WO2021223524A1 - 一种空调器及其控制方法和计算机可读存储介质 - Google Patents

一种空调器及其控制方法和计算机可读存储介质 Download PDF

Info

Publication number
WO2021223524A1
WO2021223524A1 PCT/CN2021/081804 CN2021081804W WO2021223524A1 WO 2021223524 A1 WO2021223524 A1 WO 2021223524A1 CN 2021081804 W CN2021081804 W CN 2021081804W WO 2021223524 A1 WO2021223524 A1 WO 2021223524A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
operating frequency
frequency
air conditioner
pressure switch
Prior art date
Application number
PCT/CN2021/081804
Other languages
English (en)
French (fr)
Inventor
张铭
王海胜
张晓迪
李召勇
Original Assignee
青岛海尔空调电子有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调电子有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调电子有限公司
Publication of WO2021223524A1 publication Critical patent/WO2021223524A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/20Heat-exchange fluid temperature

Definitions

  • the invention belongs to the technical field of air conditioning, and specifically relates to an air conditioner, a control method thereof, and a computer-readable storage medium.
  • the refrigeration cycle system of the air conditioner is generally equipped with a low pressure pressure switch.
  • the low pressure switch When the pressure at the low pressure switch is lower than the action value of the low pressure switch, the low pressure switch will be disconnected, and the air conditioner will stop running.
  • the air conditioner When the pressure is higher than the operating value of the low pressure switch, the air conditioner restarts to run. Therefore, when the air conditioner is out of operation, it cannot provide cooling or heat to the room, and cannot meet the user's demand for the air conditioner.
  • the present invention provides an air conditioner and a control method thereof, so as to solve the problem that the air conditioner stops due to the pressure at the low pressure switch being lower than the action value of the low pressure switch, which cannot satisfy the user’s requirements for the air conditioner.
  • a control method of an air conditioner comprising:
  • the operating frequency of the compressor when the operating frequency of the compressor is less than or equal to the set frequency and the low-pressure pressure switch is open, control the operating frequency of the compressor to decrease until the low-pressure pressure switch is closed, and then control the compressor
  • the operating frequency is up-frequency and the maximum operating frequency of the compressor up-frequency does not exceed the limit frequency.
  • the operating frequency of the compressor when the operating frequency of the compressor is greater than the set frequency, and when the evaporating temperature is less than the second set evaporating temperature, the operating frequency of the compressor is adjusted so that the evaporating The temperature is maintained at the second set evaporation temperature, and the first set evaporation temperature is less than the second set evaporation temperature.
  • the operating frequency of the compressor when the operating frequency of the compressor is controlled to be reduced to the closing of the low pressure pressure switch, the operating frequency of the compressor is controlled to be stepped down.
  • the decrease in the operating frequency of the compressor is the same, or the decrease in the operating frequency of the compressor in the next time is smaller than the decrease in the operating frequency of the compressor in the previous time.
  • the limiting frequency is less than the operating frequency of the compressor when the low-pressure pressure switch is turned off.
  • the low-pressure pressure switch in the process of controlling the operating frequency of the compressor to increase, if the operating frequency of the compressor increases to the limit frequency, the low-pressure pressure switch is not turned off, and the compressor is controlled.
  • the machine is running at the limited frequency.
  • the operating frequency of the compressor in the process of controlling the operating frequency of the compressor to increase, if the low-pressure pressure switch is opened, the operating frequency of the compressor is controlled to decrease until the low-pressure pressure switch is closed, and then The operating frequency of the compressor is controlled to increase frequency, and the limiting frequency during the next compressor operating frequency upscaling process is less than the limiting frequency during the previous compressor operating frequency upscaling process.
  • the evaporation temperature is the outlet temperature of the indoor heat exchanger; when the air conditioner is operating in the heating state, the evaporation temperature is the outdoor temperature The temperature of the heat exchanger.
  • a computer-readable storage medium stores a computer program used in combination with the air conditioner, and the computer program can be executed by a processor to implement the above-mentioned method.
  • An air conditioner which includes:
  • the evaporation temperature detection module is used to detect the evaporation temperature
  • the control module is used to obtain the operating frequency, the evaporation temperature and the state of the low pressure pressure switch of the compressor, and to control the operating frequency of the compressor according to the above-mentioned control method.
  • the control method of the air conditioner of the present invention first controls the operating frequency of the compressor according to the evaporating temperature to ensure that the low-pressure pressure switch is not turned off, and further, if the low-pressure pressure switch is turned off Control the compressor frequency to continue to decrease until the low pressure switch is closed, and then control the compressor operating frequency to increase and the maximum operating frequency of the compressor does not exceed the limit frequency to ensure that the low pressure switch does not open. Therefore, the present invention adjusts the operating frequency of the compressor. When the low-pressure pressure switch is turned off, the compressor is controlled to continue to run but the operating frequency is reduced. When the low-pressure pressure switch is closed, the frequency-up control is performed to repeat the operating frequency of the compressor. Adjust so that the operating frequency of the compressor reaches a certain range, to ensure the continuous operation of the air-conditioning system, and to achieve continuous provision of cooling or heating effects.
  • Fig. 1 is a schematic diagram of an air-conditioning refrigeration system according to a specific embodiment of the present invention.
  • Fig. 2 is a flowchart of a control method of an air conditioner in a cooling state according to a specific embodiment of the present invention.
  • Fig. 3 is a flowchart of a control method of an air conditioner in a heating state according to a specific embodiment of the present invention.
  • Fig. 4 is a functional block diagram of an air conditioner according to a specific embodiment of the present invention.
  • the terms “installed”, “connected”, and “connected” should be understood in a broad sense. For example, they can be fixed or fixed. It is a detachable connection or an integral connection; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • installed e.g., they can be fixed or fixed. It is a detachable connection or an integral connection; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • the specific meaning of the above-mentioned terms in the present invention can be understood according to specific circumstances.
  • the control method of the air conditioner of this embodiment first controls the operating frequency of the compressor according to the evaporation temperature to ensure that the pressure at the low pressure switch is not lower than the action value of the low pressure switch. Further, if the pressure at the low pressure switch still drops to low pressure When the pressure switch is off, control the compressor frequency to continue to decrease until the low pressure pressure switch is closed, and then control the compressor operating frequency to increase and the maximum operating frequency of the compressor does not exceed the limit frequency to ensure that the pressure at the low pressure switch is not Lower than the operating value of the low-pressure pressure switch; when the frequency is increased, if the low-pressure pressure switch is activated, the operating frequency of the compressor is controlled to decrease, cyclically, and the operating frequency of the compressor is repeatedly adjusted to make the operating frequency of the compressor reach a certain level. To ensure the continuous operation of the air-conditioning system and realize the continuous provision of cooling or heating effects.
  • the refrigeration system of the air conditioner of this embodiment includes a compressor, a four-way valve, an indoor heat exchanger, a throttling device, and an outdoor heat exchanger.
  • the system is equipped with a high-pressure pressure switch and a low-pressure pressure switch.
  • the high-pressure pressure switch has a high-pressure action value
  • the low-pressure pressure switch has a low-pressure action value
  • the high-pressure pressure switch and the low-pressure pressure switch are normally closed switches, and the pressure at the high-pressure pressure switch is greater than the high-pressure action value.
  • the high-pressure pressure switch is turned off, when the pressure at the low-pressure pressure switch is lower than the low-pressure action value, the low-pressure pressure switch is turned off.
  • this embodiment takes the action of the low-pressure pressure switch as one of the parameters of the compressor control.
  • the control method of the air conditioner in this embodiment is as follows:
  • the evaporating temperature is obtained.
  • the operating frequency of the compressor is adjusted to keep the evaporating temperature at the second set evaporating temperature to ensure that the low pressure switch is not turned off.
  • the second set evaporating temperature is a temperature at which the low-pressure pressure switch will not be turned off, which is determined through experiments in advance. If the evaporating temperature continues to decrease, when the evaporating temperature is lower than the first set evaporating temperature, the operating frequency of the regulating compressor is reduced to the set frequency.
  • the first set evaporation temperature is a temperature that is determined through experiments in advance at which the low-pressure pressure switch will not turn off and is close to the operating value of the low-pressure pressure switch, and the first set evaporation temperature is lower than the second set evaporation temperature.
  • the operating frequency of the compressor is controlled to decrease to the closing of the low pressure switch, the operating frequency of the compressor is controlled to decrease in a stepwise manner.
  • the reduction range of the compressor operating frequency is the same, or the reduction range of the next compressor operating frequency is smaller than the reduction range of the previous compressor operating frequency, so as to achieve more precise control.
  • the limiting frequency is less than the operating frequency of the compressor when the low-pressure pressure switch is turned off.
  • the low pressure pressure switch In the process of controlling the operating frequency of the compressor, if the operating frequency of the compressor rises to the limit frequency, the low pressure pressure switch is not turned off, and the compressor is controlled to run at the limited frequency to ensure that the low pressure switch is not turned off. Try to meet the needs of indoor air conditioning.
  • the operating frequency of the compressor is controlled to decrease until the low-pressure pressure switch is closed, and then the operating frequency of the compressor is controlled to increase, and the next compressor operating frequency is increased.
  • the limiting frequency in is less than the limiting frequency in the previous compressor operating frequency upscaling process to further ensure that the low-pressure pressure switch will not open.
  • the evaporating temperature is the outlet temperature TC2 of the indoor heat exchanger.
  • the evaporation temperature is the average of the outlet temperatures of all indoor heat exchangers.
  • the outlet temperature TC2 of the indoor heat exchanger is obtained, and when the outlet temperature TC2 of the indoor heat exchanger is less than the second set evaporation temperature, the operating frequency of the compressor is adjusted to make the outlet of the indoor heat exchanger
  • the temperature TC2 is maintained at the second set evaporation temperature to ensure that the low-pressure pressure switch does not open.
  • the second set evaporation temperature is a temperature at which the low-pressure pressure switch will not be turned off, which is determined in advance through experiments, and the second set evaporation temperature is any value from -5°C to -7°C.
  • the outlet temperature TC2 of the indoor heat exchanger continues to decrease, when the outlet temperature TC2 of the indoor heat exchanger is less than the first set evaporation temperature, adjust the compressor operating frequency to decrease to the set frequency, the set frequency is 55-65Hz Any value of.
  • the first set evaporating temperature is a temperature that is determined in advance through experiments that the low-pressure pressure switch will not open and is close to the operating value of the low-pressure pressure switch, and the first set evaporating temperature is any value from -8°C to -12°C , The first set evaporation temperature is less than the second set evaporation temperature.
  • the operating frequency of the compressor is controlled to decrease to the closing of the low pressure switch, the operating frequency of the compressor is controlled to decrease in a stepwise manner.
  • the compressor operating frequency has the same decrease amplitude, for example, the decrease amplitude is 20 Hz, or the latter compressor operating frequency decreases less than the previous compressor operating frequency, so as to achieve more precise control.
  • the limit frequency is less than the operating frequency of the compressor when the low-pressure pressure switch is off.
  • the low-pressure pressure switch In the process of controlling the operating frequency of the compressor, if the operating frequency of the compressor rises to the limit frequency, the low-pressure pressure switch is not turned off, and the compressor is controlled to run at the limited frequency to ensure that the low-pressure pressure switch is not turned off. Try to meet the needs of indoor air conditioning.
  • the operating frequency of the compressor In the process of controlling the operating frequency of the compressor to increase, if the low-pressure pressure switch is opened, the operating frequency of the compressor is controlled to decrease until the low-pressure pressure switch is closed, and then the operating frequency of the compressor is controlled to increase, and the next compressor operating frequency is increased.
  • the limiting frequency in is less than the limiting frequency in the previous compressor operating frequency upscaling process to further ensure that the low-pressure pressure switch will not open.
  • the method for controlling the cooling state of the air conditioner in this embodiment includes the following steps:
  • the air conditioner operates normally in the cooling state.
  • step S3 It is judged that TC2 ⁇ the second set evaporation temperature, if yes, go to step S4, otherwise, go to step S2.
  • step S6 It is judged that TC2 ⁇ the first set evaporation temperature, if yes, go to step S7, otherwise, go to step S4.
  • step S9 It is determined that the compressor operating frequency is less than or equal to the set frequency and the low pressure pressure switch is off. If yes, go to step S10; otherwise, go to step S8.
  • step S11 Judge whether the low pressure switch is closed, if yes, go to step S12, if not, go to step S10, and stop until the compressor operating frequency is reduced to the minimum value.
  • step S13 Determine whether the low pressure switch is off, if yes, go to step S10, otherwise, go to step S12.
  • the evaporation temperature is the temperature Te of the outdoor heat exchanger.
  • the temperature Te of the outdoor heat exchanger is obtained, and when the temperature Te of the outdoor heat exchanger is less than the second set evaporation temperature, the operating frequency of the compressor is adjusted to make the temperature Te of the outdoor heat exchanger Keep at the second set evaporation temperature to ensure that the low-pressure pressure switch does not open.
  • the second set evaporation temperature is a temperature at which the low-pressure pressure switch will not be turned off, which is determined in advance through experiments, and the second set evaporation temperature is any value from -18°C to -21°C.
  • the first set evaporating temperature is the temperature at which the low-pressure pressure switch will not turn off and is close to the operating value of the low-pressure pressure switch, which is determined in advance through experiments, and the first set evaporating temperature is any value from -22°C to -24°C , The first set evaporation temperature is less than the second set evaporation temperature.
  • the operating frequency of the compressor is controlled to decrease to the closing of the low pressure switch, the operating frequency of the compressor is controlled to decrease in a stepwise manner.
  • the compressor operating frequency has the same decrease amplitude, for example, the decrease amplitude is 20 Hz, or the latter compressor operating frequency decreases less than the previous compressor operating frequency, so as to achieve more precise control.
  • the limit frequency is less than the operating frequency of the compressor when the low-pressure pressure switch is off.
  • the low-pressure pressure switch In the process of controlling the operating frequency of the compressor, if the operating frequency of the compressor rises to the limit frequency, the low-pressure pressure switch is not turned off, and the compressor is controlled to run at the limited frequency to ensure that the low-pressure pressure switch is not turned off. Try to meet the needs of indoor air conditioning.
  • the operating frequency of the compressor In the process of controlling the operating frequency of the compressor, if the low-pressure pressure switch is opened, the operating frequency of the compressor is controlled to decrease until the low-pressure pressure switch is closed, and then the operating frequency of the compressor is controlled to increase, and the next compressor operating frequency is increased.
  • the limiting frequency in is less than the limiting frequency in the previous compressor operating frequency upscaling process to further ensure that the low-pressure pressure switch will not open.
  • the method for controlling the heating state of the air conditioner in this embodiment includes the following steps:
  • the air conditioner operates normally under heating conditions.
  • step S9 It is determined that the compressor operating frequency is less than or equal to the set frequency and the low pressure pressure switch is off. If yes, go to step S10; otherwise, go to step S8.
  • step S11 Judge whether the low pressure switch is closed, if yes, go to step S12, if not, go to step S10, and stop until the compressor operating frequency is reduced to the minimum value.
  • step S13 Determine whether the low pressure switch is off, if yes, go to step S10, otherwise, go to step S12.
  • This embodiment also proposes a computer-readable storage medium that stores a computer program used in combination with an air conditioner, and the computer program can be executed by a processor to implement the above-mentioned method.
  • this embodiment also proposes an air conditioner, including:
  • the evaporation temperature detection module is used to detect the evaporation temperature
  • the control module is used to obtain the operating frequency, the evaporation temperature and the state of the low pressure pressure switch of the compressor, and to control the operating frequency of the compressor according to the above-mentioned control method.
  • the operating frequency of the compressor is repeatedly adjusted so that the operating frequency of the compressor reaches a certain suitable range, ensuring the continuous operation of the air-conditioning system, and achieving continuous provision of cooling or heating effects.

Abstract

一种空调器及其控制方法和计算机可读存储介质,首先根据蒸发温度控制压缩机的运行频率,保证低压压力开关不断开,若低压压力开关断开时,控制压缩机频率继续降低直至低压压力开关闭合,然后再控制压缩机运行频率升频且压缩机升频的最大运行频率不超过限制频率,以保证低压压力开关不断开。

Description

一种空调器及其控制方法和计算机可读存储介质 技术领域
本发明属于空气调节技术领域,具体涉及一种空调器及其控制方法和计算机可读存储介质。
背景技术
空调器的制冷循环系统中一般设置有低压压力开关,当低压压力开关处的压力低于低压压力开关的动作值时,低压压力开关就会断开,空调器停止运行,当低压压力开关处的压力高于低压压力开关的动作值时,空调器重新启动运行。因而,在空调器停止运行期间,无法向房间内提供冷量或热量,无法满足用户对空调的需求。
本背景技术所公开的上述信息仅仅用于增加对本申请背景技术的理解,因此,其可能包括不构成本领域普通技术人员已知的现有技术。
技术问题
本发明针对现有技术中存在的上述问题,提供一种空调器及其控制方法,以解决空调器由于低压压力开关处的压力低于低压压力开关的动作值而停机,无法满足用户对空调的需求的技术问题。
技术解决方案
为达到上述技术目的,本发明采用以下技术方案实现:
一种空调器的控制方法,所述方法包括:
获取蒸发温度,在所述蒸发温度小于第一设定蒸发温度时,调节所述压缩机运行频率至设定频率;
获取压缩机的运行频率,在所述压缩机运行频率小于等于设定频率且低压压力开关断开时,控制所述压缩机运行频率降频至所述低压压力开关闭合,再控制所述压缩机运行频率升频且所述压缩机升频的最大运行频率不超过限制频率。
如上所述的空调器的控制方法,在所述压缩机的运行频率大于设定频率时,在所述蒸发温度小于第二设定蒸发温度时,调节所述压缩机的运行频率使所述蒸发温度保持在所述第二设定蒸发温度,所述第一设定蒸发温度小于所述第二设定蒸发温度。
如上所述的空调器的控制方法,控制所述压缩机运行频率降频至低压压力开关闭合的过程中,控制所述压缩机运行频率阶梯式下降。
如上所述的空调器的控制方法,所述压缩机运行频率的下降幅度相同,或者,后一次压缩机运行频率下降的幅度小于前一次压缩机运行频率下降的幅度。
如上所述的空调器的控制方法,所述限制频率小于所述低压压力开关断开时所述压缩机的运行频率。
如上所述的空调器的控制方法,控制所述压缩机运行频率升频的过程中,若所述压缩机运行频率升高至限制频率时,所述低压压力开关没有断开,控制所述压缩机运行在限制频率。
如上所述的空调器的控制方法,控制所述压缩机运行频率升频的过程中,若所述低压压力开关断开,控制所述压缩机运行频率降频至所述低压压力开关闭合,再控制所述压缩机运行频率升频,且后一次压缩机运行频率升频过程中的限制频率小于前一次压缩机运行频率升频过程中的限制频率。  
如上所述的空调器的控制方法,所述空调器运行制冷状态时,所述蒸发温度为室内换热器的出口温度;所述空调器运行制热状态时,所述蒸发温度为所述室外换热器的温度。
一种计算机可读存储介质,存储与所述空调器结合使用的计算机程序,所述计算机程序可被处理器执行以实现如上述的方法。
一种空调器,所述空调器包括:
蒸发温度检测模块,用于检测蒸发温度;
控制模块,用于获取压缩机的运行频率、蒸发温度和低压压力开关的状态,并按照上述的控制方法控制所述压缩机的运行频率。
有益效果
与现有技术相比,本发明的优点和积极效果是:本发明空调器的控制方法首先根据蒸发温度控制压缩机的运行频率,保证低压压力开关不断开,进一步的,若低压压力开关断开时,控制压缩机频率继续降低直至低压压力开关闭合,然后再控制压缩机运行频率升频且压缩机升频的最大运行频率不超过限制频率,以保证低压压力开关不断开。因而,本发明通过调节压缩机的运行频率,低压压力开关断开时,控制压缩机继续运行但是运行频率降低,待低压压力开关闭合时,再执行升频控制,对压缩机的运行频率进行反复调节,以使压缩机的运行频率达到某一合适的范围,保障空调系统持续运行,实现持续提供制冷或制热效果。
结合附图阅读本发明的具体实施方式后,本发明的其他特点和优点将变得更加清楚。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明具体实施例空调制冷系统示意图。
图2为本发明具体实施例制冷状态时空调器的控制方法的流程图。
图3为本发明具体实施例制热状态时空调器的控制方法的流程图。
图4为本发明具体实施例空调器的原理框图。
本发明的最佳实施方式
下面参照附图来描述本发明的优选实施方式。本领域技术人员应当理解的是,这些实施方式仅仅用于解释本发明的技术原理,并非旨在限制本发明的保护范围。
需要说明的是,在本发明的描述中,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方向或位置关系的术语是基于附图所示的方向或位置关系,这仅仅是为了便于描述,而不是指示或暗示所述装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
此外,还需要说明的是,在本发明的描述中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域技术人员而言,可根据具体情况理解上述术语在本发明中的具体含义。
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。
本实施例空调器的控制方法首先根据蒸发温度控制压缩机的运行频率,保证低压压力开关处的压力不低于低压压力开关的动作值,进一步的,若低压压力开关处的压力仍然下降至低压压力开关断开时,控制压缩机频率继续降低直至低压压力开关闭合,然后再控制压缩机运行频率升频且压缩机升频的最大运行频率不超过限制频率,以保证低压压力开关处的压力不低于低压压力开关的动作值;升频时,如果低压压力开关动作,控制压缩机运行频率降低,循环往复,对压缩机的运行频率进行反复调节,以使压缩机的运行频率达到某一合适的范围,保障空调系统持续运行,实现持续提供制冷或制热效果。
如图1所示,本实施例空调器制冷系统包括压缩机、四通阀、室内换热器、节流装置、室外换热器。系统中设置高压压力开关和低压压力开关,高压压力开关具有高压动作值,低压压力开关具有低压动作值,高压压力开关和低压压力开关为常闭开关,在高压压力开关处的压力大于高压动作值时,高压压力开关断开,在低压压力开关处的压力低于低压动作值时,低压压力开关断开。
为了能够保证空调器的持续运行,本实施例将低压压力开关的动作作为压缩机控制的参数之一,具体的,本实施例空调器的控制方法如下:
空调器运行时,获取蒸发温度,在蒸发温度小于第二设定蒸发温度时,调节压缩机的运行频率使蒸发温度保持在第二设定蒸发温度,以保证低压压力开关不断开。其中,第二设定蒸发温度为事先通过实验确定的低压压力开关不会断开的温度。如果蒸发温度继续降低,则在蒸发温度小于第一设定蒸发温度时,调节压缩机运行频率降低至设定频率。其中,第一设定蒸发温度为事先通过实验确定的低压压力开关不会断开且接近低压压力开关的动作值的温度,第一设定蒸发温度小于第二设定蒸发温度。
获取压缩机的运行频率,在压缩机运行频率小于等于设定频率且低压压力开关处的压力继续降低至低压压力开关断开时,控制压缩机运行频率降频至低压压力开关闭合,再控制压缩机运行频率升频且压缩机升频的最大运行频率不超过限制频率。
具体的,控制压缩机运行频率降频至低压压力开关闭合的过程中,控制压缩机运行频率阶梯式下降。
其中,压缩机运行频率的下降幅度相同,或者,后一次压缩机运行频率下降的幅度小于前一次压缩机运行频率下降的幅度,以达到更加精确的控制。
限制频率小于所述低压压力开关断开时压缩机的运行频率。
控制压缩机运行频率升频的过程中,若压缩机运行频率升高至限制频率时,低压压力开关没有断开,控制压缩机运行在限制频率,以在保证低压压力开关没有断开的情况下尽量满足室内空调需求。
控制压缩机运行频率升频的过程中,若低压压力开关断开,控制压缩机运行频率降频至低压压力开关闭合,再控制压缩机运行频率升频,且后一次压缩机运行频率升频过程中的限制频率小于前一次压缩机运行频率升频过程中的限制频率,以进一步保证低压压力开关不会断开。  
空调器运行制冷状态时,蒸发温度为室内换热器的出口温度TC2。空调器为包括多个室内换热器时,蒸发温度为所有室内换热器的出口温度的平均值。
具体的,空调器制冷运行时,获取室内换热器的出口温度TC2,在室内换热器的出口温度TC2小于第二设定蒸发温度时,调节压缩机的运行频率使室内换热器的出口温度TC2保持在第二设定蒸发温度,以保证低压压力开关不断开。其中,第二设定蒸发温度为事先通过实验确定的低压压力开关不会断开的温度,第二设定蒸发温度为-5℃--7℃中的任意值。如果室内换热器的出口温度TC2继续降低,则在室内换热器的出口温度TC2小于第一设定蒸发温度时,调节压缩机运行频率降低至设定频率,设定频率为55-65Hz中的任意值。其中,第一设定蒸发温度为事先通过实验确定的低压压力开关不会断开且接近低压压力开关的动作值的温度,第一设定蒸发温度为-8℃--12℃中的任意值,第一设定蒸发温度小于第二设定蒸发温度。
获取压缩机的运行频率,在压缩机运行频率小于等于设定频率且低压压力开关处的压力继续降低至低压压力开关断开时,控制压缩机运行频率降频至低压压力开关闭合,再控制压缩机运行频率升频且压缩机升频的最大运行频率不超过限制频率。限制频率=低压压力开关断开时压缩机的运行频率-第二设定幅度(10Hz)。
具体的,控制压缩机运行频率降频至低压压力开关闭合的过程中,控制压缩机运行频率阶梯式下降。
其中,压缩机运行频率的下降幅度相同,例如,降幅为20Hz,或者,后一次压缩机运行频率下降的幅度小于前一次压缩机运行频率下降的幅度,以达到更加精确的控制。
限制频率小于低压压力开关断开时压缩机的运行频率。
控制压缩机运行频率升频的过程中,若压缩机运行频率升高至限制频率时,低压压力开关没有断开,控制压缩机运行在限制频率,以在保证低压压力开关没有断开的情况下尽量满足室内空调需求。
控制压缩机运行频率升频的过程中,若低压压力开关断开,控制压缩机运行频率降频至低压压力开关闭合,再控制压缩机运行频率升频,且后一次压缩机运行频率升频过程中的限制频率小于前一次压缩机运行频率升频过程中的限制频率,以进一步保证低压压力开关不会断开。
如图2所示,本实施例空调器制冷状态的控制方法包括如下步骤:
S1、空调器在制冷状态下正常运转。
S2、检测室内换热器的出口温度TC2。
S3、判断TC2<第二设定蒸发温度,若是,进入步骤S4,否则,进入步骤S2。
S4、调节压缩机的运行频率使室内换热器的出口温度TC2保持在第二设定蒸发温度。
S5、检测室内换热器的出口温度TC2。
S6、判断TC2<第一设定蒸发温度,若是,进入步骤S7,否则,进入步骤S4。
S7、调节压缩机运行频率降低至设定频率。
S8、获取压缩机的运行频率。
S9、判断压缩机运行频率小于等于设定频率且低压压力开关断开,若是,进入步骤S10,否则,进入步骤S8。
S10、获取压缩机的运行频率,控制压缩机运行频率降低设定幅度。
S11、判断低压压力开关是否闭合,若是,进入步骤S12,若否,进入步骤S10,直至压缩机运行频率降低至最小值停机。
S12、控制压缩机运行频率升频运行。升频运行时的最大运行频率不超过限制频率。
S13、判断低压压力开关是否断开,若是,进入步骤S10,否则,进入步骤S12。
空调器运行制热状态时,蒸发温度为室外换热器的温度Te。
具体的,空调器制热运行时,获取室外换热器的温度Te,在室外换热器的温度Te小于第二设定蒸发温度时,调节压缩机的运行频率使室外换热器的温度Te保持在第二设定蒸发温度,以保证低压压力开关不断开。其中,第二设定蒸发温度为事先通过实验确定的低压压力开关不会断开的温度,第二设定蒸发温度为-18℃--21℃的任意值。如果室外换热器的温度Te继续降低,则在室外换热器的温度Te小于第一设定蒸发温度时,调节压缩机运行频率降低至设定频率,设定频率为55-65Hz中的任意值。其中,第一设定蒸发温度为事先通过实验确定的低压压力开关不会断开且接近低压压力开关的动作值的温度,第一设定蒸发温度为-22℃--24℃中的任意值,第一设定蒸发温度小于第二设定蒸发温度。
获取压缩机的运行频率,在压缩机运行频率小于等于设定频率且低压压力开关处的压力继续降低至低压压力开关断开时,控制压缩机运行频率降频至低压压力开关闭合,再控制压缩机运行频率升频且压缩机升频的最大运行频率不超过限制频率。限制频率=低压压力开关断开时压缩机的运行频率-第二设定幅度(10Hz)。
具体的,控制压缩机运行频率降频至低压压力开关闭合的过程中,控制压缩机运行频率阶梯式下降。
其中,压缩机运行频率的下降幅度相同,例如,降幅为20Hz,或者,后一次压缩机运行频率下降的幅度小于前一次压缩机运行频率下降的幅度,以达到更加精确的控制。
限制频率小于低压压力开关断开时压缩机的运行频率。
控制压缩机运行频率升频的过程中,若压缩机运行频率升高至限制频率时,低压压力开关没有断开,控制压缩机运行在限制频率,以在保证低压压力开关没有断开的情况下尽量满足室内空调需求。
控制压缩机运行频率升频的过程中,若低压压力开关断开,控制压缩机运行频率降频至低压压力开关闭合,再控制压缩机运行频率升频,且后一次压缩机运行频率升频过程中的限制频率小于前一次压缩机运行频率升频过程中的限制频率,以进一步保证低压压力开关不会断开。
如图3所示,本实施例空调器制热状态的控制方法包括如下步骤:
S1、空调器在制热状态下正常运转。
S2、检测室外换热器的温度Te。
S3、判断Te<第二设定蒸发温度,若是,进入步骤S4,否则,进入步骤S2。
S4、调节压缩机的运行频率使室外换热器的温度Te保持在第二设定蒸发温度。
S5、检测室外换热器的温度Te。
S6、判断Te<第一设定蒸发温度,若是,进入步骤S7,否则,进入步骤S4。
S7、调节压缩机运行频率降低至设定频率。
S8、获取压缩机的运行频率。
S9、判断压缩机运行频率小于等于设定频率且低压压力开关断开,若是,进入步骤S10,否则,进入步骤S8。
S10、获取压缩机的运行频率,控制压缩机运行频率降低设定幅度。
S11、判断低压压力开关是否闭合,若是,进入步骤S12,若否,进入步骤S10,直至压缩机运行频率降低至最小值停机。
S12、控制压缩机运行频率升频运行。升频运行时的最大运行频率不超过限制频率。
S13、判断低压压力开关是否断开,若是,进入步骤S10,否则,进入步骤S12。
本实施例还提出了一种计算机可读存储介质,存储与空调器结合使用的计算机程序,计算机程序可被处理器执行以实现上述的方法。
如图4所示,本实施例还提出了一种空调器,包括:
蒸发温度检测模块,用于检测蒸发温度;
控制模块,用于获取压缩机的运行频率、蒸发温度和低压压力开关的状态,并按照上述的控制方法控制所述压缩机的运行频率。
本实施例通过调节压缩机的运行频率,对压缩机的运行频率进行反复调节,以使压缩机的运行频率达到某一合适的范围,保障空调系统持续运行,实现持续提供制冷或制热效果。
以上实施例仅用以说明本发明的技术方案,而非对其进行限制;尽管参照前述实施例对本发明进行了详细的说明,对于本领域的普通技术人员来说,依然可以对前述实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或替换,并不使相应技术方案的本质脱离本发明所要求保护的技术方案的精神和范围。

Claims (10)

  1. 一种空调器的控制方法,其特征在于,所述方法包括:
    获取蒸发温度,在所述蒸发温度小于第一设定蒸发温度时,调节所述压缩机运行频率至设定频率;
    获取压缩机的运行频率,在所述压缩机运行频率小于等于设定频率且低压压力开关断开时,控制所述压缩机运行频率降频至所述低压压力开关闭合,再控制所述压缩机运行频率升频且所述压缩机升频的最大运行频率不超过限制频率。
  2. 根据权利要求1所述的空调器的控制方法,其特征在于,在所述压缩机的运行频率大于设定频率时,在所述蒸发温度小于第二设定蒸发温度时,调节所述压缩机的运行频率使所述蒸发温度保持在所述第二设定蒸发温度,所述第一设定蒸发温度小于所述第二设定蒸发温度。
  3. 根据权利要求1所述的空调器的控制方法,其特征在于,控制所述压缩机运行频率降频至低压压力开关闭合的过程中,控制所述压缩机运行频率阶梯式下降。
  4. 根据权利要求3所述的空调器的控制方法,其特征在于,所述压缩机运行频率的下降幅度相同,或者,后一次压缩机运行频率下降的幅度小于前一次压缩机运行频率下降的幅度。
  5. 根据权利要求1所述的空调器的控制方法,其特征在于,所述限制频率小于所述低压压力开关断开时所述压缩机的运行频率。
  6. 根据权利要求1所述的空调器的控制方法,其特征在于,控制所述压缩机运行频率升频的过程中,若所述压缩机运行频率升高至限制频率时,所述低压压力开关没有断开,控制所述压缩机运行在限制频率。
  7. 根据权利要求1所述的空调器的控制方法,其特征在于,控制所述压缩机运行频率升频的过程中,若所述低压压力开关断开,控制所述压缩机运行频率降频至所述低压压力开关闭合,再控制所述压缩机运行频率升频,且后一次压缩机运行频率升频过程中的限制频率小于前一次压缩机运行频率升频过程中的限制频率。
  8. 根据权利要求1-7任意一项所述的空调器的控制方法,其特征在于,所述空调器运行制冷状态时,所述蒸发温度为室内换热器的出口温度;所述空调器运行制热状态时,所述蒸发温度为所述室外换热器的温度。
  9. 一种计算机可读存储介质,存储与所述空调器结合使用的计算机程序,其特征在于,所述计算机程序可被处理器执行以实现如权利要求1-8任意一项所述的方法。
  10. 一种空调器,其特征在于,所述空调器包括:
    蒸发温度检测模块,用于检测蒸发温度;
    控制模块,用于获取压缩机的运行频率、蒸发温度和低压压力开关的状态,并按照权利要求1-8任意一项所述的控制方法控制所述压缩机的运行频率。
PCT/CN2021/081804 2020-05-13 2021-03-19 一种空调器及其控制方法和计算机可读存储介质 WO2021223524A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010402365.2 2020-05-13
CN202010402365.2A CN111623484A (zh) 2020-05-13 2020-05-13 一种空调器及其控制方法和计算机可读存储介质

Publications (1)

Publication Number Publication Date
WO2021223524A1 true WO2021223524A1 (zh) 2021-11-11

Family

ID=72258056

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/081804 WO2021223524A1 (zh) 2020-05-13 2021-03-19 一种空调器及其控制方法和计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN111623484A (zh)
WO (1) WO2021223524A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111623484A (zh) * 2020-05-13 2020-09-04 青岛海尔空调电子有限公司 一种空调器及其控制方法和计算机可读存储介质
CN112665244B (zh) * 2020-12-15 2022-06-21 国网辽宁省电力有限公司 一种空气源热泵系统压缩机频率控制方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005016885A (ja) * 2003-06-27 2005-01-20 Daikin Ind Ltd 空気調和装置
JP2007093138A (ja) * 2005-09-29 2007-04-12 Mitsubishi Electric Corp 空調管理システム
CN101769574A (zh) * 2009-01-07 2010-07-07 三菱电机株式会社 空调系统
JP2012122723A (ja) * 2012-03-23 2012-06-28 Mitsubishi Electric Corp 空気調和システム、制御方法及びプログラム
CN202350253U (zh) * 2011-08-11 2012-07-25 青岛海信日立空调系统有限公司 水温自适应水源空调系统
CN109114748A (zh) * 2018-08-20 2019-01-01 宁波奥克斯电气股份有限公司 一种空调延缓结霜控制方法、装置及空调器
CN110779154A (zh) * 2019-11-07 2020-02-11 珠海格力电器股份有限公司 空调的控制方法及装置
CN111623484A (zh) * 2020-05-13 2020-09-04 青岛海尔空调电子有限公司 一种空调器及其控制方法和计算机可读存储介质

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6584127B2 (ja) * 2015-05-07 2019-10-02 日立ジョンソンコントロールズ空調株式会社 空気調和機
CN105157189A (zh) * 2015-10-19 2015-12-16 广东志高暖通设备股份有限公司 一种空调系统和压力控制方法
CN108528165A (zh) * 2017-12-06 2018-09-14 广西柳工机械股份有限公司 车用空调高低压保护方法及保护系统
CN109143063B (zh) * 2018-11-01 2023-09-12 格力电器(武汉)有限公司 一种空调高低压开关的检测装置和方法
CN110017590B (zh) * 2019-04-08 2020-02-28 珠海格力电器股份有限公司 冷热水机组的低压控制方法、装置、热泵系统和存储介质
CN110749030A (zh) * 2019-10-29 2020-02-04 益阳欣达天马电器设备制造有限公司 一种空调高低压开关的检测装置和方法
CN111121227B (zh) * 2019-12-30 2022-03-18 宁波奥克斯电气股份有限公司 一种低压压力开关保护模式下故障的检测方法、检测装置和空调器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005016885A (ja) * 2003-06-27 2005-01-20 Daikin Ind Ltd 空気調和装置
JP2007093138A (ja) * 2005-09-29 2007-04-12 Mitsubishi Electric Corp 空調管理システム
CN101769574A (zh) * 2009-01-07 2010-07-07 三菱电机株式会社 空调系统
CN202350253U (zh) * 2011-08-11 2012-07-25 青岛海信日立空调系统有限公司 水温自适应水源空调系统
JP2012122723A (ja) * 2012-03-23 2012-06-28 Mitsubishi Electric Corp 空気調和システム、制御方法及びプログラム
CN109114748A (zh) * 2018-08-20 2019-01-01 宁波奥克斯电气股份有限公司 一种空调延缓结霜控制方法、装置及空调器
CN110779154A (zh) * 2019-11-07 2020-02-11 珠海格力电器股份有限公司 空调的控制方法及装置
CN111623484A (zh) * 2020-05-13 2020-09-04 青岛海尔空调电子有限公司 一种空调器及其控制方法和计算机可读存储介质

Also Published As

Publication number Publication date
CN111623484A (zh) 2020-09-04

Similar Documents

Publication Publication Date Title
WO2021218485A1 (zh) 一种空调器及其控制方法和计算机可读存储介质
CN110513819B (zh) 一种空调控制方法、空调以及存储介质
CN109945435B (zh) 一种多联机室内机关机控制方法及多联机装置
WO2020062598A1 (zh) 水多联机组运行控制方法、装置、介质和水多联空调系统
CN109945454B (zh) 空调系统压缩机控制方法、空调控制器和空调
WO2009119023A1 (ja) 冷凍装置
WO2021135679A1 (zh) 空调外风机的转速控制方法
CN111780362B (zh) 一种空调器及其控制方法
WO2021223524A1 (zh) 一种空调器及其控制方法和计算机可读存储介质
WO2023005246A1 (zh) 用于空气源热泵机组的控制方法
WO2021135680A1 (zh) 空调外风机的转速控制方法
CN109539380B (zh) 一种热泵热水器压缩机频率控制方法
US10359209B2 (en) Air conditioning apparatus
WO2022194218A1 (zh) 一拖多空调器的压缩机频率的控制方法及一拖多空调器
JP4959297B2 (ja) マルチ型空気調和装置
WO2021174915A1 (zh) 提高循环冷媒量的控制方法、装置及空调
JP2016166710A (ja) 空気調和システム
US10443901B2 (en) Indoor unit of air conditioner
CN111623472A (zh) 一种空调器及其防止低压故障的方法
WO2020073488A1 (zh) 一种控制压缩机切缸的方法、装置及机组、空调系统
WO2022017546A1 (zh) 一种空调器及其控制方法
KR100565995B1 (ko) 실내기 설치 위치에 따른 멀티형 에어컨의 운전 방법
JPS63210554A (ja) ヒ−トポンプ式給湯機
JP2019020093A (ja) 空気調和機
JPH07159008A (ja) 空気調和機の膨張弁制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21800560

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21800560

Country of ref document: EP

Kind code of ref document: A1