WO2020075656A1 - 眼科装置、および眼科装置制御プログラム - Google Patents

眼科装置、および眼科装置制御プログラム Download PDF

Info

Publication number
WO2020075656A1
WO2020075656A1 PCT/JP2019/039384 JP2019039384W WO2020075656A1 WO 2020075656 A1 WO2020075656 A1 WO 2020075656A1 JP 2019039384 W JP2019039384 W JP 2019039384W WO 2020075656 A1 WO2020075656 A1 WO 2020075656A1
Authority
WO
WIPO (PCT)
Prior art keywords
eye
inspected
detection data
control unit
face image
Prior art date
Application number
PCT/JP2019/039384
Other languages
English (en)
French (fr)
Inventor
橋本 真一
徹 有川
Original Assignee
株式会社ニデック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニデック filed Critical 株式会社ニデック
Priority to JP2020551128A priority Critical patent/JP7491218B2/ja
Publication of WO2020075656A1 publication Critical patent/WO2020075656A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions

Definitions

  • the present disclosure relates to an ophthalmologic apparatus for inspecting an eye to be inspected and an ophthalmologic apparatus control program.
  • an eye refractive power measuring device for example, an eye refractive power measuring device, a corneal curvature measuring device, an intraocular pressure measuring device, a fundus camera, OCT, SLO, etc.
  • a fundus camera for example, it is common to align the optometry portion with respect to the eye to be examined at a predetermined position by manual alignment by operation of a joystick or the like and automatic alignment by bright spot detection of an anterior segment image.
  • Patent Document 2 proposes a device that aligns the eye examination unit with respect to the eye to be examined based on an image obtained by photographing the face of the subject.
  • the position of the eye to be inspected may be erroneously detected, and the alignment may not be properly performed.
  • the present disclosure has a technical problem to provide an ophthalmologic apparatus and an ophthalmologic apparatus control program capable of performing suitable alignment.
  • the present disclosure is characterized by having the following configurations.
  • An ophthalmologic apparatus for inspecting an eye to be inspected which includes eye examining means for inspecting the eye to be inspected, adjusting means for adjusting a three-dimensional relative position between the eye to be inspected and the eye inspecting means, and A face image capturing unit for capturing a face image including at least one of the eyes to be inspected; and a control unit for controlling the adjusting unit, wherein the control unit opens the eyelids of the eye to be inspected based on the face image. Adjusting the three-dimensional relative position between the optometry means and the eye to be examined based on the face image when it is determined whether or not the eyelids of the eye to be inspected are stable It is characterized by doing.
  • An ophthalmologic apparatus for inspecting an eye to be inspected which includes eye examining means for inspecting the eye to be inspected, adjusting means for adjusting a three-dimensional relative position between the eye to be inspected and the eye inspecting means, and A face image capturing unit that captures a face image including at least one of the eyes to be inspected; and a control unit that controls the adjusting unit, wherein the control unit is based on the plurality of face images captured at different timings. The three-dimensional relative position between the eye to be inspected and the eye examining means is adjusted.
  • An ophthalmologic apparatus control program executed in an ophthalmologic apparatus for inspecting an eye to be inspected which is executed by a processor of the ophthalmic apparatus to capture a face image including at least one of the left and right eye to be inspected.
  • Face photographing step determine whether the eyelids of the eye to be inspected is stable based on the face image, based on the face image when it is determined that the eyelids of the eye to be inspected is stable
  • the ophthalmologic apparatus of this embodiment inspects an eye to be inspected.
  • the ophthalmologic apparatus includes, for example, an optometry unit (for example, the optometry unit 2), an adjusting unit (for example, the driving unit 4, the chin rest driving unit 12, and the like), a face photographing unit (for example, the face photographing unit 90), A control unit (for example, control unit 70) is provided.
  • the optometry unit examines the eye to be inspected.
  • the adjustment unit adjusts the three-dimensional relative position between the eye to be inspected and the eye examination unit.
  • the face photographing unit photographs a face image including at least one of the left and right eyes.
  • the control unit controls the adjustment unit.
  • the control unit determines whether the eyelids of the eye to be inspected are stable based on the face image, based on the face image when it is determined that the eyelids of the eye to be inspected are stable, the eye examination.
  • the three-dimensional relative position between the part and the eye to be inspected is adjusted. As a result, it is possible to perform accurate alignment based on the face image when the subject's eye is open.
  • the control unit may determine whether the eyelids of the eye to be inspected are stable based on whether or not the detection data of the eye to be inspected detected based on the face image is stable. In this case, the optometry unit and the subject's eye may be aligned based on the detection data when it is determined to be stable.
  • control unit may determine whether at least a part of the detection data among the plurality of detection data detected based on the plurality of face images captured at different timings is stable.
  • the control unit may select at least a part of the detection data from the plurality of detection data. Further, the control unit may switch the selection process when selecting at least a part of the detection data among the plurality of detection data. Thereby, it is possible to perform alignment between the optometry part and the subject's eye using appropriate detection data.
  • the detection data may include the feature amount of the subject's eye calculated based on the face image.
  • the control unit may switch the detection data selection processing based on the feature amount.
  • the detection data may include the coordinates of the eye to be inspected and the like.
  • the control unit may switch the detection data selection process based on the result of comparison between the feature amount of the eye to be inspected calculated based on the face image and a preset feature amount threshold value. This makes it possible to select appropriate detection data according to the eyelid open state of the subject.
  • control unit may switch between a first selection process of selecting detection data based on the time series newness and a second selection process of selecting detection data based on the size of the feature amount. This makes it possible to select appropriate detection data according to the eyelid open state of the subject.
  • the control unit performs the first selection process when the new K time-series (K ⁇ 1) feature amounts are equal to or more than the threshold value, and at least one of the new K time-series feature amounts is less than the threshold value. And the number of accumulated detection data is J (J ⁇ K) or more, the second selection process may be performed.
  • the control unit performs the first selection process or the second selection process when the new K time-series (K ⁇ 1) feature amounts are equal to or more than the threshold, and the new K time-series (K ⁇ 1) is selected. ) Is less than the threshold value and the accumulated detection data is less than J pieces (J ⁇ K), selection processing is not performed and new time series K pieces (K ⁇ 1)
  • the first selection process or the second selection process may be performed when the amount is less than the threshold and the accumulated detection data is J or more (J ⁇ K).
  • control unit may determine that the detection data is stable when the coordinates of the plurality of detection data are within a predetermined range of each other.
  • the control unit may weight the feature amount according to the position on the face image when detecting the detection data from the face image. This can reduce the possibility of detecting eyebrows, for example.
  • control unit may detect, from the detection data having a large feature amount, one having a low luminance value. As a result, for example, the possibility of detecting something other than the pupil can be reduced.
  • the feature amount may be the degree of circular separation of the pupil of the subject's eye, which is calculated by image processing on the face image. Further, the feature amount may be the circularity of the pupil or the center candidate point of the circle obtained by the Hough transform.
  • control unit may adjust the three-dimensional relative position between the eye to be inspected and the eye examination unit based on a plurality of face images taken at different timings. For example, the control unit may adjust the three-dimensional device positions of the eye to be inspected and the optometry unit based on a plurality of face images captured by the face imaging unit from the same direction. Further, the control unit may determine whether or not the face image is suitable for detecting the relative position.
  • the control unit may execute the ophthalmologic apparatus control program stored in the storage unit (for example, the storage unit 74) or the like.
  • the ophthalmologic apparatus control program includes, for example, a face photographing step and a control step.
  • the face photographing step is, for example, a step of photographing a face image including at least one of the left and right eyes.
  • the control step determines whether or not the eyelids of the eye to be inspected are stable based on the face image, based on the face image when it is determined that the eyelids of the eye to be inspected are stable, and This is a step of adjusting a three-dimensional relative position with respect to the eye to be inspected.
  • the ophthalmologic apparatus of the present embodiment inspects the eye to be inspected, for example.
  • an eye refractive power measuring device will be described as an example of an ophthalmologic device, but a corneal curvature measuring device, a corneal shape measuring device, an intraocular pressure measuring device, an axial length measuring device, a fundus camera, OCT (optical coherence). It is also applicable to other ophthalmologic devices such as tomography) and SLO (Scanning Laser Ophthalmoscope).
  • the ophthalmologic apparatus of the present embodiment may be an apparatus that performs an examination for each eye, or an apparatus that performs an examination for both eyes simultaneously (binocular vision).
  • the ophthalmologic apparatus 1 of the present embodiment mainly includes an optometry unit 2, a face photographing unit 90, and a drive unit 4.
  • the optometry unit 2 inspects the eye to be inspected.
  • the optometry unit 2 may include, for example, an optical system that measures the eye refractive power, corneal curvature, intraocular pressure, etc. of the subject's eye.
  • the optometry unit 2 may include an optical system or the like for photographing the anterior segment of the subject's eye, the fundus and the like.
  • the optometry unit 2 for measuring the refractive power will be described as an example.
  • the face photographing section 90 photographs, for example, the face of the subject's eye.
  • the face photographing unit 90 photographs, for example, a face including at least one of the left and right eyes to be inspected.
  • the drive unit 4 moves, for example, the optometry unit 2 and the face photographing unit 90 with respect to the base 5 in the up-down, left-right, front-back direction (three-dimensional direction).
  • the ophthalmologic apparatus 1 of the present embodiment may include, for example, the housing 6, the display unit 7, the operation unit 8, the face support unit 9, and the like.
  • the housing 6 houses the optometry unit 2, the face photographing unit 90, the driving unit 4, and the like.
  • the display unit 7 displays, for example, an observation image of the subject's eye and measurement results.
  • the display unit 7 may be provided integrally with the device 1 or may be provided separately from the device, for example.
  • the ophthalmologic apparatus 1 may include the operation unit 8.
  • the operation unit 8 is used for various settings of the device 1 and operations at the start of measurement. Various operation instructions from the examiner are input to the operation unit 8.
  • the operation unit 8 may be various human interfaces such as a touch panel, a joystick, a mouse, a keyboard, a trackball, and buttons.
  • the face support 9 may include, for example, a forehead rest 10 and a chin rest 11.
  • the chin rest 11 may be moved in the vertical direction by driving the chin rest drive unit 12.
  • the face support 9 may include a chin rest sensor 113 that detects whether or not the chin rests on the chin rest 11.
  • the chin rest sensor 13 detects, for example, that the chin rest 11 is pushed downward by the subject's chin.
  • the chin rest sensor 13 may be, for example, a photo sensor, a magnetic sensor, a pressure sensor, a contact sensor, or the like.
  • the present device 1 includes a control unit 70.
  • the control unit 70 controls various controls of the device 1.
  • the control unit 70 includes, for example, a general CPU (Central Processing Unit) 71, a ROM 72, a RAM 73, and the like.
  • the ROM 72 stores an ophthalmologic apparatus control program for controlling the ophthalmologic apparatus, initial values, and the like.
  • the RAM temporarily stores various information.
  • the control unit 70 includes an optometry unit 2, a face photographing unit 90, a drive unit 4, a display unit 7, an operation unit 8, a chin rest drive unit 12, a chin rest sensor 13, a storage unit (for example, a non-volatile memory) 74, and the like. It is connected.
  • the storage unit 74 is, for example, a non-transitory storage medium that can retain stored contents even when power supply is cut off.
  • a hard disk drive, a removable USB flash memory, or the like can be used as the storage unit 74.
  • the optometry unit 2 measures, inspects, photographs, etc. the eye to be inspected.
  • the optometry unit 2 may include, for example, a measurement optical system that measures the refractive power of the subject's eye.
  • the optometry unit 2 may include a measurement optical system 20, a fixation target presenting optical system 40, an index projecting optical system 50, and an anterior eye photographing optical system 60. .
  • the measurement optical system 20 may include a projection optical system (light projecting optical system) 20a and a light receiving optical system 20b.
  • the projection optical system 20a projects the light flux onto the fundus Ef through the pupil of the subject's eye.
  • the light receiving optical system 20b takes out a reflected light flux (fundus reflected light) from the fundus Ef in a ring shape through the peripheral part of the pupil and takes a ring-shaped fundus reflection image mainly used for measuring the refractive power. Good.
  • the projection optical system 20a has a measurement light source 21, a relay lens 22, a hall mirror 23, and an objective lens 24 on the optical axis L1.
  • the light source 21 projects a spot-shaped light source image from the relay lens 22 to the fundus Ef via the objective lens 24 and the center of the pupil.
  • the light source 21 is moved in the optical axis L1 direction by the moving mechanism 33.
  • the hole mirror 23 is provided with an opening through which the light flux from the light source 21 through the relay lens 22 passes.
  • the hole mirror 23 is arranged at a position optically conjugate with the pupil of the eye to be inspected.
  • the light receiving optical system 20b shares the hole mirror 23 and the objective lens 24 with the projection optical system 20a.
  • the light receiving optical system 20b has a relay lens 26 and a total reflection mirror 27.
  • the light receiving optical system 20b has a light receiving diaphragm 28, a collimator lens 29, a ring lens 30, and an image pickup device 32 on the optical axis L2 in the reflection direction of the hole mirror 23.
  • a two-dimensional light receiving element such as an area CCD can be used as the image pickup element 32.
  • the light receiving diaphragm 28, the collimator lens 29, the ring lens 30, and the imaging element 32 are moved by the moving mechanism 33 in the optical axis L2 direction integrally with the measurement light source 21 of the projection optical system 20a.
  • the light receiving diaphragm 28 and the image pickup device 32 are also arranged at positions optically conjugate with the fundus Ef.
  • the ring lens 30 is an optical element for shaping the fundus reflected light guided from the objective lens 24 through the collimator lens 29 into a ring shape.
  • the ring lens 30 has a ring-shaped lens portion and a light shielding portion. Further, when the light receiving diaphragm 28 and the image sensor 32 are arranged at a position optically conjugate with the fundus oculi Ef, the ring lens 30 is arranged at a position optically conjugate with the pupil of the eye to be examined.
  • the imaging element 32 receives the ring-shaped fundus reflected light (hereinafter, referred to as a ring image) via the ring lens 30.
  • the image sensor 32 outputs the image information of the received ring image to the control unit 70. As a result, the control unit 70 displays the ring image on the display unit 7 and calculates the refractive power based on the ring image.
  • a dichroic mirror 39 is arranged between the objective lens 24 and the eye to be inspected.
  • the dichroic mirror 39 transmits the light emitted from the light source 21 and the fundus reflection light corresponding to the light from the light source 21. Further, the dichroic mirror 39 guides the light flux from the fixation target presenting optical system 40, which will be described later, to the subject's eye. Further, the dichroic mirror 39 reflects anterior ocular segment reflected light of light from an index projection optical system 50 described later and guides the anterior ocular segment reflected light to the anterior ocular photographing optical system 60.
  • an index projection optical system 50 may be arranged in front of the subject's eye.
  • the index projection optical system 50 mainly projects an index used for alignment (alignment) of the optical system with respect to the subject's eye onto the anterior segment.
  • the index projection optical system 50 may also be used as anterior segment illumination for illuminating the anterior segment of the eye E.
  • the index projection optical system 50 projects an alignment index on the eye to be inspected.
  • the index projection optical system 50 may include a first index projection optical system 51 and a second index projection optical system 52.
  • the first index projection optical system 51 projects the diffused light on the cornea of the eye E to be inspected and projects an index at a finite distance.
  • the first index projection optical system 51 is also used as anterior segment illumination for illuminating the anterior segment of the subject's eye E.
  • the second index projection optical system 52 projects parallel light on the cornea of the eye to be inspected and projects an index at infinity.
  • the control unit 70 acquires the position information of the eye to be inspected by detecting the position of the bright point projected on the eye by the first index projection optical system 51 and the second index projection optical system from the anterior segment image.
  • the optotype presenting optical system 40 may be an optotype presenting optical system for fixing the eye to be examined.
  • the optotype presenting optical system 40 includes at least a light source 41 and a fixation target 42, for example.
  • the light source 41, the fixation target 42, and the relay lens 43 are provided on the optical axis L4 in the reflection direction of the reflection mirror 46.
  • the fixation target 42 is used to fixate the eye to be inspected when the objective refractive power is measured. For example, when the fixation target 42 is illuminated by the light source 41, the fixation target 42 is presented to the subject's eye.
  • the light source 41 and the fixation target 42 are integrally moved in the direction of the optical axis L4 by the drive mechanism 48.
  • the presentation position (presentation distance) of the fixation target may be changed by moving the light source 41 and the fixation target 42. This makes it possible to measure the refractive power by applying a cloud to the eye to be inspected.
  • the anterior eye photographing optical system 60 may be provided to capture an anterior segment image of the subject's eye.
  • the anterior eye photographing optical system 60 includes at least an imaging lens 61 and an imaging element 62.
  • the imaging lens 61 and the imaging element 62 are provided on the optical axis L3 in the reflection direction of the half mirror 63.
  • the image sensor 62 is arranged at a position optically conjugate with the anterior segment of the subject's eye.
  • the image sensor 62 images the anterior segment illuminated by the index projection optical system 51.
  • the output from the image sensor 62 is input to the control unit 70.
  • the anterior segment image 95 of the subject's eye imaged by the image sensor 62 is displayed on the display unit 7 (see FIG. 2).
  • the image pickup element 62 takes an image of the alignment index (in this example, the index at finite distance and the index at infinity) formed on the cornea of the subject's eye by the index projection optical system 50.
  • the control unit 70 can detect the alignment index based on the imaging result of the imaging element 62.
  • the control unit 70 can determine the suitability of the alignment state based on the position where the alignment index is detected.
  • the control unit 70 may detect the working distance based on the positional relationship between the finite distance index and the infinity index.
  • the optical axis L3 of the anterior eye photographing optical system 60 is coaxial with the measurement optical axis L1 by the half mirror 63 and the dichroic mirror 39.
  • the face photographing section 90 may include, for example, an optical system for photographing a face including at least one of the left and right eye to be inspected.
  • the face photographing section 90 of the present embodiment mainly includes, for example, an image pickup element 91 and an image pickup lens 92.
  • the face photographing unit 90 is provided, for example, at a position where both eyes of the eye to be examined can be photographed when the optometry unit 2 is at the initial position.
  • the initial position of the optometry unit 2 is set to a position displaced to the right side with respect to the examination optical axis of the optometry unit 2 so that the right eye can be easily examined. Therefore, the face photographing unit 90 is provided at a position where both eyes of the eye to be examined can be photographed in a state where the optometry unit 2 is at the initial position displaced to the right.
  • the face photographing unit 90 is arranged in the machine center with the optometry unit 2 in the initial position.
  • the face photographing unit 90 is laterally displaced from the machine center of the apparatus body by the one-eye interpupillary distance. It may be arranged in a position.
  • the average value of the distance between the pupils of one eye is about 32 mm.
  • the face photographing unit 90 of this embodiment is moved together with the optometry unit 2 by the driving unit 4.
  • the face photographing unit 90 may be fixed to the base 5 and may not move.
  • the face illumination optical system 80 illuminates the face of the subject's eye.
  • the face illumination optical system 80 may be provided to illuminate the face of the subject including both eyes of the subject.
  • the face illumination optical system 80 includes, for example, an illumination light source 81.
  • the illumination light source 81 emits infrared light.
  • the face illumination optical system 80 may be capable of uniformly illuminating the face of the eye to be inspected around the optical axis of the face photographing unit 90.
  • the illumination light source 81 is provided at the left and right positions of the optometry window.
  • the face illumination optical system 80 may be provided at symmetrical positions with respect to the face photographing unit 90. For example, it may be provided at symmetrical positions with respect to the face photographing unit 90, or may be provided at vertically symmetrical positions.
  • the face illumination optical system 80 uses a light source having a lower directivity than the index light source for alignment.
  • Control method> The control operation of the device 1 will be described below with reference to FIG.
  • the apparatus 1 automatically performs alignment of the optometry unit 2 and the eye to be inspected, for example, in order to inspect the eye.
  • Step S1 subject detection
  • the control unit 70 detects the presence or absence of the subject. For example, the control unit 70 determines the presence or absence of a person based on the output from the chin rest sensor 13. The control unit 70 determines that there is a subject when there is an output from the chin rest sensor 13, and determines that there is no subject when there is no output from the chin rest sensor 13. When determining that there is a subject, the control unit 70 proceeds to step S3.
  • the control unit 70 may detect the presence / absence of the subject based on the output from the face imaging unit instead of the output from the chin rest sensor 13. For example, the presence or absence of the subject may be detected based on the brightness value of the image captured by the face capturing unit 90, the change in the brightness, and the like.
  • Step S2 Face shooting
  • the control unit 70 captures the face of the subject supported by the face support unit 9 by the face capturing unit 90 and acquires a face image 96 as shown in FIG.
  • Step S3 Eye detection
  • the control unit 70 determines the most recognizable area A1 by performing image processing on the face image 96. For example, the control unit 70 determines the region A1 based on the characteristics of the face such as the eye to be inspected or the eyebrows.
  • the control unit 70 searches for the center of the eye (for example, the pupil) in this area A1.
  • the control unit 70 applies a circular separation degree filter to the area A1 to calculate the circular separation degree of each pixel.
  • the circular separability filter for example, 5 ⁇ 5 rectangles as shown in FIG. 6 are used.
  • the control unit 70 obtains the degree of separation of the average brightness and the like of the two areas of the 3 ⁇ 3 area A2 at the center of FIG. 6 and the area A3 around the area A2 as the degree of circular separation.
  • the circular separation degree ⁇ is calculated using the following equations (1) to (3).
  • N is the total number of rectangles in the two areas
  • n 1 and n 2 are the number of rectangles in the areas A 2 and A 3, respectively
  • ⁇ T is the total variance value of the entire areas
  • P i bar Indicates the average luminance value of the rectangle i
  • P 1 bar and P 2 bar indicate the average luminance value of the regions A2 and A3, respectively
  • P m bar indicates the average luminance value of the entire region.
  • control unit 70 leaves the point with the dark center as the candidate point of the pupil. For example, the control unit 70 sets the point where the central brightness is minimum as the candidate point of the pupil.
  • the circular separation may be higher in the eyebrows than in the pupils.
  • the control unit 70 determines that the point on the upper side of the area A1 having a high degree of circular separation is unlikely to be a pupil, and thus the circular degree of circular separation of the coordinates on the upper side of the area A1 becomes small as shown in FIG.
  • the circular separation degree may be weighted with a weighting coefficient. If the approximate vertical position of the pupil in the area A1 is known by the method for detecting the area A1 from the face image 96, the weighting coefficient below that position may be 1.0.
  • the control unit 70 uses the relationship that the pupil has lower luminance than the vicinity of the inner corner of the eye, and performs processing for leaving a point having a high degree of circular separation and a dark central region of 5 ⁇ 5 rectangles as a candidate point. To do. For example, the control unit 70 calculates the maximum circular separability among the candidate points of the pupil remaining by the processing up to this point, and selects the center among the candidate points having the circular separability of 60% or more of the maximum circular separability. Calculate the minimum value of brightness. Then, the control unit 70 leaves a point having a center luminance of 130% or less of the lowest luminance as a candidate point.
  • control unit 70 sets the pupil having the highest degree of circular separation among the candidate points narrowed down by the above processing as the pupil.
  • the control unit 70 stores the pupil detection data in the storage unit 74.
  • the detection data includes, for example, the coordinates of the pupil and the degree of circular separation.
  • Step S4 Data number determination (1)
  • the control unit 70 determines the number of data. For example, the control unit 70 determines whether the number of pieces of detection data stored in the storage unit 74 is K or more. In this embodiment, the control unit 70 determines whether there are two or more pieces of detection data. When there are two or more pieces of detection data, the process proceeds to step S5, and when there is less than two pieces of detection data, the process returns to step S2 to perform face shooting and eye detection.
  • Step S5 threshold determination
  • the control unit 70 determines whether or not the feature amount of the latest K pieces of detection data is equal to or more than a threshold value.
  • the control unit 70 uses, for example, the degree of circular separation as the feature amount.
  • the circular separability has a large feature amount in a circular portion such as a pupil and a small feature amount in a non-circular portion.
  • the circular resolution with the eyes closed is smaller than the circular resolution with the eyes open. Utilizing this feature, the control unit 70 determines whether or not the eyes are wide open in a stable manner or other than that by observing the time series change of the feature amount.
  • the control unit 70 determines whether or not the circular separability of the latest two pieces of detection data is equal to or more than a threshold value. If the degree of circular isolation is equal to or greater than the threshold value, the process proceeds to step S6, and if the degree of circular isolation is less than the threshold value, the process proceeds to step S7.
  • the process proceeds to step S6 when the eyes can be detected in the second frame.
  • Step S6 Data selection (1)
  • the control unit 70 selects the latest K pieces of detection data. In the case of the present embodiment, the control unit 70 selects the latest two pieces of detection data.
  • Step S7 Data number determination (2)
  • the control unit 70 determines the number of data. For example, the control unit 70 determines whether or not the detection data of the eye to be inspected is J or more. In this embodiment, the control unit 70 determines whether there are four or more pieces of detection data.
  • Step S8 Data selection (2)
  • the control unit 70 selects K pieces of data in descending order of feature amount from the accumulated data in which the detected data is accumulated. In the case of the present embodiment, the control unit 70 selects two pieces of data in descending order of feature amount.
  • step S5 the threshold value determination is performed after the fourth frame analysis, but the condition that the feature amount of the third frame does not exceed the threshold value and exceeds the threshold value for two consecutive frames (stable eyes wide open. Since it does not satisfy the condition (determined to be present), the process proceeds to step S7. After that, the process proceeds to step S8 and the accumulated data for the past four frames is traced back. For example, the control unit 70 sorts the accumulated data for the past four frames in descending order of the feature amount and selects the detection data having the high feature amount. As a result, it is possible to exclude the detection data of the blinking moment having a low feature amount. For example, as shown in FIG.
  • the coordinates D1 and D2 are below the eyes, and as shown in FIG. It is out of position. Therefore, as described above, by selecting the detection data having a high feature amount, the possibility that the detection data deviated from the position of the pupil is selected is reduced.
  • the feature amount of any frame may not exceed the threshold value (see FIG. 12). Even in such a case, a plausible analysis result can be obtained by selecting detection data of a highly reliable (large feature amount) frame among the detection data of the past J frames (for example, the past 4 frames). You can
  • control unit 70 does not have to select all the accumulated data when selecting K pieces of data in descending order of feature amount, and may select from J pieces of data.
  • Step S9 Judgment of stability condition
  • the control unit 70 determines whether the detection data of the eye to be inspected is stable. For example, the control unit 70 determines that the detection data is stable when the coordinates of the plurality of detection data are close (for example, within 32 pixels).
  • Step S10 Adoption of detection data
  • the control unit 70 adopts the detection data determined to be stable.
  • the control unit 70 may adopt the latest detected data in time series among the plurality of detected data, or may use the detected data having a large feature amount.
  • the control unit 70 may adopt the detection data having the maximum or minimum feature amount, or the detection data having the median feature amount, among the plurality of detection data. You may employ
  • the control unit 70 may change the detection data to be used according to the control flow.
  • the control unit 70 may adopt the latest detection data when passing through step S6, and may adopt the detection data having a large feature amount when passing through step S8.
  • Step S11 alignment
  • the control unit 70 performs the alignment based on the adopted detection data of the eye to be inspected.
  • the control unit 70 obtains the direction of the eye E to be inspected seen from the face photographing unit 90 based on the face image 96 photographed by the face photographing unit 90.
  • the direction of the eye to be inspected is, for example, a three-dimensional direction (for example, a space vector).
  • Equation 4 the relationship between y e ) and the actual coordinates (X e , Y e , Z e ) of the eye E is expressed as in Equation 4.
  • Equation 5 is a camera internal parameter
  • f x and f y are focal lengths
  • s is skew distortion
  • (c x , c y ) is an optical center on the image.
  • Equation 6 is a camera external parameter of the face photographing unit 90
  • Equation 7 is a rotation component of the face photographing unit 90.
  • T X , t Y , t Z is a translational component of the face photographing unit 90 (position of the face photographing unit 90).
  • h is an arbitrary scale.
  • Equation 8 is established from Equation 4.
  • h ' h / Z e .
  • h ′, m, and n, and m and n can be obtained by solving the simultaneous equations that expand the equation 9.
  • the ratio of X e ': Y e ': Z e 'is obtained, and as a result, the direction vector V of E'is obtained.
  • the control unit 70 obtains the direction of the eye to be inspected as seen from the face photographing unit 90.
  • the control unit 70 controls the drive unit 4 based on the detected direction of the eye to be inspected to move the eye examination unit 2. For example, as shown in FIG. 13, the control unit 70 moves the alignable area Aa by the anterior ocular segment imaging optical system 60 onto the straight line B connecting the face imaging unit 90 and the eye to be examined.
  • the alignable area Aa is, for example, an area where the three-dimensional position of the eye to be inspected can be detected from the anterior segment image 95 captured by the anterior segment imaging optical system 60 at a certain position.
  • the control unit 70 drives The alignable area Aa can be moved to the straight line B by the portion 4.
  • the control unit 70 moves the anterior ocular photographing optical system 60 from the position Q1 to the position Q2 so that the straight line B is included in the area of the alignable area Aa.
  • the position Q2 is, for example, a position on the straight line B where the position G1 of the measurable range Ea that can be measured by the optometry unit 2 on the side closest to the face photographing unit 90 matches the center of gravity of the alignable area Aa.
  • the measurable range Ea is determined by the working distance of the optometry unit 2 and the driving range of the driving unit 4, for example.
  • the control unit 70 moves the anterior ocular segment imaging optical system 60 to the position Q2 and positions the alignable area Aa on the straight line B. Then, the control unit 70 moves the anterior eye photographing optical system 60 further in the direction based on the straight line B while photographing the eye to be inspected by the anterior eye photographing optical system 60. For example, as shown in FIG. 14, the anterior ocular photographing optical system 60 is moved from the position Q2 to the position Q3.
  • the position Q3 is, for example, a position where the position G2 farthest from the origin O of the measurable range Ea coincides with the center of gravity of the alignable area Aa.
  • the control unit 70 moves the anterior ocular imaging optical system 60 in the direction along the straight line B so that the alignable area Aa includes at least a part of the straight line B, for example, while moving from the position Q2 to the position Q3.
  • the eye to be inspected can be positioned in the alignable area Aa.
  • the control unit 70 can align the eye to be inspected with the eye 2 from the anterior segment image 95 captured by the anterior segment imaging optical system 60.
  • the control unit 70 analyzes the anterior segment image 95 captured while moving in the direction to the subject's eye, and detects the bright spot T or the pupil U projected by the index projection optical system 50 on the subject's eye. For example, the control unit 70 detects the bright spot T based on the luminance information of the anterior segment image 95. Further, the control unit 70 detects the edge of the anterior segment image 95 and detects the pupil U based on the shape or the like.
  • the control unit 70 controls the drive unit 4 based on the detected bright spot T or pupil U to perform alignment of the optometry unit 2 with respect to the subject's eye.
  • Step S12 measurement
  • the control unit 70 causes the optometry unit 2 to start measuring the eye to be inspected.
  • the optometry unit 2 measures the eye refractive power of the subject's eye.
  • it is not limited to the measurement of the refractive power, and various kinds of measurement / imaging, etc. may be executed according to the type of the optometry part.
  • the coordinates other than the pupil are detected in the eye detection process in the face photographing unit 90. Is reduced. Thereby, the alignment is performed more favorably.
  • the circular separability is used for the detection of the center of the eye in step S3 and the feature amount in step S5, but the invention is not limited to this.
  • circularity which is a type of shape feature of a binary image
  • the circularity is a scale showing how close the shape of a binarized image is to a circle, and is calculated by 4 ⁇ S / L ⁇ 2 where S is the area and L is the perimeter.
  • S is the area and L is the perimeter.
  • the circularity has a value closer to 1 as it is closer to a perfect circle, and becomes smaller as the shape becomes more complicated.
  • the circularity is used for the image obtained by binarizing the face image 96. Since the center of the eye (for example, the pupil) has a black circular shape in the binarized image, the circularity is high.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Ophthalmology & Optometry (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

好適にアライメントできる眼科装置、及び眼科装置制御プログラムを提供する。被検眼を検査する眼科装置であって、前記被検眼を検査するための検眼手段と、前記被検眼と前記検眼手段との3次元的な相対位置を調整する調整手段と、左右の前記被検眼のうち少なくとも一方を含む顔画像を撮影する顔撮影手段と、前記調整手段を制御する制御手段と、を備え、前記制御手段は、前記顔画像に基づいて前記被検眼の開瞼が安定しているか否かを判定し、前記被検眼の開瞼が安定していると判定したときの前記顔画像に基づいて、前記検眼手段と前記被検眼との3次元的な相対位置を調整することを特徴とする。

Description

眼科装置、および眼科装置制御プログラム
 本開示は、被検眼を検査するための眼科装置、および眼科装置制御プログラムに関する。
 従来の眼科装置としては、例えば、眼屈折力測定装置、角膜曲率測定装置、眼圧測定装置、眼底カメラ、OCT、SLO等が知られている。これらの眼科装置では、例えば、ジョイスティック等の操作による手動アライメントと、前眼部画像の輝点検出による自動アライメントなどによって、被検眼に対して検眼部を所定の位置にアライメントすることが一般的である(特許文献1参照)。
 また、特許文献2では、被検者の顔を撮影した画像に基づいて被検眼に対する検眼部の位置合わせを行う装置が提案されている。
特開2013-066760 特開平10-216089
 しかしながら、従来の装置において、例えば、被検眼が瞬きをした際に、被検眼の位置を誤検出してしまい、適正にアライメントできない場合があった。
 本開示は、従来の問題点に鑑み、好適にアライメントできる眼科装置、及び眼科装置制御プログラムを提供することを技術課題とする。
 上記課題を解決するために、本開示は以下のような構成を備えることを特徴とする。
 (1) 被検眼を検査する眼科装置であって、前記被検眼を検査するための検眼手段と、前記被検眼と前記検眼手段との3次元的な相対位置を調整する調整手段と、左右の前記被検眼のうち少なくとも一方を含む顔画像を撮影する顔撮影手段と、前記調整手段を制御する制御手段と、を備え、前記制御手段は、前記顔画像に基づいて前記被検眼の開瞼が安定しているか否かを判定し、前記被検眼の開瞼が安定していると判定したときの前記顔画像に基づいて、前記検眼手段と前記被検眼との3次元的な相対位置を調整することを特徴とする。
 (2) 被検眼を検査する眼科装置であって、前記被検眼を検査するための検眼手段と、前記被検眼と前記検眼手段との3次元的な相対位置を調整する調整手段と、左右の前記被検眼のうち少なくとも一方を含む顔画像を撮影する顔撮影手段と、前記調整手段を制御する制御手段と、を備え、前記制御手段は、異なるタイミングで撮影された複数の前記顔画像に基づいて前記被検眼と前記検眼手段との3次元的な相対位置を調整することを特徴とする。
 (3) 被検眼を検査する眼科装置において実行される眼科装置制御プログラムであって、前記眼科装置のプロセッサによって実行されることで、左右の前記被検眼のうち少なくとも一方を含む顔画像を撮影する顔撮影ステップと、前記顔画像に基づいて前記被検眼の開瞼が安定しているか否かを判定し、前記被検眼の開瞼が安定していると判定したときの前記顔画像に基づいて、検眼手段と前記被検眼との3次元的な相対位置を調整する制御ステップと、を前記眼科装置に実行させることを特徴とする。
本実施例の外観を示す概略図である。 本実施例の制御系を示すブロック図である。 本実施例の光学系を示す概略図である。 本実施例の制御動作を示すフローチャートである。 顔画像の一例を示す図である。 特徴量の算出について説明する図である。 特徴量の重み付けについて説明する図である。 フレーム毎の特徴量の一例を示す図である。 フレーム毎の特徴量の一例を示す図である。 顔画像の一例を示す図である。 顔画像の一例を示す図である。 顔画像の一例を示す図である。 フレーム毎の特徴量の一例を示す図である。 装置のアライメントに動作について説明する図である。 装置のアライメントに動作について説明する図である。
<実施形態>
 以下、本開示に係る実施形態について説明する。本実施形態の眼科装置(例えば、眼科装置1)は、被検眼を検査する。眼科装置は、例えば、検眼部(例えば、検眼部2)と、調整部(例えば、駆動部4、顎台駆動部12など)と、顔撮影部(例えば、顔撮影部90)と、制御部(例えば、制御部70)を備える。検眼部は、被検眼を検査する。調整部は、被検眼と検眼部との3次元的な相対位置を調整する。顔撮影部は、左右の被検眼のうち少なくとも一方を含む顔画像を撮影する。制御部は、調整部を制御する。なお、制御部は、顔画像に基づいて被検眼の開瞼が安定しているか否かを判定し、被検眼の開瞼が安定していると判定したときの顔画像に基づいて、検眼部と被検眼との3次元的な相対位置を調整する。これによって、被検眼が眼を開けているときの顔画像に基づいて的確にアライメントを行うことができる。
 なお、制御部は、顔画像に基づいて検出された被検眼の検出データが安定しているか否かに基づいて、被検眼の開瞼が安定しているか否かを判定してもよい。この場合、安定していると判定したとき検出データに基づいて、検眼部と被検眼とのアライメントを行ってもよい。
 なお、制御部は、異なるタイミングで撮影された複数の顔画像に基づいて検出された複数の検出データのうち、少なくとも一部の検出データが安定しているか否かを判定してもよい。
 なお、制御部は、複数の検出データのうち、少なくとも一部の検出データを選択してもよい。また、制御部は、複数の検出データのうち、少なくとも一部の検出データを選択するときの選択処理を切り換えてもよい。これによって、適切な検出データを用いて、検眼部と被検眼とのアライメントを行うことができる。
 なお、検出データは、顔画像に基づいて算出された被検眼の特徴量を含んでもよい。この場合、制御部は、特徴量に基づいて検出データの選択処理を切り換えてもよい。検出データは、被検眼の座標などを含んでもよい。
 なお、制御部は、顔画像に基づいて算出された被検眼の特徴量と、予め設定された特徴量の閾値との比較結果に基づいて、検出データの選択処理を切り換えてもよい。これによって、被検者の開瞼状態に応じた適切な検出データを選択することができる。
 なお、制御部は、時系列の新しさに基づいて検出データを選択する第1選択処理と、特徴量の大きさに基づいて検出データを選択する第2選択処理と、を切り換えてもよい。これによって、被検者の開瞼状態に応じた適切な検出データを選択することができる。
 なお、制御部は、時系列の新しいK個(K≧1)の特徴量が閾値以上であった場合に第1選択処理を行い、時系列の新しいK個の特徴量の少なくとも1つが閾値未満であり、かつ、蓄積された検出データがJ個(J≧K)以上であった場合に第2選択処理を行ってもよい。
 なお、制御部は、時系列の新しいK個(K≧1)の特徴量が閾値以上であった場合に第1選択処理または第2選択処理を行い、時系列の新しいK個(K≧1)の特徴量が閾値未満であり、かつ、蓄積された検出データがJ個(J≧K)未満であった場合に選択処理を行わず、時系列の新しいK個(K≧1)の特徴量が閾値未満であり、かつ、蓄積された前記検出データがJ個(J≧K)以上であった場合に第1選択処理または第2選択処理を行ってもよい。
 なお、制御部は、複数の検出データの座標が互いの所定範囲内にある場合、検出データが安定していると判定してもよい。
 なお、制御部は、顔画像から検出データを検出する際に、顔画像上の位置に応じて、特徴量に重み付けを行ってもよい。これによって、例えば、眉などを検出してしまう可能性を低減できる。
 なお、制御部は、顔画像から検出データを検出する際に、特徴量の大きい検出データのうち、輝度値の低いものを検出してもよい。これによって、例えば、瞳孔以外を検出してしまう可能性を低減できる。
 なお、特徴量は、顔画像に対する画像処理によって算出された被検眼の瞳孔の円形分離度であってもよい。また、特徴量は、瞳孔の円形度であってもよいし、ハフ変換で得られる円の中心候補点であってもよい。
 なお、制御部は、異なるタイミングで撮影された複数の顔画像に基づいて被検眼と検眼部との3次元的な相対位置を調整してもよい。例えば、制御部は、顔撮影部によって同じ方向から撮影された複数の顔画像に基づいて被検眼と検眼部との3次元的な装置位置を調整してもよい。また、制御部は、顔画像が相対位置の検出に適するか否かを判定してもよい。
 なお、制御部は、記憶部(例えば、記憶部74)などに記憶された眼科装置制御プログラムを実行してもよい。眼科装置制御プログラムは、例えば、顔撮影ステップと、制御ステップを含む。顔撮影ステップは、例えば、左右の被検眼のうち少なくとも一方を含む顔画像を撮影するステップである。制御ステップは、顔画像に基づいて被検眼の開瞼が安定しているか否かを判定し、被検眼の開瞼が安定していると判定したときの顔画像に基づいて、検眼部と被検眼との3次元的な相対位置を調整するステップである。
<実施例>
 本開示に係る眼科装置を図面に基づいて説明する。本実施例の眼科装置は、例えば、被検眼を検査する。なお、以下の説明では、眼科装置として眼屈折力測定装置を例に説明するが、角膜曲率測定装置、角膜形状測定装置、眼圧測定装置、眼軸長測定装置、眼底カメラ、OCT(optical coherence tomography)、SLO(Scanning Laser Ophthalmoscope)等の他の眼科装置にも適用可能である。例えば、本実施例の眼科装置は、片眼毎に検査を行ってもよいし、両眼同時に(両眼視で)検査を行う装置であってもよい。
<外観>
 図1に基づいて、眼科装置の外観を説明する。図1に示すように、本実施例の眼科装置1は、検眼部2と、顔撮影部90と、駆動部4と、を主に備える。検眼部2は、被検眼を検査する。検眼部2は、例えば、被検眼の眼屈折力、角膜曲率、眼圧等を測定する光学系を備えてもよい。また、検眼部2は、被検眼の前眼部、眼底等を撮影するための光学系等を備えてもよい。本実施例では、屈折力を測定する検眼部2を例に説明する。顔撮影部90は、例えば、被検眼の顔を撮影する。顔撮影部90は、例えば、左右の被検眼のうち少なくとも一方を含む顔を撮影する。駆動部4は、例えば、検眼部2および顔撮影部90を基台5に対して上下左右前後方向(3次元方向)に移動させる。
 さらに、本実施例の眼科装置1は、例えば、筐体6、表示部7、操作部8、顔支持部9等を備えてもよい。例えば、筐体6は、検眼部2、顔撮影部90、駆動部4等を収納する。表示部7は、例えば、被検眼の観察画像および測定結果等を表示させる。表示部7は、例えば、装置1と一体的に設けられてもよいし、装置とは別に設けられてもよい。眼科装置1は、操作部8を備えてもよい。操作部8は、装置1の各種設定、測定開始時の操作に用いられる。操作部8には、検者による各種操作指示が入力される。例えば、操作部8は、タッチパネル、ジョイスティック、マウス、キーボード、トラックボール、ボタン等の各種ヒューマンインターフェイスであってもよい。顔支持部9は、例えば、額当て10と顎台11を備えてもよい。顎台11は、顎台駆動部12の駆動によって上下方向に移動されてもよい。顔支持部9は、顎台11に顎が載っているか否かを検知する顎台センサ113を備えてもよい。例えば、顎台センサ13は、例えば、顎台11が被検者の顎で下方向に押し込まれたことを検知する。顎台センサ13は、例えば、フォトセンサ、磁気センサ、圧力センサ、接触センサなどであってもよい。
<制御系>
 図2に示すように、本装置1は制御部70を備える。制御部70は、本装置1の各種制御を司る。制御部70は、例えば、一般的なCPU(Central Processing Unit)71、ROM72、RAM73等を備える。例えば、ROM72には、眼科装置を制御するための眼科装置制御プログラム、初期値等が記憶されている。例えば、RAMは、各種情報を一時的に記憶する。制御部70は、検眼部2、顔撮影部90、駆動部4、表示部7、操作部8、顎台駆動部12、顎台センサ13、記憶部(例えば、不揮発性メモリ)74等と接続されている。記憶部74は、例えば、電源の供給が遮断されても記憶内容を保持できる非一過性の記憶媒体である。例えば、ハードディスクドライブ、着脱可能なUSBフラッシュメモリ等を記憶部74として使用することができる。
<検眼部>
 検眼部2は、被検眼の測定,検査,撮影などを行う。検眼部2は、例えば、被検眼の屈折力を測定する測定光学系を備えてもよい。例えば、図3に示すように、検眼部2は、測定光学系20と、固視標呈示光学系40と、指標投影光学系50と、前眼撮影光学系60と、を備えてもよい。
 測定光学系20は、投影光学系(投光光学系)20aと、受光光学系20bと、を有してもよい。投影光学系20aは、被検眼の瞳孔を介して眼底Efに光束を投影する。また、受光光学系20bは、瞳孔周辺部を介して眼底Efからの反射光束(眼底反射光)をリング状に取り出し、主に屈折力の測定に用いるリング状の眼底反射像を撮像してもよい。
 例えば、投影光学系20aは、測定光源21と、リレーレンズ22と、ホールミラー23と、対物レンズ24と、を光軸L1上に有している。光源21は、リレーレンズ22から対物レンズ24、および、瞳孔中心部を介して眼底Efにスポット状の光源像を投影する。光源21は、移動機構33によって光軸L1方向に移動される。ホールミラー23には、リレーレンズ22を介した光源21からの光束を通過させる開口が設けられている。ホールミラー23は、被検眼の瞳孔と光学的に共役な位置に配置されている。
 例えば、受光光学系20bは、ホールミラー23と、対物レンズ24と、を投影光学系20aと共用する。また、受光光学系20bは、リレーレンズ26と、全反射ミラー27と、を有している。更に、受光光学系20bは、受光絞り28と、コリメータレンズ29と、リングレンズ30と、撮像素子32と、をホールミラー23の反射方向の光軸L2上に有している。撮像素子32には、エリアCCD等の二次元受光素子を用いることができる。受光絞り28、コリメータレンズ29、リングレンズ30、及び撮像素子32は、移動機構33によって、投影光学系20aの測定光源21と一体的に光軸L2方向に移動される。移動機構33によって光源21が眼底Efと光学的に共役な位置に配置される場合、受光絞り28及び撮像素子32も、眼底Efと光学的に共役な位置に配置される。
 リングレンズ30は、対物レンズ24からコリメータレンズ29を介して導かれる眼底反射光を、リング状に整形するための光学素子である。リングレンズ30は、リング状のレンズ部と、遮光部と、を有している。また、受光絞り28及び撮像素子32が、眼底Efと光学的に共役な位置に配置される場合、リングレンズ30は、被検眼の瞳孔と光学的に共役な位置に配置される。撮像素子32では、リングレンズ30を介したリング状の眼底反射光(以下、リング像という)が受光される。撮像素子32は、受光したリング像の画像情報を、制御部70に出力する。その結果、制御部70では、表示部7でのリング像の表示、およびリング像に基づく屈折力の算出等が行われる。
 また、図3に示すように、本実施例では、対物レンズ24と被検眼との間に、ダイクロイックミラー39が配置されている。ダイクロイックミラー39は、光源21から出射された光、および、光源21からの光に応じた眼底反射光を透過する。また、ダイクロイックミラー39は、後述の固視標呈示光学系40からの光束を被検眼に導く。更に、ダイクロイックミラー39は、後述の指標投影光学系50からの光の前眼部反射光を反射して、その前眼部反射光を前眼撮影光学系60に導く。
 図3に示すように、被検眼の前方には、指標投影光学系50が配置されてもよい。指標投影光学系50は、主に、被検眼に対する光学系の位置合わせ(アライメント)に用いられる指標を前眼部に投影する。ここで、指標投影光学系50は、眼Eの前眼部を照明する前眼部照明としても用いられてもよい。
 指標投影光学系50は、被検眼にアライメント指標を投影する。例えば、指標投影光学系50は、第1指標投影光学系51と、第2指標投影光学系52と、を備えてもよい。第1指標投影光学系51は、被検眼Eの角膜に拡散光を投影し、有限遠の指標を投影する。第1指標投影光学系51は、本実施例の眼科装置1では、被検眼Eの前眼部を照明する前眼部照明としても用いられる。第2指標投影光学系52は、被検眼の角膜に平行光を投影し、無限遠の指標を投影する。制御部70は、前眼部画像から第1指標投影光学系51と第2指標投影光学系によって被検眼に投影された輝点の位置を検出することによって、被検眼の位置情報を取得する。
 視標呈示光学系40は、被検眼を固視させるための視標呈示光学系であってもよい。視標呈示光学系40は、例えば、光源41、固視標42を少なくとも備える。図3では、光源41、固視標42、リレーレンズ43は、反射ミラー46の反射方向の光軸L4上に設けられている。固視標42は、他覚屈折力測定時に被検眼を固視させるために使用される。例えば、光源41によって固視標42が照明されることによって、被検眼に呈示される。
 光源41及び固視標42は、駆動機構48によって光軸L4の方向に一体的に移動される。光源41及び固視標42の移動によって、固視標の呈示位置(呈示距離)を変更してもよい。これによって、被検眼に雲霧をかけて屈折力測定を行うことができる。
 前眼撮影光学系60は、被検眼の前眼部画像を撮像するために設けられてもよい。例えば、前眼撮影光学系60は、撮像レンズ61と、撮像素子62とを少なくとも備える。図3では、撮像レンズ61と、撮像素子62が、ハーフミラー63の反射方向の光軸L3上に設けられている。撮像素子62は、被検眼の前眼部と光学的に共役な位置に配置される。撮像素子62は、指標投影光学系51によって照明される前眼部を撮像する。撮像素子62からの出力は、制御部70に入力される。その結果、撮像素子62によって撮像される被検眼の前眼部画像95が、表示部7に表示される(図2参照)。また、撮像素子62では、指標投影光学系50によって被検眼の角膜に形成されるアライメント指標(本実施例では、有限遠指標および無限遠指標)が撮像される。その結果、制御部70は、撮像素子62の撮像結果に基づいてアライメント指標を検出できる。また、制御部70は、アライメント状態の適否を、アライメント指標が検出される位置に基づいて判定できる。例えば、制御部70は、有限遠指標と無限遠指標との位置関係に基づいて、作動距離を検出してもよい。なお、前眼撮影光学系60の光軸L3は、ハーフミラー63およびダイクロイックミラー39によって測定光軸L1と同軸とされる。
<顔撮影部>
 顔撮影部90は、例えば、左右の被検眼のうち少なくとも一方を含む顔を撮影するための光学系を備えてもよい。例えば、図3に示すように、本実施例の顔撮影部90は、例えば、撮像素子91と、撮像レンズ92を主に備える。
 顔撮影部90は、例えば、検眼部2が初期位置にある場合に被検眼の両眼を撮影できる位置に設けられる。本実施例において、検眼部2の初期位置は、右眼を検査し易いように検眼部2の検査光軸に対して右側にずれた位置に設定される。したがって、顔撮影部90は、検眼部2が右側にずれた初期位置にある状態で、被検眼の両眼を撮影できる位置に設けられる。例えば、顔撮影部90は、検眼部2が初期位置にある状態で機械中心に配置される。初期位置は、例えば、瞳孔間距離の半分、つまり片眼瞳孔間距離に基づいて設定される場合、顔撮影部90は、装置本体の機械中心に対して片眼瞳孔間距離だけ左右にずれた位置に配置されてもよい。なお、片眼瞳孔間距離の平均値はおよそ32mmである。
 本実施例の顔撮影部90は、駆動部4によって検眼部2とともに移動される。もちろん、顔撮影部90は、例えば、基台5に対して固定され、移動しない構成でもよい。
<顔照明光学系>
 顔照明光学系80は、被検眼の顔を照明する。顔照明光学系80は、被検者の両眼を含む被検者の顔を照明するために設けられてもよい。顔照明光学系80は、例えば、照明光源81を備える。照明光源81は、赤外光を発する。なお、顔照明光学系80は、顔撮影部90の光軸の周辺を均一に被検眼の顔を照明できるとよい。本実施例では、検眼窓の左右の位置に照明光源81が設けられている。なお、顔照明光学系80は、顔撮影部90を基準として対称的な位置に設けられてもよい。例えば、顔撮影部90を中心として左右対称な位置に設けられてもよいし、上下対称な位置に設けられてもよい。なお、顔照明光学系80は、アライメント用の指標光源よりも指向性の低い光源が用いられる。
<制御方法>
 以下、本装置1の制御動作について図4を用いて説明する。本装置1は、例えば、被検眼を検査するために、検眼部2と被検眼との位置合わせ(アライメント)を自動で行う。
(ステップS1:被検者検知)
 制御部70は、被検者の有無を検出する。例えば、制御部70は、顎台センサ13からの出力によって人の有無を判定する。制御部70は、顎台センサ13からの出力がある場合は被検者がいると判定し、顎台センサ13からの出力が無い場合は被検者がいないと判定する。制御部70は、被検者がいると判定した場合、ステップS3に進む。なお、制御部70は、顎台センサ13の出力に限らず、顔撮影部からの出力などに基づいて被検者の有無を検出してもよい。例えば、顔撮影部90によって撮影された画像の輝度値、輝度の変化などに基づいて被検者の有無を検出してもよい。
(ステップS2:顔撮影)
 制御部70は、顔支持部9に支持された被検者の顔を顔撮影部90によって撮影し、図5のような顔画像96を取得する。
(ステップS3:眼検出)
 制御部70は、顔画像96への画像処理によって最も眼らしい領域A1を決定する。例えば、制御部70は、被検眼または眉等の顔の特徴に基づいて領域A1を決定する。制御部70は、この領域A1に対して、眼の中心(例えば、瞳孔)を探す。例えば、制御部70は、領域A1に対して円形分離度フィルタを適用し、各画素の円形分離度を算出する。円形分離度フィルタは、例えば、図6のような5×5個の矩形などが用いられる。例えば、制御部70は、図6の中央部の3×3の領域A2と、領域A2の周辺の領域A3の2つの領域の平均輝度等の分離程度を円形分離度として求める。具体的には、以下の式(1)~(3)を用いて円形分離度ηを求める。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
 式(1)~(3)において、Nは2つの領域の全矩形数、n,nはそれぞれ領域A2,領域A3内の矩形数、σは領域全体の全分散値、Pバーは矩形iの平均輝度値、Pバー,Pバーはそれぞれ領域A2,領域A3の平均輝度値、Pバーは領域全体の平均輝度値を示している。
 上記の処理だけでは中心が明るい円形も検出されてしまう。このため、制御部70は、中心が暗い点を瞳孔の候補点として残す。例えば、制御部70は、中心の輝度が極小となる点を瞳孔の候補点とする。
 また、瞳孔より眉の方が、円形分離度が高くなる場合がある。ここで、瞳孔と眉の位置関係に着目すると、画像上で瞳孔に対して眉の位置は上になる。そこで、制御部70は、領域A1の上側にある円形分離度の高い点は瞳孔である可能性が低いとして、図7のように、領域A1の上側にある座標の円形分離度は小さくなるように、重み係数で円形分離度の重み付けを行ってもよい。なお、顔画像96から領域A1を検出するときの方法によって、領域A1における瞳孔のおおよその上下位置が既知である場合は、その位置より下の重み係数は1.0としてもよい。
 また、瞳孔より目頭付近の方が、円形分離度が高くなる場合がある。このため、制御部70は、瞳孔のほうが目頭付近よりも輝度が低いという関係を利用して、円形分離度が高く、5×5個の矩形の中心領域が暗い点を候補点として残す処理を行う。例えば、制御部70は、ここまでの処理で残った瞳孔の候補点の中で最大円形分離度を算出し、最大円形分離度の60%以上の円形分離度を持つ候補点の中で、中心輝度の最低値を算出する。そして、制御部70は、最低輝度の130%以下の中心輝度を持つ点を候補点として残す。制御部70は、例えば、上記の処理で絞り込まれた候補点の中から、最も円形分離度が高いものを瞳孔とする。制御部70は、瞳孔の検出データを記憶部74に記憶させる。なお、検出データは、例えば、瞳孔の座標と円形分離度等を含む。
(ステップS4:データ個数判定(1))
 制御部70は、データ個数を判定する。例えば、制御部70は、記憶部74に記憶された検出データがK個以上であるか否か判定する。本実施例では、制御部70は、検出データが2個以上あるか判定する。検出データが2個以上ある場合はステップS5に進み、検出データが2個未満である場合はステップS2に戻り、顔撮影と眼検出を行う。
(ステップS5:閾値判定)
 制御部70は、最新のK個の検出データの特徴量が閾値以上か否かを判定する。制御部70は、例えば、特徴量として円形分離度を用いる。円形分離度は、瞳孔のような円形部分は特徴量が大きくなり、そうではない部分は小さくなる。眼が開いている状態の円形分離度に比べ、眼を閉じた状態の円形分離度は小さくなる。この特徴を利用して、制御部70は、特徴量の時系列的な変化をみることで、安定して目を大きく開いているか、またはそれ以外であるかを判定する。本実施例では、制御部70は、最新2個の検出データの円形分離度が閾値以上か否かを判定する。円形分離度が閾値以上であった場合はステップS6に進み、円形分離度が閾値未満であった場合はステップS7に進む。
 例えば、被検者が瞬きをしていない場合、図8に示すような特徴量が得られる。この場合、最新2個の1フレーム目と2フレーム目ともに特徴量は閾値を超えているため、2フレーム目で眼検出できた時点でステップS6に移行する。
(ステップS6:データ選択(1))
 制御部70は、最新のK個の検出データを選択する。本実施例の場合、制御部70は、最新の2個の検出データを選択する。
(ステップS7:データ個数判定(2))
 制御部70は、データ個数を判定する。例えば、制御部70は、被検眼の検出データがJ個以上であるか否かを判定する。本実施例では、制御部70は、検出データが4個以上あるか判定する。
(ステップS8:データ選択(2))
 制御部70は、検出データを蓄積した蓄積データのうち、特徴量の大きい順にK個のデータを選択する。本実施例の場合、制御部70は特徴量の大きい順に2個のデータを選択する。
 例えば、被検者が瞬きをした場合、図9に示すような特徴量が得られる。この場合、ステップS5において、4フレーム目解析後に閾値判定を行うが、3フレーム目の特徴量が閾値を超えておらず、2フレーム連続で閾値を超えるという条件(安定して目を大きく開けていると判定する条件)を満たしていないため、ステップS7へ進む。その後、ステップS8へ進み、過去4フレーム分の蓄積データをさかのぼる。例えば、制御部70は、過去4フレーム分の蓄積データを特徴量の高い順にソートして、特徴量の高い検出データを選択する。これによって、特徴量の低い瞬きの瞬間の検出データを除外することができる。例えば、図10Aに示すように、被検者が瞬きをしているときの検出データは座標D1,D2が眼の下辺りになり、図10Bに示すように眼を開けているときの瞳孔の位置とずれている。したがって、上記のように、特徴量の高い検出データを選択することによって、瞳孔の位置とずれた検出データが選択される可能性が低減される。
 なお、図11に示すように、被検者が細目の場合、どのフレームの特徴量も閾値を超えないことがある(図12参照)。このような場合も、過去Jフレーム(例えば、過去4フレーム)分の検出データの中で信頼性の高い(特徴量が大きい)フレームの検出データを選択することで、もっともらしい解析結果を得ることができる。
 なお、制御部70は、特徴量の大きい順にK個のデータを選択する際に、蓄積データすべての中で選択しなくてもよく、J個のデータの中から選択してもよい。
(ステップS9:安定条件の判定)
 制御部70は、被検眼の検出データが安定しているか否かを判定する。例えば、制御部70は、複数の検出データの座標が近い(例えば、32ピクセル以内)場合に、検出データが安定していると判定する。
(ステップS10:検出データの採用)
 制御部70は、安定していると判定された検出データを採用する。例えば、制御部70は、複数の検出データのうち、時系列で最新に近い検出データを採用してもよいし、特徴量の大きい検出データを採用してもよい。また、制御部70は、複数の検出データのうち、特徴量が最大または最小の検出データを採用してもよいし、特徴量が中央値をとる検出データを採用してもよいし、複数の検出データの平均値を採用してもよい。なお、制御部70は、制御フローに応じて採用する検出データを変更してもよい。例えば、制御部70は、ステップS6を経由している場合は最新の検出データを採用し、ステップS8を経由している場合は特徴量の大きい検出データを採用してもよい。
(ステップS11:アライメント)
 制御部70は、採用された被検眼の検出データに基づいてアライメントを行う。制御部70は、顔撮影部90によって撮影された顔画像96に基づいて、顔撮影部90から見た被検眼Eの方向を求める。被検眼の方向は、例えば、3次元的な方向(例えば、空間ベクトル)である。
 ここで、被検眼Eの3次元座標を(Xe,Ye,Ze)とすると、採用された検出データによって得られる顔画像96上の被検眼(例えば、瞳孔)の座標(xe,ye)と、実際の被検眼Eの座標(Xe,Ye,Ze)との関係は数4のように表される。
Figure JPOXMLDOC01-appb-M000004
 なお、数4において、数5はカメラ内部パラメータで、fx,fyは焦点距離、sはスキュー歪み、(cx,cy)は画像上の光学中心である。これらは予め顔撮影部90のキャリブレーションを行うことで取得される。また、数6は顔撮影部90のカメラ外部パラメータで、数7は顔撮影部90の回転成分である。(tX,tY,tZ)は顔撮影部90の平行移動成分(顔撮影部90の位置)である。また、hは任意のスケールである。
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
 ここで、顔撮影部90から見た被検眼Eの位置をE'=(Xe',Ye',Ze')=(Xe-tX,Ye-tY,Ze-tZ)とする。すると、顔撮影部90から見た被検眼の方向はE'の方向ベクトルVとなる。ここで、数4より数8が成り立つ。
Figure JPOXMLDOC01-appb-M000008
 ここで、E'の方向ベクトルVを求めるためにはXe':Ye':Ze'の比が分かればよいから、数8において、Xe'=mZe,Ye'=nZeとおくと数9となる。
Figure JPOXMLDOC01-appb-M000009
 ただし、h'=h/Zeとする。ここで、未知数はh',m,nの3つであり、数9を展開した連立方程式を解くことによってm,nが求まる。これによって、Xe':Ye':Ze'の比が求まり、その結果E’の方向ベクトルVが求まる。このようにして、制御部70は、顔撮影部90から見た被検眼の方向を求める。
 制御部70は、検出された被検眼の方向に基づいて駆動部4を制御し、検眼部2を移動させる。例えば、制御部70は、図13に示すように、前眼撮影光学系60によるアライメント可能領域Aaを顔撮影部90と被検眼とを結ぶ直線B上に移動させる。ここで、アライメント可能領域Aaは、例えば、ある位置において前眼撮影光学系60によって撮影された前眼部画像95から被検眼の3次元的な位置を検出できる領域である。顔撮影部90の位置(tX,tY,tZ)と、前眼撮影光学系60によるアライメント可能領域Aaとの位置関係は、装置の設計上既知であるため、制御部70は、駆動部4によってアライメント可能領域Aaを直線Bに移動させることができる。例えば、制御部70は、アライメント可能領域Aaの領域内に直線Bが含まれるように、前眼撮影光学系60を位置Q1から位置Q2に移動させる。ここで、位置Q2は、例えば、直線Bにおいて検眼部2による測定が可能な測定可能範囲Eaの最も顔撮影部90側の位置G1がアライメント可能領域Aaの重心と一致する位置である。なお、測定可能範囲Eaは、例えば、検眼部2の作動距離と駆動部4の駆動範囲によって定まる。
 制御部70は、例えば、前眼撮影光学系60を位置Q2に移動させ、アライメント可能領域Aaを直線B上に位置させる。そして、制御部70は、前眼撮影光学系60によって被検眼の撮影を行いながら、前眼撮影光学系60をさらに直線Bに基づく方向に移動させる。例えば、図14のように、前眼撮影光学系60を位置Q2から位置Q3に向けて移動させる。ここで、位置Q3は、例えば、測定可能範囲Eaの原点Oと最も離れた位置G2がアライメント可能領域Aaの重心と一致する位置である。
 制御部70は、例えば、アライメント可能領域Aaが直線Bの少なくとも一部を含むように、前眼撮影光学系60を直線Bに沿う方向に移動させることによって、位置Q2から位置Q3に移動する間にアライメント可能領域Aaに被検眼を位置させることができる。アライメント可能領域Aaに被検眼が入った場合、制御部70は、前眼撮影光学系60によって撮影された前眼部画像95から被検眼と検眼部2のアライメントを行うことができる。
 制御部70は、被検眼に方向に移動しながら撮影される前眼部画像95を随時解析し、指標投影光学系50によって被検眼に投影された輝点T、または瞳孔Uを検出する。例えば、制御部70は、前眼部画像95の輝度情報に基づいて輝点Tを検出する。また、制御部70は、前眼部画像95のエッジを検出し、その形状などに基づいて瞳孔Uを検出する。
 制御部70は、検出された輝点Tまたは瞳孔Uに基づいて、駆動部4を制御し、被検眼に対する検眼部2のアライメントを行う。
 (ステップS12:測定)
 制御部70は、アライメントが完了すると、検眼部2によって被検眼の測定を開始する。例えば、検眼部2は被検眼の眼屈折力の測定を行う。もちろん、屈折力の測定に限らず、検眼部の種類に応じた種々の測定・撮影等が実行されてもよい。
 上記のように、眼検出処理中に、被検者が瞬きをしているフレームの解析結果は使用しないようにすることによって、顔撮影部90における眼検出処理において、瞳孔ではない座標が検出されることが低減される。これによって、アライメントがより好適に行われる。
 なお、上記の実施例では、ステップS3の眼の中心の検出及び、ステップS5の特徴量に円形分離度を使用しているが、これに限定されない。例えば、二値画像の形状特徴の一種である円形度を使用しても良い。円形度とは、二値化画像の形状がどれだけ円に近いか表す尺度で、面積をS、周囲長をLとした時、4πS/L^2で計算される。円形度は、真円に近いほど1に近い値となり、複雑な形状になるほど値は小さくなる。この場合、顔画像96に二値化を行った画像に対して、円形度を使用する。眼の中心(例えば瞳孔)は二値化画像で黒い円形状になるため、円形度が高くなる。
 1 眼科装置
 2 検眼部
 4 駆動部
 5 基台
 6 筐体
 9 顔支持部
 60 前眼撮影光学系
 70 制御部
 71 CPU
 72 ROM
 73 RAM
 90 顔撮影部

Claims (17)

  1.  被検眼を検査する眼科装置であって、
     前記被検眼を検査するための検眼手段と、
     前記被検眼と前記検眼手段との3次元的な相対位置を調整する調整手段と、
     左右の前記被検眼のうち少なくとも一方を含む顔画像を撮影する顔撮影手段と、
     前記調整手段を制御する制御手段と、を備え、
     前記制御手段は、前記顔画像に基づいて前記被検眼の開瞼が安定しているか否かを判定し、前記被検眼の開瞼が安定していると判定したときの前記顔画像に基づいて、前記検眼手段と前記被検眼との3次元的な相対位置を調整することを特徴とする眼科装置。
  2.  前記制御手段は、前記顔画像に基づいて検出された前記被検眼の検出データが安定しているか否かに基づいて、前記被検眼の開瞼が安定しているか否かを判定することを特徴とする請求項1の眼科装置。
  3.  前記制御手段は、異なるタイミングで撮影された複数の前記顔画像に基づいて検出された複数の前記検出データのうち、少なくとも一部の前記検出データが安定しているか否かを判定することを特徴とする請求項2の眼科装置。
  4.  前記制御手段は、前記複数の検出データのうち、前記少なくとも一部の検出データを選択することを特徴とする請求項3の眼科装置。
  5.  前記制御手段は、前記複数の検出データのうち、前記少なくとも一部の検出データを選択するときの選択処理を切り換えることを特徴とする請求項4の眼科装置。
  6.  前記検出データは、前記顔画像に基づいて算出された前記被検眼の特徴量を含み、
     前記制御手段は、前記特徴量に基づいて前記選択処理を切り換えることを特徴とする請求項5の眼科装置。
  7.  前記制御手段は、前記特徴量と、予め設定された前記特徴量の閾値との比較結果に基づいて、前記選択処理を切り換えることを特徴とする請求項6の眼科装置。
  8.  前記制御手段は、時系列の新しさに基づいて前記検出データを選択する第1選択処理と、前記特徴量の大きさに基づいて前記検出データを選択する第2選択処理と、を切り換えることを特徴とする請求項5~7のいずれかの眼科装置。
  9.  前記制御手段は、時系列の新しいK個(K≧1)の前記特徴量が前記閾値以上であった場合に前記第1選択処理を行い、時系列の新しいK個の前記特徴量の少なくとも1つが前記閾値未満であり、かつ、蓄積された前記検出データがJ個(J≧K)以上であった場合に前記第2選択処理を行うことを特徴とする請求項8の眼科装置。
  10.  前記制御手段は、時系列の新しいK個(K≧1)の前記特徴量が前記閾値以上であった場合に前記第1選択処理または前記第2選択処理を行い、時系列の新しいK個(K≧1)の前記特徴量が前記閾値未満であり、かつ、蓄積された前記検出データがJ個(J≧K)未満であった場合に前記選択処理を行わず、時系列の新しいK個(K≧1)の前記特徴量が前記閾値未満であり、かつ、蓄積された前記検出データがJ個(J≧K)以上であった場合に前記第1選択処理または前記第2選択処理を行うことを特徴とする請求項8の眼科装置。
  11.  前記制御手段は、前記複数の検出データの座標が互いの所定範囲内にある場合、前記検出データが安定していると判定することを特徴とする請求項3~10のいずれかの眼科装置。
  12.  前記制御手段は、前記顔画像から前記検出データを検出する際に、前記顔画像上の位置に応じて、前記特徴量に重み付けを行うことを特徴とする請求項6~11のいずれかの眼科装置。
  13.  前記制御手段は、前記顔画像から前記検出データを検出する際に、前記特徴量の大きい前記検出データのうち、輝度値の低いものを検出することを特徴とする請求項6~12のいずれかの眼科装置。
  14.  前記特徴量は、前記顔画像に対する画像処理によって算出された前記被検眼の瞳孔の円形分離度であることを特徴とする6~13のいずれかの眼科装置。
  15.  被検眼を検査する眼科装置であって、
     前記被検眼を検査するための検眼手段と、
     前記被検眼と前記検眼手段との3次元的な相対位置を調整する調整手段と、
     左右の前記被検眼のうち少なくとも一方を含む顔画像を撮影する顔撮影手段と、
     前記調整手段を制御する制御手段と、を備え、
     前記制御手段は、異なるタイミングで撮影された複数の前記顔画像に基づいて前記被検眼と前記検眼手段との3次元的な相対位置を調整することを特徴とする眼科装置。
  16.  前記制御手段は、前記顔画像が前記相対位置の検出に適するか否かを判定することを特徴とする請求項15の眼科装置。
  17.  被検眼を検査する眼科装置において実行される眼科装置制御プログラムであって、前記眼科装置のプロセッサによって実行されることで、
     左右の前記被検眼のうち少なくとも一方を含む顔画像を撮影する顔撮影ステップと、
     前記顔画像に基づいて前記被検眼の開瞼が安定しているか否かを判定し、前記被検眼の開瞼が安定していると判定したときの前記顔画像に基づいて、検眼手段と前記被検眼との3次元的な相対位置を調整する制御ステップと、
    を前記眼科装置に実行させることを特徴とする眼科装置制御プログラム。
PCT/JP2019/039384 2018-10-10 2019-10-04 眼科装置、および眼科装置制御プログラム WO2020075656A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020551128A JP7491218B2 (ja) 2018-10-10 2019-10-04 眼科装置、および眼科装置制御プログラム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018192184 2018-10-10
JP2018-192184 2018-10-10

Publications (1)

Publication Number Publication Date
WO2020075656A1 true WO2020075656A1 (ja) 2020-04-16

Family

ID=70165222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/039384 WO2020075656A1 (ja) 2018-10-10 2019-10-04 眼科装置、および眼科装置制御プログラム

Country Status (2)

Country Link
JP (1) JP7491218B2 (ja)
WO (1) WO2020075656A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004041470A (ja) * 2002-07-12 2004-02-12 Canon Inc 眼科装置
JP2013081518A (ja) * 2011-10-06 2013-05-09 Topcon Corp 眼科装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004041470A (ja) * 2002-07-12 2004-02-12 Canon Inc 眼科装置
JP2013081518A (ja) * 2011-10-06 2013-05-09 Topcon Corp 眼科装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FUKUI, KAZUHIRO ET AL.: "Facial Feature Point Extraction Method Based on Combination of Shape Extraction and Pattern Matching", IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS D-II, vol. J80-D-II, no. 8, 25 August 1997 (1997-08-25), pages 2170 - 2177, XP000782034 *

Also Published As

Publication number Publication date
JP7491218B2 (ja) 2024-05-28
JPWO2020075656A1 (ja) 2021-09-16

Similar Documents

Publication Publication Date Title
US11330978B2 (en) Subjective optometry apparatus, subjective optometry method, and recording medium storing subjective optometry program
US10307058B2 (en) Ophthalmologic apparatus
CN107495919B (zh) 眼科装置
JP6143447B2 (ja) 眼科装置及び眼測定方法、並びにプログラム
JP6075844B2 (ja) 眼科装置および眼科方法並びに記憶媒体
JP6641730B2 (ja) 眼科装置、および眼科装置用プログラム
CN109310316B (zh) 眼科装置
JP6853496B2 (ja) 検眼装置及び検眼プログラム
JP6701987B2 (ja) 眼科装置、および眼科装置制御プログラム
JP6238552B2 (ja) 眼科装置、眼科装置の制御方法、プログラム
JP6407631B2 (ja) 眼科装置
JP2023171595A (ja) 眼科装置
JP7283391B2 (ja) 眼屈折力測定装置
JP7266375B2 (ja) 眼科装置及びその作動方法
JP6701988B2 (ja) 眼科装置
JP6634765B2 (ja) 眼科装置、および眼科装置制御プログラム
WO2020075656A1 (ja) 眼科装置、および眼科装置制御プログラム
JP6843527B2 (ja) 眼科装置、および眼科装置制御プログラム
JP6769091B2 (ja) 眼科装置、および眼科装置制御プログラム
JP6769092B2 (ja) 眼科装置
JP6862685B2 (ja) 眼科装置、および眼科装置制御プログラム
JP6927389B2 (ja) 眼科装置
JP2020137915A (ja) 自覚式検眼装置及び自覚式検眼プログラム
JP7283932B2 (ja) 眼科装置
JP6077777B2 (ja) 眼科装置及び眼科装置のアライメント方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19871639

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020551128

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19871639

Country of ref document: EP

Kind code of ref document: A1