WO2020077779A1 - 空调开关机控制方法 - Google Patents

空调开关机控制方法 Download PDF

Info

Publication number
WO2020077779A1
WO2020077779A1 PCT/CN2018/120622 CN2018120622W WO2020077779A1 WO 2020077779 A1 WO2020077779 A1 WO 2020077779A1 CN 2018120622 W CN2018120622 W CN 2018120622W WO 2020077779 A1 WO2020077779 A1 WO 2020077779A1
Authority
WO
WIPO (PCT)
Prior art keywords
air conditioner
variable
operating state
capacity compressor
compressor
Prior art date
Application number
PCT/CN2018/120622
Other languages
English (en)
French (fr)
Inventor
余凯
戎耀鹏
许克
刘群波
倪毅
李龙飞
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Priority to EP18937413.5A priority Critical patent/EP3869111A4/en
Priority to US17/284,100 priority patent/US11841150B2/en
Publication of WO2020077779A1 publication Critical patent/WO2020077779A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/005Arrangement or mounting of control or safety devices of safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/074Details of compressors or related parts with multiple cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/02Increasing the heating capacity of a reversible cycle during cold outdoor conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/26Problems to be solved characterised by the startup of the refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/27Problems to be solved characterised by the stop of the refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/024Compressor control by controlling the electric parameters, e.g. current or voltage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0251Compressor control by controlling speed with on-off operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0253Compressor control by controlling speed with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/027Compressor control by controlling pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2519On-off valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present disclosure relates to the field of air conditioners, and in particular to an air conditioner switch control method.
  • the frequency conversion multi-line based on the volume switching of the large and small cylinders adopts the design of large and small cylinders, and large cylinders can be unloaded. At medium and high loads, the compressor runs both cylinders, and at low loads, the compressor operates only a single cylinder.
  • the high and low pressure solenoid valves are used to change the pressure of the variable volume port of the compressor to switch the operating state of the single and double cylinders.
  • the high-pressure solenoid valve When the high-pressure solenoid valve is opened, the high-pressure gas is introduced into the variable volume port, and the compressor operates in two cylinders; when the low-pressure solenoid valve is opened, the low-pressure gas is introduced through the variable volume port, and the compressor operates in one cylinder.
  • the compressor may be in double-cylinder operation or single-cylinder operation when the frequency conversion and variable capacity multiple online shutdown, so the state of the compressor cylinder cannot be confirmed at the next startup , The compressor vibration cannot be controlled, resulting in pipeline stress and strain being affected.
  • the present disclosure proposes an air conditioner on-off control method to optimize the control method of the air conditioner and increase the reliability of unit start-up.
  • the present disclosure proposes an air conditioner on-off control method, including the following steps:
  • variable capacity compressor of the air conditioner Before starting the air conditioner, determine whether the variable capacity compressor of the air conditioner is in a single-cylinder operating state; wherein the variable capacity compressor is configured to switch between a single-cylinder operating state and a double-cylinder operating state;
  • the following steps are used to determine whether the variable capacity compressor is in a single-cylinder operating state:
  • the air conditioner After the air conditioner receives the shutdown signal, determine whether the variable capacity compressor is currently in a single-cylinder operating state or a double-cylinder operating state;
  • variable-capacity compressor If the variable-capacity compressor is in a two-cylinder operating state, turn off the air conditioner, and then switch the variable-capacity compressor to a single-cylinder operating state, so that the pressure at the variable-capacity port of the variable-capacity compressor and The pressure at the suction port of the variable capacity compressor is equal; if the variable capacity compressor is in a single-cylinder operating state, turn off the air conditioner.
  • the following steps are used to switch the variable capacity compressor to a single-cylinder operating state:
  • variable volume compressor of the air conditioner is switched to a single-cylinder operating state, so that the pressure of the variable volume port of the variable volume compressor and the suction port of the variable volume compressor The pressure is equal, and then starting the air conditioner includes the following steps:
  • the first set duration is between 0 and 3 minutes.
  • variable-capacity compressor if the variable-capacity compressor is in a two-cylinder operating state, the air conditioner is turned off, and then the variable-capacity compressor is switched to a single-cylinder operating state to make the variable
  • the pressure of the variable volume port of the volume compressor is equal to the pressure of the suction port of the variable volume compressor, including the following steps:
  • variable-capacity compressor is maintained in a single-cylinder operating state and continues for a second set duration.
  • the second set duration is between 0 and 3 minutes.
  • the air conditioner includes frequency conversion multiple connections.
  • the switching the variable-capacity compressor to a single-cylinder operating state, and then starting the air conditioner includes:
  • variable volume compressor is switched to a single-cylinder operating state so that the pressure of the variable volume port of the variable volume compressor is equal to the pressure of the suction port of the variable volume compressor, and then the air conditioner is started.
  • the pressure of the variable volume port of the variable volume compressor is basically equal to the pressure of the compressor suction port before the next start
  • the operating state of the air conditioning cylinder is always determined, and there will be no vibration and abnormal noise caused by the high-pressure gas closed by the variable volume port.
  • FIG. 1 is a schematic diagram of the principle of an air conditioner provided by an embodiment of the present disclosure
  • FIG. 2 is a schematic flowchart of a method for controlling an air conditioner to switch on and off according to an embodiment of the present disclosure.
  • An embodiment of the present disclosure provides a method for controlling an air conditioner to switch on and off, which is used to realize the start-up and shut-down control of variable frequency multi-line.
  • the following describes an air-conditioning structure on which the control method is based.
  • the air conditioner includes a variable capacity compressor 1, an oil separator 2, a four-way valve 3, a first heat exchanger 4, one or more second heat exchangers 5, and a gas-liquid separator 6.
  • the variable-capacity port 11 of the variable-capacity compressor 1 is provided with two control branches, which are used to realize the single-double cylinder switching of the variable-capacity compressor 1.
  • a first solenoid valve 7 is provided on the branch between the variable volume port of the variable volume compressor 1 and the outlet of the gas-liquid separator 6.
  • a second solenoid valve 8 is provided on the branch between the outlet of the oil separator 2 and the variable displacement port 11 of the variable displacement compressor 1.
  • the first heat exchanger 4 is used as an outdoor heat exchanger
  • the second heat exchanger 5 is used as an indoor heat exchanger as an example.
  • variable capacity compressor 1 is in the single cylinder mode. If the second solenoid valve 8 is in the on state and the first solenoid valve 7 is in the off state, the variable capacity compressor 1 is in the dual cylinder mode.
  • the first solenoid valve 7 and the second solenoid valve 8 are used to control the pressure of the variable displacement port 11 of the variable displacement compressor 1 to switch between single and double cylinders. When the first solenoid valve 7 is opened, the variable volume port 11 passes low pressure, and the variable volume compressor 1 is in a single-cylinder operating state. When the second solenoid valve 8 is opened, the variable volume port 11 passes high pressure, and the variable volume compressor 1 is in a double-cylinder operating state.
  • the single-cylinder switching of the variable volume compressor 1 is realized.
  • the on-off state of the solenoid valve connected to the variable volume port 11 is used to determine the single and double cylinder states when the variable volume compressor 1 is started next time.
  • other methods can also be used to switch between single and double cylinders of the variable capacity compressor 1. Only when other methods are used, the corresponding parameters need to be used to determine the state of the variable capacity compressor 1.
  • an embodiment of the present disclosure provides an air conditioner on-off control method, including the following steps:
  • Step S10 Before starting the air conditioner, determine whether the variable capacity compressor 1 of the air conditioner is in a single-cylinder operating state. Among them, the variable capacity compressor 1 is configured to be switchable between a single-cylinder operating state and a double-cylinder operating state.
  • the single-cylinder operating state and the double-cylinder operating state are stated when the unit is in the operating state.
  • the operating state of the single cylinder is static, which means that the unit has not been started at this time, but its pipeline connection and valve position meet the requirements of single cylinder operation.
  • step S30 is directly executed; if the variable capacity compressor 1 is not in a single-cylinder operating state, step S20 is executed.
  • the gas source connected to the variable volume port 11 on the variable volume compressor 1 is high or low pressure, and it is judged whether the variable volume compressor 1 is in single-cylinder operation or double-cylinder operation when it is subsequently started .
  • the high pressure here means the pressure at which the variable volume port 11 communicates with the discharge port of the variable volume compressor 1 or communicates with the outlet of the oil separator 2.
  • the low pressure here means that the variable volume port 11 communicates with the intake port of the variable volume compressor 1. The low pressure is approximately equal to the suction pressure of the variable capacity compressor 1.
  • variable capacity compressor 1 is capable of single-cylinder operation according to the cause of the last shutdown of the air conditioner. Specific steps are as follows:
  • the reasons for shutdown include receiving a shutdown signal and power off.
  • variable capacity compressor 1 it is determined whether the variable capacity compressor 1 is in a single-cylinder operating state. If the reason for shutdown is to receive a shutdown signal, the variable capacity compressor 1 of the air conditioner is in a state of waiting for a single cylinder. If the reason for shutdown is power-off shutdown, it is considered that the variable capacity compressor 1 of the air conditioner is not in a single-cylinder operating state.
  • Step S20 If the variable capacity compressor 1 is in a single-cylinder operating state, directly start the air conditioner. Otherwise, first switch the variable capacity compressor of the air conditioner to the single-cylinder operating state, and then start the air conditioner.
  • step S20 the slider position of the variable-capacity compressor 1 is specifically adjusted by changing the pressure of the variable-capacity port 11 so that the variable-capacity compressor 1 is in a single-cylinder operating state. That is, the variable volume port 11 is communicated with the intake port of the variable volume compressor 1.
  • step S20 the variable-capacity compressor of the air conditioner is first switched to a single-cylinder operating state, so that the pressure at the variable-capacity port of the variable-capacity compressor is equal to the pressure at the suction port of the variable-capacity compressor, Then start the air conditioner.
  • the pressure of the variable displacement port of the variable capacity compressor is equal to the pressure of the suction port of the variable capacity compressor, which means that the pressure is approximately equal, or that the pressure value of the two is allowed to have a certain error.
  • step S20 if the variable-capacity compressor 1 is not in a single-cylinder operating state, it performs the following steps:
  • variable capacity compressor 1 is switched to a single-cylinder operating state.
  • variable-capacity compressor 1 is maintained in a single-cylinder operating state and continues for the first set duration.
  • the first set duration is between 0 and 3 minutes.
  • the following steps are used to determine whether the variable-capacity compressor 1 is in a single-cylinder operating state: determine whether the air conditioner was last shut down because it received a shutdown signal, and if so, the variable-capacity compressor 1 of the air conditioner is in Waiting for single cylinder operation status.
  • variable capacity compressor 1 of the air conditioner is uncertain, it may be powered off in the single-cylinder operating state, or may be affected in the double-cylinder operating state. Power off. All of these situations are uniformly determined as the variable capacity compressor 1 is not in a single-cylinder operating state. Therefore, in this state, there is no need to distinguish whether the air conditioner is in the single-cylinder or double-cylinder operation state before power off.
  • the variable volume port 11 is uniformly connected to the low-pressure gas to make the variable volume port 11 of the variable volume compressor 1 The pressure of is equal to the pressure of the suction port of the variable capacity compressor 1, and then step S30 is performed.
  • the above step S20 can make the pressure of the variable volume port 11 of the variable capacity compressor 1 equal to the suction port pressure before the air conditioner is started, so that there is no abnormal vibration during start-up, and the start-up is reliable.
  • the air conditioner pipeline is adjusted to be in a single-cylinder operating state, so that the variable capacity compressor variable capacity port The pressure of is equal to the pressure of the suction port of the compressor, and the air conditioner will not vibrate abnormally when it is started next time. If the air conditioner is shut down in single-cylinder operation mode, it will shut down normally.
  • variable capacity compressor of the unit is now adjusted to a single-cylinder operation mode to make the variable capacity compressor
  • the pressure of the variable volume port is equal to the pressure of the compressor suction port, and then start the air conditioner.
  • the air conditioner on / off control method further includes the following steps:
  • Step S30 Run the air conditioner.
  • Step S40 After the air conditioner receives the shutdown signal, it is determined whether the variable capacity compressor 1 is currently in the single-cylinder operating state or the double-cylinder operating state.
  • Step S50 If the variable capacity compressor 1 is in a two-cylinder operating state, turn off the air conditioner, and then switch the variable capacity compressor 1 to a single-cylinder operating state, so that the pressure of the variable capacity port 11 of the variable capacity compressor 1 The pressure at the suction port of the variable capacity compressor 1 is equal. If the variable capacity compressor 1 is in a single-cylinder operating state, the air conditioner is turned off.
  • step S50 the state of the air conditioner does not change during normal shutdown, and it can be shut down under single-cylinder operation or shutdown under dual-cylinder operation.
  • the variable-capacity compressor 1 is switched to a single-cylinder operating state, so that the pressure of the variable-capacity port 11 of the variable-capacity compressor 1 and the suction port of the variable-capacity compressor 1 The pressure is equal.
  • step S50 if the variable capacity compressor 1 is in the dual-cylinder operating state, it specifically performs the following steps:
  • variable capacity compressor 1 Secondly, switch the variable capacity compressor 1 to a single-cylinder operating state
  • variable-capacity compressor 1 is kept in the single-cylinder operating state and continues for the second set duration.
  • the second set duration is between 0 and 3 minutes. This time period can make the pressure of the variable volume port 11 of the variable volume compressor 1 equal to the pressure of the suction port of the variable volume compressor 1.

Abstract

一种空调开关机控制方法,涉及空调领域,用于优化空调的控制方法,增加机组启动的可靠性。该方法包括以下步骤:启动空调之前,判断空调的可变容压缩机是否处于待单缸运行状态;其中,可变容压缩机被构造为能在单缸运行状态和双缸运行状态之间切换。如果是,启动空调;否则,将可变容压缩机切换至待单缸运行状态,以使得可变容压缩机变容口的压力与可变容压缩机吸气口的压力相等,然后启动空调。上述控制方法,无论空调是机组断电关机还是收到关机信号,最终都能使得下次启动时,以单缸运行状态启动,使得空调开启时缸体的运行状态始终是确定的。

Description

空调开关机控制方法
本申请是以CN申请号为201811219703.8,申请日为2018年10月19日的申请为 基础,并主张其优先权,该CN申请的公开内容在此作为整体引入本申请中。
技术领域
本公开涉及空调领域,具体涉及一种空调开关机控制方法。
背景技术
基于大小缸容积切换的变频多联机与普通多联机相比,其压缩机采用大小缸设计,且大缸可以卸载。在中高负荷下压缩机双缸都运行,低负荷下压缩机只有单缸运行。
通过高、低压电磁阀改变压缩机变容口压力进行单双缸运行状态的切换。高压电磁阀开启时变容口通入高压气体,压缩机双缸运行;低压电磁阀开启时变容口通入低压气体,压缩机单缸运行。
发明人发现,相关技术中至少存在下述问题:由于变频变容多联机关机时,压缩机有可能处于双缸运行,也有可能处于单缸运行,故下次启动时无法确认压缩机缸体状态,则压缩机振动无法控制,导致管路应力应变等受到影响。
发明内容
根据本公开的一些实施例,本公开提出一种空调开关机控制方法,用以优化空调的控制方法,增加机组启动的可靠性。
根据本公开的一些实施例,本公开提出了一种空调开关机控制方法,包括以下步骤:
启动空调之前,判断空调的可变容压缩机是否处于待单缸运行状态;其中,所述可变容压缩机被构造为能在单缸运行状态和双缸运行状态之间切换;
如果是,启动所述空调;否则,将所述空调的可变容压缩机切换至待单缸运行状态,然后启动所述空调。
在一些实施例中,采用下述步骤判断所述可变容压缩机是否处于待单缸运行状态:
判断所述空调上一次关机是否因为接收到关机信号,如果是,则所述空调的可变容压缩机处于待单缸运行状态。
在一些实施例中,在启动所述空调之后,还包括以下步骤:
运行所述空调;
在所述空调收到关机信号后,判断所述可变容压缩机当前处于单缸运行状态还是双缸运行状态;
如果所述可变容压缩机处于双缸运行状态,关闭所述空调,然后将所述可变容压缩机切换至待单缸运行状态,以使得所述可变容压缩机变容口的压力与所述可变容压缩机吸气口的压力相等;如果所述可变容压缩机处于单缸运行状态,关闭所述空调。
在一些实施例中,采用下述步骤使得所述可变容压缩机切换至待单缸运行状态:
将所述可变容压缩机的变容口与所述可变容压缩机的排气口之间支路上的第二电磁阀关闭,将所述可变容压缩机的变容口与所述可变容压缩机的吸气口之间支路上的第一电磁阀开启。
在一些实施例中,所述将所述空调的可变容压缩机切换至待单缸运行状态,以使得所述可变容压缩机变容口的压力与所述可变容压缩机吸气口的压力相等,然后启动所述空调包括以下步骤:
将所述可变容压缩机切换至待单缸运行状态;
将所述可变容压缩机保持在待单缸运行状态,并持续第一设定时长;
启动所述空调。
在一些实施例中,所述第一设定时长介于0至3分钟。
在一些实施例中,所述如果所述可变容压缩机处于双缸运行状态,关闭所述空调,然后将所述可变容压缩机切换至待单缸运行状态,以使得所述可变容压缩机变容口的压力与所述可变容压缩机吸气口的压力相等包括以下步骤:
关闭所述空调;
将所述可变容压缩机切换至待单缸运行状态;
将所述可变容压缩机保持在待单缸运行状态,并持续第二设定时长。
在一些实施例中,所述第二设定时长介于0至3分钟。
在一些实施例中,所述空调包括变频多联机。
在一些实施例中,所述将所述可变容压缩机切换至待单缸运行状态,然后启动所述空调包括:
将所述可变容压缩机切换至待单缸运行状态,以使得所述可变容压缩机变容口的压力与所述可变容压缩机吸气口的压力相等,然后启动所述空调。
上述技术方案,无论空调是机组断电关机还是收到关机信号,最终都能使得下次启动前,可变容压缩机的变容口的压力都基本等于压缩机吸气口的压力,故后续启动时,空调缸体的运行状态始终是确定的,不会出现因为变容口封闭高压气体而导致的振动异响现象。
附图说明
图1为本公开实施例提供的空调原理示意图;
图2为本公开实施例提供的空调开关机控制方法的流程示意图。
具体实施方式
下面结合图1~图2对本公开提供的技术方案进行更为详细的阐述。
本公开实施例提供一种空调开关机控制方法,用于实现变频多联机的开机、关机控制。下面介绍该控制方法所基于的一种空调结构。
参见图1,空调包括可变容压缩机1、油分离器2、四通阀3、第一换热器4、一个或以上数量的第二换热器5,以及气液分离器6。在可变容压缩机1的变容口11设置有两路控制支路,用于实现可变容压缩机1的单双缸切换。可变容压缩机1的变容口和气液分离器6的出口之间的支路上设有第一电磁阀7。油分离器2的出口和可变容压缩机1的变容口11之间的支路上设有第二电磁阀8。此处以第一换热器4作为室外换热器,第二换热器5作为室内换热器为例。
若第一电磁阀7处于导通状态、第二电磁阀8处于断开状态,则可变容压缩机1处于单缸模式。若第二电磁阀8处于导通状态、第一电磁阀7处于断开状态,则可变容压缩机1处于双缸模式。通过第一电磁阀7、第二电磁阀8控制可变容压缩机1变容口11的压力,以切换单双缸。第一电磁阀7开启时变容口11通入低压,可变容压缩机1处于单缸运行状态。第二电磁阀8开启时变容口11通入高压,可变容压缩机1处于双缸运行状态。
本实施例通过改变变容口11的气体压力,实现可变容压缩机1的单双缸切换。此方式采用判断变容口11连接的电磁阀的通断状态,来判断可变容压缩机1下次启动时的单双缸状态。当然,亦可采用其他方式实现可变容压缩机1的单双缸切换,只 是采用其他方式时,需要采用相应的参数判断可变容压缩机1的状态。
参见图2,本公开实施例提供一种空调开关机控制方法,包括以下步骤:
步骤S10、启动空调之前,判断空调的可变容压缩机1是否处于待单缸运行状态。其中,可变容压缩机1被构造为能在单缸运行状态和双缸运行状态之间切换。
单缸运行状态、双缸运行状态是以机组处于运行状态下说的。待单缸运行状态则是静态的,是指机组此时尚未启动,但其管路连接、阀位等满足单缸运行的要求。
若可变容压缩机1处于待单缸运行状态,则直接执行步骤S30;若可变容压缩机1没有处于待单缸运行状态,则执行步骤S20。
其中一种判断方式为:通过可变容压缩机1上变容口11所连通的气源为高压或低压,判断可变容压缩机1后续启动时是处于单缸运行或是双缸运行状态。此处的高压是指,变容口11连通可变容压缩机1的排气口或者连通油分离器2出口的压力。此处的低压是指,变容口11连通可变容压缩机1的吸气口。低压约等于可变容压缩机1的吸气压力。
另一种判断方式为:根据空调上一次的关机原因判断可变容压缩机1是否处于能够单缸运行。具体步骤如下:
首先,获取空调上一次的关机原因。其中,关机原因包括接收到关机信号和断电关机。
其次,根据获取到的关机原因,判断可变容压缩机1是否处于待单缸运行状态。若关机原因是接收到关机信号,则空调的可变容压缩机1处于待单缸运行状态。若关机原因是断电关机,则认为空调的可变容压缩机1没有处于待单缸运行状态。
步骤S20、如果可变容压缩机1处于待单缸运行状态,直接启动空调。否则,先将空调的可变容压缩机切换至待单缸运行状态,然后启动空调。
在上述步骤S20中,具体采用改变变容口11压力的方式调节可变容压缩机1的滑片位置,以使得可变容压缩机1处于待单缸运行状态。即,将变容口11与可变容压缩机1的吸气口连通。
可选地,在步骤S20中,先将空调的可变容压缩机切换至待单缸运行状态,以使得可变容压缩机变容口的压力与可变容压缩机吸气口的压力相等,然后启动空调。可变容压缩机变容口的压力与可变容压缩机吸气口的压力相等是指压力近似相等,或者说,允许两者的压力值有一定的误差。
在上述的步骤S20中,若可变容压缩机1没有处于待单缸运行状态,则其执行以 下步骤:
首先,将可变容压缩机1切换至待单缸运行状态。
其次,将可变容压缩机1保持在待单缸运行状态,并持续第一设定时长。在一些实施例中,第一设定时长介于0至3分钟。
最后,启动空调。
在一些实施例中,采用下述步骤判断可变容压缩机1是否处于待单缸运行状态:判断空调上一次关机是否因为接收到关机信号,如果是,则空调的可变容压缩机1处于待单缸运行状态。
若空调上一次的关机原因为断电关机,则说明空调的可变容压缩机1的状态是不确定的,有可能处于单缸运行状态下被断电,也有可能在双缸运行状态下被断电。这些情况都统一被认定为可变容压缩机1没有处于待单缸运行状态。所以在此状态下,无须分辨断电前空调处于单缸或是双缸运行状态,开机之前,都统一将变容口11与低压气体连通,以使得可变容压缩机1的变容口11的压力与可变容压缩机1吸气口的压力相等,然后再进行步骤S30。
上述的步骤S20,能够使得空调启动前,可变容压缩机1的变容口11的压力等于吸气口压力,故启动时不会振动异常的现象,使得启动可靠。
上述技术方案,空调正常关机时,关机前若空调是在双缸运行模式下运行,则在关机后将空调的管路调节为待单缸运行状态,以使得可变容压缩机的变容口的压力与压缩机吸气口的压力相等,下次启动时,空调不会出现振动异常。若空调是单缸运行模式下关机,则正常关机。若机组不是因为收到停机信号关机,比如是在断电情况下关机,则在下一次启动前,现将机组的可变容压缩机调整为能够单缸运行的模式,以使得可变容压缩机的变容口的压力与压缩机吸气口的压力相等,然后再启动空调。
在一些实施例中,空调开关机控制方法还包括以下步骤:
步骤S30、运行空调。
步骤S40、在空调收到关机信号后,判断可变容压缩机1当前处于单缸运行状态还是双缸运行状态。
步骤S50、如果可变容压缩机1处于双缸运行状态,关闭空调,然后将可变容压缩机1切换至待单缸运行状态,以使得可变容压缩机1的变容口11的压力与可变容压缩机1吸气口的压力相等。如果可变容压缩机1处于单缸运行状态,关闭空调。
上述步骤S50,正常关机时,空调的状态不变,可以单缸运行下关机,亦可双缸 运行下关机。但是在双缸运行下,关机之后,将可变容压缩机1切换至待单缸运行状态,以使得可变容压缩机1的变容口11的压力与可变容压缩机1吸气口的压力相等。
在上述的步骤S50中,如果可变容压缩机1处于双缸运行状态,其具体执行以下步骤:
首先,关闭空调;
其次,将可变容压缩机1切换至待单缸运行状态;
最后,将可变容压缩机1保持在待单缸运行状态,并持续第二设定时长。在一些实施例中,第二设定时长介于0至3分钟。该时长能够使得可变容压缩机1的变容口11的压力与可变容压缩机1吸气口的压力相等。
需要说明的是,上述的压力相等,是指压力近似相等,或者说允许所比较的两个压力有一定的误差。
在本公开的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开保护范围的限制。
最后应当说明的是:以上实施例仅用以说明本公开的技术方案而非对其限制;尽管参照较佳实施例对本公开进行了详细的说明,所属领域的普通技术人员应当理解:依然可以对本公开的具体实施方式进行修改或者对部分技术特征进行等同替换;而不脱离本公开技术方案的精神,其均应涵盖在本公开请求保护的技术方案范围当中。

Claims (10)

  1. 一种空调开关机控制方法,包括以下步骤:
    启动空调之前,判断空调的可变容压缩机是否处于待单缸运行状态;其中,所述可变容压缩机被构造为能在单缸运行状态和双缸运行状态之间切换;
    如果是,启动所述空调;否则,将所述可变容压缩机切换至待单缸运行状态,然后启动所述空调。
  2. 根据权利要求1所述的空调开关机控制方法,其中,采用下述步骤判断所述可变容压缩机是否处于待单缸运行状态:
    判断所述空调上一次关机是否因为接收到关机信号,如果是,则所述空调的可变容压缩机处于待单缸运行状态。
  3. 根据权利要求1所述的空调开关机控制方法,其中,在启动所述空调之后,还包括以下步骤:
    运行所述空调;
    在所述空调收到关机信号后,判断所述可变容压缩机当前处于单缸运行状态还是双缸运行状态;
    如果所述可变容压缩机处于双缸运行状态,关闭所述空调,然后将所述可变容压缩机切换至待单缸运行状态,以使得所述可变容压缩机变容口的压力与所述可变容压缩机吸气口的压力相等;如果所述可变容压缩机处于单缸运行状态,关闭所述空调。
  4. 根据权利要求1所述的空调开关机控制方法,采用下述步骤使得所述可变容压缩机切换至待单缸运行状态:
    将所述可变容压缩机的变容口与所述可变容压缩机的排气口之间支路上的第二电磁阀关闭,将所述可变容压缩机的变容口与所述可变容压缩机的吸气口之间支路上的第一电磁阀开启。
  5. 根据权利要求1所述的空调开关机控制方法,所述将所述空调的可变容压缩机切换至待单缸运行状态,以使得所述可变容压缩机变容口的压力与所述可变容压缩机吸气口的压力相等,然后启动所述空调包括以下步骤:
    将所述可变容压缩机切换至待单缸运行状态;
    将所述可变容压缩机保持在待单缸运行状态,并持续第一设定时长;
    启动所述空调。
  6. 根据权利要求5所述的空调开关机控制方法,所述第一设定时长介于0至3分钟。
  7. 根据权利要求3所述的空调开关机控制方法,其中,所述如果所述可变容压缩机处于双缸运行状态,关闭所述空调,然后将所述可变容压缩机切换至待单缸运行状态,以使得所述可变容压缩机变容口的压力与所述可变容压缩机吸气口的压力相等包括以下步骤:
    关闭所述空调;
    将所述可变容压缩机切换至待单缸运行状态;
    将所述可变容压缩机保持在待单缸运行状态,并持续第二设定时长。
  8. 根据权利要求7所述的空调开关机控制方法,其中,所述第二设定时长介于0至3分钟。
  9. 根据权利要求1所述的空调开关机控制方法,所述空调包括变频多联机。
  10. 根据权利要求1所述的空调开关机控制方法,所述将所述可变容压缩机切换至待单缸运行状态,然后启动所述空调包括:
    将所述可变容压缩机切换至待单缸运行状态,以使得所述可变容压缩机变容口的压力与所述可变容压缩机吸气口的压力相等,然后启动所述空调。
PCT/CN2018/120622 2018-10-19 2018-12-12 空调开关机控制方法 WO2020077779A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18937413.5A EP3869111A4 (en) 2018-10-19 2018-12-12 AIR CONDITIONER ON OR OFF CONTROL METHOD
US17/284,100 US11841150B2 (en) 2018-10-19 2018-12-12 Method for controlling power-on or power-off of air conditioner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811219703.8A CN109357355B (zh) 2018-10-19 2018-10-19 空调开关机控制方法
CN201811219703.8 2018-10-19

Publications (1)

Publication Number Publication Date
WO2020077779A1 true WO2020077779A1 (zh) 2020-04-23

Family

ID=65345868

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/120622 WO2020077779A1 (zh) 2018-10-19 2018-12-12 空调开关机控制方法

Country Status (4)

Country Link
US (1) US11841150B2 (zh)
EP (1) EP3869111A4 (zh)
CN (1) CN109357355B (zh)
WO (1) WO2020077779A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111720979B (zh) * 2020-06-16 2021-11-05 海信(山东)空调有限公司 空调器及其节能控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3932921B2 (ja) * 2002-02-08 2007-06-20 株式会社デンソー エンジン駆動式冷凍サイクル装置及び空調装置
CN101995110A (zh) * 2010-10-29 2011-03-30 广东美的电器股份有限公司 一种双缸变容压缩机空调系统及其控制方法
CN203375701U (zh) * 2013-06-26 2014-01-01 广东美的暖通设备有限公司 热泵热水器
CN103940051A (zh) * 2014-05-13 2014-07-23 珠海格力电器股份有限公司 一种空调器模式转换的控制方法及控制系统
CN206281240U (zh) * 2016-11-25 2017-06-27 广东美的制冷设备有限公司 一种双缸变容空调系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105180372B (zh) * 2015-09-29 2018-07-31 Tcl空调器(中山)有限公司 空调器控制方法及装置
CN109538457B (zh) * 2018-10-10 2020-05-22 珠海格力电器股份有限公司 一种控制压缩机切缸的方法、装置及机组、空调系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3932921B2 (ja) * 2002-02-08 2007-06-20 株式会社デンソー エンジン駆動式冷凍サイクル装置及び空調装置
CN101995110A (zh) * 2010-10-29 2011-03-30 广东美的电器股份有限公司 一种双缸变容压缩机空调系统及其控制方法
CN203375701U (zh) * 2013-06-26 2014-01-01 广东美的暖通设备有限公司 热泵热水器
CN103940051A (zh) * 2014-05-13 2014-07-23 珠海格力电器股份有限公司 一种空调器模式转换的控制方法及控制系统
CN206281240U (zh) * 2016-11-25 2017-06-27 广东美的制冷设备有限公司 一种双缸变容空调系统

Also Published As

Publication number Publication date
CN109357355B (zh) 2020-01-03
CN109357355A (zh) 2019-02-19
EP3869111A4 (en) 2022-07-06
US20210348785A1 (en) 2021-11-11
EP3869111A1 (en) 2021-08-25
US11841150B2 (en) 2023-12-12

Similar Documents

Publication Publication Date Title
US10247449B2 (en) Variable-capacity compressor, two-stage compression system and control method thereof
CN109812920B (zh) 一种空调器多压缩机启停的控制方法、装置及多联机系统
KR100772217B1 (ko) 공기 조화기의 제어 방법
EP2015004B1 (en) Air conditioner
JP5976333B2 (ja) 空気調和装置及び空気調和装置の四方弁制御方法
WO2020192087A1 (zh) 多联机空调及其控制方法
CN111854216B (zh) 空调系统
WO2020077779A1 (zh) 空调开关机控制方法
JP2012127518A (ja) 空気調和機
WO2021223524A1 (zh) 一种空调器及其控制方法和计算机可读存储介质
CN111076350B (zh) 一种压缩机启动的控制方法、装置及空调器
CN112303851A (zh) 用于空调的控制方法及使用其的空调
WO2020073488A1 (zh) 一种控制压缩机切缸的方法、装置及机组、空调系统
WO2023273495A1 (zh) 制冷系统和冰箱
CN113669784B (zh) 提升无水地暖机组启动时压缩机缺油的控制方法及三联供系统
JP2002364938A (ja) 空気調和機停止中の圧縮機内部圧力制御方式
JP2002228237A (ja) 空気調和装置
KR100608684B1 (ko) 공기조화기의 솔레노이드 밸브 제어방법
JP2000314566A (ja) 空気調和装置
KR100713817B1 (ko) 복수개의 압축기를 구비한 히트 펌프 시스템
WO2022249437A1 (ja) ヒートポンプ装置および給湯装置
JP7311756B2 (ja) 空調システム
JP2882172B2 (ja) 空気調和機
CN116734428A (zh) 空调器的启动控制方法
KR100632023B1 (ko) 공기조화기의 핫가스 바이패스 밸브 제어 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18937413

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018937413

Country of ref document: EP

Effective date: 20210519