WO2020075665A1 - 内燃機関の可変圧縮比機構のアクチュエータ - Google Patents

内燃機関の可変圧縮比機構のアクチュエータ Download PDF

Info

Publication number
WO2020075665A1
WO2020075665A1 PCT/JP2019/039452 JP2019039452W WO2020075665A1 WO 2020075665 A1 WO2020075665 A1 WO 2020075665A1 JP 2019039452 W JP2019039452 W JP 2019039452W WO 2020075665 A1 WO2020075665 A1 WO 2020075665A1
Authority
WO
WIPO (PCT)
Prior art keywords
compression ratio
internal combustion
actuator
combustion engine
variable compression
Prior art date
Application number
PCT/JP2019/039452
Other languages
English (en)
French (fr)
Inventor
希志郎 永井
佳裕 須田
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2020075665A1 publication Critical patent/WO2020075665A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/04Engines with variable distances between pistons at top dead-centre positions and cylinder heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/32Engines characterised by connections between pistons and main shafts and not specific to preceding main groups
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D15/00Varying compression ratio
    • F02D15/02Varying compression ratio by alteration or displacement of piston stroke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/32Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/116Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears

Definitions

  • the present invention relates to an actuator of a variable compression ratio mechanism of an internal combustion engine.
  • Patent Document 1 The technology described in Patent Document 1 is known as a variable compression ratio mechanism.
  • This publication makes it possible to change the mechanical compression ratio of an internal combustion engine by changing the stroke characteristics of the piston using a multi-link piston and a crank mechanism. That is, the piston and the crankshaft are connected via the upper link and the lower link, and the posture of the lower link is controlled by the rotation of the control shaft connected to the drive motor and the actuator having the wave gear type speed reducer. As a result, the stroke characteristic of the piston is changed and the engine compression ratio is controlled.
  • the actuator includes a housing having a bearing portion that rotatably supports the control shaft, and a wave gear type speed reducer that reduces the rotational speed of an output shaft connected to a drive motor and transmits the speed to the control shaft.
  • a retainer which is a restricting member that restricts movement of the shaft toward the side of the wave gear type speed reducer, is press-fitted and fixed to the tip of the shaft.
  • One of the objects of the present invention is to provide an actuator of a variable compression ratio mechanism of an internal combustion engine that can improve sound and vibration performance.
  • the regulation portion that regulates the axial movement of the control shaft is provided between the arm link and the inner wall of the accommodation portion.
  • the vibration clearance performance can be improved because the axial clearance can be set smaller than in the case where a retainer is arranged at the tip.
  • FIG. 1 is a schematic diagram of an internal combustion engine of Embodiment 1.
  • FIG. 3 is an exploded perspective view of the actuator of the variable compression ratio mechanism of the internal combustion engine of the first embodiment.
  • FIG. 3 is a side view of the actuator of the variable compression ratio mechanism for the internal combustion engine of the first embodiment.
  • FIG. FIG. 5 is a sectional view taken along the line S5-S5 of FIG.
  • FIG. 5 is a sectional view taken along the line S6-S6 of FIG. 4.
  • 3A and 3B are unit views of the arm link 13 of the first embodiment, where FIG. 1A is a perspective view and FIG. FIG. 3 is an enlarged partial sectional view taken along the line S5-S5 of the first embodiment.
  • FIG. 7 is an enlarged partial sectional view taken along the line S5-S5 of the second embodiment.
  • FIG. 7 is an enlarged partial sectional view taken along the line S5-S5 of the third embodiment.
  • It is a single view of the arm link 13 of Embodiment 4, (a) is a perspective view, (b) is a front view. It is a single view of the arm link 13 of Embodiment 5, (a) is a perspective view, (b) is a front view. It is a single view of the arm link 13 of Embodiment 6, (a) is a perspective view, (b) is a front view.
  • FIG. 1 is a schematic diagram of an internal combustion engine of a first embodiment, in which a variable compression ratio mechanism of the internal combustion engine is shown as a link mechanism for the internal combustion engine.
  • FIG. 2 is a variable compression of the internal combustion engine of the first embodiment.
  • Fig. 3 is an exploded perspective view of the actuator of the ratio mechanism, Fig. 3 is a side view of the actuator of the variable compression ratio mechanism of the internal combustion engine of the first embodiment, Fig. 4 is a sectional view taken along the line S5-S5 of Fig. 4, and Fig. 5 is of Fig. 4. It is a S6-S6 line arrow sectional view.
  • An upper end of an upper link 3 is rotatably connected to a piston 1 that reciprocates in a cylinder of a cylinder block of an internal combustion engine (gasoline engine) via a piston pin 2.
  • a lower link 5 is rotatably connected to a lower end of the upper link 3 via a connecting pin 6.
  • the crankshaft 4 is rotatably connected to the lower link 5 via a crankpin 4a.
  • the upper end of the first control link 7 is rotatably connected to the lower link 5 via a connecting pin 8.
  • the lower end of the first control link 7 is connected to a connecting mechanism 9 having a plurality of link members.
  • the connecting mechanism 9 includes a first control shaft 10, a second control shaft (control shaft) 11, and an actuator link 12 that connects the first control shaft 10 and the second control shaft 11.
  • the first control shaft 10 extends parallel to the crankshaft 4 extending in the cylinder column direction inside the internal combustion engine.
  • the first control shaft 10 includes a first journal portion 10a that is rotatably supported by the internal combustion engine body, a control eccentric shaft portion 10b that is rotatably connected to a lower end portion of the first control link 7, and an actuator link 12.
  • An eccentric shaft portion 10c having one end portion 12a rotatably connected thereto.
  • One end of the first arm portion 10d is connected to the first journal portion 10a, and the other end thereof is connected to the lower end portion of the first control link 7.
  • the control eccentric shaft portion 10b is provided at a position eccentric to the first journal portion 10a by a predetermined amount.
  • the second arm portion 10e has one end connected to the first journal portion 10a and the other end connected to one end portion 12a of the actuator link 12.
  • the eccentric shaft portion 10c is provided at a position eccentric to the first journal portion 10a by a predetermined amount.
  • the other end 12b of the actuator link 12 is rotatably connected to one end of an arm link 13.
  • the second control shaft 11 is connected to the other end of the arm link 13.
  • the arm link 13 and the second control shaft 11 do not move relative to each other.
  • the second control shaft 11 is rotatably supported in a housing 20 described later via a plurality of journal portions.
  • the actuator link 12 has a lever shape, and the one end portion 12a connected to the eccentric shaft portion 10c is formed substantially linearly.
  • the other end 12b to which the arm link 13 is connected is curved.
  • an insertion hole 12c through which the eccentric shaft portion 10c is rotatably inserted is formed at the tip of the one end portion 12a.
  • the other end 12b has a tip 12d.
  • a connecting hole 12e is formed through the tip portion 12d.
  • the bifurcated arm portion (small diameter portion) 132 projecting from the annular portion (large diameter portion) 131 of the arm link 13 toward the outer periphery has a coupling hole 132a having substantially the same diameter as the coupling hole 12e. It is formed through.
  • the tip portion 12d of the actuator link 12 is inserted into the arm portion 132, and in this state, the connecting pin 14 penetrates the connecting holes 12e and 132a and is press-fitted and fixed in the connecting hole 12e.
  • the axis of the connecting hole 132a (the axis of the connecting pin 14) is eccentric to the axis of the second control shaft 11 by a predetermined amount.
  • the arm link 13 is formed separately from the second control shaft 11.
  • the arm link 13 is formed of an iron-based metal material, and has an annular portion 131 having a press-fitting hole 131a formed therethrough, and an arm portion 132 that protrudes from the annular portion 131 toward the outer periphery and has a bifurcated shape.
  • the fixing portion 23b formed between each journal portion of the second control shaft 11 is press-fitted into the press-fitting hole 131a formed in the annular portion 131, and the second control shaft 11 and the arm link 13 are connected by this press-fitting. It is fixed (see Figure 4). Details of the arm link 13 will be described later.
  • the rotational position of the second control shaft 11 is changed by the torque transmitted from the electric motor 22 via the wave gear type speed reducer 21, which is a part of the actuator of the variable compression ratio mechanism of the internal combustion engine.
  • the rotational position of the second control shaft 11 is changed, the attitude of the actuator link 12 is changed and the first control shaft 10 is rotated to change the position of the lower end portion of the first control link 7.
  • the posture of the lower link 5 changes, the stroke position and stroke amount of the piston 1 in the cylinder are changed, and the engine compression ratio is changed accordingly.
  • the actuator of the first embodiment includes an electric motor 22, a wave gear type speed reducer 21 attached to the tip end side of the electric motor 22, a housing 20 that houses the wave gear type speed reducer 21 therein, and a rotatable body 20. And a second control shaft 11 supported by.
  • the electric motor 22 is a brushless motor, and has a bottomed cylindrical motor casing 45, a cylindrical coil 46 fixed to the inner peripheral surface of the motor casing 45, and a coil 46 inside the coil 46. It has a rotor 47 rotatably provided, a motor drive shaft 48 whose one end 48a is fixed to the center of the rotor 47, and a resolver 55 for detecting the rotation angle of the motor drive shaft 48.
  • the motor drive shaft 48 is rotatably supported by a ball bearing 52 provided at the bottom of the motor casing 45.
  • the motor casing 45 has four boss portions 45a on the outer circumference of the front end. A bolt insertion hole through which the bolt 49 is inserted is formed through the boss portion 45a.
  • the resolver 55 has a resolver rotor 55a that is press-fitted and fixed to the outer periphery of the motor drive shaft 48, and a sensor unit 55b that detects a multi-toothed target formed on the outer peripheral surface of the resolver rotor 55a, and the motor casing 45. Is provided at a position protruding from the opening.
  • the sensor portion 55b is fixed inside the cover 28 by two screws and outputs a detection signal to a control unit (not shown).
  • the second control shaft 11 has a shaft body 23 extending in a direction along the rotation axis O (axial direction), and a fixing flange 24 having a diameter increased from the shaft body 23.
  • the second control shaft 11 has a shaft body 23 and a fixing flange 24 integrally formed of an iron-based metal material.
  • the shaft portion main body 23 has a sensor shaft portion 231 which is formed in a step shape in the axial direction and is located on the inner circumference of the angle sensor 32.
  • a rotor 32b that functions as a component of the angle sensor 32 is provided on the outer periphery of the sensor shaft portion 231.
  • the first journal part 23a having a small diameter on the tip end side and the press-fitting hole 134 of the arm link 13 are formed on the first journal part 23a. It has a medium-diameter fixing portion 23b press-fitted from the side and a large-diameter second journal portion 23c on the fixing flange 24 side.
  • a first step portion 23d is formed between the fixed portion 23b and the second journal portion 23c.
  • a second step portion 23e is formed between the first journal portion 23a and the fixed portion 23b.
  • the first restricting surface 133a of the first restricting portion 133 comes into contact with the first step portion 23d between the second journal portion 23c and the fixed portion 23b in the axial direction. . This restricts the movement of the arm link 13 toward the second journal portion 23c.
  • the fixing flange 24 has six bolt insertion holes formed at equal intervals in the circumferential direction of the outer peripheral portion.
  • the fixing flange 24 has a flange-side expanded portion 24b that is expanded from the second journal portion 23c, and a flange-side stepped portion 24c that is formed between the second journal portion 23c and the flange-side expanded portion 24b. .
  • the flange side step portion 24c restricts the movement of the arm link 13 toward the first journal portion 23a side by contacting the reduction gear side opening end surface 30b1 of the reduction gear side through hole 30b formed in the housing 20.
  • the introduction portion is formed in the center of the fixing flange 24, and has a conical oil chamber 64a to which lubricating oil is supplied from an axial oil passage 64b, which will be described later, and an axial direction of the second control shaft from the oil chamber 64a. And a bottomed axial oil passage 64b formed by the above.
  • a pore member 400 having a pore 401 penetrating along the axis is press-fitted.
  • the cross-sectional area of the pores 401 in the direction perpendicular to the axis is smaller than the cross-sectional area of the oil passage 64b in the direction perpendicular to the axis, it functions as a diaphragm.
  • the throttling effect can be exerted by the pores 401 provided near the lubricating oil discharge port on the oil chamber 64a side, and the lubricating oil is retained. It can diffuse into the oil chamber 64a.
  • the lubricating oil supplied to the oil chamber 64a is supplied to a wave gear type speed reducer 21 described later.
  • the housing 20 is formed into a substantially cubic shape by casting an aluminum alloy.
  • the housing 20 has a plurality of bolt fastening boss portions 20b.
  • a bolt insertion hole 20c is formed through the bolt fastening boss portion 20b.
  • the housing 20 is fastened and fixed to the cylinder block of the engine by inserting bolts (not shown) into the bolt insertion holes 20c.
  • a large-diameter annular opening groove portion 20a is formed on the rear end side of the housing 20 (see FIG. 4). The opening groove portion 20a is closed by the cover 28 via the O-ring 51.
  • the cover 28 has a motor shaft through hole 28a through which the motor shaft through hole 28a penetrates at a central position, and four boss portions 28b whose diameters are expanded toward the outer peripheral side in the radial direction.
  • the cover 28 and the housing 20 are fastened and fixed by the motor fixing portion 22a by inserting the bolts 43 into the bolt insertion holes formed through the boss portion 28b.
  • An opening 29a1 for the actuator link 12 connected to the arm link 13 is formed on the side surface of the opening groove 20a that is orthogonal to the opening direction (see FIG. 5).
  • the opening 29a1 is a casting hole formed when the housing 20 is cast.
  • a part of the actuator link 12 projects to the outside of the housing 20 through the opening 29a1.
  • a housing chamber 29 that serves as an operation area of the arm link 13 and the actuator link 12 is formed (see FIG. 4).
  • the side close to the opening 29a1 (right side in FIG. 5) is referred to as the front side, and the side far from the opening 29a1 (left side in FIG. 5).
  • the accommodation chamber 29 is formed so that the width (direction along the rotation axis O) gradually decreases from the front side to the back side.
  • One of the six bolt fastening boss portions 20b is arranged below the accommodation chamber 29.
  • a speed reducer-side through hole 30b through which the second journal portion 23c of the second control shaft 11 penetrates is formed between the accommodation chamber 29 and the opening groove portion 20a.
  • a support hole 30 through which the first journal portion 23a of the second control shaft 11 penetrates is formed on the side surface of the storage chamber 29 on the axial sensor side.
  • a bearing 301 is arranged between the support hole 30 and the first journal portion 23a, and a bearing 304 is arranged between the reduction gear side through hole 30b and the second journal portion 23c.
  • a sensor housing hole 31 having a larger diameter than the opening of the support hole 30 is formed at the end of the support hole 30 on the angle sensor 32 side.
  • a lubricating oil recirculation oil passage 203 that communicates with the sensor housing hole 31 and recirculates the lubricating oil to the housing chamber 29 side.
  • the angle sensor 32 has a sensor holder 32a attached so as to close the sensor housing hole 31 from the outside of the housing 20.
  • the sensor holder 32a has a through hole 32a1 in which a detection coil (not shown) is arranged on the inner peripheral portion, and a flange portion 32a2 for fixing to the housing 20 with a bolt.
  • a seal ring 33 is provided between the sensor holder 32a and the housing 20 to secure liquid tightness between the sensor housing hole 31 and the outside.
  • a sensor cover 32c that closes the through hole 32a1 is provided on the outer peripheral side of the sensor holder 32a.
  • a seal ring 323 is provided between the sensor cover 32c and the sensor holder 32a to ensure liquid tightness between the sensor housing hole 31 and the through hole 32a1 and the outside.
  • a sensor shaft portion 231 having a rotor 32b attached to the outer periphery is inserted into the through hole 32a1.
  • the rotor 32b is a component having a substantially elliptical shape.
  • the angle sensor 32 detects that the distance set between the inner circumference of the through hole 32a1 and the rotor 32b has changed due to the rotation of the rotor 32b, by the change in the inductance of the detection coil. Thereby, the rotation position of the rotor 32b, that is, the rotation angle of the second control shaft 11 is detected.
  • the angle sensor 32 is a so-called resolver sensor, and outputs rotation angle information to a control unit (not shown) that detects the engine operating state.
  • FIG. 6 is a single view of the arm link 13 of the first embodiment
  • FIG. 7 is a partially enlarged sectional view of the first embodiment taken along the line S5-S5.
  • 6A is a front view of the arm link 13
  • FIG. 6B is a side view of the arm link 13.
  • the arm link 13 has a substantially 8-shape when viewed from the direction along the rotation axis O.
  • the annular portion 131 is formed in a substantially annular shape surrounding the outer periphery of (the fixed portion 23b of) the second control shaft 11 when viewed from the direction along the rotation axis O.
  • the arm portion 132 is formed in a substantially annular shape that covers the outer periphery of the connecting pin 14 when viewed from the direction along the rotation axis O.
  • the annular portion 131 has a larger diameter than the arm portion 132.
  • the annular portion 131 is thicker than the bifurcated arm portion 132.
  • the annular portion 131 has a first restricting portion 133 that axially protrudes in an annular shape on the end surface on the second journal portion 23c side.
  • the first restricting portion 133 has a first restricting surface 133a formed at the end of the press-fitting hole 134 on one side of the second journal portion 23c.
  • the first restriction surface 133a comes into contact with the first step portion 23d between the second journal portion 23c and the fixed portion 23b in the axial direction. Since the arm link 13 of the first embodiment is a bifurcated arm portion 132, the side surface of the arm portion 132 formed on the speed reducer side is flush with the side surface of the annular portion 131.
  • the outer periphery of the first restricting portion 133 can be enlarged to the vicinity of the connecting hole 132a.
  • the first restricting surface 133a overlaps the bifurcated arm portion 132 in the axial direction, so that the thrust receiving area can be secured.
  • the first restricting portion 133 is always located inside the accommodation chamber 29 in the movable range of the arm link 13. Therefore, even if the arm link 13 operates together with the actuator link 12, the first restricting surface 133a is not exposed to the outside from the opening 29a1 of the accommodation chamber 29, and the first restricting surface 133a is always controlled regardless of the operating state of the arm link 13.
  • the portion 133 secures the thrust receiving area.
  • the second control shaft 11 is restricted from moving toward the axial speed reducer side by the first restriction surface 133a of the arm link 13 that is press-fitted and fixed, while the second control shaft 11 moves toward the side opposite to the axial speed reducer side by the flange.
  • the side step portion 24c contacts the speed reducer side opening end surface 30b1 of the speed reducer side through hole 30b formed in the housing 20, thereby restricting the movement of the arm link 13 toward the first journal portion 23a (second restriction). Equivalent to the department).
  • the first step portion 23d and the reducer-side side wall 292 of the accommodation chamber 29 are located on substantially the same plane. Further, since the radial height of the first step portion 23d is lower than the radial height of the first restriction surface 133a of the first restriction portion 133, the first restriction surface 133a is decelerated in addition to the first step portion 23d. It can come into contact with the machine side wall 292. At this time, the reducer-side side surface of the arm portion 132 formed on the reducer-side has a gap with the reducer-side side wall 292.
  • the clearance between the first restricting portion 133 and the second restricting portion is controlled by managing the clearance between the first restricting surface 133a and the reducer-side side wall 292. Is managed.
  • the center O1 of the axial width of the arm link 13 is closer to the first regulating portion 133 side than the center O1 of the axial width of the accommodation chamber 29.
  • the arm link 13 is offset toward the first regulating portion 133 side in the accommodation chamber 29, the sensor-side side wall 291 and the arm link of the accommodation chamber 29 located on the opposite side to the first regulating portion 133 side.
  • An actuator of a variable compression ratio mechanism for an internal combustion engine comprising: Electric motor 22, A second control shaft 11 (control shaft) rotated by the electric motor 22, An arm link 13 having a press-fitting hole 131a (fixing hole), the second control shaft 11 being fixed by being inserted into the press-fitting hole 131a, and transmitting the driving force of the second control shaft 11 to the variable compression ratio mechanism.
  • An accommodation chamber 29 accommodation portion in which a portion where the arm link 13 is fixed to the second control shaft 11 is accommodated, and a speed reducer-side through hole 30b that opens into the accommodation chamber 29 and pivotally supports the second control shaft 11.
  • a housing 20 having (supporting hole), A first restricting portion 133 that is provided between the arm link 13 and the reducer-side side wall 292 that is the inner wall of the accommodation chamber 29 and that restricts the movement of the second control shaft 11 in at least one of the axial directions is included. Therefore, even if a force in the tilt direction with respect to the axial direction acts on the arm link 13 due to the deformation of the second control shaft 11, the contact between the first restriction surface 133a, the first step portion 23d, and the speed reducer side sidewall 292 is achieved. Falling can be suppressed by contact. As a result, it is possible to avoid an increase in friction due to a fall and to reduce the amount of thrust play by suppressing the amount of deformation, thereby improving the sound vibration performance.
  • the first restricting portion 133 is a first restricting surface 133a (first restricting portion) provided on the arm link 13 and in contact with the speed reducer-side side wall 292 on at least one side in the axial direction. Therefore, it is not necessary to separately provide a thrust receiving component, and it is possible to reduce the cost and axial dimension by reducing the number of components and the machining portion of the control shaft.
  • the arm link 13 protrudes outward in the radial direction with respect to the rotation axis of the second control shaft 11 from the annular portion 131 (base portion) provided with the press-fitting hole 131a, and the internal combustion engine 131. It has an arm portion 132 (linkage portion) linked to the variable compression ratio mechanism for the engine, At least a part of the first restriction surface 133a is provided on the annular portion 131. Therefore, a thrust receiving function can be provided in the vicinity of the bending generation portion of the second control shaft 11, and tilting can be effectively suppressed.
  • the arm part 132 is split into two parts from the annular part 131, and the arm link 13 linked to the variable compression ratio mechanism for the internal combustion engine is sandwiched between the two fork parts.
  • the first restriction surface 133a overlaps the bifurcated arm portion 132 in the axial direction. Therefore, for example, it becomes possible to increase the thrust receiving area as compared with a configuration including an arm portion extending in the radial direction from substantially the center in the axial direction of the annular portion 131, and more stably suppressing the fall. it can.
  • the axial clearance (first clearance) between the arm portion 132 and the speed reducer side wall 292 is the axial clearance (second clearance) between the first restriction surface 133a and the speed reducer side wall 292. ) Is greater than. In other words, even if the first restricting surface 133a comes into contact with the speed reducer side wall 292, the arm portion 132 does not contact with the speed reducer side wall 292. Therefore, friction can be reduced.
  • the first regulation surface 133a projects from the arm link 13 in an annular shape in the axial direction. Therefore, it can be easily processed.
  • the first restricting portion 133 is formed at the end on the reducer side through hole 30b side in the axial direction
  • the housing 20 and the second control shaft 11 have a second restriction that restricts the movement of the second control shaft 11 in the other axial direction on the side opposite to the first restriction portion 133 with the reduction gear side through hole 30b interposed therebetween in the axial direction.
  • the first restricting portion 133 and the second restricting portion are arranged close to each other with the speed reducer-side through hole 30b interposed therebetween, the distance between the thrust receivers is shortened, and the influence of contraction / expansion due to temperature can be reduced. Further, the clearance in each movable part can be narrowed by the amount that the influence is reduced, and the collapse of the arm link 13 due to the deformation of the second control shaft 11 can be further suppressed.
  • the second restricting portion is provided on the housing 20, and has a speed reducer-side opening end surface 30b1 (housing contact surface) formed on the side opposite to the arm link 13 with the speed reducer-side through hole 30b interposed therebetween.
  • a flange-side stepped portion 24c (second contact portion) provided on the second control shaft 11 and capable of contacting the speed reducer-side opening end surface 30b1.
  • the contact surface of the flange-side stepped portion 24c is formed outward in the radial direction of the shaft with respect to the speed reducer-side through hole 30b. Therefore, the thrust force can be received in the large diameter portion, and the rigidity can be ensured, so that the collapse of the arm link 13 due to the deformation of the second control shaft 11 can be further suppressed.
  • the housing chamber 29 has an opening 29a1 that opens in the radial direction of the second control shaft 11 of the housing 20,
  • the first restricting portion 133 is located inside the accommodation chamber 29 in the movable range of the arm link 13. That is, it is possible to move the arm portion 132 out of the opening without the first restricting portion 133 serving as the thrust receiving portion being caught by the opening end surface 30b1, and the thrust receiving portion of the arm link 13 can be secured while securing the movable range of the arm link 13. Can be formed.
  • the center O2 of the axial width of the arm link 13 is closer to the first regulating portion 133 side than the center 1 of the axial width of the accommodation chamber 29.
  • a gap is formed between the sensor-side side wall 291 on the side opposite to the first restricting portion 133 side and the arm link 13, so that the insertability of the jig in the press-fitting process can be improved.
  • the second control shaft 11 has a fixed portion 26b that is a portion that is inserted into the press-fitting hole 131a of the arm link 13 and a second journal portion 23c that is a portion that is supported by the reduction gear side through hole 30b (large diameter). Part) and The first restricting portion 133 is in axial contact with the first step portion 23d (step) between the fixed portion 26b and the second journal portion 23c. That is, the positional accuracy when the arm link 13 is press-fitted and fixed can be managed by the processing accuracy of the second control shaft 11, and the positional relationship between the first restricting portion 133 and the first restricting surface 133a can be accurately controlled. Can be managed.
  • FIG. 8 is a partially enlarged cross-sectional view taken along the line S5-S5 of the second embodiment.
  • the second embodiment is different in that an annular plate-shaped thrust receiving member 200 is provided instead of the first restricting portion 133 formed on the arm link 13.
  • the side surface of the arm link 13 is formed flat on both the speed reducer side and the sensor side.
  • the first restricting portion is the thrust receiving member 200 that is a plate-shaped member arranged between the arm link 13 and the reducer-side side wall 292. Therefore, the thrust receiving member 200 can be formed of a member different from the arm link 13, and by selecting a material that can reduce friction and improve wear resistance, it is possible to suppress falling and improve durability. be able to.
  • FIG. 9 is a partially enlarged cross-sectional view taken along the line S5-S5 of the third embodiment.
  • a third restricting portion 201 that restricts the axial movement of the second control shaft 11 is provided on the axial direction sensor side of the arm link 13. Is different. That is, in the first embodiment, the first restricting surface 133a serving as the thrust receiving surface is formed only on one side surface of the arm link 13, but the thrust receiving surface is formed on both side surfaces of the arm link 13, so that the second control is more effective. The fall of the arm link 13 due to the deformation of the shaft 11 can be suppressed.
  • the arm link 13 has a third restricting portion 201 which is provided between the arm link 13 and the sensor-side side wall 291 which is the inner wall of the accommodating chamber 29 and which restricts the movement of the second control shaft 11 in the other axial direction. Therefore, since the thrust receiving surfaces are formed on both side surfaces of the arm link 13, the arm link 13 restricts the movement of the second control shaft 11 toward both sides in the axial direction, and the arm link due to the deformation of the second control shaft 11. The fall of 13 can be suppressed more positively.
  • the third restricting portion 201 is provided, the gap in the flange-side stepped portion 24c (second contact portion) that can contact the speed reducer-side opening end surface 30b1 is set to the first restricting portion 133 or the third restricting portion 201. It may be larger than the gap in. This can reduce friction.
  • FIG. 10 is a unit diagram of the arm link 13 of the fourth embodiment. As shown in FIG. 10A, a groove 202 extending in the radial direction is formed on the first restriction surface 133a of the fourth embodiment. Therefore, for example, at the axial position located in the gap between the speed reducer side wall 292 and the arm link 13, the oil passage radially extending from the axial oil passage 64b is connected to the groove 202, and the lubricating oil is supplied.
  • the lubricating oil introduced into the groove 202 is supplied to the sliding portion between the arm link 13 and the actuator link 12, and is also supplied to the sliding surface between the first restriction surface 133a and the speed reducer-side side wall 292, Reduce friction. Note that the friction may be reduced by introducing the lubricating oil into the groove 202 from the outside in the radial direction via another lubricating oil supply passage, not limited to the lubricating oil supply passage from the axial oil passage 64b.
  • the first restricting portion 133 projects from the arm link 13 in the axial direction, and has a groove 202 extending in the axial radial direction. Therefore, the lubricating oil can be introduced, and the friction between the first restriction surface 133a and the speed reducer-side side wall 292 can be reduced.
  • FIG. 11 is a unit diagram of the arm link 13 of the fifth embodiment.
  • the first restricting portion 133 of the first embodiment has an annular shape.
  • the first restricting portion 1330 has a shape in which the entire annular portion 131 projects, and the shape of the first restricting surface 1330a is also equal to that of the annular portion 131. The difference is that the shape follows the outer shape.
  • the contact area can be made larger than that of the first restriction surface 133a of the first embodiment, and the collapse of the arm link 13 due to the deformation of the second control shaft 11 can be suppressed.
  • the first regulation surface is not limited to the shape along the outer shape of the annular portion 131, and may have any shape as long as the contact area can be secured.
  • FIG. 12 is a unit diagram of the arm link 13 of the sixth embodiment.
  • the first restriction portion 133 of the first embodiment is formed in a shape that projects in the axial direction.
  • the entire side surface of the arm link 13 is formed as the first restricting surface 133a without forming a shape protruding in the axial direction as the first restricting portion. different.
  • the contact area with the side wall 292 on the reducer side can be secured, the number of processing steps can be reduced, and the collapse of the arm link 13 due to the deformation of the second control shaft 11 can be effectively suppressed.
  • the arm link 13 is operated by the electric motor 22, but the arm link 13 may be operated by not only the electric motor 22 but also another actuator such as a hydraulic device.
  • An actuator of a variable compression ratio mechanism for an internal combustion engine in one aspect thereof, is an actuator of a variable compression ratio mechanism for an internal combustion engine, An electric motor, A control shaft rotated by the electric motor, An arm link having a fixing hole, the control shaft being inserted through the fixing hole and fixed, and transmitting the driving force of the control shaft to the variable compression ratio mechanism; A housing having a housing portion for housing a portion where the arm link is fixed to the control shaft; and a support hole that opens in the housing portion and pivotally supports the control shaft, A first restricting portion that is provided between the arm link and the inner wall of the accommodating portion and that restricts movement of the control shaft in at least one of the axial directions; Have.
  • the first regulation portion is provided on the arm link, and the first regulation portion abuts an inner wall of the accommodation portion at least in the axial direction.
  • the arm link is provided with a base portion provided with the fixing hole, and projects outward in a radial direction from the base portion with respect to a rotation axis of the control shaft, And a linking section linked to the variable compression ratio mechanism for the internal combustion engine, At least a part of the first restriction portion is provided on the base portion.
  • the link portion is bifurcated from the base portion, and the arm link linked to the internal combustion engine variable compression ratio mechanism is bifurcated.
  • the first axial gap between the linking portion and the inner wall is the axial first gap between the first restricting portion and the inner wall. Larger than 2 gaps.
  • the first restricting portion projects from the arm link in an annular shape in the axial direction.
  • the first restricting portion is formed so as to project from the arm link in the axial direction and to have a groove extending in the radial direction of the axial direction.
  • the first restricting portion is formed on the entire side surface of the arm link.
  • the first restriction portion is formed at an end portion on the support hole side in the axial direction,
  • the housing and the control shaft have a second restricting portion that restricts the movement of the control shaft in the other axial direction on the side opposite to the first restricting portion with the support hole interposed therebetween in the axial direction.
  • the second restricting portion is provided in the housing, and is in contact with the housing in the axial direction on the side opposite to the arm link with the support hole interposed therebetween.
  • the accommodating portion has an opening that opens in a radial direction of the control shaft of the housing,
  • the first restricting portion is located inside the accommodating portion in the movable range of the arm link.
  • the center of the axial width of the arm link is closer to the first restricting portion side than the center of the axial width of the accommodating portion. .
  • control shaft is a fixed portion that is a portion that is inserted into the fixing hole of the arm link, and a large diameter portion that is a portion that is supported by the support hole. And have, The first restriction portion is in contact with a step between the fixed portion and the large diameter portion from the axial direction.
  • the first restricting portion is a plate-shaped member arranged between the arm link and the inner wall.
  • a third regulating portion that is provided between the arm link and the inner wall of the accommodating portion and that regulates movement of the control shaft in the other axial direction is further provided. Have.
  • An actuator of a variable compression ratio mechanism for an internal combustion engine in another aspect, is an actuator of a variable compression ratio mechanism for an internal combustion engine, A control shaft rotated by a drive source, An arm link provided on the control shaft and having an input in a radial direction from the variable compression ratio mechanism for an internal combustion engine with respect to a rotation shaft of the control shaft, A housing having a housing portion for housing the arm link; A first restricting portion which is provided in the accommodating portion and restricts movement of the control shaft in at least one of the directions of the rotating shafts; Have.
  • the present invention is not limited to the above-described embodiment, and various modifications are included.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described above.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of one embodiment can be added to the configuration of another embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Retarders (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

内燃機関用可変圧縮比機構のアクチュエータであって、駆動源により回転する制御軸に設けられたアームリンクがハウジングの収容部に収容されており、収容部には、制御軸の回転軸の方向の少なくとも一方への移動を規制する第1規制部を有する。

Description

内燃機関の可変圧縮比機構のアクチュエータ
 本発明は、内燃機関の可変圧縮比機構のアクチュエータに関する。
 可変圧縮比機構として、特許文献1に記載の技術が知られている。この公報には、複リンク式ピストン及びクランク機構を利用して、ピストンのストローク特性を変化させることにより、内燃機関の機械的な圧縮比を変更可能としている。すなわち、ピストンとクランクシャフトをアッパリンクとロアリンクを介して連結し、ロアリンクの姿勢を駆動モータや波動歯車型減速機を有するアクチュエータに接続された制御軸の回動によって制御する。これにより、ピストンのストローク特性を変化させ、機関圧縮比を制御している。
 アクチュエータは、前記制御軸を回転自在に支持する軸受部を有するハウジングと、駆動モータに接続された出力軸の回転速度を減速して制御軸に伝達する波動歯車型減速機と、を備え、制御軸は先端部に軸方向の波動歯車型減速機側への移動を規制する規制部材であるリテーナが圧入固定されている。
特開2017-150369号公報
 しかしながら、特許文献1に記載された内燃機関用の可変圧縮比機構のアクチュエータにおいては、制御軸の軸方向の移動を規制するリテーナが先端に固定されていたことから、制御軸にアームリンクを介してかかる径方向の荷重により制御軸が撓んだときにその撓みにより縮小するリテーナとハウジングの間の軸方向のクリアランスの縮小分が大きく、クリアランスを大きく設定する必要があり、音振性能を悪化させるおそれがあった。
  本発明の目的の一つは、音振性能を向上できる内燃機関の可変圧縮比機構のアクチュエータを提供することにある。
 本発明の一実施形態では、アームリンクと収容部の内壁との間に、制御軸の軸方向の移動を規制する規制部を設けた。
 本発明の好ましい態様によれば、先端部にリテーナを配置した場合に比較して軸方向のクリアランスを小さく設定できるため、音振性能を改善できる。
実施形態1の内燃機関の概略図である。 実施形態1の内燃機関の可変圧縮比機構のアクチュエータの分解斜視図である。 実施形態1の内燃機関の可変圧縮比機構のアクチュエータの側面図である。 図4のS5-S5線矢視断面図である。 図4のS6-S6線矢視断面図である。 実施形態1のアームリンク13の単体図であり、(a)は斜視図、(b)は正面図である。 実施形態1のS5-S5線矢視拡大部分断面図である。 実施形態2のS5-S5線矢視拡大部分断面図である。 実施形態3のS5-S5線矢視拡大部分断面図である。 実施形態4のアームリンク13の単体図であり、(a)は斜視図、(b)は正面図である。 実施形態5のアームリンク13の単体図であり、(a)は斜視図、(b)は正面図である。 実施形態6のアームリンク13の単体図であり、(a)は斜視図、(b)は正面図である。
 〔実施形態1〕
  図1は、実施形態1の内燃機関の概略図であって、ここでは内燃機関用リンク機構として内燃機関の可変圧縮比機構を示している、図2は、実施形態1の内燃機関の可変圧縮比機構のアクチュエータの分解斜視図、図3は実施形態1の内燃機関の可変圧縮比機構のアクチュエータの側面図、図4は図4のS5-S5線矢視断面図、図5は図4のS6-S6線矢視断面図である。
  内燃機関(ガソリンエンジン)のシリンダブロックのシリンダ内を往復運動するピストン1には、ピストンピン2を介してアッパリンク3の上端が回転自在に連結されている。アッパリンク3の下端には、連結ピン6を介してロアリンク5が回転自在に連結されている。ロアリンク5には、クランクピン4aを介してクランクシャフト4が回転自在に連結されている。また、ロアリンク5には、連結ピン8を介して第1制御リンク7の上端部が回転自在に連結されている。第1制御リンク7の下端部は、複数のリンク部材を有する連結機構9と連結されている。連結機構9は、第1制御軸10と、第2制御軸(制御軸)11と、第1制御軸10および第2制御軸11とを連結するアクチュエータリンク12と、を有する。
 第1制御軸10は、内燃機関内部の気筒列方向に延在するクランクシャフト4と平行に延在する。第1制御軸10は、内燃機関本体に回転自在に支持される第1ジャーナル部10aと、第1制御リンク7の下端部が回転自在に連結された制御偏心軸部10bと、アクチュエータリンク12の一端部12aが回転自在に連結された偏心軸部10cと、を有する。
  第1アーム部10dは、一端が第1ジャーナル部10aと連結され、他端が第1制御リンク7の下端部と連結されている。制御偏心軸部10bは、第1ジャーナル部10aに対して所定量偏心した位置に設けられる。第2アーム部10eは、一端が第1ジャーナル部10aと連結され、他端がアクチュエータリンク12の一端部12aと連結されている。
  偏心軸部10cは、第1ジャーナル部10aに対して所定量偏心した位置に設けられる。アクチュエータリンク12の他端部12bは、アームリンク13の一端が回転自在に連結されている。アームリンク13の他端には、第2制御軸11が連結されている。アームリンク13と第2制御軸11は相対移動しない。第2制御軸11は、後述するハウジング20内に複数のジャーナル部を介して回転自在に支持されている。
 アクチュエータリンク12は、レバー形状であり、偏心軸部10cに連結された一端部12aは、略直線的に形成されている。一方、図2のアクチュエータの分解斜視図に示すように、アームリンク13が連結された他端部12bは、湾曲形成されている。また、一端部12aの先端部には、偏心軸部10cが回動自在に挿通された挿通孔12cが貫通形成されている。他端部12bは、先端部12dを有する。先端部12dには、連結用孔12eが貫通形成されている。また、アームリンク13の円環状部(大径部)131から外周に向けて突出する二股状のアーム部(小径部)132には、それぞれ連結用孔12eと略同径の連結用孔132aが貫通形成されている。アーム部132には、アクチュエータリンク12の先端部12dが挿通され、この状態で、連結ピン14が連結用孔12eおよび132aを貫通し、連結用孔12eに圧入固定されている。連結用孔132aの軸心(連結ピン14の軸心)は、第2制御軸11の軸心に対して所定量偏心している。
  アームリンク13は、図2に示すように、第2制御軸11とは別体として形成されている。アームリンク13は、鉄系金属材料によって形成され、圧入用孔131aが貫通形成された円環状部131と、円環状部131から外周に向けて突出して、二股状に形成されたアーム部132と、を有する。円環状部131に形成された圧入用孔131aは、第2制御軸11の各ジャーナル部の間に形成された固定部23bが圧入され、この圧入により第2制御軸11とアームリンク13とが固定されている(図4参照)。アームリンク13の詳細については後述する。
  第2制御軸11は、内燃機関の可変圧縮比機構のアクチュエータの一部である波動歯車型減速機21を介して電動モータ22から伝達されたトルクによって回転位置が変更される。第2制御軸11の回転位置が変更されると、アクチュエータリンク12の姿勢が変化して第1制御軸10が回転し、第1制御リンク7の下端部の位置を変更する。これにより、ロアリンク5の姿勢が変化し、ピストン1のシリンダ内におけるストローク位置やストローク量を変化させ、これに伴って機関圧縮比を変更する。
 実施形態1のアクチュエータは、電動モータ22と、電動モータ22の先端側に取り付けられた波動歯車型減速機21と、波動歯車型減速機21を内部に収容するハウジング20と、ハウジング20に回転自在に支持された第2制御軸11と、を有する。
  図4に示すように、電動モータ22は、ブラシレスモータであり、有底円筒状のモータケーシング45と、モータケーシング45の内周面に固定された筒状のコイル46と、コイル46の内側に回転自在に設けられたロータ47と、一端部48aがロータ47の中心に固定されたモータ駆動軸48と、モータ駆動軸48の回転角度を検出するレゾルバ55と、を有する。
  モータ駆動軸48は、モータケーシング45の底部に設けられたボールベアリング52により回転可能に支持されている。モータケーシング45は、前端外周に4つのボス部45aを有する。ボス部45aには、ボルト49が挿通するボルト挿通孔が貫通形成されている。
 レゾルバ55は、モータ駆動軸48の外周に圧入固定されたレゾルバロータ55aと、レゾルバロータ55aの外周面に形成された複歯状のターゲットを検出するセンサ部55bと、を有し、モータケーシング45の開口から突出した位置に設けられる。センサ部55bは、2本のビスによってカバー28の内部に固定されると共に、図外のコントロールユニットに検出信号を出力する。モータケーシング45をカバー28に取り付ける際は、レゾルバ55の端面とカバー28との間にOリング51を介在させつつボス部45aにボルト49を挿通し、カバー28の電動モータ22側に形成された雄ねじ部にボルト49を締め付ける。これにより、モータケーシング45をカバー28に固定する。モータケーシング45およびカバー28によって電動モータ22を収容するモータ収容室は、潤滑油等を供給しない乾燥室として構成する。
 第2制御軸11は、その回転軸線Oに沿う方向(軸方向)に延在された軸部本体23と、軸部本体23から拡径した固定用フランジ24と、を有する。第2制御軸11は、鉄系金属材料により軸部本体23および固定用フランジ24が一体形成されている。軸部本体23は、軸方向に段差形状が形成され、角度センサ32の内周に位置するセンサ軸部231と、を有する。センサ軸部231の外周には、角度センサ32の部品として機能するロータ32bが設けられている。また、第2制御軸11は、センサ軸部231よりも波動歯車型減速機側において、先端部側の小径な第1ジャーナル部23aと、アームリンク13の圧入用孔134が第1ジャーナル部23a側から圧入された中径な固定部23bと、固定用フランジ24側の大径な第2ジャーナル部23cと、を有する。また、固定部23bと第2ジャーナル部23cとの間には、第1段差部23dが形成されている。また、第1ジャーナル部23aと固定部23bとの間には、第2段差部23eが形成されている。
 第1段差部23dは、アームリンク13の円環状部131に形成された圧入用孔134を第1ジャーナル部23a側から固定部23bに圧入するとき、第2ジャーナル部23c側の一方側の圧入用孔134端部に形成された第1規制部133(図6参照)の第1規制面133aが第2ジャーナル部23cと固定部23bとの間の第1段差部23dと軸方向から当接する。これにより、アームリンク13の第2ジャーナル部23c側への移動を規制する。固定用フランジ24は、外周部の周方向に6つのボルト挿通孔が等間隔に形成されている。このボルト挿通孔に6本のボルト25を挿通し、スラストプレート26を介して波動歯車型減速機21の内歯である波動歯車出力軸部材27と結合する。固定用フランジ24は、第2ジャーナル部23cから拡径したフランジ側拡径部24bと、第2ジャーナル部23cとフランジ側拡径部24bとの間に形成されたフランジ側段部24cとを有する。フランジ側段部24cは、ハウジング20に形成された減速機側貫通孔30bの減速機側開口端面30b1と当接することで、アームリンク13の第1ジャーナル部23a側への移動を規制する。
 第2制御軸11の軸内には、図外のオイルポンプから圧送された潤滑油を導入する導入部を有する。導入部は、固定用フランジ24の中央に形成され、後述する軸方向油路64bから潤滑油が供給される円錐状の油室64aと、油室64aから第2制御軸の軸心方向に沿って形成された有底の軸方向油路64bと、を有する。軸方向油路64bの油室64a側の端部には、軸心に沿って貫通する細孔401が形成された細孔部材400が圧入されている。細孔401の軸直角方向断面積は、軸方向油路64bの軸直角方向断面積よりも小さいため、絞りとして機能する。これにより、油室64a側から大径の軸方向油路64bを穿設したとしても、油室64a側の潤滑油吐出口付近に設けられた細孔401により絞り効果を発揮でき、潤滑油を油室64a内に拡散できる。油室64aに供給された潤滑油は、後述する波動歯車型減速機21に供給される。
 図4および図5に示すように、ハウジング20は、アルミニウム合金の鋳造により略立方体形状に形成されている。ハウジング20は、複数のボルト締結用ボス部20bを有する。ボルト締結用ボス部20bには、ボルト挿通孔20cが貫通形成されている。ハウジング20は、各ボルト挿通孔20cにボルト(不図示)を挿通することでエンジンのシリンダブロックに締結固定されている。ハウジング20の後端側には大径円環状の開口溝部20aが形成されている(図4参照)。この開口溝部20aは、Oリング51を介してカバー28により閉塞されている。カバー28は、中央位置にモータ軸貫通孔28aが貫通するモータ軸貫通孔28aと、径方向外周側に向けて拡径された4つのボス部28bと、を有する。カバー28とハウジング20とは、ボス部28bに貫通形成されたボルト挿通孔にボルト43を挿通することでモータ固定部22aにて締結固定されている。
 開口溝部20aの開口方向と直交する側面には、アームリンク13と連結されたアクチュエータリンク12用の開口部29a1が形成されている(図5参照)。開口部29a1は、ハウジング20の鋳造時に形成された鋳抜き穴である。アクチュエータリンク12の一部は、開口部29a1からハウジング20の外部へ突出する。開口部29a1が形成されたハウジング20内部には、アームリンク13およびアクチュエータリンク12の作動領域となる収容室29が形成されている(図4参照)。以下、収容室29において、開口部29a1に近い側(図5の右側)を手前側、開口部29a1から遠い側(図5の左側)という。
 収容室29は、手前側から奥側へ向かって徐々に幅(回転軸線Oに沿う方向)が狭くなるように形成されている。6つのボルト締結用ボス部20bの1つは、収容室29の下方に配置されている。収容室29と開口溝部20aとの間には、第2制御軸11の第2ジャーナル部23cが貫通する減速機側貫通孔30bが形成されている。収容室29の軸方向センサ側の側面には、第2制御軸11の第1ジャーナル部23aが貫通する支持孔30が形成されている。支持孔30と第1ジャーナル部23aとの間には軸受301が配置され、減速機側貫通孔30bと第2ジャーナル部23cとの間には軸受304が配置されている。
 支持孔30の角度センサ32側端部には、支持孔30の開口よりも大径のセンサ収容孔31が形成されている。センサ収容孔31の下方には、センサ収容孔31と連通すると共に潤滑油を収容室29側に還流する潤滑油還流油路203を有する。
 角度センサ32は、センサ収容孔31をハウジング20の外部から閉塞するように取り付けられたセンサホルダ32aを有する。センサホルダ32aは、内周部に検知コイル(不図示)が配置された貫通孔32a1と、ボルトによりハウジング20に固定するためのフランジ部32a2と、を有する。センサホルダ32aとハウジング20との間にはシールリング33が設けられ、センサ収容孔31と外部との間の液密性を確保する。また、センサホルダ32aの外周側には、貫通孔32a1を閉塞するセンサカバー32cを有する。センサカバー32cとセンサホルダ32aとの間にはシールリング323が設けられ、センサ収容孔31や貫通孔32a1と外部との間の液密性を確保する。
  貫通孔32a1内には、外周にロータ32bが取り付けられたセンサ軸部231が挿入されている。ロータ32bは、略楕円形上の部品である。角度センサ32は、貫通孔32a1の内周とロータ32bとの間に設定された距離がロータ32bの回転により変化したことを検知コイルのインダクタンス変化により検出する。これにより、ロータ32bの回動位置、すなわち第2制御軸11の回転角度を検出する。角度センサ32は、上述したように、いわゆるレゾルバセンサであり、機関運転状態を検出する図外のコントロールユニットに回転角度情報を出力する。
 図6は、実施形態1のアームリンク13の単体図、図7は、実施形態1のS5-S5線矢視部分拡大断面図である。図6の(a)はアームリンク13の正面図、(b)はアームリンク13の側面図を示す。
  アームリンク13は、回転軸線Oに沿う方向から見て、略8の字形状を有する。円環状部131は、回転軸線Oに沿う方向から見て、第2制御軸11(の固定部23b)の外周を囲う略円環状に形成されている。アーム部132は、回転軸線Oに沿う方向から見て、連結ピン14の外周を覆う略円環状に形成されている。円環状部131はアーム部132よりも大径である。また、円環状部131は、二股状のアーム部132よりも肉厚である。
 円環状部131は、第2ジャーナル部23c側の端面において、軸方向に円環状に突出する第1規制部133を有する。第1規制部133は、第2ジャーナル部23c側の一方側の圧入用孔134端部に形成された第1規制面133aを有する。第1規制面133aは、第2ジャーナル部23cと固定部23bとの間の第1段差部23dと軸方向から当接する。尚、実施形態1のアームリンク13は、二股状のアーム部132であるため、減速機側に形成されたアーム部132の側面は、円環状部131の側面と同一平面となる。よって、第1規制部133を形成する際、第1規制部133の外周を連結用孔132a近傍まで拡大して形成することができる。言い換えると、第1規制面133aは軸方向において二股状のアーム部132と重なっているため、スラスト受け面積を確保できる。
 また、図5に示すように、第1規制部133は、アームリンク13の可動範囲において常に収容室29の内部に位置している。よって、アクチュエータリンク12と共にアームリンク13が作動したとしても、第1規制面133aが収容室29の開口部29a1から外側に露出することがなく、アームリンク13の作動状態に係らず常時第1規制部133によってスラスト受け面積を確保する。
 第2制御軸11は、圧入固定されたアームリンク13の第1規制面133aによって軸方向減速機側への移動が規制される一方、軸方向減速機側とは反対側への移動は、フランジ側段部24cがハウジング20に形成された減速機側貫通孔30bの減速機側開口端面30b1と当接することで、アームリンク13の第1ジャーナル部23a側への移動を規制する(第2規制部に相当)。
 第2制御軸11がフランジ側段部24cによって軸方向位置を規制された際、第1段差部23dと収容室29の減速機側側壁292とは略同一平面に位置する。また、第1段差部23dの径方向高さは、第1規制部133の第1規制面133aの径方向高さよりも低いため、第1規制面133aは、第1段差部23dに加えて減速機側側壁292と当接可能である。このとき、減速機側に形成されたアーム部132の減速機側側面は、減速機側側壁292との間に隙間を有する。言い換えると、アームリンク13の第1規制面133a以外は、減速機側側壁292と接触しないため、フリクションを低減する。尚、第2制御軸11にアームリンク13を圧入する際、第1規制面133aと減速機側側壁292とのクリアランスを管理することで、第1規制部133及び第2規制部の両方におけるクリアランスが管理される。
 図7に示すように、アームリンク13の軸方向の幅の中心O1は、収容室29の軸方向の幅の中心O1よりも第1規制部133側に寄っている。言い換えると、収容室29内において、アームリンク13は、第1規制部133側にオフセットしているため、第1規制部133側と反対側に位置する収容室29のセンサ側側壁291とアームリンク13との間に隙間を有する。アームリンク13を第2制御軸11に圧入するときは、この隙間に冶具を挿入して圧入工程を実施する。
 以上説明したように、実施形態1にあっては、下記の作用効果が得られる。
  (1)内燃機関用可変圧縮比機構のアクチュエータであって、
  電動モータ22と、
  電動モータ22により回転する第2制御軸11(制御軸)と、
  圧入用孔131a(固定用孔)を有し、第2制御軸11が圧入用孔131aに挿通して固定され、第2制御軸11の駆動力を可変圧縮比機構に伝達するアームリンク13と、
  アームリンク13が第2制御軸11に固定されている部分が収容される収容室29(収容部)と、収容室29に開口し、第2制御軸11を軸支する減速機側貫通孔30b(支持孔)と、を有するハウジング20と、
  アームリンク13と収容室29の内壁である減速機側側壁292との間に設けられ、第2制御軸11の軸方向の少なくとも一方への移動を規制する第1規制部133と、を有する。
  よって、第2制御軸11の変形により、アームリンク13に軸方向に対して倒れ方向の力が作用しても、第1規制面133aと第1段差部23d及び減速機側側壁292との当接により倒れを抑制できる。これにより、倒れによるフリクションの増大を回避し、変形量抑制分のスラストガタ詰めが可能となり、音振性能を改善できる。
 (2)第1規制部133は、アームリンク13に設けられ、軸方向の少なくとも一方で減速機側側壁292と当接する第1規制面133a(第1規制部)である。
  よって、スラスト受け用の部品を別途設ける必要が無く、部品点数の削減及び制御軸加工部位の削減によるコスト低減及び軸方向寸法の低減を図ることができる。
 (3)アームリンク13は、圧入用孔131aが設けられた円環状部131(基部)と、円環状部131から第2制御軸11の回転軸に対して径方向の外方へ突出し、内燃機関用可変圧縮比機構に連係するアーム部132(連係部)を有し、
  第1規制面133aは、少なくとも一部が円環状部131に設けられている。よって、第2制御軸11の撓み発生部分の近傍にスラスト受け機能を持たせることができ、効果的に倒れを抑制できる。
 (4)アーム部132は円環状部131から二股状に分かれ、内燃機関用可変圧縮比機構に連係するアームリンク13が二股状に分かれたアーム部132の間に挟まれており、
  第1規制面133aは軸方向において二股状のアーム部132と重なっている。よって、例えば、円環状部131の軸方向略中央から径方向に向けて延在されたアーム部を備えた構成に比べてスラスト受け面積を増大することが可能となり、より安定的に倒れを抑制できる。
 (5)アーム部132と減速機側側壁292との間の軸方向の隙間(第1隙間)は、第1規制面133aと減速機側側壁292との間の軸方向の隙間(第2隙間)よりも大きい。言い換えると、第1規制面133aが減速機側側壁292と当接したとしても、アーム部132は減速機側側壁292と当接することがない。よって、フリクションを低減できる。
 (6)第1規制面133aはアームリンク13から軸方向に円環状に突出している。よって、容易に加工できる。
 (7)第1規制部133は、軸方向において減速機側貫通孔30b側の端部に形成され、
  ハウジング20及び第2制御軸11は、軸方向において減速機側貫通孔30bを挟んで第1規制部133と反対側において第2制御軸11の軸方向の他方への移動を規制する第2規制部を有する。すなわち、第1規制部133と第2規制部とが減速機側貫通孔30bを挟んで近接配置されるため、スラスト受け間距離も短くなり、温度による収縮・膨張の影響を低減できる。また、その影響が低減した分だけ各可動部におけるクリアランスを狭めることが可能となり、より第2制御軸11の変形によるアームリンク13の倒れを抑制できる。
 (8)第2規制部は、ハウジング20に設けられ、軸方向において減速機側貫通孔30bを挟んでアームリンク13と反対側に形成された減速機側開口端面30b1(ハウジング当接面)と、第2制御軸11に設けられ、減速機側開口端面30b1に当接可能なフランジ側段部24c(第2当接部)であり、
  フランジ側段部24cの当接面は減速機側貫通孔30bよりも軸方向の径方向において外方に形成されている。よって、大径部分でスラスト力を受けることができ、剛性を確保することで第2制御軸11の変形によるアームリンク13の倒れを更に抑制できる。
 (9)収容室29はハウジング20の第2制御軸11の径方向に開口する開口部29a1を有し、
  第1規制部133はアームリンク13の可動範囲において全て収容室29の内部に位置する。すなわち、スラスト受けとなる第1規制部133が開口端面30b1に引っかかることなくアーム部132を開口部から外側に出すことが可能となり、アームリンク13の可動域を確保しつつアームリンク13にスラスト受けを形成できる。
 (10)アームリンク13の軸方向の幅の中心O2が、収容室29の軸方向の幅の中心1よりも第1規制部133側に寄っている。言い換えると、第1規制部133側とは反対側のセンサ側側壁291とアームリンク13との間に隙間が形成されるため、圧入工程における冶具の挿入性を向上できる。
 (11)第2制御軸11は、アームリンク13の圧入用孔131aに挿通する部分である固定部26bと、減速機側貫通孔30bに支持される部分である第2ジャーナル部23c(大径部)と、を有し、
  第1規制部133は固定部26bと第2ジャーナル部23cの間の第1段差部23d(段差)に軸方向から当接している。
  すなわち、アームリンク13を圧入して固定するときの位置精度を、第2制御軸11の加工精度によって管理することができ、第1規制部133と第1規制面133aとの位置関係を精度よく管理できる。
 〔実施形態2〕
  次に、実施形態2について説明する。基本的な構成は実施形態1と同じであるため、実施形態1と相違する部分のみ説明する。
  図8は、実施形態2のS5-S5線矢視部分拡大断面図である。実施形態2では、アームリンク13に形成された第1規制部133に代えて、円環板状のスラスト受け部材200を備えた点が異なる。尚、アームリンク13の側面は、減速機側及びセンサ側共に平坦に形成されている。
 (12)第1規制部は、アームリンク13と減速機側側壁292との間に配置された板状部材であるスラスト受け部材200である。よって、スラスト受け部材200をアームリンク13と異なる部材で構成することができ、フリクションを低減しつつ耐摩耗性を向上可能な材料を選択することで、倒れを抑制すると共に耐久性の向上を図ることができる。
 〔実施形態3〕
  次に、実施形態3について説明する。基本的な構成は実施形態1と同じであるため、実施形態1と相違する部分のみ説明する。
  図9は、実施形態3のS5-S5線矢視部分拡大断面図である。実施形態3では、アームリンク13に形成された第1規制部133に加えて、アームリンク13の軸方向センサ側に、第2制御軸11の軸方向移動を規制する第3規制部201を設けた点が異なる。すなわち、実施形態1では、アームリンク13の一方側の側面のみでスラスト受け面となる第1規制面133aを形成したが、アームリンク13の両側面でスラスト受け面を形成したため、より第2制御軸11の変形によるアームリンク13の倒れを抑制できる。
 (13)アームリンク13と収容室29の内壁であるセンサ側側壁291との間に設けられ、第2制御軸11の軸方向の他方への移動を規制する第3規制部201を更に有する。よって、スラスト受け面がアームリンク13の両側面に形成されるため、アームリンク13によって第2制御軸11の軸方向の両側への移動を規制するとともに、第2制御軸11の変形によるアームリンク13の倒れをより積極的に抑制できる。尚、第3規制部201を備えた場合は、減速機側開口端面30b1に当接可能なフランジ側段部24c(第2当接部)における隙間を第1規制部133や第3規制部201における隙間より大きくしてもよい。これにより、フリクションを低減できる。
 〔実施形態4〕
  次に、実施形態4について説明する。基本的な構成は実施形態1と同じであるため、実施形態1と相違する部分のみ説明する。図10は、実施形態4のアームリンク13の単体図である。図10(a)に示すように、実施形態4の第1規制面133aには、径方向に延びる溝202が形成されている。よって、例えば、減速機側側壁292とアームリンク13との間の隙間に位置する軸方向位置において、軸方向油路64bから径方向に延びる油路を溝202に接続し、潤滑油を供給すると、溝202内に導入された潤滑油がアームリンク13とアクチュエータリンク12との摺動箇所に供給されると共に、第1規制面133aと減速機側側壁292との摺動面にも供給され、フリクションを低減する。尚、軸方向油路64bからの潤滑油供給経路に限らず、他の潤滑油供給経路を介して径方向外側から溝202内に潤滑油を導入することでフリクションを低減してもよい。
 (14)第1規制部133はアームリンク13から軸方向に突出していると共に、軸方向の径方向に延びる溝202が形成されている。よって、潤滑油を導入することができ、第1規制面133aと減速機側側壁292との間のフリクションを低減できる。
 〔実施形態5〕
  次に、実施形態5について説明する。基本的な構成は実施形態1と同じであるため、実施形態1と相違する部分のみ説明する。図11は、実施形態5のアームリンク13の単体図である。実施形態1の第1規制部133は円環形状とした。これに対し、実施形態5では、図11(a)に示すように、第1規制部1330を、円環状部131全体が突出した形状とし、第1規制面1330aの形状も円環状部131の外形に沿った形状とした点が異なる。これにより、実施形態1の第1規制面133aよりも接触面積を大きくすることができ、第2制御軸11の変形によるアームリンク13の倒れを抑制できる。尚、第1規制面を円環状部131の外形に沿った形状に限らず、接触面積を確保できれば、どのような形状であっても構わない。
 〔実施形態6〕
  次に、実施形態6について説明する。基本的な構成は実施形態1と同じであるため、実施形態1と相違する部分のみ説明する。図12は、実施形態6のアームリンク13の単体図である。実施形態1の第1規制部133は軸方向に突出した形状に形成されていた。これに対し、実施形態6では、図12に示すように、第1規制部として軸方向に突出した形状を形成することなく、アームリンク13の側面全体を第1規制面133aとして形成した点が異なる。これにより、減速機側側壁292との接触面積を確保することができ、加工工数を削減すると共に、第2制御軸11の変形によるアームリンク13の倒れを効果的に抑制できる。
 〔他の実施形態〕
  以上、実施形態1~6について説明したが、発明の範囲内において他の構成を採用してもよい。例えば、実施形態では、アームリンク13を電動モータ22により作動させたが、電動モータ22に限らず油圧機器等の他のアクチュエータによって作動させてもよい。また、実施形態では、アームリンク13から突出した第1規制部133を形成した例を示したが、収容室29の減速機側側壁292を突出させて第1規制部や第3規制部を形成してもよい。
 以上説明した実施例から把握し得る技術的思想について、以下に記載する。
  内燃機関用可変圧縮比機構のアクチュエータは、その一つの態様において、内燃機関用可変圧縮比機構のアクチュエータであって、
  電動モータと、
  前記電動モータにより回転する制御軸と、
  固定用孔を有し、前記制御軸が前記固定用孔に挿通して固定され、前記制御軸の駆動力を前記可変圧縮比機構に伝達するアームリンクと、
  前記アームリンクが前記制御軸に固定されている部分が収容される収容部と、前記収容部に開口し、前記制御軸を軸支する支持孔と、を有するハウジングと、
  前記アームリンクと前記収容部の内壁との間に設けられ、前記制御軸の軸方向の少なくとも一方への移動を規制する第1規制部と、
  を有する。
  より好ましい態様では、上記態様において、前記第1規制部は、前記アームリンクに設けられており、前記第1規制部は、前記軸方向の少なくとも一方で前記収容部の内壁と当接する。
  別の好ましい態様では、上記態様のいずれかにおいて、前記アームリンクは、前記固定用孔が設けられた基部と、前記基部から前記制御軸の回転軸に対して径方向の外方へ突出し、前記内燃機関用可変圧縮比機構に連係する連係部とを有し、
  前記第1規制部は、少なくとも一部が前記基部に設けられている。
  さらに別の好ましい態様では、上記態様のいずれかにおいて、前記連係部は前記基部から二股状に分かれ、前記内燃機関用可変圧縮比機構に連係するアームリンクが、前記二股状に分かれた前記連係部の間に挟まれており、
  前記第1規制部は、前記軸方向において二股状の前記連係部と重なっている。
  さらに別の好ましい態様では、上記態様のいずれかにおいて、前記連係部と前記内壁との間の前記軸方向の第1隙間は、前記第1規制部と前記内壁との間の前記軸方向の第2隙間よりも大きい。
  さらに別の好ましい態様では、上記態様のいずれかにおいて、前記第1規制部は、前記アームリンクから前記軸方向に円環状に突出している。
  さらに別の好ましい態様では、上記態様のいずれかにおいて、前記第1規制部は、前記アームリンクから前記軸方向に突出していると共に、前記軸方向の径方向に延びる溝が形成されている。
  さらに別の好ましい態様では、上記態様のいずれかにおいて、前記第1規制部は、前記アームリンクの側面全体に形成されている。
  さらに別の好ましい態様では、上記態様のいずれかにおいて、
  前記第1規制部は、前記軸方向において前記支持孔側の端部に形成され、
  前記ハウジング及び前記制御軸は、前記軸方向において前記支持孔を挟んで前記第1規制部と反対側において前記制御軸の前記軸方向の他方への移動を規制する第2規制部を有する。
  さらに別の好ましい態様では、上記態様のいずれかにおいて、前記第2規制部は、前記ハウジングに設けられ、前記軸方向において前記支持孔を挟んで前記アームリンクと反対側に形成されたハウジング当接面と、前記制御軸に設けられ、前記ハウジング当接面に当接可能な第2当接部とを備えており、
  前記第2当接部の当接面は、前記支持孔よりも前記軸方向の径方向において外方に形成されている。
  さらに別の好ましい態様では、上記態様のいずれかにおいて、前記収容部は、前記ハウジングの前記制御軸の径方向に開口する開口部を有し、
  前記第1規制部は、前記アームリンクの可動範囲において全て前記収容部の内部に位置する。
  さらに別の好ましい態様では、上記態様のいずれかにおいて、前記アームリンクの前記軸方向の幅の中心が、前記収容部の前記軸方向の幅の中心よりも前記第1規制部側に寄っている。
  さらに別の好ましい態様では、上記態様のいずれかにおいて、前記制御軸は、前記アームリンクの前記固定用孔に挿通する部分である固定部と、前記支持孔に支持される部分である大径部と、を有し、
  前記第1規制部は、前記固定部と前記大径部の間の段差に前記軸方向から当接している。
  さらに別の好ましい態様では、上記態様のいずれかにおいて、前記第1規制部は、前記アームリンクと前記内壁との間に配置された板状部材である。
  さらに別の好ましい態様では、上記態様のいずれかにおいて、前記アームリンクと前記収容部の内壁との間に設けられ、前記制御軸の軸方向の他方への移動を規制する第3規制部を更に有する。
  内燃機関用可変圧縮比機構のアクチュエータは、他の観点から、その一つの態様において、内燃機関用可変圧縮比機構のアクチュエータであって、
  駆動源により回転する制御軸と、
  前記制御軸に設けられ、前記内燃機関用可変圧縮比機構から前記制御軸の回転軸に対して径方向の入力があるアームリンクと、
  前記アームリンクが収容される収容部を有するハウジングと、
  前記収容部に設けられ、前記制御軸の回転軸の方向の少なくとも一方への移動を規制する第1規制部と、
  を有する。
 尚、本発明は上記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 本願は、2018年10月12日付出願の日本国特許出願第2018-193140号に基づく優先権を主張する。2018年10月12日付出願の日本国特許出願第2018-193140号の明細書、特許請求の範囲、図面、及び要約書を含む全開示内容は、参照により本願に全体として組み込まれる。
11  第2制御軸12  アクチュエータリンク13  アームリンク20  ハウジング21  波動歯車型減速機22  電動モータ29  収容室29a1  開口部30  支持孔30b  減速機側貫通孔30b1  減速機側開口端面31  センサ収容孔64b  軸方向油路131  円環状部131a  圧入用孔132  アーム部132a  連結用孔133  第1規制部133a  第1規制面134  圧入用孔

Claims (16)

  1.   内燃機関用可変圧縮比機構のアクチュエータであって、
      電動モータと、
      前記電動モータにより回転する制御軸と、
      固定用孔を有し、前記制御軸が前記固定用孔に挿通して固定され、前記制御軸の駆動力を前記可変圧縮比機構に伝達するアームリンクと、
      前記アームリンクが前記制御軸に固定されている部分が収容される収容部と、前記収容部に開口し、前記制御軸を軸支する支持孔と、を有するハウジングと、
      前記アームリンクと前記収容部の内壁との間に設けられ、前記制御軸の軸方向の少なくとも一方への移動を規制する第1規制部と、
      を有することを特徴とする内燃機関用可変圧縮比機構のアクチュエータ。
  2.   請求項1に記載の内燃機関用可変圧縮比機構のアクチュエータであって、
      前記第1規制部は、前記アームリンクに設けられており、
     前記第1規制部は、前記軸方向の少なくとも一方で前記収容部の内壁と当接することを特徴とする内燃機関用可変圧縮比機構のアクチュエータ。
  3.   請求項2に記載の内燃機関用可変圧縮比機構のアクチュエータであって、
      前記アームリンクは、前記固定用孔が設けられた基部と、前記基部から前記制御軸の回転軸に対して径方向の外方へ突出し、前記内燃機関用可変圧縮比機構に連係する連係部とを有し、
      前記第1規制部は、少なくとも一部が前記基部に設けられていることを特徴とする内燃機関用可変圧縮比機構のアクチュエータ。
  4.   請求項3に記載の内燃機関用可変圧縮比機構のアクチュエータであって、
      前記連係部は、前記基部から二股状に分かれ、
     前記内燃機関用可変圧縮比機構に連係するアームリンクが、前記二股状に分かれた前記連係部の間に挟まれており、
      前記第1規制部は、前記軸方向において二股状の前記連係部と重なっていることを特徴とする内燃機関用可変圧縮比機構のアクチュエータ。
  5.   請求項3に記載の内燃機関用可変圧縮比機構のアクチュエータであって、
      前記連係部と前記内壁との間の前記軸方向の第1隙間は、前記第1規制部と前記内壁との間の前記軸方向の第2隙間よりも大きいことを特徴とする内燃機関用可変圧縮比機構のアクチュエータ。
  6.   請求項3に記載の内燃機関用可変圧縮比機構のアクチュエータであって、
      前記第1規制部は、前記アームリンクから前記軸方向に円環状に突出していることを特徴とする内燃機関用可変圧縮比機構のアクチュエータ。
  7.   請求項3に記載の内燃機関用可変圧縮比機構のアクチュエータであって、
      前記第1規制部は、前記アームリンクから前記軸方向に突出していると共に、前記軸方向の径方向に延びる溝が形成されていることを特徴とする内燃機関用可変圧縮比機構のアクチュエータ。
  8.   請求項3に記載の内燃機関用可変圧縮比機構のアクチュエータであって、
      前記第1規制部は、前記アームリンクの側面全体に形成されていることを特徴とする内燃機関用可変圧縮比機構のアクチュエータ。
  9.   請求項1に記載の内燃機関用可変圧縮比機構のアクチュエータであって、
      前記第1規制部は、前記軸方向において前記支持孔側の端部に形成され、
      前記ハウジング及び前記制御軸は、前記軸方向において前記支持孔を挟んで前記第1規制部と反対側において前記制御軸の前記軸方向の他方への移動を規制する第2規制部を有することを特徴とする内燃機関用可変圧縮比機構のアクチュエータ。
  10.   請求項9に記載の内燃機関用可変圧縮比機構のアクチュエータであって、
      前記第2規制部は、
     前記ハウジングに設けられ、前記軸方向において前記支持孔を挟んで前記アームリンクと反対側に形成されたハウジング当接面と、
     前記制御軸に設けられ、前記ハウジング当接面に当接可能な第2当接部と、を備えており、
      前記第2当接部の当接面は、前記支持孔よりも前記軸方向の径方向において外方に形成されていることを特徴とする内燃機関用可変圧縮比機構のアクチュエータ。
  11.   請求項1に記載の内燃機関用可変圧縮比機構のアクチュエータであって、
      前記収容部は、前記ハウジングの前記制御軸の径方向に開口する開口部を有し、
      前記第1規制部は、前記アームリンクの可動範囲において全て前記収容部の内部に位置することを特徴とする内燃機関用可変圧縮比機構のアクチュエータ。
  12.   請求項1に記載の内燃機関用可変圧縮比機構のアクチュエータであって、
      前記アームリンクの前記軸方向の幅の中心が、前記収容部の前記軸方向の幅の中心よりも前記第1規制部側に寄っていることを特徴とする内燃機関用可変圧縮比機構のアクチュエータ。
  13.   請求項1に記載の内燃機関用可変圧縮比機構のアクチュエータであって、
      前記制御軸は、前記アームリンクの前記固定用孔に挿通する部分である固定部と、前記支持孔に支持される部分である大径部と、を有し、
      前記第1規制部は、前記固定部と前記大径部の間の段差に前記軸方向から当接していることを特徴とする内燃機関用可変圧縮比機構のアクチュエータ。
  14.   請求項1に記載の内燃機関用可変圧縮比機構のアクチュエータであって、
      前記第1規制部は、前記アームリンクと前記内壁との間に配置された板状部材であることを特徴とする内燃機関用可変圧縮比機構のアクチュエータ。
  15.   請求項1に記載の内燃機関用可変圧縮比機構のアクチュエータであって、
      前記アームリンクと前記収容部の内壁との間に設けられ、前記制御軸の軸方向の他方への移動を規制する第3規制部を更に有することを特徴とする内燃機関用可変圧縮比機構のアクチュエータ。
  16.   内燃機関用可変圧縮比機構のアクチュエータであって、
      駆動源により回転する制御軸と、
      前記制御軸に設けられ、前記内燃機関用可変圧縮比機構から前記制御軸の回転軸に対して径方向の入力があるアームリンクと、
      前記アームリンクが収容される収容部を有するハウジングと、
      前記収容部に設けられ、前記制御軸の回転軸の方向の少なくとも一方への移動を規制する第1規制部と、
      を有することを特徴とする内燃機関用可変圧縮比機構のアクチュエータ。
PCT/JP2019/039452 2018-10-12 2019-10-07 内燃機関の可変圧縮比機構のアクチュエータ WO2020075665A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018193140A JP7190319B2 (ja) 2018-10-12 2018-10-12 内燃機関の可変圧縮比機構のアクチュエータ
JP2018-193140 2018-10-12

Publications (1)

Publication Number Publication Date
WO2020075665A1 true WO2020075665A1 (ja) 2020-04-16

Family

ID=70164901

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/039452 WO2020075665A1 (ja) 2018-10-12 2019-10-07 内燃機関の可変圧縮比機構のアクチュエータ

Country Status (2)

Country Link
JP (1) JP7190319B2 (ja)
WO (1) WO2020075665A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113669169A (zh) * 2020-05-15 2021-11-19 通用汽车环球科技运作有限责任公司 包括用于使用致动器来改变压缩比的力分流器的发动机组件

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7284694B2 (ja) * 2019-12-05 2023-05-31 日立Astemo株式会社 可変圧縮比機構のアクチュエータ

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060048728A1 (en) * 2003-01-02 2006-03-09 Joseph Scalzo Mechanism for internal combustion piston engines
WO2013080673A1 (ja) * 2011-11-29 2013-06-06 日産自動車株式会社 可変圧縮比内燃機関の潤滑構造
JP2013241846A (ja) * 2012-05-18 2013-12-05 Nissan Motor Co Ltd 可変圧縮比内燃機関
JP2015145647A (ja) * 2014-02-04 2015-08-13 日立オートモティブシステムズ株式会社 可変圧縮比機構のアクチュエータとリンク機構のアクチュエータ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060048728A1 (en) * 2003-01-02 2006-03-09 Joseph Scalzo Mechanism for internal combustion piston engines
WO2013080673A1 (ja) * 2011-11-29 2013-06-06 日産自動車株式会社 可変圧縮比内燃機関の潤滑構造
JP2013241846A (ja) * 2012-05-18 2013-12-05 Nissan Motor Co Ltd 可変圧縮比内燃機関
JP2015145647A (ja) * 2014-02-04 2015-08-13 日立オートモティブシステムズ株式会社 可変圧縮比機構のアクチュエータとリンク機構のアクチュエータ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113669169A (zh) * 2020-05-15 2021-11-19 通用汽车环球科技运作有限责任公司 包括用于使用致动器来改变压缩比的力分流器的发动机组件
CN113669169B (zh) * 2020-05-15 2023-10-31 通用汽车环球科技运作有限责任公司 包括用于使用致动器改变压缩比的力分流器的发动机组件

Also Published As

Publication number Publication date
JP7190319B2 (ja) 2022-12-15
JP2020060155A (ja) 2020-04-16

Similar Documents

Publication Publication Date Title
JP6208035B2 (ja) 内燃機関用リンク機構のアクチュエータと可変圧縮比機構のアクチュエータ
US10883421B2 (en) Actuator of variable compression ratio mechanism and actuator of link mechanism
US10156186B2 (en) Actuator for link mechanism for internal combustion engine, and method for assembling said actuator
WO2018025765A1 (ja) 内燃機関用リンク機構のアクチュエータ
JP6589686B2 (ja) 内燃機関用リンク機構のアクチュエータ
WO2020075665A1 (ja) 内燃機関の可変圧縮比機構のアクチュエータ
JP6509666B2 (ja) 内燃機関の可変圧縮比装置
WO2018168619A1 (ja) 内燃機関の可変圧縮比機構のアクチュエータおよび内燃機関の可変圧縮比装置
JP6589746B2 (ja) 内燃機関用リンク機構のアクチュエータ
JP7284694B2 (ja) 可変圧縮比機構のアクチュエータ
JP6488519B2 (ja) 内燃機関用リンク機構のアクチュエータ
JP6408095B2 (ja) 可変圧縮比機構のアクチュエータ
JP2020101113A (ja) 内燃機関用可変圧縮比機構のアクチュエータ
JP7093231B2 (ja) 内燃機関の可変圧縮比機構のアクチュエータ
WO2019181164A1 (ja) 内燃機関の可変圧縮比機構のアクチュエータおよび波動歯車減速機
JP2019052585A (ja) 内燃機関の可変圧縮比機構のアクチュエータ
JP7202882B2 (ja) 内燃機関用可変圧縮比機構のアクチュエータ
JP6794305B2 (ja) 内燃機関用リンク機構のアクチュエータ及び内燃機関用可変圧縮比機構
JP2018013081A (ja) 内燃機関用リンク機構のアクチュエータ
WO2020144789A1 (ja) 内燃機関
JP2019049231A (ja) 内燃機関のリンク機構のアクチュエータ
JP2019100251A (ja) 内燃機関の可変圧縮比機構のアクチュエータ
JP2019152111A (ja) 内燃機関の可変圧縮比機構のアクチュエータおよび内燃機関用機器に用いられるアクチュエータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19871882

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19871882

Country of ref document: EP

Kind code of ref document: A1