WO2023079673A1 - 測距装置及び測距方法 - Google Patents

測距装置及び測距方法 Download PDF

Info

Publication number
WO2023079673A1
WO2023079673A1 PCT/JP2021/040723 JP2021040723W WO2023079673A1 WO 2023079673 A1 WO2023079673 A1 WO 2023079673A1 JP 2021040723 W JP2021040723 W JP 2021040723W WO 2023079673 A1 WO2023079673 A1 WO 2023079673A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
pulse
distance
timing
signal
Prior art date
Application number
PCT/JP2021/040723
Other languages
English (en)
French (fr)
Inventor
栄実 野口
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to PCT/JP2021/040723 priority Critical patent/WO2023079673A1/ja
Publication of WO2023079673A1 publication Critical patent/WO2023079673A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • G01S17/18Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves wherein range gates are used
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/484Transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/491Details of non-pulse systems
    • G01S7/4912Receivers
    • G01S7/4913Circuits for detection, sampling, integration or read-out

Definitions

  • the present invention relates to a rangefinder and a rangefinder method, and more particularly to a rangefinder and a rangefinder method that measure a range by transmitting a pulse and receiving its reflection.
  • a time of flight (ToF) method As a method of measuring the distance to the object to be measured.
  • a modulated light pulse is radiated toward an object to be measured, and the modulated light pulse is reflected from the object to be measured. Calculate the distance.
  • the light pulses can be transmitted repeatedly periodically.
  • Patent Document 1 discloses a rangefinder.
  • the distance measuring device has a generator, a transmitter, a receiver, a detector, and a distance calculator.
  • the generation unit generates a plurality of transmission pulses in which the intensity of the optical signal changes in a pulse shape.
  • the generator generates a plurality of transmission pulses having different frequency offsets for each transmission pulse.
  • the transmitter repeatedly transmits the transmission pulse generated by the generator.
  • the receiving unit receives reflected pulses of the respective transmission pulses reflected by the distance measurement object.
  • a detector detects a frequency offset of the reflected pulse received by the receiver.
  • the distance calculator calculates the distance to the target object based on the reception timing of the reflected pulse received by the receiver and the transmission timing of the transmission pulse corresponding to the frequency offset detected from the reflected pulse. .
  • the distance measuring apparatus according to Patent Document 1 can appropriately perform distance measurement regardless of the distance to the object to be measured or the transmission cycle of the transmission pulse.
  • An object of the present disclosure is to solve such problems, and to provide a distance measuring device and a distance measuring method capable of suppressing erroneous distance measurement.
  • a distance measuring device is a generation means for generating a plurality of transmission pulses in which the intensity of an optical signal changes in a pulse shape, and which has a frequency offset with respect to a reference frequency that is different for each of the transmission pulses.
  • a transmission means for repeatedly transmitting the generated transmission pulse; a reception means for receiving a reflection pulse of the transmission pulse reflected by a range-finding object; and a detection means for detecting a frequency offset of the received reflection pulse. and a distance calculation for calculating the distance to the distance measurement object based on the reception timing of the received reflected pulse and the transmission timing of the transmission pulse corresponding to the frequency offset detected from the reflected pulse.
  • means, and invalidation processing means for performing processing so as to invalidate the distance calculation process for a certain period of time based on the transmission timing of the transmission pulse.
  • the distance measurement method generates a plurality of transmission pulses in which the intensity of an optical signal changes in a pulse shape, and which has a different frequency offset with respect to a reference frequency for each of the transmission pulses. , repeatedly transmitting the generated transmission pulse, receiving a reflection pulse of the transmission pulse reflected by a range-finding object, detecting a frequency offset of the received reflection pulse, and receiving the received reflection pulse Based on the timing and the transmission timing of the transmission pulse corresponding to the frequency offset detected from the reflected pulse, the distance to the distance measurement object is calculated, and based on the transmission timing of the transmission pulse, a constant Processing is performed so that the period and distance calculation processing are invalidated.
  • FIG. 1 is a diagram showing an overview of a distance measuring device according to an embodiment of the present disclosure
  • FIG. FIG. 2 is a diagram showing an outline of a ranging method executed by a ranging device according to an embodiment of the present disclosure
  • FIG. FIG. 10 is a diagram for explaining an overview of a method of calculating a distance to a range-finding object using pulses according to a first comparative example
  • FIG. 10 is a diagram for explaining a problem in the first comparative example
  • FIG. FIG. 10 is a diagram for explaining a problem in the first comparative example
  • FIG. FIG. 10 is a diagram for explaining a problem in the first comparative example
  • FIG 10 is a diagram showing the configuration of a distance measuring device according to a second comparative example; It is a figure for demonstrating the operation
  • 8 is a timing chart showing the relationship between a transmitted pulse and a reflected pulse according to a second comparative example;
  • FIG. 8 is a timing chart showing the relationship between a transmitted pulse and a reflected pulse according to a second comparative example;
  • FIG. It is a figure which illustrates the structure in the case of aiming at size reduction of a range finder. It is a figure which illustrates the structure in the case of aiming at size reduction of a range finder.
  • the second comparative example it is a timing chart when attempting to miniaturize the distance measuring device.
  • FIG. 1 is a diagram showing a configuration of a distance measuring device according to Embodiment 1;
  • FIG. 4 is a timing chart showing the relationship between a transmission pulse, a reception-side signal, and an output signal of a bandpass filter according to the first embodiment;
  • 4 is a flow chart showing a ranging method executed by the ranging device according to the first embodiment;
  • FIG. 10 is a diagram for explaining a first example of a transmission interval changing method according to the second embodiment;
  • FIG. FIG. 11 is a diagram for explaining a second example of a method of changing transmission intervals according to the second embodiment;
  • FIG. FIG. 11 is a diagram for explaining a third example of a method for changing transmission intervals according to the second embodiment;
  • FIG. 10 is a diagram for explaining effects of features according to the second embodiment;
  • FIG. 10 is a diagram for explaining effects of features according to the second embodiment;
  • 9 is a flow chart showing a distance measuring method executed by the distance measuring device according to the second embodiment;
  • FIG. 11 is a diagram showing the configuration of a distance measuring device according to a third embodiment;
  • FIG. 10 is a flow chart showing a ranging method executed by a ranging device according to a third embodiment;
  • FIG. 11 is a diagram showing the configuration of a distance measuring device according to a fourth embodiment;
  • FIG. FIG. 13 is a diagram illustrating distance measurement information stored in a database according to the fourth embodiment;
  • FIG. 10 is a flow chart showing a ranging method executed by a ranging device according to a fourth embodiment;
  • FIG. 1 is a diagram showing an overview of a distance measuring device 1 according to an embodiment of the present disclosure.
  • FIG. 2 is a diagram showing an outline of a ranging method executed by the ranging device 1 according to the embodiment of the present disclosure.
  • the distance measuring device 1 has a generator 2 , a transmitter 4 , a receiver 6 , a detector 8 , a distance calculator 10 and an invalidation processor 12 .
  • the generating unit 2 has a function as generating means.
  • the transmission unit 4 has a function as transmission means.
  • the receiver 6 has a function as a receiver.
  • the detection unit 8 has a function as detection means.
  • the distance calculation unit 10 has a function as distance calculation means.
  • the invalidation processing unit 12 has a function as invalidation processing means. Note that the transmitter 4 and the receiver 6 may be physically integrated. Thereby, the miniaturization of the distance measuring device 1 can be achieved.
  • the generation unit 2 generates a plurality of transmission pulses in which the intensity of the optical signal changes in a pulse shape. At this time, the generator 2 generates a plurality of transmission pulses having different frequency offsets for each transmission pulse (step S12).
  • the frequency offset is a shift (offset) with respect to a certain reference frequency.
  • the transmission unit 4 repeatedly transmits the transmission pulse generated by the generation unit 2 (step S14).
  • the receiving unit 6 receives the reflected pulse of the transmitted pulse reflected by the object 90 for distance measurement (step S16).
  • the detector 8 detects the frequency offset of the reflected pulse received by the receiver 6 (step S18).
  • the distance calculation unit 10 calculates the distance to the distance measurement object 90 based on the reception timing of the reflected pulse received by the reception unit 6 and the transmission timing of the transmission pulse corresponding to the frequency offset detected from the reflected pulse. , the distance R is calculated.
  • the invalidation processing unit 12 performs processing so as to invalidate the distance calculation processing by the distance calculation unit 10 for a certain period based on the transmission timing of the transmission pulse. For example, the invalidation processing unit 12 may invalidate the distance calculation process by invalidating the receiving side signal input to the receiving side for a certain period from the transmission timing.
  • the invalidation processing unit 12 performs processing to invalidate the distance calculation process (step S22).
  • the distance calculation unit 10 calculates the distance R to the range-finding object 90 (step S24).
  • FIG. 3 is a diagram for explaining an outline of a method of calculating the distance to the range-finding object 90 using pulses according to the first comparative example.
  • FIG. 3 shows the operating principle of the ToF method.
  • the transmission unit 4 transmits transmission pulses Plst1 and Plst2 at a transmission cycle (transmission interval, pulse cycle) Tp.
  • the pulse width which is the width of each transmission pulse, is assumed to be Tw.
  • the receiving section 6 receives the reflected pulse Plsr1, which is the reflected light.
  • the transmission pulse Plst2 is reflected by the object 90 for distance measurement
  • the receiving section 6 receives the reflected pulse Plsr2, which is the reflected light.
  • two transmission pulses Plst1 and Plst2 are transmitted at the pulse period Tp, and reflected pulses Plsr1 and Plsr2, which are reflected lights, are received.
  • the time difference Td may become longer than the pulse period Tp.
  • the pulse period Tp is short, the time difference Td may become longer than the pulse period Tp. That is, Td>Tp may be satisfied depending on the distance to the object 90 or the pulse period. In such a case, the next transmission pulse Plst2 will be transmitted before the reflected pulse Plsr1 is received.
  • 4 and 5 are diagrams for explaining the problems associated with the first comparative example.
  • 4 and 5 are timing charts showing the relationship between the transmitted pulse and the reflected pulse according to the first comparative example.
  • the transmission pulses Plst1, Plst2, and Plst3 are transmitted with the pulse period Tp. It is also assumed that the transmission pulses Plst1, Plst2, and Plst3 have the same frequency.
  • the flight time of the transmitted pulse until it returns after being reflected by the object 90 is longer than the pulse period Tp.
  • the transmission pulse Plst1 is transmitted. After that, after the transmission pulse Plst2 is transmitted, the reflected pulse Plsr1 generated by the reflection of the transmission pulse Plst1 from the distance measurement object 90 is received. At this time, in the first comparative example shown in FIG. 4, there is a risk that distance measurement will be performed using the time difference Tdiff1' between the transmission timing of the transmission pulse Plst2 and the reception timing of the reflected pulse Plsr1. In this way, when the time difference Tdiff1' is used for distance measurement, the distance is calculated erroneously.
  • the time of flight for the transmitted pulse to return after being reflected by the distance measurement object 90 is shorter than the pulse period Tp. Furthermore, it is assumed that the reflected pulse Plsr1 of the transmitted pulse Plst1 was not received because the transmitted pulse Plst1 was not reflected. It is also assumed that the transmitted pulse Plst2 is reflected by the distance measurement object and the reflected pulse Plsr2 is received. In this case, distance measurement is performed using the time difference Tdiff2 between the transmission timing of the transmission pulse Plst2 and the reception timing of the reflected pulse Plsr2. Although this distance measurement process is correct, it cannot be distinguished from the process shown in FIG.
  • FIG. 6 is a diagram showing the configuration of a distance measuring device 50 according to a second comparative example.
  • a second comparative example corresponds to the disclosure of Patent Document 1.
  • a distance measuring device 50 according to the second comparative example has a frequency offset generator 102, a modulated signal generator 104, an optical modulator 106, a light source 108, and an optical transmitter 122 as transmission system modules.
  • a transmitter unit 110 is configured by the frequency offset generator 102 , the modulated signal generator 104 , the optical modulator 106 and the light source 108 .
  • the transmitting unit 110 functions as a pulse generator that generates a plurality of transmission pulses with mutually different frequency offsets.
  • the range finder 50 according to the second comparative example has an optical receiver 124, an optical interference system unit 130, a photoelectric converter 132, and an AD converter 134 as receiving modules.
  • the distance measuring device 50 according to the second comparative example includes bandpass filters 140-1 to 140-n, timing extraction units 150-1 to 150-n, and a distance calculation unit 160-1 as receiving modules. ⁇ 160-n.
  • n is an integer of 2 or more.
  • the plurality of bandpass filters 140-1 to 140-n and the like may be collectively referred to as the bandpass filter 140 and the like. Note that n indicates the number of frequency offsets.
  • a receiving unit 170 is configured by the optical interference system unit 130 , the photoelectric conversion section 132 , the AD converter 134 , the bandpass filter 140 , the timing extraction section 150 and the distance calculation section 160 .
  • the frequency offsets are f1, f2, . . . , fn.
  • bandpass filters 140-1 through 140-n correspond to frequency offsets f1 through fn, respectively.
  • timing extractors 150-1 to 150-n correspond to frequency offsets f1 to fn, respectively.
  • Distance calculators 160-1 to 160-n correspond to frequency offsets f1 to fn, respectively.
  • each component described above can be realized by some device or circuit such as an arithmetic circuit.
  • the arithmetic circuit is, for example, an FPGA (field-programmable gate array) or the like.
  • the frequency offset generator 102 outputs frequency offset information, which is information indicating a plurality of frequency offsets that are offset from the reference frequency f0, to the modulation signal generation section 104.
  • the frequency offset information indicates frequency offsets f1, f2, . . . , fn.
  • Frequency offset generator 102 may output frequency offset information indicating frequency offsets f1, f2, . That is, the frequency offset generator 102 may output frequency offset information indicating the frequency offset f1, and then output frequency offset information indicating the frequency offset f2 after the elapse of time Tp.
  • the modulated signal generator 104 may generate a modulated signal for generating a transmission pulse according to the frequency offset information received from the frequency offset generator 102 .
  • the modulation signal is an electrical signal having waveforms corresponding to frequency offsets f1, f2, . . . , fn.
  • the modulated signal generator 104 outputs the generated modulated signal to the optical modulator 106 .
  • the frequency offset generator 102 may output frequency offset information indicating all the frequency offsets f1, f2, .
  • the modulated signal generator 104 may generate modulated signals corresponding to the frequency offsets f1, f2, . . . , fn for each pulse period Tp. That is, modulated signal generation section 104 may generate a modulated signal indicating frequency offset f1, and then generate a modulated signal indicating frequency offset f2 after the elapse of time Tp.
  • the modulated signal generation section 104 outputs a measurement start trigger Trgt to the distance calculation section 160 at the timing when each of the transmission pulses corresponding to the frequency offsets f1, f2, . . . , fn is transmitted.
  • the measurement start trigger Trgt indicates the transmission timing of each transmission pulse having each frequency offset.
  • modulated signal generation section 104 outputs measurement start trigger Trgt1 to distance calculation section 160-1 at the timing of outputting the modulated signal corresponding to frequency offset f1.
  • Modulated signal generator 104 also outputs measurement start trigger Trgt2 to distance calculator 160-2 at the timing of outputting the modulated signal corresponding to frequency offset f2.
  • the modulated signal generator 104 outputs the measurement start trigger Trgtn to the distance calculator 160-n at the timing of outputting the modulated signal corresponding to the frequency offset fn.
  • the light source 108 generates an optical signal with a reference frequency f0 as shown in FIG. 7, which will be described later.
  • the optical signal is input to the optical modulator 106 and the optical interferometer unit 130 .
  • the optical modulator 106 generates different frequency offsets f1, f2, . generating a plurality of transmit pulses with
  • the optical modulator 106 outputs an optical signal containing the generated transmission pulse to the optical transmission section 122 .
  • the optical modulator 106 is an AO modulator (acousto-optic modulator).
  • the optical modulator 106 modulates an optical signal (modulator input signal) using a modulating signal. Thereby, the optical modulator 106 generates a plurality of transmission pulses having different frequency offsets.
  • FIG. 7 is a diagram for explaining the operation of the optical modulator 106 according to the second comparative example.
  • the optical signal input to the optical modulator 106 (modulator input signal) is an optical signal with a constant frequency f0.
  • the modulated signal has a pulse-like waveform with frequency f1, a pulse-like waveform with frequency f2, and a pulse-like waveform with frequency f3.
  • the amplitude of the modulation signal is 0 V except for the pulse-shaped waveform.
  • Each waveform is a sine wave of width Tw.
  • the optical modulator 106 modulates the optical signal according to the pulse-shaped waveform of the modulation signal and outputs the modulated optical signal (modulator output signal).
  • This modulator output signal corresponds to the transmitted pulse.
  • the optical modulator 106 receives a modulated signal with a pulse-like waveform of frequency f1, it modulates the optical signal of frequency f0 so as to shift it by f1, and outputs a pulse of frequency (f0+f1).
  • This pulse corresponds to the transmission pulse Plst1.
  • the optical modulator 106 receives a modulated signal with a pulse-like waveform of frequency f2, it modulates the optical signal of frequency f0 so as to shift it by f2, and outputs a pulse of frequency (f0+f2).
  • This pulse corresponds to the transmission pulse Plst2.
  • the optical modulator 106 receives a modulated signal with a pulse-like waveform of frequency f3, it modulates the optical signal of frequency f0 so as to shift it by f3, and outputs a pulse of frequency (f0+f3).
  • This pulse corresponds to the transmission pulse Plst3. Therefore, a transmission pulse indicates a signal whose light intensity changes in a pulse-like manner.
  • the transmission pulses Plst1, Plst2 and Plst3 have frequency offsets f1, f2 and f3 different from each other, respectively.
  • the dashed line in the modulator output signal indicates the optical intensity (envelope).
  • the modulated signal generator 104 may output the measurement start trigger Trgt1 to the distance calculator 160-1 at the timing of outputting the pulse-shaped modulated signal of the frequency f1.
  • the modulated signal generator 104 may output the measurement start trigger Trgt2 to the distance calculator 160-2 at the timing of outputting the pulse-shaped modulated signal of the frequency f2.
  • the modulated signal generator 104 may output the measurement start trigger Trgt3 to the distance calculator 160-3 at the timing of outputting the pulse-shaped modulated signal of the frequency f3.
  • the optical transmission unit 122 transmits (irradiates) an optical signal including a plurality of transmission pulses to the object 90 for distance measurement.
  • the transmitted pulse is reflected by the ranging object 90 toward the ranging device 50 .
  • the optical receiver 124 receives an optical signal including a plurality of reflected pulses reflected by the object 90 for distance measurement.
  • the frequencies of the received reflected pulses are f0+f1, f0+f2, . . . , f0+fn. Note that it is not necessary to irradiate the same range-finding object 90 with a plurality of transmission pulses. Therefore, the round-trip flight time of the transmission pulse Plst1 and the round-trip flight time of the transmission pulse Plst2 may differ from each other.
  • the optical interferometer unit 130 uses the optical signal of frequency f0 from the light source 108 as reference light to detect the frequency offset of the reflected pulse (received light). Specifically, the optical interference system unit 130 interferes the reference light and the received light from the light source 108 to detect the beat frequency. Thereby, the optical interference system unit 130 detects the frequency offset of the reflected pulse.
  • the optical interference system unit 130 may be a mixer using an optical coupler.
  • the optical interference system unit 130 may be a 90-degree hybrid circuit that interferes with reference light having two phases of 0 degrees and 90 degrees.
  • the optical interference system unit 130 outputs optical signals of frequencies f1, f2, .
  • the photoelectric conversion section 132 converts the optical signal from the optical interference system unit 130 into an electrical signal.
  • the photoelectric conversion unit 132 may be, for example, a photoelectric converter using a photodetector, or a balanced optical receiver using two photodetectors.
  • the AD converter 134 converts the electric signal, which is an analog signal converted by the photoelectric conversion unit 132, into a digital signal.
  • the electrical signals representing the frequencies f1, f2, .
  • the band pass filter 140 (Band Pass Filter; BPF) has the frequency corresponding to the frequency offset as its center frequency.
  • the center frequencies of the bandpass filters 140-1 to 140-n are frequencies f1 to fn, respectively. Accordingly, bandpass filters 140-1 to 140-n pass electrical signals exhibiting frequencies f1 to fn, respectively. Therefore, the bandpass filter 140 has a function as separating means for separating the optical signal for each frequency offset of the reflected pulse detected by the optical interference system unit 130 (detection section 8).
  • the timing extraction unit 150 functions as timing extraction means for extracting the reception timing of the received reflected pulse.
  • Timing extractors 150-1 to 150-n extract reception timings of reflected pulses having frequency offsets f1 to fn, respectively.
  • the timing extraction units 150-1 to 150-n send the measurement stop triggers Trgr1 to Trgrn to the distance calculation units 160-1 to 160-n at the reception timings of the reflected pulses having the frequency offsets f1 to fn, respectively. output. That is, the measurement stop trigger Trgr indicates reception timings of reflected pulses having frequency offsets f1 to fn.
  • the distance calculation unit 160 uses Equation 1 to calculate the distance measurement object Calculate the distance R to 90.
  • distance calculation section 160-1 calculates distance R for the transmission pulse having frequency offset f1 from the time difference between the output timing of measurement start trigger Trgt1 and the output timing of measurement stop trigger Trgr1.
  • Distance calculation section 160-2 calculates distance R for a transmission pulse having frequency offset f2 from the time difference between the output timing of measurement start trigger Trgt2 and the output timing of measurement stop trigger Trgr2.
  • the distance calculator 160-n calculates the distance R for the transmission pulse having the frequency offset fn from the time difference between the output timing of the measurement start trigger Trgtn and the measurement stop trigger Trgrn.
  • FIG. 8 is a timing chart showing the relationship between the transmitted pulse and the reflected pulse according to the second comparative example.
  • the transmission pulses Plst1 and Plst2 are transmitted at the pulse period Tp.
  • the time of flight for the transmitted pulse to return after being reflected by the distance measurement object 90 is shorter than the pulse period Tp.
  • a transmission pulse Plst1 having a frequency offset f1 is transmitted.
  • a measurement start trigger Trgt1 is output to distance calculation section 160-1.
  • a reflected pulse Plsr1 with a frequency offset f1 is then received before the transmitted pulse Plst2 is transmitted.
  • frequency offset f1 is detected, reflected pulse Plsr1 is separated by bandpass filter 140-1, and measurement stop trigger Trgr1 is output to distance calculation section 160-1 by timing extraction section 150-1.
  • the transmitted optical signal is attenuated during the flight process of the optical signal and the reflection from the range-finding object 90 .
  • timing extraction section 150-1 outputs measurement stop trigger Trgr1 at the timing when the light intensity of reflected pulse Plsr1 exceeds a predetermined threshold. This is the same for other reflected pulses Plsr2 and the like.
  • the transmission pulse Plst1 having the frequency offset f1 and the reflected pulse Plsr1 having the frequency offset f1 are associated with each other in the distance calculation section 160-1. Therefore, in distance calculation section 160-1, as indicated by dashed arrow A1, measurement start trigger Trgt1 indicating the transmission timing of transmission pulse Plst1 and measurement stop trigger Trgr1 indicating the reception timing of reflected pulse Plsr1 are associated. . Thereby, distance calculation section 160-1 calculates the distance to object 90 from the time difference Tdiff1 between measurement start trigger Trgt1 and measurement stop trigger Trgr1. Therefore, distance calculation section 160-1 can appropriately calculate the distance to distance measurement object 90 reflected by transmission pulse Plst1.
  • a transmission pulse Plst2 having a frequency offset f2 is transmitted.
  • a measurement start trigger Trgt2 is output to distance calculation section 160-2.
  • a reflected pulse Plsr2 having a frequency offset f2 is then received before a transmitted pulse Plst3 (not shown) is transmitted.
  • frequency offset f2 is detected, reflected pulse Plsr2 is separated by bandpass filter 140-2, and measurement stop trigger Trgr2 is output to distance calculation section 160-2 by timing extraction section 150-2.
  • the transmission pulse Plst2 having the frequency offset f2 and the reflected pulse Plsr2 having the frequency offset f2 are associated with each other in the distance calculation section 160-2. Therefore, in distance calculation section 160-2, as indicated by dashed arrow A2, measurement start trigger Trgt2 indicating the transmission timing of transmission pulse Plst2 and measurement stop trigger Trgr2 indicating the reception timing of reflected pulse Plsr2 are associated. . Thereby, distance calculation section 160-2 calculates the distance to object 90 from the time difference Tdiff2 between measurement start trigger Trgt2 and measurement stop trigger Trgr2. Therefore, distance calculation section 160-2 can appropriately calculate the distance to distance measurement object 90 reflected by transmission pulse Plst2.
  • FIG. 9 is a timing chart showing the relationship between the transmitted pulse and the reflected pulse according to the second comparative example.
  • the transmission pulses Plst1 and Plst2 are transmitted at the pulse period Tp.
  • the flight time of the transmitted pulse until it returns after being reflected by the distance measurement object 90 is longer than the pulse period Tp.
  • a transmission pulse Plst1 having a frequency offset f1 is transmitted.
  • a measurement start trigger Trgt1 is output to distance calculation section 160-1.
  • transmitted pulse Plst2 is transmitted, reflected pulse Plsr1 with frequency offset f1 is received.
  • frequency offset f1 is detected, reflected pulse Plsr1 is separated by bandpass filter 140-1, and measurement stop trigger Trgr1 is output to distance calculation section 160-1 by timing extraction section 150-1.
  • the transmission pulse Plst1 having the frequency offset f1 and the reflected pulse Plsr1 having the frequency offset f1 are associated with each other in the distance calculation section 160-1. Therefore, in distance calculation section 160-1, as indicated by dashed arrow B1, measurement start trigger Trgt1 indicating the transmission timing of transmission pulse Plst1 and measurement stop trigger Trgr1 indicating the reception timing of reflected pulse Plsr1 are associated. . Thereby, distance calculation section 160-1 calculates the distance to object 90 from the time difference Tdiff1 between measurement start trigger Trgt1 and measurement stop trigger Trgr1. Therefore, even if the flight time of the optical signal is longer than the pulse period, the distance calculation unit 160-1 can appropriately calculate the distance to the distance measurement object 90 reflected by the transmission pulse Plst1. can be done.
  • a transmission pulse Plst2 having a frequency offset f2 is transmitted.
  • a measurement start trigger Trgt2 is output to distance calculation section 160-2.
  • transmitted pulse Plst3 (not shown) is transmitted, reflected pulse Plsr2 having frequency offset f2 is received.
  • frequency offset f2 is detected, reflected pulse Plsr2 is separated by bandpass filter 140-2, and measurement stop trigger Trgr2 is output to distance calculation section 160-2 by timing extraction section 150-2.
  • the transmission pulse Plst2 having the frequency offset f2 and the reflected pulse Plsr2 having the frequency offset f2 are associated with each other in the distance calculation section 160-2. Therefore, in distance calculation section 160-2, as indicated by dashed arrow B2, measurement start trigger Trgt2 indicating the transmission timing of transmission pulse Plst2 and measurement stop trigger Trgr2 indicating the reception timing of reflected pulse Plsr2 are associated. . Thereby, distance calculation section 160-2 calculates the distance to object 90 from the time difference Tdiff2 between measurement start trigger Trgt2 and measurement stop trigger Trgr2. Therefore, even if the flight time of the optical signal is longer than the pulse period, the distance calculation unit 160-2 can appropriately calculate the distance to the distance measurement object 90 reflected by the transmission pulse Plst2. can be done.
  • the distance calculation unit 160 associates the measurement start trigger signal related to the transmission pulse having a certain frequency offset with the measurement stop trigger signal related to the reflected pulse having this frequency offset, and calculates the distance. R is calculated.
  • the distance calculation section 160 associates the transmitted pulse and the reflected pulse having mutually corresponding frequency offsets.
  • the range finder 50 according to the second comparative example can appropriately associate the transmitted pulse with the reflected pulse, which is the reflected light of the transmitted pulse reflected by the object 90 for range measurement. Therefore, it is possible to appropriately measure the distance regardless of the distance to the object to be measured or the transmission cycle of the transmission pulse.
  • the distance measuring device 50 according to the second comparative example is configured to separate the received optical signal for each frequency offset of the reflected pulse using the bandpass filter 140 (separating means). Since the optical signal separation using the bandpass filter 140 can be performed by hardware, it can be performed at high speed compared to processing performed by software. Then, separation by the bandpass filter 140 enables parallel processing for each frequency offset. That is, the distance calculator 160 can calculate the distance R for each separated signal. Therefore, the distance measuring device 50 according to the second comparative example can perform distance measurement processing at high speed. Further, by separating the received signal for each frequency offset of the reflected pulse, it is possible to easily extract the reception timing of each reflected pulse.
  • FIG. 10 and 11 are diagrams illustrating the configuration for miniaturization of the distance measuring device.
  • FIG. 10 shows an example in which the optical transmitter 122 and the optical receiver 124 are integrated.
  • FIG. 11 shows an example in which the optical transmitter 122 and the optical receiver 124 are integrated.
  • the rangefinder 50 shown in FIG. 10 has a transmitter unit 110, a receiver unit 170, and an optical transmitter/receiver 120A.
  • the optical transmitter/receiver 120A has an optical transmitter/receiver 121 and a circulator 125 .
  • the optical transmitter/receiver 121 and the circulator 125 can constitute a transmission/reception coaxial optical system.
  • the optical transceiver 121 transmits a transmission pulse (transmission light Op1) and receives (receives) a reflected pulse (reception light Op2). It can be said that the optical transmitter/receiver 121 is formed by integrating the optical transmitter 122 and the optical receiver 124 . By integrating the optical transmitter 122 and the optical receiver 124 in this way, the size of the distance measuring device 50 can be reduced. Further, in the optical transmitter/receiver 121, the light transmission direction and the light reception direction can be made coaxial with each other. Therefore, by using the optical transmitter/receiver 121, it becomes unnecessary to adjust the optical axis between the optical transmitter and the optical receiver.
  • the circulator 125 is connected to the transmitting side unit 110 (optical modulator 106), the optical transceiver 121, and the receiving side unit 170 (optical interference system unit 130). Specifically, the transmitting unit 110 is connected to the port #1 of the circulator 125, the optical transceiver 121 is connected to the port #2, and the receiving unit 170 is connected to the port #3.
  • circulator 125 is configured to transmit signals only in a fixed direction between ports. Specifically, the circulator 125 transmits the signal (light) input to the port #1 to the port #2, transmits the signal (light) input to the port #2 to the port #3, and transmits the signal (light) input to the port #3. A signal (light) input to the port #1 is transmitted to the port #1.
  • the circulator 125 is configured to output the transmission pulse (transmission light Op1) output from the transmission-side unit 110 (optical modulator 106) to the optical transmitter/receiver 121.
  • the circulator 125 is configured to output the reflected pulse (received light Op2) received by the optical transmitter/receiver 121 to the receiver unit 170 .
  • the circulator 125 depending on the circulator 125, its performance may be weak. In that case, signals may be transmitted in a direction different from the predetermined direction of signal transmission between the ports described above. Due to such an imperfection (vulnerability of performance) of the circulator 125, for example, a signal (light) input to port #1 may be erroneously transmitted to port #3. In this case, the transmission pulse output from the transmission-side unit 110 (optical modulator 106) may be directly transmitted to the reception-side unit 170 as leakage light Opx1.
  • the transmitted light output from the port #2 of the circulator 125 may be reflected by the transmitting end (lens or the like) of the optical transmitter/receiver 121 instead of the object 90 for distance measurement.
  • the transmitting end reflected light Opx ⁇ b>2 resulting from reflection of the transmitting light at the transmitting end of the optical transmitter/receiver 121 may be transmitted to the receiving unit 170 .
  • a distance measuring device 50 shown in FIG. 11 has an optical system integrated circuit 101 .
  • the optical system integrated circuit 101 can be realized by silicon photonics technology, for example.
  • the optical system integrated circuit 101 is one chip in which at least the optical transmitter 122 and the optical receiver 124 are integrated.
  • the optical system integrated circuit 101 may integrate not only the optical transmitter 122 and the optical receiver 124 but also the optical modulator 106 , the optical interferometer unit 130 and the photoelectric converter 132 .
  • the optical system integrated circuit 101 can reduce the size of the distance measuring device 50 .
  • the optical transmission unit 122 and the optical reception unit 124 in the optical system integrated circuit 101 which is a single miniaturized chip, the light output from the optical reception unit 124 is directly emitted as the leakage light Opx3. , may be transmitted to the optical receiver 124 .
  • the above-described leaked light Opx1, transmitting end reflected light Opx2, and leaked light Opx3 are collectively referred to as crosstalk signals.
  • the crosstalk signal is a signal that has leaked from the transmitting side (transmitting side unit 110 or optical transmitting section 122) to the receiving side (receiving side unit 170 or optical receiving section 124) without going through the object 90 for distance measurement.
  • the crosstalk signal is a signal that has flowed directly from the transmitting side (transmitting side unit 110 or optical transmitting section 122) to the receiving side (receiving side unit 170 or optical receiving section 124).
  • the transmitted optical signal is attenuated in the process of reflection and flight of the optical signal from the distance measurement object 90
  • the power (power level) of the reflected pulse increases as the distance to the distance measurement object 90 increases. can be small.
  • the crosstalk signal is a signal transmitted only within the distance measuring device, so it may not be attenuated much. Therefore, the power of the crosstalk signal can be much higher (eg, by a factor of 1000) than the power of the reflected pulse.
  • the optical interference system unit 130 can process the crosstalk signal as well as the reflected pulse. Therefore, the optical interferometry unit 130 can detect the frequency offset of the crosstalk signal using the optical signal of frequency f0 from the light source 108 as reference light.
  • the optical interference system unit 130 can output optical signals of frequencies f1, f2, .
  • the photoelectric conversion unit 132 can convert the optical signal corresponding to the crosstalk signal into an electrical signal that is an analog signal.
  • AD converter 134 may convert an electrical signal corresponding to the crosstalk signal to a digital signal.
  • An electrical signal corresponding to the crosstalk signal converted into a digital signal by the AD converter 134 can be output to the bandpass filters 140-1 to 140-n. Problems in the case where the receiving unit 170 processes the crosstalk signal will be further described below.
  • FIG. 12 is a timing chart for miniaturizing the distance measuring device in the second comparative example.
  • FIG. 12 is a timing chart showing the relationship between the transmitted pulse, the receiving side signal (reflected pulse and crosstalk signal), and the output signal of the bandpass filter 140.
  • FIG. 12A and 12B are diagrams for explaining a problem when the receiving unit 170 processes the crosstalk signal.
  • transmission pulses Plst1, Plst2, and Plst3 are transmitted with a pulse period Tp.
  • a signal transmitted on the receiving side (receiving side unit 170) of the distance measuring device 50 is referred to as a receiving side signal.
  • the receiver signal may include reflected pulses (reflected light) and crosstalk signals, as described below.
  • a transmission pulse Plst1 having a frequency offset f1 is transmitted.
  • a reflected pulse Plsr1 having a frequency offset f1 is received by the receiving unit 170 and transmitted.
  • a crosstalk signal Plst1x corresponding to the transmission pulse Plst1 is generated from the transmission side to the reception side as indicated by an arrow C1x. Therefore, the crosstalk signal Plst1x is transmitted in the receiving unit 170 at the timing immediately after the transmission timing of the transmission pulse Plst1.
  • a transmission pulse Plst2 having a frequency offset f2 is transmitted.
  • reflected pulse Plsr2 having frequency offset f2 is received by receiving unit 170 and transmitted.
  • a crosstalk signal Plst2x corresponding to the transmission pulse Plst2 is generated from the transmission side to the reception side as indicated by an arrow C2x. Therefore, the crosstalk signal Plst2x is transmitted in the receiving unit 170 at the timing immediately after the transmission timing of the transmission pulse Plst2.
  • a transmission pulse Plst3 having a frequency offset f3 is transmitted.
  • a reflected pulse Plsr3 (not shown) having a frequency offset f3 is received by the receiving unit 170 and transmitted.
  • a crosstalk signal Plst3x corresponding to the transmission pulse Plst3 is generated from the transmission side to the reception side as indicated by an arrow C3x. Therefore, the crosstalk signal Plst3x is transmitted in the receiving unit 170 at the timing immediately after the transmission timing of the transmission pulse Plst3.
  • the bandpass filter 140-1 corresponding to the frequency f1 outputs a filtered signal Plst1x_f1 corresponding to the crosstalk signal Plst1x at the timing when the crosstalk signal Plst1x is generated.
  • the filtered signal Plst1x_f1 has a frequency f1.
  • the bandpass filter 140-1 outputs a filtered signal Plsr1_f1 corresponding to the reflected pulse Plsr1 at the timing when the reflected pulse Plsr1 is received.
  • the filtered signal Plsr1_f1 has a frequency f1.
  • the bandpass filter 140-2 corresponding to the frequency f2 outputs a filtered signal Plst2x_f2 corresponding to the crosstalk signal Plst2x at the timing when the crosstalk signal Plst2x is generated.
  • the filtered signal Plst2x_f2 has a frequency f2.
  • bandpass filter 140-2 outputs filtered signal Plsr2_f2 corresponding to reflected pulse Plsr2 at the timing at which reflected pulse Plsr2 is received.
  • the filtered signal Plsr2_f2 has a frequency f2.
  • the harmonic components of the transmission signal Plst1 originally may include frequency components (frequency offsets f2, f3, etc.) other than the frequency offset f1, although they are slight. Therefore, the harmonics of the crosstalk signal Plst1x may contain frequency components (frequency offsets f2, f3, etc.) other than the frequency offset f1, although they are slight.
  • the harmonic components of the transmission signal Plst2 may include frequency components (frequency offsets f1, f3, etc.) other than the frequency offset f2, although they are slight. Therefore, the harmonic components of the crosstalk signal Plst2x may contain frequency components (frequency offsets f1, f3, etc.) other than the frequency offset f2, although they are slight.
  • bandpass filter 140 may not be able to completely separate the crosstalk signal (and reflected pulses) depending on the frequency offset.
  • the bandpass filter 140-1 can output the filtered signal Plst2x_f1 corresponding to the crosstalk signal Plst2x at the timing when the crosstalk signal Plst2x is generated. Similarly, bandpass filter 140-1 can output filtered signal Plst3x_f1 corresponding to crosstalk signal Plst3x at the timing when crosstalk signal Plst3x is generated. Further, bandpass filter 140-1 can output filtered signal Plsr2_f1 corresponding to reflected pulse Plsr2 at the timing at which reflected pulse Plsr2 is received.
  • the filtered signals Plst2x_f1, Plst3x_f1, Plsr2_f1 have a frequency f1.
  • the bandpass filter 140-2 can output a filtered signal Plst1x_f2 corresponding to the crosstalk signal Plst1x at the timing when the crosstalk signal Plst1x is generated.
  • bandpass filter 140-2 can output filtered signal Plst3x_f2 corresponding to crosstalk signal Plst3x at the timing when crosstalk signal Plst3x is generated.
  • bandpass filter 140-2 can output filtered signal Plsr1_f2 corresponding to reflected pulse Plsr1 at the timing at which reflected pulse Plsr1 is received.
  • the filtered signals Plst1x_f2, Plst3x_f2, Plsr1_f2 have a frequency f2.
  • the bandpass filter 140-1 outputs not only the filtered signal Plsr1_f1 corresponding to the reflected pulse Plsr1, but also the filtered signals corresponding to other signals (crosstalk signal, reflected pulse Plsr2, etc.). there is a possibility. Therefore, timing extraction section 150-1 may also extract the reception timing of a signal (receiving side signal) other than the reception timing of reflected pulse Plsr1 that should be extracted. In other words, the timing extraction section 150-1 may output the measurement stop trigger corresponding to the crosstalk signal Plst1x or the crosstalk signal Plst2x before outputting the measurement stop trigger Trgr1 corresponding to the reflected pulse Plsr1. . In other words, timing extraction section 150-1 may output a measurement stop trigger corresponding to filtered signal Plst1x_f1 or filtered signal Plst2x_f1. Therefore, distance calculation section 160-1 may perform erroneous distance measurement.
  • bandpass filter 140-2 may output not only filtered signal Plsr2_f2 corresponding to reflected pulse Plsr2, but also filtered signals corresponding to other signals (crosstalk signal, reflected pulse Plsr1, etc.). have a nature. Therefore, timing extraction section 150-2 may also extract the reception timing of a signal (receiving side signal) other than the reception timing of reflected pulse Plsr2 that should be extracted. That is, the timing extractor 150-2 may output the measurement stop trigger corresponding to the crosstalk signal Plst1x or the crosstalk signal Plst2x before outputting the measurement stop trigger Trgr2 corresponding to the reflected pulse Plsr2. . In other words, timing extraction section 150-2 may output a measurement stop trigger corresponding to filtered signal Plst1x_f2 or filtered signal Plst2x_f2. Therefore, distance calculation section 160-2 may perform erroneous distance measurement.
  • the bandpass filter 140-1 can output Plsr2_f1 corresponding to the reflected pulse Plsr2.
  • bandpass filter 140-2 may output Plsr1_f2 corresponding to reflected pulse Plsr1.
  • the power of the reflected pulse is originally small.
  • the power of the crosstalk signal is so large that it may not be negligible. Therefore, when attempting to miniaturize the device, there is a possibility that erroneous distance measurement as described above will be performed.
  • the distance measuring device 1 according to the present embodiment is configured to disable the distance calculation processing by the distance calculation unit 10 for a certain period based on the transmission timing of the transmission pulse.
  • the distance measuring device 1 according to the present embodiment can prevent erroneous distance measurement due to the above-described crosstalk signal. Therefore, the distance measuring device 1 according to the present embodiment can prevent erroneous distance measurement even when the size of the device is reduced.
  • the distance measurement method executed by the distance measurement device 1 can also prevent erroneous distance measurement.
  • FIG. 13 is a diagram showing the configuration of the distance measuring device 100 according to the first embodiment.
  • Range finder 100 includes frequency offset generator 102, modulated signal generator 104, optical modulator 106, light source 108, transmission timing controller 112, and optical transmitter as transmission modules. and a portion 122 .
  • a transmitter unit 110 is configured by the frequency offset generator 102 , the modulated signal generator 104 , the optical modulator 106 , the light source 108 and the transmission timing controller 112 .
  • the transmitting unit 110 functions as a pulse generator that generates a plurality of transmission pulses with mutually different frequency offsets. This transmitting unit 110 (pulse generator) corresponds to the generator 2 shown in FIG.
  • the optical transmitter 122 corresponds to the transmitter 4 shown in FIG.
  • the functions of the frequency offset generator 102, the modulated signal generator 104, the optical modulator 106, the light source 108, and the optical transmitter 122 are substantially the same as those shown in FIG. Therefore, the description is omitted as appropriate.
  • the distance measuring apparatus 100 includes an optical receiver 124, an optical interferometer unit 130, a photoelectric converter 132, an AD converter 134, and an invalidation processor 136 as receiving modules.
  • the optical receiver 124 corresponds to the receiver 6 shown in FIG.
  • the optical interference system unit 130 corresponds to the detection section 8 shown in FIG.
  • the invalidation processing unit 136 corresponds to the invalidation processing unit 12 shown in FIG.
  • the optical transmission/reception section 120 is configured by the optical transmission section 122 and the optical reception section 124 .
  • the optical transceiver 120 may have the configuration of the optical transceiver 120A illustrated in FIG.
  • the optical transmitter/receiver 120 (the optical transmitter 122 and the optical receiver 124) may be formed in the optical system integrated circuit 101 as illustrated in FIG.
  • the optical transmitter/receiver 120 may measure the three-dimensional shape of the distance measurement object 90 while sweeping (scanning) the emission direction of the transmission light, as will be described later in the fourth embodiment. As a result, it is possible to acquire point cloud data indicating the position of each point of the distance measurement object 90 (that is, the three-dimensional shape of the distance measurement object 90).
  • distance measuring apparatus 100 includes band-pass filters 140-1 to 140-n, timing extraction units 150-1 to 150-n, distance calculation units 160-1 to 160-n, as receiving modules. 160-n.
  • Distance calculators 160-1 to 160-n correspond to distance calculator 10 shown in FIG.
  • a receiving unit 170 is configured by the optical interference system unit 130 , the photoelectric conversion unit 132 , the AD converter 134 , the invalidation processing unit 136 , the bandpass filter 140 , the timing extraction unit 150 and the distance calculation unit 160 .
  • the functions of the optical receiver 124, the optical interferometer unit 130, the photoelectric converter 132, the AD converter 134, the bandpass filter 140, the timing extractor 150, and the distance calculator 160 among the receiver modules are shown in FIG. 6 is substantially the same as that shown in FIG.
  • the transmission timing control section 112 has a function as transmission timing control means.
  • the transmission timing control unit 112 can be implemented by, for example, an arithmetic circuit such as an FPGA or a microcomputer.
  • the transmission timing control section 112 controls transmission timing of transmission pulses (transmission light). Specifically, the transmission timing control section 112 controls the transmission timing of the transmission pulse according to the transmission interval ⁇ T from the transmission of the transmission pulse to the transmission of the next transmission pulse.
  • the transmission timing control section 112 generates a transmission trigger that triggers the transmission of a transmission pulse each time the transmission interval ⁇ T elapses.
  • the transmission timing control section 112 generates a transmission trigger that triggers transmission of a transmission pulse each time a constant transmission interval ⁇ T0 elapses. Since the transmission timing exists at every transmission interval ⁇ T, it can be said that the transmission timing control section 112 generates a transmission trigger that serves as a trigger for transmitting a transmission pulse at the transmission timing.
  • the transmission interval ⁇ T is constant
  • the transmission interval ⁇ T ( ⁇ T0) can correspond to the pulse period Tp described above.
  • transmission timing control section 112 outputs a transmission trigger to modulated signal generation section 104 at the transmission timing of the transmission pulse (that is, each time transmission interval ⁇ T elapses).
  • the modulated signal generation section 104 may generate the modulated signal at the timing of receiving the transmission trigger.
  • the transmission timing control section 112 may output the transmission trigger to the frequency offset generator 102 at the transmission timing of the transmission pulse.
  • frequency offset generator 102 may output frequency offset information to modulated signal generator 104 at the timing of receiving a transmission trigger.
  • Modulated signal generator 104 may then generate a modulated signal according to the frequency offset information received from frequency offset generator 102 .
  • the transmission timing control section 112 controls the transmission timing of the transmission pulse. Further, the transmission timing control section 112 outputs the transmission trigger to the invalidation processing section 136 at the transmission timing of the transmission pulse.
  • the invalidation processing unit 136 has a function as invalidation processing means.
  • the invalidation processing unit 136 can be implemented by, for example, an arithmetic circuit such as an FPGA or a microcomputer.
  • the invalidation processing unit 136 invalidates the digital signal (receiving side signal) output from the AD converter 134 for a certain period from the timing of receiving the transmission trigger.
  • the invalidation processing unit 136 performs mask processing on the digital signal output from the AD converter 134 for a certain period from the timing of receiving the transmission trigger. For example, the invalidation processing unit 136 may perform processing so as to set the level (power) of the digital signal output from the AD converter 134 to zero for a certain period of time from the timing at which the transmission trigger is received. Alternatively, the invalidation processing unit 136 may perform processing so that the digital signal output from the AD converter 134 is not output to the subsequent stage (bandpass filter 140) for a certain period from the timing of receiving the transmission trigger. Alternatively, the invalidation processing unit 136 may perform processing so as to stop subsequent processing for a certain period of time from the timing at which the transmission trigger is received. In other words, the invalidation processing unit 136 may perform processing so that subsequent processing is executed during a period excluding a certain period of time from the timing at which the transmission trigger is received.
  • the "certain period” is a period determined in advance according to the structure of the distance measuring device 100.
  • the “fixed period” is determined according to the optical path length of the crosstalk signal and the speed of light in the distance measuring device 100 . That is, the "constant period of time” may correspond to the value obtained by dividing the optical path length of the crosstalk signal by the speed of light.
  • the "certain period” is the distance from the optical modulator 106 to the circulator 125, the distance from the circulator 125 to the optical interferometer unit 130, and It can be determined according to the distance from the circulator 125 to the optical transceiver 121 .
  • the "fixed period” can be determined according to the longer optical path length of the optical path length of the leaked light Opx1 and the optical path length of the transmitting end reflected light Opx2. Further, for example, when the optical transmitting/receiving section 120 is configured as in the example of FIG. can be That is, the "fixed period" can be determined according to the optical path length of the leaked light Opx3.
  • FIG. 14 is a timing chart showing the relationship between the transmission pulse, the reception side signal, and the output signal of the bandpass filter 140 according to the first embodiment.
  • transmission pulses are transmitted at constant transmission intervals ⁇ T0. That is, in Embodiment 1, the transmission interval ⁇ T0 corresponds to the pulse period Tp described above. Therefore, the transmission pulse Plst2 with the frequency offset f2 is transmitted at the timing when ⁇ T0 has passed since the transmission pulse Plst1 with the frequency offset f1 was transmitted. Further, a transmission pulse Plst3 having a frequency offset f3 is transmitted at a timing when ⁇ T0 has passed since the transmission pulse Plst2 having a frequency offset f2 was transmitted.
  • the receiving unit 170 transmits the crosstalk signal Plst1x at the timing immediately after the transmission timing of the transmission pulse Plst1. Also, when the transmission pulse Plst1 having the frequency offset f1 is transmitted, the receiving unit 170 transmits the reflected pulse Plsr1 having the frequency offset f1. Also when the transmission pulse Plst2 having the frequency offset f2 is transmitted, the crosstalk signal and the reflected pulse (receiving side signal) are transmitted by the receiving side unit 170 as in the case shown in FIG. Also when the transmission pulse Plst3 having the frequency offset f3 is transmitted, the crosstalk signal and the reflected pulse (receiving side signal) are transmitted by the receiving side unit 170 as in the case shown in FIG.
  • the invalidation processing unit 136 invalidates the reception-side signal for a certain period of time Tm from the transmission timing.
  • the crosstalk signal can be transmitted for a certain period of time Tm. Therefore, as shown in FIG. 14, the crosstalk signal is invalidated by the invalidation processing section 136 . Accordingly, since the bandpass filter 140 does not receive the signal corresponding to the crosstalk signal, it does not output the signal corresponding to the crosstalk signal. Therefore, the output of bandpass filter 140 can only correspond to reflected pulses.
  • the bandpass filter 140-1 outputs a filtered signal Plsr1_f1 corresponding to the reflected pulse Plsr1 and a filtered signal Plsr2_f1 corresponding to the reflected pulse Plsr2.
  • bandpass filter 140-2 outputs filtered signal Plsr1_f2 corresponding to reflected pulse Plsr1 and filtered signal Plsr2_f2 corresponding to reflected pulse Plsr2. Therefore, distance calculation section 160 is more likely not to perform erroneous distance measurement due to the crosstalk signal as described above.
  • the power of the filtered signal Plsr2_f1 and the filtered signal Plsr1_f2 is very small. Therefore, the timing extractor 150 can ignore the filtered signal Plsr2_f1 and the filtered signal Plsr1_f2.
  • the distance calculation unit 160-1 can perform distance measurement corresponding to the frequency offset f1 according to the filtered signal Plsr1_f1 corresponding to the reflected pulse Plsr1.
  • distance calculation section 160-2 can perform distance measurement corresponding to frequency offset f2 according to filtered signal Plsr2_f2 corresponding to reflected pulse Plsr2. Therefore, the ranging apparatus 100 according to the first embodiment can prevent erroneous ranging even when a crosstalk signal is generated.
  • FIG. 15 is a flowchart showing a ranging method executed by the ranging device 100 according to the first embodiment.
  • the processing of S100 to S106 is executed by the transmission system module, and the processing of S112 to S124 is executed by the reception system module.
  • the transmission timing control section 112 generates a transmission trigger and transmits the generated transmission trigger to the modulated signal generation section 104 and the invalidation processing section 136 (step S100).
  • the transmitting unit 110 generates transmission pulses having different frequency offsets for each transmission pulse, as described above (step S102).
  • the optical transmitter 122 transmits (irradiates) an optical signal including the transmission pulse generated in the process of S102 to the range-finding object 90 (step S104).
  • the optical modulator 106 of the transmission-side unit 110 modulates the optical signal (modulator input signal) using the modulation signal generated by the modulation signal generator 104 at the timing when the transmission trigger is transmitted. do. Thereby, the optical modulator 106 generates a plurality of transmission pulses having different frequency offsets at the timing when the transmission trigger is transmitted. Also, the optical transmitter 122 transmits an optical signal including the transmission pulse generated in the process of S102 to the distance measurement object 90 at the timing when the transmission trigger is transmitted. Also, by this processing, a different frequency offset is applied to each transmission pulse at each timing when the transmission trigger is transmitted. At the timing of S104, a measurement start trigger Trgt corresponding to each transmission pulse can be output to distance calculation section 160. FIG.
  • the transmission timing control unit 112 determines whether or not the transmission interval ⁇ T0 has elapsed since the immediately preceding transmission pulse was transmitted (step S106). If the transmission interval ⁇ T0 has not elapsed (NO in S106), the transmission timing control unit 112 repeats the process of S106 and waits until the transmission interval ⁇ T0 has elapsed. Then, when the transmission interval ⁇ T0 has passed (YES in S106), the processing flow returns to S100. That is, the transmission timing control section 112 generates a transmission trigger (S100).
  • the receiving side unit 170 receives the receiving side signal (step S112).
  • the receiver signal may include not only reflected pulses, but also crosstalk signals. If the receiving side signal is a reflected pulse, the optical receiver 124 receives the reflected pulse, and the received reflected pulse is transmitted by the receiving side unit 170 .
  • the crosstalk signal wraps around from the transmitting side unit 110 to the receiving side unit 170 and is transmitted by the receiving side unit 170 .
  • the optical interference system unit 130 uses the reference light to detect the frequency offset of the receiving side signal (reflected pulse or crosstalk signal) (step S114).
  • the invalidation processing unit 136 invalidates the reception-side signal as described above (step S118). This allows the crosstalk signal to be nullified if the receiver signal is a crosstalk signal.
  • the bandpass filter 140 separates the optical signal for each frequency offset as described above (step S120). As a result, the optical signal is separated for each reflected pulse (receiving side signal).
  • the timing extraction unit 150 extracts the reception timing for each separated reflected pulse, and outputs the measurement stop trigger Trgr at the extracted reception timing (step S122).
  • the distance calculation unit 160 calculates the distance R to the distance measurement object 90 using the measurement start trigger Trgt and the measurement stop trigger Trgr (step S124).
  • Embodiment 2 differs from Embodiment 1 in that the transmission interval ⁇ T changes.
  • the configuration of the distance measuring device 100 according to the second embodiment is substantially the same as that according to the first embodiment.
  • the operation of the transmission timing control section 112 according to the second embodiment is different from the operation of the transmission timing control section 112 according to the first embodiment. Since the operations of other components according to the second embodiment are substantially the same as those of the first embodiment, description thereof will be omitted.
  • the transmission timing control section 112 performs control so as to change the transmission interval ⁇ T. Thereby, the transmission timing control section 112 controls the transmission timing of the transmission pulse. This allows the transmission interval ⁇ T to be different for each transmitted pulse. That is, the transmission interval ⁇ T becomes variable. In other words, after a certain transmission pulse is transmitted, the transmission timing of the next transmission pulse becomes variable. Further, as in the first embodiment, the transmission timing control section 112 generates a transmission trigger that serves as a trigger for transmitting a transmission pulse each time the transmission interval ⁇ T elapses. Transmission timing control section 112 then outputs a transmission trigger to modulated signal generation section 104 (or frequency offset generator 102) and nullification processing section 136 each time transmission interval ⁇ T elapses.
  • modulated signal generation section 104 or frequency offset generator 102
  • the transmission timing control unit 112 may perform control such that the transmission interval ⁇ T is changed at a predetermined cycle, as in the first example described later. In other words, the transmission interval ⁇ T need not always be different for each transmission pulse. Further, the transmission timing control section 112 may perform control such that the transmission interval ⁇ T is changed for each transmission pulse according to a predetermined rule, as in a second example described later. Further, the transmission timing control section 112 may perform control so as to randomly change the transmission interval ⁇ T for each transmission pulse, as in the third example described later. Note that the first example, the second example, and the third example are merely examples, and the transmission timing control section 112 may change the transmission cycle ⁇ T by another method.
  • FIG. 16 is a diagram for explaining a first example of a method for changing the transmission interval ⁇ T according to the second embodiment.
  • FIG. 16 shows the relationship between the transmission interval ⁇ T and the number of transmission pulses (passage of time). As illustrated in FIG. 16, in the first example, the transmission interval ⁇ T changes every N transmission pulses. Note that N is an integer of 1 or more.
  • the transmission interval ⁇ T when N consecutive transmission pulses are transmitted is constant (eg, ⁇ T0+dT), and the transmission interval ⁇ T when the next consecutive N transmission pulses are transmitted is constant (eg, ⁇ T0 -dT).
  • the transmission timing control section 112 changes the transmission interval ⁇ T for each predetermined cycle, that is, every cycle corresponding to the period during which N transmission pulses are transmitted. Therefore, in the example shown in FIG. 16, the transmission interval ⁇ T (transmission timing) is alternately shifted every N transmission pulses.
  • the transmission timing control section 112 may determine the transmission cycle ⁇ T according to the function corresponding to the waveform illustrated in FIG. 16 (the function indicating the relationship between the number of pulses and the transmission cycle ⁇ T).
  • a lookup table such as that illustrated in FIG. 16, may be prepared in advance, which indicates the correspondence between the order of transmission pulses and the transmission period ⁇ T.
  • transmission timing control section 112 may refer to a lookup table to determine transmission cycle ⁇ T.
  • FIG. 17 is a diagram for explaining a second example of the method of changing the transmission interval ⁇ T according to the second embodiment.
  • FIG. 17 shows the relationship between the transmission interval ⁇ T and the number of transmission pulses (passage of time). As illustrated in FIG. 17, in the second example, the transmission interval ⁇ T regularly changes for each transmission pulse. Then, the tendency of change in the transmission interval ⁇ T changes every N transmission pulses.
  • the transmission timing control section 112 gradually increases the transmission period ⁇ T from ⁇ T0 ⁇ dT to ⁇ T+dT for the first N transmission pulses. For example, the transmission timing control section 112 increases the transmission period ⁇ T in proportion to the number of transmission pulses to be transmitted. Then, transmission timing control section 112 gradually decreases the transmission period ⁇ T from ⁇ T0+dT to ⁇ T ⁇ dT for the next N transmission pulses. For example, the transmission timing control section 112 reduces the transmission cycle ⁇ T in proportion to the number of transmission pulses to be transmitted. Then, transmission timing control section 112 gradually increases transmission period ⁇ T from ⁇ T0 ⁇ dT to ⁇ T+dT for the next N transmission pulses. Then, transmission timing control section 112 gradually decreases the transmission period ⁇ T from ⁇ T0+dT to ⁇ T ⁇ dT for the next N transmission pulses. Similarly, the transmission interval ⁇ T changes.
  • the transmission timing control section 112 increases or decreases the transmission period ⁇ T every N transmission pulses. That is, the transmission timing control section 112 performs control such that the transmission interval is changed for each transmission pulse according to a predetermined rule. Therefore, in the example shown in FIG. 17, the transmission interval ⁇ T (transmission timing) shifts like a triangular wave every N transmission pulses.
  • the transmission timing control section 112 may determine the transmission period ⁇ T according to a function corresponding to the waveform illustrated in FIG. 17 (function indicating the relationship between the number of pulses and the transmission period ⁇ T).
  • a lookup table such as that illustrated in FIG. 17, may be prepared in advance, which indicates the correspondence between the order of transmission pulses and the transmission period ⁇ T.
  • transmission timing control section 112 may refer to a lookup table to determine transmission cycle ⁇ T.
  • FIG. 18 is a diagram for explaining a third example of the method of changing the transmission interval ⁇ T according to the second embodiment.
  • FIG. 18 shows the relationship between the transmission interval ⁇ T and the number of transmission pulses (passage of time). As illustrated in FIG. 18, in the third example, the transmission interval ⁇ T randomly changes for each transmission pulse.
  • the transmission timing control section 112 may use a random number generator to determine the transmission period ⁇ T. That is, the transmission timing control section 112 may determine the transmission period ⁇ T using a random number (pseudorandom number) output by inputting the number of transmission pulses that have been transmitted to a random number generator. Alternatively, a lookup table may be prepared in advance that indicates the correspondence between the order of a predetermined number (eg, 100) of transmission pulses and the randomly set transmission period ⁇ T. In this case, transmission timing control section 112 may refer to a lookup table to determine transmission cycle ⁇ T.
  • a predetermined number eg, 100
  • FIG. 19 and 20 are diagrams for explaining the effect of the feature according to the second embodiment.
  • FIG. 19 is a timing chart showing the relationship between a transmission pulse, a reception-side signal, and an output signal of bandpass filter 140 according to the first embodiment.
  • transmission pulses are transmitted at constant transmission intervals ⁇ T0.
  • Td the time of flight Td from when the transmission pulse is transmitted to when it is reflected by the distance measuring object 90 and returns to the distance measuring device 100 is approximately constant.
  • the flight time Td of the transmission pulse may substantially match the transmission interval ⁇ T between the transmission pulse and the next transmission pulse.
  • the reflected pulse and the crosstalk signal resulting from the next transmission pulse may overlap each other, and both may be transmitted at the same timing by the receiving unit 170. obtain.
  • signal superimposition such a phenomenon in which the timing at which the reflected pulse is received and the timing at which crosstalk occurs are superimposed will be referred to as "signal superimposition.”
  • the timing at which the reflected pulse Plsr1 is received overlaps with the timing at which the crosstalk signal Plst2x generated immediately after the transmission of the transmission pulse Plst2 reaches the receiving unit 170.
  • the timing at which the reflected pulse Plsr2 is received coincides with the timing at which the crosstalk signal Plst3x generated immediately after the transmission pulse Plst3 is transmitted to the receiving unit 170.
  • the invalidation processing unit 136 invalidates the reception-side signal for a certain period of time Tm, not only the crosstalk signal but also the reflected pulse may be invalidated. Therefore, there is a possibility that the distance measurement result cannot be obtained.
  • the distance measuring device 100 to the ranging object 90 may be substantially constant.
  • the time-of-flight Td of the transmitted pulse can be approximately constant.
  • the above-described signal superimposition may occur many times (continuously). In this case, it may occur many times that the distance measurement result cannot be obtained.
  • point cloud data is generated by performing distance measurement a plurality of times while sweeping the emission direction of the transmitted light, data in the point cloud data may be reduced.
  • FIG. 20 is a timing chart showing the relationship between the transmission pulse, the reception side signal, and the output signal of the bandpass filter 140 according to the second embodiment.
  • the transmission pulse Plst2 is transmitted at the timing when the transmission interval ⁇ T1 has elapsed from the timing at which the transmission pulse Plst1 was transmitted.
  • the transmission pulse Plst3 is transmitted at the timing when the transmission interval ⁇ T2 has passed from the timing at which the transmission pulse Plst2 was transmitted.
  • the timing at which the reflected pulse Plsr1 is received overlaps with the timing at which the crosstalk signal Plst2x generated immediately after the transmission pulse Plst2 is transmitted to the receiving unit 170.
  • the timing at which the reflected pulse Plsr2 is received does not coincide with the timing at which the crosstalk signal Plst3x generated immediately after the transmission of the transmission pulse Plst3 reaches the receiving unit 170.
  • the invalidation processing unit 136 invalidates the receiving side signal for a certain period of time Tm
  • the reflected pulse Plsr1 is invalidated together with the crosstalk signal Plst2x as indicated by arrow A.
  • the reflected pulse Plsr2 is not nullified even if the crosstalk signal Plst3x is nullified. Therefore, distance measurement can be performed using the filtered signal Plsr2_f2 corresponding to the reflected pulse Plsr2.
  • the transmission timing control section 112 is configured to change the transmission interval ⁇ T. This makes it possible to suppress the occurrence of signal superimposition as described above. Therefore, since the reflected pulse is suppressed from being invalidated together with the crosstalk signal, it is possible to suppress the repeated failure to obtain the distance measurement result. Therefore, it is possible to suppress the loss of point cloud data.
  • the transmission timing control section 112 may be configured to perform control such that the transmission interval ⁇ T is changed in a predetermined cycle. With such a configuration, it is possible to realize the transmission timing control section 112 according to the second embodiment with a simple circuit.
  • the transmission timing control section 112 may be configured to perform control such that the transmission interval ⁇ T is changed for each transmission pulse according to a predetermined rule.
  • signal superimposition may occur continuously. In particular, this can occur when the sweep speed of the rangefinder 100 (the amount of change per unit time in the transmission direction of the transmission pulse) is slow. In this case, it is possible that the distance measurement result cannot be obtained continuously.
  • the transmission timing control unit 112 changes the transmission interval ⁇ T for each transmission pulse, and thus further suppresses the continuous occurrence of signal superimposition as compared with the first example. It becomes possible to Therefore, it is possible to further suppress the continuous occurrence of failure to obtain a distance measurement result. Therefore, it is possible to further suppress the reduction of the point cloud data.
  • the transmission timing control section 112 may be configured to perform control such that the transmission interval ⁇ T is changed randomly for each transmission pulse.
  • the possibility that the random waveform shape illustrated in FIG. 18 corresponds to the shape of the object 90 for distance measurement is extremely small. Therefore, by randomly changing the transmission interval ⁇ T for each transmission pulse, it is possible to further suppress the possibility that the distance measurement result cannot be obtained continuously, as compared with the second example. . Therefore, compared to the second example, it is possible to further suppress the reduction of the point cloud data.
  • FIG. 21 is a flowchart showing a ranging method executed by the ranging device 100 according to the second embodiment.
  • the processing of S200 to S208 is executed by the transmission system module, and the processing of S212 to S224 is executed by the reception system module.
  • the transmission timing control unit 112 generates a transmission trigger and transmits the generated transmission trigger to the modulation signal generation unit 104 and the invalidation processing unit 136 in the same manner as in the processing of S100 in FIG. 15 (step S200).
  • the transmission-side unit 110 generates transmission pulses having different frequency offsets for each transmission pulse in the same manner as in the process of S102 in FIG. 15 (step S202).
  • the optical transmitter 122 transmits (irradiates) an optical signal including the transmission pulse generated in the process of S202 to the distance measurement object 90 in the same manner as in the process of S104 in FIG. 15 (step S204).
  • the transmission timing control unit 112 changes the transmission interval ⁇ T as described above (step S206).
  • the transmission timing control unit 112 determines whether or not the transmission interval ⁇ T has passed since the last transmission pulse was transmitted (step S208). If the transmission interval ⁇ T has not elapsed (NO in S208), the transmission timing control unit 112 repeats the process of S208 and waits until the transmission interval ⁇ T has elapsed. Then, when the transmission interval ⁇ T has elapsed (YES in S208), the processing flow returns to S200. That is, the transmission timing control section 112 generates a transmission trigger (S200). Note that it is not necessary to change the transmission interval ⁇ T for each transmission pulse as in the first example. Therefore, the process of S206 need not always be executed. Also, the process of S206 may be executed after the determination of YES in the process of S208.
  • the receiving side unit 170 receives the receiving side signal in the same manner as in the process of S112 in FIG. 15 (step S212).
  • the optical interference system unit 130 uses the reference light to detect the frequency offset of the receiving side signal (reflected pulse or crosstalk signal) in the same manner as in the process of S114 in FIG. 15 (step S214).
  • the invalidation processing unit 136 invalidates the reception side signal (step S218) in the same manner as in the processing of S118 in FIG. This allows the crosstalk signal to be nullified if the receiver signal is a crosstalk signal.
  • the invalidation processing unit 136 does not invalidate the reception side signal. Therefore, in this case, the bandpass filter 140 (separating means) separates the optical signal for each frequency offset (step S220) in the same manner as in the process of S120 in FIG.
  • the timing extractor 150 extracts the reception timing for each separated reflected pulse and outputs the measurement stop trigger Trgr at the extracted reception timing (step S222).
  • the distance calculator 160 calculates the distance R to the distance measurement object 90 using the measurement start trigger Trgt and the measurement stop trigger Trgr in the same manner as in the process of S124 in FIG. 15 (step S224).
  • Embodiment 3 differs from Embodiment 2 in that the transmission interval ⁇ T (transmission timing) is changed according to the distance measurement result.
  • the components according to the third embodiment the components that are substantially the same as the components in the first embodiment are denoted by the same reference numerals. Also, in the following description, descriptions of components that are substantially the same as those in the first embodiment will be omitted as appropriate.
  • FIG. 22 is a diagram showing the configuration of the distance measuring device 100 according to the third embodiment.
  • Range finder 100 includes frequency offset generator 102, modulated signal generator 104, optical modulator 106, light source 108, transmission timing controller 112, and optical transmitter as transmission modules. and a portion 122 .
  • a transmitter unit 110 is configured by the frequency offset generator 102 , the modulated signal generator 104 , the optical modulator 106 , the light source 108 and the transmission timing controller 112 .
  • the functions of the frequency offset generator 102, the modulated signal generator 104, the optical modulator 106, the light source 108, and the optical transmitter 122 are substantially the same as those shown in FIG. Therefore, the description is omitted as appropriate.
  • the distance measuring apparatus 100 includes an optical receiver 124, an optical interferometer unit 130, a photoelectric converter 132, an AD converter 134, and an invalidation processor 136 as receiving modules.
  • the optical transmitter/receiver 120 is configured by the optical transmitter 122 and the optical receiver 124 .
  • distance measuring apparatus 100 includes band-pass filters 140-1 to 140-n, timing extractors 150-1 to 150-n, distance calculators 160-1 to 160-n, as receiving modules. 160-n.
  • a receiving unit 170 is configured by the optical interference system unit 130 , the photoelectric conversion unit 132 , the AD converter 134 , the invalidation processing unit 136 , the bandpass filter 140 , the timing extraction unit 150 and the distance calculation unit 160 .
  • the functions of the receiving modules are substantially the same as those shown in FIG. 6, and thus description thereof will be omitted.
  • the function of the invalidation processing unit 136 is substantially the same as that of the first embodiment, so the explanation will be omitted as appropriate.
  • the ranging device 100 according to the third embodiment has an estimating section 370 .
  • the transmission timing control unit 112 controls transmission timing based on the distance measurement results obtained previously. Specifically, the transmission timing control section 112 controls the transmission timing according to the next distance measurement result estimated by the estimation section 370, which will be described later. More specifically, the transmission timing control unit 112 controls the transmission timing based on two or more distance measurement results obtained immediately before. Details will be described later.
  • the estimation unit 370 has a function as estimation means.
  • the estimator 370 can be implemented by, for example, an arithmetic circuit such as an FPGA or a microcomputer.
  • the estimating section 370 estimates the next acquired ranging result (the distance to the ranging object 90) based on the previously acquired ranging result. Specifically, the estimating section 370 estimates the next acquired ranging result based on two or more ranging results acquired immediately before.
  • the estimation unit 370 acquires the last n distance measurement results (distances) (where n is an integer equal to or greater than 2). Then, the estimating section 370 estimates the next distance measurement result by extrapolation from the n measurement results. Specifically, the estimation unit 370 converts the n measurement results (distances obtained from the first to n-th distance measurements) into some function (a graph in which the horizontal axis is the distance measurement order and the vertical axis is the distance). apply to For example, the estimating unit 370 plots the distance data obtained by the first to n-th distance measurements on a graph in which the horizontal axis is the distance measurement order and the vertical axis is the distance, and calculates a function corresponding to the plot. do.
  • the estimating section 370 estimates the next distance measurement result (n+1th time) using the function. For example, assume that the next distance measurement is the M-th distance measurement, the (M-2)th distance measurement result is 100 m, and the (M-1)th distance measurement result is 101 m. In this case, since the distance measurement result increases by 1 m for each distance measurement (reception of the reflected pulse), the estimation section 370 can estimate the Mth distance measurement result to be 102 m.
  • the receiving side when the reception timing of the reflected pulse generated by the distance measurement object 90 and the transmission timing of the next transmission pulse match, the receiving side generates a crosstalk signal due to the next transmission pulse. can overlap the reflected pulse. That is, the signal superimposition described above may occur.
  • the transmission timing control unit 112 controls transmission timing so as to suppress the occurrence of signal superimposition.
  • transmission timing control section 112 determines transmission interval ⁇ T so as to suppress the occurrence of signal superimposition. Therefore, the transmission timing control section 112 determines the transmission timing so that the estimated timing at which the reflected pulse corresponding to the estimated distance measurement result is received differs from the transmission timing. In other words, the transmission timing control section 112 performs control so that the transmission pulse is transmitted at a timing other than the timing at which the reflected pulse corresponding to the estimated distance measurement result is estimated to be received.
  • the transmission timing control unit 112 ensures that the time (flight time) from the transmission timing of the transmission pulse to the reception timing of the reflected pulse corresponding to the transmission pulse corresponding to the estimated distance measurement result matches the transmission interval ⁇ T.
  • the transmission interval ⁇ T is determined so as not to
  • the transmission timing control section 112 acquires the estimation result from the estimation section 370 .
  • the ranging device 100 is configured to determine the transmission interval ⁇ T based on the estimated ranging result. This increases the possibility that the transmission interval ⁇ T will not match the estimated flight time Tdx. Therefore, it is possible to suppress the occurrence of signal superimposition. Therefore, invalidation of the reflected pulse at the timing of invalidating the receiving side signal on the receiving side is suppressed. That is, the invalidation processing unit 136 is suppressed from invalidating the reflected pulse. Therefore, it is possible to prevent the occurrence of failure to obtain the distance measurement result.
  • the transmission interval ⁇ T is changed regardless of the distance to the range-finding object 90 . Therefore, depending on the distance to the range-finding object 90, there is a possibility that the time-of-flight Td will match the changed transmission interval ⁇ T. In such a case, there is a possibility that the distance measurement result cannot be obtained.
  • the transmission interval ⁇ T is determined based on the estimated distance measurement result. small. Therefore, the configuration according to the third embodiment suppresses invalidation of the reflected pulse at the timing at which the receiving side signal is invalidated on the receiving side more than the configuration according to the second embodiment. Therefore, it is possible to further prevent the occurrence of failure to obtain the distance measurement result.
  • FIG. 23 is a flow chart showing a ranging method executed by the ranging device 100 according to the third embodiment. Note that the processing of the reception system module is substantially the same as the processing of S212 to S224 in FIG. 21, so the description is omitted.
  • the transmission timing control unit 112 generates a transmission trigger and transmits the generated transmission trigger to the modulated signal generation unit 104 and the invalidation processing unit 136 in the same manner as in the processing of S200 in FIG. 21 (step S300).
  • the transmission-side unit 110 generates transmission pulses having different frequency offsets for each transmission pulse in the same manner as in the process of S202 in FIG. 21 (step S302).
  • the optical transmitter 122 transmits (irradiates) an optical signal including the transmission pulse generated in the process of S302 to the distance measurement object 90 in the same manner as in the process of S204 in FIG. 21 (step S304).
  • the transmission timing control unit 112 determines whether or not the transmission interval ⁇ T has elapsed since the immediately preceding transmission pulse was transmitted (step S308). If the transmission interval ⁇ T has not elapsed (NO in S308), the transmission timing control unit 112 repeats the process of S308 and waits until the transmission interval ⁇ T0 has elapsed. Then, when the transmission interval ⁇ T has elapsed (YES in S308), the estimating section 370 estimates the next distance measurement result as described above (step S310). Then, as described above, the transmission timing control unit 112 determines the transmission interval ⁇ T according to the estimated distance measurement result (step S312). Note that the process of S310 need not be executed after the process of S308. For example, the process of S310 may be performed after the process of S304.
  • the fourth embodiment differs from the third embodiment in that the transmission interval ⁇ T (transmission timing) is changed according to the distance measurement information generated in advance and the irradiation direction of the transmission pulse.
  • the components according to the fourth embodiment the components that are substantially the same as the components in the first embodiment are denoted by the same reference numerals. Also, in the following description, descriptions of components that are substantially the same as those in the first embodiment will be omitted as appropriate.
  • FIG. 24 is a diagram showing the configuration of the distance measuring device 100 according to the fourth embodiment.
  • Range finder 100 includes frequency offset generator 102, modulated signal generator 104, optical modulator 106, light source 108, transmission timing controller 112, and optical transmitter as transmission modules. and a portion 122 .
  • a transmitter unit 110 is configured by the frequency offset generator 102 , the modulated signal generator 104 , the optical modulator 106 , the light source 108 and the transmission timing controller 112 .
  • the functions of the frequency offset generator 102, the modulated signal generator 104, the optical modulator 106, the light source 108, and the optical transmitter 122 are substantially the same as those shown in FIG. Therefore, the description is omitted as appropriate.
  • the distance measuring apparatus 100 includes an optical receiver 124, an optical interference system unit 130, a photoelectric converter 132, an AD converter 134, and an invalidation processor 136 as receiving modules. have. Further, the distance measuring device 100 according to the fourth embodiment has an optical sweeper 426 .
  • the optical transmitter/receiver 120 is configured by the optical transmitter 122 , the optical receiver 124 and the optical sweeper 426 .
  • the light sweeping section 426 has a function as light sweeping means.
  • the light sweeping unit 426 sweeps (scans) a transmission pulse (transmission light) toward the range-finding object 90 .
  • the light sweeping unit 426 is configured to adjust the direction (azimuth and elevation) for ranging.
  • the optical sweeper 426 adjusts the direction of irradiation of the transmission pulse.
  • the optical sweeper 426 can be implemented by, for example, a MEMS (Micro Electro Mechanical Systems) mirror.
  • distance measuring apparatus 100 includes band-pass filters 140-1 to 140-n, timing extraction units 150-1 to 150-n, distance calculation units 160-1 to 160-n, as receiving modules. 160-n.
  • a receiving unit 170 is configured by the optical interference system unit 130 , the photoelectric conversion unit 132 , the AD converter 134 , the invalidation processing unit 136 , the bandpass filter 140 , the timing extraction unit 150 and the distance calculation unit 160 .
  • the functions of the receiving modules are substantially the same as those shown in FIG. 6, and thus description thereof will be omitted.
  • the function of the invalidation processing unit 136 is substantially the same as that of the first embodiment, so the explanation will be omitted as appropriate.
  • the ranging device 100 according to the fourth embodiment has an estimating section 470 and a database 472 . Further, the distance measuring device 100 according to the fourth embodiment performs distance measurement with respect to a predetermined distance measurement object 90, for example. For example, the fourth embodiment is applicable when the distance measuring device 100 is used for monitoring a predetermined object (distance measuring object 90).
  • the transmission timing control unit 112 controls transmission timing based on the distance measurement results obtained previously. Specifically, the transmission timing control section 112 controls the transmission timing according to the next distance measurement result estimated by the estimation section 470, which will be described later. More specifically, the transmission timing control unit 112 controls the transmission timing based on information that is generated in advance and that associates the sweep direction with the distance measurement result in the sweep direction. Details will be described later.
  • the estimation unit 470 has a function as estimation means.
  • the estimator 470 can be realized by an arithmetic circuit such as an FPGA or a microcomputer, for example.
  • the database 472 has a function as distance measurement information storage means.
  • the database 472 stores distance measurement information in which a sweep direction and a distance measurement result in the sweep direction are associated with each other. This distance measurement information can be generated by performing distance measurement on the distance measurement object 90 in advance.
  • FIG. 25 is a diagram exemplifying distance measurement information stored in the database 472 according to the fourth embodiment.
  • the distance measurement information associates a sweep direction with a distance measurement result (distance) obtained when a transmission pulse is emitted in that sweep direction.
  • the sweep direction indicates, for example, azimuth and elevation.
  • the distance measurement result obtained when the sweep direction is direction #1 is the distance D1.
  • the distance measurement result obtained when the sweep direction is direction #2 is the distance D2.
  • the distance measurement information may be generated using distance measurement results obtained by the distance measurement device 100 in advance.
  • the estimation unit 470 acquires the direction (sweep direction) in which the next transmission pulse is emitted from the optical sweep unit 426 .
  • the estimating section 470 estimates the next range finding result using the acquired sweep direction and the range finding information stored in the database 472 . Specifically, estimation section 470 estimates the distance corresponding to the next sweep direction in the distance measurement information as the next distance measurement result. For example, if the next sweep direction is direction #1, estimation section 470 estimates that the next distance measurement result is distance D1. Also, if the next sweep direction is between direction #1 and direction #2, estimating section 470 may estimate the distance between distance D1 and distance D2 as the next distance measurement result. good. In this case, the estimation unit 470 may estimate the next ranging result by interpolation.
  • the transmission timing control section 112 controls the transmission timing so as to suppress the occurrence of signal superimposition, as in the third embodiment.
  • transmission timing control section 112 determines transmission interval ⁇ T so as to suppress the occurrence of signal superimposition. Therefore, as in Embodiment 3, transmission timing control section 112 determines transmission interval ⁇ T such that the flight time corresponding to the estimated distance measurement result does not match transmission interval ⁇ T.
  • transmission timing control section 112 acquires the estimation result from estimation section 470 .
  • the transmission timing control section 112 performs control so as not to transmit the transmission pulse at the timing corresponding to the estimated distance measurement result (the distance to the distance measurement object 90).
  • the distance measuring device 100 is configured to determine the transmission interval ⁇ T based on the estimated distance measurement result, as in the third embodiment. This increases the possibility that the transmission interval ⁇ T will not match the estimated flight time Tdx. Therefore, invalidation of the reflected pulse at the timing of invalidating the receiving side signal on the receiving side is suppressed. Therefore, it is possible to prevent the occurrence of failure to obtain the distance measurement result.
  • the distance measurement device 100 estimates the next distance measurement result using the distance measurement result obtained immediately before.
  • this method there is a possibility that the distance measurement cannot be properly performed when the next distance measurement result differs from the change tendency of the distance measurement result obtained immediately before. That is, when the direction in which the transmission pulse is irradiated immediately before corresponds to the edge of the distance measurement object 90, the direction in which the transmission pulse is irradiated next corresponds to the distance measurement object 90 which was irradiated with the transmission pulse until immediately before. may not exist. In such a case, there is a possibility that the next ranging result cannot be estimated appropriately from the ranging result obtained immediately before.
  • the distance measuring object 90 is determined in advance, such as when the distance measuring device 100 is used to monitor a predetermined object (distance measuring object 90), the distance measuring object 90 is previously determined. It is possible to acquire in advance the distance measurement result obtained in the above. Then, the distance measuring device 100 according to the fourth embodiment is configured to estimate the next distance measurement result using the distance measurement information generated from the distance measurement result obtained in advance. Therefore, it is possible to estimate the distance measurement result more accurately. Therefore, the possibility that the time-of-flight Td matches the transmission interval ⁇ T is smaller than in the case of the third embodiment. Therefore, the configuration according to the fourth embodiment suppresses invalidation of the reflected pulse at the timing of invalidating the receiving side signal on the receiving side more than the configuration according to the third embodiment. Therefore, it is possible to further prevent the occurrence of failure to obtain the distance measurement result.
  • FIG. 26 is a flow chart showing a ranging method executed by the ranging device 100 according to the fourth embodiment. Note that the processing of the reception system module is substantially the same as the processing of S212 to S224 in FIG. 21, so the description is omitted.
  • the transmission timing control unit 112 generates a transmission trigger and transmits the generated transmission trigger to the modulated signal generation unit 104 and the invalidation processing unit 136 (step S400).
  • the transmission-side unit 110 generates transmission pulses having different frequency offsets for each transmission pulse in the same manner as in the processing of S202 in FIG. 21 (step S402).
  • the optical transmitter 122 transmits (irradiates) an optical signal including the transmission pulse generated in the process of S402 to the distance measurement object 90 in the same manner as in the process of S204 and the like in FIG. 21 (step S404).
  • the transmission timing control unit 112 determines whether or not the transmission interval ⁇ T has elapsed since the immediately preceding transmission pulse was transmitted (step S408). If the transmission interval ⁇ T has not elapsed (NO in S408), the transmission timing control unit 112 repeats the process of S408 and waits until the transmission interval ⁇ T0 has elapsed. Then, when the transmission interval ⁇ T has passed (YES in S408), the estimator 370 acquires the next sweep direction as described above (step S409). Then, as described above, the estimation unit 370 estimates the next distance measurement result using the next sweep direction and the distance measurement information (step S410).
  • the transmission timing control unit 112 determines the transmission interval ⁇ T according to the estimated distance measurement result (step S412).
  • the processes of S409 and S410 need not be executed after the process of S408.
  • the processes of S409 and S410 may be performed after the process of S404.
  • the invalidation processing unit 136 may perform processing to invalidate the signal (receiving side signal) transmitted between the optical transmission/reception unit 120 and the AD converter 134 .
  • Signals transmitted between the optical transmitter/receiver 120 and the AD converter 134 are analog signals, and invalidating analog signals is more difficult than invalidating digital signals. Therefore, the invalidation processing unit 136 invalidates the digital signal (receiving side signal) output from the AD converter 134, thereby facilitating the processing and circuit configuration.
  • the invalidation processing unit 136 may perform processing to invalidate the signal transmitted between the bandpass filter 140 and the distance calculation unit 160 .
  • a signal transmitted between the bandpass filter 140 and the distance calculation unit 160 is transmitted through a different route for each frequency (frequency offset). Therefore, the invalidation processing unit 136 needs to perform processing for invalidating the reception-side signal for each route that differs for each frequency. Therefore, the invalidation processing unit 136 performs processing so as to invalidate the reception-side signal at a stage before the optical signal is separated before being input to the bandpass filter 140, so that the processing and Circuit configuration is facilitated.
  • the number of light sources is one, but the configuration is not limited to this.
  • a plurality of light sources may be provided as disclosed in Patent Document 1.
  • a predetermined frequency offset is applied to the transmission pulse, but the configuration is not limited to this.
  • the frequency offset may be randomly set as disclosed in Patent Document 1.
  • the measurement start trigger signal and the measurement stop trigger signal are output to measure the time of flight, but the present invention is not limited to this.
  • any means capable of measuring the time difference between the transmitted pulse and the corresponding reflected pulse may be employed, such as calculating the time-of-flight from the positions of the time-series data samples acquired by the AD converter.
  • the timing is extracted based on whether or not the signal exceeds a certain threshold in order to extract the timing of the reflected pulse, but the present invention is not limited to this.
  • any means capable of measuring the temporal position of the reflected pulse may be employed, such as detecting the peak value of the signal and extracting the timing of the pulse.
  • the band-pass filter is used to separate the optical signal for each frequency offset of the reflected pulse, but the configuration is not limited to this. Components other than bandpass filters may separate the signals. Moreover, if the reception timing of the reflected pulse can be extracted for each frequency offset, there is no need to separate the received optical signal. On the other hand, by separating the optical signal for each frequency offset of the reflected pulse using a band-pass filter, it is possible to perform high-speed ranging processing as described above. Further, by separating the optical signal for each frequency offset of the reflected pulse using a band-pass filter, it becomes easy to extract the reception timing of each reflected pulse.
  • the distance calculation unit 160 may consider the processing time in the optical modulator 106 or the like in the output timing of the measurement start trigger. In other words, distance calculation section 160 may consider the processing time from when the measurement start trigger is received until when the transmission pulse corresponding to the measurement start trigger is actually transmitted. In this case, the distance calculation unit 160 may set the timing obtained by adding the processing time in the optical modulator 106 and the like to the output timing of the measurement start trigger as the start timing of the distance measurement. It is assumed that the processing time in the optical modulator 106 and the like is substantially constant.
  • the distance calculation section 160 may consider the processing time of the optical interference system unit 130 and the like before the measurement stop trigger is output for the measurement stop trigger. In other words, the distance calculator 160 may consider the processing time from when the reflected pulse is received by the optical receiver 124 to when the timing extractor 150 outputs the measurement stop trigger. In this case, the distance calculation section 160 may set the timing obtained by subtracting the processing time of the optical interferometer unit 130 and the like from the output timing of the measurement stop trigger as the end timing of the distance measurement. It is assumed that the processing time in the optical interference system unit 130 and the like is substantially constant.
  • the modulated signal generator 104 may output a measurement start trigger that indicates the time at which the transmission pulse is transmitted, taking into account the processing time until the transmission pulse is transmitted by the optical transmitter 122 in the subsequent stage. good.
  • the modulated signal generator 104 may output a measurement start trigger indicating time (t1+ ⁇ t1).
  • the timing extractor 150 may output a measurement stop trigger indicating the time when the reflected pulse is received, taking into account the processing time in the preceding optical interferometer unit 130 and the like.
  • the transmission timing control section 112 may output a transmission trigger to the invalidation processing section 136 in consideration of the processing time in the modulated signal generation section 104 and the optical modulator 106 .
  • the transmission timing control unit 112 outputs the transmission trigger to the modulation signal generation unit 104, and after the processing time in the modulation signal generation unit 104 and the optical modulator 106 has elapsed, the transmission timing control unit 112 outputs the transmission trigger to the invalidation processing unit 136. may be output.
  • the invalidation processing section 136 may invalidate the reception side signal in consideration of the processing time in the modulated signal generation section 104 and the optical modulator 106 .
  • the invalidation processing unit 136 may invalidate the reception-side signal for a certain period of time Tm after the transmission trigger is received and the processing time in the modulated signal generation unit 104 and the optical modulator 106 has elapsed. Further, the invalidation processing section 136 may invalidate the reception-side signal in consideration of the processing time in the optical interferometer unit 130 and the like. That is, the invalidation processing unit 136 may invalidate the reception-side signal for a certain period of time Tm after the transmission trigger is received and the processing time in the optical interferometer unit 130 or the like elapses.
  • the present embodiment has been described as a hardware configuration, but the present embodiment is not limited to this.
  • This embodiment can also be realized by causing a CPU (Central Processing Unit) to execute a computer program for at least one process of each circuit in the range finder.
  • a CPU Central Processing Unit
  • the programs described above include instructions (or software code) that, when read into a computer, cause the computer to perform one or more functions described in the embodiments.
  • the program may be stored in a non-transitory computer-readable medium or tangible storage medium.
  • computer readable media or tangible storage media may include random-access memory (RAM), read-only memory (ROM), flash memory, solid-state drives (SSD) or other memory technology, CDs - ROM, digital versatile disk (DVD), Blu-ray disc or other optical disc storage, magnetic cassette, magnetic tape, magnetic disc storage or other magnetic storage device.
  • the program may be transmitted on a transitory computer-readable medium or communication medium.
  • transitory computer readable media or communication media include electrical, optical, acoustic, or other forms of propagated signals.
  • (Appendix 1) generating means for generating a plurality of transmission pulses in which the intensity of an optical signal changes in a pulse shape, the plurality of transmission pulses having different frequency offsets with respect to a reference frequency for each of the transmission pulses; transmitting means for repeatedly transmitting the generated transmission pulse; receiving means for receiving a reflected pulse of the transmitted pulse reflected by a range-finding object; detection means for detecting a frequency offset of the received reflected pulse; distance calculation means for calculating the distance to the range-finding object based on the reception timing of the received reflected pulse and the transmission timing of the transmission pulse corresponding to the frequency offset detected from the reflected pulse; , Disabling processing means for disabling the distance calculation process for a certain period of time based on the transmission timing of the transmission pulse; A ranging device having (Appendix 2) The invalidation processing means invalidates the distance calculation process by invalidating the receiving side signal transmitted on the
  • the distance measuring device according to appendix 1.
  • (Appendix 3) transmission timing control means for controlling the transmission timing by changing a transmission interval from transmission of a transmission pulse to transmission of the next transmission pulse; 3.
  • the ranging device according to appendix 1 or 2, further comprising: (Appendix 4)
  • the transmission timing control means performs control so as to change the transmission interval at a predetermined cycle.
  • the distance measuring device according to appendix 3.
  • the transmission timing control means performs control such that the transmission interval is changed for each transmission pulse according to a predetermined rule.
  • the distance measuring device according to appendix 3. (Appendix 6)
  • the transmission timing control means performs control so as to randomly change the transmission interval for each transmission pulse.
  • the distance measuring device according to appendix 3.
  • the transmission timing control means controls the transmission timing based on a previously obtained distance measurement result.
  • the distance measuring device according to appendix 3. (Appendix 8) estimating means for estimating the next obtained ranging result based on the previously obtained ranging result; further having The transmission timing control means is configured so that the flight time from the transmission timing of the transmission pulse to the reception timing of the reflected pulse corresponding to the transmission pulse, which corresponds to the estimated distance measurement result, does not match the transmission interval. determining the transmission interval;
  • the distance measuring device according to appendix 7. (Appendix 9)
  • the transmission timing control means controls the transmission timing based on two or more distance measurement results obtained immediately before.
  • the transmission timing control means controls the transmission timing based on pre-generated information in which a sweep direction and a distance measurement result in the sweep direction are associated with each other.
  • the distance measuring device according to appendix 7 or 8.
  • the receiving means receives an optical signal containing the reflected pulse; separation means for separating the received optical signal for each frequency offset of the reflected pulse detected by the detection means; further having wherein the distance calculation means calculates a distance to the range-finding object for each of the separated optical signals; 11.
  • the distance measuring device according to any one of appendices 1 to 10.
  • the invalidation processing means invalidates the distance calculation process by invalidating the receiving side signal input to the receiving side before the optical signal is separated.
  • the distance measuring device according to appendix 11.
  • (Appendix 14) Based on the transmission timing of the transmission pulse, by invalidating the receiving side signal transmitted on the receiving side for a certain period of time, the distance calculation process is invalidated.
  • the ranging method according to appendix 13. (Appendix 15) controlling the transmission timing by controlling to change the transmission interval from the transmission of a transmission pulse to the transmission of the next transmission pulse; 15.
  • the ranging method according to appendix 13 or 14. (Appendix 16) Control to change the transmission interval at a predetermined cycle; A ranging method according to appendix 15. (Appendix 17) controlling to change the transmission interval for each transmission pulse according to a predetermined rule; A ranging method according to appendix 15.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

誤った測距が行われることを抑制することが可能な測距装置を提供する。生成部(2)は、送信パルスごとに異なる周波数オフセットを有する複数の送信パルスを生成する。送信部(4)は、生成部(2)によって生成された送信パルスを繰り返し送信する。受信部(6)は、それぞれの送信パルスが測距対象物で反射した反射パルスを受信する。検出部(8)は、受信部(6)によって受信された反射パルスの周波数オフセットを検出する。距離算出部(10)は、受信部(6)によって受信された反射パルスの受信タイミングと、当該反射パルスから検出された周波数オフセットに対応する送信パルスの送信タイミングとに基づいて、測距対象物までの距離を算出する。無効化処理部(12)は、送信パルスの送信タイミングに基づいて、一定期間、距離算出処理が無効化されるように処理を行う。

Description

測距装置及び測距方法
 本発明は、測距装置及び測距方法に関し、特に、パルスを送信しその反射を受信することで測距を行う測距装置及び測距方法に関する。
 測距の対象である測距対象物までの距離を計測する方法として、タイム・オブ・フライト(Time of Flight;ToF)方式がある。ToF方式では、測距の対象である測距対象物に向けて変調された光パルスが放射され、その測距対象物からの変調光パルスの反射を受信することで、測距対象物までの距離を算出する。ここで、光パルスは、周期的に繰り返し送信され得る。
 この技術に関連し、特許文献1は、測距装置を開示する。特許文献1にかかる測距装置は、生成部、送信部、受信部、検出部及び距離算出部を有する。生成部は、光信号の強度がパルス状に変化した複数の送信パルスを生成する。このとき、生成部は、送信パルスごとに異なる周波数オフセットを有する複数の送信パルスを生成する。送信部は、生成部によって生成された送信パルスを繰り返し送信する。受信部は、それぞれの送信パルスが測距対象物で反射した反射パルスを受信する。検出部は、受信部によって受信された反射パルスの周波数オフセットを検出する。距離算出部は、受信部によって受信された反射パルスの受信タイミングと、当該反射パルスから検出された周波数オフセットに対応する送信パルスの送信タイミングとに基づいて、測距対象物までの距離を算出する。特許文献1にかかる測距装置は、上記の構成により、測距対象物までの距離又は送信パルスの送信周期によらないで、適切に測距を行うことが可能となる。
国際公開第2020/079776号
 測距装置の小型化を実現しようとすると、装置内で送信側から受信側へ光の回り込みが発生するおそれがある。この場合、受信側に回り込んだ光により、誤った測距が行われるおそれがある。したがって、正確に測距を行うことができないおそれがある。
 本開示の目的は、このような課題を解決するためになされたものであり、誤った測距が行われることを抑制することが可能な測距装置及び測距方法を提供することにある。
 本開示にかかる測距装置は、光信号の強度がパルス状に変化した複数の送信パルスであって、前記送信パルスごとに異なる、基準周波数に対する周波数オフセットを有する複数の送信パルスを生成する生成手段と、生成された前記送信パルスを繰り返し送信する送信手段と、前記送信パルスが測距対象物で反射した反射パルスを受信する受信手段と、受信された前記反射パルスの周波数オフセットを検出する検出手段と、受信された前記反射パルスの受信タイミングと、当該反射パルスから検出された前記周波数オフセットに対応する前記送信パルスの送信タイミングとに基づいて、前記測距対象物までの距離を算出する距離算出手段と、前記送信パルスの送信タイミングに基づいて、一定期間、距離算出処理が無効化されるように処理を行う無効化処理手段と、を有する。
 また、本開示にかかる測距方法は、光信号の強度がパルス状に変化した複数の送信パルスであって、前記送信パルスごとに異なる、基準周波数に対する周波数オフセットを有する複数の送信パルスを生成し、生成された前記送信パルスを繰り返し送信し、前記送信パルスが測距対象物で反射した反射パルスを受信し、受信された前記反射パルスの周波数オフセットを検出し、受信された前記反射パルスの受信タイミングと、当該反射パルスから検出された前記周波数オフセットに対応する前記送信パルスの送信タイミングとに基づいて、前記測距対象物までの距離を算出し、前記送信パルスの送信タイミングに基づいて、一定期間、距離算出処理が無効化されるように処理を行う。
 本開示によれば、誤った測距が行われることを抑制することが可能な測距装置及び測距方法を提供できる。
本開示の実施の形態にかかる測距装置の概要を示す図である。 本開示の実施の形態にかかる測距装置によって実行される測距方法の概要を示す図である。 第1の比較例にかかる、パルスを用いて測距対象物までの距離を算出する方法の概要を説明するための図である。 第1の比較例にかかる問題点を説明するための図である。 第1の比較例にかかる問題点を説明するための図である。 第2の比較例にかかる測距装置の構成を示す図である。 第2の比較例にかかる光変調器の動作を説明するための図である。 第2の比較例にかかる送信パルスと反射パルスとの関係を示すタイミングチャートである。 第2の比較例にかかる送信パルスと反射パルスとの関係を示すタイミングチャートである。 測距装置の小型化を図る場合の構成を例示する図である。 測距装置の小型化を図る場合の構成を例示する図である。 第2の比較例において、測距装置の小型化を図る場合のタイミングチャートである。 実施の形態1にかかる測距装置の構成を示す図である。 実施の形態1にかかる、送信パルスと受信側信号とバンドパスフィルタの出力信号との関係を示すタイミングチャートである。 実施の形態1にかかる測距装置によって実行される測距方法を示すフローチャートである。 実施の形態2にかかる送信間隔の変更方法の第1の例を説明するための図である。 実施の形態2にかかる送信間隔の変更方法の第2の例を説明するための図である。 実施の形態2にかかる送信間隔の変更方法の第3の例を説明するための図である。 実施の形態2にかかる特徴の効果を説明するための図である。 実施の形態2にかかる特徴の効果を説明するための図である。 実施の形態2にかかる測距装置によって実行される測距方法を示すフローチャートである。 実施の形態3にかかる測距装置の構成を示す図である。 実施の形態3にかかる測距装置によって実行される測距方法を示すフローチャートである。 実施の形態4にかかる測距装置の構成を示す図である。 実施の形態4にかかるデータベースに格納される測距情報を例示する図である。 実施の形態4にかかる測距装置によって実行される測距方法を示すフローチャートである。
(本開示にかかる実施の形態の概要)
 本開示の実施形態の説明に先立って、本開示にかかる実施の形態の概要について説明する。図1は、本開示の実施の形態にかかる測距装置1の概要を示す図である。また、図2は、本開示の実施の形態にかかる測距装置1によって実行される測距方法の概要を示す図である。
 測距装置1は、生成部2と、送信部4と、受信部6と、検出部8と、距離算出部10と、無効化処理部12とを有する。生成部2は、生成手段としての機能を有する。送信部4は、送信手段としての機能を有する。受信部6は、受信手段としての機能を有する。検出部8は、検出手段としての機能を有する。距離算出部10は、距離算出手段としての機能を有する。無効化処理部12は、無効化処理手段としての機能を有する。なお、送信部4と受信部6とは、物理的に一体に構成されてもよい。これにより、測距装置1の小型化を図ることができる。
 生成部2は、光信号の強度がパルス状に変化した複数の送信パルスを生成する。このとき、生成部2は、送信パルスごとに異なる周波数オフセットを有する複数の送信パルスを生成する(ステップS12)。ここで、周波数オフセットとは、ある基準周波数に対するズレ(オフセット)である。
 送信部4は、生成部2によって生成された送信パルスを繰り返し送信する(ステップS14)。受信部6は、送信パルスが測距対象物90で反射した反射パルスを受信する(ステップS16)。検出部8は、受信部6によって受信された反射パルスの周波数オフセットを検出する(ステップS18)。
 また、距離算出部10は、受信部6によって受信された反射パルスの受信タイミングと、当該反射パルスから検出された周波数オフセットに対応する送信パルスの送信タイミングとに基づいて、測距対象物90までの距離Rを算出する。一方、無効化処理部12は、送信パルスの送信タイミングに基づいて、一定期間、距離算出部10による距離算出処理が無効化されるように処理を行う。例えば、無効化処理部12は、送信タイミングから一定期間、受信側に入力された受信側信号を無効化することにより、距離算出処理が無効化されるように処理を行ってもよい。
 したがって、現時点が送信タイミングに基づく一定期間内である場合(ステップS20のYES)、無効化処理部12は、距離算出処理を無効化するための処理を行う(ステップS22)。一方、現時点が送信タイミングに基づく一定期間内でない場合(S20のNO)、距離算出部10は、測距対象物90までの距離Rを算出する(ステップS24)。
(第1の比較例)
 ここで、一般的なToF方式を用いた第1の比較例について説明する。
 図3は、第1の比較例にかかる、パルスを用いて測距対象物90までの距離を算出する方法の概要を説明するための図である。図3は、ToF方式の動作原理を示している。送信部4によって、送信周期(送信間隔、パルス周期)Tpで、送信パルスPlst1及びPlst2が送信される。ここで、各送信パルスの幅であるパルス幅を、Twとする。そして、送信パルスPlst1が測距対象物90で反射すると、受信部6によって、その反射光である反射パルスPlsr1が受信される。また、送信パルスPlst2が測距対象物90で反射すると、受信部6によって、その反射光である反射パルスPlsr2が受信される。
 また、送信パルスPlst1が送信された時間と反射パルスPlsr1が受信された時間との時間差、つまり光(パルス)の飛行時間をTdとする。また、光速をcとする。この場合、測距対象物90までの距離Rは、以下の式1で表される。
(式1)R=c×Td/2
 これにより、距離算出部10によって、距離Rが算出される。
 図3に示した第1の比較例では、2つの送信パルスPlst1及び送信パルスPlst2がパルス周期Tpで送信され、それぞれの反射光である反射パルスPlsr1及び反射パルスPlsr2が受信される。ここで、仮に、測距対象物90までの距離が長い場合、時間差Tdがパルス周期Tpよりも長くなることがある。また、パルス周期Tpが短い場合でも、時間差Tdがパルス周期Tpよりも長くなることがある。つまり、測距対象物90までの距離又はパルス周期によっては、Td>Tpとなることがある。このようなケースでは、反射パルスPlsr1が受信される前に、次の送信パルスPlst2が送信されてしまう。このとき、受信された反射パルスPlsr1が、送信パルスPlst1の反射光であるのか送信パルスPlst2の反射光であるのかが特定できないと、適切に測距できないおそれがある。すなわち、送信パルスPlst2の送信時間と反射パルスPlsr1の受信時間との時間差から測距を行うと、実際の測距対象物90までの距離よりも短い距離が算出されてしまう。以下、このような問題点について詳述する。
 図4及び図5は、第1の比較例にかかる問題点を説明するための図である。図4及び図5は、第1の比較例にかかる送信パルスと反射パルスとの関係を示すタイミングチャートである。図4及び図5に示す例では、送信パルスPlst1,Plst2,Plst3が、パルス周期Tpで送信されるとする。また、送信パルスPlst1,Plst2,Plst3の周波数は同じであるとする。さらに、図4に示す例では、送信パルスが測距対象物90に反射して戻ってくるまでの飛行時間が、パルス周期Tpよりも長いとする。
 まず、送信パルスPlst1が送信される。その後、送信パルスPlst2が送信された後で、送信パルスPlst1が測距対象物90で反射することで生じた反射パルスPlsr1が受信される。このとき、図4に示す第1の比較例においては、送信パルスPlst2の送信タイミングと反射パルスPlsr1の受信タイミングとの時間差Tdiff1’を用いて、測距を行ってしまうおそれがある。このように、時間差Tdiff1’を用いて測距を行うと、誤って距離を算出してしまう。
 一方、図5に示す例では、送信パルスが測距対象物90に反射して戻ってくるまでの飛行時間が、パルス周期Tpよりも短いとする。さらに、送信パルスPlst1が反射しなかったので、送信パルスPlst1の反射パルスPlsr1は受信されなかったとする。また、送信パルスPlst2は測距対象物に反射して、反射パルスPlsr2が受信されたとする。この場合、送信パルスPlst2の送信タイミングと反射パルスPlsr2の受信タイミングとの時間差Tdiff2を用いて、測距を行う。この測距処理は正しい処理であるが、図4に示した処理との区別がつかない。
 図4及び図5に示すような問題に対処するため、測距対象物までの距離が長いと想定される場合に、パルス周期を長くすることが考えられる。これにより、図4に示したような測距誤りを抑制できる。しかしながら、パルス周期を長くすると、測距を行ってから次の測距を行うまでの時間が長くなってしまうので、測距スピードが低下するおそれがある。したがって、所望のスピードで測距を行えないので、適切に測距を行うことができない。これに対し、以下に第2の比較例にかかる測距装置50は、後述するように、パルス周期を長くすることなく、測距を行うことができる。
(第2の比較例)
 次に、第2の比較例について説明する。
 図6は、第2の比較例にかかる測距装置50の構成を示す図である。第2の比較例は、特許文献1にかかる開示事項に対応する。第2の比較例にかかる測距装置50は、送信系モジュールとして、周波数オフセット発生器102と、変調信号生成部104と、光変調器106と、光源108と、光送信部122とを有する。周波数オフセット発生器102、変調信号生成部104、光変調器106及び光源108によって、送信側ユニット110が構成される。送信側ユニット110は、互いに異なる周波数オフセットを有する複数の送信パルスを生成するパルス生成部として機能する。
 また、第2の比較例にかかる測距装置50は、受信系モジュールとして、光受信部124と、光干渉系ユニット130と、光電変換部132と、ADコンバータ134とを有する。また、第2の比較例にかかる測距装置50は、受信系モジュールとして、バンドパスフィルタ140-1~140-nと、タイミング抽出部150-1~150-nと、距離算出部160-1~160-nとを有する。ここで、nは2以上の整数である。また、以後、複数のバンドパスフィルタ140-1~140-n等を区別しないで説明する場合、バンドパスフィルタ140等と総称することがある。なお、nは、周波数オフセットの数を示す。また、光干渉系ユニット130、光電変換部132、ADコンバータ134、バンドパスフィルタ140、タイミング抽出部150及び距離算出部160によって、受信側ユニット170が構成される。
 また、第2の比較例では、周波数オフセットを、f1、f2、・・・、fnとする。したがって、バンドパスフィルタ140-1~140-nは、それぞれ、周波数オフセットf1~fnに対応する。同様に、タイミング抽出部150-1~150-nは、それぞれ、周波数オフセットf1~fnに対応する。また、距離算出部160-1~160-nは、それぞれ、周波数オフセットf1~fnに対応する。なお、上述した各構成要素は、何らかのデバイス又は演算回路等の回路等によって実現し得る。演算回路は、例えば、FPGA(field-programmable gate array)等である。
 周波数オフセット発生器102は、基準周波数f0からのオフセットである複数の周波数オフセットを示す情報である周波数オフセット情報を、変調信号生成部104に対して出力する。ここで、周波数オフセット情報は、周波数オフセットf1、f2、・・・、fnを示す。なお、周波数オフセット発生器102は、パルス周期Tpごとに、周波数オフセットf1、f2、・・・、fnをそれぞれ示す周波数オフセット情報を、変調信号生成部104に対して出力してもよい。つまり、周波数オフセット発生器102は、周波数オフセットf1を示す周波数オフセット情報を出力し、その後、時間Tpが経過した後で、周波数オフセットf2を示す周波数オフセット情報を出力してもよい。
 変調信号生成部104は、周波数オフセット発生器102から受信した周波数オフセット情報に応じて、送信パルスを生成するための変調信号を生成してもよい。ここで、後述する図7に示すように、変調信号は、周波数オフセットf1、f2、・・・、fnに対応する波形を有する電気信号である。変調信号生成部104は、生成された変調信号を、光変調器106に対して出力する。
 なお、周波数オフセット発生器102は、全ての周波数オフセットf1、f2、・・・、fnを示す周波数オフセット情報を、変調信号生成部104に出力してもよい。この場合、変調信号生成部104は、パルス周期Tpごとに、周波数オフセットf1、f2、・・・、fnそれぞれに対応する変調信号を生成してもよい。つまり、変調信号生成部104は、周波数オフセットf1を示す変調信号を生成し、その後、時間Tpが経過した後で、周波数オフセットf2を示す変調信号を生成してもよい。
 さらに、変調信号生成部104は、周波数オフセットf1、f2、・・・、fnに対応する送信パルスそれぞれが送信されるタイミングで、測定スタートトリガTrgtを距離算出部160に対して出力する。ここで、測定スタートトリガTrgtは、各周波数オフセットを有する送信パルスそれぞれの送信タイミングを示す。具体的には、変調信号生成部104は、周波数オフセットf1に対応する変調信号を出力するタイミングで、測定スタートトリガTrgt1を距離算出部160-1に対して出力する。また、変調信号生成部104は、周波数オフセットf2に対応する変調信号を出力するタイミングで、測定スタートトリガTrgt2を距離算出部160-2に対して出力する。以下同様にして、変調信号生成部104は、周波数オフセットfnに対応する変調信号を出力するタイミングで、測定スタートトリガTrgtnを距離算出部160-nに対して出力する。
 光源108は、後述する図7に示すような、基準周波数f0の光信号を発生させる。光信号は、光変調器106及び光干渉系ユニット130に入力される。光変調器106は、変調信号生成部104から入力された変調信号及び光源108から入力された光信号(変調器入力信号)を用いて、互いに異なる周波数オフセットf1、f2、・・・、fnを有する複数の送信パルスを生成する。光変調器106は、生成された送信パルスを含む光信号を、光送信部122に対して出力する。
 例えば、光変調器106は、AO変調器(acousto-optic modulator)である。光変調器106は、変調信号を用いて、光信号(変調器入力信号)を変調する。これにより、光変調器106は、互いに異なる周波数オフセットを有する複数の送信パルスを生成する。
 図7は、第2の比較例にかかる光変調器106の動作を説明するための図である。図7は、n=3、つまり、周波数オフセットの数が3つである例を示す。図7に示すように、光変調器106に入力される光信号(変調器入力信号)は、一定の周波数f0の光信号である。また、変調信号は、周波数f1のパルス状の波形と、周波数f2のパルス状の波形と、周波数f3のパルス状の波形とを有する。なお、パルス状の波形以外では、変調信号の振幅は0Vである。各波形は、幅Twの正弦波である。
 このとき、光変調器106は、変調信号のパルス状の波形に応じて、光信号を変調して、変調された光信号(変調器出力信号)を出力する。この変調器出力信号が、送信パルスに対応する。光変調器106は、周波数f1のパルス状の波形の変調信号を受信した場合には、周波数f0の光信号をf1シフトするように変調して、周波数(f0+f1)のパルスを出力する。このパルスが、送信パルスPlst1に対応する。また、光変調器106は、周波数f2のパルス状の波形の変調信号を受信した場合には、周波数f0の光信号をf2シフトするように変調して、周波数(f0+f2)のパルスを出力する。このパルスが、送信パルスPlst2に対応する。また、光変調器106は、周波数f3のパルス状の波形の変調信号を受信した場合には、周波数f0の光信号をf3シフトするように変調して、周波数(f0+f3)のパルスを出力する。このパルスが、送信パルスPlst3に対応する。したがって、送信パルスとは、光強度がパルス状に変化する信号を示す。このように、送信パルスPlst1,Plst2,Plst3は、それぞれ、互いに異なる周波数オフセットf1,f2,f3を有することになる。ここで、変調器出力信号における破線は光強度(包絡線)を示す。
 なお、変調信号生成部104は、周波数f1のパルス状の波形の変調信号を出力するタイミングで、測定スタートトリガTrgt1を、距離算出部160-1に対して出力してもよい。変調信号生成部104は、周波数f2のパルス状の波形の変調信号を出力するタイミングで、測定スタートトリガTrgt2を、距離算出部160-2に対して出力してもよい。変調信号生成部104は、周波数f3のパルス状の波形の変調信号を出力するタイミングで、測定スタートトリガTrgt3を、距離算出部160-3に対して出力してもよい。
 光送信部122は、測距対象物90に対して、複数の送信パルスを含む光信号を送信(照射)する。送信パルスは、測距対象物90で、測距装置50に向かって反射する。光受信部124は、測距対象物90で反射して生じた複数の反射パルスを含む光信号を受信する。ここで、受信された複数の反射パルスの周波数は、f0+f1、f0+f2、・・・、f0+fnである。なお、複数の送信パルスが同じ測距対象物90に照射される必要はない。したがって、送信パルスPlst1の往復の飛行時間と送信パルスPlst2の往復の飛行時間とは、互いに異なり得る。
 光干渉系ユニット130は、光源108からの周波数f0の光信号を参照光として用いて、反射パルス(受信光)の周波数オフセットを検出する。具体的には、光干渉系ユニット130は、光源108からの参照光と受信光とを干渉させて、ビート周波数を検出する。これにより、光干渉系ユニット130は、反射パルスの周波数オフセットを検出する。例えば、光干渉系ユニット130は、光カプラを用いたミキサであってもよい。また、例えば、光干渉系ユニット130は、参照光として0度及び90度の2つの位相を有する参照光と干渉させる90度ハイブリッド回路であってもよい。光干渉系ユニット130は、周波数オフセットに対応する周波数f1、f2、・・・、fnの光信号を、光電変換部132に出力する。
 光電変換部132は、光干渉系ユニット130からの光信号を電気信号に変換する。光電変換部132は、例えば、フォトディテクタを用いた光電変換器であってもよいし、フォトディテクタを2つ用いたバランスド光受信器であってもよい。ADコンバータ134は、光電変換部132によって変換されたアナログ信号である電気信号を、デジタル信号に変換する。ADコンバータ134によってデジタル信号に変換された周波数f1、f2、・・・、fnを示す電気信号は、バンドパスフィルタ140-1~140-nに出力される。
 バンドパスフィルタ140(Band Pass Filter;BPF)は、周波数オフセットに対応する周波数を中心周波数としている。バンドパスフィルタ140-1~140-nの中心周波数は、それぞれ、周波数f1~fnである。したがって、バンドパスフィルタ140-1~140-nは、それぞれ、周波数f1~fnを示す電気信号を通過させる。したがって、バンドパスフィルタ140は、光干渉系ユニット130(検出部8)によって検出された反射パルスの周波数オフセットごとに光信号を分離する、分離手段としての機能を有する。
 タイミング抽出部150は、受信された反射パルスの受信タイミングを抽出する、タイミング抽出手段として機能する。タイミング抽出部150-1~150-nは、それぞれ、周波数オフセットf1~fnを有する反射パルスの受信タイミングを抽出する。そして、タイミング抽出部150-1~150-nは、それぞれ、周波数オフセットf1~fnを有する反射パルスの受信タイミングで、測定ストップトリガTrgr1~Trgrnを、距離算出部160-1~160-nに対して出力する。つまり、測定ストップトリガTrgrは、周波数オフセットf1~fnをそれぞれ有する反射パルスの受信タイミングを示す。
 距離算出部160は、測定スタートトリガTrgt(第1のトリガ信号)の出力タイミングと測定ストップトリガTrgr(第2のトリガ信号)の出力タイミングとの時間差から、式1を用いて、測距対象物90までの距離Rを算出する。ここで、距離算出部160-1は、測定スタートトリガTrgt1の出力タイミングと測定ストップトリガTrgr1の出力タイミングとの時間差から、周波数オフセットf1を有する送信パルスに関する距離Rを算出する。距離算出部160-2は、測定スタートトリガTrgt2の出力タイミングと測定ストップトリガTrgr2の出力タイミングとの時間差から、周波数オフセットf2を有する送信パルスに関する距離Rを算出する。以下同様にして、距離算出部160-nは、測定スタートトリガTrgtnの出力タイミングと測定ストップトリガTrgrnの出力タイミングとの時間差から、周波数オフセットfnを有する送信パルスに関する距離Rを算出する。
 なお、複数の周波数オフセットは、f1=+100MHz、f2=+200MHz、f3=+300MHzというように、等間隔の予め定められた周波数であってもよい。一方、測距装置の特性などに起因する特定周波数の特性劣化を避けるため、例えば+200MHzの周波数オフセットが使用できない場合がある。このような場合、f1=+100MHz、f2=+350MHz、f3=+270MHzというように、等間隔でない予め定められた周波数であってもよい。
 図8は、第2の比較例にかかる送信パルスと反射パルスとの関係を示すタイミングチャートである。図8に示す例では、送信パルスPlst1,Plst2が、パルス周期Tpで送信されるとする。さらに、図8に示す例では、送信パルスが測距対象物90に反射して戻ってくるまでの飛行時間が、パルス周期Tpよりも短いとする。
 まず、周波数オフセットf1を有する送信パルスPlst1が送信される。この送信タイミングで、測定スタートトリガTrgt1が距離算出部160-1に出力される。その後、送信パルスPlst2が送信される前に、周波数オフセットf1を有する反射パルスPlsr1が受信される。この受信タイミングで、周波数オフセットf1が検出され、反射パルスPlsr1はバンドパスフィルタ140-1によって分離され、タイミング抽出部150-1によって測定ストップトリガTrgr1が距離算出部160-1に出力される。なお、送信された光信号は、測距対象物90における反射及び光信号の飛行工程において減衰する。これにより、反射パルスPlsr1の包絡線波形は、送信パルスPlst1の包絡線波形と比較して鈍化する。したがって、タイミング抽出部150-1は、反射パルスPlsr1の光強度が予め定められた閾値を超えるタイミングで、測定ストップトリガTrgr1を出力する。このことは、他の反射パルスPlsr2等においても同様である。
 このとき、距離算出部160-1において、周波数オフセットf1を有する送信パルスPlst1と、周波数オフセットf1を有する反射パルスPlsr1とが対応付けられている。したがって、距離算出部160-1において、破線矢印A1で示すように、送信パルスPlst1の送信タイミングを示す測定スタートトリガTrgt1と反射パルスPlsr1の受信タイミングを示す測定ストップトリガTrgr1とが対応付けられている。これにより、距離算出部160-1は、測定スタートトリガTrgt1と測定ストップトリガTrgr1との時間差Tdiff1から、測距対象物90までの距離を算出する。したがって、距離算出部160-1は、適切に、送信パルスPlst1が反射した測距対象物90までの距離を算出することができる。
 同様に、周波数オフセットf2を有する送信パルスPlst2が送信される。この送信タイミングで、測定スタートトリガTrgt2が距離算出部160-2に出力される。その後、送信パルスPlst3(図示せず)が送信される前に、周波数オフセットf2を有する反射パルスPlsr2が受信される。この受信タイミングで、周波数オフセットf2が検出され、反射パルスPlsr2はバンドパスフィルタ140-2によって分離され、タイミング抽出部150-2によって測定ストップトリガTrgr2が距離算出部160-2に出力される。
 このとき、距離算出部160-2において、周波数オフセットf2を有する送信パルスPlst2と、周波数オフセットf2を有する反射パルスPlsr2とが対応付けられている。したがって、距離算出部160-2において、破線矢印A2で示すように、送信パルスPlst2の送信タイミングを示す測定スタートトリガTrgt2と反射パルスPlsr2の受信タイミングを示す測定ストップトリガTrgr2とが対応付けられている。これにより、距離算出部160-2は、測定スタートトリガTrgt2と測定ストップトリガTrgr2との時間差Tdiff2から、測距対象物90までの距離を算出する。したがって、距離算出部160-2は、適切に、送信パルスPlst2が反射した測距対象物90までの距離を算出することができる。
 図9は、第2の比較例にかかる送信パルスと反射パルスとの関係を示すタイミングチャートである。図9に示す例では、送信パルスPlst1,Plst2が、パルス周期Tpで送信されるとする。さらに、図9に示す例では、送信パルスが測距対象物90に反射して戻ってくるまでの飛行時間が、パルス周期Tpよりも長いとする。
 まず、周波数オフセットf1を有する送信パルスPlst1が送信される。この送信タイミングで、測定スタートトリガTrgt1が距離算出部160-1に出力される。その後、送信パルスPlst2が送信された後で、周波数オフセットf1を有する反射パルスPlsr1が受信される。この受信タイミングで、周波数オフセットf1が検出され、反射パルスPlsr1はバンドパスフィルタ140-1によって分離され、タイミング抽出部150-1によって測定ストップトリガTrgr1が距離算出部160-1に出力される。
 このとき、距離算出部160-1において、周波数オフセットf1を有する送信パルスPlst1と、周波数オフセットf1を有する反射パルスPlsr1とが対応付けられている。したがって、距離算出部160-1において、破線矢印B1で示すように、送信パルスPlst1の送信タイミングを示す測定スタートトリガTrgt1と反射パルスPlsr1の受信タイミングを示す測定ストップトリガTrgr1とが対応付けられている。これにより、距離算出部160-1は、測定スタートトリガTrgt1と測定ストップトリガTrgr1との時間差Tdiff1から、測距対象物90までの距離を算出する。したがって、光信号の飛行時間の方がパルス周期よりも長い場合であっても、距離算出部160-1は、適切に、送信パルスPlst1が反射した測距対象物90までの距離を算出することができる。
 同様に、周波数オフセットf2を有する送信パルスPlst2が送信される。この送信タイミングで、測定スタートトリガTrgt2が距離算出部160-2に出力される。その後、送信パルスPlst3(図示せず)が送信された後で、周波数オフセットf2を有する反射パルスPlsr2が受信される。この受信タイミングで、周波数オフセットf2が検出され、反射パルスPlsr2はバンドパスフィルタ140-2によって分離され、タイミング抽出部150-2によって測定ストップトリガTrgr2が距離算出部160-2に出力される。
 このとき、距離算出部160-2において、周波数オフセットf2を有する送信パルスPlst2と、周波数オフセットf2を有する反射パルスPlsr2とが対応付けられている。したがって、距離算出部160-2において、破線矢印B2で示すように、送信パルスPlst2の送信タイミングを示す測定スタートトリガTrgt2と反射パルスPlsr2の受信タイミングを示す測定ストップトリガTrgr2とが対応付けられている。これにより、距離算出部160-2は、測定スタートトリガTrgt2と測定ストップトリガTrgr2との時間差Tdiff2から、測距対象物90までの距離を算出する。したがって、光信号の飛行時間の方がパルス周期よりも長い場合であっても、距離算出部160-2は、適切に、送信パルスPlst2が反射した測距対象物90までの距離を算出することができる。
 このように、第2の比較例にかかる距離算出部160は、ある周波数オフセットを有する送信パルスに関する測定スタートトリガ信号と、この周波数オフセットを有する反射パルスに関する測定ストップトリガ信号とを対応付けて、距離Rを算出している。言い換えると、距離算出部160において、互いに対応する周波数オフセットを有する送信パルスと反射パルスとが対応付けられている。これにより、第2の比較例にかかる測距装置50は、送信パルスと、その送信パルスが測距対象物90で反射した反射光である反射パルスとを、適切に対応付けることができる。したがって、測距対象物までの距離又は送信パルスの送信周期によらないで、適切に測距を行うことが可能となる。
 また、第2の比較例にかかる測距装置50は、バンドパスフィルタ140(分離手段)を用いて、受信した光信号を、反射パルスの周波数オフセットごとに分離するように構成されている。バンドパスフィルタ140を用いた光信号の分離は、ハードウェアで行われ得るので、ソフトウェアで行う処理と比較して高速に行われ得る。そして、バンドパスフィルタ140による分離により、周波数オフセットごとに、並列処理を行うことができる。つまり、距離算出部160が、分離された信号ごとに、距離Rを算出することができる。したがって、第2の比較例にかかる測距装置50は、高速に測距処理を行うことが可能となる。また、反射パルスの周波数オフセットごとに受信信号を分離することで、各反射パルスの受信タイミングの抽出を容易に行うことが可能となる。
 ここで、測距装置の小型化を図る場合について説明する。
 図10及び図11は、測距装置の小型化を図る場合の構成を例示する図である。図10は、光送信部122と光受信部124とが一体に構成された場合の例を示している。図11は、光送信部122と光受信部124とが集積化された場合の例を示している。
 図10に示す測距装置50は、送信側ユニット110と、受信側ユニット170と、光送受信装置120Aとを有する。光送受信装置120Aは、光送受信器121と、サーキュレータ125とを有する。ここで、光送受信器121とサーキュレータ125とによって、送受同軸光学系を構成することができる。
 光送受信器121は、送信パルス(送信光Op1)を送信し、反射パルス(受信光Op2)を受信(受光)する。光送受信器121は、光送信部122と光受信部124とが一体に構成されたものであると言える。このように、光送信部122と光受信部124とが一体に構成されることによって、測距装置50の小型化を図ることができる。また、光送受信器121においては、光の送信方向と受信方向とを、互いに同軸とすることができる。したがって、光送受信器121を用いることによって、光送信部と光受信部とで光軸を調整することが、不要となる。
 サーキュレータ125は、送信側ユニット110(光変調器106)と、光送受信器121と、受信側ユニット170(光干渉系ユニット130)とに接続されている。具体的には、サーキュレータ125のポート#1に送信側ユニット110が接続され、ポート#2に光送受信器121が接続され、ポート#3に受信側ユニット170が接続されている。ここで、サーキュレータ125は、ポート間で決まった方向にのみ信号を伝送するように構成されている。具体的には、サーキュレータ125は、ポート#1に入力された信号(光)をポート#2に伝送し、ポート#2に入力された信号(光)をポート#3に伝送し、ポート#3に入力された信号(光)をポート#1に伝送するように構成されている。したがって、サーキュレータ125は、送信側ユニット110(光変調器106)から出力された送信パルス(送信光Op1)を光送受信器121に出力するように構成されている。また、サーキュレータ125は、光送受信器121で受光された反射パルス(受信光Op2)を受信側ユニット170に出力するように構成されている。
 ここで、サーキュレータ125によっては、その性能が脆弱な場合がある。その場合、上述したポート間での所定の方向の信号の伝送とは異なる方向に信号が伝送されることがある。このようなサーキュレータ125の不完全性(性能の脆弱性)により、例えば、ポート#1に入力された信号(光)がポート#3に誤って伝送されることがある。この場合、送信側ユニット110(光変調器106)から出力された送信パルスが、漏れ光Opx1として、直接、受信側ユニット170に伝送されてしまうことがある。
 また、サーキュレータ125のポート#2から出力された送信光が、測距対象物90ではなく光送受信器121の送信端(レンズ等)で反射することがある。この場合、送信光が光送受信器121の送信端で反射して生じた送信端反射光Opx2が、受信側ユニット170に伝送されてしまうことがある。このように、図10に示す例では、漏れ光Opx1及び送信端反射光Opx2のように、送信側から受信側へ光の回り込みが発生するおそれがある。
 図11に示す測距装置50は、光学系集積回路101を有する。光学系集積回路101は、例えばシリコンフォトニクス技術によって実現され得る。光学系集積回路101は、少なくとも光送信部122と光受信部124とを集積した1つのチップである。光学系集積回路101は、光送信部122及び光受信部124だけでなく、光変調器106、光干渉系ユニット130及び光電変換部132を集積してもよい。光学系集積回路101により、測距装置50の小型化を図ることができる。ここで、光送信部122及び光受信部124を1つの小型化されたチップである光学系集積回路101に集積することによって、光受信部124から出力された光が、直接、漏れ光Opx3として、光受信部124に伝送されてしまうことがある。このように、図11に示す例では、漏れ光Opx3のように、送信側から受信側へ光の回り込みが発生するおそれがある。
 上述した漏れ光Opx1、送信端反射光Opx2及び漏れ光Opx3を総称して、クロストーク信号と称する。クロストーク信号は、測距対象物90を介さないで、送信側(送信側ユニット110又は光送信部122)から受信側(受信側ユニット170又は光受信部124)に回り込んだ信号である。つまり、クロストーク信号は、送信側(送信側ユニット110又は光送信部122)から受信側(受信側ユニット170又は光受信部124)に、直接、回り込んだ信号である。
 ここで、送信された光信号は、測距対象物90における反射及び光信号の飛行工程において減衰するため、反射パルスのパワー(電力レベル)は、測距対象物90までの距離が長くなるにつれて小さくなり得る。これに対し、クロストーク信号は、測距装置内のみを伝送された信号であるので、あまり減衰しない可能性がある。したがって、クロストーク信号のパワーは、反射パルスのパワーよりもはるかに大きく(例えば1000倍程度に)なり得る。
 なお、クロストーク信号が発生した場合、光干渉系ユニット130、光電変換部132及びADコンバータ134は、反射パルスと同様に、クロストーク信号も処理し得る。したがって、光干渉系ユニット130は、光源108からの周波数f0の光信号を参照光として用いて、クロストーク信号の周波数オフセットを検出し得る。光干渉系ユニット130は、クロストーク信号の周波数オフセットに対応する周波数f1、f2、・・・、fnの光信号を、光電変換部132に出力し得る。
 また、光電変換部132は、クロストーク信号に対応する光信号をアナログ信号である電気信号に変換し得る。ADコンバータ134は、クロストーク信号に対応する電気信号を、デジタル信号に変換し得る。ADコンバータ134によってデジタル信号に変換されたクロストーク信号に対応する電気信号は、バンドパスフィルタ140-1~140-nに出力され得る。以下、受信側ユニット170がクロストーク信号を処理してしまう場合の問題点についてさらに説明する。
 図12は、第2の比較例において、測距装置の小型化を図る場合のタイミングチャートである。図12は、送信パルスと受信側信号(反射パルス及びクロストーク信号)とバンドパスフィルタ140の出力信号との関係を示すタイミングチャートである。なお、図12は、受信側ユニット170がクロストーク信号を処理してしまう場合の問題点を説明するための図である。図12に示す例では、送信パルスPlst1,Plst2,Plst3が、パルス周期Tpで送信されるとする。また、測距装置50の受信側(受信側ユニット170)で伝送される信号を、受信側信号と称する。受信側信号は、後述するように、反射パルス(反射光)と、クロストーク信号とを含み得る。
 まず、周波数オフセットf1を有する送信パルスPlst1が送信される。このとき、矢印C1で示すように、周波数オフセットf1を有する反射パルスPlsr1が、受信側ユニット170で受信され、伝送される。さらに、送信パルスPlst1の送信タイミングの直後に、矢印C1xで示すように、送信側から受信側へと、送信パルスPlst1に対応するクロストーク信号Plst1xが発生する。したがって、送信パルスPlst1の送信タイミングの直後のタイミングで、受信側ユニット170でクロストーク信号Plst1xが伝送される。
 次に、周波数オフセットf2を有する送信パルスPlst2が送信される。このとき、矢印C2で示すように、周波数オフセットf2を有する反射パルスPlsr2が、受信側ユニット170で受信され、伝送される。さらに、送信パルスPlst2の送信タイミングの直後に、矢印C2xで示すように、送信側から受信側へと、送信パルスPlst2に対応するクロストーク信号Plst2xが発生する。したがって、送信パルスPlst2の送信タイミングの直後のタイミングで、受信側ユニット170でクロストーク信号Plst2xが伝送される。
 次に、周波数オフセットf3を有する送信パルスPlst3が送信される。このとき、周波数オフセットf3を有する反射パルスPlsr3(図示せず)が、受信側ユニット170で受信され、伝送される。さらに、送信パルスPlst3の送信タイミングの直後に、矢印C3xで示すように、送信側から受信側へと、送信パルスPlst3に対応するクロストーク信号Plst3xが発生する。したがって、送信パルスPlst3の送信タイミングの直後のタイミングで、受信側ユニット170でクロストーク信号Plst3xが伝送される。
 周波数f1に対応するバンドパスフィルタ140-1は、クロストーク信号Plst1xが発生したタイミングで、クロストーク信号Plst1xに対応するフィルタ後信号Plst1x_f1を出力する。フィルタ後信号Plst1x_f1は、周波数f1を有する。また、バンドパスフィルタ140-1は、反射パルスPlsr1が受信されたタイミングで、反射パルスPlsr1に対応するフィルタ後信号Plsr1_f1を出力する。フィルタ後信号Plsr1_f1は、周波数f1を有する。
 また、周波数f2に対応するバンドパスフィルタ140-2は、クロストーク信号Plst2xが発生したタイミングで、クロストーク信号Plst2xに対応するフィルタ後信号Plst2x_f2を出力する。フィルタ後信号Plst2x_f2は、周波数f2を有する。また、バンドパスフィルタ140-2は、反射パルスPlsr2が受信されたタイミングで、反射パルスPlsr2に対応するフィルタ後信号Plsr2_f2を出力する。フィルタ後信号Plsr2_f2は、周波数f2を有する。
 なお、もともと送信信号Plst1の高調波成分には、僅かではあるが、周波数オフセットf1以外の周波数成分(周波数オフセットf2、f3等)も含まれ得る。したがって、クロストーク信号Plst1xの高調波には、僅かではあるが、周波数オフセットf1以外の周波数成分(周波数オフセットf2、f3等)が含まれ得る。同様に、送信信号Plst2の高調波成分には、僅かではあるが、周波数オフセットf2以外の周波数成分(周波数オフセットf1、f3等)も含まれ得る。したがって、クロストーク信号Plst2xの高調波成分には、僅かではあるが、周波数オフセットf2以外の周波数成分(周波数オフセットf1、f3等)が含まれ得る。クロストーク信号Plst3xについても同様である。さらに、反射パルス(Plsr1,Plsr2)についても同様である。したがって、バンドパスフィルタ140は、周波数オフセットに応じて、クロストーク信号(及び反射パルス)を完全には分離することができない可能性がある。
 したがって、バンドパスフィルタ140-1は、クロストーク信号Plst2xが発生したタイミングで、クロストーク信号Plst2xに対応するフィルタ後信号Plst2x_f1を出力し得る。同様に、バンドパスフィルタ140-1は、クロストーク信号Plst3xが発生したタイミングで、クロストーク信号Plst3xに対応するフィルタ後信号Plst3x_f1を出力し得る。また、バンドパスフィルタ140-1は、反射パルスPlsr2が受信されたタイミングで、反射パルスPlsr2に対応するフィルタ後信号Plsr2_f1を出力し得る。フィルタ後信号Plst2x_f1,Plst3x_f1,Plsr2_f1は、周波数f1を有する。
 また、バンドパスフィルタ140-2は、クロストーク信号Plst1xが発生したタイミングで、クロストーク信号Plst1xに対応するフィルタ後信号Plst1x_f2を出力し得る。同様に、バンドパスフィルタ140-2は、クロストーク信号Plst3xが発生したタイミングで、クロストーク信号Plst3xに対応するフィルタ後信号Plst3x_f2を出力し得る。また、バンドパスフィルタ140-2は、反射パルスPlsr1が受信されたタイミングで、反射パルスPlsr1に対応するフィルタ後信号Plsr1_f2を出力し得る。フィルタ後信号Plst1x_f2,Plst3x_f2,Plsr1_f2は、周波数f2を有する。
 このように、バンドパスフィルタ140-1は、反射パルスPlsr1に対応するフィルタ後信号Plsr1_f1だけでなく、他の信号(クロストーク信号及び反射パルスPlsr2等)に対応するフィルタ後信号も出力してしまう可能性がある。したがって、タイミング抽出部150-1は、本来抽出すべき反射パルスPlsr1の受信タイミング以外の信号(受信側信号)の受信タイミングも抽出してしまう可能性がある。すなわち、タイミング抽出部150-1は、反射パルスPlsr1に対応する測定ストップトリガTrgr1を出力する前に、クロストーク信号Plst1x又はクロストーク信号Plst2xに対応する測定ストップトリガを出力してしまう可能性がある。つまり、タイミング抽出部150-1は、フィルタ後信号Plst1x_f1又はフィルタ後信号Plst2x_f1に対応する測定ストップトリガを出力してしまう可能性がある。したがって、距離算出部160-1は、誤った測距を行ってしまう可能性がある。
 同様に、バンドパスフィルタ140-2は、反射パルスPlsr2に対応するフィルタ後信号Plsr2_f2だけでなく、他の信号(クロストーク信号及び反射パルスPlsr1等)に対応するフィルタ後信号も出力してしまう可能性がある。したがって、タイミング抽出部150-2は、本来抽出すべき反射パルスPlsr2の受信タイミング以外の信号(受信側信号)の受信タイミングも抽出してしまう可能性がある。すなわち、タイミング抽出部150-2は、反射パルスPlsr2に対応する測定ストップトリガTrgr2を出力する前に、クロストーク信号Plst1x又はクロストーク信号Plst2xに対応する測定ストップトリガを出力してしまう可能性がある。つまり、タイミング抽出部150-2は、フィルタ後信号Plst1x_f2又はフィルタ後信号Plst2x_f2に対応する測定ストップトリガを出力してしまう可能性がある。したがって、距離算出部160-2は、誤った測距を行ってしまう可能性がある。
 なお、上述したように、バンドパスフィルタ140-1は、反射パルスPlsr2に対応するPlsr2_f1を出力し得る。同様に、バンドパスフィルタ140-2は、反射パルスPlsr1に対応するPlsr1_f2を出力し得る。しかしながら、上述したように、元々、反射パルスのパワーは小さい。したがって、このような、バンドパスフィルタ140に対応する周波数とは異なる周波数オフセットに対応する反射パルスによるフィルタ後信号は、無視することができる。これに対し、クロストーク信号のパワーは大きいので、無視することができない可能性がある。したがって、装置の小型化を図る場合に、上述したような誤った測距が行われる可能性がある。
 これに対し、本実施の形態にかかる測距装置1は、送信パルスの送信タイミングに基づいて、一定期間、距離算出部10による距離算出処理を無効化するように処理を行うように構成されている。これにより、本実施の形態にかかる測距装置1は、上述したクロストーク信号による誤った測距が行われないようにすることができる。したがって、本実施の形態にかかる測距装置1は、装置の小型化を図る場合でも誤った測距が行われることを抑制することが可能となる。また、測距装置1によって実行される測距方法も、誤った測距が行われることを抑制することが可能となる。
(実施の形態1)
 次に、実施の形態1について説明する。
 図13は、実施の形態1にかかる測距装置100の構成を示す図である。実施の形態1にかかる測距装置100は、送信系モジュールとして、周波数オフセット発生器102と、変調信号生成部104と、光変調器106と、光源108と、送信タイミング制御部112と、光送信部122とを有する。周波数オフセット発生器102、変調信号生成部104、光変調器106、光源108及び送信タイミング制御部112によって、送信側ユニット110が構成される。送信側ユニット110は、互いに異なる周波数オフセットを有する複数の送信パルスを生成するパルス生成部として機能する。この送信側ユニット110(パルス生成部)は、図1に示した生成部2に対応する。また、光送信部122は、図1に示した送信部4に対応する。なお、送信系モジュールのうち、周波数オフセット発生器102、変調信号生成部104、光変調器106、光源108及び光送信部122の機能については、それぞれ、図6に示したものと実質的に同様であるので、適宜、説明を省略する。
 また、実施の形態1にかかる測距装置100は、受信系モジュールとして、光受信部124と、光干渉系ユニット130と、光電変換部132と、ADコンバータ134と、無効化処理部136とを有する。光受信部124は、図1に示した受信部6に対応する。また、光干渉系ユニット130は、図1に示した検出部8に対応する。無効化処理部136は、図1に示した無効化処理部12に対応する。
 また、光送信部122及び光受信部124によって、光送受信部120が構成される。光送受信部120は、図10に例示した光送受信装置120Aの構成を有してもよい。あるいは、光送受信部120(光送信部122及び光受信部124)は、図11に例示したように、光学系集積回路101に形成されてもよい。光送受信部120は、実施の形態4で後述するように、送信光の出射方向を掃引(走査)しながら、測距対象物90の3次元形状を測定してもよい。これにより、測距対象物90の各点の位置(つまり測距対象物90の3次元形状)を示す点群データを取得することができる。
 また、実施の形態1にかかる測距装置100は、受信系モジュールとして、バンドパスフィルタ140-1~140-nと、タイミング抽出部150-1~150-nと、距離算出部160-1~160-nとを有する。距離算出部160-1~160-nは、図1に示した距離算出部10に対応する。また、光干渉系ユニット130、光電変換部132、ADコンバータ134、無効化処理部136、バンドパスフィルタ140、タイミング抽出部150及び距離算出部160によって、受信側ユニット170が構成される。なお、受信系モジュールのうち、光受信部124、光干渉系ユニット130、光電変換部132、ADコンバータ134、バンドパスフィルタ140、タイミング抽出部150及び距離算出部160の機能については、それぞれ、図6に示したものと実質的に同様であるので、適宜、説明を省略する。
 送信タイミング制御部112は、送信タイミング制御手段としての機能を有する。送信タイミング制御部112は、例えば、FPGA又はマイコン等の演算回路によって実現され得る。送信タイミング制御部112は、送信パルス(送信光)の送信タイミングを制御する。具体的には、送信タイミング制御部112は、送信パルスが送信されてから次の送信パルスが送信されるまでの送信間隔ΔTに応じて、送信パルスの送信タイミングを制御する。
 さらに具体的には、送信タイミング制御部112は、送信間隔ΔTが経過するごとに、送信パルスを送信させるトリガとなる送信トリガを生成する。ここで、実施の形態1では、送信タイミング制御部112は、一定の送信間隔ΔT0が経過するごとに、送信パルスを送信させるトリガとなる送信トリガを生成する。なお、送信タイミングは送信間隔ΔTごとに存在するので、送信タイミング制御部112は、送信タイミングにおいて、送信パルスを送信させるトリガとなる送信トリガを生成するといえる。なお、送信間隔ΔTが一定である場合、送信間隔ΔT(ΔT0)は、上述したパルス周期Tpに対応し得る。
 そして、送信タイミング制御部112は、送信パルスの送信タイミングで(つまり送信間隔ΔTが経過するごとに)、送信トリガを変調信号生成部104に出力する。この場合、変調信号生成部104は、送信トリガを受信したタイミングで、変調信号を生成してもよい。なお、送信タイミング制御部112は、送信パルスの送信タイミングで、送信トリガを周波数オフセット発生器102に出力してもよい。この場合、周波数オフセット発生器102は、送信トリガを受信したタイミングで、周波数オフセット情報を、変調信号生成部104に対して出力してもよい。そして、変調信号生成部104は、周波数オフセット発生器102から受信した周波数オフセット情報に応じて、変調信号を生成してもよい。このようにして、送信タイミング制御部112は、送信パルスの送信タイミングを制御する。また、送信タイミング制御部112は、送信パルスの送信タイミングにおいて、送信トリガを無効化処理部136に出力する。
 無効化処理部136は、無効化処理手段としての機能を有する。無効化処理部136は、例えば、FPGA又はマイコン等の演算回路によって実現され得る。無効化処理部136は、送信トリガを受信したタイミングから一定期間、ADコンバータ134から出力されるデジタル信号(受信側信号)を無効化する。
 具体的には、無効化処理部136は、送信トリガを受信したタイミングから一定期間、ADコンバータ134から出力されるデジタル信号に対してマスク処理を行う。例えば、無効化処理部136は、送信トリガを受信したタイミングから一定期間、ADコンバータ134から出力されるデジタル信号のレベル(パワー)をゼロにするように処理を行ってもよい。あるいは、無効化処理部136は、送信トリガを受信したタイミングから一定期間、ADコンバータ134から出力されるデジタル信号を後段(バンドパスフィルタ140)に出力しないように処理を行ってもよい。あるいは、無効化処理部136は、送信トリガを受信したタイミングから一定期間、後段の処理を停止するように処理を行ってもよい。言い換えると、無効化処理部136は、送信トリガを受信したタイミングから一定期間を除く期間で、後段の処理が実行されるように処理を行ってもよい。
 なお、「一定期間」は、測距装置100の構造に応じて予め決定される期間である。「一定期間」は、測距装置100におけるクロストーク信号の光路長と光速とに応じて決定される。すなわち、「一定期間」は、クロストーク信号の光路長を光速で除算して得られた値に対応し得る。例えば、光送受信部120が図10の例のように構成されている場合、「一定期間」は、光変調器106からサーキュレータ125までの距離、サーキュレータ125から光干渉系ユニット130までの距離、及びサーキュレータ125から光送受信器121までの距離に応じて決定され得る。「一定期間」は、漏れ光Opx1の光路長及び送信端反射光Opx2の光路長のうち、長い方の光路長に応じて決定され得る。また、例えば、光送受信部120が図11の例のように構成されている場合、「一定期間」は、光学系集積回路101における光送信部122から光受信部124までの距離に応じて決定され得る。つまり、「一定期間」は、漏れ光Opx3の光路長に応じて決定され得る。
 図14は、実施の形態1にかかる、送信パルスと受信側信号とバンドパスフィルタ140の出力信号との関係を示すタイミングチャートである。実施の形態1では、送信パルスは、一定の送信間隔ΔT0で送信される。つまり、実施の形態1では、送信間隔ΔT0は、上述したパルス周期Tpに対応する。したがって、周波数オフセットf1を有する送信パルスPlst1が送信されてからΔT0が経過したタイミングで、周波数オフセットf2を有する送信パルスPlst2が送信される。また、周波数オフセットf2を有する送信パルスPlst2が送信されてからΔT0が経過したタイミングで、周波数オフセットf3を有する送信パルスPlst3が送信される。
 周波数オフセットf1を有する送信パルスPlst1が送信されると、送信パルスPlst1の送信タイミングの直後のタイミングで、受信側ユニット170でクロストーク信号Plst1xが伝送される。また、周波数オフセットf1を有する送信パルスPlst1が送信されると、周波数オフセットf1を有する反射パルスPlsr1が、受信側ユニット170で伝送される。なお、周波数オフセットf2を有する送信パルスPlst2が送信された場合についても、図12に示した場合と同様に、クロストーク信号及び反射パルス(受信側信号)が、受信側ユニット170で伝送される。また、周波数オフセットf3を有する送信パルスPlst3が送信された場合についても、図12に示した場合と同様に、クロストーク信号及び反射パルス(受信側信号)が、受信側ユニット170で伝送される。
 ここで、実施の形態1では、無効化処理部136によって、送信タイミングから一定期間Tmの間、受信側信号が無効化される。ここで、クロストーク信号は、一定期間Tmの間で、伝送され得る。したがって、図14に示すように、無効化処理部136によって、クロストーク信号が無効化される。これにより、バンドパスフィルタ140は、クロストーク信号に対応する信号を受信しないので、クロストーク信号に対応する信号を出力しない。したがって、バンドパスフィルタ140の出力は、反射パルスに対応するもののみとなり得る。
 したがって、バンドパスフィルタ140-1は、反射パルスPlsr1に対応するフィルタ後信号Plsr1_f1と、反射パルスPlsr2に対応するフィルタ後信号Plsr2_f1とを出力する。同様に、バンドパスフィルタ140-2は、反射パルスPlsr1に対応するフィルタ後信号Plsr1_f2と、反射パルスPlsr2に対応するフィルタ後信号Plsr2_f2とを出力する。したがって、距離算出部160は、上述したような、クロストーク信号による誤った測距を行わない可能性が高まる。なお、上述したように、フィルタ後信号Plsr2_f1及びフィルタ後信号Plsr1_f2のパワーは非常に小さい。したがって、タイミング抽出部150では、フィルタ後信号Plsr2_f1及びフィルタ後信号Plsr1_f2を無視することができる。
 このような処理により、距離算出部160-1は、反射パルスPlsr1に対応するフィルタ後信号Plsr1_f1に応じて、周波数オフセットf1に対応する測距を行うことができる。同様に、距離算出部160-2は、反射パルスPlsr2に対応するフィルタ後信号Plsr2_f2に応じて、周波数オフセットf2に対応する測距を行うことができる。したがって、実施の形態1にかかる測距装置100は、クロストーク信号が発生した場合であっても、誤った測距が行われることを抑制することが可能となる。
 図15は、実施の形態1にかかる測距装置100によって実行される測距方法を示すフローチャートである。S100~S106の処理が送信系モジュールで実行され、S112~S124の処理が受信系モジュールで実行される。上述したように、送信タイミング制御部112は、送信トリガを生成し、生成された送信トリガを変調信号生成部104及び無効化処理部136に送信する(ステップS100)。送信側ユニット110は、上述したように、送信パルスごとに異なる周波数オフセットを有する送信パルスを生成する(ステップS102)。光送信部122は、S102の処理で生成された送信パルスを含む光信号を測距対象物90に対して送信(照射)する(ステップS104)。
 具体的には、送信側ユニット110の光変調器106は、送信トリガが送信されたタイミングで、変調信号生成部104によって生成された変調信号を用いて、光信号(変調器入力信号)を変調する。これにより、光変調器106は、送信トリガが送信されたタイミングで、互いに異なる周波数オフセットを有する複数の送信パルスのそれぞれを生成する。また、光送信部122は、送信トリガが送信されたタイミングで、S102の処理で生成された送信パルスを含む光信号を測距対象物90に対して送信する。また、この処理により、送信トリガが送信されたタイミングごとに、各送信パルスに、互いに異なる周波数オフセットが印加されたこととなる。なお、S104のタイミングで、各送信パルスに対応する測定スタートトリガTrgtが、距離算出部160に対して出力され得る。
 送信タイミング制御部112は、直前の送信パルスが送信されてから送信間隔ΔT0が経過したか否かを判定する(ステップS106)。送信間隔ΔT0が経過していない場合(S106のNO)、送信タイミング制御部112は、S106の処理を繰り返し、送信間隔ΔT0が経過するまで待機する。そして、送信間隔ΔT0が経過すると(S106のYES)、処理フローはS100に戻る。つまり、送信タイミング制御部112は、送信トリガを生成する(S100)。
 受信側ユニット170は、受信側信号を受信する(ステップS112)。上述したように、受信側信号は、反射パルスだけでなく、クロストーク信号も含み得る。受信側信号が反射パルスである場合、光受信部124が反射パルスを受信し、受信された反射パルスが受信側ユニット170で伝送される。一方、受信側信号がクロストーク信号である場合、クロストーク信号が、送信側ユニット110から受信側ユニット170に回り込み、受信側ユニット170で伝送される。
 光干渉系ユニット130は、上述したように、参照光を用いて、受信側信号(反射パルス又はクロストーク信号)の周波数オフセットを検出する(ステップS114)。ここで、送信タイミングから一定期間Tm内である場合(ステップS116のYES)、無効化処理部136は、上述したように、受信側信号を無効化する(ステップS118)。これにより、受信側信号がクロストーク信号である場合に、クロストーク信号が無効化され得る。
 一方、送信タイミングから一定期間Tm内でない場合(S116のNO)、無効化処理部136は、受信側信号を無効化しない。したがって、この場合、バンドパスフィルタ140(分離手段)は、上述したように、周波数オフセットごとに光信号を分離する(ステップS120)。これにより、反射パルス(受信側信号)ごとに、光信号が分離されることとなる。
 タイミング抽出部150は、上述したように、分離された反射パルスごとに受信タイミングを抽出して、抽出された受信タイミングで測定ストップトリガTrgrを出力する(ステップS122)。距離算出部160は、上述したように、測定スタートトリガTrgtと測定ストップトリガTrgrとを用いて、測距対象物90までの距離Rを算出する(ステップS124)。
(実施の形態2)
 次に、実施の形態2について説明する。実施の形態2は、送信間隔ΔTが変化する点で、実施の形態1と異なる。なお、実施の形態2にかかる測距装置100の構成は、実施の形態1にかかるものと実質的に同様である。なお、実施の形態2にかかる送信タイミング制御部112の動作が、実施の形態1にかかる送信タイミング制御部112の動作と異なる。実施の形態2にかかるその他の構成要素の動作については、実施の形態1のものと実質的に同様であるので、説明を省略する。
 実施の形態2において、送信タイミング制御部112は、送信間隔ΔTを変化させるように制御を行う。これにより、送信タイミング制御部112は、送信パルスの送信タイミングの制御を行う。これにより、送信間隔ΔTが、送信パルスごとに異なり得る。つまり、送信間隔ΔTが可変となる。言い換えると、ある送信パルスが送信されてから次の送信パルスの送信タイミングが、可変となる。また、送信タイミング制御部112は、実施の形態1と同様に、送信間隔ΔTが経過するごとに、送信パルスを送信させるトリガとなる送信トリガを生成する。そして、送信タイミング制御部112は、送信間隔ΔTが経過するごとに、送信トリガを、変調信号生成部104(又は周波数オフセット発生器102)及び無効化処理部136に出力する。
 送信タイミング制御部112は、後述する第1の例のように、送信間隔ΔTを所定の周期で変化させるように制御を行ってもよい。つまり、送信間隔ΔTは、送信パルスごとに常に異なっている必要はない。また、送信タイミング制御部112は、後述する第2の例のように、送信間隔ΔTを所定の規則に沿って送信パルスごとに変化させるように制御を行ってもよい。また、送信タイミング制御部112は、後述する第3の例のように、送信間隔ΔTを送信パルスごとにランダムに変化させるように制御を行ってもよい。なお、第1の例、第2の例及び第3の例は、あくまでも例示であって、送信タイミング制御部112は、他の方法によって、送信周期ΔTを変化させるようにしてもよい。
 図16は、実施の形態2にかかる送信間隔ΔTの変更方法の第1の例を説明するための図である。図16は、送信間隔ΔTと送信パルス数(時間経過)との関係を示す。図16に例示するように、第1の例では、N個の送信パルスごとに、送信間隔ΔTが変化する。なお、Nは、1以上の整数である。
 具体的には、まず、最初の連続するN個の送信パルスが、送信間隔ΔT=ΔT0+dTごとに送信される。そして、次の連続するN個の送信パルスが、送信間隔ΔT=ΔT0-dTごとに送信される。そして、さらに次の連続するN個の送信パルスが、送信間隔ΔT=ΔT0+dTごとに送信される。そして、さらに次の連続するN個の送信パルスが、送信間隔ΔT=ΔT0-dTごとに送信される。以下同様にして、送信間隔ΔTが変化する。
 つまり、N個の連続する送信パルスが送信されるときの送信間隔ΔTは一定(例えばΔT0+dT)であり、次の連続するN個の送信パルスが送信されるときの送信間隔ΔTは一定(例えばΔT0-dT)である。このように、図16に示す例では、送信タイミング制御部112は、所定の周期、つまりN個の送信パルスが送信される期間に対応する周期ごとに、送信間隔ΔTを変化させる。したがって、図16に示す例では、N個の送信パルスごとに、送信間隔ΔT(送信タイミング)が、交互にずれている。
 なお、送信タイミング制御部112は、図16に例示した波形に対応する関数(パルス数と送信周期ΔTとの関係を示す関数)に従って、送信周期ΔTを決定してもよい。あるいは、図16に例示したような、送信パルスの順序と送信周期ΔTとの対応関係を示す、ルックアップテーブルを予め準備しておいてもよい。この場合、送信タイミング制御部112は、ルックアップテーブルを参照して、送信周期ΔTを決定してもよい。
 図17は、実施の形態2にかかる送信間隔ΔTの変更方法の第2の例を説明するための図である。図17は、送信間隔ΔTと送信パルス数(時間経過)との関係を示す。図17に例示するように、第2の例では、送信パルスごとに送信間隔ΔTが規則的に変化する。そして、N個の送信パルスごとに、送信間隔ΔTの変化の傾向が変化する。
 具体的には、送信タイミング制御部112は、最初のN個の送信パルスについては、送信周期ΔTを、ΔT0-dTからΔT+dTまで徐々に増加させる。例えば、送信タイミング制御部112は、送信周期ΔTを、送信させる送信パルスの数に比例して増加させる。そして、送信タイミング制御部112は、次のN個の送信パルスについては、送信周期ΔTを、ΔT0+dTからΔT-dTまで徐々に減少させる。例えば、送信タイミング制御部112は、送信周期ΔTを、送信させる送信パルスの数に比例して減少させる。そして、送信タイミング制御部112は、さらに次のN個の送信パルスについては、送信周期ΔTを、ΔT0-dTからΔT+dTまで徐々に増加させる。そして、送信タイミング制御部112は、さらに次のN個の送信パルスについては、送信周期ΔTを、ΔT0+dTからΔT-dTまで徐々に減少させる。以下同様にして、送信間隔ΔTが変化する。
 このように、図17に示す例では、送信タイミング制御部112は、N個の送信パルスごとに、送信周期ΔTを増加させ、又は減少させる。つまり、送信タイミング制御部112は、送信間隔を所定の規則に沿って送信パルスごとに変化させるように制御を行う。したがって、図17に示す例では、N個の送信パルスごとに、送信間隔ΔT(送信タイミング)が、三角波的にずれている。
 なお、送信タイミング制御部112は、図17に例示した波形に対応する関数(パルス数と送信周期ΔTとの関係を示す関数)に従って、送信周期ΔTを決定してもよい。あるいは、図17に例示したような、送信パルスの順序と送信周期ΔTとの対応関係を示す、ルックアップテーブルを予め準備しておいてもよい。この場合、送信タイミング制御部112は、ルックアップテーブルを参照して、送信周期ΔTを決定してもよい。
 図18は、実施の形態2にかかる送信間隔ΔTの変更方法の第3の例を説明するための図である。図18は、送信間隔ΔTと送信パルス数(時間経過)との関係を示す。図18に例示するように、第3の例では、送信パルスごとに送信間隔ΔTがランダムに変化する。
 送信タイミング制御部112は、乱数発生器を用いて、送信周期ΔTを決定してもよい。つまり、送信タイミング制御部112は、今までに送信された送信パルス数を乱数発生器に入力することにより出力された乱数(疑似乱数)を用いて、送信周期ΔTを決定してもよい。あるいは、所定の数(例えば100個)の送信パルスの順序とランダムに設定された送信周期ΔTとの対応関係を示すルックアップテーブルを、予め準備しておいてもよい。この場合、送信タイミング制御部112は、ルックアップテーブルを参照して、送信周期ΔTを決定してもよい。
 図19及び図20は、実施の形態2にかかる特徴の効果を説明するための図である。図19は、実施の形態1にかかる、送信パルスと受信側信号とバンドパスフィルタ140の出力信号との関係を示すタイミングチャートである。図19の例では、送信パルスは、一定の送信間隔ΔT0で送信される。また、図19の例では、送信パルスが送信されてから測距対象物90で反射して測距装置100に戻ってくるまでの飛行時間Tdは、概ね一定であるとする。
 ここで、測距装置100から測距対象物90までの距離によっては、送信パルスの飛行時間Tdが、その送信パルスと次の送信パルスとの間の送信間隔ΔTと略一致することがある。この場合、図19の例のように、反射パルスと、次の送信パルスによるクロストーク信号とが、互いに重畳してしまい、両者が同じタイミングで、受信側ユニット170で伝送されてしまうことがあり得る。以後、このような、反射パルスが受信されるタイミングとクロストークが発生するタイミングとが重畳する現象を、「信号重畳」と称する。
 具体的には、図19の例では、反射パルスPlsr1が受信されたタイミングが、送信パルスPlst2の送信直後に発生したクロストーク信号Plst2xの受信側ユニット170への回り込みのタイミングと重なっている。同様に、反射パルスPlsr2が受信されたタイミングが、送信パルスPlst3の送信直後に発生したクロストーク信号Plst3xの受信側ユニット170への回り込みのタイミングと重なっている。この場合に、無効化処理部136が一定期間Tmで受信側信号を無効化すると、クロストーク信号だけでなく、反射パルスも無効化されてしまう可能性がある。したがって、測距結果が得られない可能性がある。
 そして、例えば、送信光の出射方向を掃引しなら測距対象物の3次元形状などを測定する用途においては、測距対象物90がある程度大きく、概ね平坦な形状である場合、測距装置100から測距対象物90までの距離が、概ね一定であることがある。この場合、送信パルスの飛行時間Tdが、概ね一定となり得る。この場合、実施の形態1のように送信間隔ΔTが一定であると、上述した信号重畳が何度も(連続して)発生してしまうことがあり得る。この場合、測距結果が得られないことが何度も起こり得る。そして、送信光の出射方向を掃引しながら複数回の測距によって点群データを生成する場合、点群データにおけるデータが目減りする可能性がある。
 図20は、実施の形態2にかかる、送信パルスと受信側信号とバンドパスフィルタ140の出力信号との関係を示すタイミングチャートである。図20の例では、送信パルスPlst2は、送信パルスPlst1が送信されたタイミングから送信間隔ΔT1が経過したタイミングで送信される。一方、送信パルスPlst3は、送信パルスPlst2が送信されたタイミングから送信間隔ΔT2が経過したタイミングで送信される。ここで、ΔT1≠ΔT2である。
 この場合、仮に、ある送信パルスに対応する反射パルスがクロストーク信号と重畳する場合であっても、別の送信パルスに対応する反射パルスがクロストーク信号と重畳しなくなる可能性が高まる。具体的には、反射パルスPlsr1が受信されたタイミングが、送信パルスPlst2の送信直後に発生したクロストーク信号Plst2xの受信側ユニット170への回り込みのタイミングと重なっている。一方、反射パルスPlsr2が受信されたタイミングは、送信パルスPlst3の送信直後に発生したクロストーク信号Plst3xの受信側ユニット170への回り込みのタイミングと重なっていない。この場合に、無効化処理部136が一定期間Tmで受信側信号を無効化すると、反射パルスPlsr1については、矢印Aで示すように、クロストーク信号Plst2xとともに無効化される。一方、反射パルスPlsr2については、矢印Bで示すように、クロストーク信号Plst3xが無効化されても、無効化されない。したがって、反射パルスPlsr2に対応するフィルタ後信号Plsr2_f2を用いて、測距を行うことができる。
 上述したように、実施の形態2では、送信タイミング制御部112は、送信間隔ΔTを変化させるように構成されている。これにより、上述したように、信号重畳が発生することを抑制することが可能となる。したがって、反射パルスがクロストーク信号とともに無効化されてしまうことが抑制されるので、測距結果が得られないことが何度も起こることを抑制することが可能となる。したがって、点群データの目減りを抑制することが可能となる。
 また、上述した第1の例のように、送信タイミング制御部112は、送信間隔ΔTを所定の周期で変化させるように制御を行うように構成されてもよい。このような構成により、簡単な回路で、実施の形態2にかかる送信タイミング制御部112を実現することが可能となる。
 また、上述した第2の例のように、送信タイミング制御部112は、送信間隔ΔTを所定の規則に沿って送信パルスごとに変化させるように制御を行うように構成されてもよい。このような構成により、簡単な回路で、実施の形態2にかかる送信タイミング制御部112を実現することが可能となる。ここで、上述した第1の例では、N個の連続するパルスは一定の送信間隔ΔT(=ΔT0±dT)で送信され得るので、N個の連続するパルスが送信されている間は、上述した信号重畳が連続して発生する可能性がある。特に、測距装置100の掃引速度(送信パルスの送信方向の単位時間当たりの変化量)が遅い場合に、このようなことが起こり得る。この場合、測距結果が得られないことが連続して起こることがあり得る。
 これに対し、第2の例にかかる送信タイミング制御部112は、送信間隔ΔTを送信パルスごとに変化させるので、第1の例と比較して、信号重畳が連続して発生することをさらに抑制することが可能となる。したがって、測距結果が得られないことが連続して起こることをさらに抑制することが可能となる。したがって、点群データが目減りすることをさらに抑制することが可能となる。
 また、上述した第3の例のように、送信タイミング制御部112は、送信間隔ΔTを送信パルスごとにランダムに変化させるように制御を行うように構成されてもよい。このような構成により、第1の例及び第2の例と比較して、信号重畳が連続して発生することをさらに抑制することが可能となる。したがって、測距結果が得られないことが連続して起こることをさらに抑制することが可能となる。すなわち、測距対象物90の形状が図17に例示した三角波の形状と対応する場合に、掃引速度及び測距対象物90までの距離によっては、送信間隔ΔTを変化させても、その送信間隔ΔTの変化と同じように飛行時間Tdも変化する可能性があり得る。この場合、測距結果が得られないことが連続して起こる可能性がある。すなわち、第2の例でも、測距結果が得られないことが何度も発生し、点群データが目減りすることが起こり得る。
 これに対し、図18に例示したランダムな波形形状が、測距対象物90の形状と対応する可能性は、極めて小さい。したがって、送信間隔ΔTを送信パルスごとにランダムに変化させることにより、第2の例と比較して、測距結果が得られないことが連続して起こる可能性をさらに抑制することが可能となる。したがって、第2の例と比較して、点群データが目減りすることをさらに抑制することが可能となる。
 図21は、実施の形態2にかかる測距装置100によって実行される測距方法を示すフローチャートである。S200~S208の処理が送信系モジュールで実行され、S212~S224の処理が受信系モジュールで実行される。送信タイミング制御部112は、図15のS100の処理と同様にして、送信トリガを生成し、生成された送信トリガを変調信号生成部104及び無効化処理部136に送信する(ステップS200)。送信側ユニット110は、図15のS102の処理と同様にして、送信パルスごとに異なる周波数オフセットを有する送信パルスを生成する(ステップS202)。光送信部122は、図15のS104の処理と同様にして、S202の処理で生成された送信パルスを含む光信号を測距対象物90に対して送信(照射)する(ステップS204)。
 送信タイミング制御部112は、上述したように、送信間隔ΔTを変化させる(ステップS206)。送信タイミング制御部112は、直前の送信パルスが送信されてから送信間隔ΔTが経過したか否かを判定する(ステップS208)。送信間隔ΔTが経過していない場合(S208のNO)、送信タイミング制御部112は、S208の処理を繰り返し、送信間隔ΔTが経過するまで待機する。そして、送信間隔ΔTが経過すると(S208のYES)、処理フローはS200に戻る。つまり、送信タイミング制御部112は、送信トリガを生成する(S200)。なお、第1の例のように、送信間隔ΔTを送信パルスごとに変化させなくてもよい。したがって、S206の処理は、常に実行される必要はない。また、S206の処理は、S208の処理でYESの判定の後で実行されてもよい。
 受信側ユニット170は、図15のS112の処理と同様にして、受信側信号を受信する(ステップS212)。光干渉系ユニット130は、図15のS114の処理と同様にして、参照光を用いて、受信側信号(反射パルス又はクロストーク信号)の周波数オフセットを検出する(ステップS214)。ここで、送信タイミングから一定期間Tm内である場合(ステップS216のYES)、無効化処理部136は、図15のS118の処理と同様にして、受信側信号を無効化する(ステップS218)。これにより、受信側信号がクロストーク信号である場合に、クロストーク信号が無効化され得る。
 一方、送信タイミングから一定期間Tm内でない場合(S216のNO)、無効化処理部136は、受信側信号を無効化しない。したがって、この場合、バンドパスフィルタ140(分離手段)は、図15のS120の処理と同様にして、周波数オフセットごとに光信号を分離する(ステップS220)。タイミング抽出部150は、図15のS122の処理と同様にして、分離された反射パルスごとに受信タイミングを抽出して、抽出された受信タイミングで測定ストップトリガTrgrを出力する(ステップS222)。距離算出部160は、図15のS124の処理と同様にして、測定スタートトリガTrgtと測定ストップトリガTrgrとを用いて、測距対象物90までの距離Rを算出する(ステップS224)。
(実施の形態3)
 次に、実施の形態3について説明する。実施の形態3は、送信間隔ΔT(送信タイミング)が測距結果に応じて変更される点で、実施の形態2と異なる。なお、実施の形態3にかかる構成要素のうち、実施の形態1における構成要素と実質的に同じ構成要素には、同じ符号が付されている。また、以下の説明において、実施の形態1における構成要素と実質的に同じ構成要素については、適宜、説明を省略する。
 図22は、実施の形態3にかかる測距装置100の構成を示す図である。実施の形態3にかかる測距装置100は、送信系モジュールとして、周波数オフセット発生器102と、変調信号生成部104と、光変調器106と、光源108と、送信タイミング制御部112と、光送信部122とを有する。周波数オフセット発生器102、変調信号生成部104、光変調器106、光源108及び送信タイミング制御部112によって、送信側ユニット110が構成される。なお、送信系モジュールのうち、周波数オフセット発生器102、変調信号生成部104、光変調器106、光源108及び光送信部122の機能については、それぞれ、図6に示したものと実質的に同様であるので、適宜、説明を省略する。
 また、実施の形態3にかかる測距装置100は、受信系モジュールとして、光受信部124と、光干渉系ユニット130と、光電変換部132と、ADコンバータ134と、無効化処理部136とを有する。また、実施の形態1と同様に、光送信部122及び光受信部124によって、光送受信部120が構成される。
 また、実施の形態3にかかる測距装置100は、受信系モジュールとして、バンドパスフィルタ140-1~140-nと、タイミング抽出部150-1~150-nと、距離算出部160-1~160-nとを有する。また、光干渉系ユニット130、光電変換部132、ADコンバータ134、無効化処理部136、バンドパスフィルタ140、タイミング抽出部150及び距離算出部160によって、受信側ユニット170が構成される。なお、受信系モジュールの機能については、それぞれ、図6に示したものと実質的に同様であるので、適宜、説明を省略する。また、無効化処理部136の機能については、実施の形態1と実質的に同様であるので、適宜、説明を省略する。また、実施の形態3にかかる測距装置100は、推定部370を有する。
 実施の形態3にかかる送信タイミング制御部112は、以前に取得された測距結果に基づいて、送信タイミングの制御を行う。具体的には、送信タイミング制御部112は、後述する推定部370によって推定された次の測距結果に応じて送信タイミングを制御する。さらに具体的には、送信タイミング制御部112は、直前に取得された2以上の測距結果に基づいて、送信タイミングの制御を行う。詳しくは後述する。
 推定部370は、推定手段としての機能を有する。推定部370は、例えば、FPGA又はマイコン等の演算回路によって実現され得る。推定部370は、以前に取得された測距結果に基づいて、次に取得される測距結果(測距対象物90までの距離)を推定する。具体的には、推定部370は、直前に取得された2以上の測距結果に基づいて、次に取得される測距結果を推定する。
 例えば、推定部370は、直前のn個(nは2以上の整数)の測距結果(距離)を取得する。そして、推定部370は、n個の測定結果から、外挿によって、次の測距結果を推定する。具体的には、推定部370は、n個の測定結果(1回目からn回目までの測距で得られた距離)を何らかの関数(横軸を測距順序、縦軸を距離とするグラフ)に当てはめる。例えば、推定部370は、1回目からn回目までの測距で得られた距離データを、横軸を測距順序とし縦軸を距離とするグラフにプロットし、そのプロットに対応する関数を算出する。そして、推定部370は、その関数を用いて、次の測距結果(n+1回目)の測距結果を推定する。例えば、次の測距がM回目の測距であるとし、(M-2)回目の測距結果が100mであり、(M-1)回目の測距結果が101mであるとする。この場合、測距(反射パルスの受信)ごとに測距結果が1mずつ増加していることから、推定部370は、M回目の測距結果を、102mと推定し得る。
 上述したように、ある送信パルスが測距対象物90で反射して生じた反射パルスの受信タイミングと、次の送信パルスの送信タイミングが一致すると、受信側で、次の送信パルスによるクロストーク信号が反射パルスに重なる可能性がある。つまり、上述した信号重畳が発生する可能性がある。
 したがって、実施の形態3にかかる送信タイミング制御部112は、信号重畳の発生を抑制するように、送信タイミングを制御する。言い換えると、送信タイミング制御部112は、信号重畳の発生を抑制するように、送信間隔ΔTを決定する。したがって、送信タイミング制御部112は、推定された測距結果に対応する反射パルスが受信されると推定されるタイミングが送信タイミングと異なるように、送信タイミングを決定する。言い換えると、送信タイミング制御部112は、推定された測距結果に対応する反射パルスが受信されると推定されるタイミング以外のタイミングで送信パルスが送信されるように、制御を行う。つまり、送信タイミング制御部112は、推定された測距結果に対応する、送信パルスの送信タイミングから当該送信パルスに対応する反射パルスの受信タイミングまでの時間(飛行時間)が、送信間隔ΔTと一致しないように、送信間隔ΔTを決定する。
 具体的には、送信タイミング制御部112は、推定結果を推定部370から取得する。送信タイミング制御部112は、推定された測距結果(測距対象物90までの距離)に対応するタイミングで送信パルスを送信させないように、制御を行う。つまり、送信タイミング制御部112は、送信間隔ΔTが、推定された測距結果に対応する飛行時間(推定飛行時間Tdx)と一致しないように、送信間隔ΔTを決定する。例えば、送信タイミング制御部112は、ΔT=Tdx/2を満たすように送信間隔ΔTを決定してもよい。あるいは、一定期間Tmを考慮して、送信タイミング制御部112は、送信間隔ΔTと一定期間Tmとの和が、推定飛行時間Tdxと一致しないように、送信間隔ΔTを決定してもよい。
 このように、実施の形態3にかかる測距装置100は、推定された測距結果に基づいて、送信間隔ΔTを決定するように構成されている。これにより、送信間隔ΔTが推定飛行時間Tdxと一致しなくなる可能性が高まる。したがって、信号重畳の発生を抑制することが可能となる。したがって、受信側で受信側信号を無効化するタイミングで、反射パルスが無効化されることが抑制される。つまり、無効化処理部136が反射パルスを無効化することが抑制される。したがって、測距結果が得られないことが起こることを抑制することが可能となる。
 ここで、実施の形態2では、測距対象物90までの距離に関係なく、送信間隔ΔTが変更される。したがって、測距対象物90までの距離によっては、飛行時間Tdが、変更された送信間隔ΔTと一致する可能性がないわけでない。このような場合、測距結果が得られない可能性がある。これに対し、実施の形態3では、推定された測距結果に基づいて送信間隔ΔTが決定されるので、飛行時間Tdが送信間隔ΔTと一致する可能性は、実施の形態2の場合よりも小さい。したがって、実施の形態3にかかる構成によって、実施の形態2にかかる構成よりも、さらに、受信側で受信側信号を無効化するタイミングで、反射パルスが無効化されることが抑制される。したがって、測距結果が得られないことが起こることを、さらに抑制することが可能となる。
 図23は、実施の形態3にかかる測距装置100によって実行される測距方法を示すフローチャートである。なお、受信系モジュールの処理については、図21のS212~S224の処理と実質的に同様であるので、説明を省略する。
 送信タイミング制御部112は、図21のS200の処理と同様にして、送信トリガを生成し、生成された送信トリガを変調信号生成部104及び無効化処理部136に送信する(ステップS300)。送信側ユニット110は、図21のS202の処理と同様にして、送信パルスごとに異なる周波数オフセットを有する送信パルスを生成する(ステップS302)。光送信部122は、図21のS204の処理と同様にして、S302の処理で生成された送信パルスを含む光信号を測距対象物90に対して送信(照射)する(ステップS304)。
 送信タイミング制御部112は、直前の送信パルスが送信されてから送信間隔ΔTが経過したか否かを判定する(ステップS308)。送信間隔ΔTが経過していない場合(S308のNO)、送信タイミング制御部112は、S308の処理を繰り返し、送信間隔ΔT0が経過するまで待機する。そして、送信間隔ΔTが経過すると(S308のYES)、推定部370は、上述したように、次の測距結果を推定する(ステップS310)。そして、送信タイミング制御部112は、上述したように、推定された測距結果に応じて、送信間隔ΔTを決定する(ステップS312)。なお、S310の処理は、S308の処理の後で実行される必要はない。例えば、S310の処理は、S304の処理の後で実行されてもよい。
(実施の形態4)
 次に、実施の形態4について説明する。実施の形態4は、予め生成された測距情報と送信パルスの照射方向とに応じて送信間隔ΔT(送信タイミング)が変更される点で、実施の形態3と異なる。なお、実施の形態4にかかる構成要素のうち、実施の形態1における構成要素と実質的に同じ構成要素には、同じ符号が付されている。また、以下の説明において、実施の形態1における構成要素と実質的に同じ構成要素については、適宜、説明を省略する。
 図24は、実施の形態4にかかる測距装置100の構成を示す図である。実施の形態4にかかる測距装置100は、送信系モジュールとして、周波数オフセット発生器102と、変調信号生成部104と、光変調器106と、光源108と、送信タイミング制御部112と、光送信部122とを有する。周波数オフセット発生器102、変調信号生成部104、光変調器106、光源108及び送信タイミング制御部112によって、送信側ユニット110が構成される。なお、送信系モジュールのうち、周波数オフセット発生器102、変調信号生成部104、光変調器106、光源108及び光送信部122の機能については、それぞれ、図6に示したものと実質的に同様であるので、適宜、説明を省略する。
 また、実施の形態4にかかる測距装置100は、受信系モジュールとして、光受信部124と、光干渉系ユニット130と、光電変換部132と、ADコンバータ134と、無効化処理部136とを有する。また、実施の形態4にかかる測距装置100は、光掃引部426を有する。光送信部122、光受信部124及び光掃引部426によって、光送受信部120が構成される。
 光掃引部426は、光掃引手段としての機能を有する。光掃引部426は、測距対象物90に向けて、送信パルス(送信光)を掃引(走査)する。また、光掃引部426は、測距を行う方向(方位角及び仰角)を調整するように構成されている。つまり、光掃引部426は、送信パルスを照射する方向を調整する。光掃引部426は、例えば、MEMS(Micro Electro Mechanical Systems)ミラーによって実現され得る。
 また、実施の形態4にかかる測距装置100は、受信系モジュールとして、バンドパスフィルタ140-1~140-nと、タイミング抽出部150-1~150-nと、距離算出部160-1~160-nとを有する。また、光干渉系ユニット130、光電変換部132、ADコンバータ134、無効化処理部136、バンドパスフィルタ140、タイミング抽出部150及び距離算出部160によって、受信側ユニット170が構成される。なお、受信系モジュールの機能については、それぞれ、図6に示したものと実質的に同様であるので、適宜、説明を省略する。また、無効化処理部136の機能については、実施の形態1と実質的に同様であるので、適宜、説明を省略する。
 また、実施の形態4にかかる測距装置100は、推定部470とデータベース472とを有する。また、実施の形態4にかかる測距装置100は、例えば、予め決まった測距対象物90に対して測距を行う。例えば、実施の形態4は、測距装置100が、予め決まった対象物(測距対象物90)の監視に使用される場合に、適用可能である。
 実施の形態4にかかる送信タイミング制御部112は、以前に取得された測距結果に基づいて、送信タイミングの制御を行う。具体的には、送信タイミング制御部112は、後述する推定部470によって推定された次の測距結果に応じて送信タイミングを制御する。さらに具体的には、送信タイミング制御部112は、予め生成された、掃引方向と当該掃引方向における測距結果とが対応付けられた情報に基づいて、送信タイミングの制御を行う。詳しくは後述する。
 推定部470は、推定手段としての機能を有する。推定部470は、例えば、FPGA又はマイコン等の演算回路によって実現され得る。また、データベース472は、測距情報記憶手段としての機能を有する。データベース472は、掃引方向と当該掃引方向における測距結果とが対応付けられた測距情報を格納している。この測距情報は、予め測距対象物90に対して測距を行うことによって、生成され得る。
 図25は、実施の形態4にかかるデータベース472に格納される測距情報を例示する図である。測距情報は、掃引方向と、その掃引方向に送信パルスを照射したときに得られた測距結果(距離)とを対応付けている。掃引方向は、例えば、方位角及び仰角を示す。図25の例では、例えば、掃引方向が方向#1の場合に得られた測距結果は、距離D1である。また、掃引方向が方向#2の場合に得られた測距結果は、距離D2である。なお、測距情報は、予め測距装置100によって得られた測距結果を用いて、生成されてもよい。
 推定部470は、光掃引部426から、次に送信パルスを照射する方向(掃引方向)を取得する。推定部470は、取得された掃引方向と、データベース472に格納された測距情報とを用いて、次の測距結果を推定する。具体的には、推定部470は、測距情報において、次の掃引方向に対応する距離を、次の測距結果と推定する。例えば、次の掃引方向が方向#1の場合、推定部470は、次の測距結果が距離D1であると推定する。また、次の掃引方向が方向#1と方向#2との間の方向である場合、推定部470は、距離D1と距離D2との間の距離を、次の測距結果と推定してもよい。この場合、推定部470は、内挿によって、次の測距結果を推定してもよい。
 送信タイミング制御部112は、実施の形態3と同様に、信号重畳の発生を抑制するように、送信タイミングを制御する。言い換えると、送信タイミング制御部112は、信号重畳の発生を抑制するように、送信間隔ΔTを決定する。したがって、実施の形態3と同様に、送信タイミング制御部112は、推定された測距結果に対応する飛行時間が、送信間隔ΔTと一致しないように、送信間隔ΔTを決定する。具体的には、実施の形態3と同様に、送信タイミング制御部112は、推定結果を推定部470から取得する。送信タイミング制御部112は、実施の形態3と同様に、推定された測距結果(測距対象物90までの距離)に対応するタイミングで送信パルスを送信させないように、制御を行う。
 このように、実施の形態4にかかる測距装置100は、実施の形態3と同様に、推定された測距結果に基づいて、送信間隔ΔTを決定するように構成されている。これにより、送信間隔ΔTが推定飛行時間Tdxと一致しなくなる可能性が高まる。したがって、受信側で受信側信号を無効化するタイミングで、反射パルスが無効化されることが抑制される。したがって、測距結果が得られないことが起こることを抑制することが可能となる。
 ここで、実施の形態3にかかる測距装置100は、直前に得られた測距結果を用いて、次の測距結果を推定している。しかしながら、この方法では、次の測距結果が、直前に得られた測距結果の変化の傾向と異なる場合に、適切に測距を行うことができない可能性がある。すなわち、直前に送信パルスが照射される方向が測距対象物90のエッジに対応する場合、次に送信パルスが照射される方向には、直前まで送信パルスが照射されていた測距対象物90が存在しない可能性もある。このような場合は、直前に得られた測距結果からは、次の測距結果を適切に推定できない可能性がある。
 これに対し、測距装置100が予め決まった対象物(測距対象物90)の監視に使用される場合など、予め測距対象物90が決まっている場合、その測距対象物90について以前に得られた測距結果を予め取得することが可能である。そして、実施の形態4にかかる測距装置100は、予め取得された測距結果から生成された測距情報を用いて、次の測距結果を推定するように構成されている。したがって、より正確に測距結果を推定することが可能である。したがって、飛行時間Tdが送信間隔ΔTと一致する可能性は、実施の形態3の場合よりも小さい。したがって、実施の形態4にかかる構成によって、実施の形態3にかかる構成よりも、さらに、受信側で受信側信号を無効化するタイミングで、反射パルスが無効化されることが抑制される。したがって、測距結果が得られないことが起こることを、さらに抑制することが可能となる。
 図26は、実施の形態4にかかる測距装置100によって実行される測距方法を示すフローチャートである。なお、受信系モジュールの処理については、図21のS212~S224の処理と実質的に同様であるので、説明を省略する。
 送信タイミング制御部112は、図21のS200等の処理と同様にして、送信トリガを生成し、生成された送信トリガを変調信号生成部104及び無効化処理部136に送信する(ステップS400)。送信側ユニット110は、図21のS202等の処理と同様にして、送信パルスごとに異なる周波数オフセットを有する送信パルスを生成する(ステップS402)。光送信部122は、図21のS204等の処理と同様にして、S402の処理で生成された送信パルスを含む光信号を測距対象物90に対して送信(照射)する(ステップS404)。
 送信タイミング制御部112は、直前の送信パルスが送信されてから送信間隔ΔTが経過したか否かを判定する(ステップS408)。送信間隔ΔTが経過していない場合(S408のNO)、送信タイミング制御部112は、S408の処理を繰り返し、送信間隔ΔT0が経過するまで待機する。そして、送信間隔ΔTが経過すると(S408のYES)、推定部370は、上述したように、次の掃引方向を取得する(ステップS409)。そして、推定部370は、上述したように、次の掃引方向と測距情報とを用いて、次の測距結果を推定する(ステップS410)。そして、送信タイミング制御部112は、上述したように、推定された測距結果に応じて、送信間隔ΔTを決定する(ステップS412)。なお、S409及びS410の処理は、S408の処理の後で実行される必要はない。例えば、S409及びS410の処理は、S404の処理の後で実行されてもよい。
(変形例)
 なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。例えば、上述したフローチャートの各ステップ(処理)の順序は、適宜、変更可能である。また、フローチャートの各ステップ(処理)の1つ以上は、適宜、省略可能である。
 また、無効化処理部136は、光送受信部120からADコンバータ134までの間で伝送される信号(受信側信号)を無効化するように処理を行ってもよい。なお、光送受信部120からADコンバータ134までの間で伝送される信号はアナログ信号であり、アナログ信号を無効化するのは、デジタル信号を無効化することよりも難しい。したがって、無効化処理部136が、ADコンバータ134から出力されたデジタル信号(受信側信号)を無効化するように処理するようにすることで、処理及び回路構成が容易となる。
 あるいは、無効化処理部136は、バンドパスフィルタ140から距離算出部160までの間で伝送される信号を無効化するように処理を行ってもよい。なお、バンドパスフィルタ140から距離算出部160までの間で伝送される信号は、周波数(周波数オフセット)ごとに異なるルートを伝送する。したがって、無効化処理部136は、周波数ごとに異なるルートそれぞれに対して受信側信号を無効化するための処理を行う必要がある。したがって、無効化処理部136が、バンドパスフィルタ140に入力される前の、光信号が分離される前の段階で、受信側信号を無効化するように処理するようにすることで、処理及び回路構成が容易となる。
 また、上述した実施の形態では、光源が1つであるとしたが、このような構成に限られない。特許文献1の開示事項のように、光源を複数にしてもよい。また、上述した実施の形態では、予め定められた周波数オフセットが送信パルスに印加されるとしたが、このような構成に限られない。特許文献1の開示事項のように、周波数オフセットがランダムに設定されてもよい。また、本実施の形態では、測定スタートトリガ信号、および、測定ストップトリガ信号を出力して、飛行時間の測定を行っているが、これに限定されない。例えば、ADコンバータで取得した時系列データサンプルの位置から飛行時間を算出するなど、送信パルスと、それに対応する反射パルスの時間差を測定し得る任意の手段を採用してもよい。また、本実施の形態では、反射パルスのタイミングを抽出するために、信号がある閾値を超えるか否かでタイミングを抽出しているが、これに限定されない。例えば、信号のピーク値を検出してパルスのタイミングを抽出するなど、反射パルスの時間的な位置を測定し得る任意の手段を採用してもよい。
 また、上述した実施の形態では、バンドパスフィルタを用いて、反射パルスの周波数オフセットごとに光信号を分離するとしたが、このような構成に限られない。バンドパスフィルタ以外の構成要素で信号を分離してもよい。また、周波数オフセットごとに反射パルスの受信タイミングを抽出できれば、受信した光信号を分離する必要もない。一方、バンドパスフィルタを用いて反射パルスの周波数オフセットごとに光信号を分離することで、上述したように、高速に測距処理を行うことが可能となる。また、バンドパスフィルタを用いて反射パルスの周波数オフセットごとに光信号を分離することにより、各反射パルスの受信タイミングの抽出を行うことが容易となる。
 また、距離算出部160は、測定スタートトリガの出力タイミングに、光変調器106等における処理時間を考慮してもよい。言い換えると、距離算出部160は、測定スタートトリガを受け付けてから、実際に測定スタートトリガに対応する送信パルスが送信されるまでの間の処理時間を考慮してもよい。この場合、距離算出部160は、測定スタートトリガの出力タイミングに光変調器106等における処理時間を加えたタイミングを、測距の開始タイミングとしてもよい。なお、光変調器106等における処理時間は、略一定であるとする。
 同様に、距離算出部160は、測定ストップトリガに、測定ストップトリガが出力される前の光干渉系ユニット130等の処理時間を考慮してもよい。言い換えると、距離算出部160は、光受信部124によって反射パルスが受信されてからタイミング抽出部150によって測定ストップトリガが出力されるまでの間の処理時間を考慮してもよい。この場合、距離算出部160は、測定ストップトリガの出力タイミングに光干渉系ユニット130等の処理時間を引いたタイミングを、測距の終了タイミングとしてもよい。なお、光干渉系ユニット130等における処理時間は、略一定であるとする。
 あるいは、変調信号生成部104は、後段の光送信部122によって送信パルスが送信されるまでの処理時間を考慮して、送信パルスが送信される時刻を示すような測定スタートトリガを出力してもよい。つまり、変調信号が生成された時刻をt1とし、光変調器106等における処理時間をΔt1とすると、変調信号生成部104は、時刻(t1+Δt1)を示す測定スタートトリガを出力してもよい。同様に、タイミング抽出部150は、前段の光干渉系ユニット130等における処理時間を考慮して、反射パルスが受信された時刻を示す測定ストップトリガを出力してもよい。つまり、タイミング抽出部150がバンドパスフィルタ140から信号を受信した時刻をt2とし、光干渉系ユニット130等における処理時間をΔt2とすると、タイミング抽出部150は、時刻(t2-Δt2)を示す測定ストップトリガを出力してもよい。この場合、距離算出部160は、Td=(t2-Δt2)-(t1+Δt1)として、式1を用いて距離Rを算出してもよい。
 また、送信タイミング制御部112は、変調信号生成部104及び光変調器106における処理時間を考慮して、無効化処理部136に送信トリガを出力してもよい。つまり、送信タイミング制御部112は、変調信号生成部104に送信トリガを出力してから、変調信号生成部104及び光変調器106における処理時間が経過した後で、無効化処理部136に送信トリガを出力してもよい。あるいは、無効化処理部136は、変調信号生成部104及び光変調器106における処理時間を考慮して、受信側信号を無効化してもよい。つまり、無効化処理部136は、送信トリガを受信して変調信号生成部104及び光変調器106における処理時間が経過してから一定期間Tmの間で、受信側信号を無効化してもよい。さらに、無効化処理部136は、光干渉系ユニット130等における処理時間を考慮して、受信側信号を無効化してもよい。つまり、無効化処理部136は、送信トリガを受信して光干渉系ユニット130等における処理時間が経過してから一定期間Tmの間で、受信側信号を無効化してもよい。
 また、上述の実施の形態では、本実施の形態をハードウェアの構成として説明したが、本実施の形態は、これに限定されるものではない。本実施の形態は、測距装置内の各回路の少なくとも1つの処理を、CPU(Central Processing Unit)にコンピュータプログラムを実行させることにより実現することも可能である。
 上述したプログラムは、コンピュータに読み込まれた場合に、実施形態で説明された1又はそれ以上の機能をコンピュータに行わせるための命令群(又はソフトウェアコード)を含む。プログラムは、非一時的なコンピュータ可読媒体又は実体のある記憶媒体に格納されてもよい。限定ではなく例として、コンピュータ可読媒体又は実体のある記憶媒体は、random-access memory(RAM)、read-only memory(ROM)、フラッシュメモリ、solid-state drive(SSD)又はその他のメモリ技術、CD-ROM、digital versatile disk(DVD)、Blu-ray(登録商標)ディスク又はその他の光ディスクストレージ、磁気カセット、磁気テープ、磁気ディスクストレージ又はその他の磁気ストレージデバイスを含む。プログラムは、一時的なコンピュータ可読媒体又は通信媒体上で送信されてもよい。限定ではなく例として、一時的なコンピュータ可読媒体又は通信媒体は、電気的、光学的、音響的、またはその他の形式の伝搬信号を含む。
 上記の実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。
 (付記1)
 光信号の強度がパルス状に変化した複数の送信パルスであって、前記送信パルスごとに異なる、基準周波数に対する周波数オフセットを有する複数の送信パルスを生成する生成手段と、
 生成された前記送信パルスを繰り返し送信する送信手段と、
 前記送信パルスが測距対象物で反射した反射パルスを受信する受信手段と、
 受信された前記反射パルスの周波数オフセットを検出する検出手段と、
 受信された前記反射パルスの受信タイミングと、当該反射パルスから検出された前記周波数オフセットに対応する前記送信パルスの送信タイミングとに基づいて、前記測距対象物までの距離を算出する距離算出手段と、
 前記送信パルスの送信タイミングに基づいて、一定期間、距離算出処理が無効化されるように処理を行う無効化処理手段と、
 を有する測距装置。
 (付記2)
 前記無効化処理手段は、前記送信パルスの送信タイミングに基づいて、一定期間、当該測距装置の受信側で伝送される受信側信号を無効化することにより、前記距離算出処理が無効化されるように処理を行う、
 付記1に記載の測距装置。
 (付記3)
 送信パルスが送信されてから次の送信パルスが送信されるまでの送信間隔を変化させるように制御を行うことによって、前記送信タイミングの制御を行う送信タイミング制御手段、
 をさらに有する付記1又は2に記載の測距装置。
 (付記4)
 前記送信タイミング制御手段は、前記送信間隔を所定の周期で変化させるように制御を行う、
 付記3に記載の測距装置。
 (付記5)
 前記送信タイミング制御手段は、前記送信間隔を所定の規則に沿って前記送信パルスごとに変化させるように制御を行う、
 付記3に記載の測距装置。
 (付記6)
 前記送信タイミング制御手段は、前記送信間隔を前記送信パルスごとにランダムに変化させるように制御を行う、
 付記3に記載の測距装置。
 (付記7)
 前記送信タイミング制御手段は、以前に取得された測距結果に基づいて、前記送信タイミングの制御を行う、
 付記3に記載の測距装置。
 (付記8)
 以前に取得された測距結果に基づいて、次に取得される測距結果を推定する推定手段、
 をさらに有し、
 前記送信タイミング制御手段は、推定された前記測距結果に対応する、送信パルスの送信タイミングから当該送信パルスに対応する反射パルスの受信タイミングまでの飛行時間が、前記送信間隔と一致しないように、前記送信間隔を決定する、
 付記7に記載の測距装置。
 (付記9)
 前記送信タイミング制御手段は、直前に取得された2以上の測距結果に基づいて、前記送信タイミングの制御を行う、
 付記7又は8に記載の測距装置。
 (付記10)
 前記送信タイミング制御手段は、予め生成された、掃引方向と当該掃引方向における測距結果とが対応付けられた情報に基づいて、前記送信タイミングの制御を行う、
 付記7又は8に記載の測距装置。
 (付記11)
 前記受信手段は、前記反射パルスを含む光信号を受信し、
 前記検出手段によって検出された前記反射パルスの前記周波数オフセットごとに、受信された前記光信号を分離する分離手段、
 をさらに有し、
 前記距離算出手段は、分離された前記光信号ごとに、前記測距対象物までの距離を算出する、
 付記1から10のいずれか1項に記載の測距装置。
 (付記12)
 前記無効化処理手段は、前記光信号が分離される前の段階で、受信側に入力された受信側信号を無効化することにより、前記距離算出処理が無効化されるように処理を行う、
 付記11に記載の測距装置。
 (付記13)
 光信号の強度がパルス状に変化した複数の送信パルスであって、前記送信パルスごとに異なる、基準周波数に対する周波数オフセットを有する複数の送信パルスを生成し、
 生成された前記送信パルスを繰り返し送信し、
 前記送信パルスが測距対象物で反射した反射パルスを受信し、
 受信された前記反射パルスの周波数オフセットを検出し、
 受信された前記反射パルスの受信タイミングと、当該反射パルスから検出された前記周波数オフセットに対応する前記送信パルスの送信タイミングとに基づいて、前記測距対象物までの距離を算出し、
 前記送信パルスの送信タイミングに基づいて、一定期間、距離算出処理が無効化されるように処理を行う、
 を有する測距方法。
 (付記14)
 前記送信パルスの送信タイミングに基づいて、一定期間、受信側で伝送される受信側信号を無効化することにより、前記距離算出処理が無効化されるように処理を行う、
 付記13に記載の測距方法。
 (付記15)
 送信パルスが送信されてから次の送信パルスが送信されるまでの送信間隔を変化させるように制御を行うことによって、前記送信タイミングの制御を行う、
 付記13又は14に記載の測距方法。
 (付記16)
 前記送信間隔を所定の周期で変化させるように制御を行う、
 付記15に記載の測距方法。
 (付記17)
 前記送信間隔を所定の規則に沿って前記送信パルスごとに変化させるように制御を行う、
 付記15に記載の測距方法。
 (付記18)
 前記送信間隔を前記送信パルスごとにランダムに変化させるように制御を行う、
 付記15に記載の測距方法。
 (付記19)
 以前に取得された測距結果に基づいて、前記送信タイミングの制御を行う、
 付記15に記載の測距方法。
 (付記20)
 以前に取得された測距結果に基づいて、次に取得される測距結果を推定し、
 推定された前記測距結果に対応する、送信パルスの送信タイミングから当該送信パルスに対応する反射パルスの受信タイミングまでの飛行時間が、前記送信間隔と一致しないように、前記送信間隔を決定する、
 付記19に記載の測距方法。
 (付記21)
 直前に取得された2以上の測距結果に基づいて、前記送信タイミングの制御を行う、
 付記19又は20に記載の測距方法。
 (付記22)
 予め生成された、掃引方向と当該掃引方向における測距結果とが対応付けられた情報に基づいて、前記送信タイミングの制御を行う、
 付記19又は20に記載の測距方法。
 (付記23)
 前記反射パルスを含む光信号を受信し、
 検出された前記反射パルスの前記周波数オフセットごとに、受信された前記光信号を分離し、
 分離された前記光信号ごとに、前記測距対象物までの距離を算出する、
 付記13から22のいずれか1項に記載の測距方法。
 (付記24)
 前記光信号が分離される前の段階で、受信側に入力された受信側信号を無効化することにより、前記距離算出処理が無効化されるように処理を行う、
 付記23に記載の測距方法。
1 測距装置
2 生成部
4 送信部
6 受信部
8 検出部
10 距離算出部
12 無効化処理部
50 測距装置
90 測距対象物
100 測距装置
101 光学系集積回路
102 周波数オフセット発生器
104 変調信号生成部
106 光変調器
108 光源
110 送信側ユニット
112 送信タイミング制御部
120 光送受信部
120A 光送受信装置
121 光送受信器
122 光送信部
124 光受信部
125 サーキュレータ
130 光干渉系ユニット
132 光電変換部
134 ADコンバータ
136 無効化処理部
140 バンドパスフィルタ
150 タイミング抽出部
160 距離算出部
170 受信側ユニット
370 推定部
426 光掃引部
470 推定部
472 データベース

Claims (24)

  1.  光信号の強度がパルス状に変化した複数の送信パルスであって、前記送信パルスごとに異なる、基準周波数に対する周波数オフセットを有する複数の送信パルスを生成する生成手段と、
     生成された前記送信パルスを繰り返し送信する送信手段と、
     前記送信パルスが測距対象物で反射した反射パルスを受信する受信手段と、
     受信された前記反射パルスの周波数オフセットを検出する検出手段と、
     受信された前記反射パルスの受信タイミングと、当該反射パルスから検出された前記周波数オフセットに対応する前記送信パルスの送信タイミングとに基づいて、前記測距対象物までの距離を算出する距離算出手段と、
     前記送信パルスの送信タイミングに基づいて、一定期間、距離算出処理が無効化されるように処理を行う無効化処理手段と、
     を有する測距装置。
  2.  前記無効化処理手段は、前記送信パルスの送信タイミングに基づいて、一定期間、当該測距装置の受信側で伝送される受信側信号を無効化することにより、前記距離算出処理が無効化されるように処理を行う、
     請求項1に記載の測距装置。
  3.  送信パルスが送信されてから次の送信パルスが送信されるまでの送信間隔を変化させるように制御を行うことによって、前記送信タイミングの制御を行う送信タイミング制御手段、
     をさらに有する請求項1又は2に記載の測距装置。
  4.  前記送信タイミング制御手段は、前記送信間隔を所定の周期で変化させるように制御を行う、
     請求項3に記載の測距装置。
  5.  前記送信タイミング制御手段は、前記送信間隔を所定の規則に沿って前記送信パルスごとに変化させるように制御を行う、
     請求項3に記載の測距装置。
  6.  前記送信タイミング制御手段は、前記送信間隔を前記送信パルスごとにランダムに変化させるように制御を行う、
     請求項3に記載の測距装置。
  7.  前記送信タイミング制御手段は、以前に取得された測距結果に基づいて、前記送信タイミングの制御を行う、
     請求項3に記載の測距装置。
  8.  以前に取得された測距結果に基づいて、次に取得される測距結果を推定する推定手段、
     をさらに有し、
     前記送信タイミング制御手段は、推定された前記測距結果に対応する、送信パルスの送信タイミングから当該送信パルスに対応する反射パルスの受信タイミングまでの飛行時間が、前記送信間隔と一致しないように、前記送信間隔を決定する、
     請求項7に記載の測距装置。
  9.  前記送信タイミング制御手段は、直前に取得された2以上の測距結果に基づいて、前記送信タイミングの制御を行う、
     請求項7又は8に記載の測距装置。
  10.  前記送信タイミング制御手段は、予め生成された、掃引方向と当該掃引方向における測距結果とが対応付けられた情報に基づいて、前記送信タイミングの制御を行う、
     請求項7又は8に記載の測距装置。
  11.  前記受信手段は、前記反射パルスを含む光信号を受信し、
     前記検出手段によって検出された前記反射パルスの前記周波数オフセットごとに、受信された前記光信号を分離する分離手段、
     をさらに有し、
     前記距離算出手段は、分離された前記光信号ごとに、前記測距対象物までの距離を算出する、
     請求項1から10のいずれか1項に記載の測距装置。
  12.  前記無効化処理手段は、前記光信号が分離される前の段階で、受信側に入力された受信側信号を無効化することにより、前記距離算出処理が無効化されるように処理を行う、
     請求項11に記載の測距装置。
  13.  光信号の強度がパルス状に変化した複数の送信パルスであって、前記送信パルスごとに異なる、基準周波数に対する周波数オフセットを有する複数の送信パルスを生成し、
     生成された前記送信パルスを繰り返し送信し、
     前記送信パルスが測距対象物で反射した反射パルスを受信し、
     受信された前記反射パルスの周波数オフセットを検出し、
     受信された前記反射パルスの受信タイミングと、当該反射パルスから検出された前記周波数オフセットに対応する前記送信パルスの送信タイミングとに基づいて、前記測距対象物までの距離を算出し、
     前記送信パルスの送信タイミングに基づいて、一定期間、距離算出処理が無効化されるように処理を行う、
     を有する測距方法。
  14.  前記送信パルスの送信タイミングに基づいて、一定期間、受信側で伝送される受信側信号を無効化することにより、前記距離算出処理が無効化されるように処理を行う、
     請求項13に記載の測距方法。
  15.  送信パルスが送信されてから次の送信パルスが送信されるまでの送信間隔を変化させるように制御を行うことによって、前記送信タイミングの制御を行う、
     請求項13又は14に記載の測距方法。
  16.  前記送信間隔を所定の周期で変化させるように制御を行う、
     請求項15に記載の測距方法。
  17.  前記送信間隔を所定の規則に沿って前記送信パルスごとに変化させるように制御を行う、
     請求項15に記載の測距方法。
  18.  前記送信間隔を前記送信パルスごとにランダムに変化させるように制御を行う、
     請求項15に記載の測距方法。
  19.  以前に取得された測距結果に基づいて、前記送信タイミングの制御を行う、
     請求項15に記載の測距方法。
  20.  以前に取得された測距結果に基づいて、次に取得される測距結果を推定し、
     推定された前記測距結果に対応する、送信パルスの送信タイミングから当該送信パルスに対応する反射パルスの受信タイミングまでの飛行時間が、前記送信間隔と一致しないように、前記送信間隔を決定する、
     請求項19に記載の測距方法。
  21.  直前に取得された2以上の測距結果に基づいて、前記送信タイミングの制御を行う、
     請求項19又は20に記載の測距方法。
  22.  予め生成された、掃引方向と当該掃引方向における測距結果とが対応付けられた情報に基づいて、前記送信タイミングの制御を行う、
     請求項19又は20に記載の測距方法。
  23.  前記反射パルスを含む光信号を受信し、
     検出された前記反射パルスの前記周波数オフセットごとに、受信された前記光信号を分離し、
     分離された前記光信号ごとに、前記測距対象物までの距離を算出する、
     請求項13から22のいずれか1項に記載の測距方法。
  24.  前記光信号が分離される前の段階で、受信側に入力された受信側信号を無効化することにより、前記距離算出処理が無効化されるように処理を行う、
     請求項23に記載の測距方法。
PCT/JP2021/040723 2021-11-05 2021-11-05 測距装置及び測距方法 WO2023079673A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/040723 WO2023079673A1 (ja) 2021-11-05 2021-11-05 測距装置及び測距方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/040723 WO2023079673A1 (ja) 2021-11-05 2021-11-05 測距装置及び測距方法

Publications (1)

Publication Number Publication Date
WO2023079673A1 true WO2023079673A1 (ja) 2023-05-11

Family

ID=86240844

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/040723 WO2023079673A1 (ja) 2021-11-05 2021-11-05 測距装置及び測距方法

Country Status (1)

Country Link
WO (1) WO2023079673A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH085732A (ja) * 1994-06-23 1996-01-12 Mitsubishi Electric Corp レーダ装置
JPH09145832A (ja) * 1995-11-29 1997-06-06 Mitsubishi Electric Corp レーダ装置
JP2008275379A (ja) * 2007-04-26 2008-11-13 Ihi Corp レーザ測距装置およびレーザ測距方法
JP2016017748A (ja) * 2014-07-04 2016-02-01 三菱電機株式会社 レーダ装置
JP2019078539A (ja) * 2017-10-20 2019-05-23 パナソニックIpマネジメント株式会社 距離測定装置
WO2020079776A1 (ja) * 2018-10-17 2020-04-23 日本電気株式会社 測距装置及び測距方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH085732A (ja) * 1994-06-23 1996-01-12 Mitsubishi Electric Corp レーダ装置
JPH09145832A (ja) * 1995-11-29 1997-06-06 Mitsubishi Electric Corp レーダ装置
JP2008275379A (ja) * 2007-04-26 2008-11-13 Ihi Corp レーザ測距装置およびレーザ測距方法
JP2016017748A (ja) * 2014-07-04 2016-02-01 三菱電機株式会社 レーダ装置
JP2019078539A (ja) * 2017-10-20 2019-05-23 パナソニックIpマネジメント株式会社 距離測定装置
WO2020079776A1 (ja) * 2018-10-17 2020-04-23 日本電気株式会社 測距装置及び測距方法

Similar Documents

Publication Publication Date Title
US9335414B2 (en) Frequency agile LADAR
WO2017197003A1 (en) Methods and apparatus for lidar operation with narrowband intensity modulation
CN108132471A (zh) 发射及接收激光脉冲的方法、介质及激光雷达系统
US11360217B2 (en) Lidar system and method of operation
US10408925B1 (en) Low probability of intercept laser range finder
CN105043527A (zh) 一种脉冲激光外差多普勒振动测量结构
JP7111170B2 (ja) 測距装置及び測距方法
WO2023079673A1 (ja) 測距装置及び測距方法
CN109633672B (zh) 脉冲式激光测距系统及其测距方法
US11143528B2 (en) Optical fiber sensor and analysis method
WO2022233238A1 (zh) 探测装置、雷达以及终端
US20220291381A1 (en) Distance Measurement by Means of an Active Optical Sensor System
JP2018059828A (ja) 測距装置、車両、測距方法、及び測距システム
CN115308715A (zh) 一种稀疏调制测风雷达的方法和系统
WO2020079775A1 (ja) 測距装置及び測距方法
JP7192959B2 (ja) 測距装置及び測距方法
US11486982B2 (en) Optical phase detector using electrical pulse that corresponds to a phase error between electrical pulses and optical pulses, and sensing system including the same
JP2018059831A (ja) 測距装置、車両、及び測距方法
JP2012220466A (ja) 光測距装置
KR101670474B1 (ko) 광학 장치 및 이의 동작 방법
CN110187351B (zh) 一种利用高频脉幅调制波的数字激光测距方法
WO2024087891A1 (zh) 调频连续波雷达及光源纵模状态自检方法
US11555890B1 (en) Methods and systems for processing lidar signals
WO2022079816A1 (ja) 光測距装置及び光測距方法
US20200341127A1 (en) Sensor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21963269

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023557533

Country of ref document: JP

Kind code of ref document: A