has elapsed. This also applies to the other embodiments.
  • the reflection pulse Plsr1-1 having the frequency offset f1 is received.
  • the reflected pulse Plsr2-1 having the frequency offset f2 is received at substantially the same timing.
  • the reflected pulse Plsr1-1 is separated by the bandpass filter 140-1.
  • the timing extraction unit 150-1 extracts the reception timing of the reflected pulse Plsr1-1.
  • the reflected pulse Plsr2-1 is separated by the bandpass filter 140-2.
  • the timing extraction unit 150-2 extracts the reception timing of the reflected pulse Plsr2-1.
  • the transmitted optical signal is reflected by the distance measurement target 90 and attenuates in the flight process of the optical signal.
  • the timing extraction unit 150 extracts the reception timing at the timing when the light intensities of the reflected pulses Plsr1 and Plsr2 exceed the predetermined threshold value.
  • the time difference specifying unit 154 specifies the time difference between the reception timing of the reflected pulse Plsr1-1 and the reception timing of the reflected pulse Plsr2-1. In this case, the time difference specifying unit 154 specifies the time difference between the reception timing of the reflection pulse Plsr1-1 and the reception timing of the reflection pulse Plsr2-1 as ⁇ T1, that is, 0. Therefore, the time difference specifying unit 154 determines that the reflection pulse set Prset1 which is a set of the reflection pulse Plsr1-1 and the reflection pulse Plsr2-1 corresponds to the first transmission pulse set Ptset1 regarding the time difference ⁇ T1.
  • the time difference specifying unit 154 outputs the measurement stop trigger Trgr1 corresponding to the measurement start trigger Trgt1 to the distance calculation unit 160 at the reception timing of the reflection pulse Plsr1-1 having the frequency offset f1.
  • the distance calculation unit 160 calculates the distance to the distance measurement target 90 from the time difference Tdiff1 between the measurement start trigger Trgt1 and the measurement stop trigger Trgr1.
  • the reflection pulses Plsr1-2 having the frequency offset f1 are received.
  • the reflected pulse Plsr2-2 having the frequency offset f2 is received at substantially the same timing.
  • the reflected pulse Plsr1-2 is separated by the bandpass filter 140-1.
  • the timing extraction unit 150-1 extracts the reception timing of the reflected pulse Plsr1-2.
  • the reflected pulse Plsr2-2 is separated by the bandpass filter 140-2.
  • the timing extraction unit 150-2 extracts the reception timing of the reflected pulse Plsr2-2.
  • the time difference specifying unit 154 specifies the time difference between the reception timing of the reflected pulse Plsr1-2 and the reception timing of the reflected pulse Plsr2-2. In this case, the time difference specifying unit 154 specifies the time difference between the reception timing of the reflected pulse Plsr1-2 and the reception timing of the reflected pulse Plsr2-2 as ⁇ T2. Therefore, the time difference specifying unit 154 determines that the reflection pulse set Prset2, which is a set of the reflection pulse Plsr1-2 and the reflection pulse Plsr2-2, corresponds to the second transmission pulse set Ptset2 regarding the time difference ⁇ T2.
  • the time difference specifying unit 154 outputs the measurement stop trigger Trgr2 corresponding to the measurement start trigger Trgt2 to the distance calculation unit 160 at the reception timing of the reflection pulse Plsr1-2 having the frequency offset f1.
  • the distance calculation unit 160 calculates the distance to the distance measurement target 90 from the time difference Tdiff2 between the measurement start trigger Trgt2 and the measurement stop trigger Trgr2.
  • the reflection pulses Plsr1-3 having the frequency offset f1 are received.
  • the reflected pulse Plsr2-3 having the frequency offset f2 is received at substantially the same timing.
  • the reflected pulses Plsr1-3 are separated by the bandpass filter 140-1.
  • the timing extraction unit 150-1 extracts the reception timing of the reflected pulse Plsr1-3.
  • the reflected pulse Plsr2-3 is separated by the bandpass filter 140-2.
  • the timing extraction unit 150-2 extracts the reception timing of the reflected pulse Plsr2-3.
  • the time difference specifying unit 154 specifies the time difference between the reception timing of the reflection pulse Plsr1-3 and the reception timing of the reflection pulse Plsr2-3. In this case, the time difference specifying unit 154 specifies the time difference between the reception timing of the reflected pulse Plsr1-3 and the reception timing of the reflected pulse Plsr2-3 as ⁇ T3. Therefore, the time difference specifying unit 154 determines that the reflection pulse set Prset3, which is a set of the reflection pulse Plsr1-3 and the reflection pulse Plsr2-3, corresponds to the third transmission pulse set Ptset3 regarding the time difference ⁇ T3.
  • the time difference specifying unit 154 outputs the measurement stop trigger Trgr3 corresponding to the measurement start trigger Trgt3 to the distance calculation unit 160 at the reception timing of the reflection pulse Plsr1-3 having the frequency offset f1.
  • the distance calculation unit 160 calculates the distance to the distance measurement object 90 from the time difference Tdiff3 between the measurement start trigger Trgt3 and the measurement stop trigger Trgr3.
  • the distance measuring apparatus 100 specifies the time difference between the reception of the two reflected pulses forming the reflected pulse set, and thus the received reflected pulse (reflected pulse set) is transmitted in any order. It can be specified whether it corresponds to a pulse (transmit pulse set). As a result, even if the distance to the distance measurement target 90 is long, it is not necessary to lengthen the distance measurement cycle. Further, even if the distance measurement object 90 is continuously irradiated with a transmission pulse at a considerably short cycle, the reflection pulse can be distinguished in the reception system module, so that the distance to the distance measurement object 90 can be calculated appropriately. it can. Furthermore, since it is possible to continuously irradiate the distance measurement target object 90 with the transmission pulse at a considerably short cycle, it is possible to increase the number of times of distance measurement in a unit time.
  • the distance measuring apparatus 100 can properly measure the distance to the object to be measured 90 in which the transmission pulse is reflected, even when the flight time of the optical signal is longer than the pulse period. The distance can be calculated.
  • the distance measuring apparatus 100 is configured to transmit a transmission pulse set composed of two transmission pulses having different frequency offsets with respect to the reference frequency.
  • the two reflected pulses corresponding to the two transmitted pulses can be distinguished by detecting the frequency offset in the reception system module. This makes it possible to easily specify the time difference between the reception of these two reflection pulses, and thus to easily specify the transmission pulse (transmission pulse set) corresponding to the two reflection pulses (reflection pulse set).
  • the distance measuring apparatus 100 uses the transmission pulse (transmission pulse set) and the reflection pulse (reflection pulse set) by using the time difference between the transmission pulses of the transmission pulse set. Are configured to be associated with each other.
  • the band required for transmission / reception of the distance measuring apparatus 100 may be narrow.
  • the band required for transmission / reception of the distance measuring apparatus 100 may be narrow.
  • four frequency offsets are required when changing the frequency each time a transmission pulse is transmitted, but in the first embodiment, only two frequency offsets are required.
  • the structure of the transmission system module and the reception system module is simplified as compared with the case where the frequency needs to be changed each time the transmission pulse is transmitted. It becomes possible to do.
  • the distance measuring apparatus 100 is configured to separate the received optical signal for each frequency offset of the reflected pulse by using the bandpass filter 140 (separation unit). Since the optical signal separation using the bandpass filter 140 can be performed by hardware, it can be performed at a higher speed than the processing performed by software. Also, by separating the received signal for each frequency offset of the reflected pulse, it becomes possible to easily extract the reception timing of each reflected pulse.
  • the distance measuring apparatus 100 associates the transmission pulse with the reflected pulse that is the reflected light that is reflected by the distance measurement target 90, so that the transmission time difference differs depending on the transmission order.
  • the distance measuring apparatus 100 according to the first embodiment marks the transmission pulse in order to distinguish the reflection pulse corresponding to the transmission pulse from the reflection pulse corresponding to another transmission pulse.
  • marking the transmission pulse changing the amplitude for each transmission pulse may be considered.
  • the attenuation amount of the signal (pulse) may be different depending on the distance to the object 90 to be measured. Therefore, it is difficult to distinguish reflected pulses using amplitude.
  • the second embodiment differs from the first embodiment in that there are a plurality of light sources. Note that among the constituent elements according to the second embodiment, constituent elements that are substantially the same as the constituent elements according to the first embodiment are denoted by the same reference numerals. Further, in the following description, the description of the components that are substantially the same as the components in the first embodiment will be appropriately omitted.
  • FIG. 10 is a diagram showing a configuration of the distance measuring device 200 according to the second embodiment.
  • the distance measuring apparatus 200 according to the second embodiment includes light sources 202-1 and 202-2, transmission pulse generation units 204-1 and 204-2, a multiplexer 208, and an optical transmission unit 120 as transmission system modules. Have and.
  • the light source 202, the transmission pulse generation unit 204, and the multiplexer 208 configure a pulse generation unit 210 that generates a transmission pulse set including a plurality of transmission pulses having different transmission time differences according to the transmission order.
  • the pulse generator 210 corresponds to the generator 2 shown in FIG.
  • the distance measuring apparatus 200 has the light receiving unit 122, the light source 224, the light interference system unit 130, the photoelectric conversion unit 132, and the AD converter 134 as the reception system module. Further, the distance measuring apparatus 200 according to the second embodiment is similar to the first embodiment in that the bandpass filters 140-1 and 140-2, the timing extracting units 150-1 and 150-2, and the time difference identifying unit 154. And a distance calculation unit 160. That is, the receiving system module of the distance measuring device 200 is substantially the same as that of the first embodiment except that it has the light source 224.
  • the light source 202-1 generates an optical signal of frequency f0 + f1 and outputs the generated optical signal to the transmission pulse generator 204-1.
  • the light source 202-2 generates an optical signal of frequency f0 + f2 and outputs the generated optical signal to the transmission pulse generator 204-2.
  • Each transmission pulse generator 204 has substantially the same function as the modulation signal generator 104 and the optical modulator 106 shown in FIG.
  • the transmission pulse generator 204-1 modulates the optical signal of frequency f0 + f1 to generate a transmission pulse Plst1 as shown in FIG.
  • the transmission pulse generator 204-2 modulates the optical signal of frequency f0 + f2 to generate a transmission pulse Plst2 as shown in FIG.
  • the transmission pulse generation unit 204-2 may generate the transmission pulse Plst2 after the time difference ⁇ T has elapsed since the transmission pulse generation unit 204-1 generated the transmission pulse Plst1. Note that, as in the first embodiment, also in the second embodiment, this time difference ⁇ T differs depending on the transmission order of the transmission pulse set.
  • the multiplexer 208 synthesizes the transmission pulse Plst1 and the transmission pulse Plst2. As a result, the multiplexer 208 generates an optical signal of the transmission pulse set Ptset including the transmission pulses Plst1 and Plst1 arranged on the time axis at intervals of the time difference ⁇ T as shown in FIG.
  • the optical transmitter 120 transmits (irradiates) this optical signal to the distance measurement target 90.
  • the transmission pulse generation unit 204-1 outputs the measurement start trigger Trgt to the distance calculation unit 160 at the timing when the transmission pulse of the frequency offset f1 is output. That is, the transmission pulse generation unit 204-1 outputs the measurement start trigger Trgt1 at the timing when the transmission pulse Plst1-1 of the first transmission pulse set is generated. Further, the transmission pulse generation unit 204-1 outputs the measurement start trigger Trgt2 at the timing when the transmission pulse Plst1-2 of the second transmission pulse set is generated. Similarly, the transmission pulse generation unit 204-1 outputs the measurement start trigger Trgtk at the timing when the transmission pulse Plst1-k of the kth transmission pulse set is generated.
  • the light source 224 emits an optical signal of the standard frequency f0 as reference light.
  • the optical interference system unit 130 uses the reference light of the frequency f0 from the light source 224 to perform the frequency offset of the reflected pulse (received light) by the method described above. To detect.
  • the operations of the photoelectric conversion unit 132, the AD converter 134, the bandpass filter 140, the timing extraction unit 150, the time difference specifying unit 154, and the distance calculation unit 160 are substantially the same as those in the first embodiment, so description thereof will be omitted. To do.
  • the distance measuring apparatus 200 according to the second embodiment includes light sources 202-1 and 202-2 that emit optical signals that have been frequency offset from the beginning. Even with such a configuration, similar to the first embodiment, it is possible to perform the distance measurement properly without depending on the distance to the distance measurement target 90 or the transmission cycle of the transmission pulse. Since the distance measuring device 200 according to the second embodiment has the plurality of light sources 202, the structure is more complicated than that of the distance measuring device 100 according to the first embodiment. That is, the distance measuring apparatus 100 according to the second embodiment modulates the light from the light source 108 that emits the light of the reference frequency f0 into an optical signal of a different frequency for each transmission pulse, and thus has a plurality of different frequency offsets. Generating a transmit pulse. Therefore, the distance measuring device 200 according to the second embodiment has a simplified structure and can perform distance measurement properly.
  • the third embodiment is different from the other embodiments in that the frequency offsets of the two transmission pulses forming one transmission pulse set are the same. Note that among the constituent elements according to the third embodiment, constituent elements that are substantially the same as the constituent elements according to the first embodiment are denoted by the same reference numerals. Further, in the following description, the description of the components that are substantially the same as the components in the first embodiment will be appropriately omitted.
  • FIG. 11 is a diagram showing the configuration of the distance measuring device 300 according to the third embodiment.
  • the distance measuring apparatus 300 according to the third embodiment has a frequency offset generator 302, a modulation signal generation unit 304, an optical modulator 106, a light source 108, and an optical transmission unit 120 as a transmission system module.
  • the frequency offset generator 302, the modulation signal generation unit 304, the optical modulator 106, and the light source 108 form a pulse generation unit 310 that generates a transmission pulse set composed of a plurality of transmission pulses having different transmission time differences according to the transmission order. Composed.
  • the pulse generator 310 corresponds to the generator 2 shown in FIG.
  • the distance measuring apparatus 300 has the optical receiving unit 122, the optical interference system unit 130, the photoelectric conversion unit 132, and the AD converter 134 as a receiving system module. Further, the distance measuring apparatus 300 according to the third embodiment includes a bandpass filter 340, a timing extracting section 350, a time difference specifying section 354, and a distance calculating section 160.
  • the time difference specifying unit 354 corresponds to the specifying unit 8 shown in FIG.
  • the number of transmission pulses forming the transmission pulse set is two. That is, the transmission pulse set Prset has the transmission pulse Plst1 and the transmission pulse Plst2. Then, it is assumed that the time difference between these two transmission pulses is different depending on the transmission order of the transmission pulse set. Further, in the third embodiment, the frequency offset of the two transmission pulses forming the transmission pulse set is f1. That is, in the third embodiment, unlike the other embodiments, the frequency offsets of the two transmission pulses are the same.
  • the frequency offset generator 302 outputs frequency offset information, which is information indicating a plurality of frequency offsets that are offsets from the reference frequency f0, to the modulation signal generation unit 304.
  • the frequency offset information indicates the frequency offset f1.
  • the frequency offset generator 302 may output the frequency offset information indicating the frequency offset f1 to the modulation signal generation unit 304 in synchronization with the transmission timing of the transmission pulse Plst1 and the transmission pulse Plst2.
  • the frequency offset generator 302 may output the frequency offset information indicating the frequency offset f1, and then output the frequency offset information indicating the frequency offset f1 after the time difference ⁇ T has elapsed.
  • this time difference ⁇ T differs depending on the transmission order of the transmission pulse set. For example, as illustrated in FIG. 12 described later, a frequency offset generation time (corresponding to the transmission time) between the transmission pulse Plst1 (Plst1-1) and the transmission pulse Plst2 (Plst2-1) that form the first transmission pulse set Ptset1 The time difference of) is ⁇ T1.
  • the frequency offset generator 302 may output two pieces of frequency offset information indicating the frequency offset f1 at intervals of the time difference ⁇ T1.
  • the frequency offset generator 302 may output two pieces of frequency offset information indicating the frequency offset f1 at intervals of the time difference ⁇ T2.
  • the modulated signal generation unit 304 generates a modulated signal for generating a transmission pulse according to the frequency offset information received from the frequency offset generator 302.
  • the modulation signal generation unit 304 outputs the generated modulation signal to the optical modulator 106.
  • the optical modulator 106 uses the modulation signal input from the modulation signal generation unit 104 and the optical signal input from the light source 108 (modulator input signal) to generate a plurality of transmission pulses having a frequency offset f1.
  • the optical modulator 106 outputs an optical signal including the generated transmission pulse to the optical transmitter 120.
  • the modulation signal generation unit 304 outputs the measurement start trigger Trgt to the distance calculation unit 160 at the timing when one of the transmission pulses corresponding to the frequency offset f1 is transmitted.
  • the measurement start trigger Trgt indicates the transmission timing of each transmission pulse Plst1 (Plst1-1, Plst1-2, ...) Transmitted first in the transmission pulse set in each order.
  • the modulation signal generation unit 304 outputs the measurement start trigger Trgtk to the distance calculation unit 160 at the timing of outputting the modulation signal of the transmission pulse Plst1-k of the kth transmission pulse set Ptsetk.
  • the optical transmission unit 120 transmits (irradiates) an optical signal including a plurality of transmission pulse sets (transmission pulses) to the distance measurement target 90.
  • the transmitted pulse is reflected by the distance measuring object 90 toward the distance measuring device 300.
  • the optical receiver 122 receives an optical signal including a plurality of reflected pulses reflected by the object 90 to be measured.
  • the frequencies of the plurality of reflected pulses received are f0 + f1.
  • the optical receiver 122 repeatedly receives the reflection pulse set Prset, which is a set of two reflection pulses Plsr having the frequency f0 + f1.
  • the operations of the optical interference system unit 130, the photoelectric conversion unit 132, and the AD converter 134 are substantially the same as those according to the first embodiment, and therefore description thereof will be omitted.
  • the center frequency of the bandpass filter 340 is the frequency f1. Therefore, the bandpass filter 340 passes the electric signal having the frequency f1.
  • the timing extraction unit 350 functions as a timing extraction unit that extracts the reception timing of the received reflection pulse.
  • the timing extraction unit 350 extracts the reception timing of the reflected pulses Plsr1 and Plsr2 having the frequency offset f1.
  • the timing extraction unit 350 may determine the reflected pulse received at the odd number as the reflected pulse Plsr1 and the reflected pulse received at the even number as the reflected pulse Plsr2.
  • the time difference specifying unit 354 specifies the time difference ⁇ T at which the reflection pulses Plsr1 and Plsr2 extracted by the timing extraction unit 350 are received.
  • the time difference specifying unit 354 specifies the transmission pulse set Ptset corresponding to the specified time difference ⁇ T.
  • the reflection pulse set Prset and the transmission pulse set Ptset are associated with each other.
  • the time difference specifying unit 354 outputs the measurement stop trigger Trgr corresponding to the specified transmission pulse set Ptset to the distance calculating unit 160 at the reception timing of the reflection pulse Plsr1. Note that the operation of the distance calculation unit 160 is substantially the same as that according to the first embodiment, so description will be omitted as appropriate.
  • FIG. 12 is a timing chart showing the relationship between the transmission pulse and the reflection pulse according to the third embodiment.
  • the frequencies of the transmission pulse Plst1 and the transmission pulse Plst2 are f0 + f1. That is, both the transmission pulse Plst1 and the transmission pulse Plst2 have the frequency offset f1.
  • the transmission pulse set Ptset1 is transmitted.
  • the transmission pulse set Ptset1 is composed of a transmission pulse Plst1-1 and a transmission pulse Plst2-1.
  • the time difference between the transmission time of the transmission pulse Plst1-1 and the transmission time of the transmission pulse Plst2-1 is ⁇ T1.
  • the measurement start trigger Trgt1 is output to the distance calculation unit 160.
  • the transmission pulses Plst1-1 are the first (# 1) and the transmission pulses Plst2-1 are the second (# 2) in the order of the transmission pulses having the frequency offset f1.
  • the transmission pulse set Ptset2 is composed of a transmission pulse Plst1-2 and a transmission pulse Plst2-2.
  • the time difference ⁇ T2 between the transmission time of the transmission pulse Plst1-2 and the transmission time of the transmission pulse Plst2-2 is different from the time difference ⁇ T1 in the transmission pulse set Ptset1.
  • the measurement start trigger Trgt2 is output to the distance calculation unit 160 at the transmission timing of the transmission pulse Plst1-2.
  • the transmission pulses Plst1-2 are the third (# 3) and the transmission pulses Plst2-2 are the fourth (# 4) in the order of the transmission pulses having the frequency offset f1.
  • the transmission pulse set Ptset3 is composed of transmission pulses Plst1-3 and transmission pulses Plst2-3.
  • the time difference ⁇ T3 between the transmission time of the transmission pulse Plst1-3 and the transmission time of the transmission pulse Plst2-3 is different from the time difference ⁇ T1 in the transmission pulse set Ptset1 and the time difference ⁇ T2 in the transmission pulse set Ptset2.
  • the measurement start trigger Trgt3 is output to the distance calculation unit 160 at the transmission timing of the transmission pulses Plst1-3.
  • the transmission pulses Plst1-3 are the fifth (# 5) and the transmission pulses Plst2-3 are the sixth (# 6) in the order of the transmission pulses having the frequency offset f1.
  • the transmission pulse set Ptset4 is composed of transmission pulses Plst1-4 and transmission pulses Plst2-4.
  • the time difference ⁇ T4 between the transmission time of the transmission pulse Plst1-4 and the transmission time of the transmission pulse Plst2-4 is different from the time differences ⁇ T1, ⁇ T2, ⁇ T3. Therefore, the time differences ⁇ T1, ⁇ T2, ⁇ T3 and ⁇ T4 are different from each other.
  • the measurement start trigger Trgt4 is output to the distance calculation unit 160 at the transmission timing of the transmission pulses Plst1-4.
  • the transmission pulses Plst1-4 are the seventh (# 7) and the transmission pulses Plst2-4 are the eighth (# 8) in the order of the transmission pulses having the frequency offset f1.
  • the time differences ⁇ T1, ⁇ T2, ⁇ T3, ⁇ T4 of the transmission time are much smaller than the transmission intervals of the transmission pulse Plst1 and the transmission pulse Plst2. Therefore, one transmission pulse set Ptset does not overlap with the next transmission pulse set Ptset. Therefore, the transmission pulse Plst1 is transmitted at an odd number and the transmission pulse Plst2 is transmitted at an even number.
  • the timing extraction unit 350 may determine that the odd-numbered (first: # 1) received reflection pulse is the reflection pulse Plsr1-1. Then, the timing extraction unit 350 extracts the reception timing of this reflection pulse Plsr1-1. In addition, the timing extraction unit 350 may determine the even-numbered (second: # 2) received reflection pulse as the reflection pulse Plsr2-1. Then, the timing extraction section 350 extracts the reception timing of this reflection pulse Plsr2-1.
  • the time difference specifying unit 354 specifies the time difference between the reception timing of the reflected pulse Plsr1-1 and the reception timing of the reflected pulse Plsr2-1. In this case, the time difference specifying unit 354 specifies the time difference between the reception timing of the reflection pulse Plsr1-1 and the reception timing of the reflection pulse Plsr2-1 as ⁇ T1. Therefore, the time difference specifying unit 354 determines that the reflection pulse set Prset1, which is a set of the reflection pulse Plsr1-1 and the reflection pulse Plsr2-1, corresponds to the first transmission pulse set Ptset1 regarding the time difference ⁇ T1.
  • the time difference specifying unit 354 outputs the measurement stop trigger Trgr1 corresponding to the measurement start trigger Trgt1 to the distance calculation unit 160 at the reception timing of the reflection pulse Plsr1-1.
  • the distance calculation unit 160 calculates the distance to the distance measurement target 90 from the time difference Tdiff1 between the measurement start trigger Trgt1 and the measurement stop trigger Trgr1.
  • the reflection pulses Plsr1-2 having the frequency offset f1 are received.
  • the reflected pulse Plsr2-2 having the frequency offset f1 is received at substantially the same timing.
  • the timing extraction unit 350 may determine that the odd-numbered (third: # 3) reflected pulse is the reflected pulse Plsr1-2. Then, the timing extraction unit 350 extracts the reception timing of this reflection pulse Plsr1-2. In addition, the timing extraction unit 350 may determine that the even-numbered (4th: # 4) received reflection pulse is the reflection pulse Plsr2-2. Then, the timing extraction unit 350 extracts the reception timing of this reflection pulse Plsr2-2.
  • the time difference specifying unit 354 specifies the time difference between the reception timing of the reflection pulse Plsr1-2 and the reception timing of the reflection pulse Plsr2-2. In this case, the time difference specifying unit 354 specifies the time difference between the reception timing of the reflected pulse Plsr1-2 and the reception timing of the reflected pulse Plsr2-2 as ⁇ T2. Therefore, the time difference specifying unit 354 determines that the reflection pulse set Prset2, which is a set of the reflection pulse Plsr1-2 and the reflection pulse Plsr2-2, corresponds to the second transmission pulse set Ptset2 regarding the time difference ⁇ T2.
  • the time difference specifying unit 354 outputs the measurement stop trigger Trgr2 corresponding to the measurement start trigger Trgt2 to the distance calculation unit 160 at the reception timing of the reflection pulse Plsr1-2.
  • the distance calculation unit 160 calculates the distance to the distance measurement target 90 from the time difference Tdiff2 between the measurement start trigger Trgt2 and the measurement stop trigger Trgr2.
  • the reflection pulses Plsr1-3 having the frequency offset f1 are received.
  • the reflected pulse Plsr2-3 having the frequency offset f1 is received at substantially the same timing.
  • the timing extraction unit 350 may determine that the odd-numbered (fifth: # 5) reflected pulse is the reflected pulse Plsr1-3. Then, the timing extraction unit 350 extracts the reception timing of this reflection pulse Plsr1-3. In addition, the timing extraction unit 350 can determine that the even-numbered (sixth: # 6) received reflection pulse is the reflection pulse Plsr2-3. Then, the timing extraction unit 350 extracts the reception timing of this reflection pulse Plsr2-3.
  • the time difference specifying unit 354 specifies the time difference between the reception timing of the reflection pulse Plsr1-3 and the reception timing of the reflection pulse Plsr2-3. In this case, the time difference specifying unit 354 specifies the time difference between the reception timing of the reflected pulse Plsr1-3 and the reception timing of the reflected pulse Plsr2-3 as ⁇ T3. Therefore, the time difference specifying unit 354 determines that the reflection pulse set Prset3, which is a set of the reflection pulse Plsr1-3 and the reflection pulse Plsr2-3, corresponds to the third transmission pulse set Ptset3 regarding the time difference ⁇ T3.
  • the time difference specifying unit 354 outputs the measurement stop trigger Trgr3 corresponding to the measurement start trigger Trgt3 to the distance calculation unit 160 at the reception timing of the reflection pulse Plsr1-3.
  • the distance calculation unit 160 calculates the distance to the distance measurement object 90 from the time difference Tdiff3 between the measurement start trigger Trgt3 and the measurement stop trigger Trgr3.
  • the distance measuring apparatus 300 specifies the time difference between the reception of the two reflected pulses that form the reflected pulse set, and thus the received reflected pulse (reflected pulse set) is in what order. It can be specified whether it corresponds to the pulse set. Therefore, similarly to the first embodiment, also in the third embodiment, even when the flight time of the optical signal is longer than the pulse period, the distance calculation unit 160 appropriately reflects the transmission pulse Plst. The distance to the target object 90 can be calculated.
  • the distance measuring apparatus 300 is configured to transmit the transmission pulse set including two transmission pulses having the same frequency offset with respect to the reference frequency. Therefore, in the third embodiment, only one frequency offset is required. Therefore, since it is not necessary to change the frequency each time the transmission pulse is transmitted, the band required for transmission / reception of distance measuring apparatus 300 may be narrower than in the case of the first embodiment. Further, since it is not necessary to change the frequency each time the transmission pulse is transmitted, the structure of the transmission system module and the reception system module is simplified as compared with the case where the frequency needs to be changed each time the transmission pulse is transmitted. It becomes possible to do.
  • the fourth embodiment is different from the other embodiments in that there are three or more transmission pulses forming one transmission pulse set.
  • a case is shown in which there are three transmission pulses that make up one transmission pulse set, but there may be four or more transmission pulses that make up one transmission pulse set.
  • constituent elements that are substantially the same as the constituent elements according to the first embodiment are denoted by the same reference numerals. Further, in the following description, the description of the components that are substantially the same as the components in the first embodiment will be appropriately omitted.
  • FIG. 13 is a diagram showing the configuration of the distance measuring device 400 according to the fourth embodiment.
  • the distance measuring apparatus 400 according to the fourth embodiment has a frequency offset generator 402, a modulation signal generation unit 404, an optical modulator 106, a light source 108, and an optical transmission unit 120 as a transmission system module.
  • the frequency offset generator 402, the modulation signal generation unit 404, the optical modulator 106, and the light source 108 form a pulse generation unit 410 that generates a transmission pulse set including a plurality of transmission pulses having different transmission time differences according to the transmission order. Composed.
  • the pulse generator 410 corresponds to the generator 2 shown in FIG.
  • the distance measuring apparatus 400 has, as a receiving system module, an optical receiving unit 122, an optical interference system unit 130, a photoelectric conversion unit 132, and an AD converter 134. Further, the distance measuring apparatus 400 according to the fourth embodiment includes the bandpass filters 140-1, 140-2, 140-3, the timing extracting units 150-1, 150-2, 150-3, and the time difference identifying unit 454. And a distance calculation unit 160.
  • the time difference specifying unit 454 corresponds to the specifying unit 8 shown in FIG.
  • the number of transmission pulses that make up the transmission pulse set is three. That is, the transmission pulse set includes the transmission pulse Plst1, the transmission pulse Plst2, and the transmission pulse Plst3. Then, it is assumed that the time difference in which these three transmission pulses are transmitted differs depending on the transmission order of the transmission pulse set.
  • the frequency offsets of the three transmission pulses forming the transmission pulse set are f1, f2, and f3, respectively. Therefore, the bandpass filters 140-1, 140-2, 140-3 correspond to the frequency offsets f1, f2, f3, respectively. Similarly, the timing extraction units 150-1, 150-2, 150-3 correspond to the frequency offsets f1, f2, f3, respectively.
  • the frequency offset generator 402 outputs frequency offset information, which is information indicating a plurality of frequency offsets that are offsets from the reference frequency f0, to the modulation signal generation unit 404.
  • the frequency offset information indicates frequency offsets f1, f2, and f3.
  • the frequency offset generator 402 sends the frequency offset information indicating the frequency offsets f1, f2, and f3 to the modulation signal generation unit 404 in accordance with the transmission timings of the transmission pulse Plst1, the transmission pulse Plst2, and the transmission pulse Plst3. May be output.
  • the frequency offset generator 402 may output the frequency offset information indicating the frequency offset f1, and then output the frequency offset information indicating the frequency offset f2 after the time difference ⁇ Tx has elapsed. Further, the frequency offset generator 402 may output the frequency offset information indicating the frequency offset f1 and then output the frequency offset information indicating the frequency offset f3 after the time difference ⁇ Ty has elapsed. In Embodiment 4, at least one of the time differences ⁇ Tx and ⁇ Ty differs depending on the transmission order of the transmission pulse set.
  • the time difference ( ⁇ Tx and ⁇ Ty) between the time at which one of the three transmission pulses forming the transmission pulse set is transmitted and the time at which the other two transmission pulses are transmitted, respectively At least one differs depending on the transmission order of the transmission pulse set. Details will be described later with reference to FIG.
  • the modulation signal generation unit 404 generates a modulation signal for generating a transmission pulse according to the frequency offset information received from the frequency offset generator 402.
  • the modulation signal generation unit 404 outputs the generated modulation signal to the optical modulator 106.
  • the optical modulator 106 uses the modulation signal input from the modulation signal generation unit 104 and the optical signal (modulator input signal) input from the light source 108 to generate a plurality of transmission pulses having frequency offsets f1, f2, and f3. To generate.
  • the optical modulator 106 outputs an optical signal including the generated transmission pulse to the optical transmitter 120.
  • the modulation signal generation unit 404 outputs the measurement start trigger Trgt to the distance calculation unit 160 at the timing when the transmission pulse corresponding to the frequency offset f1 is transmitted.
  • the measurement start trigger Trgt indicates the transmission timing of each transmission pulse Plst1 in the transmission pulse set in each order.
  • the modulation signal generation unit 404 outputs the measurement start trigger Trgtk to the distance calculation unit 160 at the timing of outputting the modulation signal of the transmission pulse Plst1-k of the k-th transmission pulse set Ptsetk.
  • the optical transmission unit 120 transmits (irradiates) an optical signal including a plurality of transmission pulse sets (transmission pulses) to the distance measurement target 90.
  • the transmitted pulse is reflected by the distance measuring object 90 toward the distance measuring device 400.
  • the optical receiver 122 receives an optical signal including a plurality of reflected pulses reflected by the object 90 to be measured.
  • the frequencies of the plurality of received reflected pulses are f0 + f1, f0 + f2, and f0 + f3.
  • the optical receiving unit 122 repeatedly receives the reflection pulse set Prset, which is a set of the reflection pulse Plsr1 having the frequency f0 + f1, the reflection pulse Plsr2 having the frequency f0 + f2, and the reflection pulse Plsr3 having the frequency f0 + f3.
  • the operations of the optical interference system unit 130, the photoelectric conversion unit 132, and the AD converter 134 are substantially the same as those according to the first embodiment, and therefore description thereof will be omitted.
  • the center frequencies of the bandpass filters 140-1, 140-2, 140-3 are frequencies f1, f2, f3, respectively. Therefore, the bandpass filters 140-1, 140-2, 140-3 pass the electric signals having the frequencies f1, f2, f3, respectively.
  • the timing extraction unit 150 functions as a timing extraction unit that extracts the reception timing of the received reflection pulse.
  • the timing extraction units 150-1, 150-2, 150-3 extract the reception timings of the reflected pulses Plsr1, Plsr2, Plsr3 having the frequency offsets f1, f2, f3, respectively.
  • the time difference specifying unit 454 is a set of time differences ⁇ T ( ⁇ Tx, ⁇ Ty) at which the reflected pulses having the frequency offsets f1, f2, f3 extracted by the timing extracting units 150-1, 150-2, 150-3 are received. Specify.
  • the time difference specifying unit 454 specifies the transmission pulse set Ptset corresponding to the specified set of time differences ⁇ T. As a result, the reflection pulse set Prset and the transmission pulse set Ptset are associated with each other. Then, the time difference specifying unit 454 outputs the measurement stop trigger Trgr corresponding to the specified transmission pulse set Ptset to the distance calculating unit 160 at the reception timing of the reflected pulse having the frequency offset f1. Details will be described later with reference to FIG.
  • FIG. 14 is a timing chart showing the relationship between the transmission pulse and the reflection pulse according to the fourth embodiment.
  • the frequencies of the transmission pulse Plst1, the transmission pulse Plst2, and the transmission pulse Plst3 are f0 + f1, f0 + f2, and f0 + f3, respectively. That is, the transmission pulse Plst1 has the frequency offset f1, the transmission pulse Plst2 has the frequency offset f2, and the transmission pulse Plst3 has the frequency offset f3.
  • the transmission pulse set Ptset1 is composed of a transmission pulse Plst1-1 having a frequency offset f1, a transmission pulse Plst2-1 having a frequency offset f2, and a transmission pulse Plst3-1 having a frequency offset f3. It is assumed that the time difference ⁇ T1x between the transmission time of the transmission pulse Plst1-1 and the transmission time of the transmission pulse Plst2-1 is 0, that is, the transmission pulse Plst1-1 and the transmission pulse Plst2-1 are transmitted at the same time.
  • the time difference ⁇ T1y between the transmission time of the transmission pulse Plst1-1 and the transmission time of the transmission pulse Plst3-1 is 0, that is, the transmission pulse Plst1-1 and the transmission pulse Plst3-1 are transmitted at the same time. Further, at the transmission timing of the transmission pulse Plst1-1, the measurement start trigger Trgt1 is output to the distance calculation unit 160.
  • the transmission pulse set Ptset2 includes a transmission pulse Plst1-2 having a frequency offset f1, a transmission pulse Plst2-2 having a frequency offset f2, and a transmission pulse Plst3-2 having a frequency offset f3.
  • the time difference between the transmission time of the transmission pulse Plst1-2 and the transmission time of the transmission pulse Plst2-2 is ⁇ T2x. Further, it is assumed that the time difference ⁇ T2y between the transmission time of the transmission pulse Plst1-2 and the transmission time of the transmission pulse Plst3-2 is 0, that is, the transmission pulse Plst1-2 and the transmission pulse Plst3-2 are transmitted at the same time.
  • the time difference ⁇ T2x is different from the time difference ⁇ T1x in the transmission pulse set Ptset1. Therefore, the first transmission pulse set Ptset1 and the second transmission pulse set Ptset2 have different sets ( ⁇ Tx, ⁇ Ty) of the time difference ⁇ T of the transmission time of the transmission pulse Plst that constitutes them. That is, the first transmission pulse set Ptset1 and the second transmission pulse set Ptset2 differ from each other in at least one of the time differences ⁇ Tx and ⁇ Ty of the transmission times of the transmission pulses Plst constituting them ( ⁇ T1x ⁇ ⁇ T2x in this example). . Further, the measurement start trigger Trgt2 is output to the distance calculation unit 160 at the transmission timing of the transmission pulse Plst1-2.
  • the transmission pulse set Ptset3 includes transmission pulses Plst1-3 having a frequency offset f1, transmission pulses Plst2-3 having a frequency offset f2, and transmission pulses Plst3-3 having a frequency offset f3.
  • the time difference between the transmission time of the transmission pulse Plst1-3 and the transmission time of the transmission pulse Plst2-3 is ⁇ T3x.
  • the time difference between the transmission time of the transmission pulse Plst1-3 and the transmission time of the transmission pulse Plst3-3 is ⁇ T3y.
  • the time difference ⁇ T3y is different from the time difference ⁇ T2y in the transmission pulse set Ptset2. Therefore, the second transmission pulse set Ptset2 and the third transmission pulse set Ptset3 have different sets ( ⁇ Tx, ⁇ Ty) of the time difference ⁇ T of the transmission times of the transmission pulses Plst constituting them. That is, the second transmission pulse set Ptset2 and the third transmission pulse set Ptset3 differ from each other in at least one of the time differences ⁇ Tx and ⁇ Ty of the transmission times of the transmission pulses Plst constituting them ( ⁇ T2y ⁇ ⁇ T3y in this example). .
  • the measurement start trigger Trgt3 is output to the distance calculation unit 160 at the transmission timing of the transmission pulses Plst1-3.
  • the transmission pulse set Ptset4 is composed of transmission pulses Plst1-4 having a frequency offset f1, transmission pulses Plst2-4 having a frequency offset f2, and transmission pulses Plst3-4 having a frequency offset f3.
  • the time difference between the transmission time of the transmission pulse Plst1-4 and the transmission time of the transmission pulse Plst2-4 is ⁇ T4x.
  • the time difference between the transmission time of the transmission pulse Plst1-4 and the transmission time of the transmission pulse Plst3-4 is ⁇ T4y.
  • the time difference ⁇ T4x is different from the time difference ⁇ T3x in the transmission pulse set Ptset3. Therefore, the third transmission pulse set Ptset3 and the fourth transmission pulse set Ptset4 have different sets ( ⁇ Tx, ⁇ Ty) of the time difference ⁇ T of the transmission time of the transmission pulse Plst that constitutes them. In other words, the third transmission pulse set Ptset3 and the fourth transmission pulse set Ptset4 differ from each other in at least one of the time differences ⁇ Tx and ⁇ Ty of the transmission times of the transmission pulses Plst constituting them ( ⁇ T3x ⁇ ⁇ T4x in this example). .
  • the set ( ⁇ Tx, ⁇ Ty) of the time difference ⁇ T of the transmission time of the transmission pulse Plst that constitutes the first transmission pulse set Ptset1 and the fourth transmission pulse set Ptset4. are different.
  • the set ( ⁇ Tx, ⁇ Ty) of the transmission pulse time difference ⁇ T between the second transmission pulse set Ptset2 and the fourth transmission pulse set Ptset4 is ⁇ Tx, ⁇ Ty. Is different.
  • the measurement start trigger Trgt4 is output to the distance calculation unit 160 at the transmission timing of the transmission pulses Plst1-4.
  • the reflection pulse Plsr1-1 having the frequency offset f1 is received.
  • the reflected pulse Plsr2-1 having the frequency offset f2 and the reflected pulse Plsr3-1 having the frequency offset f3 are received.
  • the reflected pulse Plsr1-1 is separated by the bandpass filter 140-1.
  • the timing extraction unit 150-1 extracts the reception timing of the reflected pulse Plsr1-1.
  • the reflected pulse Plsr2-1 is separated by the bandpass filter 140-2.
  • the timing extraction unit 150-2 extracts the reception timing of the reflected pulse Plsr2-1.
  • the reflected pulse Plsr3-1 is separated by the bandpass filter 140-3.
  • the timing extraction unit 150-3 extracts the reception timing of the reflected pulse Plsr3-1.
  • the time difference specifying unit 454 determines the time difference between the reception timing of the reflection pulse Plsr1-1 and the reception timing of the reflection pulse Plsr2-1, and the time difference between the reception timing of the reflection pulse Plsr1-1 and the reception timing of the reflection pulse Plsr3-1. Identify. In this case, the time difference specifying unit 454 specifies the time difference between the reception timing of the reflection pulse Plsr1-1 and the reception timing of the reflection pulse Plsr2-1 as ⁇ T1x, that is, 0. Further, the time difference specifying unit 454 specifies the time difference between the reception timing of the reflection pulse Plsr1-1 and the reception timing of the reflection pulse Plsr3-1 as ⁇ T1y, that is, 0.
  • a set of the reflection pulse Plsr1-1, the reflection pulse Plsr2-1, and the reflection pulse Plsr3-1 is referred to as a reflection pulse set Prset1.
  • the time difference specifying unit 454 determines that the reflection pulse set Prset1 corresponds to the first transmission pulse set Ptset1 related to the set ( ⁇ T1x, ⁇ T1y) of the time difference ⁇ T. Therefore, the time difference specifying unit 454 outputs the measurement stop trigger Trgr1 corresponding to the measurement start trigger Trgt1 to the distance calculation unit 160 at the reception timing of the reflection pulse Plsr1-1 having the frequency offset f1. At this time, the distance calculation unit 160 calculates the distance to the distance measurement target 90 from the time difference Tdiff1 between the measurement start trigger Trgt1 and the measurement stop trigger Trgr1.
  • the reflection pulses Plsr1-2 having the frequency offset f1 are received.
  • the reflected pulse Plsr2-2 having the frequency offset f2 and the reflected pulse Plsr3-2 having the frequency offset f3 are received.
  • the reflected pulse Plsr1-2 is separated by the bandpass filter 140-1.
  • the timing extraction unit 150-1 extracts the reception timing of the reflected pulse Plsr1-2.
  • the reflected pulse Plsr2-2 is separated by the bandpass filter 140-2.
  • the timing extraction unit 150-2 extracts the reception timing of the reflected pulse Plsr2-2.
  • the reflected pulse Plsr3-2 is separated by the bandpass filter 140-3.
  • the timing extraction unit 150-3 extracts the reception timing of the reflected pulse Plsr3-2.
  • the time difference identifying unit 454 determines the time difference between the reception timing of the reflection pulse Plsr1-2 and the reception timing of the reflection pulse Plsr2-2, and the time difference between the reception timing of the reflection pulse Plsr1-2 and the reception timing of the reflection pulse Plsr3-2. Identify. In this case, the time difference specifying unit 454 specifies the time difference between the reception timing of the reflected pulse Plsr1-2 and the reception timing of the reflected pulse Plsr2-2 as ⁇ T2x. Further, the time difference specifying unit 454 specifies the time difference between the reception timing of the reflection pulse Plsr1-2 and the reception timing of the reflection pulse Plsr3-2 as ⁇ T2y, that is, 0.
  • a set of the reflection pulse Plsr1-2, the reflection pulse Plsr2-2 and the reflection pulse Plsr3-2 is referred to as a reflection pulse set Prset2.
  • the time difference specifying unit 454 determines that the reflected pulse set Prset2 corresponds to the second transmission pulse set Ptset2 related to the set ( ⁇ T2x, ⁇ T2y) of the time difference ⁇ T. Therefore, the time difference specifying unit 454 outputs the measurement stop trigger Trgr2 corresponding to the measurement start trigger Trgt2 to the distance calculation unit 160 at the reception timing of the reflection pulse Plsr1-2 having the frequency offset f1. At this time, the distance calculation unit 160 calculates the distance to the distance measurement target 90 from the time difference Tdiff2 between the measurement start trigger Trgt2 and the measurement stop trigger Trgr2.
  • the reflection pulses Plsr1-3 having the frequency offset f1 are received.
  • the reflected pulse Plsr2-3 having the frequency offset f2 and the reflected pulse Plsr3-3 having the frequency offset f3 are received.
  • the reflected pulses Plsr1-3 are separated by the bandpass filter 140-1.
  • the timing extraction unit 150-1 extracts the reception timing of the reflected pulse Plsr1-3.
  • the reflected pulse Plsr2-3 is separated by the bandpass filter 140-2.
  • the timing extraction unit 150-2 extracts the reception timing of the reflected pulse Plsr2-3.
  • the reflected pulse Plsr3-3 is separated by the bandpass filter 140-3.
  • the timing extraction unit 150-3 extracts the reception timing of the reflected pulse Plsr3-3.
  • the time difference specifying unit 454 determines the time difference between the reception timing of the reflection pulse Plsr1-3 and the reception timing of the reflection pulse Plsr2-3, and the time difference between the reception timing of the reflection pulse Plsr1-3 and the reception timing of the reflection pulse Plsr3-3. Identify. In this case, the time difference specifying unit 454 specifies the time difference between the reception timing of the reflection pulse Plsr1-3 and the reception timing of the reflection pulse Plsr2-3 as ⁇ T3x. Further, the time difference specifying unit 454 specifies the time difference between the reception timing of the reflection pulse Plsr1-3 and the reception timing of the reflection pulse Plsr3-3 as ⁇ T3y.
  • a set of the reflection pulse Plsr1-3, the reflection pulse Plsr2-3, and the reflection pulse Plsr3-3 is referred to as a reflection pulse set Prset3.
  • the time difference specifying unit 454 determines that the reflection pulse set Prset3 corresponds to the third transmission pulse set Ptset3 related to the set ( ⁇ T3x, ⁇ T3y) of the time difference ⁇ T. Therefore, the time difference specifying unit 454 outputs the measurement stop trigger Trgr3 corresponding to the measurement start trigger Trgt3 to the distance calculation unit 160 at the reception timing of the reflection pulse Plsr1-3 having the frequency offset f1. At this time, the distance calculation unit 160 calculates the distance to the distance measurement object 90 from the time difference Tdiff3 between the measurement start trigger Trgt3 and the measurement stop trigger Trgr3.
  • the distance measuring apparatus 400 specifies the time difference between the reception of the three reflection pulses that form the reflection pulse set, and determines the number of the transmission of the received reflection pulse (reflection pulse set). It can be specified whether it corresponds to a pulse (transmit pulse set). Therefore, similarly to the first embodiment and the like, also in the fourth embodiment, the distance calculation unit 160 appropriately determines the transmission pulse Plst even when the flight time of the optical signal is longer than the pulse cycle. The distance to the reflected distance measurement target 90 can be calculated.
  • the distance measuring device 400 is configured to transmit a transmission pulse set including three transmission pulses.
  • the time difference between the transmission times of the transmission pulses in each transmission pulse set becomes two, ⁇ Tx and ⁇ Ty.
  • the time difference between the transmission times of the transmission pulses in each transmission pulse set is one. Therefore, in order to make the time difference different for each transmission order of the transmission pulse set, it is necessary to lengthen the time difference as the transmission pulse set increases.
  • the time difference is two, ⁇ Tx and ⁇ Ty, at least one of ⁇ Tx and ⁇ Ty can be changed in order to change the time difference for each transmission order of the transmission pulse set. Good.
  • one of ⁇ Tx and ⁇ Ty for one transmit pulse set may be the same as that of another transmit pulse set.
  • ⁇ T4x shown in FIG. 14 can be made shorter than ⁇ T4 shown in FIG. This makes it possible to suppress an increase in the time difference between the transmission times of the transmission pulses forming the transmission pulse set in order to distinguish the transmission pulse sets.
  • the present invention is not limited to the above-mentioned embodiments, but can be modified as appropriate without departing from the spirit of the present invention.
  • two or more of the embodiments are applicable to each other.
  • the configurations of the third and fourth embodiments described above are modifications of the first embodiment, but are not limited to such configurations.
  • the configuration of the third and fourth embodiments may be a modification of the second embodiment.
  • the bandpass filter is used to separate the optical signal for each frequency offset of the reflected pulse, but the configuration is not limited to this.
  • the signals may be separated by a component other than the bandpass filter. Further, if the reception timing of the reflected pulse can be extracted for each frequency offset, it is not necessary to separate the received optical signal.
  • the bandpass filter by separating the optical signal for each frequency offset of the reflected pulse using the bandpass filter, it becomes possible to perform the distance measurement processing at high speed as described above. Further, by separating the optical signal for each frequency offset of the reflected pulse using the bandpass filter, it becomes easy to extract the reception timing of each reflected pulse.
  • the distance calculation unit 160 may consider the processing time in the optical modulator 106 or the like in the output timing of the measurement start trigger. In other words, the distance calculation unit 160 may consider the processing time from the acceptance of the measurement start trigger to the actual transmission of the transmission pulse corresponding to the measurement start trigger. In this case, the distance calculation unit 160 may use the timing obtained by adding the processing time in the optical modulator 106 or the like to the output timing of the measurement start trigger as the distance measurement start timing.
  • the processing time in the optical modulator 106 and the like is assumed to be substantially constant.
  • the distance calculation unit 160 may consider, for the measurement stop trigger, the processing time of the optical interference system unit 130 and the like before the measurement stop trigger is output. In other words, the distance calculator 160 may consider the processing time from the reception of the reflected pulse by the optical receiver 122 to the output of the measurement stop trigger by the timing extractor 150. In this case, the distance calculation unit 160 may set the timing obtained by subtracting the processing time of the optical interference system unit 130 from the output timing of the measurement stop trigger as the end timing of the distance measurement. The processing time in the optical interference system unit 130 and the like is assumed to be substantially constant.
  • the modulation signal generation unit 104 may output a measurement start trigger indicating the time when the transmission pulse is transmitted, in consideration of the processing time until the transmission pulse is transmitted by the optical transmission unit 120 in the subsequent stage. Good. That is, assuming that the time when the modulated signal is generated is t1 and the processing time in the optical modulator 106 and the like is ⁇ t1, the modulated signal generation unit 104 may output the measurement start trigger indicating the time (t1 + ⁇ t1). The same applies to the transmission pulse generation unit 204 according to the second embodiment, the modulation signal generation unit 304 according to the third embodiment, and the modulation signal generation unit 404 according to the fourth embodiment.
  • the frequency offset generator 102 may output the frequency offset information indicating all the frequency offsets f1 and f2 to the modulation signal generation unit 104.
  • the modulation signal generation unit 104 may generate a modulation signal corresponding to each of the frequency offsets f1 and f2 for each pulse period Tp.
  • the pulse cycle Tp1 of the transmission pulse Plst1 and the pulse cycle Tp2 of the transmission pulse Plst2 are set to be constant, but the configuration is not limited to this.
  • the pulse cycle of any transmission pulse does not have to be constant. Therefore, the period from the transmission of the first transmission pulse Plst1-1 to the transmission of the second transmission pulse Plst1-2 is the third transmission pulse Plst1 from the transmission of the second transmission pulse Plst1-2. -3 does not have to be the same as the period until the transmission. This also applies to the transmission pulse Plst2 and the transmission pulse Plst3.
  • the transmission pulse used for the actual distance measurement (the measurement start trigger is output at the timing of the transmission) is transmitted as the transmission pulse Plst1, that is, first in the transmission pulse set. I am supposed to.
  • the transmission pulse used for distance measurement may be any of the transmission pulses forming the transmission pulse set. That is, distance measurement may be performed using the transmission pulse Plst2.
  • the measurement stop trigger is output at the reception timing of the reflection pulse Plsr2.
  • the average time of the transmission times of the plurality of transmission pulses forming the transmission pulse set may be used as the output timing of the measurement start trigger.
  • the frequency offsets of the three transmission pulses forming the transmission pulse set are different from each other, but the present invention is not limited to such a configuration. If it is possible to specify the time difference between the reception times of the reflected pulses on the receiving side, at least two frequency offsets may be the same among the frequency offsets of the three transmission pulses forming the transmission pulse set. .
  • the present embodiment has been described as a hardware configuration, but the present embodiment is not limited to this.
  • the present embodiment can also be realized by causing a CPU (Central Processing Unit) to execute a computer program for at least one process of each circuit in the distance measuring device.
  • a CPU Central Processing Unit
  • Non-transitory computer readable media include various types of tangible storage media.
  • Examples of non-transitory computer-readable media are magnetic recording media (eg, flexible disk, magnetic tape, hard disk drive), magneto-optical recording media (eg, magneto-optical disk), CD-ROM (Read Only Memory), CD-R, It includes a CD-R / W and semiconductor memory (for example, mask ROM, PROM (Programmable ROM), EPROM (Erasable PROM), flash ROM, RAM (Random Access Memory)).
  • the program may be supplied to the computer by various types of transitory computer readable media. Examples of transitory computer-readable media include electrical signals, optical signals, and electromagnetic waves.
  • the transitory computer-readable medium can supply the program to the computer via a wired communication path such as an electric wire and an optical fiber, or a wireless communication path.
  • a transmission pulse set composed of a plurality of transmission pulses in which the intensity of an optical signal changes in a pulse form, wherein a time difference in which each of the plurality of transmission pulses is transmitted differs depending on the transmission order of the transmission pulse set.
  • the generation unit is the transmission pulse set including the two transmission pulses, and a time difference in which the two transmission pulses are transmitted is different depending on a transmission order of the transmission pulse set.
  • the receiving means receives an optical signal including the reflected pulse, Detecting means for detecting the frequency offset of the received reflected pulse;
  • the distance measuring device according to appendix 3, further comprising: a separating unit that separates the received optical signal for each of the frequency offsets of the reflected pulse detected by the detecting unit.
  • the generation means modulates an optical signal from a light source that emits an optical signal of the reference frequency into an optical signal of a different frequency for each of the transmission pulses, thereby generating a plurality of the transmission pulses having the different frequency offsets.
  • the distance measuring device according to attachment 3 or 4.
  • the distance measuring device according to appendix 1 or 2, wherein at least two of the plurality of transmission pulses forming the transmission pulse set have the same frequency offset with respect to a reference frequency.
  • the generation means is the transmission pulse set including at least three transmission pulses, the time at which a first transmission pulse of the at least three transmission pulses is transmitted, and the first transmission pulse.
  • the specifying unit determines a time difference between a time when the reflected pulse corresponding to the first transmission pulse is received and a time when the plurality of reflected pulses corresponding to the plurality of second transmission pulses are respectively received.
  • the distance measuring device according to attachment 1 to be specified.
  • the transmission pulse receives a reflection pulse reflected by the object to be measured, Identifying the time difference at which each of the plurality of received reflected pulses was received, A distance measuring method for calculating a distance to the object to be measured based on a reception timing of the received reflection pulse and a transmission timing of the transmission pulse corresponding to the time difference specified for the reflection pulse. (Appendix 9)
  • the transmission pulse set including the two transmission pulses, the transmission pulse set being configured such that a time difference in which the two transmission pulses are transmitted is different depending on a transmission order of the transmission pulse set.
  • a plurality of transmission pulses having different frequency offsets are generated by modulating an optical signal from a light source that emits an optical signal of the reference frequency into an optical signal of a different frequency for each transmission pulse.
  • the described distance measurement method (Appendix 13) The distance measuring method according to appendix 8 or 9, wherein at least two of the plurality of transmission pulses forming the transmission pulse set have the same frequency offset with respect to a reference frequency. (Appendix 14) In the transmission pulse set including at least three transmission pulses, a time at which a first transmission pulse of the at least three transmission pulses is transmitted, and a plurality of first transmission pulses different from each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

測距対象物までの距離又は送信パルスの送信周期によらないで、適切に測距を行うことが可能な測距装置を提供する。生成部(2)は、光信号の強度がパルス状に変化した複数の送信パルスで構成される送信パルスセットを生成する。このとき、生成部(2)は、複数の送信パルスそれぞれが送信される時間差が送信パルスセットの送信順序に応じて異なるように、送信パルスセットを生成する。送信部(4)は、生成された送信パルスセットを繰り返し送信する。受信部(6)は、それぞれの送信パルスが測距対象物で反射した反射パルスを受信する。特定部(8)は、受信された複数の反射パルスが受信された時間差を特定する。距離算出部(10)は、受信された反射パルスの受信タイミングと、当該反射パルスに関して特定された時間差に対応する送信パルスの送信タイミングとに基づいて、測距対象物までの距離を算出する。

Description

測距装置及び測距方法
 本発明は、測距装置及び測距方法に関し、特に、パルスを送信しその反射を受信することで測距を行う測距装置及び測距方法に関する。
 測距の対象である測距対象物までの距離を計測する方法として、タイム・オブ・フライト(Time of Flight;ToF)方式がある。ToF方式では、測距の対象である測距対象物に向けて変調された光パルスが放射され、その測距対象物からの変調光パルスの反射を受信することで、測距対象物までの距離を算出する。ここで、光パルスは、周期的に繰り返し送信され得る。
 この技術に関連し、特許文献1は、タイム・オブ・フライトセンサ又はタイム・オブ・フライトカメラを用いてシーンの距離情報を提供する方法を開示する。特許文献1にかかる方法は、ある摂動周波数と摂動周期をもつ周期的摂動によって拡散された基準周波数を有するクロックタイミングに基づく変調信号に従って、シーンに向けて周期的光信号を放射することと、シーンからの周期的光信号の反射を受信することと、周期的光信号の受信した反射に対し、複数の測定継続時間からなるセットに亘ってタイム・オブ・フライト情報を変調信号に従って評価することと、受信した反射に対するタイム・オブ・フライト情報から距離情報を導き出すことと、を含む。ここで、セットの中の各測定継続時間は、摂動周期の整数倍又は半整数倍であり、かつ測定継続時間のセットの全体に亘って基準周波数の平均が一定に保たれる。
特開2014-522979号公報
 測距対象物までの距離が長い場合又は繰り返し送信される送信パルスの送信周期が短い場合、光パルスが送信されてから光パルスの反射光を受信するまでの時間の方が、送信パルスの送信周期よりも長いことがある。このような場合、受信された光が、どのタイミングで送信された送信パルスの反射光であるのかが特定できなくなるおそれがある。言い換えると、受信された反射光と送信パルスとが対応付けられないおそれがある。このような場合、適切に測距を行うことができないおそれがある。ここで、特許文献1にかかる技術では、放射された光信号と反射光とが対応付けられていない。したがって、特許文献1にかかる技術では、適切に測距を行うことができないおそれがある。
 本開示の目的は、このような課題を解決するためになされたものであり、測距対象物までの距離又は送信パルスの送信周期によらないで、適切に測距を行うことが可能な測距装置及び測距方法を提供することにある。
 本開示にかかる測距装置は、光信号の強度がパルス状に変化した複数の送信パルスで構成される送信パルスセットであって、複数の送信パルスそれぞれが送信される時間差が前記送信パルスセットの送信順序に応じて異なるように構成された、送信パルスセットを生成する生成手段と、生成された前記送信パルスセットを繰り返し送信する送信手段と、前記送信パルスが測距対象物で反射した反射パルスを受信する受信手段と、受信された複数の前記反射パルスそれぞれが受信された時間差を特定する特定手段と、受信された前記反射パルスの受信タイミングと、当該反射パルスに関して特定された前記時間差に対応する前記送信パルスの送信タイミングとに基づいて、前記測距対象物までの距離を算出する距離算出手段とを有する。
 また、本開示にかかる測距方法は、光信号の強度がパルス状に変化した複数の送信パルスで構成される送信パルスセットであって、複数の送信パルスそれぞれが送信される時間差が前記送信パルスセットの送信順序に応じて異なるように構成された、送信パルスセットを生成し、生成された前記送信パルスセットを繰り返し送信し、前記送信パルスが測距対象物で反射した反射パルスを受信し、受信された複数の前記反射パルスそれぞれが受信された時間差を特定し、受信された前記反射パルスの受信タイミングと、当該反射パルスに関して特定された前記時間差に対応する前記送信パルスの送信タイミングとに基づいて、前記測距対象物までの距離を算出する。
 本開示によれば、測距対象物までの距離又は送信パルスの送信周期によらないで、適切に測距を行うことが可能な測距装置及び測距方法を提供できる。
本開示の実施の形態にかかる測距装置の概要を示す図である。 本開示の実施の形態にかかる測距装置によって実行される測距方法の概要を示す図である。 パルスを用いて測距対象物までの距離を算出する方法の概要を説明するための図である。 実施の形態1にかかる測距装置の構成を示す図である。 実施の形態1にかかる光変調器の動作を説明するための図である。 実施の形態1にかかる測距装置によって実行される測距方法を示すフローチャートである。 比較例にかかる送信パルスと反射パルスとの関係を示すタイミングチャートである。 比較例にかかる送信パルスと反射パルスとの関係を示すタイミングチャートである。 実施の形態1にかかる送信パルスと反射パルスとの関係を示すタイミングチャートである。 実施の形態2にかかる測距装置の構成を示す図である。 実施の形態3にかかる測距装置の構成を示す図である。 実施の形態3にかかる送信パルスと反射パルスとの関係を示すタイミングチャートである。 実施の形態4にかかる測距装置の構成を示す図である。 実施の形態4にかかる送信パルスと反射パルスとの関係を示すタイミングチャートである。
(本開示にかかる実施の形態の概要)
 本開示の実施形態の説明に先立って、本開示にかかる実施の形態の概要について説明する。図1は、本開示の実施の形態にかかる測距装置1の概要を示す図である。また、図2は、本開示の実施の形態にかかる測距装置1によって実行される測距方法の概要を示す図である。
 測距装置1は、生成手段として機能する生成部2と、送信手段として機能する送信部4と、受信手段として機能する受信部6と、特定手段として機能する特定部8と、距離算出手段として機能する距離算出部10とを有する。生成部2は、光信号の強度がパルス状に変化した複数の送信パルスで構成される送信パルスセットを生成する。このとき、生成部2は、複数の送信パルスそれぞれが送信される時間差が送信パルスセットの送信順序に応じて異なるように、送信パルスセットを生成する(ステップS12)。ここで、生成部2は、送信パルスセットを構成する複数の送信パルスが基準周波数に対して互いに異なる周波数オフセットを有するように、送信パルスセットを生成してもよい。ここで、周波数オフセットとは、ある基準周波数に対するズレ(オフセット)である。
 送信部4は、生成部2によって生成された送信パルスセットを繰り返し送信する(ステップS14)。受信部6は、送信パルスが測距対象物90で反射した反射パルスを受信する(ステップS16)。特定部8は、受信部6によって受信された複数の反射パルスが受信された時間差を特定する(ステップS18)。距離算出部10は、受信部6によって受信された反射パルスの受信タイミングと、当該反射パルスに関して特定された時間差に対応する送信パルスの送信タイミングとに基づいて、測距対象物90までの距離Rを算出する(ステップS20)。
 図3は、パルスを用いて測距対象物90までの距離を算出する方法の概要を説明するための図である。図3は、ToF方式の動作原理を示している。送信部4によって、送信周期(パルス周期)Tpで、送信パルスPlstA及びPlstBが送信される。ここで、各送信パルスの幅であるパルス幅を、Twとする。そして、送信パルスPlstAが測距対象物90で反射すると、受信部6によって、その反射光である反射パルスPlsrAが受信される。また、送信パルスPlstBが測距対象物90で反射すると、受信部6によって、その反射光である反射パルスPlsrBが受信される。
 また、送信パルスPlstAが送信された時間と反射パルスPlsrAが受信された時間との時間差、つまり光(パルス)の飛行時間をTdとする。また、光速をcとする。この場合、測距対象物90までの距離Rは、以下の式1で表される。
(式1)R=c×Td/2
 これにより、距離算出部10によって、距離Rが算出される。
 図3に示した例では、2つの送信パルスPlstA及び送信パルスPlstBがパルス周期Tpで送信され、それぞれの反射光である反射パルスPlsrA及び反射パルスPlsrBが受信される。ここで、仮に、測距対象物90までの距離が長い場合、時間差Tdがパルス周期Tpよりも長くなることがある。また、パルス周期Tpが短い場合でも、時間差Tdがパルス周期Tpよりも長くなることがある。つまり、測距対象物90までの距離又はパルス周期によっては、Td>Tpとなることがある。このようなケースでは、反射パルスPlsrAが受信される前に、次の送信パルスPlstBが送信されてしまう。このとき、受信された反射パルスPlsrAが、送信パルスPlstAの反射光であるのか送信パルスPlstBの反射光であるのかが特定できないと、適切に測距できないおそれがある。すなわち、送信パルスPlstBの送信時間と反射パルスPlsrAの受信時間との時間差から測距を行うと、実際の測距対象物90までの距離よりも短い距離が算出されてしまう。
 これに対し、本実施の形態にかかる測距装置1は、複数の送信パルスで構成される送信パルスセットを、複数の送信パルスそれぞれが送信される時間差が送信パルスセットの送信順序に応じて異なるように生成するように構成されている。例えば、本実施の形態にかかる測距装置1は、送信パルスPlstAと送信パルスPlstAに付随する送信パルスPlstA’とから構成される、1番目の送信パルスセットPtset1を生成する。同様に、本実施の形態にかかる測距装置1は、送信パルスPlstBと送信パルスPlstBに付随する送信パルスPlstB’とから構成される、2番目の送信パルスセットPtset2を生成する。また、送信パルスPlstAの送信時間と送信パルスPlstA’の送信時間との時間差ΔT1と、送信パルスPlstBの送信時間と送信パルスPlstB’の送信時間との時間差ΔT2とが異なるように構成されている。また、本実施の形態にかかる測距装置1は、受信された反射パルスPlsrAの受信時間と送信パルスPlstA’が反射した反射パルスPlsrA’の受信時間との時間差を特定するように構成されている。これにより、本実施の形態にかかる測距装置1は、送信パルスPlstAと反射パルスPlsrAとを互いに対応付けるように構成されている。したがって、本実施の形態にかかる測距装置1及び測距方法は、測距対象物までの距離又は送信パルスの送信周期によらないで、適切に測距を行うことが可能となる。
(実施の形態1)
 次に、実施の形態1について説明する。
 図4は、実施の形態1にかかる測距装置100の構成を示す図である。実施の形態1にかかる測距装置100は、送信系モジュールとして、周波数オフセット発生器102と、変調信号生成部104と、光変調器106と、光源108と、光送信部120とを有する。周波数オフセット発生器102、変調信号生成部104、光変調器106及び光源108によって、送信順序に応じて異なる送信時間差を有する複数の送信パルスで構成される送信パルスセットを生成するパルス生成部110が構成される。このパルス生成部110は、図1に示した生成部2に対応する。また、光送信部120は、図1に示した送信部4に対応する。
 また、実施の形態1にかかる測距装置100は、受信系モジュールとして、光受信部122と、光干渉系ユニット130と、光電変換部132と、ADコンバータ134とを有する。光受信部122は、図1に示した受信部6に対応する。また、実施の形態1にかかる測距装置100は、バンドパスフィルタ140-1,140-2と、タイミング抽出部150-1,150-2と、時間差特定部154と、距離算出部160とを有する。時間差特定部154は、図1に示した特定部8に対応する。また、距離算出部160は、図1に示した距離算出部10に対応する。
 また、実施の形態1では、送信パルスセットを構成する送信パルスの数を2つとする。つまり、送信パルスセットは、送信パルスPlst1と、送信パルスPlst2とを有する。そして、これら2つの送信パルスが送信される時間差が、送信パルスセットの送信順序に応じて異なるとする。また、実施の形態1では、送信パルスセットを構成する2つの送信パルスの周波数オフセットを、それぞれ、f1,f2とする。したがって、バンドパスフィルタ140-1,140-2は、それぞれ、周波数オフセットf1,f2に対応する。同様に、タイミング抽出部150-1,150-2は、それぞれ、周波数オフセットf1,f2に対応する。なお、上述した各構成要素は、何らかのデバイス又は演算回路等の回路等によって実現し得る。演算回路は、例えば、FPGA(field-programmable gate array)等である。このことは、他の実施の形態においても同様である。
 周波数オフセット発生器102は、基準周波数f0からのオフセットである複数の周波数オフセットを示す情報である周波数オフセット情報を、変調信号生成部104に対して出力する。ここで、周波数オフセット情報は、周波数オフセットf1,f2を示す。なお、周波数オフセット発生器102は、送信パルスPlst1のパルス周期Tp1ごとに、周波数オフセットf1を示す周波数オフセット情報を、変調信号生成部104に対して出力してもよい。同様に、周波数オフセット発生器102は、送信パルスPlst2のパルス周期Tp2ごとに、周波数オフセットf2を示す周波数オフセット情報を、変調信号生成部104に対して出力してもよい。しかしながら、周波数オフセット発生器102は、常に、パルス周期Tp1ごとに周波数オフセットf1を示す周波数オフセット情報を出力しなくてもよい。同様に、周波数オフセット発生器102は、常に、パルス周期Tp2ごとに周波数オフセットf2を示す周波数オフセット情報を出力しなくてもよい。
 ここで、周波数オフセット発生器102は、周波数オフセットf1を示す周波数オフセット情報を出力し、その後、時間差ΔTが経過した後で、周波数オフセットf2を示す周波数オフセット情報を出力してもよい。なお、本実施の形態では、この時間差ΔTが、送信パルスセットの送信順序に応じて異なる。例えば、後述する図9に例示するように、1番目の送信パルスセットPtset1を構成する送信パルスPlst1(Plst1-1)と送信パルスPlst2(Plst2-1)との周波数オフセット発生時間(送信時間に対応)の時間差をΔT1とする。また、2番目の送信パルスセットPtset2を構成する送信パルスPlst1(Plst1-2)と送信パルスPlst2(Plst2-2)との周波数オフセット発生時間(送信時間に対応)の時間差をΔT2とする。この場合、時間差ΔT1と時間差ΔT2とが異なることとなる。なお、送信パルスPlst2-1,Plst2-2は、それぞれ、上述した付随する送信パルスPlstA’,PlstB’に対応する。
 変調信号生成部104は、周波数オフセット発生器102から受信した周波数オフセット情報に応じて、送信パルスを生成するための変調信号を生成する。ここで、後述する図5に示すように、変調信号は、周波数オフセットf1、f2に対応する波形を有する電気信号である。変調信号生成部104は、生成された変調信号を、光変調器106に対して出力する。
 さらに、変調信号生成部104は、周波数オフセットf1に対応する送信パルスが送信されるタイミングで、測定スタートトリガTrgtを距離算出部160に対して出力する。ここで、実施の形態1では、測定スタートトリガTrgtは、各順序の送信パルスセットにおける送信パルスPlst1(Plst1-1、Plst1-2、・・・)それぞれの送信タイミングを示す。具体的には、変調信号生成部104は、1番目の送信パルスセットPtset1の送信パルスPlst1-1の周波数オフセットf1に対応する変調信号を出力するタイミングで、測定スタートトリガTrgt1を距離算出部160に対して出力する。また、変調信号生成部104は、2番目の送信パルスセットPtset2の送信パルスPlst1-2の周波数オフセットf1に対応する変調信号を出力するタイミングで、測定スタートトリガTrgt2を距離算出部160に対して出力する。以下同様にして、変調信号生成部104は、k番目の送信パルスセットPtsetkの送信パルスPlst1-kの周波数オフセットf1に対応する変調信号を出力するタイミングで、測定スタートトリガTrgtkを距離算出部160に対して出力する。
 光源108は、後述する図5に示すような、基準周波数f0の光信号を発生させる。光信号は、光変調器106及び光干渉系ユニット130に入力される。光変調器106は、変調信号生成部104から入力された変調信号及び光源108から入力された光信号(変調器入力信号)を用いて、互いに異なる周波数オフセットf1、f2を有する複数の送信パルスを生成する。光変調器106は、生成された送信パルスを含む光信号を、光送信部120に対して出力する。
 例えば、光変調器106は、AO変調器(acousto-optic modulator)である。光変調器106は、変調信号を用いて、光信号(変調器入力信号)を変調する。これにより、光変調器106は、互いに異なる周波数オフセットを有する複数の送信パルスを生成する。
 図5は、実施の形態1にかかる光変調器106の動作を説明するための図である。図5に示すように、光変調器106に入力される光信号(変調器入力信号)は、一定の周波数f0の光信号である。また、変調信号は、周波数f1のパルス状の波形と、周波数f2のパルス状の波形とを有する。なお、パルス状の波形以外では、変調信号の振幅は0Vである。各波形は、幅Twの正弦波である。
 このとき、光変調器106は、変調信号のパルス状の波形に応じて、光信号を変調して、変調された光信号(変調器出力信号)を出力する。この変調器出力信号が、送信パルスに対応する。光変調器106は、周波数f1のパルス状の波形の変調信号を受信した場合には、周波数f0の光信号をf1シフトするように変調して、周波数f0+f1のパルスを出力する。このパルスが、送信パルスPlst1に対応する。また、光変調器106は、周波数f2のパルス状の波形の変調信号を受信した場合には、周波数f0の光信号をf2シフトするように変調して、周波数f0+f2のパルスを出力する。このパルスが、送信パルスPlst2に対応する。したがって、送信パルスとは、光強度がパルス状に変化する信号を示す。このように、送信パルスPlst1,Plst2は、それぞれ、互いに異なる周波数オフセットf1,f2を有することになる。ここで、変調器出力信号における破線は光強度(包絡線)を示す。このようにして、送信パルスPlst1及び送信パルスPlst2で構成される送信パルスセットPtsetが生成される。また、図5において、送信パルスPlst1及び送信パルスPlst2が、時間差ΔTの間隔で並び得る。ここで、上述したように、この時間差ΔTは、送信パルスセットPtsetの送信順序に応じて異なる。
 光送信部120は、測距対象物90に対して、複数の送信パルスセット(送信パルス)を含む光信号を送信(照射)する。送信パルスは、測距対象物90で、測距装置100に向かって反射する。光受信部122は、測距対象物90で反射した複数の反射パルスを含む光信号を受信する。ここで、受信された複数の反射パルスの周波数は、f0+f1、f0+f2である。そして、光受信部122は、周波数f0+f1の反射パルスPlsr1と周波数f0+f2の反射パルスPlsr2とのセットである反射パルスセットPrsetを、繰り返し受信する。
 光干渉系ユニット130は、光源108からの周波数f0の光信号を参照光として用いて、反射パルス(受信光)の周波数オフセットを検出する。具体的には、光干渉系ユニット130は、光源108からの参照光と受信光とを干渉させて、ビート周波数を検出する。これにより、光干渉系ユニット130は、反射パルスの周波数オフセットを検出する。例えば、光干渉系ユニット130は、光カプラを用いたミキサであってもよい。また、例えば、光干渉系ユニット130は、参照光として0度及び90度の2つの位相を有する参照光と干渉させる90度ハイブリッド回路であってもよい。光干渉系ユニット130は、周波数オフセットに対応する周波数f1、f2の光信号を、光電変換部132に出力する。
 光電変換部132は、光干渉系ユニット130からの光信号を電気信号に変換する。光電変換部132は、例えば、フォトディテクタを用いた光電変換器であってもよいし、フォトディテクタを2つ用いたバランスド光受信器であってもよい。ADコンバータ134は、光電変換部132によって変換されたアナログ信号である電気信号を、デジタル信号に変換する。ADコンバータ134によってデジタル信号に変換された周波数f1、f2を示す電気信号は、バンドパスフィルタ140-1,140-2に出力される。
 バンドパスフィルタ140(Band Pass Filter;BPF)は、周波数オフセットに対応する周波数を中心周波数としている。バンドパスフィルタ140-1,140-2の中心周波数は、それぞれ、周波数f1,f2である。したがって、バンドパスフィルタ140-1,140-2は、それぞれ、周波数f1,f2を示す電気信号を通過させる。したがって、バンドパスフィルタ140は、光干渉系ユニット130によって検出された反射パルスの周波数オフセットごとに光信号を分離する、分離手段としての機能を有する。
 タイミング抽出部150は、受信された反射パルスの受信タイミングを抽出する、タイミング抽出手段として機能する。タイミング抽出部150-1,150-2は、それぞれ、周波数オフセットf1,f2を有する反射パルスPlsr1,Plsr2の受信タイミングを抽出する。
 時間差特定部154は、タイミング抽出部150-1,150-2によってそれぞれ抽出された、周波数オフセットf1,f2を有する反射パルスが受信された時間差ΔTを特定する。時間差特定部154は、特定された時間差ΔTに対応する送信パルスセットPtsetを特定する。これにより、反射パルスセットPrsetと送信パルスセットPtsetとが対応付けられることとなる。そして、時間差特定部154は、特定された送信パルスセットPtsetに対応する測定ストップトリガTrgrを、周波数オフセットf1を有する反射パルスの受信タイミングで、距離算出部160に対して出力する。
 例えば、時間差ΔT1が特定された場合、時間差特定部154は、この時間差ΔT1に対応する反射パルスセットPrset1が、送信パルスセットPtset1と対応すると判定する。そして、時間差特定部154は、送信パルスセットPtset1に対応する測定ストップトリガTrgr1を、周波数オフセットf1を有する反射パルスPlsr1-1の受信タイミングで、距離算出部160に対して出力する。時間差ΔT2が特定された場合についても同様にして、時間差特定部154は、送信パルスセットPtset2に対応する測定ストップトリガTrgr2を、周波数オフセットf1を有する反射パルスPlsr1-2の受信タイミングで、距離算出部160に対して出力する。
 距離算出部160は、測定スタートトリガTrgt(第1のトリガ信号)の出力タイミングと測定ストップトリガTrgr(第2のトリガ信号)の出力タイミングとの時間差(飛行時間)から、式1を用いて、測距対象物90までの距離Rを算出する。距離算出部160は、1番目の送信パルスセットPtset1に対応する測定スタートトリガTrgt1の出力タイミングと1番目の反射パルスセットPrset1に対応する測定ストップトリガTrgr1の出力タイミングとの時間差から、距離Rを算出する。距離算出部160は、2番目の送信パルスセットPtset2に対応する測定スタートトリガTrgt2の出力タイミングと2番目の反射パルスセットPrset2に対応する測定ストップトリガTrgr2の出力タイミングとの時間差から、距離Rを算出する。以下同様にして、距離算出部160は、k番目の送信パルスセットに対応する測定スタートトリガTrgtkとk番目の反射パルスセットに対応する測定ストップトリガTrgrkの出力タイミングとの時間差から、距離Rを算出する。
 図6は、実施の形態1にかかる測距装置100によって実行される測距方法を示すフローチャートである。パルス生成部110は、上述したように、送信順序に応じて異なる時間差ΔTを有する2つの送信パルスのセットである送信パルスセットを生成する(ステップS102)。光送信部120は、S102の処理で生成された送信パルスセットを含む光信号を測距対象物90に対して送信(照射)する(ステップS104)。具体的には、パルス生成部110の光変調器106は、変調信号生成部104によって生成された変調信号を用いて、光信号(変調器入力信号)を変調する。これにより、光変調器106は、互いに異なる周波数オフセットを有する2つの送信パルスで構成される送信パルスセットを生成する。なお、S104のタイミングで、2つの送信パルスの一方(送信パルスPlst1)に対応する測定スタートトリガTrgtが、距離算出部160に対して出力され得る。
 光受信部122は、反射パルスを含む光信号を受信する(ステップS106)。光干渉系ユニット130は、上述したように、参照光を用いて、各反射パルスの周波数オフセットを検出する(ステップS108)。バンドパスフィルタ140(分離手段)は、上述したように、周波数オフセットごとに光信号を分離する(ステップS110)。これにより、反射パルスごとに、光信号が分離されることとなる。
 タイミング抽出部150は、上述したように、分離された反射パルスごとに受信タイミングを抽出する(ステップS112)。時間差特定部154は、上述したように、反射パルスセットPrsetを構成する反射パルスが受信された時間差を特定する(ステップS114)。時間差特定部154は、特定された時間差に対応する測定ストップトリガTrgrを出力する(ステップS116)。距離算出部160は、上述したように、測定スタートトリガTrgtと測定ストップトリガTrgrとを用いて、測距対象物90までの距離Rを算出する(ステップS118)。
(比較例との比較)
 次に、実施の形態1と比較例とを、タイミングチャートを用いて説明する。
 図7及び図8は、比較例にかかる送信パルスと反射パルスとの関係を示すタイミングチャートである。図7及び図8に示す例では、送信パルスPlstA,PlstB,PlstCが、パルス周期Tpで送信されるとする。また、送信パルスPlstA,PlstB,PlstCの周波数は同じであるとする。さらに、図7に示す例では、送信パルスが測距対象物90に反射して戻ってくるまでの飛行時間が、パルス周期Tpよりも長いとする。
 まず、送信パルスPlstAが送信される。その後、送信パルスPlstBが送信された後で、送信パルスPlstAが測距対象物90で反射して返ってきた反射パルスPlsrAが受信される。このとき、図7に示す比較例においては、送信パルスPlstBの送信タイミングと反射パルスPlsrAの受信タイミングとの時間差Tdiff1’を用いて、測距を行ってしまうおそれがある。このように、時間差Tdiff1’を用いて測距を行うと、誤って距離を算出してしまう。
 一方、図8に示す例では、送信パルスが測距対象物90に反射して戻ってくるまでの飛行時間が、パルス周期Tpよりも短いとする。さらに、送信パルスPlstAが反射しなかったので、送信パルスPlstAの反射パルスPlsrAは受信されなかったとする。また、送信パルスPlstBは測距対象物に反射して、反射パルスPlsrBが受信されたとする。この場合、送信パルスPlstBの送信タイミングと反射パルスPlsrBの受信タイミングとの時間差Tdiff2を用いて、測距を行う。この測距処理は正しい処理であるが、図7に示した処理との区別がつかない。
 図7及び図8に示すような問題に対処するため、測距対象物までの距離が長いと想定される場合に、パルス周期を長くすることが考えられる。これにより、図7に示したような測距誤りを抑制できる。しかしながら、パルス周期を長くすると、測距を行ってから次の測距を行うまでの時間が長くなってしまうので、測距スピードが低下するおそれがある。したがって、所望のスピードで測距を行えないので、適切に測距を行うことができない。これに対し、実施の形態1にかかる測距装置100は、パルス周期を長くすることなく、測距を行うことができる。
 図9は、実施の形態1にかかる送信パルスと反射パルスとの関係を示すタイミングチャートである。図9に示す例では、送信パルスPlst1がパルス周期Tp1で送信され、送信パルスPlst2がパルス周期Tp2(>Tp1)で送信されるとする。さらに、図9に示す例では、送信パルスが測距対象物90に反射して戻ってくるまでの飛行時間が、各パルス周期Tp1,Tp2よりも長いとする。また、送信パルスPlst1の周波数はf0+f1であり、送信パルスPlst2の周波数はf0+f2である。つまり、送信パルスPlst1は周波数オフセットf1を有し、送信パルスPlst2は周波数オフセットf2を有する。なお、特に記載がない限り、図9において、送信パルスにおける時間と、反射パルスにおける時間の前後関係は問われない。例えば、図9において、送信パルスPlst2-3の送信時間と反射パルスPlsr1-2の受信時間とが同じであるように見えるが、これらの時間が同じであるか否かは問われない。このことは、他のタイミングチャートにおいても同様である。
 まず、1番目の送信パルスセットPtset1が送信される。送信パルスセットPtset1は、周波数オフセットf1を有する送信パルスPlst1-1と、周波数オフセットf2を有する送信パルスPlst2-1とで構成されている。送信パルスPlst1-1の送信時間と送信パルスPlst2-1の送信時間との時間差ΔT1は0、つまり、送信パルスPlst1-1と送信パルスPlst2-1とが同時に送信されるとする。また、送信パルスPlst1-1の送信タイミングで、測定スタートトリガTrgt1が距離算出部160に出力される。
 次に、2番目の送信パルスセットPtset2が送信される。送信パルスセットPtset2は、周波数オフセットf1を有する送信パルスPlst1-2と、周波数オフセットf2を有する送信パルスPlst2-2とで構成されている。送信パルスPlst1-2の送信時間と送信パルスPlst2-2の送信時間との時間差ΔT2は、送信パルスセットPtset1における時間差ΔT1(=0)と異なっている。また、送信パルスPlst1-2の送信タイミングで、測定スタートトリガTrgt2が距離算出部160に出力される。
 次に、3番目の送信パルスセットPtset3が送信される。送信パルスセットPtset3は、周波数オフセットf1を有する送信パルスPlst1-3と、周波数オフセットf2を有する送信パルスPlst2-3とで構成されている。送信パルスPlst1-3の送信時間と送信パルスPlst2-3の送信時間との時間差ΔT3は、送信パルスセットPtset1における時間差ΔT1及び送信パルスセットPtset2における時間差ΔT2と異なっている。また、送信パルスPlst1-3の送信タイミングで、測定スタートトリガTrgt3が距離算出部160に出力される。
 次に、4番目の送信パルスセットPtset4が送信される。送信パルスセットPtset4は、周波数オフセットf1を有する送信パルスPlst1-4と、周波数オフセットf2を有する送信パルスPlst2-4とで構成されている。送信パルスPlst1-4の送信時間と送信パルスPlst2-4の送信時間との時間差ΔT4は、時間差ΔT1,ΔT2,ΔT3と異なっている。また、送信パルスPlst1-4の送信タイミングで、測定スタートトリガTrgt4が距離算出部160に出力される。
 なお、送信時間の時間差ΔT1,ΔT2,ΔT3,ΔT4は、送信パルスPlst1,Plst2の送信周期と比較して、はるかに小さい。また、時間差ΔT1,ΔT2,ΔT3,ΔT4は、時間差特定部154において判別可能である必要がある。したがって、時間差ΔT1,ΔT2,ΔT3,ΔT4は、互いに判別可能な程度に長いが、できる限り短くすることが好ましい。時間差ΔT1,ΔT2,ΔT3,ΔT4をできる限り短くすることで、ある送信パルスセットPtsetが次の送信パルスセットPtsetと重ならないようにすることができる。このことは、他の実施の形態においても同様である。
 また、測距装置100は、送信パルスセットPtset4を送信した後、さらに異なる時間差ΔT5で送信される送信パルスPlst1及び送信パルスPlst2で構成される送信パルスセットPtset5を送信してもよい。あるいは、測距装置100は、送信パルスセットPtset4を送信した後、再度、送信パルスセットPtset1を送信してもよい。なお、再度、送信パルスセットPtset1を送信するのは、光信号の往復の飛行時間が経過したと予想される後であり得る。このことは、他の実施の形態においても同様である。
 一方、送信パルスPlst1-2が送信された後で、周波数オフセットf1を有する反射パルスPlsr1-1が受信される。また、これと略同じタイミングで、周波数オフセットf2を有する反射パルスPlsr2-1が受信される。反射パルスPlsr1-1は、バンドパスフィルタ140-1によって分離される。そして、タイミング抽出部150-1によって、反射パルスPlsr1-1の受信タイミングが抽出される。同様に、反射パルスPlsr2-1は、バンドパスフィルタ140-2によって分離される。そして、タイミング抽出部150-2によって、反射パルスPlsr2-1の受信タイミングが抽出される。なお、送信された光信号は、測距対象物90における反射及び光信号の飛行工程において減衰する。これにより、反射パルスPlsr1及びPlsr2の包絡線波形は、送信パルスPlst1及びPlst2の包絡線波形と比較して鈍化する。したがって、タイミング抽出部150は、反射パルスPlsr1及びPlsr2の光強度が予め定められた閾値を超えるタイミングで、受信タイミングを抽出する。
 時間差特定部154は、反射パルスPlsr1-1の受信タイミングと反射パルスPlsr2-1の受信タイミングとの時間差を特定する。この場合、時間差特定部154は、反射パルスPlsr1-1の受信タイミングと反射パルスPlsr2-1の受信タイミングとの時間差を、ΔT1つまり0であると特定する。したがって、時間差特定部154は、反射パルスPlsr1-1と反射パルスPlsr2-1とのセットである反射パルスセットPrset1が、時間差ΔT1に関する1番目の送信パルスセットPtset1に対応すると判定する。したがって、時間差特定部154は、測定スタートトリガTrgt1に対応する測定ストップトリガTrgr1を、周波数オフセットf1を有する反射パルスPlsr1-1の受信タイミングで、距離算出部160に対して出力する。このとき、距離算出部160は、測定スタートトリガTrgt1と測定ストップトリガTrgr1との時間差Tdiff1から、測距対象物90までの距離を算出する。
 また、送信パルスPlst1-3が送信された後で、周波数オフセットf1を有する反射パルスPlsr1-2が受信される。また、これと略同じタイミングで、周波数オフセットf2を有する反射パルスPlsr2-2が受信される。反射パルスPlsr1-2は、バンドパスフィルタ140-1によって分離される。そして、タイミング抽出部150-1によって、反射パルスPlsr1-2の受信タイミングが抽出される。同様に、反射パルスPlsr2-2は、バンドパスフィルタ140-2によって分離される。そして、タイミング抽出部150-2によって、反射パルスPlsr2-2の受信タイミングが抽出される。
 時間差特定部154は、反射パルスPlsr1-2の受信タイミングと反射パルスPlsr2-2の受信タイミングとの時間差を特定する。この場合、時間差特定部154は、反射パルスPlsr1-2の受信タイミングと反射パルスPlsr2-2の受信タイミングとの時間差を、ΔT2と特定する。したがって、時間差特定部154は、反射パルスPlsr1-2と反射パルスPlsr2-2とのセットである反射パルスセットPrset2が、時間差ΔT2に関する2番目の送信パルスセットPtset2に対応すると判定する。したがって、時間差特定部154は、測定スタートトリガTrgt2に対応する測定ストップトリガTrgr2を、周波数オフセットf1を有する反射パルスPlsr1-2の受信タイミングで、距離算出部160に対して出力する。このとき、距離算出部160は、測定スタートトリガTrgt2と測定ストップトリガTrgr2との時間差Tdiff2から、測距対象物90までの距離を算出する。
 また、送信パルスPlst1-4が送信された後で、周波数オフセットf1を有する反射パルスPlsr1-3が受信される。また、これと略同じタイミングで、周波数オフセットf2を有する反射パルスPlsr2-3が受信される。反射パルスPlsr1-3は、バンドパスフィルタ140-1によって分離される。そして、タイミング抽出部150-1によって、反射パルスPlsr1-3の受信タイミングが抽出される。同様に、反射パルスPlsr2-3は、バンドパスフィルタ140-2によって分離される。そして、タイミング抽出部150-2によって、反射パルスPlsr2-3の受信タイミングが抽出される。
 時間差特定部154は、反射パルスPlsr1-3の受信タイミングと反射パルスPlsr2-3の受信タイミングとの時間差を特定する。この場合、時間差特定部154は、反射パルスPlsr1-3の受信タイミングと反射パルスPlsr2-3の受信タイミングとの時間差を、ΔT3と特定する。したがって、時間差特定部154は、反射パルスPlsr1-3と反射パルスPlsr2-3とのセットである反射パルスセットPrset3が、時間差ΔT3に関する3番目の送信パルスセットPtset3に対応すると判定する。したがって、時間差特定部154は、測定スタートトリガTrgt3に対応する測定ストップトリガTrgr3を、周波数オフセットf1を有する反射パルスPlsr1-3の受信タイミングで、距離算出部160に対して出力する。このとき、距離算出部160は、測定スタートトリガTrgt3と測定ストップトリガTrgr3との時間差Tdiff3から、測距対象物90までの距離を算出する。
 このように、実施の形態1にかかる測距装置100は、反射パルスセットを構成する2つの反射パルスを受信した時間差を特定することで、受信した反射パルス(反射パルスセット)が何番目の送信パルス(送信パルスセット)に対応するのかを特定できる。これにより、測距対象物90までの距離が長距離である場合であっても、測距を行う周期を長くする必要がない。また、かなり短い周期で送信パルスを連続して測距対象物90に照射しても、受信系モジュールにおいて反射パルスを区別できるので、適切に、測距対象物90までの距離を算出することができる。さらに、かなり短い周期で送信パルスを連続して測距対象物90に照射することができるので、単位時間における測距回数を増加させることができる。
 また、同じ測距対象物90に繰り返し送信パルスを照射して測距し、これらの測距結果を平均することにより、測距の精度を向上させることができる。つまり、送信パルスPlst1-1~1-4を同じ測距対象物90に照射し、反射パルスPlsr1-1~1-4を用いて、4回、測距を行う。そして、4回の測距結果を平均することで、測距の精度が向上する。したがって、実施の形態1にかかる測距装置100は、かなり短い周期で送信パルスを連続して同じ測距対象物90に照射することで、短時間で、上記の平均化処理の高精度化を図ることが可能となる。このように、実施の形態1にかかる測距装置100は、光信号の飛行時間の方がパルス周期よりも長い場合であっても、適切に、送信パルスが反射した測距対象物90までの距離を算出することができる。
 また、実施の形態1にかかる測距装置100は、基準周波数に対して互いに異なる周波数オフセットを有するような、2つの送信パルスで構成される送信パルスセットを送信するように構成されている。これにより、受信系モジュールで周波数オフセットを検出することにより、2つの送信パルスに対応する2つの反射パルスを区別することができる。これにより、この2つの反射パルスが受信された時間差を容易に特定することができるので、2つの反射パルス(反射パルスセット)に対応する送信パルス(送信パルスセット)を容易に特定することが可能となる。
 なお、送信パルスと反射パルスとを対応付ける方法としては、2つの送信パルスから構成される送信パルスセットを用いるのではなく、送信パルスの周波数オフセットを、送信する順序ごとに変化させることも考えられる。これにより、受信系で反射パルスの周波数オフセットを検出することで、反射パルスと送信パルスとを対応付けることができる。ここで、この方法では、送信パルスを送信するごとに周波数を変化させる必要があるので、測距装置100の送受信に要する帯域を広くする必要がある。これに対し、実施の形態1にかかる測距装置100は、送信パルスセットを構成する2つの送信パルスが送信される時間差を用いて、送信パルス(送信パルスセット)と反射パルス(反射パルスセット)とを対応付けるように構成されている。これにより、送信パルスを送信するごとに周波数を変化させる必要がないので、測距装置100の送受信に要する帯域が狭くてもよい。例えば、図9の例では、送信パルスを送信するごとに周波数を変化させる場合、周波数オフセットは4つ必要であるが、実施の形態1では、周波数オフセットは2つのみでよい。さらに、送信パルスを送信するごとに周波数を変化させる必要がないので、送信パルスを送信するごとに周波数を変化させる必要がある場合と比較して、送信系モジュール及び受信系モジュールの構造を簡略化することが可能となる。
 また、実施の形態1にかかる測距装置100は、バンドパスフィルタ140(分離手段)を用いて、受信した光信号を、反射パルスの周波数オフセットごとに分離するように構成されている。バンドパスフィルタ140を用いた光信号の分離は、ハードウェアで行われ得るので、ソフトウェアで行う処理と比較して高速に行われ得る。また、反射パルスの周波数オフセットごとに受信信号を分離することで、各反射パルスの受信タイミングの抽出を容易に行うことが可能となる。
 なお、実施の形態1にかかる測距装置100は、送信パルスとその送信パルスが測距対象物90で反射した反射光である反射パルスとを対応付けるために、送信順序に応じて異なる送信の時間差が設けられた2つの送信パルスを送信する。つまり、実施の形態1にかかる測距装置100は、送信パルスに対応する反射パルスを、他の送信パルスに対応する反射パルスと区別するために、送信パルスにマーキングを行っているといえる。ここで、送信パルスのマーキングの方法として、送信パルスごとに振幅を変えることも考えられる。しかしながら、測距対象物90までの距離等に応じて、信号(パルス)の減衰量は異なり得る。したがって、振幅を用いて反射パルスを区別することは困難である。
(実施の形態2)
 次に、実施の形態2について説明する。実施の形態2においては、光源が複数ある点で、実施の形態1と異なる。なお、実施の形態2にかかる構成要素のうち、実施の形態1における構成要素と実質的に同じ構成要素には、同じ符号が付されている。また、以下の説明において、実施の形態1における構成要素と実質的に同じ構成要素については、適宜、説明を省略する。
 図10は、実施の形態2にかかる測距装置200の構成を示す図である。実施の形態2にかかる測距装置200は、送信系モジュールとして、光源202-1,202-2と、送信パルス生成部204-1,204-2と、合波器208と、光送信部120とを有する。光源202、送信パルス生成部204及び合波器208によって、送信順序に応じて異なる送信時間差を有する複数の送信パルスで構成される送信パルスセットを生成するパルス生成部210が構成される。このパルス生成部210は、図1に示した生成部2に対応する。
 また、実施の形態2にかかる測距装置200は、受信系モジュールとして、光受信部122と、光源224と、光干渉系ユニット130と、光電変換部132と、ADコンバータ134とを有する。また、実施の形態2にかかる測距装置200は、実施の形態1と同様に、バンドパスフィルタ140-1,140-2と、タイミング抽出部150-1,150-2と、時間差特定部154と、距離算出部160とを有する。つまり、測距装置200の受信系モジュールは、光源224を有すること以外は、実施の形態1と実質的に同様である。
 光源202-1は、周波数f0+f1の光信号を発生させ、発生した光信号を送信パルス生成部204-1に出力する。光源202-2は、周波数f0+f2の光信号を発生させ、発生した光信号を送信パルス生成部204-2に出力する。各送信パルス生成部204は、図4に示した変調信号生成部104及び光変調器106と実質的に同様の機能を有する。送信パルス生成部204-1は、周波数f0+f1の光信号を変調させて、図5に示すような送信パルスPlst1を生成する。送信パルス生成部204-2は、周波数f0+f2の光信号を変調させて、図5に示すような送信パルスPlst2を生成する。また、送信パルス生成部204-2は、送信パルス生成部204-1が送信パルスPlst1を生成してから時間差ΔTが経過した後で、送信パルスPlst2を生成してもよい。なお、実施の形態1と同様に、実施の形態2においても、この時間差ΔTが、送信パルスセットの送信順序に応じて異なる。
 合波器208は、送信パルスPlst1と、送信パルスPlst2とを合成する。これにより、合波器208は、図5に示すような、時間軸上に、時間差ΔTの間隔で並んだ送信パルスPlst1,Plst1を有する送信パルスセットPtsetの光信号を生成する。光送信部120は、この光信号を測距対象物90に送信(照射)する。
 さらに、送信パルス生成部204-1は、周波数オフセットf1の送信パルスが出力されるタイミングで、測定スタートトリガTrgtを距離算出部160に対して出力する。つまり、送信パルス生成部204-1は、1番目の送信パルスセットの送信パルスPlst1-1が生成されたタイミングで、測定スタートトリガTrgt1を出力する。また、送信パルス生成部204-1は、2番目の送信パルスセットの送信パルスPlst1-2が生成されたタイミングで、測定スタートトリガTrgt2を出力する。同様にして、送信パルス生成部204-1は、k番目の送信パルスセットの送信パルスPlst1-kが生成されたタイミングで、測定スタートトリガTrgtkを出力する
 光源224は、基準周波数f0の光信号を参照光として発する。光受信部122が反射パルス(反射光)を受信すると、光干渉系ユニット130は、上述した方法によって、光源224からの周波数f0の参照光を用いて、反射パルス(受信光)の周波数オフセットを検出する。なお、光電変換部132、ADコンバータ134、バンドパスフィルタ140、タイミング抽出部150、時間差特定部154及び距離算出部160の動作については実施の形態1と実質的に同様であるので、説明を省略する。
 実施の形態2にかかる測距装置200は、始めから周波数オフセットが施された光信号をそれぞれ発する光源202-1,202-2を有する。このような構成であっても、実施の形態1と同様に、測距対象物90までの距離又は送信パルスの送信周期によらないで、適切に測距を行うことが可能となる。なお、実施の形態2にかかる測距装置200は、複数の光源202を有するので、実施の形態1にかかる測距装置100よりも構造が複雑となる。つまり、実施の形態2にかかる測距装置100は、基準周波数f0の光を発する光源108からの光を送信パルスごとに異なる周波数の光信号に変調することで、互いに異なる周波数オフセットを有する複数の送信パルスを生成している。したがって、実施の形態2にかかる測距装置200は、簡略化された構造で、適切に測距を行うことが可能となる。
(実施の形態3)
 次に、実施の形態3について説明する。実施の形態3においては、1つの送信パルスセットを構成する2つの送信パルスの周波数オフセット同じである点で、他の実施の形態と異なる。なお、実施の形態3にかかる構成要素のうち、実施の形態1における構成要素と実質的に同じ構成要素には、同じ符号が付されている。また、以下の説明において、実施の形態1における構成要素と実質的に同じ構成要素については、適宜、説明を省略する。
 図11は、実施の形態3にかかる測距装置300の構成を示す図である。実施の形態3にかかる測距装置300は、送信系モジュールとして、周波数オフセット発生器302と、変調信号生成部304と、光変調器106と、光源108と、光送信部120とを有する。周波数オフセット発生器302、変調信号生成部304、光変調器106及び光源108によって、送信順序に応じて異なる送信時間差を有する複数の送信パルスで構成される送信パルスセットを生成するパルス生成部310が構成される。このパルス生成部310は、図1に示した生成部2に対応する。
 また、実施の形態3にかかる測距装置300は、受信系モジュールとして、光受信部122と、光干渉系ユニット130と、光電変換部132と、ADコンバータ134とを有する。また、実施の形態3にかかる測距装置300は、バンドパスフィルタ340と、タイミング抽出部350と、時間差特定部354と、距離算出部160とを有する。時間差特定部354は、図1に示した特定部8に対応する。
 また、実施の形態3では、送信パルスセットを構成する送信パルスの数を2つとする。つまり、送信パルスセットPrsetは、送信パルスPlst1と、送信パルスPlst2とを有する。そして、これら2つの送信パルスが送信される時間差が、送信パルスセットの送信順序に応じて異なるとする。また、実施の形態3では、送信パルスセットを構成する2つの送信パルスの周波数オフセットを、f1とする。つまり、実施の形態3においては、他の実施の形態と異なり、2つの送信パルスの周波数オフセットは同じである。
 周波数オフセット発生器302は、基準周波数f0からのオフセットである複数の周波数オフセットを示す情報である周波数オフセット情報を、変調信号生成部304に対して出力する。ここで、実施の形態3においては、周波数オフセット情報は、周波数オフセットf1を示す。なお、周波数オフセット発生器302は、送信パルスPlst1及び送信パルスPlst2の送信タイミングに合わせて、周波数オフセットf1を示す周波数オフセット情報を、変調信号生成部304に対して出力してもよい。
 ここで、周波数オフセット発生器302は、周波数オフセットf1を示す周波数オフセット情報を出力し、その後、時間差ΔTが経過した後で、周波数オフセットf1を示す周波数オフセット情報を出力してもよい。なお、本実施の形態では、この時間差ΔTが、送信パルスセットの送信順序に応じて異なる。例えば、後述する図12に例示するように、1番目の送信パルスセットPtset1を構成する送信パルスPlst1(Plst1-1)と送信パルスPlst2(Plst2-1)との周波数オフセット発生時間(送信時間に対応)の時間差をΔT1とする。この場合、周波数オフセット発生器302は、時間差ΔT1の間隔で、周波数オフセットf1を示す2つの周波数オフセット情報を出力してもよい。また、2番目の送信パルスセットPtset2を構成する送信パルスPlst1(Plst1-2)と送信パルスPlst2(Plst2-2)との周波数オフセット発生時間(送信時間に対応)の時間差をΔT2とする。この場合、周波数オフセット発生器302は、時間差ΔT2の間隔で、周波数オフセットf1を示す2つの周波数オフセット情報を出力してもよい。
 変調信号生成部304は、周波数オフセット発生器302から受信した周波数オフセット情報に応じて、送信パルスを生成するための変調信号を生成する。変調信号生成部304は、生成された変調信号を、光変調器106に対して出力する。光変調器106は、変調信号生成部104から入力された変調信号及び光源108から入力された光信号(変調器入力信号)を用いて、周波数オフセットf1を有する複数の送信パルスを生成する。光変調器106は、生成された送信パルスを含む光信号を、光送信部120に対して出力する。
 また、変調信号生成部304は、周波数オフセットf1に対応する送信パルスのうち、送信パルスセットにおける一方が送信されるタイミングで、測定スタートトリガTrgtを距離算出部160に対して出力する。ここで、実施の形態3では、測定スタートトリガTrgtは、各順序の送信パルスセットにおいて先に送信される送信パルスPlst1(Plst1-1、Plst1-2、・・・)それぞれの送信タイミングを示す。変調信号生成部304は、k番目の送信パルスセットPtsetkの送信パルスPlst1-kの変調信号を出力するタイミングで、測定スタートトリガTrgtkを距離算出部160に対して出力する。
 光送信部120は、測距対象物90に対して、複数の送信パルスセット(送信パルス)を含む光信号を送信(照射)する。送信パルスは、測距対象物90で、測距装置300に向かって反射する。光受信部122は、測距対象物90で反射した複数の反射パルスを含む光信号を受信する。ここで、受信された複数の反射パルスの周波数は、f0+f1である。そして、光受信部122は、周波数f0+f1の2つの反射パルスPlsrのセットである反射パルスセットPrsetを、繰り返し受信する。
 光干渉系ユニット130、光電変換部132及びADコンバータ134の動作については、実施の形態1にかかるものと実質的に同様であるので、説明を省略する。バンドパスフィルタ340の中心周波数は、周波数f1である。したがって、バンドパスフィルタ340は、周波数f1を示す電気信号を通過させる。
 タイミング抽出部350は、受信された反射パルスの受信タイミングを抽出する、タイミング抽出手段として機能する。タイミング抽出部350は、周波数オフセットf1を有する反射パルスPlsr1,Plsr2の受信タイミングを抽出する。ここで、タイミング抽出部350は、奇数番目に受信された反射パルスを反射パルスPlsr1と判定し、偶数番目に受信された反射パルスを反射パルスPlsr2と判定してもよい。
 時間差特定部354は、タイミング抽出部350によって抽出された反射パルスPlsr1,Plsr2が受信された時間差ΔTを特定する。時間差特定部354は、特定された時間差ΔTに対応する送信パルスセットPtsetを特定する。これにより、反射パルスセットPrsetと送信パルスセットPtsetとが対応付けられることとなる。そして、時間差特定部354は、特定された送信パルスセットPtsetに対応する測定ストップトリガTrgrを、反射パルスPlsr1の受信タイミングで、距離算出部160に対して出力する。なお、距離算出部160の動作については、実施の形態1にかかるものと実質的に同様であるので、適宜、説明を省略する。
 図12は、実施の形態3にかかる送信パルスと反射パルスとの関係を示すタイミングチャートである。送信パルスPlst1及び送信パルスPlst2の周波数は、f0+f1である。つまり、送信パルスPlst1及び送信パルスPlst2は、ともに、周波数オフセットf1を有する。
 まず、1番目の送信パルスセットPtset1が送信される。送信パルスセットPtset1は、送信パルスPlst1-1と、送信パルスPlst2-1とで構成されている。送信パルスPlst1-1の送信時間と送信パルスPlst2-1の送信時間との時間差はΔT1である。また、送信パルスPlst1-1の送信タイミングで、測定スタートトリガTrgt1が距離算出部160に出力される。なお、周波数オフセットf1を有する送信パルスの順序としては、送信パルスPlst1-1は1番目(#1)であり、送信パルスPlst2-1は2番目(#2)である。
 次に、2番目の送信パルスセットPtset2が送信される。送信パルスセットPtset2は、送信パルスPlst1-2と、送信パルスPlst2-2とで構成されている。送信パルスPlst1-2の送信時間と送信パルスPlst2-2の送信時間との時間差ΔT2は、送信パルスセットPtset1における時間差ΔT1と異なっている。また、送信パルスPlst1-2の送信タイミングで、測定スタートトリガTrgt2が距離算出部160に出力される。なお、周波数オフセットf1を有する送信パルスの順序としては、送信パルスPlst1-2は3番目(#3)であり、送信パルスPlst2-2は4番目(#4)である。
 次に、3番目の送信パルスセットPtset3が送信される。送信パルスセットPtset3は、送信パルスPlst1-3と、送信パルスPlst2-3とで構成されている。送信パルスPlst1-3の送信時間と送信パルスPlst2-3の送信時間との時間差ΔT3は、送信パルスセットPtset1における時間差ΔT1及び送信パルスセットPtset2における時間差ΔT2と異なっている。また、送信パルスPlst1-3の送信タイミングで、測定スタートトリガTrgt3が距離算出部160に出力される。なお、周波数オフセットf1を有する送信パルスの順序としては、送信パルスPlst1-3は5番目(#5)であり、送信パルスPlst2-3は6番目(#6)である。
 次に、4番目の送信パルスセットPtset4が送信される。送信パルスセットPtset4は、送信パルスPlst1-4と、送信パルスPlst2-4とで構成されている。送信パルスPlst1-4の送信時間と送信パルスPlst2-4の送信時間との時間差ΔT4は、時間差ΔT1,ΔT2,ΔT3と異なっている。したがって、時間差ΔT1,ΔT2,ΔT3,ΔT4は、互いに異なっている。また、送信パルスPlst1-4の送信タイミングで、測定スタートトリガTrgt4が距離算出部160に出力される。なお、周波数オフセットf1を有する送信パルスの順序としては、送信パルスPlst1-4は7番目(#7)であり、送信パルスPlst2-4は8番目(#8)である。
 なお、送信時間の時間差ΔT1,ΔT2,ΔT3,ΔT4は、送信パルスPlst1の送信間隔及び送信パルスPlst2の送信間隔と比較して、はるかに小さい。したがって、ある送信パルスセットPtsetが次の送信パルスセットPtsetと重ならないようになっている。したがって、送信パルスPlst1が奇数番目に送信され、送信パルスPlst2が偶数番目に送信されることとなる。
 一方、送信パルスPlst1-2が送信された後で、周波数オフセットf1を有する反射パルスPlsr1-1が受信される。また、これと略同じタイミングで、周波数オフセットf1を有する反射パルスPlsr2-1が受信される。タイミング抽出部350は、奇数番目(1番目:#1)に受信された反射パルスを反射パルスPlsr1-1と判定し得る。そして、タイミング抽出部350は、この反射パルスPlsr1-1の受信タイミングを抽出する。また、タイミング抽出部350は、偶数番目(2番目:#2)に受信された反射パルスを反射パルスPlsr2-1と判定し得る。そして、タイミング抽出部350は、この反射パルスPlsr2-1の受信タイミングを抽出する。
 時間差特定部354は、反射パルスPlsr1-1の受信タイミングと反射パルスPlsr2-1の受信タイミングとの時間差を特定する。この場合、時間差特定部354は、反射パルスPlsr1-1の受信タイミングと反射パルスPlsr2-1の受信タイミングとの時間差を、ΔT1と特定する。したがって、時間差特定部354は、反射パルスPlsr1-1と反射パルスPlsr2-1とのセットである反射パルスセットPrset1が、時間差ΔT1に関する1番目の送信パルスセットPtset1に対応すると判定する。したがって、時間差特定部354は、測定スタートトリガTrgt1に対応する測定ストップトリガTrgr1を、反射パルスPlsr1-1の受信タイミングで、距離算出部160に対して出力する。このとき、距離算出部160は、測定スタートトリガTrgt1と測定ストップトリガTrgr1との時間差Tdiff1から、測距対象物90までの距離を算出する。
 また、送信パルスPlst1-3が送信された後で、周波数オフセットf1を有する反射パルスPlsr1-2が受信される。また、これと略同じタイミングで、周波数オフセットf1を有する反射パルスPlsr2-2が受信される。タイミング抽出部350は、奇数番目(3番目:#3)に受信された反射パルスを反射パルスPlsr1-2と判定し得る。そして、タイミング抽出部350は、この反射パルスPlsr1-2の受信タイミングを抽出する。また、タイミング抽出部350は、偶数番目(4番目:#4)に受信された反射パルスを反射パルスPlsr2-2と判定し得る。そして、タイミング抽出部350は、この反射パルスPlsr2-2の受信タイミングを抽出する。
 時間差特定部354は、反射パルスPlsr1-2の受信タイミングと反射パルスPlsr2-2の受信タイミングとの時間差を特定する。この場合、時間差特定部354は、反射パルスPlsr1-2の受信タイミングと反射パルスPlsr2-2の受信タイミングとの時間差を、ΔT2と特定する。したがって、時間差特定部354は、反射パルスPlsr1-2と反射パルスPlsr2-2とのセットである反射パルスセットPrset2が、時間差ΔT2に関する2番目の送信パルスセットPtset2に対応すると判定する。したがって、時間差特定部354は、測定スタートトリガTrgt2に対応する測定ストップトリガTrgr2を、反射パルスPlsr1-2の受信タイミングで、距離算出部160に対して出力する。このとき、距離算出部160は、測定スタートトリガTrgt2と測定ストップトリガTrgr2との時間差Tdiff2から、測距対象物90までの距離を算出する。
 また、送信パルスPlst1-4が送信された後で、周波数オフセットf1を有する反射パルスPlsr1-3が受信される。また、これと略同じタイミングで、周波数オフセットf1を有する反射パルスPlsr2-3が受信される。タイミング抽出部350は、奇数番目(5番目:#5)に受信された反射パルスを反射パルスPlsr1-3と判定し得る。そして、タイミング抽出部350は、この反射パルスPlsr1-3の受信タイミングを抽出する。また、タイミング抽出部350は、偶数番目(6番目:#6)に受信された反射パルスを反射パルスPlsr2-3と判定し得る。そして、タイミング抽出部350は、この反射パルスPlsr2-3の受信タイミングを抽出する。
 時間差特定部354は、反射パルスPlsr1-3の受信タイミングと反射パルスPlsr2-3の受信タイミングとの時間差を特定する。この場合、時間差特定部354は、反射パルスPlsr1-3の受信タイミングと反射パルスPlsr2-3の受信タイミングとの時間差を、ΔT3と特定する。したがって、時間差特定部354は、反射パルスPlsr1-3と反射パルスPlsr2-3とのセットである反射パルスセットPrset3が、時間差ΔT3に関する3番目の送信パルスセットPtset3に対応すると判定する。したがって、時間差特定部354は、測定スタートトリガTrgt3に対応する測定ストップトリガTrgr3を、反射パルスPlsr1-3の受信タイミングで、距離算出部160に対して出力する。このとき、距離算出部160は、測定スタートトリガTrgt3と測定ストップトリガTrgr3との時間差Tdiff3から、測距対象物90までの距離を算出する。
 このように、実施の形態3にかかる測距装置300は、反射パルスセットを構成する2つの反射パルスを受信した時間差を特定することで、受信した反射パルス(反射パルスセット)が何番目の送信パルスセットに対応するのかを特定できる。したがって、実施の形態1と同様に、実施の形態3においても、光信号の飛行時間の方がパルス周期よりも長い場合であっても、距離算出部160は、適切に、送信パルスPlstが反射した測距対象物90までの距離を算出することができる。
 また、実施の形態3にかかる測距装置300は、基準周波数に対して互いに同じ周波数オフセットを有するような、2つの送信パルスで構成される送信パルスセットを送信するように構成されている。したがって、実施の形態3では、周波数オフセットは1つのみでよい。したがって、送信パルスを送信するごとに周波数を変化させる必要がないので、実施の形態1の場合よりもさらに、測距装置300の送受信に要する帯域が狭くてもよい。さらに、送信パルスを送信するごとに周波数を変化させる必要がないので、送信パルスを送信するごとに周波数を変化させる必要がある場合と比較して、送信系モジュール及び受信系モジュールの構造を簡略化することが可能となる。
(実施の形態4)
 次に、実施の形態4について説明する。実施の形態4においては、1つの送信パルスセットを構成する送信パルスが3つ以上である点で、他の実施の形態と異なる。以下に説明する例では、1つの送信パルスセットを構成する送信パルスが3つである場合について示しているが、1つの送信パルスセットを構成する送信パルスは4つ以上であってもよい。なお、実施の形態4にかかる構成要素のうち、実施の形態1における構成要素と実質的に同じ構成要素には、同じ符号が付されている。また、以下の説明において、実施の形態1における構成要素と実質的に同じ構成要素については、適宜、説明を省略する。
 図13は、実施の形態4にかかる測距装置400の構成を示す図である。実施の形態4にかかる測距装置400は、送信系モジュールとして、周波数オフセット発生器402と、変調信号生成部404と、光変調器106と、光源108と、光送信部120とを有する。周波数オフセット発生器402、変調信号生成部404、光変調器106及び光源108によって、送信順序に応じて異なる送信時間差を有する複数の送信パルスで構成される送信パルスセットを生成するパルス生成部410が構成される。このパルス生成部410は、図1に示した生成部2に対応する。
 また、実施の形態4にかかる測距装置400は、受信系モジュールとして、光受信部122と、光干渉系ユニット130と、光電変換部132と、ADコンバータ134とを有する。また、実施の形態4にかかる測距装置400は、バンドパスフィルタ140-1,140-2,140-3と、タイミング抽出部150-1,150-2,150-3と、時間差特定部454と、距離算出部160とを有する。時間差特定部454は、図1に示した特定部8に対応する。
 また、実施の形態4では、送信パルスセットを構成する送信パルスの数を3つとする。つまり、送信パルスセットは、送信パルスPlst1と、送信パルスPlst2と、送信パルスPlst3を有する。そして、これら3つの送信パルスが送信される時間差が、送信パルスセットの送信順序に応じて異なるとする。また、実施の形態4では、送信パルスセットを構成する3つの送信パルスの周波数オフセットを、それぞれ、f1,f2,f3とする。したがって、バンドパスフィルタ140-1,140-2,140-3は、それぞれ、周波数オフセットf1,f2,f3に対応する。同様に、タイミング抽出部150-1,150-2,150-3は、それぞれ、周波数オフセットf1,f2,f3に対応する。
 周波数オフセット発生器402は、基準周波数f0からのオフセットである複数の周波数オフセットを示す情報である周波数オフセット情報を、変調信号生成部404に対して出力する。ここで、実施の形態4においては、周波数オフセット情報は、周波数オフセットf1,f2,f3を示す。なお、周波数オフセット発生器402は、送信パルスPlst1、送信パルスPlst2及び送信パルスPlst3の送信タイミングに合わせて、それぞれ、周波数オフセットf1,f2,f3を示す周波数オフセット情報を、変調信号生成部404に対して出力してもよい。
 ここで、周波数オフセット発生器402は、周波数オフセットf1を示す周波数オフセット情報を出力し、その後、時間差ΔTxが経過した後で、周波数オフセットf2を示す周波数オフセット情報を出力してもよい。また、周波数オフセット発生器402は、周波数オフセットf1を示す周波数オフセット情報を出力し、その後、時間差ΔTyが経過した後で、周波数オフセットf3を示す周波数オフセット情報を出力してもよい。なお、実施の形態4では、これらの時間差ΔTx及びΔTyの少なくとも1つが、送信パルスセットの送信順序に応じて異なる。つまり、実施の形態4では、送信パルスセットを構成する3つの送信パルスのうちの1つが送信される時間と、他の2つの送信パルスがそれぞれ送信される時間との時間差(ΔTx及びΔTy)の少なくとも1つが、送信パルスセットの送信順序に応じて異なる。詳しくは、図14を用いて後述する。
 変調信号生成部404は、周波数オフセット発生器402から受信した周波数オフセット情報に応じて、送信パルスを生成するための変調信号を生成する。変調信号生成部404は、生成された変調信号を、光変調器106に対して出力する。光変調器106は、変調信号生成部104から入力された変調信号及び光源108から入力された光信号(変調器入力信号)を用いて、周波数オフセットf1,f2,f3を有する複数の送信パルスを生成する。光変調器106は、生成された送信パルスを含む光信号を、光送信部120に対して出力する。
 さらに、変調信号生成部404は、周波数オフセットf1に対応する送信パルスが送信されるタイミングで、測定スタートトリガTrgtを距離算出部160に対して出力する。ここで、実施の形態4では、測定スタートトリガTrgtは、各順序の送信パルスセットにおける送信パルスPlst1それぞれの送信タイミングを示す。変調信号生成部404は、k番目の送信パルスセットPtsetkの送信パルスPlst1-kの変調信号を出力するタイミングで、測定スタートトリガTrgtkを距離算出部160に対して出力する。
 光送信部120は、測距対象物90に対して、複数の送信パルスセット(送信パルス)を含む光信号を送信(照射)する。送信パルスは、測距対象物90で、測距装置400に向かって反射する。光受信部122は、測距対象物90で反射した複数の反射パルスを含む光信号を受信する。ここで、受信された複数の反射パルスの周波数は、f0+f1、f0+f2、f0+f3である。そして、光受信部122は、周波数f0+f1の反射パルスPlsr1と周波数f0+f2の反射パルスPlsr2と周波数f0+f3の反射パルスPlsr3とのセットである反射パルスセットPrsetを、繰り返し受信する。
 光干渉系ユニット130、光電変換部132及びADコンバータ134の動作については、実施の形態1にかかるものと実質的に同様であるので、説明を省略する。バンドパスフィルタ140-1,140-2,140-3の中心周波数は、それぞれ、周波数f1,f2,f3である。したがって、バンドパスフィルタ140-1,140-2,140-3は、それぞれ、周波数f1,f2,f3を示す電気信号を通過させる。
 タイミング抽出部150は、受信された反射パルスの受信タイミングを抽出する、タイミング抽出手段として機能する。タイミング抽出部150-1,150-2,150-3は、それぞれ、周波数オフセットf1,f2,f3を有する反射パルスPlsr1,Plsr2,Plsr3の受信タイミングを抽出する。
 時間差特定部454は、タイミング抽出部150-1,150-2,150-3によってそれぞれ抽出された、周波数オフセットf1,f2,f3を有する反射パルスが受信された時間差ΔTの組(ΔTx,ΔTy)を特定する。時間差特定部454は、特定された時間差ΔTの組に対応する送信パルスセットPtsetを特定する。これにより、反射パルスセットPrsetと送信パルスセットPtsetとが対応付けられることとなる。そして、時間差特定部454は、特定された送信パルスセットPtsetに対応する測定ストップトリガTrgrを、周波数オフセットf1を有する反射パルスの受信タイミングで、距離算出部160に対して出力する。詳しくは、図14を用いて後述する。
 図14は、実施の形態4にかかる送信パルスと反射パルスとの関係を示すタイミングチャートである。送信パルスPlst1、送信パルスPlst2及び送信パルスPlst3の周波数は、それぞれ、f0+f1、f0+f2及びf0+f3である。つまり、送信パルスPlst1は周波数オフセットf1を有し、送信パルスPlst2は周波数オフセットf2を有し、送信パルスPlst3は周波数オフセットf3を有する。
 まず、1番目の送信パルスセットPtset1が送信される。送信パルスセットPtset1は、周波数オフセットf1を有する送信パルスPlst1-1と、周波数オフセットf2を有する送信パルスPlst2-1と、周波数オフセットf3を有する送信パルスPlst3-1とで構成されている。送信パルスPlst1-1の送信時間と送信パルスPlst2-1の送信時間との時間差ΔT1xは0、つまり、送信パルスPlst1-1と送信パルスPlst2-1とが同時に送信されるとする。また、送信パルスPlst1-1の送信時間と送信パルスPlst3-1の送信時間との時間差ΔT1yは0、つまり、送信パルスPlst1-1と送信パルスPlst3-1とが同時に送信されるとする。また、送信パルスPlst1-1の送信タイミングで、測定スタートトリガTrgt1が距離算出部160に出力される。
 次に、2番目の送信パルスセットPtset2が送信される。送信パルスセットPtset2は、周波数オフセットf1を有する送信パルスPlst1-2と、周波数オフセットf2を有する送信パルスPlst2-2と、周波数オフセットf3を有する送信パルスPlst3-2とで構成されている。送信パルスPlst1-2の送信時間と送信パルスPlst2-2の送信時間との時間差はΔT2xである。また、送信パルスPlst1-2の送信時間と送信パルスPlst3-2の送信時間との時間差ΔT2yは0、つまり、送信パルスPlst1-2と送信パルスPlst3-2とが同時に送信されるとする。
 ここで、時間差ΔT2xは、送信パルスセットPtset1における時間差ΔT1xと異なっている。したがって、1番目の送信パルスセットPtset1と2番目の送信パルスセットPtset2とで、これらを構成する送信パルスPlstの送信時間の時間差ΔTの組(ΔTx,ΔTy)は異なっている。つまり、1番目の送信パルスセットPtset1と2番目の送信パルスセットPtset2とで、これらを構成する送信パルスPlstの送信時間の時間差ΔTx及びΔTyの少なくとも1つが異なっている(この例ではΔT1x≠ΔT2x)。また、送信パルスPlst1-2の送信タイミングで、測定スタートトリガTrgt2が距離算出部160に出力される。
 次に、3番目の送信パルスセットPtset3が送信される。送信パルスセットPtset3は、周波数オフセットf1を有する送信パルスPlst1-3と、周波数オフセットf2を有する送信パルスPlst2-3と、周波数オフセットf3を有する送信パルスPlst3-3とで構成されている。送信パルスPlst1-3の送信時間と送信パルスPlst2-3の送信時間との時間差はΔT3xである。また、送信パルスPlst1-3の送信時間と送信パルスPlst3-3の送信時間との時間差はΔT3yである。
 ここで、時間差ΔT3yは、送信パルスセットPtset2における時間差ΔT2yと異なっている。したがって、2番目の送信パルスセットPtset2と3番目の送信パルスセットPtset3とで、これらを構成する送信パルスPlstの送信時間の時間差ΔTの組(ΔTx,ΔTy)は異なっている。つまり、2番目の送信パルスセットPtset2と3番目の送信パルスセットPtset3とで、これらを構成する送信パルスPlstの送信時間の時間差ΔTx及びΔTyの少なくとも1つが異なっている(この例ではΔT2y≠ΔT3y)。同様に、ΔT1x≠ΔT3x,ΔT1y≠ΔT3yなので、1番目の送信パルスセットPtset1と3番目の送信パルスセットPtset3とで、これらを構成する送信パルスPlstの送信時間の時間差ΔTの組(ΔTx,ΔTy)は異なっている。また、送信パルスPlst1-3の送信タイミングで、測定スタートトリガTrgt3が距離算出部160に出力される。
 次に、4番目の送信パルスセットPtset4が送信される。送信パルスセットPtset4は、周波数オフセットf1を有する送信パルスPlst1-4と、周波数オフセットf2を有する送信パルスPlst2-4と、周波数オフセットf3を有する送信パルスPlst3-4とで構成されている。送信パルスPlst1-4の送信時間と送信パルスPlst2-4の送信時間との時間差はΔT4xである。また、送信パルスPlst1-4の送信時間と送信パルスPlst3-4の送信時間との時間差はΔT4yである。
 ここで、時間差ΔT4xは、送信パルスセットPtset3における時間差ΔT3xと異なっている。したがって、3番目の送信パルスセットPtset3と4番目の送信パルスセットPtset4とで、これらを構成する送信パルスPlstの送信時間の時間差ΔTの組(ΔTx,ΔTy)は異なっている。つまり、3番目の送信パルスセットPtset3と4番目の送信パルスセットPtset4とで、これらを構成する送信パルスPlstの送信時間の時間差ΔTx及びΔTyの少なくとも1つが異なっている(この例ではΔT3x≠ΔT4x)。同様に、ΔT1x≠ΔT4x,ΔT1y≠ΔT4yなので、1番目の送信パルスセットPtset1と4番目の送信パルスセットPtset4とで、これらを構成する送信パルスPlstの送信時間の時間差ΔTの組(ΔTx,ΔTy)は異なっている。また、ΔT2x≠ΔT4x,ΔT2y≠ΔT4yなので、2番目の送信パルスセットPtset2と4番目の送信パルスセットPtset4とで、これらを構成する送信パルスPlstの送信時間の時間差ΔTの組(ΔTx,ΔTy)は異なっている。また、送信パルスPlst1-4の送信タイミングで、測定スタートトリガTrgt4が距離算出部160に出力される。
 一方、送信パルスPlst1-2が送信された後で、周波数オフセットf1を有する反射パルスPlsr1-1が受信される。また、これと略同じタイミングで、周波数オフセットf2を有する反射パルスPlsr2-1及び周波数オフセットf3を有する反射パルスPlsr3-1が受信される。反射パルスPlsr1-1は、バンドパスフィルタ140-1によって分離される。そして、タイミング抽出部150-1によって、反射パルスPlsr1-1の受信タイミングが抽出される。同様に、反射パルスPlsr2-1は、バンドパスフィルタ140-2によって分離される。そして、タイミング抽出部150-2によって、反射パルスPlsr2-1の受信タイミングが抽出される。反射パルスPlsr3-1は、バンドパスフィルタ140-3によって分離される。そして、タイミング抽出部150-3によって、反射パルスPlsr3-1の受信タイミングが抽出される。
 時間差特定部454は、反射パルスPlsr1-1の受信タイミングと反射パルスPlsr2-1の受信タイミングとの時間差、及び、反射パルスPlsr1-1の受信タイミングと反射パルスPlsr3-1の受信タイミングとの時間差を特定する。この場合、時間差特定部454は、反射パルスPlsr1-1の受信タイミングと反射パルスPlsr2-1の受信タイミングとの時間差を、ΔT1xつまり0であると特定する。また、時間差特定部454は、反射パルスPlsr1-1の受信タイミングと反射パルスPlsr3-1の受信タイミングとの時間差を、ΔT1yつまり0であると特定する。ここで、反射パルスPlsr1-1と反射パルスPlsr2-1と反射パルスPlsr3-1とのセットを、反射パルスセットPrset1とする。
 この場合、時間差特定部454は、反射パルスセットPrset1が、時間差ΔTの組(ΔT1x,ΔT1y)に関する1番目の送信パルスセットPtset1に対応すると判定する。したがって、時間差特定部454は、測定スタートトリガTrgt1に対応する測定ストップトリガTrgr1を、周波数オフセットf1を有する反射パルスPlsr1-1の受信タイミングで、距離算出部160に対して出力する。このとき、距離算出部160は、測定スタートトリガTrgt1と測定ストップトリガTrgr1との時間差Tdiff1から、測距対象物90までの距離を算出する。
 また、送信パルスPlst1-3が送信された後で、周波数オフセットf1を有する反射パルスPlsr1-2が受信される。また、これと略同じタイミングで、周波数オフセットf2を有する反射パルスPlsr2-2及び周波数オフセットf3を有する反射パルスPlsr3-2が受信される。反射パルスPlsr1-2は、バンドパスフィルタ140-1によって分離される。そして、タイミング抽出部150-1によって、反射パルスPlsr1-2の受信タイミングが抽出される。同様に、反射パルスPlsr2-2は、バンドパスフィルタ140-2によって分離される。そして、タイミング抽出部150-2によって、反射パルスPlsr2-2の受信タイミングが抽出される。反射パルスPlsr3-2は、バンドパスフィルタ140-3によって分離される。そして、タイミング抽出部150-3によって、反射パルスPlsr3-2の受信タイミングが抽出される。
 時間差特定部454は、反射パルスPlsr1-2の受信タイミングと反射パルスPlsr2-2の受信タイミングとの時間差、及び、反射パルスPlsr1-2の受信タイミングと反射パルスPlsr3-2の受信タイミングとの時間差を特定する。この場合、時間差特定部454は、反射パルスPlsr1-2の受信タイミングと反射パルスPlsr2-2の受信タイミングとの時間差を、ΔT2xと特定する。また、時間差特定部454は、反射パルスPlsr1-2の受信タイミングと反射パルスPlsr3-2の受信タイミングとの時間差を、ΔT2yつまり0であると特定する。ここで、反射パルスPlsr1-2と反射パルスPlsr2-2と反射パルスPlsr3-2とのセットを、反射パルスセットPrset2とする。
 この場合、時間差特定部454は、反射パルスセットPrset2が、時間差ΔTの組(ΔT2x,ΔT2y)に関する2番目の送信パルスセットPtset2に対応すると判定する。したがって、時間差特定部454は、測定スタートトリガTrgt2に対応する測定ストップトリガTrgr2を、周波数オフセットf1を有する反射パルスPlsr1-2の受信タイミングで、距離算出部160に対して出力する。このとき、距離算出部160は、測定スタートトリガTrgt2と測定ストップトリガTrgr2との時間差Tdiff2から、測距対象物90までの距離を算出する。
 また、送信パルスPlst1-4が送信された後で、周波数オフセットf1を有する反射パルスPlsr1-3が受信される。また、これと略同じタイミングで、周波数オフセットf2を有する反射パルスPlsr2-3及び周波数オフセットf3を有する反射パルスPlsr3-3が受信される。反射パルスPlsr1-3は、バンドパスフィルタ140-1によって分離される。そして、タイミング抽出部150-1によって、反射パルスPlsr1-3の受信タイミングが抽出される。同様に、反射パルスPlsr2-3は、バンドパスフィルタ140-2によって分離される。そして、タイミング抽出部150-2によって、反射パルスPlsr2-3の受信タイミングが抽出される。反射パルスPlsr3-3は、バンドパスフィルタ140-3によって分離される。そして、タイミング抽出部150-3によって、反射パルスPlsr3-3の受信タイミングが抽出される。
 時間差特定部454は、反射パルスPlsr1-3の受信タイミングと反射パルスPlsr2-3の受信タイミングとの時間差、及び、反射パルスPlsr1-3の受信タイミングと反射パルスPlsr3-3の受信タイミングとの時間差を特定する。この場合、時間差特定部454は、反射パルスPlsr1-3の受信タイミングと反射パルスPlsr2-3の受信タイミングとの時間差を、ΔT3xと特定する。また、時間差特定部454は、反射パルスPlsr1-3の受信タイミングと反射パルスPlsr3-3の受信タイミングとの時間差を、ΔT3yと特定する。ここで、反射パルスPlsr1-3と反射パルスPlsr2-3と反射パルスPlsr3-3とのセットを、反射パルスセットPrset3とする。
 この場合、時間差特定部454は、反射パルスセットPrset3が、時間差ΔTの組(ΔT3x,ΔT3y)に関する3番目の送信パルスセットPtset3に対応すると判定する。したがって、時間差特定部454は、測定スタートトリガTrgt3に対応する測定ストップトリガTrgr3を、周波数オフセットf1を有する反射パルスPlsr1-3の受信タイミングで、距離算出部160に対して出力する。このとき、距離算出部160は、測定スタートトリガTrgt3と測定ストップトリガTrgr3との時間差Tdiff3から、測距対象物90までの距離を算出する。
 このように、実施の形態4にかかる測距装置400は、反射パルスセットを構成する3つの反射パルスを受信した時間差を特定することで、受信した反射パルス(反射パルスセット)が何番目の送信パルス(送信パルスセット)に対応するのかを特定できる。したがって、実施の形態1等と同様に、実施の形態4においても、光信号の飛行時間の方がパルス周期よりも長い場合であっても、距離算出部160は、適切に、送信パルスPlstが反射した測距対象物90までの距離を算出することができる。
 また、実施の形態4にかかる測距装置400は、3つの送信パルスで構成される送信パルスセットを送信するように構成されている。これにより、各送信パルスセットにおける送信パルスの送信時間の時間差が、ΔTx及びΔTyの2つとなる。ここで、実施の形態1においては、各送信パルスセットにおける送信パルスの送信時間の時間差は1つである。したがって、送信パルスセットの送信順序ごとに時間差が異なるようにするためには、送信パルスセットが増えるごとに、時間差を長くする必要がある。これに対し、実施の形態4においては、時間差はΔTx及びΔTyの2つであるので、送信パルスセットの送信順序ごとに時間差を変化させるためには、ΔTx及びΔTyの少なくともいずれかを変化させればよい。言い換えると、ある送信パルスセットに関するΔTx及びΔTyの一方は、他の送信パルスセットのそれと同じであってもよい。例えば、図14の例では、ΔT2x=ΔT3x=ΔT3y=ΔT4yであってもよい。このようにすることで、図14に示したΔT4xを、図9に示したΔT4よりも短くすることができる。これにより、送信パルスセットを区別するために、送信パルスセットを構成する送信パルスの送信時間の時間差を長くすることを抑制することが可能となる。
(変形例)
 なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。例えば、複数の実施の形態の2つ以上は、互いに適用可能である。具体的には、上述した実施の形態3及び4の構成は、実施の形態1を変形したものとしているが、このような構成に限られない。実施の形態3及び4の構成は、実施の形態2を変形したものでもよい。
 また、上述した実施の形態では、バンドパスフィルタを用いて、反射パルスの周波数オフセットごとに光信号を分離するとしたが、このような構成に限られない。バンドパスフィルタ以外の構成要素で信号を分離してもよい。また、周波数オフセットごとに反射パルスの受信タイミングを抽出できれば、受信した光信号を分離する必要もない。一方、バンドパスフィルタを用いて反射パルスの周波数オフセットごとに光信号を分離することで、上述したように、高速に測距処理を行うことが可能となる。また、バンドパスフィルタを用いて反射パルスの周波数オフセットごとに光信号を分離することにより、各反射パルスの受信タイミングの抽出を行うことが容易となる。
 また、距離算出部160は、測定スタートトリガの出力タイミングに、光変調器106等における処理時間を考慮してもよい。言い換えると、距離算出部160は、測定スタートトリガを受け付けてから、実際に測定スタートトリガに対応する送信パルスが送信されるまでの間の処理時間を考慮してもよい。この場合、距離算出部160は、測定スタートトリガの出力タイミングに光変調器106等における処理時間を加えたタイミングを、測距の開始タイミングとしてもよい。なお、光変調器106等における処理時間は、略一定であるとする。
 同様に、距離算出部160は、測定ストップトリガに、測定ストップトリガが出力される前の光干渉系ユニット130等の処理時間を考慮してもよい。言い換えると、距離算出部160は、光受信部122によって反射パルスが受信されてからタイミング抽出部150によって測定ストップトリガが出力されるまでの間の処理時間を考慮してもよい。この場合、距離算出部160は、測定ストップトリガの出力タイミングに光干渉系ユニット130等の処理時間を引いたタイミングを、測距の終了タイミングとしてもよい。なお、光干渉系ユニット130等における処理時間は、略一定であるとする。
 あるいは、変調信号生成部104は、後段の光送信部120によって送信パルスが送信されるまでの処理時間を考慮して、送信パルスが送信される時刻を示すような測定スタートトリガを出力してもよい。つまり、変調信号が生成された時刻をt1とし、光変調器106等における処理時間をΔt1とすると、変調信号生成部104は、時刻(t1+Δt1)を示す測定スタートトリガを出力してもよい。このことは、実施の形態2にかかる送信パルス生成部204、実施の形態3にかかる変調信号生成部304及び実施の形態4にかかる変調信号生成部404においても同様である。同様に、タイミング抽出部150は、前段の光干渉系ユニット130等における処理時間を考慮して、反射パルスが受信された時刻を示す測定ストップトリガを出力してもよい。つまり、タイミング抽出部150がバンドパスフィルタ140から信号を受信した時刻をt2とし、光干渉系ユニット130等における処理時間をΔt2とすると、タイミング抽出部150は、時刻(t2-Δt2)を示す測定ストップトリガを出力してもよい。この場合、距離算出部160は、Td=(t2-Δt2)-(t1+Δt1)として、式1を用いて距離Rを算出してもよい。このことは、実施の形態3のタイミング抽出部350においても同様である。
 また、周波数オフセット発生器102は、全ての周波数オフセットf1、f2を示す周波数オフセット情報を、変調信号生成部104に出力してもよい。この場合、変調信号生成部104は、パルス周期Tpごとに、周波数オフセットf1、f2それぞれに対応する変調信号を生成してもよい。
 また、実施の形態1においては、送信パルスPlst1のパルス周期Tp1及び送信パルスPlst2のパルス周期Tp2がそれぞれ一定であるとしたが、このような構成に限られない。本実施の形態において、いずれの送信パルスのパルス周期も、一定である必要はない。したがって、1番目の送信パルスPlst1-1を送信してから2番目の送信パルスPlst1-2を送信するまでの期間は、2番目の送信パルスPlst1-2を送信してから3番目の送信パルスPlst1-3を送信するまでの期間と同じでなくてもよい。このことは、送信パルスPlst2及び送信パルスPlst3についても同様である。
 また、上述した実施の形態においては、実際の測距に用いられる送信パルス(その送信のタイミングで測定スタートトリガが出力されるもの)を送信パルスPlst1、つまり、送信パルスセットのうち最初に送信されるものとしている。しかしながら、このような構成に限られない。測距に用いられる送信パルスは、送信パルスセットを構成する送信パルスのいずれでもよい。つまり、送信パルスPlst2を用いて測距を行ってもよく、この場合、反射パルスPlsr2の受信タイミングで、測定ストップトリガが出力される。あるいは、送信パルスセットを構成する複数の送信パルスの送信時刻の平均時刻を、測定スタートトリガの出力タイミングとしてもよい。
 また、上述した実施の形態4において、送信パルスセットを構成する3つの送信パルスの周波数オフセットは、互いに異なるとしたが、このような構成に限られない。受信側にて反射パルスの受信時間の時間差を特定することが可能であれば、送信パルスセットを構成する3つの送信パルスの周波数オフセットのうち、少なくも2つの周波数オフセットは同じであってもよい。
 また、上述の実施の形態では、本実施の形態をハードウェアの構成として説明したが、本実施の形態は、これに限定されるものではない。本実施の形態は、測距装置内の各回路の少なくとも1つの処理を、CPU(Central Processing Unit)にコンピュータプログラムを実行させることにより実現することも可能である。
 上述の例において、プログラムは、様々なタイプの非一時的なコンピュータ可読媒体(non-transitory computer readable medium)を用いて格納され、コンピュータに供給することができる。非一時的なコンピュータ可読媒体は、様々なタイプの実体のある記録媒体(tangible storage medium)を含む。非一時的なコンピュータ可読媒体の例は、磁気記録媒体(例えばフレキシブルディスク、磁気テープ、ハードディスクドライブ)、光磁気記録媒体(例えば光磁気ディスク)、CD-ROM(Read Only Memory)、CD-R、CD-R/W、半導体メモリ(例えば、マスクROM、PROM(Programmable ROM)、EPROM(Erasable PROM)、フラッシュROM、RAM(Random Access Memory))を含む。また、プログラムは、様々なタイプの一時的なコンピュータ可読媒体(transitory computer readable medium)によってコンピュータに供給されてもよい。一時的なコンピュータ可読媒体の例は、電気信号、光信号、及び電磁波を含む。一時的なコンピュータ可読媒体は、電線及び光ファイバ等の有線通信路、又は無線通信路を介して、プログラムをコンピュータに供給できる。
 以上、実施の形態を参照して本願発明を説明したが、本願発明は上記によって限定されるものではない。本願発明の構成や詳細には、発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 上記の実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。
 (付記1)
 光信号の強度がパルス状に変化した複数の送信パルスで構成される送信パルスセットであって、複数の送信パルスそれぞれが送信される時間差が前記送信パルスセットの送信順序に応じて異なるように構成された、送信パルスセットを生成する生成手段と、
 生成された前記送信パルスセットを繰り返し送信する送信手段と、
 前記送信パルスが測距対象物で反射した反射パルスを受信する受信手段と、
 受信された複数の前記反射パルスそれぞれが受信された時間差を特定する特定手段と、
 受信された前記反射パルスの受信タイミングと、当該反射パルスに関して特定された前記時間差に対応する前記送信パルスの送信タイミングとに基づいて、前記測距対象物までの距離を算出する距離算出手段と
 を有する測距装置。
 (付記2)
 前記生成手段は、2つの前記送信パルスで構成される前記送信パルスセットであって、2つの前記送信パルスが送信される時間差が、前記送信パルスセットの送信順序に応じて異なるように構成された、前記送信パルスセットを生成し、
 前記特定手段は、前記送信パルスセットを構成する2つの前記送信パルスそれぞれに対応する2つの前記反射パルスの時間差を特定する
 付記1に記載の測距装置。
 (付記3)
 前記送信パルスセットを構成する前記複数の送信パルスは、基準周波数に対して互いに異なる周波数オフセットを有し、
 前記特定手段は、互いに異なる周波数オフセット有する前記複数の反射パルスそれぞれが受信された時間差を特定する
 付記1又は2に記載の測距装置。
 (付記4)
 前記受信手段は、前記反射パルスを含む光信号を受信し、
 受信された前記反射パルスの周波数オフセットを検出する検出手段と、
 前記検出手段によって検出された前記反射パルスの前記周波数オフセットごとに、受信された前記光信号を分離する分離手段と
 をさらに有する付記3に記載の測距装置。
 (付記5)
 前記生成手段は、前記基準周波数の光信号を発する光源からの光信号を前記送信パルスごとに異なる周波数の光信号に変調することで、互いに異なる前記周波数オフセットを有する複数の前記送信パルスを生成する
 付記3又は4に記載の測距装置。
 (付記6)
 前記送信パルスセットを構成する前記複数の送信パルスの少なくとも2つは、基準周波数に対して同じ周波数オフセットを有する
 付記1又は2に記載の測距装置。
 (付記7)
 前記生成手段は、少なくとも3つの送信パルスで構成される前記送信パルスセットであって、前記少なくとも3つの送信パルスのうちの第1の送信パルスが送信される時間と、前記第1の送信パルスとは異なる複数の第2の送信パルスがそれぞれ送信される時間との時間差の少なくとも1つが、送信パルスセットの送信順序に応じて異なるように構成された、送信パルスセットを生成し、
 前記特定手段は、前記第1の送信パルスに対応する前記反射パルスが受信された時間と、前記複数の第2の送信パルスに対応する複数の前記反射パルスがそれぞれ受信された時間との時間差を特定する
 付記1に記載の測距装置。
 (付記8)
 光信号の強度がパルス状に変化した複数の送信パルスで構成される送信パルスセットであって、複数の送信パルスそれぞれが送信される時間差が前記送信パルスセットの送信順序に応じて異なるように構成された、送信パルスセットを生成し、
 生成された前記送信パルスセットを繰り返し送信し、
 前記送信パルスが測距対象物で反射した反射パルスを受信し、
 受信された複数の前記反射パルスそれぞれが受信された時間差を特定し、
 受信された前記反射パルスの受信タイミングと、当該反射パルスに関して特定された前記時間差に対応する前記送信パルスの送信タイミングとに基づいて、前記測距対象物までの距離を算出する
 測距方法。
 (付記9)
 2つの前記送信パルスで構成される前記送信パルスセットであって、2つの前記送信パルスが送信される時間差が、前記送信パルスセットの送信順序に応じて異なるように構成された、前記送信パルスセットを生成し、
 前記送信パルスセットを構成する2つの前記送信パルスそれぞれに対応する2つの前記反射パルスの時間差を特定する
 付記8に記載の測距方法。
 (付記10)
 前記送信パルスセットを構成する前記複数の送信パルスは、基準周波数に対して互いに異なる周波数オフセットを有し、
 互いに異なる周波数オフセット有する前記複数の反射パルスそれぞれが受信された時間差を特定する
 付記8又は9に記載の測距方法。
 (付記11)
 前記反射パルスを含む光信号を受信し、
 受信された前記反射パルスの周波数オフセットを検出し、
 検出された前記反射パルスの前記周波数オフセットごとに、受信された前記光信号を分離する
 付記10に記載の測距方法。
 (付記12)
 前記基準周波数の光信号を発する光源からの光信号を前記送信パルスごとに異なる周波数の光信号に変調することで、互いに異なる前記周波数オフセットを有する複数の前記送信パルスを生成する
 付記10又は11に記載の測距方法。
 (付記13)
 前記送信パルスセットを構成する前記複数の送信パルスの少なくとも2つは、基準周波数に対して同じ周波数オフセットを有する
 付記8又は9に記載の測距方法。
 (付記14)
 少なくとも3つの送信パルスで構成される前記送信パルスセットであって、前記少なくとも3つの送信パルスのうちの第1の送信パルスが送信される時間と、前記第1の送信パルスとは異なる複数の第2の送信パルスがそれぞれ送信される時間との時間差の少なくとも1つが、送信パルスセットの送信順序に応じて異なるように構成された、送信パルスセットを生成し、
 前記第1の送信パルスに対応する前記反射パルスが受信された時間と、前記複数の第2の送信パルスに対応する複数の前記反射パルスがそれぞれ受信された時間との時間差を特定する
 付記8に記載の測距方法。
1 測距装置
2 生成部
4 送信部
6 受信部
8 特定部
10 距離算出部
100 測距装置
102 周波数オフセット発生器
104 変調信号生成部
106 光変調器
108 光源
110 パルス生成部
120 光送信部
122 光受信部
130 光干渉系ユニット
132 光電変換部
134 ADコンバータ
140 バンドパスフィルタ
150 タイミング抽出部
154 時間差特定部
160 距離算出部
200 測距装置
202 光源
204 送信パルス生成部
208 合波器
210 パルス生成部
224 光源
300 測距装置
302 周波数オフセット発生器
304 変調信号生成部
310 パルス生成部
340 バンドパスフィルタ
350 タイミング抽出部
354 時間差特定部
400 測距装置
402 周波数オフセット発生器
404 変調信号生成部
410 パルス生成部
454 時間差特定部

Claims (14)

  1.  光信号の強度がパルス状に変化した複数の送信パルスで構成される送信パルスセットであって、複数の送信パルスそれぞれが送信される時間差が前記送信パルスセットの送信順序に応じて異なるように構成された、送信パルスセットを生成する生成手段と、
     生成された前記送信パルスセットを繰り返し送信する送信手段と、
     前記送信パルスが測距対象物で反射した反射パルスを受信する受信手段と、
     受信された複数の前記反射パルスそれぞれが受信された時間差を特定する特定手段と、
     受信された前記反射パルスの受信タイミングと、当該反射パルスに関して特定された前記時間差に対応する前記送信パルスの送信タイミングとに基づいて、前記測距対象物までの距離を算出する距離算出手段と
     を有する測距装置。
  2.  前記生成手段は、2つの前記送信パルスで構成される前記送信パルスセットであって、2つの前記送信パルスが送信される時間差が、前記送信パルスセットの送信順序に応じて異なるように構成された、前記送信パルスセットを生成し、
     前記特定手段は、前記送信パルスセットを構成する2つの前記送信パルスそれぞれに対応する2つの前記反射パルスの時間差を特定する
     請求項1に記載の測距装置。
  3.  前記送信パルスセットを構成する前記複数の送信パルスは、基準周波数に対して互いに異なる周波数オフセットを有し、
     前記特定手段は、互いに異なる周波数オフセット有する前記複数の反射パルスそれぞれが受信された時間差を特定する
     請求項1又は2に記載の測距装置。
  4.  前記受信手段は、前記反射パルスを含む光信号を受信し、
     受信された前記反射パルスの周波数オフセットを検出する検出手段と、
     前記検出手段によって検出された前記反射パルスの前記周波数オフセットごとに、受信された前記光信号を分離する分離手段と
     をさらに有する請求項3に記載の測距装置。
  5.  前記生成手段は、前記基準周波数の光信号を発する光源からの光信号を前記送信パルスごとに異なる周波数の光信号に変調することで、互いに異なる前記周波数オフセットを有する複数の前記送信パルスを生成する
     請求項3又は4に記載の測距装置。
  6.  前記送信パルスセットを構成する前記複数の送信パルスの少なくとも2つは、基準周波数に対して同じ周波数オフセットを有する
     請求項1又は2に記載の測距装置。
  7.  前記生成手段は、少なくとも3つの送信パルスで構成される前記送信パルスセットであって、前記少なくとも3つの送信パルスのうちの第1の送信パルスが送信される時間と、前記第1の送信パルスとは異なる複数の第2の送信パルスがそれぞれ送信される時間との時間差の少なくとも1つが、送信パルスセットの送信順序に応じて異なるように構成された、送信パルスセットを生成し、
     前記特定手段は、前記第1の送信パルスに対応する前記反射パルスが受信された時間と、前記複数の第2の送信パルスに対応する複数の前記反射パルスがそれぞれ受信された時間との時間差を特定する
     請求項1に記載の測距装置。
  8.  光信号の強度がパルス状に変化した複数の送信パルスで構成される送信パルスセットであって、複数の送信パルスそれぞれが送信される時間差が前記送信パルスセットの送信順序に応じて異なるように構成された、送信パルスセットを生成し、
     生成された前記送信パルスセットを繰り返し送信し、
     前記送信パルスが測距対象物で反射した反射パルスを受信し、
     受信された複数の前記反射パルスそれぞれが受信された時間差を特定し、
     受信された前記反射パルスの受信タイミングと、当該反射パルスに関して特定された前記時間差に対応する前記送信パルスの送信タイミングとに基づいて、前記測距対象物までの距離を算出する
     測距方法。
  9.  2つの前記送信パルスで構成される前記送信パルスセットであって、2つの前記送信パルスが送信される時間差が、前記送信パルスセットの送信順序に応じて異なるように構成された、前記送信パルスセットを生成し、
     前記送信パルスセットを構成する2つの前記送信パルスそれぞれに対応する2つの前記反射パルスの時間差を特定する
     請求項8に記載の測距方法。
  10.  前記送信パルスセットを構成する前記複数の送信パルスは、基準周波数に対して互いに異なる周波数オフセットを有し、
     互いに異なる周波数オフセット有する前記複数の反射パルスそれぞれが受信された時間差を特定する
     請求項8又は9に記載の測距方法。
  11.  前記反射パルスを含む光信号を受信し、
     受信された前記反射パルスの周波数オフセットを検出し、
     検出された前記反射パルスの前記周波数オフセットごとに、受信された前記光信号を分離する
     請求項10に記載の測距方法。
  12.  前記基準周波数の光信号を発する光源からの光信号を前記送信パルスごとに異なる周波数の光信号に変調することで、互いに異なる前記周波数オフセットを有する複数の前記送信パルスを生成する
     請求項10又は11に記載の測距方法。
  13.  前記送信パルスセットを構成する前記複数の送信パルスの少なくとも2つは、基準周波数に対して同じ周波数オフセットを有する
     請求項8又は9に記載の測距方法。
  14.  少なくとも3つの送信パルスで構成される前記送信パルスセットであって、前記少なくとも3つの送信パルスのうちの第1の送信パルスが送信される時間と、前記第1の送信パルスとは異なる複数の第2の送信パルスがそれぞれ送信される時間との時間差の少なくとも1つが、送信パルスセットの送信順序に応じて異なるように構成された、送信パルスセットを生成し、
     前記第1の送信パルスに対応する前記反射パルスが受信された時間と、前記複数の第2の送信パルスに対応する複数の前記反射パルスがそれぞれ受信された時間との時間差を特定する
     請求項8に記載の測距方法。
PCT/JP2018/038655 2018-10-17 2018-10-17 測距装置及び測距方法 WO2020079775A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020551649A JPWO2020079775A1 (ja) 2018-10-17 2018-10-17 測距装置及び測距方法
PCT/JP2018/038655 WO2020079775A1 (ja) 2018-10-17 2018-10-17 測距装置及び測距方法
US17/283,300 US20210389432A1 (en) 2018-10-17 2018-10-17 Distance-measurement apparatus and distance-measurement method
EP18937474.7A EP3869231B1 (en) 2018-10-17 2018-10-17 Ranging device and ranging method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/038655 WO2020079775A1 (ja) 2018-10-17 2018-10-17 測距装置及び測距方法

Publications (1)

Publication Number Publication Date
WO2020079775A1 true WO2020079775A1 (ja) 2020-04-23

Family

ID=70284662

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/038655 WO2020079775A1 (ja) 2018-10-17 2018-10-17 測距装置及び測距方法

Country Status (4)

Country Link
US (1) US20210389432A1 (ja)
EP (1) EP3869231B1 (ja)
JP (1) JPWO2020079775A1 (ja)
WO (1) WO2020079775A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021028583A (ja) * 2019-08-09 2021-02-25 株式会社東海理化電機製作所 制御装置およびプログラム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110116072A1 (en) * 2007-03-02 2011-05-19 Pascal Rousseau Multicolored Range-Finder
WO2013094062A1 (ja) * 2011-12-22 2013-06-27 ジックオプテックス株式会社 光波測距装置
JP2014522979A (ja) 2011-07-15 2014-09-08 ソフトキネティック センサー エヌブイ 距離情報を提供する方法及びタイム・オブ・フライトカメラ
WO2015087380A1 (ja) * 2013-12-09 2015-06-18 三菱電機株式会社 レーザレーダ装置
WO2017134707A1 (ja) * 2016-02-02 2017-08-10 ソニー株式会社 測距装置、測距方法、信号処理装置および投光装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6027875A (ja) * 1983-07-26 1985-02-12 Mitsubishi Electric Corp レ−ダ装置
JPH0560648A (ja) * 1991-08-30 1993-03-12 Ando Electric Co Ltd ヘテロダイン受光を用いた光パルス試験器
US5164733A (en) * 1992-01-29 1992-11-17 The United States Of America As Represented By The Secretary Of The Army Phase shift detection for use in laser radar ranging systems
FR2968771B1 (fr) * 2010-12-10 2012-12-28 Thales Sa Equipement et procede optique de telemetrie et de communication haut debit
CN110073240B (zh) * 2016-12-21 2023-07-21 三菱电机株式会社 激光雷达装置
US10830878B2 (en) * 2016-12-30 2020-11-10 Panosense Inc. LIDAR system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110116072A1 (en) * 2007-03-02 2011-05-19 Pascal Rousseau Multicolored Range-Finder
JP2014522979A (ja) 2011-07-15 2014-09-08 ソフトキネティック センサー エヌブイ 距離情報を提供する方法及びタイム・オブ・フライトカメラ
WO2013094062A1 (ja) * 2011-12-22 2013-06-27 ジックオプテックス株式会社 光波測距装置
WO2015087380A1 (ja) * 2013-12-09 2015-06-18 三菱電機株式会社 レーザレーダ装置
WO2017134707A1 (ja) * 2016-02-02 2017-08-10 ソニー株式会社 測距装置、測距方法、信号処理装置および投光装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3869231A4

Also Published As

Publication number Publication date
EP3869231A1 (en) 2021-08-25
EP3869231A4 (en) 2021-10-06
US20210389432A1 (en) 2021-12-16
JPWO2020079775A1 (ja) 2021-09-16
EP3869231B1 (en) 2024-02-28

Similar Documents

Publication Publication Date Title
US9971035B2 (en) Wind measurement lidar
CN105938197A (zh) 光波测距仪
JP2009162678A (ja) レーザレーダ装置
US11506521B2 (en) Optical fiber characteristics measurement apparatus and optical fiber characteristics measurement method
JP7111170B2 (ja) 測距装置及び測距方法
JPH06242240A (ja) 距離測定装置
WO2020079775A1 (ja) 測距装置及び測距方法
JP7168683B2 (ja) 光を送信するための送信装置
US20200209395A1 (en) Sensor device and measurement method
JP6298654B2 (ja) 過渡吸収応答検出装置および過渡吸収応答検出方法
JP2018059828A (ja) 測距装置、車両、測距方法、及び測距システム
JP7192959B2 (ja) 測距装置及び測距方法
CN113985447B (zh) 一种相干测风激光雷达及测量方法
CN112262325B (zh) 激光雷达装置
JP4437804B2 (ja) レーダ装置および距離測定方法
WO2023079673A1 (ja) 測距装置及び測距方法
JP2010261752A (ja) レーダ装置
WO2021189633A1 (zh) 基于飞行时间的测距方法和相关测距系统
JP4670404B2 (ja) 信号の混信確認方法及びレーダ装置
JP6537747B1 (ja) レーザレーダ装置
CN117970357A (zh) 调频连续波雷达及光源纵模状态自检方法
JP2020190573A (ja) 測距装置、車両及び測距方法
JP2012093143A (ja) 障害物検知装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18937474

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020551649

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018937474

Country of ref document: EP

Effective date: 20210517