WO2020079303A1 - Composición a base de biopolímeros recombinantes y usos de la misma como biotinta - Google Patents

Composición a base de biopolímeros recombinantes y usos de la misma como biotinta Download PDF

Info

Publication number
WO2020079303A1
WO2020079303A1 PCT/ES2019/070701 ES2019070701W WO2020079303A1 WO 2020079303 A1 WO2020079303 A1 WO 2020079303A1 ES 2019070701 W ES2019070701 W ES 2019070701W WO 2020079303 A1 WO2020079303 A1 WO 2020079303A1
Authority
WO
WIPO (PCT)
Prior art keywords
seq
biopolymer
composition
amino acid
acid sequence
Prior art date
Application number
PCT/ES2019/070701
Other languages
English (en)
French (fr)
Inventor
Soraya SALINAS FERNÁNDEZ
José Carlos Rodriguez Cabello
Matilde Alonso Rodrigo
Mercedes Santos Garcia
Original Assignee
Universidad De Valladolid
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De Valladolid filed Critical Universidad De Valladolid
Priority to CN201980083047.XA priority Critical patent/CN113543818B/zh
Priority to US17/285,935 priority patent/US20220047706A1/en
Priority to JP2021546479A priority patent/JP2022513369A/ja
Priority to EP19874354.4A priority patent/EP3868779A4/en
Publication of WO2020079303A1 publication Critical patent/WO2020079303A1/es

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/26Carbohydrates, e.g. sugar alcohols, amino sugars, nucleic acids, mono-, di- or oligo-saccharides; Derivatives thereof, e.g. polysorbates, sorbitan fatty acid esters or glycyrrhizin
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/78Connective tissue peptides, e.g. collagen, elastin, laminin, fibronectin, vitronectin or cold insoluble globulin [CIG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6903Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being semi-solid, e.g. an ointment, a gel, a hydrogel or a solidifying gel
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/22Polypeptides or derivatives thereof, e.g. degradation products
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/22Polypeptides or derivatives thereof, e.g. degradation products
    • A61L27/227Other specific proteins or polypeptides not covered by A61L27/222, A61L27/225 or A61L27/24
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/52Hydrogels or hydrocolloids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/54Biologically active materials, e.g. therapeutic substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/43504Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates
    • C07K14/43563Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates from insects
    • C07K14/43586Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates from insects from silkworms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/08Printing inks based on natural resins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/20Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing organic materials
    • A61L2300/21Acids
    • A61L2300/214Amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/20Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing organic materials
    • A61L2300/252Polypeptides, proteins, e.g. glycoproteins, lipoproteins, cytokines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/60Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a special physical form
    • A61L2300/64Animal cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/70Fusion polypeptide containing domain for protein-protein interaction
    • C07K2319/73Fusion polypeptide containing domain for protein-protein interaction containing coiled-coiled motif (leucine zippers)

Definitions

  • composition based on recombinant biopolymers and uses of it as biotint
  • the present invention relates to compositions comprising recombinant biopoimers synthesized based on monomers of the "Eiastin-Like Recombinamers” type (ELR), monomers that comprise the sequence called “silk” from of the silkworm Bombix mor ⁇ and / or monomers that comprise the sequence called HLF and that belongs to a natural class of proteins called zippers.
  • ELR Elka-Like Recombinamers
  • HLF silkworm Bombix mor ⁇
  • zippers monomers that comprise the sequence called zippers.
  • these compositions are useful for use as biotin for 3D printing.
  • the present invention also relates to the methods for obtaining the composition of the invention, as well as the 3D biomaterial and the different uses of both the composition and the biomaterial that comprises it.
  • 3D bioprinting techniques include stereolithography, inkjet-based bioprinting, laser-based bioprinting, and extrusion-based bioprinting, the latter being the most widely used.
  • extrusion-based bioprinting a hydroge! it is inserted into a cartridge and extruded under pressure on a surface.
  • the printed structures are manufactured by layer-by-layer deposition of the material, controlling temporal and spatial movement using CAM-CAD software (Computer Aid Manufacturing - Computer Aid Design).
  • the parameters that a material must meet in order to be used in 3D bioprinting refer both to its printing process, particularly highlighting the printability, affected by physicochemical parameters such as its rheological properties (viscosity, pseudopiasticity, viscoelasicity and elastic limit) and the crosslinking mechanisms; and those characteristics that allow its use as biomedical material, such as biocompatibility, highlighting that its degradation kinetics must coincide with the ability of cells to form their own extracellular matrix, and their degradation products must not be toxic to them. .
  • biotints there is a wide variety of materials used as biotints, among which are those that have been used over time in tissue engineering, presenting the structure of hydrogeies.
  • These hydrogels used as biotin are divided into natural (for example: alginate, gelatin, agarose, hyaluronic acid, chitosan, decellularized extracellular matrix, DNA peptides, and structural proteins such as collagen, silk fibroin and fibrin) and synthetic (for example : poii (co-glycolic lactic acid (PLGA), pluronic acid, polyethylene glycol (PEG), poly (L-lactic acid) (PLA) and poly (e-caprolactone) (PCL)).
  • natural for example: alginate, gelatin, agarose, hyaluronic acid, chitosan, decellularized extracellular matrix, DNA peptides, and structural proteins such as collagen, silk fibroin and fibrin
  • synthetic for example : poii (co-glycolic
  • biotin compositions such as: Ge! 4Cei, based on gelatin polymers and combined with different growth factors (Bioink Solutions, Inc.), CELL ⁇ NK based on nanoceiulose and alginate (CELLINK), Bioink and Osteoink, based on PEG / Gelatin / hyaluronic acid and calcium phosphate, respectively (RegenHU) and Bio127 and bioGel based on Pluronic F127 and methacrylated gelatin, respectively (Biobot).
  • the disadvantage of this type of biotin is that it is impossible to ensure their behavior in each production batch, since the gelatin polymers that form them are obtained from the hydrolysis of animal collagen and therefore their similarity cannot be assured.
  • the present invention describes new ELR-type recombinant biopolymers formed by monomers of domains present in natural elastin in addition to monomers that comprise the sequence called "silk” and / or monomers that comprise the sequence called HLF that belongs to a natural class. of proteins called zippers, which are non-toxic, and therefore suitable for use as biotin.
  • the present invention relates to compositions comprising such biopolymers, and specifically for use as a biotint for 3D printing.
  • ELR-based biomaterials have shown great potential in tissue engineering, primarily because they are characterized by their extraordinary biocompatibility, biodegradability, and adjustable mechanical properties. They can generate a wide variety of self-assembled structures such as icelas, nanoparticles, hydrogels, membranes, or nanofibers. Such polymers are currently used in a wide variety of biomedical applications such as: gene therapy, vaccine delivery systems, bi-functionalization of surfaces, and as hydrogels for tissue engineering applications. ELRs allow cell growth and proliferation and do not induce any immune response in biological systems, being, therefore, susceptible to being implanted. In the field of tissue engineering, these materials have been used for the regeneration of cartilage and intervertebra disk !, vascular grafts, and eye and liver tissues.
  • the amino acid structure of ios ELR can be designed to modulate its crosslinking or its self-assembly capacity, being able to self-assemble into physical and / or chemical hydrogels, with the subsequent improvement of mechanical properties, property to be used to promote their use as biotin in a 3D bioprinter.
  • other functions can be implemented in its sequence, through the fusion of other proteins or the inclusion of bioactive domains such as cell adhesion motifs (RGD, REDV, among others), growth factors, or metalloproteinases to promote disaggregation. of the final structure.
  • the ELRs biopolymers described in this invention have other peculiarities that can be used for their use as biotints. These materials demonstrate a temperature responsiveness that can be exploited for 3D bioprinting: due to the rapid conformational change that the polymer undergoes above a certain temperature, the polymer is able to maintain a liquid state in the printer cartridge , quickly changing to a gel state when deposited on a heated plate. Its injection, therefore, occurs in a liquid state and with low viscosities, reducing the effort applied to the needle, which facilitates its deposition and protects cells from possible rupture of its membrane.
  • Tt transition temperature
  • the compositions of the invention which comprise the biopolymers described herein, thanks to the ITT property, make them pass from a state hydrated and messy when they are below their Tt temperature, to an orderly hydrophobic folding when that Tt is exceeded.
  • the use of this unique property allows the use of such compositions as biotin since they are capable of generating depositable polymeric filaments under a temperature controlled extrusion system. These filaments are deposited with high precision and allow the formation of structural matrices that show fidelity of shape in time and space, allowing the design of complex structures, layer by layer, with great versatility, reliability and reproducibility.
  • biopolymers that are part of the composition described in the present invention comprise different monomers of the ELR type, together with monomers that comprise reinforcing sequences for gelation, preferably monomers that comprise the sequence called HLF that belongs to a natural class of proteins called zippers, and monomers comprising reinforcing sequences for the structure, preferably monomers comprising the sequence called "silk" from silkworms.
  • the ELR-type monomers used in the present invention to obtain the described biopolymers are all based on the use of the same elastin-like domain VPGXG (SEG ID NO: 7), where X can be any amino acid except the amino acid L- proline, the amino acids vaine, glutamic acid and isoleucine being preferred.
  • X can be any amino acid except the amino acid L- proline, the amino acids vaine, glutamic acid and isoleucine being preferred.
  • monomers B monomers B.
  • Monomer B is hydrophilic and has a composition designed not to transition in the range of physiological temperatures.
  • monomer B comprises repeats of! VPGXG peptapeptide (SEG ID NO: 7), more specifically, monomer B comprises repeats of the VPGVG (SEQ ID NO: 7) and VPGEG (SEQ ID NO: 7), and more specifically, monomer B comprises the sequence SEG ID NO: 2 ([(VPGVG) 2 (VPGEG) (VPGVG) 2 ].
  • Monomer C is hydrophobic and has a composition designed to produce a transition and cause initial physical crosslinking at temperatures below physiological temperature.
  • monomer C comprises repeats of the VGiPG peptapeptide (SEQ ID NO: 3), more specifically the monomer C in I biopoh 'mers comprehends invention from 2 to 250 repeats to SEQ ID NO: 3, more specifically 40 to 80 repetitions of to SEQ ID NO: 3, even more specifically, comprises 60 repetitions of the sequence SEQ ID NO: 3
  • monomer Y which comprises a combination of the amphiphilic polymeric sequence of the elastin-like domain and the so-called "siik" sequence derived from! Bombix mor ⁇ silkworm (SEQ ID NO: 8; GAGAGS).
  • monomer Y comprises repeats of the amino acid sequence SEQ ID NO: 8, more preferably, monomer Y comprises from 1 to 15 repeats of SEQ ID NO: 8, more preferably 5 repeats. In another more preferred embodiment, monomer Y comprises the amino acid sequence as defined in SEQ ID NO: 5.
  • monomer X which comprises reinforcing sequences for the biopolymers of the invention.
  • Said monomer X comprises the amino acid sequence of the structural motif "zippe" which is an amino acid sequence known as HLF and which belongs to a natural class of proteins called zippers, preferably said zipper motif belongs to the class of natural human zippers proteins.
  • monomer X comprises an amino acid sequence as defined in SEQ ID NO: 4.
  • biopolymers described in the present invention therefore comprise different repeats of the monomers described above, to give rise to biopolymers useful as biotints for 2D and / or 3D printing.
  • the present invention relates to a composition
  • a composition comprising a biopolymer comprising the amino acid sequences that form the monomers B, C and at least the monomer X, Y or both.
  • the composition of the invention comprising at least one recombinant biopolymer formed by the monomers described above, is useful for use as a biotint.
  • said composition preferably comprises a biopolymer which, in addition to the ELR-type monomers (B and C), comprises in its sequence a combination of the X and Y monomers, or even a combination of biopolymers where the first of the biopolymers also comprises in their sequence of the monomers of the ELR type (B and C) comprises the monomer X and the second biopolymer comprises in its sequence, in addition to the monomers of the ELR type (B and C) the monomer Y.
  • composition exclusively comprises a biopolymer that includes, in addition to the ELR monomers and the X monomer, said stability may not be maintained over time, due to the reversibility of the interactions.
  • This composition comprising the ELR-type monomers and the Y monomer, not including the X monomer, does not allow for a reliable impression, since its extrusion through the 3D printer syringe is not homogeneous, does not form filaments and therefore, it does not retain the form once printed (see Example 4).
  • said composition shows great stability over time. In this case, the transition that occurs through the ITT mechanism is not fast enough for the deposited polymer to maintain its structure, since the reinforcing interactions are slower and therefore effective in a post-stage stage. of impression.
  • the composition of the invention will therefore comprise a biopolymer comprising the monomers B, C, X and / or Y, more preferably the Composition of the invention will comprise a biopoh ' comprising the monomers B, C, X and Y, or alternatively a combination of biopoimers where the first of the biopoimers comprises the monomers B, C and X and the second of the biopoimers comprises the monomers B, C and Y.
  • the present invention is based on the following pillars:
  • the concentrations of the biopoimers (see Example 3) that make up the composition of the invention allow their dissolution in various solvents, showing low viscosity and Newtonian behavior (see Example 4), thus facilitating their printing on 3D printers, avoiding application high printing forces that can damage both the printer and the materials that are in solution along with the biotint, as well as facilitating the use of needles that contain smaller diameters, allowing the formation of finer filaments.
  • compositions of the invention allow their use in 2D and / or 3D printing with very good fidelity of shape (see Examples 4 and 6). They also allow them to be used for the printing of supports and encapsuiation of a wide variety of active ingredients and cells, being therefore useful in biomedicine, for example, but without limitation, in regenerative medicine, for example, for cell growth in vitro or in I live in cell therapy procedures for tissue regeneration.
  • the cells and / or active ingredients are preferably homogeneously dispersed in the compositions of the invention, so that after printing, they are distributed predetermined in the matrix and allow a controlled release of! active ingredient or good adhesion and proliferation of cells, regenerating damaged tissues and therefore acting as an effective implant and as a natural extracellular matrix
  • composition of the invention may further comprise at least one other D monomer, where said D monomer comprises sequences of bioactive domains, such as for example RGD, REDV type cell adhesion motifs, growth factors such as VEGF or metaioproteinases that favor the controlled disintegration of the structures formed, etc.
  • D monomer comprises sequences of bioactive domains, such as for example RGD, REDV type cell adhesion motifs, growth factors such as VEGF or metaioproteinases that favor the controlled disintegration of the structures formed, etc.
  • bioactive domains such as for example RGD, REDV type cell adhesion motifs, growth factors such as VEGF or metaioproteinases that favor the controlled disintegration of the structures formed, etc.
  • the present invention relates to a composition
  • a composition comprising a biopolymer comprising the monomers B, C and at least the monomer X, Y or a bos, where,
  • B is an amino acid sequence formed from repeats of! ELR type domain (SEQ ⁇ D NO: 7), ta! and as mentioned above, more preferably, monomer B comprises SEQ ID NO: 2,
  • e! monomer C is an amino acid sequence formed from repeats of an ELR-like domain, more preferably, e! monomer C comprises SEQ ID NO: 3,
  • X is an amino acid sequence comprising e! structure motif! "zippei", more preferably, monomer X comprises SEQ ID NO: 4, and
  • Y is an amino acid sequence comprising a combination of the elastin-like domain sequence and the sequence called "silk” from! Bombix mor ⁇ silkworm (SEQ ID NO: 8; GAGAGS), more preferably, e! Y monomer comprises SEQ ID NO: 5.
  • composition of the invention further comprises monomer D.
  • monomer D is a cell binding sequence comprising at least one peptide selected from the list consisting of: RGD (Arg-G! and ⁇ Asp), as the cell adhesion domain of the anb3, a5b1 and!
  • I ⁇ b3 integrin receptor (SEQ ID NO: 9), LDT (SEQ ID NO: 27), SEQ ID NO: 10, SEQ ID NO: 17, SEQ ID NO: 18 or SEQ ID NO: 19, or a heparin binding domain or a sugar binding domain derived from lectin, agglutinin, growth factors, metalloproteinases, in addition to the GTAR (SEQ ID NO: 28) and DRIR (SEQ ID NO: 29) sequences that belong to the uPA enzyme (urokinase p ⁇ asminogen activator system) and other similar sequences that promote protein degradation.
  • monomer D comprises the RGD domain (SEQ ID NO: 9) and is preferably SEQ ID NO: 6.
  • the RGD domain is well known and consists, as the name implies, of the amino acids arginine, glycine and aspartic acid. This domain is recognized by cell surface proteins of various cell types and functions as a cell adhesion domain.
  • the REDV domain (SEQ ID NQ: 10), also well known, and consisting, as the name implies, of the amino acids arginine, glutamic acid, aspartic acid and vaiin; it also functions as a cell adhesion domain and is recognized by endothelial cells.
  • a heparin binding domain functions as a cell binding domain since it is a glycogen binding domain inoglycans of the cell surface.
  • a sugar binding domain allows binding to cells through the sugars that membrane glycoproteins present.
  • Icyin and agglutinin have well-known sugar-binding domains.
  • SEQ ID NO: 18 is present in iaminine and is recognized by various cell types
  • SEQ ID NO: 19 is recognized by neurites, that is, any expansion of the soma of a neuron, be it a dendrite or an axon. These sequences, which are part of the biopoimer of the invention, are recognized by their respective cell types and promote their binding.
  • Biopoimers containing SEQ ID NO: 10 or SEQ ID NO: 19 can be used in tissue generation.
  • biopoimers of the invention may optionally comprise an additional monomer, monomer A, which may be attached to its 5-terminus and which is the result of transcription of an initiator nucleotide sequence.
  • monomer A can comprise SEQ ID NO: 20, which is the result of transcription of the nucleotide sequence SEQ ID NO: 1.
  • Amino acid sequences (the term “peptides” can be used interchangeably to refer to amino acid sequences) that form the monomers according to the described structures that give rise to the biopoimers of the invention, can be linked by covalent bonding or any other type of bond that gives rise to a structure that maintains the properties of the biopolymers of the present invention.
  • the bond is selected, but is not limited to, from the list comprising hydrogen bonding, ion pairing, hydrophobic association, or inclusion complex formation.
  • the monomers that are part of the biopolymers of the invention can be linked to each other directly, or by means of sequences that facilitate their binding, called spacer polypeptides or linkers.
  • linker refers to a short amino acid sequence, preferably, up to 20 amino acids in length, more preferably, up to 15 amino acids in length, more preferably up to 10 amino acids in length, and even more preferably, up to 5 amino acids in length, located between the amino acid sequences of the monomers B, C, X, Y and / or D that form the biopoimers of the invention as described in generally or in the formulas (I) or (II) defined below, allowing the union between the different monomers.
  • said polypeptide spacer is a peptide with structural flexibility, as well as a peptide that gives rise to an unstructured domain.
  • any peptide with structural flexibility can be used as a spacer peptide; however, illustrative, non-limiting examples of such spacer peptides include peptides containing repeats of amino acid residues, eg, Val, Giy and / or Ser, or any other suitable repeat of amino acid residues.
  • composition of the invention is characterized in that the biopolymer comprising it has structure (I):
  • Z is selected from the monomers X and Y defined above,
  • b has values between 5 and 15,
  • c has values between 50 and 70;
  • z has values between 1 and 5
  • n has values between 1 and 5
  • d has values between 0 and 3.
  • the monomer Z is SEQ ID NO: 4. In another preferred embodiment of the composition of the invention, more specifically of the composition comprising the biopolymer with structure (I), the monomer Z is SEQ ID NO: 5.
  • the composition of the invention is characterized in that it comprises a combination of biopolymers of structure (I) where the first biopolymer comprises the Z monomer of SEQ ID NO: 4 and is found in said composition at a concentration of at minus 20% by weight, preferably between 20 to 40% by weight, more preferably at least 40% by weight, and the second biopolymer comprises the monomer Z of SEQ ID NO: 4 and is found in composition a a concentration of at least 60% by weight, preferably between 60% to 80% by weight.
  • the first biopolymer comprises the Z monomer of SEQ ID NO: 4 and is found in said composition at a concentration of at minus 20% by weight, preferably between 20 to 40% by weight, more preferably at least 40% by weight
  • the second biopolymer comprises the monomer Z of SEQ ID NO: 4 and is found in composition a a concentration of at least 60% by weight, preferably between 60% to 80% by weight.
  • composition of the invention it is characterized in that the biopolymer comprising it has structure (II):
  • Z1 is an amino acid sequence comprising the structural motif "zsppe, more preferably, comprising monomer X, more preferably still comprising SEQ ID NO: 4, and
  • Z2 is an amino acid sequence comprising comprising the structural motif "silk", more preferably comprising the monomer Y, more preferably still comprising SEQ ID NO: 5,
  • composition of the invention it is characterized in that b has a value of 10, c has a value of 60, z has a value of 1, n has a value of 2 and d has a value of 0 or one.
  • composition of the invention comprises at least one of the biopolymers with structure (I) that are selected from the list consisting of: SEQ ID NO: 12, SEQ ID NO: 13, SEQ ID NO: 14, SEQ ID NO: 15 or combinations thereof.
  • the composition of the invention comprises a combination of biopolymers of structure (i) where the first biopolymer comprises a sequence that is selected from the list consisting of: SEQ ID NO: 12 or SEQ ID NO: 15, more preferably SEQ ID NO: 15, and the second biopolymer comprises a sequence that is selected from the list consisting of: SEQ ID NO: 13 or SEQ ID NO: 14, more preferably SEQ ID NO: 14.
  • composition of the invention comprises the biopolymer of SEQ ID NO: 16.
  • composition of the invention may further comprise cells, bioactive molecules, active ingredients, or combinations thereof.
  • Table 1 shows the different biopolymers described in the present invention, together with each of the monomers that comprise them and the structure of each one.
  • a second aspect of the present invention relates to a nucleic acid comprising a nucleotide sequence encoding the amino acid sequence of the biopolymer of the first aspect of the invention.
  • nucleic acid includes nucleic acid sequences whose product of transcription, messenger RNA (mRNA) encodes the same amino acid sequence (hereinafter, amino acid sequence of the present invention or sequence of amino acids of the invention). Also included are degenerate variant sequences of the nucleotide sequences of the invention, the product of which is a biopolymer with the same characteristics as the biopolymer of the invention. Also included are nucleotide sequences that encode amino acid sequences that have modifications at their N-terminus, C-terminin!
  • the amino acid sequence can be encoded by any nucleotide sequence leading to any of the amino acid sequences of the invention. Because the genetic code is degenerate, the same amino acid can be encoded by different codons (triplets), therefore, the same amino acid sequence can be encoded by different nucleotide sequences.
  • nucleotide sequences that encode the B, C, X, Y, and / or D monomers that comprise the biopolymers of the invention can be linked to each other directly, or by means of spacer polypeptides or linkers A
  • the polynucleotide sequence that encodes each of the biopolymers of the invention can therefore comprise linkers.
  • SEQ ID NO: 22 encoding biopolymer 2 comprising SEQ ID NO: 12
  • the SEQ ID NO: 21 which codes for biopolymer 1 comprising SEQ ID NO: 1 1
  • SEQ ID NO: 22 encoding biopolymer 2 comprising SEQ ID NO: 12
  • SEQ ID NO: 21 which codes for biopolymer 1 comprising SEQ ID NO: 1 1
  • SEQ ID NO: 22 encoding biopolymer 2 comprising SEQ ID NO: 12
  • D NO: 25 encoding biopolymer 5 comprising SEQ ID NO: 15 and SEQ
  • the nucleic acid of the present invention may have attached to its 5 'end a nucieotidic sequence that serves as a transcription initiator sequence.
  • the sequence may be, but is not limited to, the SEQ ⁇ D NO: 1 nucleotide sequence, which encodes in each biopoiimer of the invention for the SEQ ID NO: 20 ⁇ -acid sequence, also called monomer A in the final structure of each biopoiimer.
  • the nucleic acid of the present invention may have attached to its 3 'end a transcription termination sequence such as, but not limited to, the GTATGA sequence.
  • nucieotidic sequence that codes for the amino acid sequence of the biopoimers that are part of the composition of the present invention is inserted into an expression vector.
  • a further aspect of the present invention relates to an expression vector comprising the nucleic acid of the invention.
  • the term "expression vector” refers to a DNA fragment that has the ability to replicate in a certain host and, as the term indicates, can serve as a vehicle to multiply another DNA fragment that has fused to the same (insert) insert refers to a DNA fragment that is fused to the vector;
  • the vector may comprise any of the nucleophidic sequences coding for any of the biopoimers of the invention, fused thereto, which can be replicated in the suitable host.
  • Vectors can be plasmids, cosmids, bacteriophages or viral vectors, without excluding other types of vectors that correspond to the definition of vector.
  • Transfection of a cell is carried out with techniques known in the state of the art, for example but not limited, with electroporation, with biolistics, Agrobac ⁇ er ⁇ um tumefaciens or any other technique that allows the integration of any of the nucleic acids of the invention in the DNA of the host cell, be it genomic, chloroplast or mitochondria.
  • a third aspect of the present invention relates to an isolated cell transfected with the nucleic acid of the second aspect of the invention.
  • the term "cell" tai as understood in the present invention refers to a prokaryotic or eukaryotic cell.
  • the cell can be a bacterium capable of replicating a transformed foreign DNA, such as any of the strains of the species Escher ⁇ chia coü, or a bacterium capable of transferring the DNA of interest to the interior of a plant, such as Agrobacter ⁇ um tumefaciens.
  • the cell refers to a plant eukaryotic cell and within this group, more preferably, those cells belonging to the Plantae kingdom.
  • the term cell includes at least one parenchymal cell, meristematic cell or any other type, differentiated or undifferentiated.
  • a protoplast plant cell that lacks a cell wall is also included in this definition.
  • transfection refers to the introduction of external genetic material into cells using plasmids, viral vectors (in this case also referred to as transduction) or other tools for transfer.
  • transfection for non-viral methods is used in reference to mammalian eukaryotic cells, while the term transformation is preferred to describe non-viral transfers of genetic material in bacteria and non-animal eukaryotic cells such as fungi, algae, or plants.
  • the biopolymers that comprise the composition of the invention can be subject to additional treatments such as homogenization and purification processes, widely known in the state of the art, that help to obtain the desired level of cytocompatibility, allowing its use in combination with cells or other bioactive molecules and / or components with different diagnostic activities, and even in combination with compositions that are used as biotints, such as, for example, natural alginate, gelatin, agarose, hyaluronic acid biotin, chitosan, desceiuiarized extracellular matrix, DNA peptides, and structural proteins such as collagen, silk fibroin, and fibrin; Synthetic biotints such as, for example, poly (co-glycolic lactic acid (PLGA), pluronic acid, polyethylene glycol (PEG), poly (L-lactic acid) (PLA) and poly (e-caprolactone) (PCL).
  • PLGA co-glycolic lactic acid
  • PEG polyethylene glycol
  • PLA poly (L-
  • a fourth aspect of the present invention relates to the use of the composition of the invention as biotin, preferably as biotin for 3D printing.
  • a fifth aspect of the present invention relates to the biotin comprising the composition as described in the present invention.
  • biotints are prepared using sterile components and always ensuring their use under sterile conditions.
  • the different biopolymers designed to form the described biotints can be printed with or without cells, and can also be used as a support for other biotints such as materials prepared from decellularized tissues and organs.
  • a sixth aspect of the present invention relates to a 3D biomaterial comprising the composition of the invention.
  • compositions, biotint and biomaterials described in the invention may further include one or more agents (eg, excipients, additives, active ingredients, biologically active agents, etc.) suitable for the intended purposes, including therapeutic agents (eg, biologically active agents) and biological samples.
  • agents eg, excipients, additives, active ingredients, biologically active agents, etc.
  • therapeutic agents eg, biologically active agents
  • biological samples e.g, biologically active agents
  • the addition of such agents is said to "functionalize" the composition, biotint or biomaterial, by providing added functionality.
  • Non-limiting examples of such agents suitable to be added for the functionalization of the compositions, biotints and biomaterials of the invention include, but are not limited to: conductive or metallic particles; inorganic particles; dyes / pigments; drugs or active ingredients (eg, antibiotics, small molecules, or low molecular weight organic compounds); proteins and fragments or complexes thereof (eg, enzymes, antigens, antibodies, and antigen-binding fragments of themselves); cells and fractions thereof (virus and viral particles, prokaryotic cells such as bacteria, eukaryotic cells such as mammalian cells, and plant cells, fungi).
  • drugs or active ingredients eg, antibiotics, small molecules, or low molecular weight organic compounds
  • proteins and fragments or complexes thereof eg, enzymes, antigens, antibodies, and antigen-binding fragments of themselves
  • cells and fractions thereof virus and viral particles, prokaryotic cells such as bacteria, eukaryotic cells such as mammalian cells, and plant cells,
  • biologically active agent refers to any molecule that exerts at least a biological effect in vitro or in vivo.
  • the biologically active agent can be a therapeutic agent for treating or preventing a disease state or condition in a subject.
  • Biologically active agents include, without limitation, organic molecules, inorganic materials, proteins, peptides, nucleic acids (eg, genes, gene fragments, gene regulatory sequences and ampheisense molecules), nucleoproteins, polysaccharides, glycoproteins, and iipoproteins.
  • Classes of biologically active compounds that can be incorporated into the composition described herein include, without limitation, anticancer agents, antibiotics, analgesics, anti-inflammatory agents, immunosuppressants, enzyme inhibitors, antihistamines, anticonvulsants, hormones, muscle relaxants, antispasmodics, ophthalmic agents. , prostagiandins, antidepressants, antipsychotic substances, trophic factors, osteoinductive proteins, growth factors and vaccines.
  • the additive is a therapeutic agent.
  • therapeutic agent means a molecule, group of molecules, complex, or substance administered to an organism for diagnostic, therapeutic, preventive medical, or veterinary purposes.
  • therapeutic agent includes a "drug” or a "vaccine”. This term can also specifically include nucleic acids and compounds comprising nucleic acids that produce a therapeutic effect.
  • therapeutic agent also includes an agent that is capable of providing a local or systemic biological, physiological or therapeutic effect on the biological system to which it is applied.
  • the therapeutic agent can act to control infection or inflammation, enhance cell growth and tissue regeneration, control tumor growth, act as a pain reliever, promote anti-cell binding, and enhance bone growth, among other functions.
  • suitable therapeutic agents may include antiviral agents, hormones, antibodies, or therapeutic proteins.
  • Other therapeutic agents include prodrugs, which are agents that are not biologically active when administered but, upon administration to a subject, become biologically active agents through metabolism or some other mechanism.
  • a silk-based drug delivery composition may contain a therapeutic agent or combinations of two or more therapeutic agents.
  • the agent stimulates tissue formation, and / or healing and regrowth of natural tissues, and any combination thereof.
  • Agents that enhance new tissue formation and / or stimulate healing or regrowth of native tissue at the injection site may include, but are not limited to, growth factors (fibroblast growth factor (FGF), transforming growth factor beta (TGF-beta, platelets) derived growth factor (PDGF), epidermal growth factors (EGF), connective tissue activated peptides (OTAR), osteogenic factors including bone morphogenic proteins, heparin, angiotensin li (A-1 i) and fragments thereof, insulin-like growth factors, tumor necrosis factors, interleukins, colony-stimulating factors, erythropoietin, nerve growth factors, interferons, biologically active analogues, fragments and derivatives of such growth factors, and any combination thereof.
  • FGF fibroblast growth factor
  • TGF-beta transforming growth factor beta
  • PDGF transforming growth factor beta
  • EGF
  • the agent is a wound healing or wound healing agent.
  • a wound healing or healing agent is a compound or composition that actively promotes the wound healing process.
  • the active agents described herein are immunogens.
  • the immunogen is a vaccine.
  • the agent can be a cell, eg, a biological cell.
  • Cells useful for incorporation into the composition can come from any source, eg, mammal, insect, plant, etc.
  • the cell may be a human cell, primate cells, mammalian cells, rodent cells, etc., preferably a human cell.
  • the cell can be a genetically modified cell.
  • a cell can be genetically modified to express and secrete a desired compound, for example, an agent bioactive, a growth factor, a differentiation factor, cytokines, and the like. Methods for genetically modifying cells to express and secrete compounds of interest are known in the art and are readily adaptable by one skilled in the art.
  • compositions, biotints and biomaterials of the invention may include a colorant, such as a pigment or dye, or a combination thereof. They can include organic and / or inorganic pigments and dyes, fluorescent, etc.
  • another aspect of the present invention relates to the composition, biotint and biomaterial as described therein for use as a medicine.
  • Another aspect of the present invention refers to the composition, biotint and biomaterial as described in the present invention for use in tissue regeneration, as well as for the generation of tissues that simulate pathologies, that serve as models of diseases, or that contain defects for testing new therapeutic and / or prophylactic compounds, thus avoiding the use of animal models.
  • Another aspect of the present invention refers to a method for obtaining the composition of the invention, which comprises the following steps:
  • the degree of compositional complexity imposed by the needs of the multifunctional design cannot be reached by standard macromolecular synthesis techniques.
  • the biopolymer is obtained as a recombinant protein, by means of techniques adapted from molecular biology and biotechnology, in genetically modified microorganisms or plants.
  • the nucleotide sequence coding for the amino acid sequence of the biopolymer of the present invention is inserted into an expression vector defined above.
  • Transfection of a cell is carried out with techniques known in the state of the art, for example but not limited, with electroporation, with biolistics, Agrobacterium tumefaciens or any other technique that allows the integration of any of the nucleic acids of the invention in the DNA of the host cell, be it genomic, chloroplastic or itochondria !.
  • the expression of the nucleic acid in the cell of the invention gives rise to a biopoimer that can be purified by techniques known in the state of the art.
  • FIG. 1 Acrylamide gel electrophoresis of biopoiimer 1 with the molecular weight marker in the left lane and biopoiimer 1 in the right lane. Molecular weights are indicated in kilodaltons (kDa)
  • FIG. 2 Mass spectroscopy analysis (MALDI-ToF, of the English “Matrix-assisted laser desorption / ionization-time I heard flighf) of biopoimer 1 in which the value of its experimental Molecular Mass of 92897 Da is shown, being the theoretical 93175 Gives y the difference between the two attributable to the measurement error. The monodisperse character of the molecule is also observed, with only a narrow peak appearing.
  • FIG. 3 Infrared spectroscopy analysis (FTIR-ATR, of the English “Four ⁇ er Transform Infrared - Attenuaied Tota / Refléctanos”) of biopoiimer 1 in which the characteristic signals of the amide groups (-1700 cm-1) present in the Designed protein biopolymers.
  • FTIR-ATR Infrared spectroscopy analysis
  • FIG. 4 Nuclear Magnetic Resonance Analysis (NMR) of biopoimer 1 in which the signal of hydrogens belonging to the amine group NH (7.5 - 8.5 ppm) to the methyl group CHs (0.5 1.0 ppm) is observed. ) and to the methylene group CH (1.0-2.3; 3.5-4.5ppm).
  • FIG, 5. Acrylamide gel electrophoresis of biopoimer 2 with the molecular weight marker in the right lane and biopoimer 2 in the left lane. The Molecular weights are indicated in kilodaltons (kDa).
  • FIG. 6 MALDI-TOF analysis of biopolymer 2 in which the value of its experimental Molecular Mass of 101664 Da is shown, the theoretical being 101696 Da and the difference between the two attributable to the measurement error.
  • FIG. 7 FTIR-ATR analysis of biopolymer 2 showing the characteristic signals of the amide groups (-1700 cm-1) present in the designed protein polymers.
  • FIG. 8 Nuclear Magnetic Resonance Analysis (NMR) of biopolymer 2 in which the signal of the hydrogens belonging to the NH amine group (7.5 - 8.5 ppm) to the methyl group CH 3 (0.5 - 1.0 ppm) and to the methylene group CH (1.0-2.3; 3.5-4.5ppm).
  • FSG. 9 Biopolymer 3 acrylamide gel electrophoresis with the molecular weight marker in the left lane and biopolymer 3 in the right lane. Molecular weights are indicated in kilodaltons (kDa).
  • FIG. 12 Nuclear Magnetic Resonance Analysis (NMR) of biopolymer 3 in which the signal of the hydrogens belonging to the amine group NH (7.5 - 8.5 ppm) to the methyl group GH 3 (0.5 - 1, 0 ppm) and ai methylene group CH (1, 0-2.3, 3.5-4.5ppm)
  • FIG. 13 Acrylamide gel electrophoresis of biopolymer 4 with the molecular weight marker in the right lane and biopolymer 4 in the left lane. Molecular weights are indicated in kilodaltons (kDa).
  • FIG. 14 MALDI-TOF analysis of biopolymer 4 in which the value of its experimental Molecular Mass of 122882 Da is shown, the theoretical being 123345 Da and the difference between the two attributable to the measurement error.
  • FIG. 15 FTIR-ATR analysis of biopolymer 4 in which the characteristic signals of the amide groups (-1700 cm-1) present in the designed protein polymers are shown.
  • FIG. 16 Nuclear Magnetic Resonance Analysis (NMR) of biopolymer 4 in which the signal of the hydrogens belonging to the NH amine group (7.5 - 8.5 ppm) to the methyl group CH 3 (0.5 - 1, 0 ppm) and the CH methylene group (1.0-2.3; 3.5-4.5ppm).
  • FIG. 17. Biopolymer 5 Acrylamide Gel Electrophoresis with Weight Marker molecular in the right lane and biopolymer 5 in the left lane. Molecular weights are indicated in kilodaltons (kDa).
  • FIG. 18 MALDI-TOF analysis of biopolymer 5 in which the value of its experimental Molecular Mass of 120,611 Da is shown, the theoretical being 120,921 Da and the difference between the two attributable to the measurement error.
  • FIG. 19 FTIR-ATR analysis of biopolymer 5 showing the characteristic signals of amide groups (-1700 cm-1) present in the designed protein polymers.
  • FIG. 20 Nuclear Magnetic Resonance Analysis (NMR) of biopolymer 5 in which the signal of hydrogens belonging to the NH amine group (7.5 - 8.5 ppm) to the methyl group CH 3 (0.5 - 1.0 ppm) and to the methylene group CH (1.0-2.3; 3.5-4.5ppm).
  • FIG. 21 Acrylamide gel electrophoresis of biopolymer 6 with the molecular weight marker in the right lane and biopolymer 6 in the left lane. Molecular weights are indicated in kilodaltons (kDa).
  • FIG. 22 MALDI-TOF analysis of biopolymer 6 in which the value of its experimental Molecular Mass of 125857 Da is shown, the theoretical being 126393 Da and the difference between the two attributable to the measurement error.
  • FIG. 23 FTIR-ATR analysis of biopolymer 6 in which the characteristic signals of the amide groups (-1700 cm-1) present in the designed protein polymers are shown.
  • FIG. 24 Nuclear Magnetic Resonance Analysis (NMR) of biopolymer 6 in which the signal of hydrogens belonging to the NH amine group (7.5 - 8.5 ppm) to the methyl group CH 3 (0.5 - 1, 0 ppm) and the CH methylene group (1.0-2.3; 3.5-4.5ppm).
  • FIG, 25 Photographs of the printed biomaterial with the composition comprising different concentrations (300, 250, 200, 180, 150 and 120 mg / mL) of the pre-cured biopolymer 5 (SEQ ID NO: 15) shown in the column A, and of the biopolymer 4 (SEQ ID NO: 14) shown in column B, using PBS1x as the solvent.
  • FIG. 26 Photographs of different biomaterials printed with the different compositions of the invention at a concentration of 250 mg / mL using PBS1x as the solvent, where the printabity (Column A) and the fibrillary observation (Column B) of said biomaterials are revealed.
  • BP Biopolymer.
  • the percentage of the biopoimer combinations refer to the percentage expressed by weight.
  • FIG, 27 Viscosity (expressed in Paséales per second, Pa.s) of the biotints formed by different biopoimers of the invention subjected to an upward cut speed (1 / s).
  • Step 1 Cutting speed of 5 8 ⁇ ⁇ .
  • Step 2 1000 s -1 cutting speed.
  • Step 3 5s cutting speed ⁇ 1 .
  • FIG. 29 Effect of temperature on the viscosity of different biotints of the invention analyzed.
  • FIG, 30 Photographs of different structures printed with the biotint comprising biopolymer 4 (SEQ ID NO: 14) using PBS1x as a solvent where the stability of the printed structures over 3 days is shown.
  • FIG, 31 Photographs of different structures printed with the biotint comprising the pre-cured biopolymer 5 (SEQ ID NO: 15) using PBS1x as a solvent where the stability of the printed structures over two days is shown.
  • FIG. 32 Photographs of different structures printed with the biotint comprising the combination of the biopolymers 60% by weight of biopolymer 4 (SEQ ID NO: 14) and 40% by weight of the pre-cured biopolymer 5 (SEQ ID NO: 15) using PBS1x as solvent showing the stability of the printed structures over 40 days.
  • FIG. 33 Photographs of different structures printed with the biotint comprising biopolymer 6 (SEQ ID NO: 16) using PBS1x as solvent where the stability of the printed structures over 40 days is shown.
  • FIG. 34 Graph showing an analysis of early cell adhesion at 30 min, 2 hr and 4 hr times, of the mixtures of biopolymer 4 (60% by weight) of SEQ ID NO: 14 and biopolymer 5 pre-cured (40% by weight) of SEQ ID NO: 15 comprising the RGD adhesion sequence (white blocks) and the mixture of biopolymer 3 (60% by weight) of SEQ ID NO: 13 and biopolymer 2 (40% in weight) of SEQ ID NQ: 12 not comprising cell adhesion sequence (black blocks).
  • FIG. 35 Graph showing an analysis of early cell adhesion at 30 min, 2 hr and 4 hr times, of the mixtures of biopolymer 4 (60% by weight) of SEQ ID NO: 14 and biopolymer 5 pre-cured (40% by weight) of SEQ ID NO: 15 comprising the RGD adhesion sequence (white blocks) and the mixture of biopolymer 3 (60% by weight) of SEQ ID NO: 13 and biopolymer 2 (40% in
  • FIG. 38 Microscopic photograph of a biotint-printed surface comprising the combination of biopolymer 4 (60% by weight) of SEQ ID NO: 14 and pre-cured biopolymer 5 (40% by weight) of SEQ ID NQ: 15 using PBS1x as solvent, on which HFF-1 cells have been seeded and cultured for 7 days
  • FIG. 37 Microscopic photographs of a biotint printed surface comprising the combination of biopolymer 4 (80% by weight) of SEQ ID NO: 14 and of! pre-cured biopoimer 5 (40 wt%) of SEQ ID NO: 15 using PBS1x as the solvent, onto which HFF-1 cells have been seeded and cultured for 7 days.
  • FIG 39 Microscopic photographs of a surface printed with biopolymer 6 mixed with human HFF-1 fibroblasts for 21 days. The scale corresponds to 500 pm.
  • EXAMPLE 1 Obtaining and characterizing the recombinant protein biopolymers that form the composition of the invention.
  • ELRs are designed and obtained using recombinant DNA technologies.
  • the nucleotide sequence that codes for the desired protein Once the nucleotide sequence that codes for the desired protein has been introduced into the bacterial strain Escher ⁇ chia coli, it is subjected to a culture in a mixer, which allows absolute control of its production conditions.
  • the desired ELR is extracted by lysis ultrasonic bacterial wall. The purification of the biopolymer will be carried out taking advantage of its inverse transition property with temperature, performing heating and cooling cycles of the bacterial debris until obtaining the pure polymer.
  • biopolymers used After a process of elimination of salts through dialysis, all the biopolymers used are iiofiiized, showing a whitish and cottony appearance, and are reserved until use in this state at -2Q ° C. To characterize the biopolymers obtained, the following techniques are used:
  • H1-NMR Proton nuclear magnetic resonance spectrum
  • FT-IR Infrared spectrum
  • DSC Differential scanning calorimetry
  • Amino acid sequence SEQ ID NO: 11: MESLLP - ⁇ [VPGVG) 2 - (VPGEG) - (VPGVG) 2 ] ! o [VG ⁇ PGl 6 o [VPG j G] 5 AVTGRGDSPASS) 6 -V
  • the production yield was 227.65 mg / L.
  • the theoretical molecular weight for biopolymer 1 is 93175 Da and was estimated experimentally by polyacrylamide gel electrophoresis (Fig. 1) and by MALDI-TOF mass spectrometry, resulting in 92897 Da.
  • the HPLC, as well as infrared (IR) and nuclear magnetic resonance (NMR) spectra obtained for biopolymer 1 are collected in Figs. 2, 3 and 4, respectively.
  • the transition temperature obtained by DSC in MQ at pH 7.8 was 19.10 ° C, while in 1X PBS at pH 7.65 it was 14.66 ° C.
  • VPGVG (VPGVG) 2 ] io [VG ⁇ PGl6o) - ⁇ V (GAGAGS) s Gl 2 ⁇ 2
  • the yield of production was 178.9 mg / L.
  • the theoretical Molecular Weight for polymer 2 is 101696 Da and was estimated experimentally by polyacrylamide gel electrophoresis (Fig. 5) and by MALDI-TQF mass spectrometry (Fig. 6), resulting to be 101664 Da.
  • the IR and NMR spectra obtained for biopolymer 2 are collected in Figs. 7 and 8, respectively.
  • the transition temperature obtained by DSC in MQ at pH 6.14 was 20.08 ° C, while in PBS1X at pH 6.40 it was 16.92 ° C.
  • the yield of production was 517.22 mg / L.
  • the theoretical Molecular Weight for polymer F is 1041 19 Da and was estimated experimentally by polyacrylamide gel electrophoresis (Fig. 9) and by MALDI-TGF mass spectrometry (Fig. 10), resulting to be 103,793 Da.
  • the IR and NMR spectra obtained for biopolymer 3 are collected in Figs. 11 and 12, respectively.
  • the transition temperature obtained by DSC in MQ at pH 7.5 was 15.30 ° C while in PBS1X at pH 7.5 it was 14.18 ° G.
  • the production yield was 239.81 mg / L
  • the theoretical Molecular Weight for biopolymer 4 is 123345 Da and was estimated experimentally by polyacryiamide gel electrophoresis (Fig. 13) and by MALDI-TGF mass spectrometry (Fig. 14), resulting to be 122882 Da.
  • the IR and NMR spectra obtained for biopolymer 4 are collected in Figs. 15 and 18, respectively.
  • the transition temperature obtained by DSC in MQ at pH 8.48 was 17.58 ° C, while in PBS 1X at pH 6.02 it was 14.92 ° C.
  • the yield of the production was 203.07 mg / L.
  • the theoretical Molecular Weight for biopolymer 3 is 120921 Da and was estimated experimentally by polyacrylml gel electrophoresis (Fig. 17) and by MALDI-TOF mass spectrometry (Fig. 18), resulting to be 120611 Da.
  • the IR and NMR spectra obtained for biopolymer 2 are collected in Figs. 19 and 20, respectively.
  • the transition temperature obtained by DSC in MG at pH 6.59 was 20.84 ° C, while in 1X PBS at pH 7.24 it was 17.26 ° C.
  • the yield of production was 116 mg / L.
  • the theoretical Molecular Weight for biopolymer 6 is 126393 Da and was estimated experimentally by polyacryiamide gel electrophoresis (Fig. 21) and by MALDI-TOF mass spectrometry (Fig, 22), resulting to be 125857 Da.
  • the IR and NMR spectra obtained for biopolymer 6 are collected in Figs. 23 and 24, respectively.
  • the transition temperature obtained by DSC in MQ at pH 7.50 was 20.42 ° C, while in 1X PBS at pH 7.50 it was 17.41 ° C.
  • Example 2 Determination of the composition of the biotint of the invention that allows an optimal printing.
  • 3D prints with the different biopoimers described in Table 2, or with mixtures thereof, are performed taking into account the reverse transition temperature of each one.
  • Said transition temperature together with the specific properties of the biopoimer compositions of the invention, causes the potential biotin to gel by means of a simple change in temperature.
  • the experimental system used includes a REGEMAT 3D printer on which a head connected to a cooling bath has been installed, which allows the injection temperature to be maintained at 4 ° C. Furthermore, the printer has a heat bed that is kept at 30 ° C during the printing process.
  • biopolymer 1 (SEG ID NO: 1 1)
  • Gelation is due to the hydrophobic internal forces present between its G (hydrophobic) and B (hydrophilic) blocks.
  • Block D which specifically comprises the RGD peptide introduced to its major sequence does not affect gel formation, but is introduced to provide biofunctionality in the biopolymer.
  • This biopolymer 1 will be used as a negative control of the bioprint, since it does not contain any of the X, Y monomers or both.
  • biopoimers 2 (SEG ID NO: 12), 3 (SEG ID NO: 13), 4 (SEQ ID NO: 14), 5 (SEG ID NO: 15) and 6 (SEG ID NO: 16), which They contain the base C (hydrophobic) and B (hydrophilic) monomers, in addition to the other X and / or Y monomers, they also show these hydrophobic interactions. They all also contain the D block comprising, in the examples shown, specifically the RGD peptide to provide biofunctionality to the biapolymer, allowing it to induce cell adhesion.
  • Biopolymers 4 (SEQ ID NO: 14) and 3 (SEQ ID NO: 13) comprise the zipper sequence (SEQ ID NO: 4), which allows the formation of alpha helices through the interaction of electrostatic forces between charged amino acids, contributing to the stability of the polymer.
  • Biopolymers 5 (SEQ ID NO: 15) and 2 (SEQ ID NO: 12) show the same hydrophobic interactions, but in this case stabilized thanks to the formation of beta sheets from the silk sequence (SEQ ID NO: 8), by forming hydrogen bonds between the amido and carboxyl groups present in its amino acids.
  • biopolymer 5 (SEQ ID NO: 15)
  • a comparison has been made between its gelation when said biopolymer has undergone a pre-cure treatment (from here on it will be called a pre-cured biopolymer 5 ) or when it has not been subjected to said treatment (which will continue to be called biopolymer 5).
  • the pre-curing treatment is carried out due to the variability that the biopolymer 5 presents in terms of its structure at the molecular level and may present different degrees of formation of befa leaves that affect its mechanical characteristics.
  • beta sheet formation occurs through hydrogen bridge bonds.
  • Said crosslinking is not homogeneous between the different batches of the biopolymer, generating batches of different initial crosslinking.
  • By breaking the hydrogen bonds with the pre-cure treatment it is ensured that the initial state of beta sheet formation is the same for all batches.
  • it is first homogenized by carrying out a breakdown of its intermolecular forces by using formic acid, which allows starting from a state with the absence of beta sheets. From this state, the biopolymer is subjected to a curing at 37 ° C for 24 hours, favoring the formation of beta sheets. In this way, the same initial state is ensured in all batches of this polymer and it starts from a pre-gelled state predictably more suitable for printing.
  • biopoimer 6 was synthesized (SEQ ID NO: 6 ). This biopolymer 6 possesses both the initial hydrophobic interactions and the electrostatic and hydrogen bonding interactions from the Zipper and Sük sequences.
  • compositions comprising the pre-cured blopolymers 1, 4, 5, 5 and 6, alone or in combination.
  • a 10x10 mm rack is designed using the REGEMAT 3D printer's own software, with a height of 1.30 mm (corresponding to 6 layers of height), and porosity of 1.5 mm arranged at an angle of 90 °.
  • the different blopolymer compositions of the invention will be injected with a 0.25 mm nozzle and 0.08 mm / s flow. The flow is adapted if necessary in each case, to be able to make lines of similar width that allow better comparison of structures with each other.
  • the optimal impression concentration of pre-cured biopolymer 5 dissolved in different concentrations of 1x PBS 120, 150, 180, 200, 250 and 300 mg / mL is estimated to be 250 mg / mL, as seen in the Fig. 25, since said concentration is the concentration at which the viscosity of the solution is adequate for the "injection" process using the 3D printer. Therefore, the concentration of 250 mg / mL is selected for the comparison of the various impressions. In the case of biopolymer 4, as can also be seen in Fig. 25, the appropriate concentration for the injection process in the 3D printer is 250 mg / mL.
  • the printing of the designed racks allows a semi-quantification of the printability of the various blopolymers of the invention through the measure of the printability, which gives us an idea of the similarity that the printed structure presents with respect to the designed one.
  • pores are designed and printed in a square shape, so a parameter (Pr) is established to measure the similarity of the impressions with respect to these squares.
  • Pr a parameter
  • the biotint that shows a good printability must be deposited through the extrusion of filaments of constant morphology that allow their deposition in height, without merging with each other. If the biotint shows less printability, this does not happen and the filaments tend to co-collapse and fuse, forming porosities that tend to be circular. Therefore circularity is defined as:
  • L defines the perimeter and A the area. The closer the value obtained is to 1, the greater the circularity, 1 being a perfect circle.
  • the circularity will be p / 4
  • the Pr parameter based on the square shape can be defined as:
  • the interconnected pores will be square and the value of Pr will be 1.
  • Another parameter, qualitative in this case, to determine the printability of biotints is the fibrillary observation, that is, if the deposition of the polymers is deposited layer by layer and the deposited fibers are observed, the structure will tend to collapse less than if these fibers melt together, causing less fidelity of shape.
  • Fig. 26 shows the photographs of the impressions made. After measuring the Pr parameter, it is observed that from a Pr value of 0.90, the prints are made in a controlled manner, allowing the deposition of fibers that do not mix with each other when deposited, maintaining their fibrillar structure in height.
  • biopolymer 1 does not gel after printing, therefore it does not maintain its structure. This behavior corresponds to that expected, since this polymer does not contain the X and / or Y monomers that allow the stability of the gel it forms.
  • Biopolymer 5 allows printing, but the printed structure quickly breaks down so that it cannot be measured for its printability.
  • the pre-cured polymer 5 shows an over-geification, which is observed in the non-linear deposition of the fibers, despite the fact that their fidelity in printing is high. Therefore, the fact that the sample gels due to a temperature change is not a sufficient condition as might be expected. to get a good biotint for this system and thus obtain printed surfaces that show a structure that really resembles the design.
  • the phenomenon that accompanies gelation and changes in the mechanical properties of! Material before and after gelation are decisive and can be inadequate without being able to predict what the material is! suitable as biotint.
  • biopolymer 4 shows reliable structures with Pr values of 0.94 (FIG. 26).
  • pre-cured polymer 5 shows a higher printability parameter than polymer 5, to demonstrate the laser effect that monomers X and Y, the pre-cured polymer 5 is selected as carrier of monomer Y, so that the mixtures are printed : biopolymer 4 (80% by weight) + pre-cured biopolymer 5 (20% by weight); biopolymer 4 (60% by weight) + biopolymer 5 pre-cured (40% by weight) and biopolymer 4 (20% by weight) + biopolymer 5 pre-cured (80% by weight).
  • the printing of the proportions of the biopolymer 4 (60% by weight) + biopolymer 5 pre-cured (40% by weight) show the highest value of Pr obtained in the printed mixtures, so this mixture can be considered as optimal for 3D printing.
  • the mixtures comprising biopolymer 5 (40% by weight) + biopolymer 1 (60% by weight) and the mixture of biopolymer 4 (60% by weight) + biopolymer are also printed. 1 (40% by weight). Said mixtures show impressions of worse printability, verifying that in order to obtain a good printability, it is necessary to mix the biopolymers that comprise the X and Y monomers.
  • Example 3 Mechanical properties of the compositions of the invention.
  • compositions of the invention for use as biotints.
  • Those compositions that have been shown to have a higher printability are selected, corresponding to the compositions comprising biopolymer 4, biopolymers 6, pre-cured biopolymer 5 and the mixture of biopolymers 4 (60% by weight) + biopolymer 5 pre- cured (40% by weight).
  • the rheological study is carried out with an AR 200 EX rheometer from TA Instruments, equipped with a peltier plate, and a geometry of 40mm in diameter. All the analyzed compositions are kept at 4 ° C during the tests.
  • the first characterization is based on the study of the variation of the viscosity that the compositions of the invention present for use as biotinints when they are subjected to an increasing cutting speed (Fig 27).
  • Both the biopolymer 4 and the mixture comprising biopolymer 4 (60% by weight) + biopolymer 5 pre-cured (40% by weight) do not show a decrease in its viscosity when there is an increase in the cutting speed, therefore, they behave like Newtonian fluids that have relatively low viscosities (approximately 1 Pa.s).
  • the fact that they behave like Newtonian fluids with low viscosities allows controlled depositions to be carried out with less cutting efforts, thus protecting the cells that are embedded in said compositions.
  • the composition formed by the pre-cured biopolymer 5 shows a decrease in its viscosity when there is an increase in shear stress, starting from viscosities of 10 Pa.s and becoming stabilized at viscosities of 1 Pa.s when subjects the biotint to high cutting speeds. This behavior of the biotint is similar to that described by a pseudoplastic fluid.
  • composition comprising biopolymer 6 has a visco-plastic (or Bingham plastic) behavior, showing a viscosity of 2.35 Pa.s until it reaches a critical deformation stress corresponding to 248.6 1 / s, from which its viscosity begins to decrease slightly until it reaches at 1.41 Pa.s.
  • compositions comprising the Y monomer show a pseudoplastic behavior in the biotin.
  • this behavior suffers a delay, it begins to appreciate once a critical deformation stress is exceeded. This behavior corresponds to a visco-plastic behavior plastic or Bingham plastic.
  • compositions of the invention are subjected when used as biotin in a printer.
  • a thixotropic analysis of them was carried out. This analysis consists of subjecting the biopoimers to a high cutting speed for a short period of time, trying to match the forces that the biotinings are subjected to when passing through a very small diameter needle in the printing process.
  • the variation in viscosity was analyzed when an increase in temperature occurs.
  • the analysis determines which is the ideal temperature at which the printing base must be preheated in order to achieve a higher viscosity in the biotint and, therefore, a higher resolution in the printing.
  • the composition comprising biopolymer 4 has a viscosity of 212.5 Pa.s at a temperature of 15.0 ° C; the composition comprising the pre-cured biopolymer 5 has a viscosity of 90.9 Pa.s at the temperature of 18.4 ° C, the composition comprising the biopolymer 6 has a viscosity of 371 Pa.s at the temperature of 21.7 ° C and the composition comprising the mixture of biopolymer 4 (60% by weight) + biopolymer 5 pre-cured (40% by weight) has a viscosity of 242.6 Pa.s at a temperature of 19.5 ° C.
  • compositions described in the present invention were then analyzed in a selected fluid, which for the case of the present example is PBS 1x. Since the structures printed with the compositions described in the present invention will serve for in vitro cultures, or for tissue models, they should be able to remain stable in aqueous media for prolonged periods of time. For this example, cylinders of 6mm diameter and 1.5 cm are designed. high, and the impressions were carried out through a 0.25 mm diameter nozzle. The compositions tested have been the compositions comprising biopolymer 4, pre-cured biopolymer 5, biopolymer 6 or the mixture of biopolymer 4 (60% by weight) + biopolymer 5 pre-cured (40% by weight).
  • composition comprising the mixture of biopolymer 4 (60% by weight) + biopolymer 5 pre-cured (40% by weight), solves the drawbacks that said compositions present separately when used as biotintins.
  • This mixture allows to make an impression with good fidelity of shape and structural maintenance over time, allowing the realization of complex structures (Fig. 32).
  • biotin comprising the composition with biopolymer 6 also shows structural maintenance over time, since it comprises the X and Y monomers in their sequence (Fig. 33).
  • EXAMPLE S Evaluation of the viability and cellular cytotoxicity of the compositions.
  • compositions of the invention were evaluated as biotints and their consistency over time, their cytotoxicity and cell viability were evaluated using the human fibroblast cell line HFF-1.
  • HFF-1 human fibroblast cell line
  • composition selected to carry out the tests has been the composition comprising the mixture of biopolymer 4 (60% by weight) + biopolymer 5 pre-cured (40% by weight), given that, as shown in the previous examples , Are the compositions that have demonstrated the best printability and stability over time, since they comprise the X and Y monomers.
  • composition comprising the mixture of biopolymer 3 (80% by weight) + biopoiimer 2 (40% by weight) is used as a negative control ), where said composition comprises the same structure as the other composition tested, but lacks monomer D, which allows functionalization and therefore bioactivity of the compositions.
  • Alamar blue assay is performed to study early viability and cell proliferation.
  • Alamar Blue is a reagent that contains a fluorescent indicator that is reduced by varying color thanks to cellular metabolic activity, allowing the quantitative determination of cell viability and cytophoxicity. Through the Alamar blue assay, early cell viability is observed at 30 minutes, 2 hours and 4 hours after seeding with each of the compositions tested.
  • the number of cells adhered on the surfaces is calculated and it is shown that the number of cells that adhere is significantly higher in those racks that have been printed with the composition comprising the mixture of biopolymer 4 (60 % by weight) + pre-cured biopolymer 5 (40% by weight) comprising monomer D, with respect to the composition comprising the mixture of biopolymer 3 (60% by weight) + biopoiimer 2 (40% by weight) which does not comprise monomer D (Fig. 34). Therefore, it follows that the presence of the RGD integrin adhesion sequence in biotints allows and improves early cell adhesion.
  • the cellular proliferation of fibroblasts on the racks printed with the previously mentioned compositions is also analyzed, for long periods of time, 21 days.
  • the results show a gradual increase in the percentage reduction of AlamarBiue in both compositions over time, starting from a percentage of 4.4% in the Start up to 64, 1% in the case of the composition comprising the mixture of biopolymers 4 (60% by weight) + biopolymers 5 pre-cured (40% by weight), and from 2.2% in the beginning to 53.2% in the case of the composition comprising the mixture of biopolymers 3 + (60% by weight) + biopolymer 2 (40% by weight) (F g. 35). Said percentage is significantly higher in the case of the racks that have been printed with the composition comprising the mixture with the monomer D in its sequence.
  • DAPI staining is used to stain the adenine-thymine bonds of DNA present in the cell nucleus, while Phailoidin is used to stain the actin filaments, allowing observation of the rest of the cytoplasm.
  • Phailoidin is used to stain the actin filaments, allowing observation of the rest of the cytoplasm.
  • the combination of both stains allows the observation of cell morphology.
  • DAP ⁇ / Rhalloidina staining is performed 14 days after the fibroblast culture with the racks printed with the composition comprising biopolymer 4 (60% by weight) + biopolymer 5 pre-cured (40% by weight).
  • Fig. 38 shows how the cells have adhered to the printed racks, preferably standing longitudinally, forming a three-dimensional matrix. Cells arranged at different heights corresponding to the deposition of the different fibers are also observed (Fig. 37), demonstrating that the morphology or structure of the rack determines cell disposition and growth.
  • EXAMPLE 8 Evaluation of cell viability and cytotoxicity of cells embedded in biotint (biopolymer 8) prior to bioprinting.
  • the HFF-1 cells (6x10 6 cells / mL) are mixed together with the biopolymer 6 dissolved in DMEM, and printed in porous circular racks of 5mm in diameter and 1mm in height, with a square porosity of 1mm on each side. . Once the surfaces have been sterilized, they are immersed in the cell medium and incubated for 21 days.
  • a LIVE / DEAD TM stain is performed on the printed surfaces. This type of staining is used to determine cell viability by staining cells. alive and dead. By obtaining photographs of different fields of the printed stand, it is possible to count the cells and establish a percentage of viability (percentage of living cells). In order to know if the cell viability is modified due to the printing process, a control is carried out, which is a deposition of the same biopolymer and the same cell concentration mixed and deposited in a rack without having undergone the 3D bioprinting process.
  • the cell morphology, its reorganization and the proliferation of HFF-1 were studied by light microscopy through a DAPi / Phalloidin stain, previously explained. This staining was performed after printing the biopolymer 6 mixed together with the cells (6 x 10 ® cells / mL) at 1, 3, 7, 14 and 21 days. As seen in Fig, 39, from the first day the cells are distributed homogeneously on the printed surfaces, which denotes a good distribution of nutrients through the racks that keep the cells located both in their internal parts and external.
  • the cells In addition, in the first stages / days of culture, the cells remain rounded, but after the first three days of incubation, they begin to develop an elongated and fibrous shape, characteristic of this cell type (fibroblasts), fully extending after 7 days. of the crop. At this stage, the cells began to form aggregates along the structures and maintained their growth and proliferation during the rest of the days of the culture, until 21 days, in which the experiment was completed.
  • fibroblasts fibroblasts
  • compositions comprising the mixture of biopolymer 4 + biopolymer 5 pre- cured, as well as the compositions comprising biopoimer 6, can be used as biotints.
  • Said compositions have a good printability, allowing the impression of resolving structures in height and stable in time (Table 9, Fig 30 and 31), specifically thanks to the presence in their sequences of the X and / or Y monomers.
  • they have low viscosities that facilitate printing at low temperatures (Fig. 27), and a rapid increase in viscosity when the temperature increases (Fig. 29), which makes it easier for the printed structure to remain stable in the printing process.
  • monomer D they allow cell adhesion and proliferation.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Transplantation (AREA)
  • Dermatology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Materials Engineering (AREA)
  • Biomedical Technology (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Wood Science & Technology (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Toxicology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Composite Materials (AREA)
  • Structural Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Ceramic Engineering (AREA)
  • Civil Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)

Abstract

La presente invención se refiere a composiciones que comprenden biopoiímeros recombinantes formados por combinaciones de monómeros de tipo "Recombinámeros Tipo Elastina" (ELR, de sus siglas en inglés Elastin-like Recombinamers), monómeros que comprenden la secuencia denominada "silk" (seda) y/o monómeros que comprenden la secuencia denominada HLF y que pertenece a una clase natural de proteínas denominadas zippers. Dichas composiciones son útiles para su uso como biotinta para impresión 3D. Además, la presente invención también se refiere a los métodos para la obtención de la composición de la invención, así como al biomaterial 3D y a los diferentes usos tanto de la composición como del biomaterial obtenido.

Description

Figure imgf000002_0001
Composición a base de biopolimeros recom binantes y usos de ja misma como biotinta
La presente invención se refiere a composiciones que comprenden biopoümeros recombinantes sintetizados a base de monómeros de tipo "Recombinámeros Tipo Eiastina” (ELR, de sus siglas en inglés Eiastin-Like Recombinamers), monómeros que comprenden la secuencia denominada“silk’ (seda) procedente del gusano de seda Bombix morí y/o monómeros que comprenden la secuencia denominada HLF y que pertenece a una dase natural de proteínas denominadas zippers. Dichas composiciones son útiles para su uso como biotinta para impresión 3D. Además, la presente invención también se refiere a los métodos para la obtención de la composición de la invención, así como ai biomaterial 3D y a ios diferentes usos tanto de la composición como del biomaterial que la comprende.
ANTECEDENTES DE LA INVENCIÓN
Las técnicas de bioimpresión 3D incluyen estereolitografía, bioimpresión basada en chorro de tinta, bioimpresión basada en láser y bioimpresión basada en extrusión, siendo ésta última la más utilizada. En la bioimpresión basada en extrusión, un hidroge! es introducido dentro de un cartucho y extruido a presión sobre una superficie. Las estructuras impresas se fabrican por deposición capa a capa del material controlando el movimiento temporal y espacial por medio de software CAM - CAD ( Computer Aid Manufacturing - Computer Aid Desigrí) .
Hasta ahora, se han realizado numerosas investigaciones utilizando la técnica de extrusión para mimetizar tejidos tales como hueso, tejido cardiaco, cartílago, hígado, pulmón, tejido nervioso, piel y tejido pancreático (Ozbolat, I.T., et ai Drug Díscovery Today, 2018 21(8): p. 1257-1271). También se ha utilizado para realizar modelados in vitro sobre enfermedades y liberación de fármacos (Vanderburgh, J., et ai. Ann Biomed Eng, 2017. 45(1): p. 164-179).
Los parámetros que debe cumplir un material para poder ser utilizado en bioimpresión 3D se refieren tanto a su proceso de impresión, destacando particularmente la printabilidad, afectada por parámetros fisicoquímicas como son sus propiedades reoiógicas (viscosidad, pseudopiasticidad, viscoelasíicidad y límite elástico) y los mecanismos de entrecruzamiento; y aquellas características que permitan su uso como material biomédico, tales como ¡a biocompatibílidad, destacando que su cinética de degradación debe coincidir con la habilidad de las células para formar su propia matriz extracelular, y sus productos de degradación no deben ser tóxicos para las mismas.
Existe una amplia variedad de materiales utilizados como biotintas, entre los que se encuentran aquellos que se han utilizado a lo largo del tiempo en ingeniería de tejidos, presentando estructura de hidrogeies. Estos hidrogeles utilizados como biotintas se dividen en naturales (por ejemplo: alginato, gelatina, agarosa, ácido hialurónico, quitosano, matriz extracelular descelularizada, péptidos de DNA, y proteínas estructurales como el colágeno, fibroina de seda y fibrina) y sintéticos (por ejemplo: poii(ácido láctico co-glicólico (PLGA), ácido plurónico, polietilenglicol (PEG), poli(ácido L-láctico) (PLA) y poli (e-caprolactona) (PCL)). Pese a la variedad de biotintas existentes, basadas en biopolímeros naturales, sintéticos e incluso en mezclas de ambos, todavía existen muchos inconvenientes que limitan su uso, sobre todo con respecto a las propiedades mecánicas y estructurales de las matrices impresas, ai mostrar en determinados casos una alta hidrofilicidad, lo que limita su uso con células, alta viscosidad que dificulta su impresión, baja integridad de forma, rápida gelificación y entrecruzamiento, etc. Otro de los inconvenientes no superados aún, radica también en la ausencia de biocompatibílidad o de dominios bioactivos que permiten su interacción celular.
Para solventar las desventajas que presentan las biotintas formadas a base de polímeros, mencionadas anteriormente, se han seguido varias estrategias: (1) Métodos de gelificación que estabilicen las estructuras, basados principalmente en procesos físicos (interacciones iónicas, puentes de hidrógeno o interacciones hidrofóbicas), químicos (enlaces covalentes generados por medio de reacciones químicas) o una combinación de ambos (Jungst, T., et al. Chemical Reviews. 2016 1 16(3): 1496-1539); (2) utilización de tintas multicomponentes o híbridas, que intentan suplir normalmente las carencias estructurales de una tinta con la buena printabiiidad de otra, encontrándose mezclas en el estado de la técnica de casi todas las biotintas existentes (Chimene, D., et ai. Ann Biomed Eng. 2016, 44(6): 2090-2102.; (3) utilización de tintas de sacrificio para aportar una mayor estructura y soporte a la impresión y (4) uso de materiales sintéticos como soporte.
Hasta la fecha, existen varias composiciones de biotintas co ercialmente disponibles, como son: Ge!4Cei¡ basada en polímeros de gelatina y combinada con diferentes factores de crecimiento (Bioink Solutions, Inc.), CELLÍNK basada en nanoceiulosa y alginato (CELLINK), Bioink y Osteoink, basadas en de PEG/Gelatina/ácido hialurónico y fosfato de calcio, respectivamente (RegenHU) y Bio127 y bioGel basadas en Pluronic F127 y Gelatina metacrilada, respectivamente (Biobot). La desventaja de este tipo de biotintas radica en que es imposible asegurar su comportamiento en cada lote de producción, ya que los polímeros de gelatina que las forman se obtienen de la hidrólisis del colágeno de animales y por lo tanto no se puede asegurar su similitud.
Aunque se han hecho grandes progresos en el desarrollo de nuevas biotintas y sus técnicas de bioimpresión, todavía existe la necesidad de encontrar nuevos biomateriales que cumplan con todos los requisitos necesarios que exige una biotinta adecuada, tales como una buena printabiiidad y fidelidad de forma. Específicamente, sería deseable desarrollar nuevos biomateriales con capacidades de gelificación o solidificación rápidas que proporcionen un ambiente protector para su impresión con células, así como biomateriales que se puedan usar a bajas concentraciones, generando propiedades biomecánicas adecuadas y una gran porosidad.
DESCRIPCIÓN DE LA INVENCIÓN
La presente invención describe nuevos biopolímeros recombinantes de tipo ELR formados por monómeros de dominios presentes en la elastina natural además de monómeros que comprenden la secuencia denominada“silk” (seda) y/o monómeros que comprenden la secuencia denominada HLF que pertenece a una clase natural de proteínas denominadas zippers , que no son tóxicos, y por tanto, adecuados para su uso como biotintas. Específicamente, la presente invención se refiere a composiciones que comprenden dichos biopolímeros, y concretamente para su uso como biotinta para impresión 3D.
Los biomateriales basados en ELRs han demostrado un gran potencial en ingeniería de tejidos, debido fundamentalmente a que se caracterizan por su extraordinaria biocompatibilidad, biodegradabilidad y propiedades mecánicas ajustabies, asimismo pueden generar una gran variedad de estructuras autoensambladas tales como icelas, nanopartículas, hidrogeles, membranas o nanofibras. Dichos polímeros se utilizan actualmente en una gran variedad de aplicaciones biomédicas como: terapia génica, sistemas de liberación de vacunas, bíofuncionalización de superficies y como hidrogeles para aplicaciones de ingeniería de tejidos. Los ELRs permiten el crecimiento y la proliferación celular y no inducen ninguna respuesta inmune en sistemas biológicos siendo, por tanto, susceptibles de ser implantados. En el campo de la ingeniería de tejidos, estos materiales se han utilizado para la regeneración de cartílago y disco íntervertebra!, injertos vasculares y tejidos oculares y hepáticos.
Debido a su producción mediante la tecnología del ADN recombinante, la estructura aminoacídica de ios ELR puede diseñarse para modular su entrecruzamiento o su capacidad de autoensamblado siendo capaces de autoensamblarse en hidrogeles físicos y/o químicos, con la subsiguiente mejora de las propiedades mecánicas, propiedad que se utilizará para favorecer su uso como biotintas en una bioimpresora 3D. Además, se pueden impiementar en su secuencia otras funciones, por medio de la fusión de otras proteínas o la inclusión de dominios bioactivos como son los motivos de adhesión celular (RGD, REDV, entre otros), factores de crecimiento o metaloproteinasas para favorecer ia desagregación de la estructura final.
Aparte de ios requisitos biológicos, los biopolímeros ELRs descritos en esta invención presentan otras peculiaridades que pueden ser empleadas para su uso como biotintas. Estos materiales manifiestan una capacidad de respuesta a ia temperatura que puede ser explotada para la bioimpresión 3D: debido al rápido cambio conformacional que el polímero sufre por encima de una cierta temperatura, el polímero es capaz de mantener un estado líquido en el cartucho de la impresora, cambiando de forma rápida a un estado gel cuando se deposita sobre una placa calefactada. Su inyección, por tanto, se produce en estado líquido y con bajas viscosidades, reduciendo el esfuerzo aplicado sobre la aguja, lo que facilita su deposición y protege a las células de la posible rotura de su membrana. Este comportamiento, denominado "Transición inversa con la Temperatura" o “inverso Temperature Transition (ITT)”, se caracteriza por una temperatura de transición, Tt, que depende de la polaridad media poliméríca, pudiendo ser modulada a través de ia variación de ia composición aminoacídica presente en la secuencia de los biopolímeros ELRs. Así, las composiciones de la invención, que comprenden ios biopolímeros aquí descritos, gracias a la propiedad ITT las hace pasar de un estado hidratado y desordenado cuando se encuentran por debajo de su temperatura Tt, a un plegamiento hidrofóbico ordenado cuando se sobrepasa esa Tt. La utilización de esta propiedad única permite ei uso de dichas composiciones como biotintas ya que son capaces de generar filamentos poliméricos depositables bajo un sistema de extrusión con temperatura controlada. Dichos filamentos se depositan con alta precisión y permiten la formación de matrices estructurales que muestran fidelidad de forma en el tiempo y en el espacio, permitiendo diseñar estructuras complejas, capa a capa, con gran versatilidad, fiabilidad y reproducibilidad.
Los biopolímeros que forman parte de la composición descrita en la presente invención, comprenden diferentes monómeros de tipo ELR, junto con monómeros que comprenden secuencias de refuerzo para la gelificación, preferiblemente monómeros que comprenden la secuencia denominada HLF que pertenece a una ciase natural de proteínas denominadas zippers, y monómeros que comprenden secuencias de refuerzo para la estructura, preferiblemente monómeros que comprenden la secuencia denominada“silk” (seda) procedente de gusanos de seda.
Los monómeros de tipo ELR utilizados en la presente invención para la obtención de ios biopolímeros descritos se basan todos ellos en la utilización del mismo dominio de tipo elastina VPGXG (SEG ID NO: 7), donde X puede ser cualquier aminoácido excepto el aminoácido L-prolina, siendo preferidos los aminoácidos vaiina, ácido glutámico e isoleucina. Entre ios monómeros de tipo ELR utilizados en la presente invención se encuentran los monómeros B.
El monómero B es hidrofíiico y presenta una composición diseñada para no transicionar en el rango de las temperaturas fisiológicas. A efectos de la presente invención ei monómero B comprende repeticiones de! peptapéptido VPGXG (SEG I D NO: 7), más específicamente ei monómero B comprende repeticiones de ios peptapéptidos VPGVG (SEQ ID NO: 7) y VPGEG (SEQ ID NO: 7), más específicamente aún, el monómero B comprende la secuencia SEG ID NO: 2 ([(VPGVG)2(VPGEG)(VPGVG)2].
El monómero C es hidrofóbico y presenta una composición diseñada para producir una transición y provocar un entrecruzamiento físico inicial a temperaturas por debajo de la temperatura fisiológica. A efectos de la presente invención el monómero C comprende repeticiones del peptapéptido VGiPG (SEQ ID NO: 3), más específicamente el monómero C en ¡os biopoh'meros de la invención comprende de entre 2 a 250 repeticiones de ¡a SEQ ID NO: 3, más específicamente de 40 a 80 repeticiones de ¡a SEQ ID NO: 3, más específicamente aún, comprende 60 repeticiones de la secuencia SEQ ID NO: 3
Entre ¡os monómeros utilizados para mejorar la gelificación dei biopolímero de la invención se encuentra el monómero Y que comprende una combinación entre la secuencia polimérica anfifílica del dominio de tipo elastina y la secuencia denominada “siik” procedente de! gusano de seda Bombix morí (SEQ ID NO: 8; GAGAGS). A efectos de la presente invención, el monómero Y comprende repeticiones de ¡a secuencia aminoacídica SEQ ID NO: 8, más preferiblemente, el monómero Y comprende de entre 1 a 15 repeticiones de la SEQ ID NO: 8, más preferiblemente 5 repeticiones. En otra realización más preferida, el monómero Y comprende la secuencia aminoacídica según se define en la SEQ ID NO: 5.
Entre los monómeros utilizados para mejorar la estructura del biopolímero de la invención se encuentra el monómero X que comprende secuencias de refuerzo para ¡os biopolí eros de la invención. Dicho monómero X comprende la secuencia de aminoácidos del motivo estructural “zippe’ que es una secuencia aminoacídica conocida como HLF y que pertenece a una ciase natural de proteínas denominadas zippers, preferiblemente dicho motivo zipper pertenece a la clase de proteínas naturales zippers humanas A efectos de la presente invención, el monómero X comprende una secuencia aminoacídica según se define en la SEQ ID NO: 4.
Los biopolímeros descritos en la presente invención comprenden por tanto, diferentes repeticiones de los monómeros descritos anteriormente, para dar lugar a biopolímeros útiles como biotintas para impresión 2D y/o 3D.
Así, en un primer aspecto, la presente invención se refiere a una composición que comprende un biopolímero que comprende las secuencias aminoacídicas que forman ios monómeros B, C y ai menos el monómero X, Y o ambos.
Tal y como se muestra en ¡os ejemplos incluidos en el presente documento, la composición de la invención, que comprende al menos un biopolímero recombinante formado por los monómeros descritos anteriormente es útil para su uso como biotinta cuando dicha composición preferiblemente comprende un biopolímero que además de los monómeros de tipo ELR (B y C) comprende en su secuencia una combinación de ios monómeros X e Y, o incluso una combinación de biopoiimeros donde ei primero de ios biopoiimeros comprende en su secuencia además de los monómeros de tipo ELR (B y C) comprende ei monómero X y ei segundo biopolímero comprende en su secuencia además de ios monómeros de tipo ELR (B y C) el monómero Y. Así, la inclusión en el biopolímero del monómero X que comprende el dominio z/pperjunío con el resto de monómeros hace que las interacciones anfifílicas del hidrogel físico formado, se estabilizan mediante la formación de interacciones coüed-coii procedentes de la cremallera de la secuencia del dominio zipper. Este fenómeno se observa físicamente, dado que la transición propia de los monómeros de tipo ELR con la temperatura se ve acelerada y reforzada gracias a dichas interacciones“zipper', por lo que la composición de ia invención al ser usada como biotinta muestra una buena printabilidad en forma de filamentos depositadles, y una buena estabilidad a corto plazo. En cambio, tai y como se puede observar en ios ejemplos (ver Ejemplo 4) si la composición comprende exclusivamente un biopolímero que comprende además de los monómeros ELR ei monómero X, dicha estabilidad puede no mantenerse con el tiempo, debido a la reversibilidad de las interacciones.
Por otro lado, la inclusión del monómero Y que comprende la secuencia silk junto con el resto de monómeros que forman la composición de la invención, forman un biopoií ero en forma de hidrogel a través de entrecruzamientos físicos anfifiiicos, y donde dicho biopolímero está estabilizado a través de ia formación de láminas b procedentes de ia secuencia silk. Esta composición que comprende ios monómeros de tipo ELR y el monómero Y, sin incluir ei monómero X, no permite la realización de una impresión fidedigna, dado que su extrusión a través de la jeringa de ia impresora 3D no es homogénea, no forma filamentos y por tanto, no retiene la forma una vez impresa (ver Ejemplo 4). En cambio, dicha composición, tal y como se observa en el Ejemplo 4 muestra una gran estabilidad con el tiempo. En este caso, la transición que se produce a través del mecanismo de ITT, no es io suficientemente rápida como para que ei polímero depositado mantenga su estructura, puesto que las interacciones reforzantes son más lentas y por tanto eficaces en una etapa posterior a la etapa de impresión.
Teniendo en cuenta io anterior, la composición de la invención por tanto, comprenderá un biopolímero que comprenda ios monómeros B, C, X y/o Y, más preferiblemente la composición de la invención comprenderá un biopoh'mero que comprenda ios monómeros B, C, X e Y, o alternativamente una combinación de biopoiímeros donde el primero de los biopoiímeros comprenda los monómeros B, C y X y ei segundo de ios biopoiímeros comprenda los monómeros B, C e Y.
Teniendo en cuenta lo anteriormente mencionado, la presente invención se fundamenta en ios siguientes pilares:
- Combinación de monómeros que comprenden secuencias de tipo ELR (monómeros B) y monómeros C junto con monómeros que comprenden secuencias de tipo silk (monómero Y) y zipper (monómero X); o combinaciones de biopoiímeros que comprenden monómeros de tipo ELR junto con monómeros silk (monómero Y) y biopoiímeros que comprenden monómeros de tipo ELR (monómeros B) y monómeros C junto con monómeros zipper (monómero X). De esta manera, ios monómeros X aportan la printabilidad necesaria es decir la capacidad del mantenimiento inicia! de la estructura, mientras que ios monómeros Y aseguran que la estructura se mantenga a lo largo del tiempo
- Las concentraciones de los biopoiímeros (ver Ejemplo 3) que forman la composición de la invención permiten su disolución en varios disolventes, mostrando baja viscosidad y comportamiento newtoniano (ver Ejemplo 4), por lo que facilitan su impresión en impresoras 3D, evitando la aplicación de grandes fuerzas de impresión que pueden dañar tanto la impresora como los materiales que se encuentren en disolución junto con la biotinta, así como facilitando el uso de agujas que contengan menores diámetros, permitiendo la formación de filamentos más finos.
- Las composiciones de la invención permiten su uso en impresión 2D y/o 3D con muy buena fidelidad de forma (ver Ejemplos 4 y 6). Permiten además, ser utilizadas para la impresión de soportes y encapsuiación de gran variedad de principios activos y células, siendo por tanto útiles en biomedicina, por ejemplo, aunque sin limitarnos, en medicina regenerativa, por ejemplo, para el crecimiento celular in vitro o in vivo en procedimientos de terapia celular para la regeneración tisular. Para ello, las células y/o principios activos están, preferiblemente, dispersos homogéneamente en las composiciones de la invención, de manera que tras su impresión, queden repartidos predeterminadamente en la matriz y permitan una liberación controlada de! principio activo o bien una buena adhesión y proliferación de ias células, llegando a regenerar ios tejidos dañados y actuando, por tanto, como un implante eficaz y como una matriz extracelular natural
- La deposición de estas composiciones como biotintas sobre la superficie de impresión se realiza controladamente a través de un diseño previamente estipulado por el inventor a través de un software específico. El proceso de impresión requiere el mantenimiento del cabezal de extrusión a baja temperatura, por debajo de la Ti de la composición, mientras que la temperatura de ¡a cama calefactora se mantiene por encima de ¡a Tt de la composición. De esta manera, la composición en disolución de la jeringa transiciona justo cuando es depositado, de manera que pasa de un estado desorganizado y líquido cuando se encuentra en la aguja, a un estado de hidratación hidrófoba ordenado cuando es dispensada en ¡a cama, logrando así la formación de filamentos sobre la cama, que pueden depositarse capa a capa, manteniendo la estructura.
- Además, la composición de la invención puede comprender además al menos otro monómero D, donde dicho monómero D comprende secuencias de dominios bioactivos, tales como por ejemplo motivos de adhesión celular de tipo RGD, REDV, factores de crecimiento como el VEGF o metaioproteinasas que favorezcan la disgregación controlada de las estructuras formadas, etc. El hecho de introducir en los biopolímeros que comprenden la composición de la invención este tipo de dominios bioactivos permite diseñar estructuras con diferentes funcionalidades y bioactividades, dirigidas a la inclusión de por ejemplo, secuencias de unión celular específicas, recombinantemenfe introducidas en su secuencia, no existiendo esta posibilidad en ninguna biotinta existente actualmente. La Introducción de diferentes secuencias predeterminará, por ejemplo, el comportamiento celular sobre las estructuras podiendo llegar a generar matrices con zonas celulares bien diferenciadas, propiedad necesaria para el diseño mimético de tejidos o microórganos que puedan ser implantados.
Por tanto, en un primer aspecto, la presente invención se refiere a una composición que comprende un biopolímero que comprende los monómeros B, C y al menos el monómero X, Y o a bos, donde,
B es una secuencia aminoacídica formada a base de repeticiones de! dominio de tipo ELR (SEQ ¡D NO: 7), ta! y como se ha mencionado anteriormente, más preferiblemente, el monómero B comprende la SEQ ID NO: 2,
C es una secuencia aminoacídica formada a base de repeticiones de un dominio de tipo ELR, más preferiblemente, e! monómero C comprende la SEQ ID NO: 3,
X es una secuencia aminoacídica que comprende e! motivo estructura!“zippei”, más preferiblemente, el monómero X comprende la SEQ ID NO: 4, e
Y es una secuencia aminoacídica que comprende una combinación entre la secuencia del dominio de tipo elastina y la secuencia denominada“silk” procedente de! gusano de seda Bombix morí (SEQ ID NO: 8; GAGAGS), más preferiblemente, e! monómero Y comprende la SEQ ID NO: 5.
En otra realización preferida, la composición de la invención comprende además el monómero D. Más preferiblemente, e! monómero D es una secuencia de unión celular que comprende al menos un péptldo que se selecciona de la lista que consiste en: RGD (Arg-G!y~Asp), como dominio de adhesión celular del receptor de integrinas anb3, a5b1 y a!Iόb3 (SEQ ID NO: 9), LDT (SEQ ID NO: 27), SEQ ID NO: 10, SEQ ID NO: 17, SEQ ID NO: 18 o SEQ ID NO: 19, o un dominio de unión a heparina o un dominio de unión a azúcares derivado de lectina, aglutinina, factores de crecimiento, metaloproteinasas, además de las secuencias GTAR (SEQ ID NO: 28) y DRIR (SEQ ID NO: 29) que pertenecen a la enzima uPA ( urokinase píasminogen activator system ) y otras secuencias similares que favorecen la degradación proteica. Preferiblemente, el monómero D comprende el dominio RGD (SEQ ID NO: 9) y es preferiblemente la SEQ ID NO: 6.
El dominio RGD es bien conocido y consiste, como su nombre indica, en los aminoácidos arginina, glicina y ácido aspártico. Este dominio es reconocido por proteínas de la superficie celular de diversos tipos celulares y funciona como un dominio de adhesión celular. El dominio REDV (SEQ ID NQ: 10), también bien conocido, y que consiste, como su nombre indica, en los aminoácidos arginina, ácido glutámico, ácido aspártico y vaiina; también funciona como un dominio de adhesión celular y es reconocido por células endotelíales. Un dominio de unión a heparina funciona como dominio de unión celular puesto que es un dominio de unión a glicosa inoglicanos de la superficie celular. Igualmente, un dominio de unión a azúcares permite la unión a las células a través de los azúcares que presentan las glicoproteínas de membrana. La ¡ecíina y la aglutinina tienen dominios bien conocidos de unión a azúcares. SEQ ID NO: 18 está presente en la iaminina y es reconocida por diversos tipos celulares, SEQ ID NO: 19 es reconocida por neuritas, es decir, cualquier expansión del soma de una neurona, ya sea una dendrita o un axón. Estas secuencias, que forman parte del biopoiímero de la invención, son reconocidas por sus respectivos tipos celulares y propician su unión. Los biopoiimeros que contengan SEQ ID NO: 10 o SEQ ID NO: 19 se pueden emplear en la generación de tejidos.
Adicionaimente, los biopoiimeros de la invención, pueden comprender opcicnalmente un monómero adicional, monómero A, que puede estar unido a su extremo 5 y que es el resultado de la transcripción de una secuencia nucleotídica iniciadora. Así, el monómero A puede comprender la SEQ ID NO: 20, que es el resultado de la transcripción de la secuencia nucleotídica SEQ ID NO: 1.
Las secuencias aminoacídicas (se puede usar el término“péptidos” indistintamente para referirse a las secuencias aminoacídicas) que forman ios monómeros de acuerdo con las estructuras descritas que dan lugar a ios biopoiimeros de la invención, pueden estar unidos por enlace covalente o cualquier otro tipo de enlace que dé lugar a una estructura que mantenga las propiedades de ios biopoiimeros de la presente invención. El enlace se selecciona, aunque sin limitarse, de la lista que comprende puentes de hidrógeno, apareamiento iónico, asociación hidrofóbica o formación de complejos de inclusión.
En una realización preferida, ios monómeros que forman parte de los biopoiimeros de la invención pueden estar unidos entre sí directamente, o mediante secuencias que facilitan su unión denominadas poiipéptidos espaciadores o linkers.
Así, a efectos de la presente invención, el término“linker” o“polipéptido espaciador”, se refiere a una secuencia de aminoácidos corta, preferiblemente, de hasta 20 aminoácidos de longitud, más preferiblemente, de hasta 15 aminoácidos de longitud, más preferiblemente de hasta 10 aminoácidos de longitud, y aún más preferiblemente, de hasta 5 aminoácidos de longitud, situada entre las secuencias de aminoácidos de ios monómeros B, C, X, Y y/o D que forman los biopoiimeros de la invención según se describen de manera general o en las fórmulas (I) o (II) definidas más adelante, permitiendo la unión entre ios diferentes monómeros. Ventajosamente, dicho polipéptido espaciador es un péptido con flexibilidad estructural, tai como un péptido que da lugar a un dominio no estructurado. Prácticamente cualquier péptido con flexibilidad estructural puede ser utilizado como péptido espaciador; no obstante, ejemplos ilustrativos, no limitativos, de dichos péptídos espaciadores incluyen péptidos que contienen repeticiones de restos de aminoácidos, e.g., de Val, Giy y/o Ser, o cualquier otra repetición adecuada de restos de aminoácidos.
En otra realización preferida, la composición de la invención se caracteriza por que el biopolímero que la comprende tiene la estructura (I):
[(Bb-Ccj-ZJn-Dd donde B, C y D son los monómeros descritos anteriormente,
Z se selecciona entre los monómeros X e Y definidos anteriormente,
b tiene valores de entre 5 y 15,
c tiene valores de entre 50 y 70;
z tiene valores de entre 1 y 5
n tiene valores de entre 1 y 5, y
d tiene valores de entre 0 y 3.
En otra realización preferida de la composición de la invención, más específicamente de la composición que comprende el biopolímero con estructura (I), el monómero Z es la SEQ ID NO: 4. En otra realización preferida de la composición de la invención, más específicamente de la composición que comprende el biopolímero con estructura (I), el monómero Z es la SEQ ID NO: 5.
En una realización más preferida, la composición de la invención se caracteriza por que comprende una combinación de biopolímeros de estructura (I) donde el primer biopolímero comprende el monómero Z de SEQ ID NO: 4 y se encuentra en dicha composición a una concentración de al menos un 20% en peso, preferiblemente de entre un 20 a un 40% en peso, más preferiblemente ai menos un 40% en peso, y el segundo biopolímero comprende el monómero Z de SEQ ID NO: 4 y se encuentra en la composición a una concentración de al menos un 60% en peso, preferiblemente de entre un 60% a un 80% en peso.
En otra realización preferida de la composición de ¡a invención, esta se caracteriza por que ei biopolímero que la comprende tiene la estructura (II):
Z1z-[(Bb-Cc)-Z2z]n-Ddl donde B, C y D se han definido previamente,
Z1 es una secuencia amínoacídica que comprende el motivo estructural“zsppe , más preferiblemente, comprende el monómero X, más preferiblemente aún comprende la SEQ ID NO: 4, y
Z2 es una secuencia amínoacídica que comprende que comprende el motivo estructural “silk”, más preferiblemente, comprende el monómero Y, más preferiblemente aún comprende la SEQ ID NO: 5,
b, c, z, n y d se han definido previamente.
En otra realización preferida de la composición de la invención, esta se caracteriza por que b tiene un valor de 10, c tiene un valor de 60, z tiene un valor de 1 , n tiene un valor de 2 y d tiene un valor de 0 o 1.
En otra realización preferida, la composición de la invención comprende al menos uno de ios biopolímeros con estructura (I) que se seleccionan de la lista que consiste en: SEQ ID NO: 12, SEQ ID NO: 13, SEQ ID NO: 14, SEQ ID NO: 15 o combinaciones de ios mismos.
En otra realización preferida, la composición de la invención comprende una combinación de biopolímeros de estructura (i) donde ei primer biopolímero comprende una secuencia que se selecciona de la lista que consiste en: SEQ ID NO: 12 o SEQ ID NO: 15, más preferiblemente la SEQ ID NO: 15, y ei segundo biopolímero comprende una secuencia que se selecciona de la lista que consiste en: SEQ ID NO: 13 o SEQ ID NO: 14, más preferiblemente la SEQ ID NO: 14.
En otra realización más preferida, la composición de la invención comprende el biopolímero de SEQ ID NO: 16. En otra realización preferida, la composición de la invención puede comprender además, células, moléculas bioactivas, principios activos o combinaciones de los mismos.
En la Tabla 1 se muestran ios diferentes biopolímeros descritos en la presente invención, junto con cada uno de los monómeros que los comprenden y la estructura de cada uno.
Tabla 1. Caracterización de los biopolímeros de ¡a invención.
Figure imgf000015_0001
Un segundo aspecto de la presente invención se refiere a un ácido nucleico que comprende una secuencia nucleotídica que codifica para la secuencia aminoacídica del biopolímero del primer aspecto de la invención.
El ácido nucleico (en adelante, ácido nucleico de la invención) incluye secuencias de ácido nucleico cuyo producto de la transcripción, el ARN mensajero (ARNm) codifica para la misma secuencia de aminoácidos (en adelante, secuencia de aminoácidos de la presente invención o secuencia de aminoácidos de la invención). También se incluyen secuencias variantes degeneradas de las secuencias nucleotídicas de la invención, cuyo producto es un biopolímero con las mismas características que el biopolímero de la invención. También se incluyen secuencias de nucleótidos que codifiquen para secuencias aminoacídicas que tengan modificaciones en su extremo N-terminal, C- termína! y/o en alguna posición aminoacídica interna de modo que la función del biopolímero resultante sea la misma que la que resulta de la traducción de la secuencia de ARNm transcrita a partir de la secuencia de nucleótidos de la invención. La secuencia de aminoácidos puede estar codificada por cualquier secuencia nucleotídica que de lugar a cualquiera de las secuencias de aminoácidos de la invención. Debido a que el código genético es degenerado, un mismo aminoácido puede ser codificado por diferentes codones (tripletes), por ello, la misma secuencia de aminoácidos puede ser codificada por distintas secuencias de nucleótidos.
Tal y como se ba mencionado anteriormente, las secuencias nucleotídicas que codifican para los monómeros B, C, X, Y, y/o D que comprenden los biopolímeros de la invención, pueden estar unidas entre sí directamente, o mediante polipéptidos espaciadores o linkers A efectos de la presente invención, la secuencia polinucleotídica que codifica para cada uno de los biopolímeros de la invención, puede por tanto, comprender linkers.
En una realización preferida, las secuencias nucleotídicas que codifican para cada uno de los biopolímeros de la invención se seleccionan de la lista que consiste en: SEQ ID NO: 21 , que codifica para el biopolímero 1 que comprende la SEQ ID NO: 1 1 ; la SEQ ID NO: 22 que codifica para el biopolímero 2 que comprende la SEQ ID NO: 12; la SEQ
ID NO: 23 que codifica para el biopolímero 3 que comprende la SEQ ID NO: 13; la SEQ
ID NO: 24 que codifica para el biopolímero 4 que comprende la SEQ ID NO: 14; la SEQ
D NO: 25 que codifica para el biopolímero 5 que comprende la SEQ ID NO: 15 y la SEQ
D NO: 26 que codifica para el biopolímero 6 que comprende la SEQ ID NO: 16. El ácido nucleico de ia presente invención puede tener unido a su extremo 5' una secuencia nucieotídica que sirva de secuencia iniciadora de la transcripción. La secuencia puede ser, pero sin ¡imitarse, ¡a secuencia nucieotídica SEQ ¡D NO: 1 , que codifica en cada biopoiímero de ¡a invención para la secuencia a inoacídica SEQ ID NO: 20, también denominado monómero A en ia estructura final de cada biopoiímero. Asimismo, el ácido nucleico de la presente invención puede tener unido a su extremo 3' una secuencia de terminación de ia transcripción como por ejemplo, pero sin limitarse, ¡a secuencia GTATGA.
La secuencia nucieotídica que codifica para la secuencia aminoacídica de los biopoiímeros que forman parte de la composición de la presente invención, se inserta en un vector de expresión. Así, un aspecto más de ¡a presente invención se refiere a un vector de expresión que comprende el ácido nucleico de la invención.
A efectos de ia presente invención, el término“vector de expresión” se refiere a un fragmento de ADN que tiene la capacidad de replicarse en un determinado huésped y, como el término indica, puede servir de vehículo para multiplicar otro fragmento de ADN que haya sido fusionado al mismo (inserto) inserto se refiere a un fragmento de ADN que se fusiona ai vector; en el caso de la presente invención, el vector puede comprender cualquiera de ¡as secuencias nucleofídicas que codifican para cualquiera de ¡os biopoiímeros de la invención, fusionadas al mismo, que puede replicarse en el huésped adecuado. Los vectores pueden ser plásmidos, cósmidos, bacteriófagos o vectores virales, sin excluir otro tipo de vectores que se correspondan con ia definición realizada de vector.
La transfección de una célula, definida en un párrafo anterior, se lleva a cabo con técnicas conocidas en el estado de la técnica, por ejemplo pero sin limitarse, con electroporación, con biolística, Agrobacíeríum tumefaciens o cualquier otra técnica que permita la integración de cualquiera de ¡os ácidos nucleicos de la invención en el ADN de ¡a célula huésped, ya sea genómico, cloroplástico o mitocondriai.
La expresión del ácido nucleico en la célula de la invención da lugar a un biopoiímero que puede ser purificado mediante técnicas conocidas en el estado de ¡a técnica, como ya se ha mencionado anteriormente. Un tercer aspecto de la presente invención se refiere a una célula aislada transfectada con el ácido nucleico del segundo aspecto de la Invención. El término“célula” tai como se entiende en la presente invención hace referencia a una célula procariótica o eucariótica. La célula puede ser una bacteria capaz de replicar un ADN ajeno transformado como por ejemplo cualquiera de las cepas de la especie Escheríchia coü o una bacteria capaz de transferir el ADN de interés ai interior de una planta como por ejemplo Agrobacteríum tumefaciens. Preferiblemente, la célula hace referencia a una célula eucariótica vegetal y dentro de este grupo, más preferiblemente, a aquellas células pertenecientes al reino Plantae. Así pues, en el caso de que la célula sea vegetal, el término célula comprende, al menos, una célula del parénquima, célula meristemática o de cualquier tipo, diferenciada o indiferenciada. Asimismo, también se incluye en esta definición un protoplasto (célula de una planta que carece de pared celular).
El término“transfección” hace referencia a la introducción de material genético externo en células mediante plásmidos, vectores víricos (en este caso también se habla de transducción) u otras herramientas para la transferencia. El término transfección para métodos no-virales es usado en referencia a células eucarióticas de mamífero, mientras que el término transformación se prefiere para describir las transferencias no-virales de material genético en bacterias y células eucariotas no animales como hongos, algas o plantas. Una vez establecida su secuencia, los biopolímeros que comprenden ¡a composición de la invención, pueden ser objeto de tratamientos adicionales tales como procesos de homogeneización y purificación, ampliamente conocidos en el estado de la técnica, que ayuden a obtener el nivel de citocompatibilidad deseado, permitiendo su uso combinado con células u otras moléculas bioactivos y/o componentes con diferentes actividades diagnósticas, e incluso en combinación con composiciones que se utilizan como biotintas, tales como por ejemplo, biotintas naturales a base de alginato, gelatina, agarosa, ácido hialurónico, quitosano, matriz extraceiular desceiuiarizada, péptidos de DNA, y proteínas estructurales como el colágeno, fibroina de seda y fibrina; biotintas sintéticas tales como por ejemplo, poli(ácido láctico co-glicólico (PLGA), ácido plurónico, polietilenglicol (PEG), poli(ácido L-láctico) (PLA) y poli (e-caprolactona) (PCL). Asimismo, pueden procesarse a través de diferentes etapas mecánicas, enzimáticas y/o químicas para alcanzar las propiedades poliméricas deseadas, tanto morfológicas como físicas. También se utilizarán varios procesos de caracterización para asegurar su uso en perfectas condiciones, como son el análisis de su composición aminoacídíca, caracterizaciones físicas o el análisis reoiógico de las biotintas formadas por las composiciones descritas en la presente invención.
Un cuarto aspecto de la presente invención se refiere al uso de la composición de la invención como biotinta, preferiblemente como biotinta para impresión 3D.
Un quinto aspecto de la presente invención se refiere a la biotinta que comprende la composición según se describe en la presente invención.
A efectos de la presente invención, las biotintas se preparan utilizando componentes estériles y asegurando siempre su uso bajo condiciones de esterilidad. Los diferentes biopolímeros diseñados para formar las biotintas descritas, pueden ser impresos con células o sin células, y también se pueden usar como soporte para otras biotintas tales como materiales preparados a partir de tejidos y órganos descelularizados.
Un sexto aspecto de la presente invención se refiere a un biomaterial 3D que comprende la composición de la invención.
En cualquiera de las realizaciones descritas aquí, las composiciones, biotinta y biomateriales descritas en la invención pueden incluir además uno o más agentes (por ejemplo, excipientes, aditivos, principios activos, agentes biológicamente activos, etc.,) adecuados para los fines previstos, que incluyen agentes terapéuticos (por ejemplo, agentes biológicamente activos) y muestras biológicas. Típicamente, se dice que la adición de tales agentes "funcionaliza" la composición, biotinta o biomaterial, proporcionando funcionalidad añadida. Ejemplos no limitantes de dichos agentes adecuados para ser añadidos para la funcionalización de las composiciones, biotintas y biomateriales de la invención, incluyen, pero no se limitan a: partículas conductoras o metálicas; partículas inorgánicas; tintes/pigmentos; fármacos o principios activos (por ejemplo, antibióticos, moléculas pequeñas o compuestos orgánicos de bajo peso molecular); proteínas y fragmentos o complejos de ios mismos (por ejemplo, enzimas, antígenos, anticuerpos y fragmentos de unión a antígeno de ios mismos); células y fracciones de las mismas (virus y partículas virales, células procariotas tales como bacterias, células eucariotas tales como células de mamíferos y células vegetales, hongos).
El término "agente biológicamente activo" como se usa en el presente documento se refiere a cualquier molécula que ejerce al menos un efecto biológico in vitro o in vivo. Por ejemplo, el agente biológicamente activo puede ser un agente terapéutico para tratar o prevenir un estado o condición de enfermedad en un sujeto. Los agentes biológicamente activos incluyen, sin limitación, moléculas orgánicas, materiales inorgánicos, proteínas, péptidos, ácidos nucleicos (por ejemplo, genes, fragmentos de genes, secuencias reguladoras de genes y moléculas anfisentido), nucleoproteínas, polisacáridos, glicoproteínas y iipoproteínas. Las clases de compuestos biológicamente activos que pueden incorporarse en la composición descrita en la presente incluyen, sin limitación, agentes anticancerígenos, antibióticos, analgésicos, agentes antiinflamatorios, inmunosupresores, inhibidores de enzimas, antihistamínicos, anticonvulsivos, hormonas, relajantes musculares, antiespasmódicos, oftálmicos agentes, prostagiandinas, antidepresivos, sustancias antipsicóticas, factores tróficos, proteínas osteoinductivas, factores de crecimiento y vacunas.
En algunas realizaciones, el aditivo es un agente terapéutico. Como se usa en este documento, el término "agente terapéutico" significa una molécula, grupo de moléculas, complejo o sustancia administrada a un organismo con fines de diagnóstico, terapéuticos, médicos preventivos o veterinarios. Como se usa en este documento, el término "agente terapéutico" incluye un "fármaco" o una "vacuna". Este término también puede incluir específicamente ácidos nucleicos y compuestos que comprenden ácidos nucleicos que producen un efecto terapéutico.
El término "agente terapéutico" también incluye un agente que es capaz de proporcionar un efecto biológico, fisiológico o terapéutico local o sistémico en el sistema biológico ai que se aplica. Por ejemplo, el agente terapéutico puede actuar para controlar la infección o inflamación, potenciar el crecimiento celular y la regeneración tisular, controlar el crecimiento tumoral, actuar como analgésico, promover la unión anti-céiula y potenciar el crecimiento óseo, entre otras funciones. Otros agentes terapéuticos adecuados pueden incluir agentes antiviraies, hormonas, anticuerpos o proteínas terapéuticas. Otros agentes terapéuticos incluyen profármacos, que son agentes que no son biológicamente activos cuando se administran pero, tras la administración a un sujeto, se convierten en agentes biológicamente activos a través del metabolismo o algún otro mecanismo. Adicionalmente, una composición de suministro de fármaco a base de seda puede contener un agente terapéutico o combinaciones de dos o más agentes terapéuticos.
En algunas realizaciones, el agente estimula la formación de tejido, y/o la curación y el recrecimiento de tejidos naturales, y cualquier combinación de los mismos. Los agentes que aumentan la formación de nuevos tejidos y/o estimulan la curación o el recrecimiento del tejido nativo en el sitio de la inyección pueden incluir, entre otros, factores de crecimiento (factor de crecimiento de fibroblastos (FGF), factor de crecimiento transformante beta (TGF-beta, plaquetas) factor de crecimiento derivado (PDGF), factores de crecimiento epidérmico (EGF), péptidos activados por el tejido conectivo (OTAR), factores osteogénicos que incluyen proteínas morfogénicas óseas, heparina, angiotensina li (A- 1 i ) y fragmentos de los mismos, factores de crecimiento tipo insulina, factores de necrosis tumorai, interleucinas, factores estimuladores de colonias, eritropoyetina, factores de crecimiento nervioso, interferones, análogos biológicamente activos, fragmentos y derivados de tales factores de crecimiento, y cualquier combinación de los mismos.
En algunas realizaciones, el agente es un agente de curación o cicatrización de heridas. Como se usa en el presente documento, un "agente de curación o cicatrización de heridas" es un compuesto o composición que promueve activamente el proceso de cicatrización de heridas.
En ciertas realizaciones, los agentes activos descritos en este documento son inmunógenos. En una realización, el inmunógeno es una vacuna.
En algunas realizaciones, el agente puede ser una célula, por ejemplo, una célula biológica. Las células útiles para la incorporación en la composición pueden provenir de cualquier fuente, por ejemplo, mamífero, Insecto, planta, etc. En algunas realizaciones, la célula puede ser una célula humana, células de primate, células de mamífero, células de roedor, etc., preferiblemente una célula humana. En algunas realizaciones, la célula puede ser una célula genéticamente modificada. Una célula puede modificarse genéticamente para expresar y secretar un compuesto deseado, por ejemplo, un agente bioactivo, un factor de crecimiento, un factor de diferenciación, citoquinas y similares. Los métodos para modificar genéticamente células para expresar y secretar compuestos de interés son conocidos en ia técnica y son fácilmente adaptables por un experto en la técnica.
En algunas realizaciones, las composiciones, biotintas y biomateriales de la invención pueden incluir un colorante, tal como un pigmento o tinte o una combinación de ios mismos. Se pueden incluir pigmentos y colorantes orgánicos y/o inorgánicos, fluorescentes, etc.
Por lo tanto, a ia vista de lo descrito anteriormente, otro aspecto de la presente invención se refiere a ia composición, biotinta y biomaterial según se describen en la misma para su uso como medicamento.
Otro aspecto de la presente invención se refiere a la composición, biotinta y biomaterial según se describen en ia presente invención para su uso en regeneración tisular, así como para la generación de tejidos que simulen patologías, que sirvan como modelos de enfermedades, o que contengan defectos para el testaje de nuevos compuestos terapéuticos y/o profilácticos, evitando así la utilización de modelos animales.
Otro aspecto de la presente invención se refiere a un método para la obtención de la composición de la invención, que comprende las siguientes etapas:
(a) cultivar la célula del tercer aspecto de la invención en las condiciones adecuadas para la expresión del ácido nucleico del segundo aspecto de la invención.
(b) purificar el biopolímero codificado por dicho ácido nucleico.
El grado de complejidad composicional impuesto por las necesidades del diseño muitifuncional no puede ser alcanzado por técnicas estándar de síntesis macromolecular. El biopolímero se obtiene como proteína recombinante, mediante técnicas adaptadas de biología molecular y biotecnológica, en microorganismos o plantas modificados genéticamente.
La secuencia nucleotídica que codifica para la secuencia aminoacídica del biopolímero de ia presente invención, se inserta en un vector de expresión definido anteriormente. La transfección de una célula, definida en un párrafo anterior, se lleva a cabo con técnicas conocidas en el estado de la técnica, por ejemplo pero sin ¡imitarse, con electroporación, con biolística, Agrobacterium tumefaciens o cualquier otra técnica que permita la integración de cualquiera de ios ácidos nucleicos de la invención en el ADN de la célula huésped, ya sea genómico, cloroplástico o itocondria!.
La expresión del ácido nucleico en la célula de la invención da lugar a un biopoií ero que puede ser purificado mediante técnicas conocidas en el estado de la técnica.
A lo largo de la descripción y las reivindicaciones la palabra "comprende" y sus variantes no pretenden excluir otras características técnicas, aditivos, componentes o pasos. Para ios expertos en la materia, otros objetos, ventajas y características de la invención se desprenderán en parte de la descripción y en parte de la práctica de la invención. Los siguientes ejemplos y figuras se proporcionan a modo de ilustración, y no se pretende que sean limitativos de la presente invención.
BREVE DESCRIPCIÓN DE LAS FIGURAS
FIG. 1. Electroforesis en gel de acrilamida del biopoiímero 1 con el marcador de peso molecular en el carril de la izquierda y el biopoiímero 1 en el carril de la derecha. Los pesos moleculares se indican en kilodaltons (kDa)
FIG. 2. Análisis de espectroscopia de masas (MALDI-ToF, del inglés“Matrix-assisted láser desorption/ionization- time oí flighf) del biopoiímero 1 en el cual se muestra el valor de su Masa Molecular experimental de 92897 Da, siendo el teórico 93175 Da y la diferencia entre ambos atribuible al error de medida. También se observa el carácter monodisperso de la molécula, apareciendo solo un estrecho pico.
FIG. 3. Análisis de espectroscopia de infrarrojos (FTIR-ATR, del inglés “Fouríer Transform Infrared - Attenuaied Tota / Refléctanos”) del biopoiímero 1 en el cual se muestran las señales características de los grupos amida (-1700 cm-1) presentes en los biopolímeros proteicos diseñados.
FIG. 4. Análisis de Resonancia Magnética Nuclear (RMN) del biopoiímero 1 en el cual se observa la señal de ios hidrógenos pertenecientes al grupo amina NH (7,5 - 8,5 ppm) al grupo metilo CHs (0,5 1 ,0 ppm) y al grupo metileno CH (1 ,0 - 2,3; 3,5 - 4,5ppm). FIG, 5. Electroforesis en gel de acrilamida del biopoiímero 2 con el marcador de peso molecular en el carril de la derecha y el biopoiímero 2 en el carril de la izquierda. Los pesos moleculares se indican en kilodaltons (kDa).
FIG. 6, Análisis de MALDI-TOF del biopolímero 2 en el cual se muestra el valor de su Masa Molecular experimental de 101664 Da, siendo el teórico 101696 Da y la diferencia entre ambos atribuible ai error de medida.
FIG. 7. Análisis de FTIR-ATR del biopolímero 2 en el cual se muestran las señales características de los grupos amida (-1700 cm-1) presentes en los polímeros proteicos diseñados.
FIG, 8, Análisis de Resonancia Magnética Nuclear (RMN) del biopolímero 2 en el cual se observa la señal de los hidrógenos pertenecientes al grupo amina NH (7,5 - 8,5 ppm) al grupo metilo CH3 (0,5 - 1 ,0 ppm) y al grupo metileno CH (1 ,0 - 2,3; 3,5 - 4,5ppm). FSG. 9. Electroforesis en gel de acrilamida dei biopolímero 3 con el marcador de peso molecular en el carril de la izquierda y el biopolímero 3 en el carril de la derecha. Los pesos moleculares se indican en kilodaltons (kDa).
FSG. 10. Análisis de MALDI-TOF del biopolímero 3 en el cual se muestra el valor de su Masa Molecular experimental de 103793 Da, siendo el teórico 1041 19 Da y la diferencia entre ambos atribuible ai error de medida.
FSG. 11. Análisis de FTIR-ATR del biopolímero 3 en el cual se muestran las señales características de ios grupos amida (-1700 cm-1) presentes en los polímeros proteicos diseñados.
FIG. 12. Análisis de Resonancia Magnética Nuclear (RMN) del biopolímero 3 en el cual se observa la señal de ios hidrógenos pertenecientes al grupo amina NH (7,5 - 8,5 ppm) al grupo metilo GH3 (0,5 - 1 ,0 ppm) y ai grupo metileno CH (1 ,0 - 2,3; 3,5 - 4,5ppm) FIG. 13. Electroforesis en gel de acrilamida del biopolímero 4 con el marcador de peso molecular en el carril de la derecha y el biopolímero 4 en el carril de la izquierda. Los pesos moleculares se indican en kilodaltons (kDa).
FIG, 14. Análisis de MALDI-TOF del biopolímero 4 en el cual se muestra el valor de su Masa Molecular experimental de 122882 Da, siendo el teórico 123345 Da y la diferencia entre ambos atribuible ai error de medida.
FIG. 15. Análisis de FTIR-ATR del biopolímero 4 en el cual se muestran las señales características de ios grupos amida (-1700 cm-1) presentes en los polímeros proteicos diseñados.
FIG. 16. Análisis de Resonancia Magnética Nuclear (RMN) dei biopolímero 4 en el cual se observa la señal de los hidrógenos pertenecientes al grupo amina NH (7,5 - 8,5 ppm) al grupo metilo CH3 (0,5 - 1 ,0 ppm) y ai grupo metileno CH (1 ,0 - 2,3; 3,5 - 4,5ppm). FIG. 17. Electroforesis en gel de acrilamida del biopolímero 5 con el marcador de peso molecular en el carril de la derecha y el biopolí ero 5 en el carril de la izquierda. Los pesos moleculares se indican en kilodaltons (kDa).
FIG. 18, Análisis de MALDI-TOF del biopolímero 5 en el cual se muestra el valor de su Masa Molecular experimental de 120611 Da, siendo el teórico 120921 Da y la diferencia entre ambos atribuible ai error de medida.
FIG, 19, Análisis de FTIR-ATR del biopolímero 5 en el cual se muestran las señales características de los grupos amida (-1700 cm-1) presentes en los polímeros proteicos diseñados.
FIG, 20. Análisis de Resonancia Magnética Nuclear (RMN) del biopolímero 5 en el cual se observa la señal de ios hidrógenos pertenecientes al grupo amina NH (7,5 - 8,5 ppm) al grupo metilo CH3 (0,5 - 1 ,0 ppm) y al grupo metileno CH (1 ,0 - 2,3; 3,5 - 4,5ppm). FIG. 21. Electroforesis en gei de acrilamida del biopolímero 6 con el marcador de peso molecular en el carril de la derecha y el biopolímero 6 en el carril de la izquierda. Los pesos moleculares se indican en kilodaltons (kDa).
FIG, 22. Análisis de MALDI-TOF del biopolímero 6 en el cual se muestra el valor de su Masa Molecular experimental de 125857 Da, siendo el teórico 126393 Da y la diferencia entre ambos atribuible al error de medida.
FIG, 23. Análisis de FTIR-ATR del biopolímero 6 en el cual se muestran las señales características de ios grupos amida (-1700 cm-1) presentes en los polímeros proteicos diseñados.
FIG. 24, Análisis de Resonancia Magnética Nuclear (RMN) del biopolímero 6 en el cual se observa la señal de ios hidrógenos pertenecientes al grupo amina NH (7,5 - 8,5 ppm) al grupo metilo CH3 (0,5 - 1 ,0 ppm) y ai grupo metileno CH (1 ,0 - 2,3; 3,5 - 4,5ppm). FIG, 25. Fotografías del biomaterial impreso con la composición que comprende diferentes concentraciones (300, 250, 200, 180, 150 y 120 mg/mL) del biopolímero 5 pre-curado (SEQ ID NO: 15) que se muestran en la columna A, y del biopolímero 4 (SEQ ID NO: 14) que se muestra en la columna B, utilizando PBS1x como disolvente.
FIG. 26. Fotografías de diferentes biomateriaies impresos con las diferentes composiciones de la invención a una concentración de 250 mg/mL utilizando PBS1x como disolvente, donde se pone de manifiesto la printabiiidad (Columna A) y la observación fibrilar (Columna B) de dichos biomateriaies. BP: Biopolímero. El porcentaje de las combinaciones de biopoiímeros se refieren al porcentaje expresado en peso. FIG, 27. Viscosidad (expresado en Paséales por segundo, Pa.s) de las biotintas formadas por diferentes biopoiímeros de la invención sometidas a una velocidad (1/s) de corte ascendente. FIG, 28, Evaluación de la variación de ía viscosidad en diferentes biotintas de la invención sometida a una velocidad de corte elevada por un corto intervalo de tiempo. Paso 1 : Velocidad de corte de 5 8. Paso 2: Velocidad de corte de 1000 s-1. Paso 3: Velocidad de corte de 5 s~1.
FIG. 29, Efecto de la temperatura sobre la viscosidad de diferentes biotintas de la invención analizadas.
FIG, 30. Fotografías de diferentes estructuras impresas con la biotinta que comprende el biopolímero 4 (SEQ ID NO: 14) utilizando PBS1x como disolvente donde se muestra la estabilidad de las estructuras impresas a lo largo de 3 días.
FIG, 31. Fotografías de diferentes estructuras impresas con la biotinta que comprende el biopolímero 5 pre-curado (SEQ ID NO: 15) utilizando PBS1x como disolvente donde se muestra la estabilidad de las estructuras impresas a lo largo de dos días.
FIG. 32. Fotografías de diferentes estructuras impresas con la biotinta que comprende la combinación de los biopolímeros 60% en peso del biopolímero 4 (SEQ ID NO: 14) y 40% en peso del biopolímero 5 pre-curado (SEQ ID NO: 15) utilizando PBS1x como disolvente donde se muestra la estabilidad de las estructuras impresas a lo largo de 40 días.
FIG, 33. Fotografías de diferentes estructuras impresas con la biotinta que comprende el biopolímero 6 (SEQ ID NO: 16) utilizando PBS1x como disolvente donde se muestra ía estabilidad de las estructuras impresas a lo largo de 40 días.
FIG. 34, Gráfico que muestra un análisis de la adhesión celular temprana a los tiempos de 30 min, 2 horas y 4 horas, de las mezclas del biopolímero 4 (60% en peso) de SEQ ID NO: 14 y del biopolímero 5 pre-curado (40% en peso) de SEQ ID NO: 15 que comprende la secuencia de adhesión RGD (bloques blancos) y de la mezcla del biopolímero 3 (60% en peso) de SEQ ID NO: 13 y del biopolímero 2 (40% en peso) de SEQ ID NQ: 12 que no comprenden secuencia de adhesión celular (bloques negros). FIG. 35. Análisis de la proliferación celular a lo largo de 21 días sobre superficies impresas a base de las mezclas del biopolímero 4 (60% en peso) de SEQ ID NO: 14 y del biopolímero 5 pre-curado (40% en peso) de SEQ ID NO: 15 que comprende la secuencia de adhesión RGD (Bloques blancos) y de la mezcla del biopolímero 3 (60% en peso) de SEQ ID NO: 13 y del biopolímero 2 (40% en peso) de SEQ ID NO: 12 que no comprenden secuencia de adhesión celular (bloques negros).
FIG, 38. Fotografía microscópica de una superficie impresa con la biotinta que comprende la combinación del biopolímero 4 (60% en peso) de SEQ ID NO: 14 y del biopolímero 5 pre-curado (40% en peso) de SEQ ID NQ: 15 utilizando PBS1x como disolvente, sobre la que se han sembrado y cultivado células HFF-1 durante 7 días FIG. 37. Fotografías microscópicas de una superficie impresa con ia biotinta que comprende ia combinación dei biopolímero 4 (80% en peso) de SEQ ID NO: 14 y de! biopoiímero 5 pre-curado (40% en peso) de SEQ ID NO: 15 utilizando PBS1x como disolvente, sobre la que se han sembrado y cultivado células HFF-1 durante 7 días. Se muestran diferentes píanos focales para corroborar la tridimensionalidad de! sistema. F!G 38. Viabilidad de los fibroblastos humanos HFF-1 impresos junto con e! biopolímero 8 a lo largo de 21 días. Se compara la viabilidad de las gradillas impresas junto con el control (material depositado sin impresión).
FIG 39. Fotografías microscópicas de una superficie impresa con el biopolímero 6 mezclado con fibroblastos humanos HFF-1 durante 21 días. La escala corresponde a 500 pm.
EJEMPLOS
A continuación se ilustrará la invención mediante unos ensayos realizados por ios inventores, que describen la síntesis de la composición de la invención, así como sus características. Los ejemplos se proporcionan para poder comprender la descripción, y no se pretende que sean limitativos de ia presente invención.
EJEMPLO 1. Obtención y caracterización de ios biopolímeros proteicos recombinantes que forman la composición de la invención.
El diseño y la obtención de las secuencias nucleotídicas sintéticas que codifican para las secuencias a inoacídicas de los distintos biopolímeros empleados, incluyendo los biopolímeros que comprenden ia composición de ia invención se realizaron como está descrito en WO/2010/092224. igualmente, ia expresión, purificación y caracterización de ios biopolímeros se llevó a cabo como está descrito en WO/2010/092224.
Brevemente, los ELRs se diseñan y obtienen mediante tecnologías de ADN recombinante. Una vez que ia secuencia nucleotídica que codifica para la proteína deseada ha sido introducida en la cepa bacteriana Escheríchia coli, ésta se somete a un cultivo en termentador, que permite un control absoluto de sus condiciones de producción. Cuando se alcanza la fase estacionaria en la curva de crecimiento de! cultivo bacteriano, se procede a la extracción dei ELR deseado mediante la lisis ultrasónica de la pared bacteriana. La purificación del biopolímero se llevará a cabo aprovechando su propiedad de transición inversa con la temperatura, realizando ciclos de calentamiento y enfriamiento dei debris bacteriano hasta la obtención del polímero puro.
Tras un proceso de eliminación de las sales a través de diálisis, todos los biopolímeros utilizados se iiofiiizan, mostrando una apariencia blanquecina y algodonosa, y se reservan hasta su uso en este estado a -2Q°C. Para caracterizar los biopolímeros obtenidos, se utilizan las siguientes técnicas:
- Eiectroforesis en geí de acriiamida (PAGE) en presencia de SDS que permite estimar de forma aproximada el peso molecular del biopolímero además de verificar su pureza.
- Espectrometría de masas MALDI-TOF en un espectrómetro modelo Q-Star para obtener el peso molecular del polímero de forma exacta.
- Espectro de resonancia magnética nuclear de protón (H1-RMN) realizado en un espectrómetro modelo Bruker ARX300.
- Espectro de infrarrojo (FT-IR) utilizando un espectrofotómetro Cary 50.
- Cromatografía HPLC con detección UV utilizando un sistema de gradiente HPLC modelo WATERS 600 con un detector WATERS 2487, que permite determinar la composición de aminoacídica
- Calorimetría diferencial de barrido (DSC) de soluciones acuosas del material con concentración de 50 mg/ml en un equipo Mettler Toledo 822e DSC, para obtener la temperatura de transición inversa del polímero.
Para demostrar la efectividad de la composición de la invención, específicamente para su uso como biotinta, se diseñaron los siguientes biopolímeros (Tabla 2), para posteriormente determinar cuáles son las mejores composiciones para su uso como biotintas.
Tabla 2. Biopolímeros, estructura y secuencias aminoacídicas y nucleotídicas:
Figure imgf000028_0001
Figure imgf000029_0001
Biopolímero 1 (1107 aminoácidos)
Estructura: (A)-{(BI0-C6O)}2-D.
Secuencia aminoacídica: SEQ ID NO: 11 : MESLLP-{[VPGVG)2-(VPGEG)- (VPGVG)2]!o[VG¡PGl6o [VPGjG]5AVTGRGDSPASS)6-V
Codificado por ia secuencia nucleotídica SEQ ID NO: 21.
La composición de aminoácidos teórica y ¡a obtenida mediante HPLC con detección UV (luz ultravioleta) se presentan en la Tabla 3.
Tabla 3. Análisis de la composición de aminoácidos del biopolímero 1.
Figure imgf000029_0002
El rendimiento de la producción fue de 227,65 mg/L.
El peso molecular teórico para el biopolímero 1 es de 93175 Da y se estimó experimentalmente por electroforesis en gel de poliacrilamida (Fig. 1) y por espectrometría de masas MALDI-TOF resultando ser de 92897 Da. Los espectros de HPLC, así como de infrarrojos (IR) y de resonancia magnética nuclear (RMN) obtenidos para el biopolímero 1 quedan recogidos en las Figs, 2, 3 y 4, respetivamente.
La Temperatura de transición obtenida mediante DSC en MQ a pH 7,8 fue de 19,10°C, mientras que en PBS 1X a pH 7,65 fue de 14,66°C.
Biopolimero 2 (1233 aminoácidos) Estructura: (A)-{(Bi0-Ceo)-Y}2
Secuencia aminoacídica SEQ ID NO: 12: MESLLP-{([(VPGVG)2-(VPGEG)-
(VPGVG)2]io[VG¡PGl6o)-ÍV(GAGAGS)sGl2}2
Codificado por ia secuencia nucleotídica SEQ ID NO: 22.
La composición de aminoácidos teórica y la obtenida mediante HPLC con detección UV (iuz ultravioleta) se presentan en la Tabla 4.
Tabla 4: Análisis de la composición de aminoácidos del biopolímero 2.
Figure imgf000030_0001
El rendimiento de la producción fue de 178,9 mg/L.
El Peso Molecular teórico para el polímero 2 es de 101696 Da y se estimó experimentalmente por electroforesis en gel de poliacrilamida (Fig. 5) y por espectrometría de masas MALDI-TQF (Fig. 6) resultando ser de 101664 Da. Los espectros de IR y de RMN obtenidos para el biopolímero 2 quedan recogidos en las Figs. 7 y 8, respetivamente.
La Temperatura de transición obtenida mediante DSC en MQ a pH 6,14 fue de 20,08°C, mientras que en PBS1X a pH 6,40 fue de 16,92°C.
Biopolimero 3 (1213 aminoácidos)
Estructura: (A)-{(BIO-C6O)-X}2
Secuencia aminoacídica SEQ ID NG: 13: MESLLP-{[VPGVG)2-(VPGEG)~ (VPGVG)2]IO[VGÍ PG]6O- [VGGGGGKENQIAIRASFLEKENSALRQEVADLRKELGKCKNILAKYEAGGGGGlfc
Codificado por ia secuencia nucleotídica SEQ ID NO: 23.
La composición de aminoácidos teórica y 1a obtenida mediante HPLC con detección UV (luz ultravioleta) se presentan en la Tabla 5.
Tabla 5: Análisis de la composición de aminoácidos del biopolímero 3.
Figure imgf000031_0001
El rendimiento de la producción fue de 517,22 mg/L.
El Peso Molecular teórico para el polímero F es de 1041 19 Da y se estimó experimentalmente por electroforesis en gel de políacrilamida (Fig, 9) y por espectrometría de masas MALDI-TGF (Fig. 10) resultando ser de 103.793 Da. Los espectros de IR y de RMN obtenidos para el biopolímero 3 quedan recogidos en las Figs. 11 y 12, respetivamente.
La Temperatura de transición obtenida mediante DSC en MQ a pH 7,5 fue de 15,30 °C mientras que en PBS1X a pH 7,5 fue de 14, 18°G.
Biopolímero 4 (1435 aminoácidos)
Estructura: (A)-{(Bio-Ceo)-X}2-D
Secuencia aminoacídica SEQ ¡D NQ: 14: MESLLP~{[VPGVGj2~(VPGEG)~ (VPGVG)2]IO[VG! PG]6O-
[VGGGGGKENQÍAI RASFLEKENSALRQEVADLRKELGKCKNI LAKYEAGGGGG]}2-
([V PG I G]5A VTG RG DSPASS)e-V
Codificado por ¡a secuencia nucleotídica SEQ ID NO: 24.
La composición de aminoácidos teórica y ia obtenida mediante HPLC con detección UV (luz ultravioleta) se presentan en la Tabla 6. Tabla 6. Análisis de la composición de aminoácidos del biopolímero 4.
Figure imgf000032_0001
El rendimiento de la producción fue de 239,81 mg/L
El Peso Molecular teórico para el biopolímero 4 es de 123345 Da y se estimó experimentalmente por electroforesis en gei de políacriiamida (Fig. 13) y por espectrometría de masas MALDI-TGF (Fig. 14) resultando ser de 122882 Da. Los espectros de IR y de RMN obtenidos para el biopolímero 4 quedan recogidos en las Figs. 15 y 18, respetivamente.
La Temperatura de transición obtenida mediante DSC en MQ a pH 8,48 fue de 17,58 °C, mientras que en PBS 1X a pH 6,02 fue de 14,92°C.
Biopolímero 5 (1455 aminoácidos)
Estructura: (AH(B,o-C6o)-Y}2-D
Secuencia aminoacídica SEQ ID NO: 15: MESLLP-{([ÍVPGVG)2-(VPGEG)- (VPGVG)2]IO[VGI PG]6O)-[V(GAGAGS)5G]2)2-([VRGIG]5AVTGRGDSRASS)6-V
Codificado por la secuencia nucleotídica SEQ ID NO: 25.
La composición de aminoácidos teórica y la obtenida mediante HPLC con detección UV (luz ultravioleta) se presentan en la Tabla 7.
Tabla 7. Análisis de la composición de aminoácidos del biopolímero 5.
Figure imgf000032_0002
Figure imgf000033_0001
El rendimiento de ia producción fue de 203,07 mg/L.
El Peso Molecular teórico para el biopolímero 3 es de 120921 Da y se estimó experimentalmente por electroforesis en gel de poliacrilamlda (Fig. 17) y por espectrometría de masas MALDI-TOF (Fig. 18) resultando ser de 120611 Da. Los espectros de IR y de RMN obtenidos para el biopolímero 2 quedan recogidos en las Figs. 19 y 20, respetivamente.
La Temperatura de transición obtenida mediante DSC en MG a pH 6,59 fue de 20,84 °C, mientras que en PBS 1X a pH 7,24 fue de 17,26°C.
Biopolímero 6 (1508 aminoácidos)
Estructura: (A)-X-{(BIO-C6O)-Y}2-D
Secuencia aminoacídica SEQ ID NO: 16: MESLLP-
[VGGGGGKENQIAIRASFLEKENSALRQEVADLRKELGKCKNILAKYEAGGGGG]- {([(VPGVG)2-(VPGEG)-(VPGVG)2]io[VGiPG]6o)-[V(GAGAGS)5G]2}2- ([VPGIG]5AVTGRGDSPASS)e~V
Codificado por ia secuencia nucleotídica SEQ ID NO: 26.
La composición de aminoácidos teórica y la obtenida mediante HPLC con detección UV (luz ultravioleta) se presentan en la Tabla 8.
Tabla 8. Análisis de la composición de aminoácidos del biopolímero 6.
Figure imgf000033_0002
El rendimiento de la producción fue de 116 mg/L.
El Peso Molecular teórico para el biopolímero 6 es de 126393 Da y se estimó experimentalmente por electroforesis en gel de poliacriiamida (Fig. 21) y por espectrometría de masas MALDI-TOF (Fig, 22) resultando ser de 125857 Da. Los espectros de IR y de RMN obtenidos para el biopolímero 6 quedan recogidos en las Figs. 23 y 24, respetivamente.
La Temperatura de transición obtenida mediante DSC en MQ a pH 7,50 fue de 20,42°C, mientras que en PBS 1X a pH 7,50 fue de 17,41 °C.
Ejemplo 2. Determinación de la composición de la biotinta de la invención que permite una impresión óptima.
Las impresiones en 3D con los diferentes biopoiímeros descritos en la Tabla 2, o con las mezclas de los mismos, se realizan teniendo en cuenta la temperatura de transición inversa de cada uno de ellos. Dicha temperatura de transición junto con las propiedades concretas de las composiciones de los biopoiímeros de la invención, hace que las potenciales biotintas gelifiquen mediante un simple cambio en la temperatura.
El sistema experimental utilizado comprende una impresora REGEMAT 3D sobre la que se ha instalado un cabezal conectado a un baño refrigerante que permite mantener la temperatura de inyección a 4°C. Por otra parte, la impresora cuenta con una cama caiefactora que se mantiene a 30°C durante el proceso de impresión.
En el caso del biopolímero 1 (SEG ID NO: 1 1), la gelificación es debida a las fuerzas intermo!eeu!ares hidrofóbicas presentes entre sus bloques G (hidrofóbico) y B (hidrofílico). El bloque D, que comprende específicamente el péptido RGD introducido a mayores en su secuencia no afecta a la formación del gel, sino que se introduce para aportar biofuncionaiidad en ei biopolímero. Este biopolímero 1 se utilizará como control negativo de la bioimpresión, dado que no contiene ninguno de ios monómeros X, Y o ambos.
El resto de biopoiímeros 2 (SEG ID NO: 12), 3 (SEG ID NO: 13), 4 (SEQ ID NO: 14), 5 (SEG ID NO: 15) y 6 (SEG ID NO: 16), que contienen los monómeros C (hidrofóbico) y B (hidrofílico) de base, además de ios otros monómeros X y/o Y, también muestran estas interacciones hidrofóbicas. Todos ellos también contienen el bloque D que comprende, en los ejemplos mostrados, específicamente el péptido RGD para aportar biofuncionalidad al biapolímero, permitiendo que induzca adhesión celular.
Los biopolímeros 4 (SEQ ID NO: 14) y 3 (SEQ ID NO: 13) comprenden la secuencia zipper( SEQ ID NO: 4), que permite la formación de hélices alfa a través de la interacción de fuerzas electrostáticas entre aminoácidos cargados, contribuyendo a la estabilidad del polímero. Los biopolímeros 5 (SEQ ID NO: 15) y 2 (SEQ ID NO: 12) muestran las mismas interacciones hidrofóbicas, pero en este caso estabilizadas gracias a la formación de láminas beta procedentes de la secuencia silk (SEQ ID NO: 8), mediante la formación de puentes de hidrógeno entre los grupos amido y carboxilo presentes en sus aminoácidos.
Para el caso particular del biopolímero 5 (SEQ ID NO: 15) se ha llevado a cabo una comparación entre su gelificación cuando dicho biopolímero se ha sometido a un tratamiento de pre-curado (a partir de aquí se le denominará biopolímero 5 pre-curado) o cuando no ha sido sometido a dicho tratamiento (que se le seguirá llamando biopolímero 5). El tratamiento de pre-curado se realiza debido a la variabilidad que presenta el biopolímero 5 en cuanto a su estructura a nivel molecular pudiendo presentar distinto grado de formación de hojas befa que afectan a sus características mecánicas. Durante la producción y purificación del biopolímero 5, se produce la formación de láminas beta a través de enlaces de puente de hidrógeno. Dicho entrecruzamiento no es homogéneo entre los diferentes lotes del biopolímero, generando lotes de diferente entrecruzamiento inicial. Realizando la ruptura de los puentes de hidrógeno con el tratamiento de pre-curado, se asegura que el estado inicial de formación de hojas beta es el mismo para todos los lotes. Para llevar a cabo el tratamiento del pre-curado, en primer lugar se procede a la homogenización del mismo realizando una ruptura de sus fuerzas intermoleculares mediante la utilización de ácido fórmico, que permite partir de un estado con ausencia de láminas beta. A partir de este estado, se somete el biopolímero a un curado a 37°C durante 24 horas favoreciendo la formación de láminas beta. De esta manera se asegura el mismo estado inicial en todos los lotes de este polímero y se parte de un estado pre-gelificado previsiblemente más adecuado para la impresión.
Tanto el biopolímero 1 (SEQ ID NO: 1 1) mezclado junto con el biopolímero 4 (SEQ ID NO: 14), así como el biopolímero 1 (SEQ ID NO: 11) mezclado con el biopolímero 5 pre- curado (SEQ ID NO: 15), sirven también como control negativo de la impresión. Su impresión demuestra que solamente en el caso de que ¡a mezcla comprenda ambas secuencias de refuerzo se obtiene una óptima impresión (Fíg. 26).
Por otro lado, con el objetivo de comprobar si las mezclas de los polímeros 4 y 5 pre curado se comportan de la misma manera cuando ios monómeros X e Y se localizan en el mismo biopolímero, se sintetizó el biopoiímero 6 (SEQ ID NO: 6). Este biopolímero 6 posee tanto las interacciones hidrofóbicas iniciales como las interacciones electrostáticas y de puentes de hidrógeno procedentes de las secuencias Zipper y Sük.
Se llevaron a cabo diferentes impresiones con composiciones que comprenden los blopolímeros 1 , 4, 5, 5 pre-curado y 6, solos o combinados. Para ello, mediante el software propio de la impresora REGEMAT 3D se diseña una gradilla de 10x10 mm, con una altura de 1 ,30 mm (correspondiente a 6 capas de altura), y porosidad de 1 ,5mm dispuesta en ángulo de 90°. Se inyectarán las diferentes composiciones de ios blopolímeros de la invención con una tobera de 0,25 mm y 0,08 mm/s de flujo. El flujo se adecúa si es necesario en cada caso, para poder realizar líneas de anchura similares que permitan comparar mejor las estructuras entre si.
Se estima que la concentración óptima de impresión del biopolímero 5 pre-curado disuelto en diferentes concentraciones de PBS 1x (120, 150, 180, 200, 250 y 300 mg/mL) es de 250 mg/mL, tal y como se observa en la Fíg. 25, dado que dicha concentración es la concentración a la que la viscosidad de la disolución es adecuada para el proceso de“inyección” mediante la impresora 3D. Por tanto, se selecciona la concentración de 250 mg/mL para la realización de la comparación de las diversas impresiones. Para el caso del biopolímero 4, tal y como se observa también en la Fíg. 25, la concentración adecuada para el proceso de inyección en la impresora 3D es de 250 mg/mL.
La impresión de las gradillas diseñadas permite realizar una semi-cuantificación de la printabilidad de los diversos blopolímeros de la invención a través de la medida de la príntabilídad, que nos da una idea de la semejanza que presenta la estructura impresa con respecto a la diseñada. En este caso se diseñan y se imprimen poros de forma cuadrada, por lo que se establece un parámetro (Pr) para medir la semejanza de las impresiones con respecto a estos cuadrados. La biotinta que demuestre una buena printabiiidad debe depositarse a través de ¡a extrusión de filamentos de morfología constante que permitan su deposición en altura, sin fusionarse unos con otros. Si la biotinta demuestra menor printabiiidad, esto no sucede y ios filamentos tienden a coiapsar y fusionarse, formando porosidades que tienden a ser circulares. Se define por tanto la circularidad como:
Figure imgf000037_0001
Donde L define el perímetro y A el área. Cuanto más cerca se encuentre el valor obtenido a 1 , mayor será la circularidad, siendo 1 un círculo perfecto.
En el caso de formas cuadradas, la circularidad será p/4, y se puede definir el parámetro Pr basado en la forma cuadrada como:
Figure imgf000037_0002
Para una printabiiidad ideal, ios poros interconectados serán cuadrados y el valor de Pr será 1. La determinación del parámetro Pr se realiza tomando fotografías con un microscopio digital LEICA DMS 1000 y las imágenes ópticas tomadas se analizan a través del software Image J (n=5) (Fig 28).
Los resultados de dicho parámetro para las muestras ensayadas se resumen en la Tabla 9.
Tabla 9: Medida de la printabiiidad (Pr) obtenida en cada biotinta impresa a una concentración final de 250mg/mL.
Figure imgf000037_0003
Figure imgf000038_0001
Otro parámetro, cualitativo en este caso, para determinar la printabilidad de las biotintas es la observación fibrilar, es decir, si la deposición de los polímeros se deposita capa a capa y se observan las fibras depositadas, la estructura tenderá a colapsar menos que si estas fibras se funden entre sí, provocando menor fidelidad de forma.
En la Fig, 26 se observan las fotografías de las impresiones realizadas. Tras la medición del parámetro Pr, se observa que a partir de un valor de Pr de 0,90, las impresiones se realizan de manera controlada, permitiendo la deposición de fibras que no se mezclan entre sí cuando se depositan, manteniendo su estructura fibrilar en altura.
Como se observa en la Fíg. 26, el biopolí ero 1 no gelifica tras su impresión, por lo que no mantiene su estructura. Este comportamiento se corresponde con el esperado, dado que éste polímero no contiene ios monómeros X y/o Y que permiten la estabilidad del gel que forma.
Al contrario que sucede en el biopolímero 1 , cuando los biopoíímeros presentan los monómeros X y/o Y, como en el caso de los biopoíímeros 4, 5 y 5 pre-curado, se consiguen realizar impresiones con los mismos. El biopolímero 5 permite su impresión, pero la estructura impresa se disgrega rápidamente de manera que no permite realizar la medición de su imprimibilidad. En cambio, el polímero 5 pre-curado muestra una sobre-geiificación, que se observa en la deposición no linear de las fibras, pese a que su fidelidad en la impresión es elevada. Por tanto, el hecho de que la muestra gelifique debido a un cambio de temperatura no es una condición suficiente como cabría esperar para conseguir una buena biotinta para este sistema y así obtener superficies impresas que muestren una estructura que realmente se asemeje a ¡a diseñada. E¡ fenómeno que acompaña a ia gelificación y ¡as modificaciones en las propiedades mecánicas de! material antes y después de la gelificación son determinantes y pueden ser inadecuadas sin poderse predecir cuál es el materia! adecuado como biotinta.
Por último, el biopolímero 4 muestra estructuras fidedignas con valores de Pr de 0,94 (FIG. 26).
Como e! polímero 5 pre-curado muestra un parámetro más alto de imprimibilidad que el polímero 5, para demostrar el efecto slnérgico que los monómeros X e Y, se selecciona como portador del monómero Y el polímero 5 pre-curado, de manera que se imprimen las mezclas: biopolímero 4 (80% en peso) + biopolímero 5 pre-curado (20% en peso); biopolímero 4 (60% en peso) + biopolímero 5 pre-curado (40% en peso) y biopolímero 4 (20% en peso) + biopolímero 5 pre-curado (80% en peso). La impresión de ¡as proporciones del biopolímero 4 (60% en peso) + biopolímero 5 pre-curado (40% en peso) muestran el valor más alto de Pr obtenido en las mezclas impresas, por lo que se puede considerar esta mezcla como óptima para impresión 3D. El valor más bajo se obtiene cuando la proporción del biopolímero 5 pre-curado es más elevada. Por otra parte, la impresión de la mezcla del biopolímero 4 (60% en peso) + biopolímero 5 (40% en peso), nos permite observar que cuando la mezcla en la impresión para este tipo de polímeros es óptima, si el biopolímero 5 no se encuentra sometido a un pre-curado, la imprimibilidad disminuye, haciéndose necesaria la utilización del biopolímero 5 pre- curado si se quiere obtener una mejor fidelidad en ¡a estructura.
Para comprobar la sinergia entre los monómeros X e Y, se imprimen también las mezclas que comprenden el biopolímero 5 (40% en peso) + biopolímero 1 (60% en peso) y la mezcla del biopolímero 4 (60% en peso) + biopolímero 1 (40% en peso). Dichas mezclas muestran impresiones de peor imprimibilidad, comprobando que para la obtención de una buena impri ibildad se hace necesaria la mezcla de los biopolímeros que comprenden los monómeros X e Y.
Por último, la impresión de! biopolímero 6, muestra una muy buena fidelidad de forma en ¡a que se observa ¡a deposición de las fibras, de manera que no se acaban superponiendo del todo. Se obtiene para este polímero el valor más alto de imprimibilidad correspondiente a 0,97. Aunque el valor de Pr obtenido para este polímero no dista mucho del de la mezcla que comprende el biopolímero 4 (60% en peso) + biopolímero 5 pre-curado (40% en peso), se observa en la impresión una mayor facilidad en su deposición, con un mejor control sobre las fibras depositadas.
Ejemplo 3. Propiedades mecánicas de las composiciones de la invención.
Se llevó a cabo un análisis Teológico para analizar las propiedades mecánicas de las composiciones de la invención para su uso como biotintas. Se seleccionan aquellas composiciones que han demostrado tener una mayor printabilidad, correspondiéndose con las composiciones que comprenden el biopolímero 4, el biopolímeros 6, el biopolímero 5 pre-curado y la mezcla de los biopolímeros 4 (60% en peso) + biopolímero 5 pre-curado (40% en peso).
El estudio reoiógico se lleva a cabo con un reómetro AR 200 EX de TA Instruments, equipado con una placa peltier, y una geometría de 40mm de diámetro. Todas las composiciones analizadas se mantienen a 4°C durante los ensayos.
La primera caracterización se basa en el estudio de la variación de la viscosidad que presentan las composiciones de la invención para su uso como biotintas cuando se encuentran sometidas a una velocidad de corte creciente (Fig 27). Tanto el biopolímero 4 como la mezcla que comprende el biopolímero 4 (60% en peso) + el biopolímero 5 pre-curado (40% en peso), no muestran una disminución de su viscosidad cuando se produce un aumento en la velocidad de corte, por lo que se comportan como fluidos newtonianos que poseen viscosidades relativamente bajas (1 Pa.s, aproximadamente). El hecho de que se comporten como fluidos newtonianos de bajas viscosidades, permite realizar deposiciones controladas con menores esfuerzos de corte, protegiendo así las células que se encuentren embebidas en dichas composiciones. Por otro lado, la composición formada por el biopolímero 5 pre-curado manifiesta una disminución de su viscosidad cuando se produce un aumento del esfuerzo de cizalla, partiendo de viscosidades de 10 Pa.s y llegando a estabilizarse en viscosidades de 1 Pa.s cuando se somete la biotinta a velocidades elevadas de corte. Este comportamiento de la biotinta se asemeja con el que describe un fluido pseudoplástico.
Por otra parte, la composición que comprende el biopolímero 6 presenta un comportamiento visco-plástico (o plástico Bingham), mostrando una viscosidad de 2,35 Pa.s hasta que alcanza un esfuerzo de deformación crítico correspondiente a 248,6 1/s, a partir del cual, comienza a disminuir ligeramente su viscosidad hasta llegar a 1 ,41 Pa.s.
Se puede concluir que las composiciones que comprenden el monómero Y muestran un comportamiento pseudoplástico en las biotintas. En el caso del biopolímero 6, este comportamiento sufre un retraso, se comienza a apreciar una vez que se sobrepasa un esfuerzo de deformación crítico. Dicho comportamiento se corresponde con un plástico de comportamiento visco-plástico o plástico Bingham.
Para simular el proceso de inyección al que se ven sometidas las composiciones de la invención cuando se usan como biotintas en una impresora, se llevó a cabo un análisis tixotrópico de las mismas. Este análisis consiste en someter los biopoiímeros a una velocidad de corte elevada durante un corto período de tiempo, tratando de asemejar las fuerzas a las que se ven sometidas las biotintas al atravesar una aguja de diámetro muy pequeño en el proceso de impresión.
Los resultados obtenidos en el análisis tixotrópico de las composiciones descritas anteriormente puso de manifiesto que no existe una variación en su viscosidad cuando se simula el proceso de inyección, es decir, ninguna de las composiciones analizadas varía su viscosidad al estar sometida durante un corto periodo de tiempo a un alto esfuerzo de cizalla (Fig 28).
Posteriormente se procedió al análisis de la variación de la viscosidad cuando se produce un aumento en la temperatura. El análisis determina cual es la temperatura idónea a la que se debe precaientar la base de impresión para lograr una mayor viscosidad en la biotinta y, por tanto, una mayor resolución en la impresión.
Los resultados demuestran que la viscosidad polimérica de las composiciones analizadas aumenta a medida que se incrementa la temperatura hasta alcanzar un valor máximo que depende de cada composición, y que varía de entre 18-22°C, y posteriormente dicha viscosidad disminuye paulatinamente a medida que se sigue incrementando la temperatura (Fig. 29). Esta viscosidad máxima alcanzada es diferente para cada composición de biotinta y dicho máximo se alcanza a distinta temperatura. Así, tai y como se observa en la Fig, 29, la composición que comprende el biopolí ero 4 presenta una viscosidad de 212,5 Pa.s a una temperatura de 15,0°C; la composición que comprende el biopolímero 5 pre-curado presenta una viscosidad de 90,9 Pa.s a la temperatura de 18,4°C, la composición que comprende el biopolímero 6 presenta una viscosidad de 371 Pa.s a la temperatura de 21 ,7°C y la composición que comprende la mezcla de biopolímero 4 (60% en peso) + biopolímero 5 pre-curado (40% en peso) presenta una viscosidad de 242,6 Pa.s a la temperatura de 19,5°C.
Teniendo en cuenta dichos resultados, existe una correlación entre las viscosidades máximas alcanzadas por las biotintas estudiadas y su printabilidad. Así, las biotintas que muestran menor printabilidad (las biotintas que comprenden los biopoiímeros 4 y biopolímero 5 pre-curado, respectivamente) alcanzan una viscosidad máxima inferior que aquellas de mayor printabilidad (las biotintas que comprenden la mezcla biopolímero 4 (60% en peso) + biopolímero 5 pre-curado (40% en peso) y la biotinta que comprende el biopolímero 6). Este hecho se explica teniendo en cuenta que cuanta mayor viscosidad demuestre poseer una biotinta, mayor será su fidelidad en la impresión.
Asimismo, se ha observado que en todas las biotintas existe un punto crítico de temperatura a partir del cual la viscosidad comienza a aumentar paulatinamente, y dicho punto critico de temperatura se corresponde aproximadamente con los 8,5°C para las biotintas que comprenden el biopolímero 4 y la mezcla del biopolímero 4 (60% en peso) + biopolímero 5 pre-curado (40% en peso), y ios 11 °C para las biotintas que comprenden el biopolímero 5 pre-curado o el biopolímero 6. Este punto crítico indica que para poder imprimir con viscosidades bajas, las biotintas se deben mantener en el reservorio por debajo de esta temperatura.
EJEMPLO 4. Estabilidad en fluido de las biotintas,
A continuación se analizó la estabilidad de las composiciones descritas en la presente invención en un fluido seleccionado, que para el caso del presente ejemplo es PBS 1x. Dado que las estructuras impresas con las composiciones descritas en la presente invención servirán para cultivos in vitro, o para modelos tisulares, éstas deberán ser capaces de mantenerse estables en medios acuosos durante periodos de tiempo prolongados. Para este ejemplo se diseñan unos cilindros de 6mm de diámetro y 1 ,5 cm de altura, y las impresiones se llevaron a cabo a través de una tobera de 0,25 mm de diámetro. Las composiciones ensayadas han sido las composiciones que comprenden el biopolímero 4, biopolímero 5 pre-curado, biopolímero 6 o la mezcla del biopolímero 4 (60% en peso) + biopolímero 5 pre-curado (40% en peso).
La impresión con la composición que comprende el biopolímero 4 a una concentración de 250 mg/mL en PBS 1x, muestra un buen mantenimiento estructural, pero que no es capaz de mantenerse a lo largo del tiempo (Fig. 30). Por el contrario, las impresiones con las composiciones que comprenden el biopolímero 5 pre-curado, en las mismas condiciones que las mencionadas anteriormente, muestra una menor fidelidad de forma y un colapsamiento de la misma en un corto intervalo de tiempo, lo que no permite imprimir estructuras que en altura mantengan de manera adecuada la forma, pese a que con el tiempo sí que muestran estabilidad (Fig. 31).
Por el contrario, la impresión con la composición que comprende la mezcla del biopolímero 4 (60% en peso) + biopolímero 5 pre-curado (40% en peso), solventa ios inconvenientes que dichas composiciones presentan por separado al ser utilizadas como biotintas. Esta mezcla permite realizar una impresión con buena fidelidad de forma y mantenimiento estructural a lo largo del tiempo, permitiendo la realización de estructuras complejas (Fig. 32). De igual manera, la biotinta que comprende la composición con el biopolímero 6 también muestra un mantenimiento estructural a lo largo del tiempo, ya que comprende en su secuencia los monómeros X e Y (Fig. 33).
EJEMPLO S. Evaluación de la viabilidad y citotoxicidad celular de las composiciones.
Una vez evaluada la printabilidad de las composiciones de la invención como biotintas y su consistencia a lo largo del tiempo, se procedió a evaluar su citotoxicidad y la viabilidad celular utilizando la línea celular de fibroblastos humanos HFF-1 Para ello se imprimen gradillas circulares porosas de 5mm de diámetro y 1 mm de altura, con porosidad cuadrada de 1 mm de lado.
La composición seleccionada para realizar los ensayos ha sido la composición que comprenden la mezcla del biopolímero 4 (60% en peso) + biopolímero 5 pre-curado (40% en peso), dado que, tai y como se ha demostrado en los ejemplos previos, son las composiciones que han demostrado la mejor printabilidad y estabilidad a io largo dei tiempo, ya que comprenden los monómeros X e Y. Para determinar la bioactividad que dicha composición posee ai comprender en la secuencia de los biopolímeros que las comprenden el monómero D, específicamente el monómero D que comprenden la secuencia RGD, más específicamente el monómero D que comprende la secuencia SEQ ID NO: 6, se utiliza como control negativo una composición que comprende la mezcla dei biopolímero 3 (80% en peso) + biopoiímero 2 (40% en peso), donde dicha composición comprende la misma estructura que la otra composición ensayada, pero carece dei monómero D, que permite la funcíonalízación y por lo tanto la bioactividad de las composiciones.
Sobre cada superficie impresa con cada una de las composiciones mencionadas previamente, se sembrarán 10.000 células. Se realiza un ensayo de Alamar blue para estudiar la viabilidad temprana y la proliferación celular. El Alamar Blue es un reactivo que contiene un indicador fluorescente que se reduce variando de color gracias a la actividad metabólica celular, permitiendo la determinación cuantitativa de la viabilidad y citofoxicidad celular. A través dei ensayo de Alamar blue se observa la viabilidad celular temprana, a 30 minutos, 2 horas y 4 horas de la siembra con cada una de las composiciones ensayadas. Mediante una recta de calibrado se calcula el número de células adheridas sobre las superficies y se pone de manifiesto que el número de células que se adhieren es significativamente superior en aquellas gradillas que han sido impresas con la composición que comprende la mezcla del biopolímero 4 (60% en peso) + biopolímero 5 pre-curado (40% en peso) que comprende el monómero D, con respecto a la composición que comprende la mezcla del biopolímero 3 (60% en peso) + biopoiímero 2 (40% en peso) que no comprende el monómero D (Fig. 34). Por tanto, se deduce que ia presencia de la secuencia de adhesión de integrinas RGD en las biotintas permite y mejora la adhesión celular temprana.
Por otra parte, también se analiza la proliferación celular de fibroblastos sobre las gradillas impresas con las composiciones mencionadas previamente, durante largos periodos de tiempo, 21 días. Los resultados muestran un aumento paulatino dei porcentaje de reducción de AlamarBiue en ambas composiciones a lo largo del tiempo, partiendo de un porcentaje del 4,4% en el Inicio hasta el 64, 1 % en el caso de la composición que comprende la mezcla de los biopolímeros 4 (60% en peso) + biopolímeros 5 pre-curado (40% en peso), y de un 2,2% en el inicio hasta un 53,2% en el caso de la composición que comprende la mezcla de los biopolimeros 3 + (60% en peso) + biopolímero 2 (40% en peso) (F g. 35). Dicho porcentaje es significativamente superior en el caso de las gradillas que han sido impresas con la composición que comprende la mezcla con el monómero D en su secuencia.
Para demostrar que las células se han adherido a las gradillas impresas con las composiciones mencionadas anteriormente, se llevó a cabo una tinción DAPi/Phaiioidina. La tinción DAPI se utiliza para teñir los enlaces adenina-timina del DNA presente en el núcleo celular, mientras que la Phailoidina se utiliza para teñir ios filamentos de actina, permitiendo la observación del resto del citoplasma. La combinación de ambas tinciones permite la observación de la morfología celular.
Se realiza la tinción de DAPÍ/Rhalloidina a los 14 días del cultivo de los fibroblastos con las gradillas impresas con la composición que comprende el biopolímero 4 (60% en peso) + biopolímero 5 pre-curado (40% en peso). En la Fíg. 38 se observa cómo las células se han adherido a las gradillas impresas, situándose preferentemente de manera longitudinal, llegando a formar una matriz tridimensional. También se observan las células dispuestas en diferentes alturas correspondientes a la deposición de las diferentes fibras (Fig. 37), demostrando que la morfología o estructura de la gradilla condiciona la disposición y el crecimiento celular.
EJEMPLO 8. Evaluación de la viabilidad y cítotoxicidad celular de células embebidas en la biotinta (biopolímero 8) previamente a la bioimpresión.
A continuación, se evalúa la viabilidad celular y la morfología que muestran los fibroblastos humanos HFF-1 cuando se imprimen junto con el biopolímero 6
Para ello se mezclan las células HFF-1 (6x106 células/mL) junto con el biopolímero 6 disuelto en DMEM, y se imprimen en gradillas circulares porosas de 5mm de diámetro y 1 mm de altura, con porosidad cuadrada de 1 mm de lado. Una vez que las superficies han sido impresas en esterilidad, se sumergen en el medio celular y se incuban durante 21 días.
Primeramente, se realiza una tinción LIVE/DEAD™ sobre las superficies impresas. Este tipo de tinciones sirve para determinar la viabilidad celular mediante la tinción de células vivas y muertas. A través de la obtención de fotografías de diferentes campos de la gradiüa impresa, se puede realizar un contaje de ias células y establecer un porcentaje de viabilidad (porcentaje de células vivas). Para saber si la viabilidad celular se ve modificada debido al proceso de impresión, se realiza un control, que es una deposición del mismo biopolímero y misma concentración celular mezclados y depositados en una gradilla sin haber sido sometidos al proceso de bioimpresión 3D.
El análisis de ¡a presencia de células vivas y muertas se realiza a ias 4 horas de la impresión, y en diferentes días: día 1 , día 3, día 7, día 14 y día 21. En la Fig. 38 se observa una viabilidad del 76% en células impresas junto con el biopolímero 6 a ias 4 horas de ser impresas. Sin embargo, los valores de viabilidad aumentaron significativamente tras 7 días de cultivo, logrando alcanzar el 90% de viabilidad celular. Durante ios primeros días del cultivo celular se observa una diferencia apreciable entre la viabilidad celular obtenida en las gradillas impresas y su correspondiente control. Estos resultados sugieren que, durante los primeros días dei cultivo, la extrusión del biopolímero 6 afecta negativamente a la viabilidad celular, aunque dicha viabilidad celular no se ve afectada a largo plazo.
La morfología celular, su reorganización y la proliferación de los HFF-1 se estudió mediante microscopía óptica a través de una tinción DAPi/Phalloidina, anteriormente explicada. Esta tinción se realizó tras la impresión del biopolímero 6 mezclado junto con las células (6 x 10® céluias/mL) a los 1 , 3, 7, 14 y 21 días. Tal y como se observa en la Fig, 39, desde el primer día ias células se distribuyen homogéneamente en las superficies impresas, lo que denota una buena distribución de nutrientes a través de ias gradillas que mantiene ¡as células situadas tanto en sus partes internas como externas. Además, en las primeras etapas/días de cultivo, las células permanecen redondeadas, pero tras ios tres primeros días de incubación, comienzan a desarrollar una forma alargada y fibrosa, característica de este tipo celular (fibroblastos), extendiéndose por completo a los 7 días del cultivo. En esta etapa, las células comenzaron a formar agregados a lo largo de ias estructuras y mantuvieron su crecimiento y proliferación durante el resto de ¡os días del cultivo, hasta los 21 días, en ¡os que se finalizó el experimento.
Por lo tanto, tal y como se muestran en los ejemplos incluidos en el presente documento, las composiciones que comprenden la mezcla del biopolímero 4 + el biopolímero 5 pre- curado, así como las composiciones que comprenden el biopoiímero 6, pueden ser utilizadas como biotintas. Dichas composiciones poseen una buena printabiiidad, permitiendo la impresión de estructuras resolutivas en altura y estables en ei tiempo (Tabla 9, Fig 30 y 31), específicamente gracias a la presencia en sus secuencias de los monómeros X y/o Y. Además, poseen bajas viscosidades que facilitan la impresión a bajas temperaturas (Fig. 27), y un rápido aumento de viscosidad cuando aumenta la temperatura (Fig. 29), hecho que facilita que la estructura impresa se mantenga estable en el proceso de impresión. Y adicionalmente, gracias a la presencia del monómero D permiten la adhesión y proliferación celular.

Claims

REIVINDICACIONES
1. Composición que comprende un biopolímero que comprende ¡os monómeros B, C, X e Y o a! menos dos biopolímeros que comprenden ¡os monómeros B, C y X y los monómeros B, C e Y, respectivamente, donde
B es una secuencia aminoacídica que comprende ¡a SEQ ¡D NO: 2,
C es una secuencia aminoacídica que comprende la SEQ ID NO: 3,
X es una secuencia aminoacídica que comprende ¡a SEQ ID NO: 4, e
Y es una secuencia aminoacídica que comprende ¡a SEQ ID NO: 5.
2. Composición según la reivindicación 1 , donde además el biopolímero comprende el monómero D, siendo dicho monómero D una secuencia aminoacídica de unión celular.
3. Composición según la reivindicación 2 donde el monómero D comprende una secuencia que se selecciona de una lista que consiste en: RGD (SEQ ID NO: 9), LDT (SEQ ID NO: 27), SEQ ID NO: 10, SEQ ID NO: 17, SEQ ID NO: 18, SEQ ID NO: 19, SEQ ID NO: 28 o SEQ ID NO: 29
4. Composición según cualquiera de las reivindicaciones 2 a 3 donde el monómero D comprende la SEQ ID NO: 6.
5. Composición según cualquiera de las reivindicaciones 1 a 4 donde el biopolímero tiene la estructura (i):
[(Bb~Cc)~Zz]n D donde B, C y D se definen en las reivindicaciones 1 a 4,
Z se selecciona entre los monómeros X e/o Y definidos en ¡a reivindicación 1 , b tiene valores de entre 5 y 15,
c tiene valores de entre 50 y 70;
z tiene valores de entre 1 y 5
n tiene valores de entre 1 y 5,
d tiene valores de entre 0 y 3, y
se caracterizada por que comprende un primer biopolímero de estructura (I), donde Z es la SEQ ID NO: 4 y un segundo biopolímero de estructura (I), donde Z es ¡a SEQ ID NQ: 5.
6. Composición según ¡a reivindicación 5 donde el primer biopolímero se encuentra en ¡a composición en una concentración de entre 40-60% en peso y e¡ segundo biopolímero se encuentra en ¡a composición a una concentración de entre 80-40% en peso.
7. Composición según cualquiera de ¡as reivindicaciones 1 a 4, donde el biopolímero tiene ¡a estructura (¡I):
Z1z-[(Bb”Cc)-Z2z]rr Da, donde B, C y D se definen en las reivindicaciones 1 a 4,
Z1 es una secuencia aminoacídica que comprende ¡a SEQ ¡D NO: 4 o SEQ ¡D NO: 5 y Z2 es una secuencia aminoacídica que comprende la SEQ ID NO: 5 o SEQ ID NO: 4, respectivamente; preferiblemente Z1 es la secuencia aminoacídica SEQ ¡D NO: 4 y Z2 es la secuencia aminoacídica SEQ ID NO: 5; b, c, z, n y d se definen en la reivindicación 5.
8. Composición según cualquiera de las reivindicaciones 5 a 7, donde b tiene un valor de 10, c tiene un valor de 80, z tiene un valor de 1 , n tiene un valor de 2 y d tiene un valor de 0 o 1.
9 Composición según la reivindicación 2 donde el biopolímero se selecciona de SEQ ¡D NO: 18 o de la combinación de ¡os biopolímeros de SEQ ID NO: 14 y SEQ ID NO: 15.
10. Composición, según cualquiera de las reivindicaciones 1 a 9, que comprende además células, moléculas bioactivas, principios activos, o combinaciones de ¡os mismos.
11. Composición según cualquiera de las reivindicaciones 1 a 10 caracterizada por que se encuentra en forma de hidrogel.
12. Acido nucleico que comprende una secuencia nucieotídlca que codifica para ¡a secuencia aminoacídica del biopolímero de ¡a composición según cualquiera de ¡as reivindicaciones 1 a 11.
13. Célula aislada transfectada con el ácido nucleico según ia reivindicación 12.
14. Uso de la composición según cualquiera de las reivindicaciones 1 a 11 como biotinta, preferiblemente para la impresión 2D o 3D de biomateriales.
15. Uso de ia composición según cualquiera de las reivindicaciones 1 a 11 , del ácido nucleico según la reivindicación 12, o de la célula según la reivindicación 13, para la preparación de un soporte para obtención de órganos y/o tejidos o para la encapsulación de principios activos o células.
16. Biotinta que comprende la composición según cualquiera de las reivindicaciones 1 a 11.
17. Biomaterial 3D o 2D que comprende la composición según cualquiera de las reivindicaciones 1 a 11.
18. Composición según cualquiera de las reivindicaciones 1 a 1 1 para su uso como medicamento.
19. Composición según cualquiera de las reivindicaciones 1 a 11 para su uso en regeneración tisular.
20. Uso de una composición que comprende un biopolímero que comprende ios monómeros B, C y ai menos el monómero X o Y, donde:
B es una secuencia aminoacídica que comprende ia SEQ ID NO: 2,
C es una secuencia aminoacídica que comprende la SEQ ID NO: 3,
X es una secuencia aminoacídica que comprende ia SEQ ID NO: 4, e
Y es una secuencia aminoacídica que comprende ia SEQ ID NO: 5,
como biotinta, preferiblemente para la impresión 2D o 3D de biomateriales.
21. Uso según la reivindicación 20 donde además el biopolímero comprende ei monómero D.
22. Uso según la reivindicación 21 donde ei monómero D es una secuencia aminoacídica de unión celular que se selecciona de la lista que consiste en: RGD (SEQ ID NO: 9), LDT (SEO ID NO: 27) , SEQ ID NO: 10, SEQ ID NO: 17, SEO ID NO: 18, SEQ ID NO: 19, SEQ ID NO: 28 o SEQ ID NO: 29, preferiblemente la SEQ I D NO: 6.
23. Uso según cualquiera de las reivindicaciones 20 a 22 donde el biopolímero tiene la estructura (i):
[(Bb-Ccí-Zzjn-Dd donde B, C y D se definen en las reivindicaciones 1 a 4,
Z se selecciona entre los monómeros X e Y definidos en la reivindicación 1 , b tiene valores de entre 5 y 15, preferiblemente 10,
c tiene valores de entre 50 y 70, preferiblemente 60,
z tiene valores de entre 1 y 5, preferiblemente 1 ,
n tiene valores de entre 1 y 5, preferiblemente 2 y
d tiene valores de entre 0 y 3, preferiblemente 0 o 1.
24. Uso según cualquiera de las reivindicaciones 20 a 23 donde el biopolímero se selecciona de SEQ ID NO: 12 o SEQ ID NO: 13.
25. Uso según cualquiera de las reivindicaciones 20 a 24, que comprende además células, moléculas bioactivas, principios activos, o combinaciones de los mismos.
26. Composición descrita según cualquiera de las reivindicaciones 20 a 25, para su uso como medicamento
27. Composición descrita según cualquiera de las reivindicaciones 20 a 25, para su uso, en regeneración tisular.
PCT/ES2019/070701 2018-10-17 2019-10-15 Composición a base de biopolímeros recombinantes y usos de la misma como biotinta WO2020079303A1 (es)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980083047.XA CN113543818B (zh) 2018-10-17 2019-10-15 基于重组生物聚合物的组合物及其作为生物墨水的用途
US17/285,935 US20220047706A1 (en) 2018-10-17 2019-10-15 Composition based on recombinant biopolymers and uses of same as bio-ink
JP2021546479A JP2022513369A (ja) 2018-10-17 2019-10-15 組換えバイオポリマーベース組成物及びバイオインクとしての使用
EP19874354.4A EP3868779A4 (en) 2018-10-17 2019-10-15 COMPOSITION BASED ON RECOMBINATED BIOPOLYMERS AND USES OF THE SAME AS BIOLOGICAL INK

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201831008A ES2754824A1 (es) 2018-10-17 2018-10-17 Composicion a base de biopolimeros recombinantes y usos de la misma como biotinta
ESP201831008 2018-10-17

Publications (1)

Publication Number Publication Date
WO2020079303A1 true WO2020079303A1 (es) 2020-04-23

Family

ID=70273831

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2019/070701 WO2020079303A1 (es) 2018-10-17 2019-10-15 Composición a base de biopolímeros recombinantes y usos de la misma como biotinta

Country Status (6)

Country Link
US (1) US20220047706A1 (es)
EP (1) EP3868779A4 (es)
JP (1) JP2022513369A (es)
CN (1) CN113543818B (es)
ES (1) ES2754824A1 (es)
WO (1) WO2020079303A1 (es)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010092224A1 (es) 2009-02-16 2010-08-19 Universidad De Valladolid Biopolímero, implante que lo comprende y sus usos
EP2641965A1 (en) * 2012-03-21 2013-09-25 Parc Científic Barcelona Method for manufacturing a three-dimensional biomimetic scaffold and uses thereof
WO2014041231A1 (es) * 2012-09-14 2014-03-20 Universidad De Valladolid Hidrogel útil como soporte inyectable para aplicación en terapia celular y como sistema de liberación controlada de fármacos

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014102547A1 (en) * 2012-12-24 2014-07-03 Parc Cientific Barcelona Self-assembling peptides
WO2015080671A1 (en) * 2013-11-30 2015-06-04 Agency For Science, Technology And Research Self-assembling peptides, peptidomimetics and peptidic conjugates as building blocks for biofabrication and printing
US20170189546A1 (en) * 2014-04-29 2017-07-06 University Of Mississippi Medical Center Ocular Compositions and Methods Thereof
WO2016019078A1 (en) * 2014-07-30 2016-02-04 Tufts University Three dimensional printing of bio-ink compositions
WO2017095782A1 (en) * 2015-11-30 2017-06-08 Tufts University Silk-based adhesives

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010092224A1 (es) 2009-02-16 2010-08-19 Universidad De Valladolid Biopolímero, implante que lo comprende y sus usos
ES2344097B1 (es) * 2009-02-16 2011-06-20 Universidad De Valladolid Biopolimero, implante que lo comprende y sus usos.
EP2641965A1 (en) * 2012-03-21 2013-09-25 Parc Científic Barcelona Method for manufacturing a three-dimensional biomimetic scaffold and uses thereof
WO2014041231A1 (es) * 2012-09-14 2014-03-20 Universidad De Valladolid Hidrogel útil como soporte inyectable para aplicación en terapia celular y como sistema de liberación controlada de fármacos

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
CHIMENE, D. ET AL., ANN BIOMED ENG., vol. 44, no. 6, 2016, pages 2090 - 2102
FERNANDEZ-COLINO, ALICIA ET AL.: "Amphiphilic elastin-like block co-recombinamers containing leucine zippers: Cooperative interplay between both domains results in injectable and stable hydrogels", BIOMACROMOLECULES, vol. 16, no. 10, 2015, pages 3389 - 3398, XP055704107, DOI: 10.1021/acs.biomac.5b01103 *
IBÁÑEZ-FONSECA, A. ET AL.: "NOVEL HYDROGEL-FORMING ELASTIN-LIKE RECOMBINAMERS FOR BIOMEDICAL APPLICATIONS", CONGRESO ANUAL DE LA SOCIEDAD ESPANOLA DE INGENIERÍA BIOMÉDICA, November 2015 (2015-11-01), pages 331 - 333, XP055704115 *
JAVIER ARIAS, F. ET AL.: "Recent contributions of elastin-like recombinamers to biomedicine and nanotechnology", CURRENT TOPICS IN MEDICINAL CHEMISTRY, vol. 14, no. 6, 2014, pages 819 - 836, XP055704121 *
JUNGST, T. ET AL., CHEMICAL REVIEWS, vol. 116, no. 3, 2016, pages 1496 - 1539
MISBAH, M. HAMED ET AL.: "Formation of calcium phosphate nanostructures under the influence of self-assembling hybrid elastin-like-statherin recombinamers", RSC ADVANCES, vol. 6, no. 37, 2016, pages 31225 - 31234, XP055704120, DOI: 10.1039/C6RA01100D *
OZBOLAT, I.T. ET AL., DRUG DISCOVERY TODAY, vol. 21, no. 8, 2016, pages 1257 - 1271
PEREZ DEL RIO, EDUARDO ET AL.: "Síntesis y caracterización de nuevos polímeros recombinantes tipo elastina fusionados a eGFP para la formation de nanopartículas", 2015, pages 3 , 5 - 17 y 25-28, XP055704109 *
See also references of EP3868779A4
VANDERBURGH, J. ET AL., ANN BIOMED ENG, vol. 45, no. 1, 2017, pages 164 - 179
ZOU, YU ET AL.: "Diseño y síntesis de un nuevo biomaterial recombinante para uso en regeneration tisular neuronal", 2017, pages 1 - 2, 8-18, XP055704113 *

Also Published As

Publication number Publication date
CN113543818A (zh) 2021-10-22
JP2022513369A (ja) 2022-02-07
EP3868779A1 (en) 2021-08-25
EP3868779A4 (en) 2021-12-22
ES2754824A1 (es) 2020-04-20
CN113543818B (zh) 2022-10-21
US20220047706A1 (en) 2022-02-17

Similar Documents

Publication Publication Date Title
Altomare et al. Biopolymer-based strategies in the design of smart medical devices and artificial organs
ES2809457T3 (es) Matriz de soporte de injerto para reparación de cartílago y procedimiento de obtención de la misma
Kreller et al. Physico-chemical modification of gelatine for the improvement of 3D printability of oxidized alginate-gelatine hydrogels towards cartilage tissue engineering
Salinas-Fernandez et al. Genetically engineered elastin-like recombinamers with sequence-based molecular stabilization as advanced bioinks for 3D bioprinting
JP2021072890A (ja) 計測可能な三次元弾性構造物の製造
CN107007881A (zh) 可用于药物加载和释放的可注射型自愈合凝胶及其制备方法和应用
US20100028434A1 (en) Temperature controlled and pH dependent self gelling biopolymeric aqueous solution
CN102271724A (zh) 含有甘油的改性丝膜
Pal et al. Polymeric gels: characterization, properties and biomedical applications
EP2244753A2 (en) Gellan gum based hydrogels for regenerative medicine and tissue engineering applications, its system, and processing devices
Zanna et al. Hydrogelation induced by Fmoc-protected peptidomimetics
Hsueh et al. Design and synthesis of elastin-like polypeptides for an ideal nerve conduit in peripheral nerve regeneration
David Collagen-based 3D structures—Versatile, efficient materials for biomedical applications
ES2455441B1 (es) Hidrogel útil como soporte inyectable para aplicación en terapia celular y como sistema de liberación controlada de fármacos
Wang et al. Establishing a novel 3D printing bioinks system with recombinant human collagen
WO2020079303A1 (es) Composición a base de biopolímeros recombinantes y usos de la misma como biotinta
ES2416338T3 (es) Biopolímero, implante que lo comprende y sus usos
Madappura et al. A comprehensive review of silk-fibroin hydrogels for cell and drug delivery applications in tissue engineering and regenerative medicine
Thakur et al. Protein-based gels: preparation, characterizations, applications in drug delivery, and tissue engineering
He et al. Recent Advancements of Bioinks for 3D Bioprinting of Human Tissues and Organs
Thakur et al. Hydrogels: characterization, drug delivery, and tissue engineering applications
US20240174976A1 (en) Bioink, molded body, article, and method for producing molded body
Banach-Kopeć et al. Marine polymers in tissue bioprinting: Current achievements and challenges
WO2024057194A1 (en) Compound for making three-dimensional structures to recreate the nervous tissue of the brain of human beings
Li Structured Hydrogels for Tissue Engineering and Bioprinting

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19874354

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021546479

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019874354

Country of ref document: EP

Effective date: 20210517